
Minimum Cuts in Directed Graphs via Partial Sparsification∗

Ruoxu Cen
Duke University

Jason Li
Carnegie Mellon University

Danupon Nanongkai
University of Copenhagen & KTH

Debmalya Panigrahi
Duke University

Kent Quanrud
Purdue University

Thatchaphol Saranurak
University of Michigan, Ann Arbor

November 18, 2021

Abstract

We give an algorithm to find a minimum cut in an edge-weighted directed graph with n
vertices and m edges in Õ(n ·max{m2/3, n}) time. This improves on the 30 year old bound of
Õ(nm) obtained by Hao and Orlin for this problem. Using similar techniques, we also obtain
Õ(n2/ε2)-time (1+ε)-approximation algorithms for both the minimum edge and minimum vertex
cuts in directed graphs, for any fixed ε. Before our work, no (1 + ε)-approximation algorithm
better than the exact runtime of Õ(nm) is known for either problem.

Our algorithms follow a two-step template. In the first step, we employ a partial sparsification
of the input graph to preserve a critical subset of cut values approximately. In the second step,
we design algorithms to find the (edge/vertex) mincut among the preserved cuts from the first
step. For edge mincut, we give a new reduction to Õ(min{n/m1/3,

√
n}) calls of any maxflow

subroutine, via packing arborescences in the sparsifier. For vertex mincut, we develop new local
flow algorithms to identify small unbalanced cuts in the sparsified graph.

∗This paper combines, and improves on, two independent manuscripts by Quanrud [Qua21] and the other au-
thors [CLN+21].

ar
X

iv
:2

11
1.

08
95

9v
1

 [
cs

.D
S]

 1
7

N
ov

 2
02

1

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Our Techniques . 2

2 Minimum Cut Algorithms in Edge-weighted Directed Graphs 4
2.1 Partial Sparsification . 6
2.2 Finding a 1-respecting Arborescence . 7
2.3 Mincut Given 1-respecting Arborescence . 8

3 Minimum Cut Algorithms in Vertex-weighted Directed Graphs 10
3.1 Partial Sparsification . 11
3.2 Rooted vertex mincut for small sink components . 12
3.3 Rooted vertex mincut for large sink components . 15
3.4 Approximating the rooted and global vertex mincut 15

A Proof of Lemma 2.4 19

B Proof of Lemma 2.6 20

C Proof of Lemma 3.1 22

1 Introduction

The minimum cut (or mincut) problem is one of the most widely studied problems in graph algo-
rithms. In (edge-)weighted1 directed graphs (or digraphs), a mincut is a bipartition of the vertices
into two non-empty sets (S, V \ S) so that the total weight of edges from S to V \ S is minimized.
This problem can be solved by solving the s-mincut problem (also called rooted mincut), where for
a given root vertex s, we want to find the minimum weight cut (S, V \ S) such that s ∈ S. (We
call such cuts minimum s-cuts or s-mincuts.) This is because the mincut can be computed as the
minimum between two s-mincuts for an arbitrary vertex s: one with the original edge directions in
the input digraph, and the other with the edge directions reversed.

A simple algorithm for s-mincut (and thus mincut) on an m-edge, n-vertex digraph is to use
n− 1 maxflow calls to obtain the minimum s− t cut for every vertex t 6= s in the graph, and return
the minimum among these. A beautiful result of Hao and Orlin [HO94] showed that these maxflow
calls can be amortized to match the running time of a single maxflow call, provided one uses the
push-relabel maxflow algorithm [GT88]. This leads to an overall running time of Õ(mn). Since their
work, better maxflow algorithms have been designed, but the amortization does not work for these
algorithms. As a consequence, the Hao-Orlin bound remains the best known for the directed mincut
problem almost 30 years after their work.

1.1 Our Results

In this paper, we can solve the s-mincut—thus the directed mincut problem—by essentially reducing
it to O(

√
n) maxflow calls. At first glance, this is worse than the Hao-Orlin algorithm that only uses

a single maxflow call. But crucially, while the Hao-Orlin algorithm is restricted to a specific maxflow
subroutine and therefore cannot take advantage of faster, more recent maxflow algorithms, our new
algorithm treats the maxflow subroutine as a black box, thereby allowing the use of any maxflow
algorithm. Using state of the art maxflow algorithms that run in Õ(m + n3/2) time [vdBLL+21],
this already improves on the Hao-Orlin bound. Using some additional ideas, we further reduce to
O(min{n/m1/3,

√
n}) maxflow calls, which yields our eventual running time of Õ(nm2/3 + n2):

Theorem 1.1. There is a randomized Monte Carlo algorithm that solves s-mincut (and therefore
directed mincut) whp in Õ(nm2/3 +n2) time on an n-vertex, m-edge (edge-weighted) directed graph.

In fact, our reduction in general implies a running time bound of Õ(min{mk, nk2}+ n
k · F (m,n)),

where k is a parameter that we can choose and F (m,n) is the time complexity of maxflow (see
Theorem 2.1).

Our techniques also yield fast approximations for the mincut problem in directed graphs. In
particular, for any ε ∈ (0, 1), we can find a (1 + ε)-approximate mincut in Õ(n2/ε2) time:

Theorem 1.2. For any ε ∈ (0, 1), there is a randomized Monte Carlo algorithm that finds a (1+ε)-
approximate s-mincut (and therefore directed mincut) whp in Õ(n2/ε2) time on an n-vertex (edge-
weighted) directed graph.

Finally, we consider vertex-weighted digraphs. A vertex cut in a digraph is defined as a tri-
partition of vertices into sets (L,X,R) such that there is no edge from L to R. (In other words,
removing the vertices in X results in a digraph where the directed cut (L,R) is empty.) A minimum
vertex cut (or vertex mincut) is a vertex cut (L,X,R) that minimizes the sum of weights of vertices
in X. We give an algorithm to find a (1 + ε)-approximate vertex mincut in Õ(n2/ε2) time:

1We assume throughout that edge/vertex weights are polynomially bounded integers.

1

Theorem 1.3. For any ε ∈ (0, 1), there is a randomized Monte Carlo algorithm that finds a (1+ε)-
approximate minimum vertex s-cut and the minimum global vertex cut whp in Õ(n2/ε2) time on an
n-vertex (vertex-weighted) directed graph.

To the best of our knowledge, before this work, the fastest algorithms for (1+ε)-approximation of
mincuts in edge or vertex weighted directed graphs were the respective exact algorithms themselves,
which obtained a running time of Õ(mn) [HO94, HRG00].Our approximation results establish a
separation between the best exact and (1 + ε)-approximation algorithms for both edge and vertex
mincut problems in directed graphs.
Remark: Our results are the first to break the O(mn) barrier for directed mincut problems in
general, weighted digraphs. For all values of m except when m = n1+o(1), this is immediate from
the above theorems. If m = n1+o(1), we can also break the O(mn) barrier by employing the recent
Õ
(
m1.5−1/328

)
-time max-flow algorithm of [GLP21] to obtain O

(
mn1−Ω(1)

)
-time algorithms for all

problems in Theorems 1.1 to 1.3.
Related Work. The directed (edge) mincut problem has been studied over several decades. Early
work focused on unweighted graphs [ET75, Sch79] eventually resulting in an O(mn)-time algorithm
due to Mansour and Schieber [MS89]. This was matched (up to log factors) in weighted graphs
by Hao and Orlin [HO94], whose result we improve in this paper. For unweighted graphs (and
graphs with small integer weights), the current record is a recent Õ(n2)-time algorithm due to
Chekuri and Quanrud [CQ21]. A similar story has unfolded for directed vertex mincuts. Early
work again focused on unweighted graphs [Pod73, ET75, CR94, Gal80] until the work of Henzinger,
Rao, and Gabow [HRG00] who obtained an Õ(mn)-time algorithm for weighted graphs. The current
best for directed vertex mincut in unweighted graphs is an Õ(mn11/12+o(1))-time algorithm due to
Li et al. [LNP+21]. Faster algorithms are known when the mincut size is small and for (1 + ε)-
approximations in unweighted digraphs [NSY19, FNY+20, CQ21].

1.2 Our Techniques

Our results are obtained by solving the s-mincut problem. Let us consider the edge-weighted case.
Gabow [Gab95] obtained a running time of Õ(mλ) for this problem (assuming integer weights),
where λ is the size of an s-mincut. He did so via arborescense packing: Define an s-arborescense to
be any spanning tree rooted at s with edges pointing toward the leaves. In Õ(mλ) time, Gabow’s
algorithm computes λ s-arborescenses such that an edge e of weight w(e) is contained in at most
w(e) arborescenses (this is called arborescense packing).2 Gabow’s algorithm is at least as fast as
that of Hao and Orlin for unweighted simple graphs (since λ ≤ n − 1), but can be much worse
for weighted (or multi) graphs. Nevertheless, Karger [Kar00] gave an interesting approach to use
arborescence packing for the mincut problem even with edge weights, but only in undirected graphs.
Karger’s algorithm had three main steps:

(a) sparsify the input graph G to H by random sampling of edges to reduce the mincut value in
H to O(log n) while guaranteeing that the mincut in G is a (1 + ε)-approximate mincut in H,

(b) pack O(log n) s-arborescences3 in the sparsifier H, and
(c) find the minimum weight cut among those that have at most two edges in an arboresence

using a dynamic program.
2Gabow actually constructs a directionless spanning tree packing, which is a relaxation of an arborescence packing,

but we ignore this technical detail here since it is not relevant to our eventual algorithm.
3Since Karger’s algorithm considered undirected graphs, the arborescences are simply spanning trees.

2

The last step is sufficient because the duality between cuts and arborescences ensures that an
s-mincut, which is now a (1+ε)-approximate mincut after sparsification, has at most two edges in at
least one s-arborescence.4 Karger implements all these steps in Õ(m) time to obtain an Õ(m)-time
mincut algorithm in undirected graphs.

Unfortunately, steps (a) and (c) in Karger’s scheme are not valid in a directed graph. To begin
with, directed graphs do not admit sparsifiers similar to Karger’s sparsifier: while Karger’s sparsifier
approximately preserves all cuts in an undirected graph (after some scaling), it is well known that
a sparsifier with a similar property does not exist in directed graphs (see, e.g., [CCPS21]). This
is mainly because we cannot bound the number of mincuts and approximate mincuts in directed
graphs while we can do so in undirected graphs.

