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Abstract

We present a new data structure to approximate accurately and efficiently a polynomial f of
degree d given as a list of coefficients f;. Its properties allow us to improve the state-of-the-art
bounds on the bit complexity for the problems of root isolation and approximate multipoint
evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned
polynomials, implying notably that the standard condition number of the zeros of a polynomial
is at least exponential in the number of roots of modulus less than 1/2 or greater than 2.

Given a polynomial f of degree d with ||f||1 = >_|fi] < 27 for 7 > 1, isolating all its complex
roots or evaluating it at d points can be done with a quasi-linear number of arithmetic operations.
However, considering the bit complexity, the state-of-the-art algorithms require at least d*/2 bit
operations even for well-conditioned polynomials and when the accuracy required is low. Given
a positive integer m, we can compute our new data structure and evaluate f at d points in the
unit disk with an absolute error less than 27 in O(d(7 +m)) bit operations, where O(-) means
that we omit logarithmic factors. We also show that if x is the absolute condition number of
the zeros of f, then we can isolate all the roots of f in O(d(7 +log k)) bit operations. Moreover,
our algorithms are simple to implement. For approximating the complex roots of a polynomial,
we implemented a small prototype in Python/NumPy that is an order of magnitude faster than
the state-of-the-art solver MPSolve for high degree polynomials with random coefficients.

Keywords: Polynomial evaluation, Complex root finding, Condition number

1 Introduction

One of the fundamental problem in computer algebra is the evaluation of polynomials. Since 1972,
it is known that evaluating a univariate polynomial of degree d on d points can be done in a quasi-
linear number of arithmetic operations [17]. Unfortunately, this bound doesn’t hold if we consider
the bit complexity, where the arithmetic operations performed with a precision of m bits costs O(m)
bit operations. If we want to evaluate approximatively a polynomial on d points up to a constant
absolute error, a direct application of Fiduccia algorithm leads to a bit-complexity bound in O(d?)
bit operations, and a more sophisticated algorithm provides a bound in O(d3/2) [45]. For almost 50

years, the following problem has remained open.

Given a polynomial f of degree d with coefficients of constant size, and d complex points
xy in the unit disk, is it possible to compute all the f(x;) up to a constant absolute
error with a number of bit operations quasi-linear in d ?



Nevertheless, the evaluation of polynomials on multiple points is used in many areas of computer
science, such as polynomial system solving with the Newton method [43] 24] [12], [8, [5], homotopy
continuation |11}, [10, [4) 3T, 8] or subdivision algorithms [36] 29, 34], visualisation of algebraic surfaces
through raytracing or mesh computation [47], among others. Speeding up the numerical evaluation
of polynomials may lead to an effortless practical improvement for many existing algorithms.

We introduce in Sections and [3] a new data structure, that allows us to finally solve this
problem. It approximates the input polynomial by a piecewise polynomial on a carefully chosen
domain that depends solely on the degree of the input polynomial, and the required precision. The
fact that the domain is fixed and not adaptive makes it easy to implement.

Moreover, we show that our new data structure improves not only the bound for the numeric
multipoint evaluation problem (Sections and , but also the bound for the root isolation
problem (Sections and , and the lower bound on the condition number of polynomials
(Sections and@. We expect that our approach will lead further improvements for other related
problems, notably multivariate polynomial evaluation and polynomial system solving. As a proof
of concept, we also implemented the root isolation algorithm presented in this article. Even though
our implementation is less than 100 lines of code written in Python, it is an order of magnitude
faster than the state-of-the-art optimized implementation MPSolve for high degree polynomials with

random coefficients (Section and source code in Appendix [A)).

1.1 The data structure

Given a polynomial f of degree d and an integer m > 1, we will introduce in Definition 2] the
so-called an m-hyperbolic approximation of f, which can be seen as a piecewise approximation of
f by polynomials of degree m — 1. The key that will allow us to improve the state-of-the-art
complexity bounds of several classical problems related to univariate complex polynomials is the
hyperbolic layout used to compute this piecewise approximation. We first define this layout so-called
hyperbolic covering, illustrated in Figure[l} Roughly, a hyperbolic covering is a set of disks of radius
exponentially smaller near the unit circle, and such that their union contains the unit disk.

Definition 1. Given a positive integer N, an N-hyperbolic covering of the unit disk is the set of

i

disks of centers yne 27 and radii pp for 0 <n < N and 0 < k < K,, where v, p, and K, are
defined by:

_ 1
- on f0<n<N
1 ifn=N

1
Tn = *(Tn + Tn-‘,—l)

2
3
Pn = Z(rn—i-l - T'n)
4 ifn=0
K. —
" {[f’/’rg rg—:l} otherwise

Remark 1. We can also write explicitly the corresponding sequences (y,) i\ and (rp) Y= :

n=0 n=0 -
%—i; ifoO<n<N-2
Tn = 1
2

& ifn=N-1



We also have explicitly 2" < K,, < 2" using % <7rp+1 <1 and %2% < pn < %2%
We will see in Lemma [3] that for all integers N > 1, the union of the disks of a N-hyperbolic
covering contains the unit disk.We can now define the m-hyperbolic approximation of a polynomial

f, that can be seen as piecewise approximation of f by polynomials of degree lower than m.

Definition 2. Given a polynomial f of degree d with ||f|1 < 27, and an integer m > 1, an m-
hyperbolic approximation of f is a finite set of pairs (g,a), where g is a polynomial of degree
m = min(m — 1,d), with coefficients of bit size O(T +m), and a is an affine transform, such that:

o the set of disks a(D(0,1)) is the N-hyperbolic covering with N = [log, (3)]
o [[foa—gl <3[fl27™

Since we constrain the polynomials ¢g(X) approximating f(a(X)) to have a degree m — 1, that
can be significantly smaller than d, it is not obvious that an approximation satisfying the conditions
defined above always exists. The following theorem proves that it always exists, and furthermore
that it can be computed in quasi-linear time with respect to the degree of f.

Theorem 1. Let f be a polynomial of degree d with || f||1 < 27, andm > 1 be an integer. Algorithm
computes an m-hyperbolic approxzimation of f, denoted by Hq,,(f), in O(d(m + 7)) bit operations.

Remark also that the maximal precision required for the arithmetic operations in Algorithm [Ifis
in O(T+m+logd), which makes it suitable for an implementation with machine precision arithmetic.

Main idea of the proof of Theorem Denoting the center and the radius of a disk in a
m-hyperbolic approximation by v, 1 = ne? ™/ En and p, , we need to prove that it is possible to
compute a polynomial of degree m — 1 that satisfies the bounds of Theorem [} This comes from the
fact that using the formula of Definition[I]and Remark[I]} we can check that the coefficients of degree
¢ of the polynomial f (7, x + pnX) have a modulus less than || f||;/2¢ for all £ > m. Then it remains
to prove that we can approximate the first m coefficients of all the f(v,x + ppX) in O(d(m + 1))
bit operations. For that, remark that 0 <n < N = O(logd). Thus, it is sufficient to prove that for
a fixed n, we can compute f(y,x + ppX) mod X" for all k£ in O(d(m + 7)) bit operations. This
can be done by using a combination of fast numerical composition of series (Proposition , and
numerical fast Fourier transform (Proposition [2). More details can be found in Section

1.2 Applications

Based on our new data structure, we describe three independent results that improve state-of-the-art
solutions to long-standing problems. First we improve the complexity for evaluating numerically
polynomials on multiple points. Then we improve the complexity of finding the roots of well-
conditioned polynomials. Finally, we present a new lower bound on the condition number of the
zeros of a polynomial, based on simple geometric properties of the distribution of its roots.

1.2.1 Numerical multipoint evaluation

In the literature [17, 2], [46, Chapter 10|, a fast multipoint evaluation algorithm has been designed to
evaluate d points of a degree d polynomial with a number of arithmetic operations quasi-linear in d.
However, in the case of numerical evaluation with precision m after the binary point, this algorithm
uses a number of bit operations quadratic in d, even for a constant m. This is due notably to the fact
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that this algorithm introduces intermediate polynomials with coefficients that may have a bit-size
linear in d. A careful analysis of the bit-complexity of this algorithm for numerical evaluation (|45,
Lemma 11]) shows that this algorithm uses O(d(m + d)) bit operations.

Specific sets of points were found where the problem of numeric multipoint evaluation can be
solved in a quasi-linear time in d. The most famous one is the set of roots of unity. Computing
a numerical approximation of the f(zy) for z; = ¢TI can be done in quasi-linear time [41] in
d. Another family of points was used by Ritzmann for the problem of fast numeric composition of
series [39, Proposition 3.4]. He showed that if the modulus of the zj is lower than %, then all the
f(x) can be approximated numerically in a quasi-linear number of bit operations.

In a more recent work [45] §3.2], van der Hoeven gave the first sub-quadratic bound to evaluate
d points with modulus less than 1. More precisely, he showed that if ||f|; < 1 it is possible to
evaluate the f(z;) with an error less than 2™ with O(d®2m?/2) bit operations. He achieved this
bound by subdividing the unit disk in annuli of constant width. A drawback of this bound is that it
increases the exponent on the required precision m. By contrast, in our data structure, we subdivide
the unit disk with disks of width exponentially smaller near the unit circle. This approach allows us
to finally derive an algorithm that is both quasi-linear in d and in m for the numerical multipoint
evaluation problem.

Theorem 2. Given a polynomial f of degree d with ||f||1 <27, Algom'thm returns the evaluation
of f on d points in the unit disk with an absolute error less than ||f|[127™ in O(d(T + m)) bit
operations.

Remark 2. Using Algorithm @ on the reverse polynomial X% f(1/X), we see that the same com-
plexity bound holds for a set of d points in the complex plane, replacing f by the function

. {f(:c) if x € D(0,1)

fl) = f(x)/z?  otherwise

Our algorithm is particularly well-suited for evaluating polynomials of high degree with fixed
constant precision such as machine precision. This arises in many applications, notably in polyno-
mial root approximation. One of the most famous method to approximate a root of a polynomial
is the Newton method. Starting from an initial point xg, it consists in computing iteratively the
Newton map, yielding the sequence x, 1 = z, — f(x,)/f (z). It was shown that starting from
an explicit set of 3.33dlog? d points, this approach is guaranteed to approximate all the roots of a
given polynomial [24] [5]. In their work, the authors only show experiences with polynomial given
by recursive formula, such that they can be evaluated with a number of operations logarithmic in
their degree. Our data structure can improve their approach for dense polynomials given by their
list of coefficients. In Section [1.2.2] we focus on the computation of disks isolating the roots of f,
that is the computation of a set of disks that are pairwise disjoint and that contain a unique root
of f each.

