
ar
X

iv
:2

10
6.

02
35

3v
1

 [
cs

.D
S]

 4
 J

un
 2

02
1

Spectral Hypergraph Sparsifiers of Nearly Linear Size

Michael Kapralov∗

École Polytechnique Fédérale de Lausanne
michael.kapralov@epfl.ch

Robert Krauthgamer†

Weizmann Institute of Science
robert.krauthgamer@weizmann.ac.il

Jakab Tardos‡

École Polytechnique Fédérale de Lausanne
jakab.tardos@epfl.ch

Yuichi Yoshida§

National Institute of Informatics
yyoshida@nii.ac.jp

June 7, 2021

Abstract

Graph sparsification has been studied extensively over the past two decades, culminating
in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsifica-
tion is a natural analogue of this problem, for which optimal bounds on the sparsifier size are
not known, mainly because the hypergraph Laplacian is non-linear, and thus lacks the linear-
algebraic structure and tools that have been so effective for graphs.

Our main contribution is the first algorithm for constructing ǫ-spectral sparsifiers for hy-
pergraphs with O∗(n) hyperedges, where O∗ suppresses (ǫ−1 logn)O(1) factors. This bound is
independent of the rank r (maximum cardinality of a hyperedge), and is essentially best possible
due to a recent bit complexity lower bound of Ω(nr) for hypergraph sparsification.

This result is obtained by introducing two new tools. First, we give a new proof of spectral
concentration bounds for sparsifiers of graphs; it avoids linear-algebraic methods, replacing
e.g. the usual application of the matrix Bernstein inequality and therefore applies to the (non-
linear) hypergraph setting. To achieve the result, we design a new sequence of hypergraph-
dependent ǫ-nets on the unit sphere in R

n. Second, we extend the weight-assignment technique
of Chen, Khanna and Nagda [FOCS’20] to the spectral sparsification setting. Surprisingly, the
number of spanning trees after the weight assignment can serve as a potential function guiding
the reweighting process in the spectral setting.

∗Supported in part by ERC Starting Grant 759471.
†Work partially supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18, and

a Minerva Foundation grant.
‡Supported by ERC Starting Grant 759471.
§Supported in part by JSPS KAKENHI Grant Number 18H05291 and 20H05965.

http://arxiv.org/abs/2106.02353v1

Contents

1 Introduction 1

1.1 Additional Related Work . 2

2 Preliminaries 2

2.1 Spectral Graph Theory . 3
2.2 Effective Resistance . 3
2.3 Chernoff Bound . 4

3 Technical Overview 4

3.1 Analyzing Ordinary Graphs . 4
3.2 Extension to Hypergraphs . 6
3.3 Speed-Up . 7

4 Warm-Up: Ordinary Graphs 8

4.1 Proof of Lemma 4.2 . 13

5 γ-Balanced Weight Assignments 15

5.1 Spanning Tree Potential . 15
5.2 Existence of γ-Balanced Weight Assignments . 16
5.3 Polynomial-Time Construction . 19

6 Hypergraph Sparsification 20

7 Nearly Optimal Speed-Up 27

7.1 Fast Algorithm for Constructing Polynomial-Sized Sparsifiers 27
7.2 Even Faster Construction for γ-Balanced Weight Assignments 30
7.3 Proof of the Second Part of Theorem 1 . 34

1 Introduction

We study spectral sparsification of hypergraphs, where the goal is to reduce the size of a hypergraph
while preserving its energy. Given a hypergraph H = (V,E,w) with a weight function w : E → R+

over its hyperedges, the energy of x ∈ R
V (called a potential vector) is defined as

QH(x) :=
∑

e∈E

w(e) · max
u,v∈e

(xu − xv)2.