Partial sparsification. Since it is impossible for a sparsifier to preserve all cuts in directed graphs,
it is natural to try to preserve a partial subset of cuts. Suppose we were guaranteed that the s-mincut
(S, V \ S) (recall that s ∈ S) is unbalanced in the sense that |V \ S| ≤ k for some parameter k that
we will fix later. Let us randomly sample edges to scale down the value of the mincut to Õ(k). In
an undirected graph, as long as k = Ω(log n), all the cuts would converge to their expected values.
This is not true in digraphs, but crucially, all the unbalanced cuts converge to their expected values
since there are only nÕ(k) of them. However, it is possible that some balanced cut is (misleadingly)
the new mincut of the sampled graph, having been scaled down disproportionately by the random
sampling. So, we overlay this sampled graph with a star rooted at s, and show that this sufficiently
increases the values of all balanced cuts, while only distorting the unbalanced cuts slightly. After
this overlay, we can claim that we now have a digraph where (S, V \ S) is a (1 + ε)-approximate
mincut. We use one additional idea here. We show that in the sparsifier, every vertex in V \ S has
only Õ(k) incoming edges (note that each edge can be weighted)—Õ(k) edges across the cut from
S and ≤ k edges from within V \ S. By contracting all vertices with unweighted in-degree > Õ(k)
into s, we reduce the number of edges in the digraph to Õ(nk).

But, what if our premise that the s-mincut is unbalanced does not hold? This case is actually
simple. We use a uniform random sample of Õ(nk) vertices, and find s− t mincuts for all vertices t
from the sample, using Õ(nk) maxflow calls. It is easy to see that whp, the sample hits V \ S, and
hence, the minimum weighted cut among these s− t mincuts will reveal the s-mincut of the graph.

Let us, therefore, return to the case where the s-mincut is unbalanced. Recall that we have al-
ready sparsified the graph to one that has only Õ(nk) edges, and where the mincut has weight Õ(k).
The next step is to create a maximum packing of edge-disjoint s-arborescences. Because the graph
is weighted, instead of using Gabow’s algorithm described above, we create a (fractional) packing
using a multiplicative weights update procedure (e.g., [You95]). By duality,5 these arborescences
have the following property: if we sample O(log n) random s-arborescences, then whp there will be
at least one arborescence T such that there is exactly one edge in T that goes from S to V \ S. In
this case, we say that the cut (S, V \ S) 1-respects the arborescence T .

Our 1-respecting cut algorithm. Our final task, therefore, is the following: given an arbores-
cence, find the minimum weight cut in the original graph among all those that 1-respect the arbores-
cence T . At first sight, this may look similar to part (c) of Karger’s algorithm which can be solved
by a dynamic program or other techniques (e.g. [MN20, GMW20, GMW21, LMN21]). However,
these techniques relied on the fact that if the s-mincut (S, V \ S) has a single edge e in T , then S

4The duality implies that if the undirected mincut is λ, then we can pack λ spanning trees where every edge
appears in at most two arborescences.

5By duality, we have that if the directed mincut is λ, then we can pack λ arborescenses where each edge appears
in at most one arborescense. Note that this is different from the case of undirected graphs where each edge appears
in at most two arborescences.

3

and V \ S would be contiguous in an s-arborescence T (i.e. removing e from T gives S and V \ S
as the two connected components). This is not true for a directed graph: While an s-arborescence
will contain exactly one edge from S to V \ S, it could contain an arbitrary number of edges in the
opposite direction from V \ S to S, thereby only guaranteeing the contiguity of V \ S but not S.

One of the main contributions of this paper is to provide an algorithm to solve the above
problem using O(log n) maxflow computations. The main idea is to use a centroid-based recursive
decomposition of the arborescence, where in each step, we use a set of maxflow calls that can be
amortized on the original graph. The minimum cut returned by all these maxflow calls is eventually
returned as the s-mincut of the graph.

Approximation Algorithms. The ideas above also lead to a quadratic time approximation
algorithm for edge mincuts. At a high level, if we execute each (s, t)-max flow in the sparsifier
instead of in the input graph (both in the unbalanced and balanced settings, with care), then we
obtain a Õ(n2/ε2) time (1 + ε)-approximation algorithm instead.

A similar approach can be taken for approximate vertex mincuts. Our partial sparsification
technique reduces the graph to Õ(nk/ε2) edges while maintaining the vertex s-mincut (with some
additional adjustments for vertex mincuts). For large k, we similarly run (s, t)-max flow between
Õ(n/k) pairs of vertices on the sparsifier. For small k, we design a new local cut algorithm from
Õ(n/k) seeds each of which takes Õ(k3/ε2) time. This local algorithm is inspired by local algorithms
for unweighted graphs [FNY+20], and speeds up the running time by a factor of k by leveraging the
structure of our sparsifiers (beyond sparsity). We finally obtain Õ(n2/ε2) running time by balancing
the two cases and calling the max flow algorithm by [vdBLL+21].

Summary. To summarize, our algorithms distinguish between balanced and unbalanced mincuts,
solving the former using maxflows on randomly sampled terminals. For unbalanced mincuts, we
follow a two-step template. In the first step, we employ partial sparsification to preserve the values
of unbalanced cuts approximately, while suppressing balanced cuts using an overlay. In the second
step, we design algorithms to find the (edge/vertex) mincut among unbalanced cuts. For edge
mincut, the sparsifier allows one to quickly obtain an arborescence that 1-respects the directed
mincut. From this arboresence, we obtain the exact minimum cut in O(log n) max flows via a
centroid-based recursive decomposition. For vertex mincut, we develop new local flow algorithms
to identify small unbalanced cuts in the sparsified graph.

2 Minimum Cut Algorithms in Edge-weighted Directed Graphs

Given a directed graph G = (V,E) with non-negative edge weights w and a fixed root vertex s, we
consider the problem of finding an s-mincut. An s-arborescence is a directed spanning tree rooted
at s such that all edges are directed away from s. For simplicity, we assume that all edge weights w
are integers and are polynomially bounded. We denote U = V \ U . Let ∂+(U) be the set of edges
from U to U , ∂−(U) be the set of edges from U to U , and let δ+(U) and δ−(U) be the weight of the
cut, i.e., δ+(U) =

∑
e∈∂+(U)w(e), δ−(U) =

∑
e∈∂−(U)w(e). Our goal is to compute the minimum

cut (S∗, T ∗) where s ∈ S∗ = arg mins∈U⊂V δ
+(U) and T ∗ = S∗. Let F (m,n) denote the time

complexity of s-t maximum flow on a digraph with n vertices and m edges. The current record
for this bound is F (m,n) = Õ(m + n3/2) [vdBLL+21]. We emphasize that our directed mincut
algorithm uses maxflow subroutines in a black box manner and therefore, any maxflow algorithm
suffices. Correspondingly, we express our running times in terms of F (m,n).

Theorem 2.1. There is a Monte Carlo algorithm that finds a minimum s-cut whp in Õ(min{mk, nk2}+
F (m,n)nk) time, where k is a parameter and F (m,n) is the time complexity of s-t maximum flow.

4

This section is devoted to prove Theorem 2.1. If we set k = m1/3 + n1/2 and use the Õ(m +
n3/2) max-flow algorithm, the time complexity becomes Õ(nm2/3 + n2), which establishes Theo-
rem 1.1. If we assume an hypothetical Õ(m)-time max-flow algorithm, then our result becomes
Õ(min{nm2/3,mn1/2}) for k = min{m1/3, n1/2}.

We obtain Theorem 2.1 via a new s-mincut algorithm. The algorithm considers the following
two cases, computing a s-cut for each case and returning the minimum as its final output. The
cases are split on |T ∗| by a threshold k > 0.

1. The first case aims to compute the correct mincut in the event that |T ∗| > k. In this case,
if we randomly sample t ∈ V , then with probability at least 1/k, t ∈ T ∗. Then T ∗ can be
obtained via the maxflow from s to t. Repeating the sampling O(nk log n) times, we obtain
the minimum s-cut whp. The total running time for this case is O(F (m,n)nk log n).

2. The second case is for the the event that |T ∗| ≤ k. Let λ denote the value of the minimum
rooted cut. By enumerating O(log n) powers of 2, we can obtain an estimate λ̃ such that
λ ≤ λ̃ ≤ 2λ. For each value of λ̃, we apply Lemma 2.5 to sparsify the graph in the following
manner. First, Lemma 2.5 returns a set of vertices V0 ⊆ V such that s ∈ V0 and T ∗ ⊆ V0

whp. In particular, one can safely contract any vertex v ∈ V \ V0 into s without affecting
the minimum s-cut. We contract G accordingly and, overloading notation, let G denote
the contracted graph with vertex set V0 henceforth. Second, Lemma 2.5 returns a graph
G0 = (V0, E0) in which T ∗ still induces an (1 + ε)-approximate s-mincut, but the weight
of the cut is now reduced to O(k log(n)). We note that G0 is not necessarily a subgraph
of G. We then invoke Lemma 2.6 from Section 2.2 to fractionally pack an approximately
maximum amount of O(k log n) s-arboresences in G0 in Õ

(
m+ min

{
mk, nk2

})
time. In a

random sample of O(log n) s-arboresences from this packing, one of them will 1-respect the
s-mincut in G (for appropriate λ̃) whp:

Definition 2.2. A directed s-cut (S, V \ S) k-respects an s-arborescence if there are at most
k edges in the arborescence from S to V \ S.

Finally, for each of the O(log n) s-arborescences, the algorithm computes the minimum s-cut
that 1-respects each arborescence. This algorithm is described in Algorithm 1 and proved in
Theorem 2.7 from Section 2.3. It runs in O((F (m,n)+m) · log n) time for each of the O(log n)
arborescences.

Combining both cases, the total running time becomes Õ(min{mk, nk2}+F (m,n)nk), which estab-
lishes Theorem 2.1.