Main idea of the proof of Theorem Once we have computed a m-hyperbolic approximation
of the input polynomial f, the algorithm is rather straight-forward. For each disk of the correspond-
ing hyperbolic covering, we can efficiently find all the input points that it contains, using a geometric
data-structure such as range searching, recalled in Section Then, using the state-of-the-art al-
gorithm for multipoint evaluation (Proposition , we can evaluate the corresponding approximate
polynomial g from the hyperbolic approximation on the selected points. Since g has a degree lower
than m, evaluating g on the x; up to precision m can be done with an amortized time O(m) per
point if the number of points is greater than m and in a total time 5(m2) if there are less than m



points. Since the number of disks in a hyperbolic approximation is in O(d/m), this leads to a bit
complexity in O(dm). More details can be found in Section .

1.2.2 Root isolation

Our data structure also allows us to improve the state-of-the-art bound on the bit complexity for
the problem of isolating all the complex roots of a given polynomial, with a bound that is adaptive
in the condition number of the input. The condition number of the zeros of a polynomial measures

the displacement of its roots with respect to a perturbation of its coefficients (Definition . For a

d
square-free polynomial f and a root ¢, we let kK, = % Then the absolute condition number

of fis kK = maxs—o(k¢). Our goal is to provide for each root an isolating disk, that is a disk
that contains a unique root and doesn’t intersect any other isolating disk. In our case we consider

so-called projective disks, that is either a disk or the inverse of a disk D defined as the set of points
1/2 such that x € D and = # 0.

Theorem 3. Given a_square-free polynomial f of degree d with ||f||1 < 27, with absolute condition
number k, Algorithm@ computes isolating projective disks of all the roots of f in O(d(T + logk))
bit operations.

Remark 3. If all the coefficients of f are real numbers, then Algorithm[3 can be slightly modified to
return all the real roots of f with the same bit-complexity, by selecting the isolating projective disks
that intersects the real axis.

In recent works on complex root isolation [33] [3], the best adaptive complexity bound, rewrit-
ten with our notation, is in O (d 2 £(¢)=olT + max(1,log(r¢)) + max(l,log(agl))D, where o, =
min z(,)—o ¢ (I¢ —n[). Our bound removes the dependency in o¢, and replaces the sum by a max,
which improves the state-of-the-art bounds by a factor d if the condition numbers of the roots are
logarithmic in d or evenly distributed. In adaptive algorithms that compute isolating disks, a crite-
rion is used for early termination. It usually checks if a disk or a rectangle contains a unique root
of f. Some examples of criteria are detailed in Section [2.6 All those criteria end up evaluating a
polynomial of degree roughly d on each of the d roots (|33, §2.2.3|,[3, Lemma 5|, |26, Algorithms 2
and 3|, ...), which leads to a bit-complexity at least quadratic in d if we use a naive evaluation
algorithm, or in d®/2 using state-of-the-art multipoint evaluation methods [45]. In our case, thanks
to our new data structure, the criterion to check that a disk contains a unique root is replaced by
the evaluation of a polynomial of degree O(7 + log(x)), which explains partly how we avoid a cost
quadratic in d.

Another approach in the literature consists in computing the roots up to a precision high enough
such that we can guarantee that all the roots are approximated correctly. An explicit bound exists
in the case where the input polynomial has integer coefficients. Schénhage showed [42] §20]) that if
we can compute f an approximate factorization of f close enough, then the roots of f are isolated by
disks centered on the roots of f with a radius depending on the condition number x. Combined with
a bound on & from Mahler [32] last inequality]| for polynomials with integer coefficients, and using
the algorithm of Pan [37] to compute the approximate factorization f, this leads to a root-isolating
algorithm in O(d?7) bit operations |16, §10.3.1]. Note that this algorithm requires d arithmetic
operations performed with a precision in Q(dr), and requires at least a quadratic number of bit
operations. This method was also improved in practice for small degree polynomials [20].

_ Inour case, the bound from Mahler on x implies that the bit complexity of Algorithm [3]is also in
O(d?7), matching the bit-complexity of state-of-the art algorithms in the worst case for square-free
polynomials with integer coefficients.



Main idea of the proof of Theorem Our approach roughly follows the original approach
of Schonhage [42, §20] in the sense that we will compute isolating disks centered on the roots of an
approximation of f. It is also adaptive like more recent works (|33), [3, 26], among others), in the
sense that we use a criterion for early termination.

The main novelty of our approach is that we start by computing an m-hyperbolic approximation
of f, for a small initial constant integer m. This returns a set of O(d/m) polynomials g of degree
O(m) defined on O(d/m) disks covering the unit disk D. Then we compute the approximate roots
of the g and we use a criterion to check if the corresponding approximate roots are the centers of
disks isolating the roots of f. If we did not find all the roots of f, we double the parameter m
and we start again. The criterion that we use to check if an approximate root is the center of an
isolating disk is based on Kantorovich theory (recalled in Section and it can be tested using
the approximate polynomials of degree lower than m coming from the hyperbolic approximation.
Moreover, this criterion will be satisfied for all roots of f for m > clog(]|f||1dr) for a universal
constant ¢ (Lemma [8). Further details can be found in Section

1.2.3 Lower bound on condition number

Another insightful application of our data structure is a new geometrical interpretation of ill-
conditioned polynomials, based on the distribution of their roots. Since the introduction of Wilkin-
son’s polynomials p(X) = (X —1) - -- (X —d), it is known that the problem of polynomial root finding
can be ill-conditioned even in the cases where the roots are well separated [48, 49]. More recently, it
has been proved that the condition number of characteristic polynomials of d x d Gaussian matrices
is in 224 in average [9], where a Gaussian matrix is a matrix where the entries are independent,
centered Gaussian random variables. Yet, no approaches provide a geometric explanation of this
phenomenon. Our next theorem provides a geometric criterion that allows one to detect easily if
a polynomial is ill-conditioned, based on the repartition of its roots. In these works, the authors

consider the relative condition number defined as " (f) = maxy(¢)—o <H|fg|‘|1 Hg).

Theorem 4. Given a polynomial of degree d, let N = [logy(3ed)]| and let m be the mazimal number
of roots of f (resp. X?f(1/X)) in a disk of the N-hyperbolic covering Hy. The relative condition
number k" (f) of f is greater than ﬁf’m/n.

Remark 4. In particular, the disk D(0,1/2) is covered by 4 disks in any N-hyperbolic covering.
Thus, if m is the number of roots with absolute value less than 1/2 or greater than 2, then k" (f) >
— \1/% 95m /88

As a direct consequence of this theorem, we recover the fact that the Wilkinson’s polynomials
have a condition number in 24 since almost all their roots have a modulus larger than 2. More-
over, the set of eigenvalues of d x d Gaussian matrices are the Ginibre determinantal point process
[19, 23], with eigenvalues roughly spread uniformly in the disk of radius V/d centered at 0, such that
again, almost all the roots of the characteristic polynomial have a modulus greater than 2, which
allows us to conclude that the expectation of the logarithm of its condition number is in Q(d).

On the other hand, for a polynomial of degree d with random coefficients following a centered,
Gaussian law of variance one, the expectation of the logarithm of the condition number of its real
roots in O(logd) [13]. This is consistent with Theorem [4| since the roots of such polynomial, called
Kac polynomials or hyperbolic polynomials, are roughly distributed evenly among the disks of an
hyperbolic covering [14] [44] [38, 28, ...|. This means that our root solver algorithm is well-suited
for polynomials with random coefficients of the same order of magnitude.




Main idea for the proof of Theorem Given a polynomial f, we use Kantorovich theory to
prove that for an integer m logarithmic in the condition number, the m-hyperbolic approximation
returns polynomials of degree m — 1 that have at least as many roots as f in the corresponding disk
of the hyperbolic covering. Thus it implies that m — 1 is greater than the number of roots of f,
which provides a lower bound on a quantity logarithmic in the condition number.

1.2.4 Experimental proof of concept

Finally, we conclude with an experimental section, and we present a simple implementation of a
root solver in the programming language Python, using the standard numerical library NumPy [21],
and working with machine precision. Since our implementation is less than 100 lines of code, we
include it in Appendix.

Our implementation is a simplified version of Algorithm For the approximate factorization
and the fast evaluation of the roots of unity, we use the standard polynomial root solver and the
Fast Fourier Transform procedures of NumPy. For the data structure to detect duplicates, we simply
round the solutions to a lower precision and sort the rounded solutions to detect the values with
the same binary representation after rounding.

The current state-of-the-art implementation of a root solver for complex polynomials is the
software MPSolve [0, [7], implemented in the C programming language, and based notably on the
Aberth-Ehrlich method [I5] . Its development started more than 20 years ago and it has received
several improvements over time, making it the fastest current implementation to find all the complex
roots of a polynomial. This software also uses multi-precision arithmetic when necessary. By
contrast, our solver HCRoots is an early prototype written in Python, working in machine precision
only, and depending solely on the NumPy library. Nevertheless, as we can see in Figure [2] for random
polynomial that are known to be well-conditioned (see Section, our solver HCRoots called with
a precision parameter m = 30 is an order of magnitude faster than MPSolve, which is very promising.

In our experiments, we focused on polynomials where the coefficients are centered, Gaussian
random variables with variance 1. In this case, the solutions returned by our solver matched all
the solutions returned by MPSolve with an error less than 2722, for polynomials up to degree 25000.
Moreover, the linear complexity of our algorithm, combined with the fact that we don’t need to use
multi-precision arithmetic, allowed us to solve polynomials of degree 25000 an order of magnitude
faster than MPSolve. In Figure[2] we show the timings to solve random polynomials of degree d with
our solver, and MPSolve. Moreover, it is easy to parallelize our algorithm, and improve furthermore
its practical efficiency.