Fast approximations. The exact algorithm described above can be modified to produce a ran-
domized Õ

(
n2/ε2

)
-time approximation algorithm that computes a (1 + ε)-approximate minimum

s-cut (hence also the global cut). With logarithmic overhead, we can obtain a parameter k such that
k/2 ≤ |T ∗| ≤ k, where ∂−(T ∗) is the minimum s-cut. We then follow the same steps as in the exact
algorithm, except whenever we compute the max-flow, we compute it in the sparsifier produced by
Lemma 2.5 instead. Since the sparsifier has at most Õ

(
nk/ε2

)
edges, we obtain a running time of

the form Õ
(
min

{
nk2/ε2

}
+ F (nk/ε2, n)(n/k)

)
. For F (m,n) = Õ

(
m+ n1.5

)
, this gives a running

time of Õ
(
n2/ε2

)
.

Theorem 2.3. For ε ∈ (0, 1), an (1 + ε)-approximate minimum s-cut (hence global minimum cut)
can be computed in Õ(n2/ε2) time whp.

5

We remark that Õ
(
n2/ε2

)
can also be obtained by using a local connectivity algorithm similar

to the approach for vertex mincuts in Section 3, instead of via an arboresence packing. See [Qua21]
for details.

Organization of the rest of this section. The following subsections present each step of the
algorithm described above. First, we establish the partial sparsification subroutine in Section 2.1.
Next, in Section 2.2, we obtain an arborescence packing from which sampling yields an arborescence
that is 1-respected by the mincut. Finally, in Section 2.3, we describe the algorithm to retrieve the
mincut among those that 1-respect a given arborescence.

2.1 Partial Sparsification

This section aims to reduce mincut value to Õ(k) and edge size to min{m,O(nk log(n)/ε2}) while
keeping ∂+(S∗) a (1 + ε)-approximate s-mincut for a constant ε > 0 that we will fix later. Our
algorithm in this stage has three steps. First, we use random sampling to discretize and scale down
the expected value of all cuts such that the expected value of the mincut δ+(S∗) becomes Õ(k).
We also claim that ∂+(S∗) remains an approximate mincut among all unbalanced cuts by using
standard concentration inequalities. However, since the number of balanced cuts far exceeds that
of unbalanced cuts, it might be the case that some balanced cut has now become much smaller in
weight than all the unbalanced cuts. This would violate the requirement that ∂+(S∗) should be an
approximate mincut in this new graph. This is where we need our second step, where we overlay
a star on the sampled graph to raise the values of all balanced s-cuts above the expected value of
∂+(S∗) while only increasing the value of ∂+(S∗) by a small factor. The third step leverages the
fact that, after scaling, the minimum edge weight is 1, and the minimum cut is O

(
k log(n)/ε2

)
. It

follows that any vertex with in-degree at least a constant factor greater than k log(n)/ε2 cannot be
in the sink component, and can be safely contracted into the root without affecting the s-mincut.

The first two steps described above are implemented in the next lemma, whose proof appears
in Appendix A.

Lemma 2.4. Let G = (V,E) be a directed graph with positive edge weights. Let s ∈ V be a fixed root
vertex. Let ε ∈ (0, 1), let λ > 0, and let k ∈ N be given parameters. Suppose there is an s-mincut
of the form ∂−(T ∗), where s 6∈ T ∗, λ/2 ≤ δ−G(T ∗) ≤ 2λ and |T ∗| ≤ k. In randomized nearly linear
time, one can compute a randomized directed and reweighted subgraph G0 = (V,E0), where V0 ⊆ V
and s ∈ V0 with the following properties.

(i) G0 has integral edge weights and the minimum s-cut has weight at most O
(
k log(n)/ε2

)
.

(ii) ∂−G0
(T ∗) is a (1 + ε)-approximate minimum s-cut in G0.

(iii) Every α-approximate minimum s-cut in G0 induces an (1 + ε)α-approximate minimum s-cut
in G.

The preceding lemma importantly allows us to reduce the weight of the minimum cut to roughly
k, where k is the number of the vertices in the sink component. However it has not actually reduced
the size in the graph, in terms of the number of edges. This is accomplished by our third step,
which we formalize in the following lemma that reduces the number of edges to Õ(nk).

Lemma 2.5. Let G = (V,E) be a directed graph with positive edge weights. Let s ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), λ > 0, and k ∈ N be given parameters. Suppose there is a minimum
s-cut is of the form ∂−(T ∗), where λ/2 ≤ δ−G(T ∗) ≤ 2λ and |T ∗| ≤ k.

In randomized nearly linear time, one can compute a randomized directed and edge-weighted
graph G0 = (V0, E0), where V0 ⊆ V and s ∈ V0.

6

(i) G0 has integral edge weights and the s-mincut in G0 has weight at most O
(
k log(n)/ε2

)
.

(ii) G0 has at most |E0| = min
{
m,O

(
nk log(n)/ε2

)}
edges.

(iii) G0 is a subgraph of the graph obtained by contracting V \ V0 into s in G.

(iv) We have T ∗ ⊆ V0, and ∂−G0
(T ∗) is an (1 + ε)-approximate minimum s-cut in G0.

(v) Every (1 + ε)-approximate minimum s-cut in G0 induces an (1 + ε)2-approximate minimum
s-cut in G.

Proof. Consider the reweighted subgraph produced by Lemma 2.4, which we denote byG1 = (V,E1).
We claim that every vertex v ∈ T ∗ has unweighted in-degree at most O

(
k log(n)/ε2

)
. Indeed, at

most k−1 of these edges are from other vertices in T , and the remaining edges must be in ∂−G1
(T ∗).

But ∂−G1
(T ∗) has at most δ−G1

(T ∗) = O
(
k log(n)/ε2

)
edges by properties (i) and (ii) of Lemma 2.4.

Let G0 = (V0, E0) be the graph obtained from G1 by contracting all vertices with unweighted
in-degree ≥ ck log(n)/ε2 for a sufficiently large constant c that excludes all vertices in T ∗. It is easy
to see that G0 satisfies the claimed properties, particularly as contractions into s do not decrease
the s-mincuts, and ∂−G0

(T ∗) is preserved exactly as in G1.

2.2 Finding a 1-respecting Arborescence

In this section, we assume that there is an unbalanced s-mincut and show how to obtain an s-
arborescence that 1-respects the s-mincut. More formally, we prove the following:

Lemma 2.6. Given weighted digraph G and a fixed root vertex s, suppose the sink side of an s-
mincut T ∗ has at most k vertices. In O(m log n + min{mk log2 n, nk2 log3 n}) time, we can find
O(log n) s-arborescences on vertex set V0 ⊃ T ∗, such that whp an s-mincut 1-respects at least one
of them.

The idea of this lemma is as follows. First, we apply Lemma 2.5 to our graph G and obtain the
graph G0. Whp, a minimum s-cut ∂−(T ∗) in G corresponds to a (1+ε)-approximate minimum s-cut
in G0. It remains to find an arborescence in G0 that 1-respects ∂−(T ∗). To do this, we employ a
multiplicative weight update (MWU) framework. The algorithm begins by setting all edge weights to
be uniform (say, weight 1). Then, we repeat the following for O(k log(n)/ε2) rounds: in each round,
we find a minimum weight arborescence in Õ(m) time and multiplicatively increase the weight of
every edge in the arborescence. Using the fact that there is no duality gap between arborescence
packing and mincut [Edm73, Gab95] (see Lemma B.3), a standard MWU analysis implies that
these arborescences that we found, after scaling, form a (1 + ε)-approximately optimal fractional
arborescence packing. So our arborescence crosses T ∗ at most (1 + O(ε)) < 2 times on average.
Thus, if we sample O(log n) arborescences from this set, one of them will 1-respect T ∗ whp.6 To
obtain the running time bound, we note that each iteration of the MWU framework requires us to
find the minimum cost s-arborescence, for which an Õ(m)-time algorithm is known [GGST86].

Since the argument above is a standard application of the MWU framework, we give the detailed
proof in Appendix B.

6This should be compared with Karger’s mincut algorithm in the undirected case, where there is a factor 2 gap,
and hence Karger can only guarantee a 2-respecting tree in the undirected case.

7

Figure 1: Construction of auxiliary graph Gi in Algorithm 1. Solid lines represent the arborescence
T . Dashed lines are other edges in the graph. Rectangles are sets formed by the first level of centroid
decomposition. Left: The original graph. Right: The part of G1 solving the case that the mincut
separates root and the centroid of the middle subtree.

2.3 Mincut Given 1-respecting Arborescence

We propose an algorithm (Algorithm 1) that uses O(log n) maxflow subroutines to find the minimum
s-cut that 1-respects a given s-arborescence. The result is formally stated in Theorem 2.7.

Theorem 2.7. Consider a directed graph G = (V,E) with polynomially bounded edge weights we >
0. Let s ∈ V be a fixed root vertex and S 3 s be the source side of a fixed s-mincut. Given an
s-arborescence T with |T ∩ ∂+(S)| = 1, Algorithm 1 outputs a s-mincut of G in time O((F (m,n) +
m) · log n).

We first give some intuition for Algorithm 1. Because s ∈ S, if we could find a vertex t ∈ S,
then computing the s-t mincut using one maxflow call would yield a global mincut of G. However,
we cannot afford to run one maxflow between s and every other vertex in G. Instead, we carefully
partition the vertices into ` = O(log n) sets (Ci)

`
i=1. We show that for each Ci, we can modify the

graph appropriately so that it allows us to (roughly speaking) compute the maximum flow between
s and every vertex c ∈ Ci using one maxflow call.

More specifically, Algorithm 1 has two stages. In the first stage, we compute a centroid decom-
position of T . Recall that a centroid of T is a vertex whose removal disconnects T into subtrees
with at most n/2 vertices. This process is done recursively, starting with the root s of T . We let P1

denote the subtrees resulting from the removal of s from T . In each subsequent step i, we compute
the set Ci of the centroids of the subtrees in Pi. We then remove the centroids and add the resulting
subtrees to Pi+1. This process continues until no vertices remain.

In the second stage, for each layer i, we construct a directed graph Gi and perform one maxflow
computation on Gi. The maxflow computation on Gi would yield candidate cuts for every vertex in
Ci, and after computing the appropriate maximum flow across every layer, we output the minimum
candidate cut as the minimum cut of G. The details are presented in Algorithm 1.

We first state two technical lemmas that we will use to prove Theorem 2.7.

Lemma 2.8. Recall that Pi is the set of subtrees in layer i and Ci contains the centroid of each
subtree in Pi. If Cj ⊆ S for every 0 ≤ j < i, then S is contained in exactly one subtree in Pi, and
consequently, at most one vertex u ∈ Ci can be in S.

Lemma 2.9. Let Gi be the graph constructed in Step 11 of Algorithm 1. Let f∗i be a maximum s-ti
flow on Gi as in Step 15. For any U ∈ Pi with centroid u, the amount of flow f∗i puts on edge (u, ti)
is equal to the value of the minimum cut from U to u.

8

Algorithm 1: Finding an s-mincut.
Input : An arborescence T rooted at s ∈ S such that S 1-respects T .

1 // Stage I: Build centroid decomposition.
2 Let C0 = {s}, P1 = the set of subtrees obtained by removing s from T , and i = 1.
3 while Pi 6= ∅ do
4 Initialize Ci (the centroids of Pi) and Pi+1 as empty sets.
5 for each subtree U ∈ Pi do
6 Compute the centroid u of U and add it to Ci.
7 Add all subtrees generated by removing u from U to Pi+1.

8 Set ` = i and iterate i = i+ 1.

9 // Stage II: Calculate integrated maximum flow for each layer.
10 for i = 1 to ` do
11 Construct a digraph Gi = (V ∪ {ti}, E1 ∪ E2 ∪ E3) as follows (see Figure 1):
12 1) Add edges E1 = E ∩ ∪U∈Pi(U × U) with capacity equal to their original weight.
13 2) Add edges E2 = {(s, v) : (u, v) ∈ E \ E1} with capacity of (s, v) equal to the

original weight of (u, v).
14 3) Add edges E3 = {(u, ti) : u ∈ Ci} with infinite capacity.
15 Compute the maximum s-ti flow f∗i in Gi.
16 For each component U ∈ Pi with centroid u, the value of f∗i on edge (u, ti) is a

candidate cut value, and the nodes in U that can reach u in the residue graph is a
candidate for S.

17 Return the smallest candidate cut value and the corresponding (S, S) as an s-mincut.

We defer the proofs of Lemmas 2.8 and 2.9, and first use them to prove Theorem 2.7.

Proof of Theorem 2.7. We first prove the correctness of Algorithm 1.
Because C0 = {s} and s ∈ S, and the Ci’s form a disjoint partition of V , there must be a layer

i such that for the first time, we have a centroid u ∈ Ci that belongs to S. By Lemma 2.8, we know
that S must be contained in exactly one subtree U ∈ Pi, and hence u must be the centroid of U .
In summary, we have u ∈ S and S ⊆ U .

Consider the graph Gi constructed for layer i. By Lemma 2.9, based on the flow f∗i puts on
the edge (u, ti), we can recover the value of the minimum cut from U to u. Because S ⊆ U (or
equivalently U ⊆ S) and u ∈ S, the cut (S, S) is one possible cut that separates U and u. Therefore,
the flow that f∗i puts on the edge (u, ti) is equal to the s-mincut value in G.

In addition, the candidate cut value for any other centroid u′ of a subtree U ′ ∈ Pi must be at
least the mincut value between s and u′. This is because the additional restriction that the cut has
to separate U ′ from u′ can only make the mincut value larger, and the value of this cut in Gi is
equal to the value of the same cut in G. Therefore, the minimum candidate cut value in all ` layers
must be equal to the s-mincut value of G.

Now we analyze the running time of Algorithm 1. We can find the centroid of an n-node tree
in time O(n) (see e.g., [MTZC81]). The total number of layers ` = O(log n) because removing
the centroids reduces the size of the subtrees by at least a factor of 2. Thus, the running time
of Stage I of Algorithm 1 is O(n log n). In Stage II, we can construct each Gi in O(m) time and
every Gi has O(m) edges. Since there are O(log n) layers and the maximum flow computations take
a total of O(MF (m,n) · log n) time, the overall runtime is O(n log n + (MF (m,n) + m) log n) =

9

O((MF (m,n) +m) log n).

Before proving Lemmas 2.8 and 2.9 we first prove the following lemma.

Lemma 2.10. If x and y are vertices in S, then every vertex on the (undirected) path from x to y
in the arborescence T also belongs to S.

Proof. Consider the lowest common ancestor z of x and y. Because there is a directed path from z
to x and a directed path from z to y, we must have z ∈ S. Otherwise, there are at least two edges
in T that go from S to S.

Because s ∈ S and z ∈ S, there is already an edge in T (on the path from s to z) that goes from
S to S. Consequently, all other edges in T cannot go from S to S, which means the entire path
from z to x (and similarly z to y) must be in S.

Recall that Lemma 2.8 states that if all the centroids in previous layers are in S, then S is
contained in exactly one subtree U in the current layer i.

Proof of Lemma 2.8. For contradiction, suppose that there exist distinct subtrees U1 and U2 in Pi
and vertices x, y ∈ S such that x ∈ U1 and y ∈ U2.

By Lemma 2.10, any vertex on the (undirected) path from x to y also belongs to S. Consider
the first time that x and y are separated into different subtrees. This must have happened because
some vertex on the path from x to y is removed. However, the set of vertices removed at this point
of the algorithm is precisely

⋃
0≤j<iCj , but our hypothesis assumes that none of them are in S.

This leads to a contradiction and therefore S is contained in exactly one subtree of Pi.
It follows immediately that at most one centroid u ∈ Ci can be in S.

Next we prove Lemma 2.9, which states that the maximum flow between s and ti in the modified
graph Gi allows one to simultaneously compute a candidate mincut value for each vertex u ∈ Ci.

Proof of Lemma 2.9. First observe that the maxflow computation from s to ti in Gi can be viewed as
multiple independent maxflow computations. The reason is that, for any two subtrees U1, U2 ∈ Pi,
there are only edges that go from s into U1 and from U1 to ti in Gi (similarly for U2), but there are
no edges that go between U1 and U2.

The above observation allows us to focus on one subtree U ∈ Pi. Consider the procedure that
we produce Gi from G in Steps 12 to 14 of Algorithm 1. The edges with both ends in U are intact
(the edge set E1). If we contract all vertices out of U into s, then all edges that enter U would
start from s, which is precisely the effect of removing cross-subtree edges and adding the edges in
E2. One final infinity-capacity edge (u, ti) ∈ E3 connects the centroid of U to the super sink ti.

Therefore, the maximum s-ti flow f∗i computes the maximum flow between U and u ∈ U
simultaneously for all U ∈ Pi, whose value is reflected on the edge (u, ti). It follows from the
maxflow mincut theorem that the flow on edge (u, ti) is equal to the mincut value between U and
u in G (i.e., the minimum value w(A,A) among all A ⊂ V with U ⊆ A and u ∈ A).

3 Minimum Cut Algorithms in Vertex-weighted Directed Graphs

In this section we present the approximation algorithm for the minimum rooted and global vertex
cut. Similar to Section 2, the main focus is on rooted cuts, and the algorithm is presented in three
main parts. All three parts are parameterized by values κ > 0 and k ∈ N that, in principle, are meant
to be constant factor estimates for the weight and the number of vertices in the sink component of
the minimum rooted vertex cut. The first part, in Section 3.1, presents the sparsification lemma

10

that reduces the number of edges to roughly nk and the rooted mincut to roughly k in a graph with
integer weights. This sparsifier is used in the remaining two parts. The second part, in Section 3.2,
gives a roughly nk2 time approximation algorithm for the minimum rooted cut via a new local
flow algorithm. The third part, in Section 3.3, gives a roughly n2 + n2.5/k time approximation
algorithm via sampling and (s, t)-flow (as with minimum edge cuts before). Finally, in Section 3.4,
we balance terms to obtain the claimed running time for rooted cut. The rooted vertex mincut
algorithm then leads to a global vertex mincut algorithm via an argument due to [HRG00] (with
some modifications).

3.1 Partial Sparsification

The first part is a sparsification lemma that preserves rooted vertex cuts where the number of
vertices in the sink component is below some given parameter. It is similar in spirit to Lemma 2.5,
but with some necessary changes as we are now preserving the vertex mincut rather than edge
mincut. We give a brief overview of the algorithm, highlighting in particular the differences from
the partial edge cut sparsifier. The proof and algorithmic details are deferred to Appendix C.

At a high level, the following sparsifier for vertex cuts randomly samples the vertex weights so
that the weights are integral, and the weight of the minimum vertex cut becomes O

(
k log(n)/ε2

)
.

Similar to the partial edge sparsifier, this rounding is calibrated to preserve s-cuts with (roughly)
k or fewer vertices in the sink components. To pad the weight of vertex s-cuts with large sink
components, we add an weighted auxiliary vertex on a short directed path between s and each
vertex (as opposed to just adding an edge from s, as we did for edge cuts). If a sampled weight of
a vertex v is 0, we cannot simply drop the vertex from the graph (in the way we can drop weight
0 edges) since the vertex may be in the sink component of the min r-cut. Instead we remove all
outgoing edges from v. Also, when we detect that a vertex v cannot be in the sink component (by a
similar counting argument as before), rather than contract v into s (which may effect the min vertex
s-cut), we replace all of the incoming edges to v with a single edge from s. The culmination of these
modifications is a similar net effect as for edge cuts: a graph with O

(
nk log(n)/ε2

)
that preserves the

sink component of the minimum vertex s-cut. That said, the following bounds are more detailed
than the bounds for preserving the edge cut in Lemma 2.5. These additional properties play a
critical role in the customized local flow algorithms presented later.

In the following, let N+(v |G) denote the set of out-neighbors of v in the graph G. We omit G
and simply write N+(v) when G can be inferred from the context.

Lemma 3.1. Let G = (V,E) be a directed graph with positive vertex weights. Let s ∈ V be a fixed
vertex. Let k, κ > 0 be given parameters. Let V ′ = V \ ({s} ∪N+(s)). In randomized linear time,
one can compute a randomized directed and vertex-weighted graph G0 = (V0, E0), and a scaling
factor τ > 0, with the following properties.