2 Preliminaries

2.1 Notations

Given a polynomial or an analytic series f, we will denote by f’ and f” the derivative and the
second derivative of f. If f is a polynomial, we will denote by | f||1, || f]l2 and || f]|e the classical

norm 1, 2 and infinity on the vector of its coefficients. We will denote by D(v, p) the complex disk

max(L,[¢|?)
1F7(O)]

#k1(f) = maxg(y—o(k¢) is the absolute condition number of f. It is also denoted x(f) and referred

as the condition number of f.

of radius p centered at 7. Finally, for a polynomial f and a root ¢ of f, we let k¢ = and
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Figure 2: Time to approximate the roots of polynomials where the coefficients are random variable,
centered Gaussian of variance 1

2.2 Fast elementary operations

We start with classical results on elementary operations, notably on the multiplication and the
composition of polynomials.

Proposition 1 (41, Theorem 2.2], [39, Proposition 3.2]). Let f and g be two polynomials of degree
d with || f|l1 and ||g||1 less than 27, and an integer m > log(d + 1). It is possible to compute the
polynomial h such that ||h — fg|l1 < 27™ in O(d(m + 7)) bit operations.

Using Fast Fourier transform algorithm, we can also evaluate in a quasi-linear time a polynomial
on the roots of unity. Note that in this case, even if the required precision m is smaller than d, the
algorithm is still quasi-linear in dm.

Proposition 2 (|41, §3|, [39, Proposition 3.3|). Let f be a polynomial of degree d, and ||f||1 < 27
with T > 1, and an integer m > log(d+1). It is possible to compute the complex numbers yo, . . ., Yd—1
such that Zi;é lye — f (eﬂ’rk/d) | <27™ in O(d(m + 7)) bit operations.

Finally, another classical result that we will use is the fast composition of polynomials.

Proposition 3 ([39, Theorem 2.2|). Let f and g be two polynomials of degree d with ||f|l1 < 27
and ||glly < 2” where 7 > 1 and v > 1. Let m be a positive integer. It is possible to compute the
polynomial h of degree d — 1 such that |h(X) — f(g(X)) mod X9||; <2™™ in O(d(m + 7 + dv)))
bit operations.

Remark 5. Ritzmann [39, Theorem 2.2 used the same bound for ||f||1 and ||g||1. Our proposition
is a direct consequence of Ritzmann’s theorem if we multiply f in the input by 2¥~7 , and the result
by 277Y. This reduction can be done in O(d(T + v +m)) bit operations.



2.3 Fast approximate multipoint evaluation

When we want to evaluate a polynomial on multiple points, it is possible to amortize the number
of bit operations when the precision required is larger than the degree. In a recent work [45, §3.2],
van der Hoeven showed that it can be done in 5(d3/ 2m3/2). However, this bound is not optimal
when m is greater than d. For the case m > d, we recall here another state-of-the-art bound on the
bit complexity for fast multipoint evaluation.

Proposition 4 ([45, Lemma 11], [30, Theorem 9]). Let f be a polynomial of degree d, with || f|1 <
27, with > 1, and let x1,...,24 € C be complex points with absolute values bounded by 1. Then,
computing yx such that |y — f(zk)| < 27™ for all k is possible in O(d(m + T + d)) bit operations.

Even though the bit complexity is quadratic in d, this approach is near optimal when m is
greater than d, since its complexity matches the size of the output in this case. We reuse notably
this result to bound the complexity of Algorithm [2] since our approach reduces the problem of
evaluating a polynomial of degree d to the problem of evaluating several polynomials of degree m
with a precision greater than m.

2.4 Condition number

Our root isolation algorithm has a bit complexity that depends on the condition number of the
input polynomial. The absolute condition number is a measure of the displacement of its roots with
respect to the displacement of its coeflicients. More precisely, for a polynomial f with a vector of
coefficients ¢ € C41, and a root ¢ of f, there exists a neighborhood U c C%*! of ¢, a neighborhood
V C C of ¢ and a differentiable function ¢ : U — V that maps ¢ € U to the unique zero in V of
the corresponding polynomial. Letting D (¢) be the gradient of ¥ at ¢, the condition number of

1/2
at ¢ is the induced norm ||| D (¢)|||2 = max5,=1 [DY(C) - §| = (ZZ:O |C]2k> . If we consider the
induced norm 1 instead, we have |[[Dy() 1 = maxysy,—1 [D(C) 6] = maxf_o(1¢[¥) = max(1, |¢[4).

Definition 3. [8, §14.1.1] The standard local absolute condition number of polynomial f of degree

1/2
d at a root ¢ is ko(f,() = m (ZZ:O ]C]%) . Considering all the roots, we define the standard

absolute condition number of f as ka(f) = maxy(—g k2(f, ().

Remark 6. The standard absolute condition number is obtained by considering the norm 2. If we

d
consider the induced norm 1 instead, we get the condition number k1(f,() = %, such that

k1(f) < ra(f) < Vdrai(f).

As shown in Remark [6 the bound depending on the logarithm of the condition number for the
norm 1 and the norm 2 will be the same up to a factor logarithmic in d. In the following, we will
focus on the condition number k1 induced by the norm 1.

For square-free polynomial with integer coefficients, the condition number is finite. The following
proposition bounds the condition number for square-free polynomials with integer coefficients.

Proposition 5 (|32 last inequality]). Given a square-free polynomial f of degree d with integer
coefficients, let T be a real such that ||f||1 < 27. Then log(k1(f)) is in O(dr + dlogd).

In particular, combined with Theorem [3] this proposition implies that for square-free polyno-
mials, the bit-complexity of Algorithm [3| has the same worst-case bound as the state-of-the-art
root-finding methods. We define also the relative condition number to represent the relative dis-
placement of the roots, with respect to a relative displacement of the coefficients.

10



Definition 4 ([8, §14.1.1]). The standard local relative condition number of a polynomial f at a

root ¢ # 0 is k5(f,() = % 2(f,C), and the standard relative condition number of f is k5(f) =

max ¢(¢y—o,c0 K5 (f,¢).  Similarly, we define k7(f,() = %/ﬂ(f, (), and the associated relative
condition number of f is x7(f) = maxy)—o,c0 K1 (f;C)-

Remark 7. An interesting property of the relative condition number at a nonzero root ¢ of f is that
it is equal to the relative condition number at the root 1/¢ of the polynomial g(X) = X1f(1/X).
Moreover for the absolute condition number we have k1(g,1/C) < r1(f,() for ¢ outside the unit
disk.

Proof of the remark. By construction, the inverse function is a bijection between the non-zero
roots p of g and the non-zero roots ¢ of f. Computing the derivative of g at a root p we have

dmax max d
gl (n) = dp F(1/p) = = /(1) = —CF(Q)/C. Thus (g, )/l = “IElt™ = G =
#1(£.0)/I¢]- Finally, since || fl|y = [lgllx by construction, we have w7 (g. ) = #(f.)

This number is a standard way to measure to stability of the roots with respect to independent
perturbations of the coefficients. In Theorem [ we provide a geometric criterion to bound from
below this condition number.

2.5 Fast approximate factorization

Another important result on univariate polynomials is a bound on the bit complexity to approximate
all its roots. In the complex, approximating the roots is equivalent to compute an approximate
factorization. We recall the state-of-the-art bound on the bit complexity for this problem.

Proposition 6 ([37, Theorem 2.1.1]). Let f be a polynomial of degree d with leading coefficient
cqg and all its roots (i in the unit disk, and m > dlogd a fized real number. It is possible to
compute complex numbers z1, ..., zq such that || f(X) — ¢4 Hizl(X — 2z < 27|l in O(dm)
bit operations.

Remark 8. The theorem also holds with the same complexity for a polynomial h that has all its
roots in the disk centered at the origin and of radius ¢2™'® for a constant ¢ > 1, such as in the
polynomials h in Algom'thm@ (Lemma @

Proof of the remark. Let f(Y) = h(c2™/%Y). Then f has all its roots in the unit disk and || f||; <

¢?2™||h]|y. Computing the approximate factorization f of f such that || f — f]ly < 2-2m—dlogz¢|| f||
can be done in O(dm) since m > dlogd. Then with the change of variable Y = X2-™/4/c_we have
In(X) = f(X27™/4/c)[|y < 27 |R]). O

This theorem does not directly give a bound on the distances between the roots. Schénhage
shows [42, §19] that in the worst case |¢; — zx| < 4 -27™/4. This bound can be improved for
well-conditioned roots. In our case, we will also need a bound on the distance between some pairs
of roots of two polynomials that have different degrees. We will use Kantorovich theory for the
bounds in these cases (Section and .

Note that Remark [§| requires a bound on the modulus of the roots of the polynomial. For that,
we will use the classical Fujiwara bound.

Proposition 7 ([18]). Let f = Zi:o X" be a polynomial of degree d. Then the moduli of the

roots of f are lower or equal to 2maxj<k<q {

Applying this bound on the polynomial returned by an hyperbolic approximation, slightly per-
turbed, will allow us to verify that the assumptions of Remark |8| are satisfied (Lemma [5)).
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2.6 Certification of the roots

Several approaches in the literature guarantee that a neighborhood of a point contains a unique root
of a given polynomial. We may cite notably Kantorovich criterion [12] §3.2], Smale’s alpha theorem
[12, §3.3], Newton interval method [36, Theorem 5.1.7|, Pellet’s test [33], Pellet’s test combined with
Graeffe iteration [3, 27|, Cauchy’s integral theorem [26, 25|, and others [40], ... A first crude bound
from the literature to guarantee that a disk centered at a point = contains a root of a polynomial f
is the following.

Proposition 8 (|22, Theorem 6.4e|, [6l, Theorem 9|). Let f be a polynomial of degree d, and = a

complex point. Let rj, = {| k:!(z) fé()%) ‘ Then, for all 1 < k < d, the disk D(x,ry) contains a root

of f. In particular, the disk D(z,d|f(x)/f' (x)|) contains a root of f.

With some additional conditions, Kantorovich criterion provides a smaller radius to guarantee
that a disk contains a root f.