(i) s ∈ V0.

(ii) Let V ′0 = V0 \ ({s} ∪N+(s |G0)). We have V ′0 = V ′.

(iii) G0 has integer vertex weights between 0 and O
(
k log(n)/ε2

)
.

(iv) Every vertex v ∈ V0 has at most O
(
k log(n)/ε2

)
incoming edges.

(v) Every vertex v with weight 0 has no outgoing edges.

(vi) With high probability, for all S ⊆ V ′, the weight of the vertex in-cut induced by S in G0 (up
to scaling by τ) is at least the minimum of the (1− ε) times the weight of the induced vertex

11

in-cut in G or cκ (for any desired constant c > 1), and at most (1 + ε) times its weight in G
plus εκ|S|/k.

(vii) With high probability, for all S ⊆ V ′ such that |S| ≤ k and the weight of the induced vertex
in-cut is ≤ O(κ), we have S ⊆ V ′0. (That is, S is still the sink component of an s-cut in G0.)

In particular, if the minimum vertex s-cut has weight Θ(κ), and the sink component of a minimum
vertex s-cut has at most k vertices, then with high probability G0 preserves the minimum vertex
s-cut up to a (1 +O(ε))-multiplicative factor.

As stated above, the proof is deferred to Appendix C.

3.2 Rooted vertex mincut for small sink components

This section presents an approximation algorithm for rooted vertex mincut for the particular setting
where the sink component is small. In particular, we are given an upper bound k on the number
of vertices in the sink component, and want to obtain running times of the form n poly(k). When
a similar situation arose previously for small integer capacities in [CQ21], [CQ21] modified a local
algorithm from [FNY+20] which works well for unweighted graphs. Here, while Lemma 3.1 produces
relatively sparse graphs with integral vertex capacities, the vertex capacities imply imply that
the algorithm from [CQ21, FNY+20] would take roughly nk3/ε5 time. This section develops an
alternative algorithm that is inspired by these local algorithms for (global and rooted) vertex cuts,
but reduces the dependency on k to k2. Compared to [FNY+20, CQ21], the algorithm here is
designed to take full advantage of the properties of the graph produced by Lemma 3.1. These
modifications have some tangible benefits. First, it improves the dependency on k and ε. Second,
the local subroutine here is deterministic whereas before they were randomized. Third and last, as
suggested by the better running time and the determinism, the version presented here is arguably
simpler and more direct than the previous algorithms (for this setting).

Lemma 3.2. Let G = (V,E) be a directed graph with positive vertex weights. Let r ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), κ > 0 and k ∈ N be given parameters. There is a randomized linear
time Monte Carlo algorithm that, with high probability, produces a deterministic data structure that
supports the following query.

For t ∈ V ′ def
= V \ ({s} ∪N+(s)), let κt,k denote the weight of the minimum (s, t)-vertex cut such

that the sink component has at most k vertices. Given t ∈ V ′, deterministically in O
(
k3 log2(n)/ε4

)
time, the data structure either (a) returns the sink component of a minimum (s, t)-vertex cut of
weight at most (1 + ε)κt,k, or (b) declares that κt,k > κ.

Proof. Given s, κ, k, and ε, let ε′ = cε for a sufficiently small constant c > 0. We first apply
Lemma 3.1 to G with root s and parameters κ, k, and ε′. This produces a vertex capacitated graph
G0 = (V0, E0) with V ⊂ V0. We highlight the features that we leverage. All new vertices (in V0 \V)
are in N+(s |G0); that is, V ′ equals V ′0

def
= V0 \ ({s} ∪N+(s |G0)). Put alternatively, none of the

new vertices is in the sink component of any s-cut. The vertex weights are integers between 0 and
O
(
k log(n)/ε2

)
. Every vertex has unweighted in-degree at most O

(
k log(n)/ε2

)
. Every vertex with

weight 0 has no outgoing edges.
With high probability, we have the following guarantees on the vertex s-cuts of G0. The vertex

weights in G0 are scaled so that a weight of κ in G corresponds to weight O
(
k log(n)/ε2

)
in G0.

Modulo scaling, every vertex s-cut in G0 has weight no less than the minimum of its weight in G
and 2κ. Additionally, modulo scaling, for every vertex s-cut in G with capacity at most κ and at
most k vertices in the sink component, the corresponding vertex cut in G0 has weight at most a

12

c0εκ additive factor larger than in G, for any desired constant c0 > 0. We consider the algorithm
to fail if the cuts are not preserved in the sense described above.

Given t ∈ V , the data structure will search for a small (s, t)-cut in G0 via a customized, edge-
capacitated flow algorithm. This algorithm may or may not return the sink component of (s, t)-cut.
If the search does return a sink component, and the corresponding vertex in-cut in G0 has weight
that, upon rescaling back to the scale of the input graph G, is at most (1+ε/2)κ, the data structure
returns it. Otherwise the data structure indicates that κt,k > κ.

Proceeding with the flow algorithm, let Grev be the reverse of G0, and let Gsplit be the standard
“split-graph” of Grev modeling vertex capacities with edge capacities. We recall that the split graph
splits each vertex v into an auxiliary “in-vertex” v− and an auxiliary “out-vertex” v+. For each v
there is a new edge (v−, v+) with capacity equal to the vertex capacity of v. Each edge (u, v) is
replaced with an edge (u+, v−) with capacity7 equal to the vertex capacity of u. Every (s, t)-vertex
cut in G0 maps to a (t+, s−)-edge cut in Grev with the same capacity. Any (t+, s−)-edge capacitated
cut maps to a (s, t)-vertex cut in G0 (with negligible overhead in the running time). Now, recall that
for each v ∈ V ′, the sparsification procedures introduces an auxiliary path (s, av, s

−) where av is was
given weight Θ(εκ/k). It is convenient to replace the corresponding auxiliary path (v+, a−v , a

+
v , s

−)
in Grev with a single edge (v+, s−) with capacity equal to the weight of av. This does not effective
the weight of the minimum (t+, s−)-edge cut for any t ∈ V ′. This adjustment can be easily made
within the allotted preprocessing time.

In this graph, given t ∈ V ′, we run a specialization of the Ford-Fulkerson algorithm [FF56] that
either computes a minimum (t+, s−)-cut or concludes that the minimum (t+, s−)-cut is at least
O
(
k log(n)/ε2

)
(which corresponds to O(κ) in G) after O

(
k log(n)/ε2

)
iterations. To briefly review,

each iteration in the Ford-Fulkerson algorithm searches for a path from t to s in the residual graph.
If such a path is found, then it routes one unit of flow along this path, and updates the residual
graph by reversing (one unit capacity) of each edge along the path. After ` successful iterations we
have a flow of size `. If, after ` iterations, there is no path in the residual graph from t+ to s−, then
the set of vertices reachable from t gives a minimum (t+, s−)-cut of size `. Observe that updating
the residual graph along a (t+, s−)-path preserves the weighted in-degree and out-degree of every
vertex except t+ and s−. The weighted out-degree of t+ decreases by 1 and the weighted in-degree
of s− changes by 1. Moreover, updating the residual graph along a path increases the unweighted
out-degree of any vertex by at most one, since a path contains at most one edge going into any
single vertex. Since every vertex initially has unweighted out-degree at most O

(
k log(n)/ε2

)
in Grev

(reversing the upper bound on the unweighted in-degrees in G0), and the flow algorithm updates the
residual graph along at most O

(
k log(n)/ε2

)
paths before terminating, the maximum unweighted

out-degree over all vertices never exceeds O
(
k log(n)/ε2

)
.

Within the Ford-Fulkerson framework, we give a refined analysis that takes advantages of the
auxiliary (v+, s−) edges. Call an out-vertex v+ saturated if the auxiliary edge (v+, s−) is saturated;
that is, if (v+, s−) is not in the residual graph. Call an in-vertex v− saturated if the edge (v−, v+) is
saturated and v+ is not saturated. (A vertex v+ or v− is called unsaturated if it is not saturated.)
We modify the search for an augmenting path to effectively end when we first visit an unsaturated
vertex v+ or an unsaturated v−. If we visit an unsaturated v−, then we automatically complete a
path to s− via v+. If we find an unsaturated v+, then we automatically complete a path to s− via
the edge (v+, s−). It remains to bound the running time of this search. We first bound the number
of saturated v+’s.

Claim 1. There are at most O(k/ε) saturated v+’s.
7Usually, this edge is set to capacity ∞, but either the weight of u or the weight of v are also valid.

13

Indeed, each saturated v+ implies O(log(n)/ε) units of flow along (v+, s−), and the flow is bounded
above O

(
k log(n)/ε2

)
.

Note that Claim 1 also implies there are at most O(k/ε) v−’s such that v+ is saturated. The
next claim bounds the total out-degree of saturated v−’s.

Claim 2. The sum of out-degrees of saturated v−’s is at most the amount of flow that has been routed
to s−.

Indeed, the out-degree of a v− in the residual graph is bounded above by the amount of flow
through (v−, v+), since initially (v−, v+) is the only outgoing edge from v−. Recall that if v− is
saturated, then by definition v+ is unsaturated. As long as v+ is unsaturated, each unit of flow
through (v−, v+) goes directly to s− via the edge (v+, s−), and can be charged to the total flow.

We now apply the above two claims to bound the total running time for each search, as follows.

Claim 3. Every (modified) search for an augmenting path traverses at most O
(
k2 log(n)/ε2

)
edges.