Proposition 9 ([I2, Theorem 88]). Given a function f of class C?, and a point x such that

(@) #0, let B=|f(zx)/f' ()], and K = supj,_,1<op|f"(y)/f'(x)|. If 2BK <1, then f has a root
in the disk D(x,2|f(x)/f'(z)|).

The previous propositions are useful to find a disk that contains a root of f, but they don’t
guarantee that the disk contains a unique root of f. In order to prove that Algorithm [3| terminates
and to bound its complexity, we use the lower bound from Kantorovich theory on the size of the
basin of attraction of the roots of f. More precisely, for each root ¢, we bound the size of a disk
containing ¢ where the Newton method always converges toward (.

Proposition 10 ([12, Theorem 85|). Given a function f of class C%, and a root ( such that
f'(Q) # 0. If there exists 1 > 0 such that 2rK <1, with K = supj,_¢|<, |f"(z)/ ()], then ¢ is the
unique root of f in the disk D((,r). Moreover, for any xo € D((,r), the Newton sequence defined
by Tpi1 = oy — f(xn)/f (x) converges toward (.

Remark 9. If f is a polynomial of degree d, and s > sup,cp(o) |f"(z)|, then a consequence of
Proposition [10] is that the set of disks D(C,1/(2sk1(f))), for all roots ¢ of f in the unit disk, are

pairwise distinct.

For any complex point z, we also prove the following lemma to have a criterion guaranteeing
that a ball around z is included in a basin of attraction of a root of f.

Lemma 1. Given a function of class C* and a point x € C such that f(x) #0. Letr > 2|f(x)/f (z)|
and K > |f"(y)/ f'(z)| for ally € D(x,4r). If 5rK <1 then, f has a unique root ¢ in D(x,r), and
for all zog € D(x,r), the Newton sequence starting from xy converges to C.
Proof. According to Proposition [} f has a root ¢ in D(z,r). Then, |f'(Q)] > |f'(z)| — |z —
C15UDye (s |f*(y)]. This implies that f/(C) > |//(x)|(1 — rK) > 4f'(x)|/5. Letting K = 5K/4,
we have that K > [f”(y)/f'(¢)| for all y € D(z,4r) > D(¢,2r). Remark that 4rK < 1, such that
using Proposition this implies that for all zg € D((,2r) D D(z,r), the Newton sequence starting
from xg converges toward (.

O
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2.7 Geometric range searching

Our data structure can be seen as a piecewise polynomial approximation. As such, when doing
multipoint evaluation, we will need to report the points that fall in a disk. This problem can be
solved efficiently using classical range searching and point intersection searching algorithms.

Proposition 11 ([, §5.2, Table 7|). Given n points z; in C, it is possible to compute a data
structure in O(n) operations such that for any disk D, returning the list of points x; contained in
D can be done in O(k + logn) operations, where k is the number of points in D.

Moreover, when we isolate the roots of a polynomial f, we reduce the problem to isolate the
roots in each disk of an N-hyperbolic covering. Because those disks overlap, we need to remove
redundant boxes. For that, we use fast rectangle-rectangle searching techniques.

Proposition 12 ([1, §3.6]). Given n rectangles r; in the plane, it is possible to compute a data
structure in_O(n) such that for any rectangle v, returning the list of rectangle r; intersecting r can
be done in O(k + logn) operations, where k is the number of rectangles intersecting r.

Note that in an N-hyperbolic covering, each disk intersect at most 10 other disks of the covering.
Indeed the disks centered in the disk D(0, %), it intersects at most 10 other disks. For n > 1 and a
disk with a center between the circle of radius 7, and a circle of radius r,y1, it intersects 2 disks of
the hyperbolic covering that have their centers in the same ring. Then it can intersects at most 2
other disks coming from the inner adjacent ring, and 4 other from the outer adjacent ring. Thus,
in Algorithm , this will guarantee that each query will be done in 6(log n) (see Section

3 Computation of the hyperbolic approximation

3.1 Properties

First, given an integer m and a polynomial f of degree d, and a pair (g,a) from the hyperbolic
approximation Hg,(f), we give a bound on the coefficients of the polynomials f(a(X)). That gives
also a bound on the polynomial g, since g is an approximation of the polynomial f(a(X)) truncated
to the degree m — 1.

Lemma 2. Given a polynomial f of degree d and a integer m > 1, let a be an affine transfor-
mation appearing in the hyperbolic approzimation Hgyym(f). Letting f(a(X)) = Zi:o X" and

m 0 <k <im
m = min(m — 1,d), we have |ci| < I f1lx (2k> f0<k<m
| £1l1/2% otherwise

Proof. By construction, a is of the form a(X) = (v + pX)e?™, with v and p two positive real num-
bers. Letting f(X) = ZZ:O feX* and expanding the a(X)*, we have |c;| < Z?:k ]fg|(f;)fy£*kpk.
We now distinguish two cases. First if v + p < 1, then by construction of the sequences in Defini-
tion |1} we have 1 —~ = 2p. Thus |¢i| < 2% S \fg](i)*yéik(l — )% < ||fll1/2F. This proves the
desired bound for both the cases where 0 < & < m and the case where k > m.

Then, if v+ p > 1, then v = 1 — 1/2Y and p = 3/2N¥*! where N = [logy(3ed/m)]. Then
lek| < Zg:k |fg|(£)'y€_kpk < ||f||1pk(i). Using the inequalities k! > (k/e)* and d--- (d—k+1) < d¥
we have |cx| < || f|l1(ped/k)*. Moreover, p < m/(2de), such that |cx| < ||f]|1(m/(2k))*. This also
proves the desired bound for both the cases where 0 < k < m and the case where k > m. ]

We also give a bound on the number of disks appearing in the decomposition.
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Algorithm 1: Hyperbolic approximation data structure

Input: A polynomial f(X) = Zizo f1 X" of degree d with ||f||; <27, 7 > 1,
and an integer m > 1

Output: An m-hyperbolic approximation of f (see Definition

m < min(m — 1, d)

N « [logy(3ed/m)]

for n from 0 to N — 1 do

# Compute (g k,an) for the disks covering D(0,7r,41) \ D(0,7,)

# The precision of the arithmetic operations is in ©(m + 7+ logd)

21

W N =

# A. Compute Ty, Vn,pn and K, for the api(X) = (v + pnX)e o
Py 1—1/2"

Tpa1 ¢ 1—1/2" 1 ifn < N —2else 1

Tn (rn + Tn+1)/2

Pn %(Tn—i—l - Tn)

Ko [

o N o ok

# B. Compute g, (X) =~ f ((’yn —i—an)eizﬂKLn) mod X™

# B.1. Truncate f at d, such that (v, + p,)%T1 < 1/2m+!

9 | dn+ min(d,[§log(2)(m+1)2"] —1)ifn <N —1else d

10 | p fot- o+ fe, X

# B.2. Gather the coefficients in Y of p(YZ) mod ZEn 1,
# where Y and Z are symbolic variables

11 for k from 0 to K,, — 1 do

12 L pe(YE)Y® « coefficients of Z* of p(YZ) mod ZK» — 1

# B.3. Compute (v, + pp,X)* mod X™

13 | qo(X) <« 1

14 for k from 1 to K,, do

15 L ar(X) < qr—1(X) - (yn + pnX) mod xm

# B.4. Compute 1(X) = pg ((’yn + an)K”) (Y0 + puX)F mod X™
16 for k from 0 to K,, — 1 do

17 | reo+ o rema XM e prlar, (X)) - gr(X) mod X7

# B.5. Compute gni(X) =ro(X) +...+TKH_1(X)6i2wK%(Kn—1)

18 for ¢ from 0 to m — 1 do
19 Sg(Z) T + o+ Tanl,gZanl
i2m 2% i2m Kn—1
20 | 90,005+ s GnKp—1,0 = Se(7 Kn), oy sp(e™ Ka)
# B.6. Append the pair to the result list
21 for k from 0 to K, — 1 do
22 In (X)) < Gngo+ -+ Gnpm1 X"t
23 an,k(X) — (’771 + an)ei%rKL"
24 Append the pair (gn k, an ) to the list L

25 return L
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geometry.pdf

Figure 3: Illustration for the proof that the union of the disks in a N-hyperbolic covering contains
the unit disk (Lemma [3))

Lemma 3. Given two integers d and m > 1, let m = min(m — 1,d) and let N = [log,(3ed/m)].
Then the number of disks in the N-hyperbolic covering is in O(d/m). Moreover, the union of the
disks contains the unit disk.

Proof. First, remark that the total number ¢ of disks in a N-covering is Z K Such that using
Remark |1} Iwe have K, < 2" and t < 2V*% < 16-3ed/m. Thus the number of disks is in O(d/m).
Then, we need to prove that for any ring R, = D(0,741) \ D(0,7y,), the union of the disks

centered at ”ynei%KLn with radius p, contains R,. For that, let D be the disk D(y,,p,) and let
R, («) be the segment intersection of R,, with the half-line starting from 0 and with angle . Then,
let 3 be the smallest angle such that R,(8) is not included in D. Then if the angle 2Z < 28
it implies that for all 0 < a < 27, the segment R,(«) is included in a disk of the N- hyperbohc
covering.

Since sin(8) < 3, it is sufficient to prove that = < sin(f). Consider the triangle ABC with

A=, B=ryy and C = ry,1e”? (see Figure |3 . Letting O = 0, remark that g is the angle
ZBOC.
Let h be the distance between the point C and the line (OB). By construction, sin(3) = 2. If

T +1
we prove that the angles at vertex A and vertex B are each smaller than 7, then we can conclude that

h? > |C— AP = |B—A? = p% — (rn1 —m)* = p2 — §p2 = 3p?. Such that sin(8) > 32 Ln > o
In order to prove that the angles at A and B are smaller than 7, remark that the triangle OBC'is
isosceles, such that the angle ZOBC = ZABC is less than m/2. Moreover, considering the triangle
OAC, the angle ZOAC is larger than 7/2 if |C — O|?> — |A — O|> — |C — A]?> > 0. This inequality
holds for n > 1 since [C—O?—|A—OP* = |C—A|? =12 1 =72 —p2 = (Tng1 —Vn) (Tnt1+Vn) — P2 >
%pn —p2 > 0. Thus /ZBAC = 7 — ZOAC is less than 5. Since the angle of the triangle ABC' at
the vertices B and C are less than 7, we can conclude that for all n is small enough to let the

disks cover the unit disk.

T
» Kn
O

Finally, we give a bound on the bit size of the coefficients of the polynomials g of an hyperbolic
approximation, by bounding the size of the polynomials f(a(X)), leading also to a bound the its
second derivative.

Lemma 4. Given a polynomial f = Zgzo feXE of degree d and a an affine transform from an
m-hyperbolic approzimation of f, let o(X) = f(a(X)). Letting m = min(m — 1,d), we have
lells < If1:.27/ 1 and for all z € D(0,1), we have | (z)| < || f|l1m22™/11.

Proof. Let a be of the form a(X) = (v + pX)e??™. Let fH(X) = Zi:o | fe| X*. Since v and p are
positive numbers, we have ||¢||1 < fT(a(1)) < fT(v+ p). By construction, v+ p < 1+ %w%l with
N > logy(3ed/m). This implies that v+ p < 1+ g% and thus |l@[1 < [[f[1(1 + g&)* < || fllese <
| £]1:2™/". Then, we obtain the bound on the derivative and second derivative of ¢ by bounding

15



the absolute value of the derivative and second derivative of each term fra(X)¥. By construction,
either y+2p<1lorp= %2]\%1 and v+ p = 1"‘%21\%1-

In the former case, using binomial inequalities, we have | fi|k(k—1)p?(y4+p)* =2 < 2| fr|(v+2p)* <
2| fx| such that |¢”(z)| < 2||f||1.- In the second case, with N > log,(3ed/m), we have |fr|k(k —

2 _\d-2 _ _
DAy + o2 < [fld(d = D)oy +p) 2 < feldd = 1) (32) (1+ &) < fl?/(4e2)2m/1,
which implies |¢” ()| < || f|l 227/ 1.

O

3.2 Proof of Theorem [1]

We can now prove that Algorithm [I] returns an hyperbolic approximation of a polynomial with a
complexity quasi-linear in the degree and the required precision.

Correctness. First, for the correctness of the algorithm, we will prove that Algorithm [I] returns
a list of pairs (g, a) satisfying the constraints of Definition 2| First the affine transforms computed
in Algorithm [I] send the unit disk to the disks described in Definition [I] of a hyperbolic covering.
Then, the polynomials g computed are approximation of the polynomials f(a(X)) mod X™. We
will show that the approximation satisfies the bound || g(z) — f(an (X)) |1 < 3| f]127™.

In part B.1 of Algorithm [T} we start by truncating f to d,,. The resulting polynomial p satisfies
f—p= fo, X"t 4.+ f2X9 Let any be of the form a,x(X) = (v, + an)e’Q’r%n and
let et (X) = Zzzdnﬂ |fe|X*. Since 7, and p, are positive numbers, we have | f(a, (X)) —
plane(X) < llet(ang(X))l1 < eT(y + p). In the case where n < N — 1 and d,, < d, we
have 7 + pn = 1= ggr < 1. Thus [e™(ani(X))ll1 < (v + pu) ™! fll1. Moreover, (v, +
pr) L < eldntDlog(1=¢am) < o=(dn+Digm < gt since dy, > §log(2)(m + 1)2". This implies that
1 (e (X)) = plan k(X)) [ < [ £]]/27+

Then, the algorithm will evaluate p(YZ) on Y = 7, + pp X and Z = ei%KLn, modulo X™ and
modulo ZX» — 1. The advantage is that composition modulo X™ can be done efficiently using
Proposition 3| and evaluation modulo ZX» — 1 on Z = ¢?"Kx can be reduced to Fast Fourier
Transform and be done efficiently too using Proposition The part B.2 up to B.5 can perform
this computation with an error less than || f||;/27+11°82(™) on each coefficients. More precisely,
in B.3 the algorithm computes qx(X) = (v, + pnX)* mod X™. Then in B.4 we have r(X) =
pi((Yn + P X)) - (Y 4 puX)* mod X™. Letting w = ¢/ Kn | the truncated polynomial Gn ke
associated to the disk of center y,wy and radius p, is Z;ZLO_I 7;(X)wh. In step B.5, for a fixed n
and a fixed ¢ between 0 and m — 1, the coefficient of X* of 9n.k, denoted by gy, k¢, is s¢(wk). Those
coefficients can be computed efficiently using the fast Fourier transform algorithm. Such that using
the notation of Algorithm [1| we finally have ||g,1(X) — p(an k(X)) mod X™|y < || f[l1/2™+.

Finally, letting p(an k(X)) = ZZ:O cx X", we have by Lemma [2 that |ci| < ||p||1/2* for all
k = m. Thus, we have [|p(an k(X)) — [p(ank(X)) mod X™[|1 < 2[|pl[1/2™ < 2 f[l1/2™.

Gathering the norm inequalities, we have as required:

1F (@n (X)) = 9N < 11/ (an k(@) = plansk (X)) ll1 + [p(an k(X)) = [plank(X)) mod X™|y
+ [lp(ank(X)) = g(X) mod X™|

<A /27 + LAl /2m e+ 2] fll2m
<3| fll/2™
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Complexity. The number of loop iterations in Algorithm [1}is in O(log d). Thus, it is sufficient to
prove that each iteration can be performed in O(d(m + 7)) to achieve the complexity in Theorem
First, part A can be done in 5(log d) operations. Then in part B, we will use the state-of-the-art
complexity bounds on the elementary operations recalled in Section

First, in part B.1 and B.2, we are reordering the coefficients, gathermg together the coefficients
of X* with the same value & mod K,,, which can be done in O(d) bit operations. Note that the
polynomials p; computed in this part have a degree less than d,,/ Ky, with d, /K, < §log(2)(m+1)
and dy, /K, < d, such that the degree of pj is in O(m).

Then in part B.3, we do K,, multiplication of polynomials of degree in O(/) with an absolute
error on the result in 22(™). Moreover, we have |g|[1 < max(1, (v, + pn)57). Since v, + pn <
1+2N%, this implies ||gx|[1 < eKn /2N < 2T 2N T < e2. Using Proposition each multiplication
can be done in O(mm) bit operations, and part B.3 requires O(K,mm) = 6(dm) bit operations.

Similarly, in part B.4, since [|pg[1 < [lpli < [[f]}x <27 and ||¢k, [l1 < €*, using proposmonlon
fast composition, we can compute py(qx,) mod X™ with an error less than 2 Om) in O(m(m+7)).
We also perform the multiplication by ¢ in this part within the same complexity. Overall, since
the composition and the multiplication is done K, times, part B.4 can be done in O(d(m + 7))
operations.

Finally, in part B.5, we use the Fast Fourier Transform algorithm to evaluate s of degree K, on
the roots of unity " " If ||sel]1 < 2% for an integer v > 1, the evaluation of s on the K, points with
an error less than 2™ can be done in O(K,,(m~+v)) using Proposmon Thus the bit complexity for
part B.5 is in O(d(m+v)). To bound ||s||1, remark that Yoo Ylsell < Zk Yiprlar,))-arll1. Let
pz, pT, fT be the polynomial py, p, f where we replaced the Coefﬁ(nents by thelr absolute value. In

this case [[pr(qx.,))-akl1 < P;f((%ern)K”)(%ern) Moreover ZKno ' +<(’Yn+Pn) )<7nfpn)k =
P (w4 pn) < fHv +pn). In turn fH(m + pn) < ||f|| (1+ 2N+1) and N > log,(3ed/m), such

that (1 pr)? < (14 )% < e <27/, Finally, 507! sl < /112711 < 277, Thus part
B.5 can be computed in O(d(m + 7)) bit operations.

4 Multipoint evaluation

A direct application of our data structure is the fast evaluation of polynomials. The main idea is to
approximate the input polynomial f with a piecewise polynomial, where each polynomial g; has a
degree with the same order of magnitude as the required precision. Then we can use state-of-the-art
multipoint evaluation technique on each g.

Proof of Theorem[3 The correction of Algorithm [2]is ensured by the fact that for all = in a disk
ar(D(0,1)), letting = = a; (z), we have | £(z) — gx(ag ()] = [f(ax(2)) — gu(2)] < || Flar(X)) —
g (X)]1 < 3||f[127™72. If we compute y the evaluation of gi(z) with an error less than ¢ =
llgr|[127 12"/ =2 the result will have an error less than || f||;27"2, using the bound on ||gx||1 given
in Lemmald] So finally we have | f(z) — y| < BIfh2 ™2 + (I flh27™ 2 = || fll.27™

First the data structure @ can be computed in O(d) using Proposition and the hyperbolic
approximation G in O(dm) using Theorem |1 Then in the loop, the algorithm queries the points
Vl,...,Up, in O(nk + log d) using Proposition |11} Let m = min(m + 1,d) be the degree of g, and
qx = [nk /m]. We can evaluate g on nj points using ¢ times the fast multipoint evaluation method
in Proposition 4l For an absolute error less than ||gx||12712™/11=2 this can be done in O(gmm) bit
operations. Note that gym < ny +m, such that the total complex1ty in an iteration of the for loop
is in O(npm +mm +log d). Note also that the sum of the ny is d. If ¢ is the number of discs in the
hyperbolic approximation, after adding the complexity of all the main loop iterations, Algorithm
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Algorithm 2: Multipoint evaluation

Input: Polynomial f of degree d, d complex number z; in the unit disk, and a precision m
Output: List of complex number y; such that |y; — f(x;)] < ||f|[127™
Le{)
Q@ < data structure adapted to the x; for fast disk range searching
G < Hagm42(f)
for (gx,ar) in G do
# The precision of the arithmetic operations is in O(T + m)
V1, ..., Uy, < query @ for list of points z; in ax(D(0,1))
Yty ooy Yny gk(alzl(vl)), ... ,gk(agl(vnk))
Append y1,...,yn, to L

B W N =

=N o

8 return L

requires O(dm + t(mm + logd)). By Lemma |3} ¢ is in O(d/m), such that the total complexity of
Algorithm [2|is in O(dm). O

5 Root isolation

5.1 Properties of the approximate roots

We start by describing the properties satisfied by the roots of the truncated polynomials g coming
from an m-hyperbolic approximations. In particular, we show how to perturb them such that all
their roots are contained in a small enough disks.