We first observe that every vertex visited in the search, except the unsaturated vertex terminating
the search, is either (a) a saturated v−, (b) a saturated v+, or (c) an unsaturated v− such that v+

is saturated. We will upper bound the number of edges traversed in each iteration based on the
type of vertex at the initial point of that edge. First, the amount of time spent exploring edges
leaving (a) a saturated v− is, by Claim 2, at most the size of the flow at that point, which is at most
O
(
k log(n)/ε2

)
. Second, consider the time spent traversing edges leaving either (b) a saturated v+

or (c) an unsaturated v− such that v+ is saturated. By Claim 1, there are at most O(k/ε) such
vertices, and each has out-degree at most O

(
k log(n)/ε2

)
. Thus we spend O

(
k2 log(n)/ε2

)
time

traversing such edges. All together, we obtain an upper bound of O
(
k2 log(n)/ε2

)
total edges per

search.
Claim 3 also bounds the running time for each iteration. The algorithm runs for at most

O
(
k log(n)/ε2

)
iterations before either finding an (t+, s−)-cut or concluding that the weight of the

minimum (t+, s−)-cut, rescaled to the input scale of G, is at least a constant factor greater than κ.
The total running time follows.

We now present the overall algorithm for finding vertex s-cuts with small sink components. The
algorithm combines Lemma 3.2 with randomly sampling for a vertex t in the sink component of an
approximately minimum s-cut. In the following, we let deg+(s) denote the unweighted out-degree
pf s in G.

Lemma 3.3. Let G = (V,E) be a directed graph with positive vertex weights. Let s ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), κ > 0 and k ∈ N be given parameters. There is a randomized algorithm
that runs in O

(
m+ (n− deg+(s))k2 log3(n)/ε4

)
time and has the following guarantee. If there is a

vertex s-cut of capacity at most κ and where the sink component has at most k vertices, then with
high probability, the algorithm returns a vertex (s, t)-cut of capacity at most (1 + ε)κ.

Proof. Let T ∗ be the sink component of the minimum vertex s-cut subject to |T ∗| ≤ k. Assume the
capacity of the vertex in-cut of T ∗ is at most κ (since otherwise the algorithm makes no guarantees).
Let V ′ = V \ ({s} ∪N+(s)) and note that |V ′| = n− 1− deg+(s).

Suppose we had a factor-2 overestimate ` ∈ [|T ∗|, 2|T ∗|] of the number of vertices in T ∗. We
apply Lemma 3.2 with upper bounds κ on the size of the cut and ` on the number of vertices
in the sink component, which returns a data structure that, with high probability, is correct for
all queries. Let us assume the data structure is correct (and otherwise the algorithm fails). We
randomly sample O

(
(n− deg+(s)) log(n)/`

)
vertices from V ′. For each sampled vertex t, we query

14

the data structure from Lemma 3.2. Observe that if t ∈ T ∗, then the query for t returns an s-cut
with capacity at most (1 + ε)κ. With high probability we sample at least one vertex from T ∗,
which produces the desired s-cut. By Lemma 3.2, the total running time to serve all queries is
O
(
m+ (n− deg+(s))`2 log3(n)/ε4

)
.

A factor-2 overestimate ` can be obtained by enumerating all powers of 2 between 1 and 2k. One
of these choices of ` will be accurate and produce the minimum s-cut with high probability. Note
that the sum of O

(
(n− deg+(s))`2 log3(n)/ε4

)
over this range of ` is dominated by the maximum

`. The claimed running time follows.

3.3 Rooted vertex mincut for large sink components

The third and final part (before the overall algorithm) is an approximation for the rooted vertex
cut that is well-suited for large sink components.

Lemma 3.4. Let G = (V,E) be a directed graph with positive vertex weights. Let s ∈ V be a fixed
root vertex. Let ε ∈ (0, 1), κ > 0, and k ∈ N be given parameters. There is a randomized algorithm
that runs in Õ

(
m+ (n− deg+(s))

(
n/ε2 + n1.5/k

))
time and has the following guarantee. If there

is a vertex s-cut of capacity at most κ and where the sink component has at most k vertices, then
with high probability, the algorithm returns a vertex (s, t)-cut of capacity at most (1 + ε)κ.

Proof. Let T ∗ be the sink component of the minimum s-cut subject to |T ∗| ≤ k. We assume the
capacity of the s-cut induced by T ∗ is at most κ. (Otherwise the output is not well-defined.) Let
V ′ = V \ ({s} ∪N+(s)) and note that |V ′| < n− deg+(s).

We apply Lemma 3.1 to produce the graph G0. Lemma 3.1 succeeds with high probability and
for the rest of the proof we assume it was successful. (Otherwise the algorithm fails.) We sample
O
((
n− deg+(s)

)
log(n)/k

)
vertices t ∈ V ′. For each sampled t, we compute the minimum (s, t)-

vertex cut in G0. With high probability, some t will be drawn from the sink component of the true
minimum s-cut, in which case the minimum (s, t)-cut in G0 gives an (1 + ε)-approximate s-cut in
G (by Lemma 3.1). We use the Õ

(
m+ n1.5

)
time vertex-capacitated flow algorithm [vdBLN+20].

By Lemma 3.1, we have m = O
(
nk log(n)/ε2

)
. This gives the total running time.

3.4 Approximating the rooted and global vertex mincut

We now combine the two parameterized approximation algorithms for rooted vertex mincut to give
the following overall algorithm for rooted vertex mincut. This establishes one part of 1.3 concerning
approximate rooted vertex cuts.

Theorem 3.5. Let ε ∈ (0, 1), let G = (V,E) be a directed graph with polynomially bounded vertex
weights, and let s ∈ V be a fixed root. A (1 + ε)-approximate minimum vertex s-cut can be computed
with high probability in Õ

(
m+ n(n− deg+(s))/ε2

)
randomized time.

Proof. The high-level approach is similar to Theorem 1.2 for edge mincut – we are balancing two
algorithms for rooted vertex mincut, where one is better suited for small sink components, the second
is better suited for large sink components. Both leverage the randomized sparsification lemma. As
before, with polylogarithmic overhead, we can assume access to values κ and k that are within a
factor 2 of the weight of the minimum s-cut and the number of vertices in the sink component of
the minimum s-cut, respectively. For a fixed choice of k and κ, we run the faster of two randomized
algorithms, both of which would succeed with high probability when k and κ are (approximately)
correct. The first option, given by Lemma 3.3, runs in Õ

(
(n− deg+(s))k2/ε3

)
. The second option,

given by Lemma 3.4, runs in Õ
(
n(n− deg+(s))/ε2 + n1.5(n− deg+(s))/k

)
. The overall running

15

time is obtained by choosing k to balance the running times. For k = ε
√
n, we obtain the claimed

running time.

Next we use the algorithm for rooted vertex mincut to obtain an algorithm for global vertex
mincut and establish Corollary 3.6. [HRG00] showed that running times of the form (n−deg+(s))T
for rooted mincut from a root s imply a randomized nT expected time algorithm for global vertex
mincut. Theorem 3.5 gives a Õ

(
m+ n(n− deg+(s))/ε2

)
running time, so some modifications have

to be made to address the additional Õ(m) additive factor. This establishes the remaining part of
1.3.

Corollary 3.6. For all ε ∈ (0, 1), a (1 + ε)-approximate minimum weight global vertex cut in a
directed graph with polynomially bounded vertex weights can be computed with high probability in
Õ
(
n2/ε2

)
expected time.

Proof. Let T = Õ
(
n/ε2

)
. Let w : V → R>0 denote the vertex weights, and let W =

∑
v∈V w(v)

be the total weight of the graph. Let κ denote the weight of the minimum global vertex cut.
The algorithm samples L = O(W log(n)/(W − κ)) vertices s in proportion to their weight, and
– morally, but not actually – computes the minimum s-vertex cut for each sampled vertex s via
Theorem 3.5. It returns the smallest cut found.

For the sake of running time, we adjust the algorithm from Theorem 3.5. Recall that for a fixed
root s, and for each of a logarithmic number of values for k and κ, the algorithm from Theorem 3.5
applies Lemma 3.1 which reduces the graph to having Õ

(
nk/ε2

)
edges and rooted mincut Õ

(
k/ε2

)
.

For fixed k and κ, rather than rerun Lemma 3.1 entirely for each s we sample, we execute most of it
just once for all s, and make local modifications for each different root s. Referring to the algorithm
given in the proof of Lemma 3.1, observe that the only step that directly mentions s is step 3, which
adds auxiliary vertices between s and each other vertex v. We move this step to the very end of the
algorithm. (Here the vertex weight of auxiliary vertices is scaled down appropriately.) It is easy to
see that the proof of Lemma 3.1 still goes through (with minor rearrangement in the argument).
The advantage is that, over all L roots s, we now spend a total of O(m+ nL) time, rather than
O(mL). Thereafter, the rest of the rooted mincut algorithm takes Õ

(
(n− deg+(s))T

)
per root s.

Note that Õ
(
(n− deg+(s))T

)
dominates the O(n) time required to complete the sparsification for

each root.
Consider a single root s sampled from V in proportion to its weight. The expected running time

to compute the minimum s-cut is

E
[(
n− deg+(s)

)
T
]

= nT − T

W

∑
v∈V

deg+(v)w(v)
(a)
= nT − T

W

∑
v∈V

∑
x∈N−(v)

w(x)
(b)
≤ nT

(
1− κ

W

)
.

Here, in (a), N−(v) denotes the in-neighborhood of v. The equality is obtained by implicitly
interchanging sums. (b) is because for each v, the sum

∑
x∈N−(v)w(x) is the weighted in-degree of

v, and at least κ. Thus The overall expected running time over all the sampled roots is

O

((
W log(n)

W − κ

)
E
[(
n− deg+(s)

)
T
])

= O

((
W log(n)

W − κ

)
· nT

(
1− κ

W

))
= Õ

(
n2/ε2

)
.

Meanwhile, when we sample O(W log(n)/(W − κ)) vertices in proportion to their weight, then with
high probability, at least one sampled vertex lies outside the minimum global vertex cut. Such a
vertex then leads to the minimum global vertex cut with high probability.

16

Acknowledgement

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.
Nanongkai was also partially supported by the Swedish Research Council (Reg. No. 2019-05622).
Panigrahi was supported in part by NSF Awards CCF 1750140 and CCF 1955703. Quanrud was
supported in part by NSF grant CCF-2129816. Cen and Panigrahi would like to thank Yu Cheng
and Kevin Sun for helpful discussions at the initial stages of this project. Quanrud thanks Chandra
Chekuri for helpful discussions and feedback.