Lemma 5. Let m > m be two positive integers. Let g(X) = ZZL:O e XF be a polynomial of degree
m and ¢ be a constant such that co < ¢ and |cx| < ¢ (%)k for k > 1. Then for the roots of the
polynomial g(X) + Q%XQm are in the disk D(0, 62m/m),

Proof. Using the Fujiwara bound on the modulus of the roots of a polynomial (Proposition [7]) on
the polynomial g(X) + Q%XQ’%, we have ¢§

Com—k
C

=0 for k < m, and for m < k < 2m we

m

k|| C2m—k

2m

< 2(m—2ﬁw+k)/kz< i )(%*k)/k < om/m-1, T 0 (1 355) < gm/m1 (k) [k <

h ave 5m—k

—k
e2™/m=1 " Pinally for k = 2m, % C’;—{ < gm/(2m) < gm/m—1 O]

Then we will use a technical lemma that gives a bound on the derivative of the difference of an
analytic function and a polynomial, given bounds on their coefficients and the difference of their
coefficients.

Lemma 6. Let o(z) =Y 12, o be an analytic series with radius of convergence greater than 2.
Let g be a polynomial of degree m and ¢ be a positive real number such that: || — g||1 < ¢/2™ and
lok| < ¢/2F for all k > m. Then, for all x in the unit disk we have

¢/ (x) = ¢'(2)] < c(m +2)/2™.

Proof. Using the bounds on the coefficients of ¢ and g, we have |¢'(z) — ¢'(2)| < |lg' — |1 <

me/2m 4+ 320 (k= m)e/2. The sum S = 322 k/2% can be bounded using the function
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Algorithm 3: Root isolation

Input: Squarefree polynomial f of degree d
Output: List of d disks isolating all the roots of f in the unit disk and a subset of the
other roots

1 L+ {}

2 m+1

3 while |L| < d do

4 L+ {}

5 G Hd7m(f)

6 | G {(9,3)](9.0) € Hym(X"f(1/X))}
7 for (g,a) in GUG* do

# Reduce the upper bound on the disk containing the roots of g (Lemma @)
8 m < min(m — 1,d)
9 h g(X) + Il x2m

# Compute an approximation of the roots of h
10 h + Approximate factorization of h such that ||h — hll; < 2711™|h|),
11 for z; root ofz do

# Check root unicity of f(a(X)) in a neighborhood of z; (Lemma
12 e < 3|flli(m+2)/2m # bound on |f —g| and |f' — ¢/| (LemmaEI)
13 if |z;| <1 and |¢'(%;)| > ¢ then
~2om /11

1 K« ”f\!;(rzjf\*s
15 B 19
16 if 106K <1 and D(z;,83) C D(0,1) then
17 | L+ Lu{a(D(z,28))}

# Remove duplicate roots
18 B + list of bounding box of disks in L

19 Q) + data structure adapted to squares in B optimized for rectangle-rectangle search
20 L + sublist of L without duplicates
21 m < 2m

22 return L
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oY) = P iemtt y* =y /(1 — y) defined for y a real in [0,1[. We have S = 1/2¢'(1/2) and
O'(y) = y™[(m+ 1)(1 —y) +y]/(1 —y)?, such that S = (m + 1 —m/2)/2™"1 = (m +2)/2™. Also
we have Y32 . m/2% = m/2™. This leads to |¢'(z) — ¢'(z)| < c(m + 2)/2™ O

For an analytic function ¢, this allows us to prove that if a polynomial g is a good enough
approximation of ¢, each root of ¢ in the unit disk is near a root of g.

Lemma 7. Let o(x) = > 1 opx® be an analytic series with radius of convergence greater than
2. Let g be a polynomial of degree m and c be a positive real number such that: ||p — g||1 < ¢/2™
and |pg| < ¢/2F for all k > m. Let ¢ be a root of ¢ in the unit disk such that ¢'(C) # 0 and let

k= /19O
If 2 /(m + 2) > 2c¢k, then g has a root in D((,2ckm/2™).

Remark 10. If m > 10, the inequality 2™ /(m + 2) > 2ck holds as soon as m > 2logy(ck).

Proof. Using Proposition |8 if ¢’(¢) # 0, then g has a root in the disk D(¢,mg(¢)/¢'(¢)). Since
¢ is in the unit disk, [g({)] = [9(¢) — Q)| < |lg — ¢ll1 < ¢/2™. For the derivative, we have
g ()] > £ (O] =19 () =" (O] > 1/k =19 (C) — ¢'(¢)|. The difference between the derivative of ¢
and ¢ can be bounded using Lemmal[6] by [¢'(¢) — ¢'(¢)| < ¢(m + 2)/2™. Since 2™/(m + 2) > 2ck,
this implies |¢’(¢)| > 1/(2k), which allows us to conclude.

O

Finally, to prove that Algorithm [3| terminates, we will need the following lemma that guarantees
that the criterion of Lemma [1| will be satisfied for a small enough approximation.

Lemma 8. Let p(z) =Y 2, opz® be an analytic series with radius of convergence greater than 2
and ¢ be a root of ¢ in the unit disk such that ©'(¢) # 0. Let k = 1/|¢'(¢)| and s be positive real
greater than |¢" (y)| for all y in the disk D(0,1). Then, for any positive real ¢ < 1/[23(sk? + k)]
and all x € D(C, ke):

s(lp(@)| +¢)
(I (@) —)?

Proof. Using Taylor expansion at ¢, we have |z — (| < ke, and thus s(|o(z)| + ) < s(kep'(¢) +
3K%e2s+¢). Similarly, |¢'(z)| —e > |¢'(¢)| — kes — e. Factoring out € in the numerator, and |¢'(¢)|
2+%5523
(1—e(k2s+k))*

is less than 93/46 and the denominator is greater than 222 /232, such that ¢ < %Zg:ggz <1

q:=10 < 1.

in the denominator, this leads to ¢ < 10sx2e . Since € < 1/[23(sk? + k)], the numerator

O

5.2 Proof of Theorem [3l

We can now prove the main theorem bounding the bit complexity of Algorithm [3] We split our proof
in three part. First the correctness, then the termination and finally a bound on the complexity of
Algorithm

Correctness. First, the correctness of Algorithm [3]follows from Lemmal[l] Indeed, using Lemmald]
and Lemma [6] each disk added to L satisfies the condition of Lemma [I] and contains a unique root
of f. Then, if the algorithm terminates, it returns a list of d pairwise distinct disks, containing a
root of f each, such that the result is correct.
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Termination. For the termination of Algorithm [3] we fix m and we will use Lemma [7] and [§] to
show that for m sufficiently large, Algorithm [3] terminates. First, _using Lemma [7] [7 to bound the
distance between a root of ¢ := f(a(X)) and the closest root of h, we need a bound || — hl
and a bound on the condition number of ¢. The first bound comes from |¢ — hl|; < |j¢ |1+
Ih = hll < lle = Al + [1Bl/251™ <l = Bl (L +1/2517) + [Jo]|1 /211 Using Lemmai we
have ol < (/1121 such that ¢ — By < flo — AL (L + 1/251™) + | fl1/2™. Morcover,
le = Rlls < llo =gl + llg = Rlln < 3l1fll/2™ + [Ifl1/2™ and 1+ 1/280" < 5/4 for m > 2.
This leads to ||¢ — h||1 < 6] f]|1/2™. For the bound on the condition number, since a is of the form
a(X) = (y+pX)e™, this implies that for all z in the unit disk |¢'(z)| = p|f’(x)| > min(1, 325)| ()],

such that x1(¢) < max(1, 2ﬁl)m(f). Letting k£ = 2edr1(f), we have that for each root (; of ¢, if
m > 2logy (6| f||1x), Lemma |7 implies that there exists a root z; of I in the disk D((j, pk), where
5= 12 flum/2".

We will now use this property with Lemma [§] to show that the criterion computed on line [I6]
of Algorithm [3| will eventually be satisfied. Using the notations of Algorithm [3] we show that the
criterion 108K < 1 will be satisfied for all roots of f for m large enough. Let s = | f||;d?2™/1°.
Using the bound on |f — g| given by Definition [2[ and the bound on |f’ — ¢’| given by Lemma |§|7

we have 106K < 10%. Moreover z; is in the disk D((j, uk), with p > 6| f|j1(m +
2)/2™ = 2. From Lemma we can conclude that 108K is smaller than 1 for u < 1/[23(sk? + k)],
that is for 12| f||ym/2™ < 1/[23(]| f|1m?2"/*°k2 4 k)], which holds as soon as 12\|f|]1m3/2%m
1/123(|| f|l1x* + &)]. Note that for m > 40, m/2%m is smaller than 1/2"/2, such that 108k < 1 for
all m > 21og,(276(|| f||2d?x% + k)) and the algorithm terminates after O(log(|| f|l1/1(f))) iterations
of the main loop.

Complexity bound. First, at each iteration of the main while loop, computing the m-hyperbolic
approximation costs O(dm) bit operations. Then for a fixed m < 2d, the approximate factoriza-
tion is called O(d/m) times on polynomials of degree m, with O(m?) bit operations for each call,
using Proposition [f] With Remark [§ this bound holds for polynomial that have all their roots of
modulus less than e2™/¢. By Lemma [2] the coefficients of the polynomial h satisfy the condition of
Lemma and we conclude that all its roots of h are included in D(0, e2m/ d). Thus the approximate
factorization can be computed within 6(dm) Thus, for all cases, the total cost for the approx-
imate factorization in an iteration of the while loop is in O(dm) bit operations. After that, for
each g, we need to evaluate K and 3 up to a precision in O(log(||f|l1d) + m). This can be done
using state-of-the-art fast approximate multipoint evaluation in O(m(m + log(||f|l1d)) for all the
approximate roots of h using Proposition 4l This amounts to a total of O(d(m + log(|| f||1d)) bit
operations for the steps [7] to [I7, If m > d, then the factorization is called a constant number of
times on polynomials of degree d, for a total cost in O(dm) bit operations, and all the multipoint
evaluations will cost a total of O(d(m + log(||f|l1%)) bit operations. Finally, removing duplicate
solutions can be done in O(d) operations. Indeed, by construction, given a box of B in a disk D
of the N-hyperbolic covering, the number of times that it appears in L is bounded by the maximal
number of disks of the N-hyperbolic covering that intersects D, that is 10 (see Section . Thus,
using Proposition |12} this ensures that each query to detect a duplicate will cost at most O(log d)
operations, and removing all the duplicates will cost at most O( ) bit operations. In total, the costs
is 6(dm) per iteration of the while loop. Since m is doubled at each iteration, the cost is the same
as the cost of the last iteration, that is in O(dlog(|| f|l1x1(f))) bit operations.
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6 Lower bound on the condition number

The lower bound on the condition number is a consequence of Lemma [7] that gives a bound on
the distance between the roots of two polynomials with close enough coefficients, applied on the
polynomials from the adapted hyperbolic approximation. Essentially, the idea is that for any m
greater or equal to function of x1(f) and for any pair (g, a) of an m-hyperbolic approximation of f,
the number of roots of g is greater than the number of roots of f(a(X)) in the disk a(D(0,1)). In
particular, this property allows us to deduce a lower bound on k1 (f) depending on the number of
roots of f(a(X)) in the disk a(D(0,1)).

Proof of Theorem[]. Let D be a disk where the number m of solutions of f is maximal. Without
restriction of generality, using Remark [3] we can assume that the absolute value of the center of
D is less than 1. Up to a change of variable f(uX), where u is a complex number of modulus 1,
we can assume that the center of D is a positive real number. Letting N = [logy(3ed/m)], we can
see easily that D is included in a disk D(+, p) of the N-hyperbolic covering of the unit disk. Let
o(X) = f(y+pX) and let g(X) be the polynomial of degree m —1 obtained by truncating ¢ at order
m—1. By Lemma the coefficients of ¢ for degree £ > m are less than || f||1/2¢. Using the bounds
in Lemma |4, we have for all  in the unit disk [|¢"(z)|1 < [|f|1m?2™/'*. Moreover ¢’ = pf’,
and p > M. such that r1(p) < 2k (f). Let ¢ = [|f]1, & = ki (f) and s = | f[im?2m/1L.
We can now prove by contradiction that the number of roots of g exceeds its degree if 2™ >
max(2ck(m + 2), 4csk?m). Indeed in this case, by Lemma , for each root ¢ of ¢, the polynomial g
has a root in D((,2ckm/2™). Moreover, using Remark [9] for all the roots ¢ of ¢ in the unit disk,
the disks D((,2ckm/2™) C D((,1/(2sk)) are pairwise distinct, such that g has at least m > m — 1
roots. Thus, to avoid this contradiction, we thus have max(2ck(m + 2), 4csk?m) > 2™. That is, we

must have either 2||f||151(f)(m + 2)4ed/m > 2™ or k1(f)?| f]1?(4ed)?2™/'m > 2™, Equivalently,
this amounts to || f||11(f) > min (@ml”zm, 4ed1m25m/11). For m > 3, this implies || f]|1x1(f) >

ﬁ25m/11. Finally, for each root ¢ of ¢ with |¢| < 1 we have || f|lix1(f)/[¢] > || f|l1x1(f), which

allows us to conclude. O
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A Source code

For the reproducibility of our experiments, and to demonstrate the conciseness of our implementa-
tion, we report here the full source code of our root solver HCRoots, along with an implementation
of the multipoint evaluation algorithm (hceval.py), both available on a public gitlab server [35].

# Copyright (C) 2021 Guillaume Moroz <guillaume.moroz@inria.fr>

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

import numpy as np

# Compute the disks of a hyperbolic covering
def disks(d, m):
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10 N np.math.ceil(np.log2(3*np.e*d/min(m-1,d)))

r=1- 1/2*%f(np.arange(N+1))

12 r[-1] =1

gamma = 1/2*(r[1:] + r[:-1])

14 rho = 3/4*%(r[1:]1 - r[:-11)

K = np.ceil(3*np.pi*r[1:1/(np.sqrt(5)*rho)).astype(int)
16 K[O] = 4

return gamma, rho, K

# Compute the m-hyperbolic approximation
20| def hyperbolic_approximation(coeffs, m=30):
d = coeffs.shape[-1]

22 shape = coeffs.shape[:-1]

gamma, rho, K = disks(d, m)
24 N = gamma.size

Kmax = ((d-1)//K.max()+1)*K.max()
26 r = rho/gamma

D = np.arange(d)

28 G = np.zeros(shape + (N, Kmax, m), dtype='complex128’)

P = gamma[:, np.newaxis]**D * coeffs[..., np.newaxis, :]
30 G[...,0] = np.fft.fft(P, Kmax)

for i in range(m-1):

32 P *= (D-1)/(i+1) * r[:, np.newaxis]

G[..., i+1l] = np.fft.fft(P[...,i+1:], Kmax)

34 return G, gamma, rho, K

36| # Solve polynomials of small degree

def solve small(p, m=30, guarantee=True, e=0):

38 result = [np.empty(0)]*p.shape[0]

abs p = np.abs(p)

10 nosol = abs _p[:,0] > abs p[:,1:].sum(axis=-1)

unksol = ~nosol

42 sols = list(map(np.polynomial.polynomial.polyroots, p[unksol]))
for i,j in enumerate(np.flatnonzero(unksol)):

44 result[j] = sols[i][np.abs(sols[i])<=1]

if guarantee:
16 validate(result, p, e)
return result

# Guarantee that there is a unique solution nearby

50| def validate(sols, p, e):

nonempty = [i for i,x in enumerate(sols) if x.size>0]
52 p0 = p[nonempty]

pl = np.polynomial.polynomial.polyder(p0, axis=-1)
5 p2 = np.polynomial.polynomial.polyder(pl, axis=-1)
s = np.linalg.norm(p2, 1, axis=-1)
56 for i, j in enumerate(nonempty):
q = 10*s[i]*(np.abs(np.polynomial.polynomial.polyval(sols[j], p0[i]))+e)/\
58 (np.abs(np.polynomial.polynomial.polyval(sols[j], pl[i]))-e)**2

sols[j] = sols[jllq <= 1]
60

62| # Solve using truncated polynomials

def solve piecewise(G, gamma, rho, K, m=30, rtol=8, guarantee=True, e=0):
64 result = np.array([],dtype="complex128")

Kmax = G.shape[1l]

66 for p, g, r, Kn in zip(G,gamma, rho,K):

step = (Kmax-1)//(Kn-1) # step * (Kn-1) < Kmax

68 w = np.exp(-2j*np.pi*np.arange(0,Kmax,step)/Kmax)
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90
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16

26

30

32

sols = solve small(p[::step], m, guarantee, e)
for i in range((Kmax-1)//step + 1):
sols[i] = g*w[i] + r*sols[i]
result = np.append(result, sols[i])
rounded = np.round(result, decimals=-int(np.logl0(rtol)))
~, ind = np.unique(rounded, return index=True)
return result[ind]

# truncate and solve a polynomial over the complex
def solve(p, m=30, rtol=None, guarantee=True):
rtol = max(3*2**(-m), 2**-35) if rtol is None else rtol
dtype = p.dtype if hasattr(p, 'dtype’) else ’'complex128’
p = np.trim_zeros(p, 'b’")
coeffs = np.zeros((2, len(p)), dtype=dtype)
coeffs[0] = p
coeffs[1l] = coeffs[0,::-1]
G, gamma, rho, K = hyperbolic approximation(coeffs, m)
e = 3*np.linalg.norm(coeffs[0], 1)*(m+2)/2**m
sols = solve piecewise(G[O], gamma, rho, K, m, rtol, guarantee, e)
invsols = solve piecewise(G[1l], gamma, rho, K, m, rtol, guarantee, e)
result = np.concatenate([sols , 1/invsols])
rounded = np.round(result, decimals=-int(np.logl@(rtol)))
_, ind = np.unique(rounded, return_index=True)
return result[ind]

hcroots.py

# Copyright (C) 2021 Guillaume Moroz <guillaume.moroz@inria.fr>

# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or

# (at your option) any later version.

import numpy as np

# Compute the disks of a hyperbolic covering
def disks(d, m):
N = np.math.ceil(np.log2(3*np.e*d/min(m-1,d)))
r=1- 1/2%%(np.arange(N+1))
r[-1] =1
gamma 1/2*(r[1:]1 + r[:-11)
rho = 3/4*%(r[1:] - r[:-1])
K = np.ceil(3*np.pi*r[1:]1/(np.sqrt(5)*rho)).astype(int)
K[e] = 4
return gamma, rho, K

# Compute the m-hyperbolic approximation
def hyperbolic approximation(coeffs, m=30):
d = coeffs.shape[-1]
shape = coeffs.shape[:-1]
gamma, rho, K = disks(d, m)
N = gamma.size
Kmax = ((d-1)//K.max()+1)*K.max()
r = rho/gamma
D = np.arange(d)
G = np.zeros(shape + (N, Kmax, m), dtype='complex128’)
P = gamma[:, np.newaxis]**D * coeffs[..., np.newaxis, :]
G[...,0] = np.fft.fft(P, Kmax)
for i in range(m-1):
P *= (D-i)/(i+l) * r[:, np.newaxis]
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G[..., i+1l] = np.fft.fft(P[...,i+1:], Kmax)
34 return G, gamma, rho, K

36| # Get the indices to match points to the corresponding disk
def get indices(N, Kmax, points):

38 module indices = np.zeros(points.shape, int)

angle indices = np.zeros(points.shape, int)

10 apoints = np.abs(points)

big = apoints > 1-1/2**(N-1)

12 small = apoints < 1/2
middle = ~small & ~big
44 module indices[middle] = np.log2(1/(1l-apoints[middle])).astype(int)
module indices[big] = N-1
46 angle indices[:] = (0.5 - np.angle(points)*(Kmax/(2*np.pi)) % Kmax).astype(int)

return module indices, angle indices

# Evaluate the points in a unit disk
0| def eval unitdisk(G, gamma, rho, points):
N, Kmax, m = G.shape

52 m ind, a ind = get indices(N, Kmax, points)
shift points = (points - gamma[m_ind]*np.exp(-2j*np.pi*a ind/Kmax))/rho[m_ind]