References

[CCPS21] Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun. Sparsification of balanced
directed graphs. ICALP, 2021. 3

[CLN+21] Ruoxu Cen, Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol
Saranurak. Minimum cuts in directed graphs via

√
n max-flows. CoRR,

abs/2104.07898, 2021.

[CQ21] Chandra Chekuri and Kent Quanrud. Faster algorithms for rooted connectivity in
directed graphs. CoRR, abs/2104.07205, 2021. To appear in ICALP, 2021. 2, 12

[CR94] Joseph Cheriyan and John H. Reif. Directed s–t numberings, rubber bands, and testing
digraph k-vertex connectivity. Comb., 14(4):435–451, 1994. 2

[Edm73] Jack Edmonds. Edge-disjoint branchings. Combinatorial algorithms, 1973. 7

[ET75] Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity.
SIAM J. Comput., 4(4):507–518, 1975. 2

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. 13

[FNY+20] Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Computing and testing small connectivity in near-
linear time and queries via fast local cut algorithms. In Shuchi Chawla, editor, Pro-
ceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,
Salt Lake City, UT, USA, January 5-8, 2020, pages 2046–2065. SIAM, 2020. 2, 4, 12

[Gab95] H.N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. Journal of Computer and System Sciences, 50(2):259–273, 1995. 2, 7, 21

[Gal80] Zvi Galil. Finding the vertex connectivity of graphs. SIAM J. Comput., 9(1):197–199,
1980. 2

[GGST86] Harold Gabow, Zvi Galil, Thomas Spencer, and Robert Tarjan. Efficient algorithms
for finding minimum spanning tree in undirected and directed graphs. Combinatorica,
6:109–122, 06 1986. 7, 22

[GLP21] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse
maxflow faster than goldberg-rao. CoRR, abs/2101.07233, 2021. 2

17

[GMW20] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in o(m log2 n)
time. In ICALP, volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. 3

[GMW21] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm
for minimum cut. In SOSA, pages 74–79. SIAM, 2021. 3

[GT88] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, 1988. 1

[HO94] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in
a directed graph. J. Algorithms, 17(3):424–446, 1994. 1, 2

[HRG00] Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex
connectivity: New bounds from old techniques. J. Algorithms, 34(2):222–250, 2000.
2, 11, 16

[Kar00] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM),
47(1):46–76, 2000. 2

[LMN21] Andrés López-Martínez, Sagnik Mukhopadhyay, and Danupon Nanongkai. Work-
optimal parallel minimum cuts for non-sparse graphs. SPAA, 2021. 3

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows,
2021. 2

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. In STOC, pages 496–509. ACM, 2020. 3

[MS89] Yishay Mansour and Baruch Schieber. Finding the edge connectivity of directed
graphs. Journal of Algorithms, 10(1):76–85, 1989. 2

[MTZC81] N. Megiddo, Arie Tamir, Eitan Zemel, and Ramaswamy Chandrasekaran. An
o(n log2 n) algorithm for the k th longest path in a tree with applications to loca-
tion problems. SIAM Journal on Computing, 10, 05 1981. 9

[NSY19] Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai.
Breaking quadratic time for small vertex connectivity and an approximation scheme.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 241–252, 2019. 2

[Pod73] V. D. Podderyugin. An algorithm for finding the edge connectivity of graphs. Vopr.
Kibern., 2:136, 1973. 2

[Qua21] Kent Quanrud. Fast approximations for rooted connectivity in weighted directed
graphs. CoRR, abs/2104.06933, 2021. , 6

[Sch79] Claus-Peter Schnorr. Bottlenecks and edge connectivity in unsymmetrical networks.
SIAM Journal on Computing, 8(2):265–274, 1979. 2

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly linear
time for dense instances. CoRR, abs/2101.05719, 2021. 1, 4

18

[vdBLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In 61st IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 919–930. IEEE, 2020. 15

[You95] Neal E. Young. Randomized rounding without solving the linear program. In Pro-
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’95, page 170–178, USA, 1995. 3, 21

A Proof of Lemma 2.4

Proof. For ease of notation, we prove Lemma 2.4 except with (1 + ε) replaced by (1+cε), for a fixed
constant c > 1, in properties (ii) and (iii). The constant factor can then be removed by decreased
ε by a constant factor in the construction.

Let τ = cτ ε
2λ/(k log n) for a sufficiently small constant cτ > 0. Decreasing cτ by at most a

constant factor, we can assume that λ and ελ/2k are integer multiples of τ . Let G0 = (V,E0) be
the reweighted subgraph obtained as follows.

1. Randomly round the weight of each edge independently up or down to the nearest multiple
τ , preserving the weight of each edge in expectation.8 Drop any edges with weight rounded
down to 0.

2. Add an edge of weight ελ/2k from the root s to every vertex v ∈ V − s.

3. Scale down all the edge weights by τ .

For each set T ⊆ V , let w1(T) = δ−G(T) denote the weight of the in-cut at T in G. Let w2(T)
denote the randomized weight of the in-cut after randomly rounding in step 1. Let w3(T) denote
the randomized weight of the in-cut of T after adding the auxiliary edges in 2. The first claim
analyzes the concentration of w2(T) for all sets T ⊆ V .

Claim 1. With high probability, for all T ⊆ V ,

|w2(T)− w1(T)| ≤ εw1(T) +
ελ|T |

2k
.

The above claim consists of an upper and lower bound on w2(T) for all T . We first show the lower
bound on w2(T) holds for all T with high probability. Fix T ⊆ V . w2(T) is an independent sum
with expected value w1(T) and where each term in the sum is nonnegative and varies by at most

8That is, if the weight of an edge e in G is x · τ + y for an integer x ≥ 0 and any 0 ≤ y < τ , then the weight of e
is (x+ 1) · τ with probability y/τ and x · τ otherwise.

19

τ . By a variation of standard Chernoff inequalities9, for any γ ≥ 0, we have

P[w2(T) ≤ (1− ε)w1(T)− γ] ≤ e−εγ/τ = n−γk log(n)/cτ ελ,

In particular, for γ = ελ|T |/2k, the RHS is at most n−c0|T | where c0 is a constant under our control
(via cτ). For large enough c0, we can take the union bound over all sets of vertices. This establishes
that the lower bounds for w2(T) hold for all T with high probability. The upper bounds also hold
with high probability by a symmetric argument.

Now we analyze the in-cuts after step 2. Recall that for T ⊆ V , w3(T) denotes the weight of
the in-cut of T after adding the auxiliary edges in 2.

Claim 2. With high probability, for all T ⊆ V − s, we have

(1− ε)w1(T) ≤ w3(T) ≤ (1 + ε)w1(T) + ελ|T |/k.

Indeed, we have w3(T) = w2(T) + ελ|T |/2k for all T ⊆ V − s. The additive term introduced by h
offsets the additive error in the lower bound on w2(T) in Claim 1. This term also adds on to the
additive error in the upper bound of Claim 1 for a total of ελ|T |/k. Thus in the high probability
event of Claim 1, we have the bounds described by Claim 2 for all T .

Henceforth, let us assume that the high probability event in Claim 2 holds. (Otherwise the
algorithm fails.) We now argue that Claim 2 implies that properties (i), (ii) and (iii) hold whp.

(ii): Since the weight of each s-cut decreases by at most an (1− ε)-multiplicative factor, the
minimum s-cut T ∗ has weight at least (1− ε)δ−G(T ∗). Meanwhile δ−(T ∗) increases by at most a
(1 + 2ε)-multiplicative factor. Thus δ−(T ∗) remains a (1 +O(ε))-approximate minimum r-cut. This
establishes property (ii).

(iii): Since again the weight of any s-cut decreases by at most an (1− ε)-multiplicative fac-
tor, any α-approximate minimum cut in the randomly reweighed graph G0 is an (1 +O(ε))α-
approximate min s-cut in G. This establishes property (iii).

(i): Finally, we observe that before scaling in step 3, all edge weights are at least τ , so after
scaling, all edge weights are at least 1. Meanwhile, after scaling, the minimum r-cut has weight at
most O(δ−(T)/τ) = O

(
k log(n)/ε2

)
. This establishes property (i) and completes the proof.

B Proof of Lemma 2.6

We start by defining the fractional arborescence packing problem. Let A1, A2, . . . , AN be the set
of all s-arborescences. We represent a fractional packing of arborescences as a vector x ∈ RN ,
where xi represents the fractional contribution of arborescence Ai in the packing. Define the value
of the arborescence packing as the sum of the coordinates of x, i.e., val(x) :=

∑N
i=1 xi. The goal is

to maximize val(x), under the constraint that each edge j can be fractionally used only up to its
9 Here we apply the following bounds (appropriately rescaled) which follow from the same proof as the standard

multiplicative Chernoff bound.

Let X1, . . . , Xn ∈ [0, 1] independent random variables. Then for all ε > 0 sufficiently small and all
γ > 0,

P[X1 + · · ·+Xn ≤ (1− ε)E[X1 + · · ·+Xn]− γ] ≤ e−εγ ,

and

P[X1 + · · ·+Xn ≥ (1 + ε)E[X1 + · · ·+Xn] + γ] ≤ e−εγ .

20

weight w(j). This definition generalizes integral arborescence packing, where we pack a multiset of
arborescences, under the constraint that each edge j is used at most w(j) times, and the value is
the cardinality of the multiset.

It will be convenient to state the fractional arborescence packing problem in the framework of
a standard packing problem, defined below:

Definition B.1 (Packing problem [You95]). For convex set P ⊆ Rn and nonnegative linear function
f : P → Rm, the packing problem aims to find γ∗ = minx∈P maxj∈[m] fj(x), i.e., the solution in P
that minimizes the maximum value of fj(x) over all j. The width of the packing problem (P, f) is
defined as ω = maxj∈[m],x∈P fj(x)−minj∈[m],x∈P fj(x).

For the fractional arborescence packing problem, we have the following: P = {x ∈ RN : val(x) =
1, x ≥ 0} is the convex hull of all arborescences. The function f : P → Rm defines the total usage

of each edge j in the arboresence packing normalized by the edge weight, i.e., fj(x) =

∑
i∈[N]:j∈Ai

xi

w(j)

for x ∈ P and any edge j ∈ [m]; we call this the load of arborescence packing x on edge j. The
packing problem has width

ω = max
j∈[m],x∈P

fj(x)− min
j∈[m],x∈P

fj(x) ≤ max
j∈[m]

1

wj
− 0 =

1

wmin
, (1)

where wmin is the minimum edge weight. The objective function is to minimize the maximum load:
γ∗ = minx∈P maxj∈[m] fj(x).