54 res = np.polynomial.polynomial.polyval( shift points, G[m_ind, a ind].T, tensor=False)
return res

# Evaluate the points in the complex plane

58| def eval hyperbolic approximation(covering, points):
G, gamma, rho, d = covering

60 points = np.array(points)

apoints = np.abs(points)

62 inpoints = points[apoints <= 1]
outpoints = points[apoints > 1]
64 res = np.zeros(points.size, dtype='complex128’)

res[apoints <= 1] = eval unitdisk(G[0], gamma, rho, inpoints)

66 res[apoints > 1] = eval unitdisk(G[1], gamma, rho, 1/outpoints)*outpoints**d
return res

68
# Compute the hyperbolic approximation used for multi-point evaluation
70| def get hyperbolic approximation(p, m=30):

d = len(p)-1

72 dtype = p.dtype if hasattr(p, ’'dtype’) else ’'complex128’

coeffs = np.zeros((2, d+1), dtype=dtype)

7 coeffs[0] = p

coeffs[1l] = coeffs[0,::-1]

76 G, gamma, rho, K = hyperbolic approximation(coeffs, m)

covering = G, gamma, rho, d

78 return covering

80| # Compute the hyperbolic approximation and evaluate the points
def eval(p, points, m=30):

82 covering = get hyperbolic approximation(p, m)
res = eval _hyperbolic_approximation(covering, points)
84 return res

hceval.py

25



References

1]

2]

3]

[4]

5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Pankaj K Agarwal and Jeff Erickson. Geometric range searching and its relatives. In
B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in discrete and computational
geometry, volume 223 of Contemporary Mathematics, pages 1 — 56. American Mathematical
Society, Providence, RI, 1999.

Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1974.

Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. A near-optimal subdivision
algorithm for complex root isolation based on the pellet test and newton iteration. Journal of
Symbolic Computation, 86:51 — 96, 2018.

Carlos Beltran and Luis Miguel Pardo. Fast linear homotopy to find approximate zeros of poly-
nomial systems. Foundations of Computational Mathematics, 11(1):95-129, Feb 2011.

Todor Bilarev, Magnus Aspenberg, and Dierk Schleicher. On the speed of convergence of
newton’s method for complex polynomials. Mathematics of Computation, 85(298):693-705,
2016.

Dario A. Bini and Giuseppe Fiorentino. Design, analysis, and implementation of a multipreci-
sion polynomial rootfinder. Numerical Algorithms, 23(2):127-173, Jun 2000.

Dario A. Bini and Leonardo Robol. Solving secular and polynomial equations: A multiprecision
algorithm. Journal of Computational and Applied Mathematics, 272:276-292, 2014.

Peter Biirgisser and Felipe Cucker. Condition: The Geometry of Numerical Algorithms.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

Peter Biirgisser, Felipe Cucker, and Elisa Rocha Cardozo. On the condition of the zeros of
characteristic polynomials. Journal of Complezity, 42:72-84, 2017.

Felipe Cucker, Teresa Krick, Gregorio Malajovich, and Mario Wschebor. A numerical algorithm
for zero counting, i: Complexity and accuracy. Journal of Complexity, 24(5):582-605, 2008.

Felipe Cucker and Steve Smale. Complexity estimates depending on condition and round-off
error. J. ACM, 46(1):113-184, January 1999.

Jean-Pierre Dedieu. Points fixes, zéros et la méthode de Newton. Mathématiques et Applica-
tions. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Yen Do, Hoi Nguyen, and Van Vu. Real roots of random polynomials: expectation and repul-
sion. Proceedings of the London Mathematical Society, 111(6):1231-1260, 2015.

Alan Edelman and Eric Kostlan. How many zeros of a random polynomial are real? Bulletin
of the American Mathematical Society, 32(1):1-37, 1995.

Louis W. Ehrlich. A modified newton method for polynomials. Commun. ACM, 10(2):107-108,
February 1967.

Ioannis Z. Emiris, Victor Y. Pan, and Elias Tsigaridas. Algebraic algorithms. Chapter 10
of Computing Handbook , Volume I: Computer Science and Software Engineering (Allen B.
Tucker, Teo Gonzales, and Jorge L. Diaz-Herrera, editors), 2014.

26



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

Charles M. Fiduccia. Polynomial evaluation via the division algorithm the fast fourier transform
revisited. In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
STOC 72, page 88-93, New York, NY, USA, 1972. Association for Computing Machinery.

Matsusaburé Fujiwara. Uber die obere schranke des absoluten betrages der wurzeln einer
algebraischen gleichung. Tohoku Mathematical Journal, First Series, 10:167-171, 1916.

Jean Ginibre. Statistical ensembles of complex, quaternion, and real matrices. Journal of
Mathematical Physics, 6(3):440-449, 1965.

Xavier Gourdon. Algorithmique du theoreme fondamental de I’algebre. Research Report RR-
1852, INRIA, 1993. HAL: |https://hal.inria.fr/inria-00074820.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, et al. Array programming with
NumPy. Nature, 585(7825):357-362, September 2020.

Peter Henrici. Applied and computational complex analysis, Vol. 1. Wiley, New York, 1974.

J. Ben Hough, Majunath Krishnapur, Yuval Peres, and Balint Virag. Determinantal processes
and independence. Probability Surveys, 3:206-229 (electronic), 2006. 00000.

John Hubbard, Dierk Schleicher, and Scott Sutherland. How to find all roots of complex
polynomials by newton’s method. Inventiones mathematicae, 146(1):1-33, Oct 2001.

Rémi Imbach and Victor Y. Pan. New practical advances in polynomial root clustering. In
Daniel Slamanig, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos, editors, Mathematical As-
pects of Computer and Information Sciences, pages 122-137, Cham, 2020. Springer Interna-
tional Publishing.

Rémi Imbach and Victor Y. Pan. New progress in univariate polynomial root finding. In Pro-
ceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC
20, page 249-256, New York, NY, USA, 2020. Association for Computing Machinery.

Rémi Imbach, Victor Y. Pan, and Chee Yap. Implementation of a near-optimal complex root
clustering algorithm. In James H. Davenport, Manuel Kauers, George Labahn, and Josef
Urban, editors, Mathematical Software — ICMS 2018, pages 235-244, Cham, 2018. Springer
International Publishing.

Zakhar Kabluchko and Dmitry Zaporozhets. Asymptotic distribution of complex zeros of
random analytic functions. The Annals of Probability, 42(4):1374 — 1395, 2014.

R. Baker Kearfott. Rigorous global search: continuous problems. Nonconvex optimization and
its applications. Kluwer Academic Publishers, Dordrecht, Boston, 1996.

Alexander Kobel and Michael Sagraloff. Fast approximate polynomial multipoint evaluation
and applications, 2016. arXiv:https://arxiv.org/abs/1304.8069v2 [cs.NA].

Pierre Lairez. A deterministic algorithm to compute approximate roots of polynomial systems
in polynomial average time. Foundations of Computational Mathematics, 17(5):1265-1292, Oct
2017.

Kurt Mahler. An inequality for the discriminant of a polynomial. Michigan Mathematical
Journal, 11(3):257 — 262, 1964.

27


https://hal.inria.fr/inria-00074820
https://arxiv.org/abs/1304.8069v2

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

143]

[44]

[45]

[46]

[47]
48]

[49]

Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang. From approximate factorization to
root isolation with application to cylindrical algebraic decomposition. Journal of Symbolic
Computation, 66:34—69, 2015.

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to interval analysis.
Siam, 2009.

Guillaume Moroz. HCRoots: Hyperbolic Complex Root solver. https://gitlab.inria.fr/
gmoro/hcroots), 2021.

Arnold Neumaier. Interval methods for systems of equations. Cambridge University Press,
1990.

Victor Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factorization
and root-finding. Journal of Symbolic Computation, 33(5):701-733, 2002.

Yuval Peres and Balint Virag. Zeros of the i.i.d. Gaussian power series: a conformally invariant
determinantal process. Acta Mathematica, 194(1):1 — 35, 2005.

Peter Ritzmann. A fast numerical algorithm for the composition of power series with complex
coefficients. Theoretical Computer Science, 44:1-16, 1986.

Siegfried M. Rump. Ten methods to bound multiple roots of polynomials. Journal of Compu-
tational and Applied Mathematics, 156(2):403 — 432, 2003.

Arnold Schonhage. Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients. In Jacques Calmet, editor, Computer Algebra, pages
3-15, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

Arnold Schénhage. The fundamental theorem of algebra in terms of computational complex-
ity. Technical report, Departement of Mathematics, University of Tiibingen, Germany, 1982.
updated 2004.

Steve Smale. The fundamental theorem of algebra and complexity theory. Bull. Amer. Math.
Soc. (N.S.), 4(1):1-36, 01 1981.

Mikhail Sodin and Boris Tsirelson. Random complex zeroes, i. asymptotic normality. Israel
Journal of Mathematics, 144(1):125-149, Mar 2004.

Joris van der Hoeven. Fast composition of numeric power series. Technical Report 2008-09,
Université Paris-Sud, Orsay, France, 2008.

Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, Cambridge, U.K., 3 edition, 2013.

Rephael Wenger. Isosurfaces: geometry, topology, and algorithms. CRC Press, 2013.

James H. Wilkinson. The evaluation of the zeros of ill-conditioned polynomials. part ii. Nu-
merische Mathematik, 1(1):167-180, Dec 1959.

James H. Wilkinson. Rounding errors in algebraic processes. Englewood Cliffs, N.J: Prentice-
Hall, 1964.

28


https://gitlab.inria.fr/gmoro/hcroots
https://gitlab.inria.fr/gmoro/hcroots

	Introduction
	The data structure
	Applications
	Numerical multipoint evaluation
	Root isolation
	Lower bound on condition number
	Experimental proof of concept


	Preliminaries
	Notations
	Fast elementary operations
	Fast approximate multipoint evaluation
	Condition number
	Fast approximate factorization
	Certification of the roots
	Geometric range searching

	Computation of the hyperbolic approximation
	Properties
	Proof of Theorem 1

	Multipoint evaluation
	Root isolation
	Properties of the approximate roots
	Proof of Theorem 3

	Lower bound on the condition number
	Source code