For any x ∈ P with maximum load γ = maxj∈[m] fj(x), we can multiply it by 1/γ to get an
arborescence packing with value 1/γ and maximum load 1. Conversely, for any fractional arbores-
cence packing x ∈ RN with val(x) = v where fj(x) ≤ 1 for all edges j, we have x/v ∈ P . Therefore,
it suffices to look for the vector x ∈ P achieving the optimal value γ∗, and then scale the vector
up by 1/γ∗ to obtain the maximum arborescence packing. If the value of maximum s-arborescence
packing is λ∗, then the optimal value of the packing problem is:

γ∗ =
1

λ∗
. (2)

Next we describe the packing algorithm (Figure 2 of [You95]). Maintain a vector y ∈ Rm,
initially set to y = 1. In each iteration, find x = arg minx∈P

∑
j yjfj(x), and then add x to set

S and replace y by the vector y′ defined by y′j = yj(1 + εfj(x))/ω). After a number of iterations,
return x̄ ∈ P , the average of all the vectors x over the course of the algorithm. The lemma below
upper bounds the number of iterations that suffice:

Lemma B.2 (Corollary 6.3 of [You95]). After d (1+ε)ω lnm
γ∗((1+ε) ln(1+ε)−ε)e iterations of the packing algo-

rithm, γ̄ := maxj fj(x̄) ≤ (1 + ε)γ∗.

We will also make use of the (exact) duality between s-arborescence packing and minimum s-cut:

Lemma B.3 (Corollary 2.1 of [Gab95]). The value of maximum s-arborescence packing is equal to
the value of s-mincut.

We now prove Lemma 2.6.

Proof of Lemma 2.6. First, constructG0 according to Lemma 2.5, with edge sizem0 = min{m,O(nk log n/ε2)}.
Let λ0 denote the minimum s-cut value on G0. Lemma 2.5 guarantees

wmin ≥ 1 and λ0 = O(k log n/ε2). (3)

21

Algorithm 2: Sparsifying a graph to preserve the rooted vertex mincut
1 Let τ = cτ ε

2κ/k log(n) and let ∆ = c∆k log(n)/ε2, where cτ > 0 is a sufficiently small
constant and c∆ > 0 is a sufficiently large constant.

2 Randomly round each vertex weight to (nearest) multiples of τ .
3 For each vertex v, introduce an auxiliary vertex av with weight εκ/2k. Add edges from the

s to av, and from av to v.
/* Decreasing cτ and ε as needed, we assume that κ and εκ/2k are multiples of

τ. */
4 Remove all outgoing edges from any vertex with weight 0.
5 Scale down all vertex weights by τ (which makes them integers).
6 Truncate all vertex weights to be at most cwk log(n)/ε2 for a sufficiently large constant

cw > 0.
7 For all v with unweighted in-degree at least ∆, replace all incoming edges to v with a single

edge from s.

By the duality (Lemma B.3 and (2)), the optimal value of the packing problem formulated above
is γ∗ = 1

λ0
. Run the aforementioned arborescence packing algorithm. Lemma B.2, (1),(2) and (3)

guarantee that after

O

(
ω lnm

γ∗

)
= O

(
λ0 lnm

wmin

)
= O(λ0 lnm) = O(k log2m)

iterations (with constant ε) we have

γ̄ ≤ (1 + ε)γ∗. (4)

Then x̄/γ̄ is an arborescence packing with value 1/γ̄ ≥ 1
1+ελ0. Consider sampling a random s-

arborescence A from distribution x̄, so we choose arborescence Ai with probability x̄i. Since
δ−G0

(T ∗) ≤ (1 + ε)λ0 by Lemma 2.5, the expected number of edges in A ∩ ∂−G0
(T ∗) is at most

(1 + ε)λ0/(
1

1+ελ0) = (1 + ε)2 ≤ 1 + 3ε for small enough constant ε. Since we always have
|A ∩ ∂−G0

(T ∗)| ≥ 1, by Markov’s inequality P[|A ∩ ∂−G0
(T ∗)| − 1 ≥ 1] ≤ 3ε ≤ 1/2 for small enough

constant ε. Therefore, if we uniformly sample Θ(log n) arborescences from the distribution x̄, at
least one of the arborescences is 1-respecting whp.

It remains to compute x = arg minx∈P
∑

j yjfj(x) on each iteration. Since
∑

j yjfj(x) is
linear in x, the minimum must be achieved by a single arborescence. So the task reduces to
computing the minimum cost spanning s-arborescence, which can be done in O(m0 + n log n)
[GGST86]. The total time complexity, over all iterations, becomes O((m0 + n log n)λ0 log n) =
O(min{mk log2 n, nk2 log3 n}). The construction of Lemma 2.5 costs another O(m log n) time.

C Proof of Lemma 3.1

Proof. Consider the Algorithm 2 applied to the input graph G. Let G0 be the graph obtained at
the end of the algorithm. Properties (i) through (v) follow directly from the construction. The
remaining proof is dedicated to proving the high probability bounds of (vi) and (vii). We first show
that the initial steps Line 1 to 3 – before rescaling – preserves the minimum weight rooted vertex-cut
approximately in the sense of (vi) (sans scaling). We then analyze the remaining steps. For each set
S, let w1(S) denote the weight of the vertex in-cut of S. Let w2(S) denote the randomized weight

22

of the vertex in-cut after step 2. Let w3(S) denote the randomized weight of the vertex in-cut after
step 3.

Claim 1. With high probability, for all S ⊆ V , we have

|w2(S)− w1(S)| ≤ εw1(S) +
εκ|S|

2k
.

The claim and proof are similar to Claim 1 in the proof of Lemma 2.5. The claim consists of an
upper bound and a lower bound on w2(S) for all S and we first show the lower bound holds with
high probability. Fix any set S. w2(S) is an independent sum with expected value w1(S) and where
each term in the sum is nonnegative and varies by at most τ . Concentration bounds (see footnote
9 on page 20) imply that for any γ ≥ 0, we have

P[w2(S) ≤ (1− ε)w1(S)− γ] ≤ e−εγ/τ = n−γk log(n)/cτ εκ,

In particular, for γ = εκ|S|/2k, the RHS is at most n−c0|S| where c0 > 0 is again a constant
under our control (via cτ). For sufficiently large c0, we can take the union bound over all sets
S, establishing the high probability lower bound. The high probability upper bound follows by a
symmetric argument.

Now we analyze the vertex s-cuts after step 3. Recall that for S ⊆ V , w3(S) denotes the weight
of the in-cut of S after adding auxiliary vertices in step 3.

Claim 2. For all S ⊆ V ′, we have

(1− ε)w1(S) ≤ w3(S) ≤ (1 + ε)w1(S) +
εκ|S|
k

.

This claim and its proof is similar to Claim 2 in Lemma 2.5. We have w3(S) = w2(S) + εκ|S|/2k
for all S ⊆ V ′. The additive factor of εκ|S|/2k combine with the high-probability additive error in
Claim 1 to establish the claim.

We point out that Claim 2 implies that, with high probability after step 3, the weights of all
the vertex s-cuts are preserved in the approximate sense described by (vi) (without the scaling).
Henceforth we assume that the high probability event of Claim 2 holds. Now, after step 3, all the
weights are integer multiples of τ . We have κ/τ = O

(
k log(n)/ε2

)
. After scaling down by τ in step

5, we still preserve the s-cuts per property (vi). Truncating weights in G0 to O(κ/τ) decreases the
weight of some cuts, but to no less than O(κ/τ) (which maps to O(κ) when rescaled back to the
scale of G). Removing the outgoing edges of vertices with weight 0 also has no impact on the weight
of any vertex s-cut. The final step adding edges from s only eliminates some of the vertex s-cuts
from consideration and does not impact the weight of the remaining vertex s-cuts. This establishes
(vi).

It remains to prove (vii) and in particular we must show that it is not impacted by the last step,
7. Recall that step 7 replaces the incoming edges to any vertex v with unweighted in-degree greater
than ∆ = O

(
k log(n)/ε2

)
with a single edge in s. In particular, this edge places v in N+(s) and

destroys all s-cuts where the sink component contains v. Let T ⊂ V ′ be the sink component of a
vertex s-cut in G where the capacity of the cut is at most κ, and |T | ≤ k. We want to show that
all vertices in T have in-degree less than ∆, in which case the extra edges in 7 have no impact on
T . The vertex in-cut induced by T has weight at most (1 + 2ε)κ/τ in the randomized graph before
7 (per (vi)). Fix any v ∈ T and consider the edges going into v. At most k − 1 of those edges can
come from another vertex in T , since T has at most k vertices. The remaining edges must be from

23

vertices in the vertex in-cut of T . Each of these vertices have weight at least 1, and by (vi) the
in-cut has weight at most (1 + 2ε)κ/τ , so there are at most O(κ/τ) of these vertices. This gives a
maximum total of less than ∆ edges incident to v, as desired. In conclusion, for any vertex v that
is the endpoint to at least ∆ edges, it is safe to replace all of v’s incoming edges with a single edge
from the root, without violating (vii). This establishes (vii) and completes the proof.

24

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Minimum Cut Algorithms in Edge-weighted Directed Graphs
	2.1 Partial Sparsification
	2.2 Finding a 1-respecting Arborescence
	2.3 Mincut Given 1-respecting Arborescence

	3 Minimum Cut Algorithms in Vertex-weighted Directed Graphs
	3.1 Partial Sparsification
	3.2 Rooted vertex mincut for small sink components
	3.3 Rooted vertex mincut for large sink components
	3.4 Approximating the rooted and global vertex mincut

	A Proof of [lemma:apx-rec-skeleton]Lemma 2.4
	B Proof of thm:tree-packing
	C Proof of [lemma:apx-rvc-sparsification]Lemma 3.1