The problem of minimizing QH(x) over x ∈ R
V subject to certain constraints appears in many

problems involving hypergraphs, including clustering [TMIY20], semi-supervised learning [HSJR13,
YNY+19, ZHTC20] and link prediction [YNN+20], from which we can see the relevance of QH(x)
in application domains. Note that when x ∈ R

V is a characteristic vector 1S ∈ {0, 1}
V of a vertex

subset S ⊂ V , the energy QH(1S) coincides with the total weight of hyperedges cut by S, where
we say that a hyperedge e ∈ E is cut by S if e ∩ S 6= ∅ and e ∩ (V \ S) 6= ∅.

Since the number of hyperedges in a hypergraph of n vertices can be Ω(2n), it is desirable to
reduce the number of hyperedges in the hypergraph while (approximately) preserving the value of
QH(x) for every x ∈ R

V , because this lets us speed up any algorithm involving QH and reduce its
memory usage by running it on the smaller hypergraph instead of H itself. Soma and Yoshida [SY19]
formalized this concept as spectral sparsification for hypergraphs – a natural generalization of the
corresponding concept introduced by the celebrated work of [ST11] for graphs. Specifically, for
0 < ǫ < 1, we say that a hypergraph H̃ is an ǫ-spectral-sparsifier of a hypergraph H if H̃ is a
reweighted subgraph of H such that

∀x ∈ R
V , Q

H̃
(x) ∈ (1± ǫ)QH(x).1 (1)

We note that when H is an ordinary graph, this definition matches that for graphs [ST11].
Soma and Yoshida [SY19] showed that every hypergraph H admits an ǫ-spectral-sparsifier with
Õ(n3/ǫ2) hyperedges,2 and gave a polynomial-time algorithm for constructing such sparsifiers.
Since then the number of hyperedges needed has been reduced to Õ(nr3/ǫ2) [BST19], and recently
to Õ(nr/ǫO(1)) [KKTY21], where r is the maximum size of a hyperedge in the input hypergraph
H (called the rank of H).

The natural question whether every hypergraph admits a spectral sparsifier with Õ(n) hy-
peredges (for fixed ǫ) has proved to be challenging. On the one hand, it is well-known that a
hypergraph is a strictly richer object than an ordinary graph (hyperedges cannot be “simulated”
by edges, even approximately), and in all previous results and techniques, this extra complication
introduced an extra factor of at least r. On the other hand, an exciting recent result [CKN20] has
achieved sparsifiers with Õ(n) hyperedges, if one is only interested in preserving the hypergraph cut
function, i.e., satisfying (1) only for all characteristic vectors x = 1S where S ⊆ V . Nevertheless,
the spectral version of this question has remained open, primarily due to the non-linearity of the
hypergraph Laplacian and the lack of linear-algebraic tools that have been so effective for graphs.

We settle this question by showing that a nearly linear number of hyperedges suffices.

Theorem 1. For every hypergraph with n vertices and every 1/n ≤ ǫ ≤ 1/2, there exists an ǫ-
spectral-sparsifier with O(nǫ−4 log3 n) hyperedges. Moreover, one can construct such a sparsifier
in time Õ(mr + poly (n)), where m is the number of hyperedges and r is the maximum size of a
hyperedge in H.

We note that the bit complexity of our sparsifier is tight up to a polylogarithmic factor for a
large range of r due to the lower bound of [KKTY21].

1
a ∈ (1 ± ǫ)b is a shorthand for (1 − ǫ)b ≤ a ≤ (1 + ǫ)b.

2Throughout, Õ(·) suppresses a factor of logO(1)
n.

1

1.1 Additional Related Work

Recall that we call H̃ = (V, Ẽ, w̃) an ǫ-cut sparsifier of H = (V,E,w) if every cut weight is preserved
to within a factor of 1±ǫ. This definition matches the one for ordinary graphs introduced by Benczúr
and Karger [BK15], who showed that every graph has an ǫ-cut-sparsifier with O(n log n/ǫ2) edges,
where n is the number of vertices. For hypergraphs, Kogan and Krauthgamer [KK15] gave the
first construction of non-trivial cut sparsifiers, which uses O(n(r + log n)/ǫ2) hyperedges, where
r is the maximum size of a hyperedge. They also mentioned that the results of Newman and
Rabinovich [NR13] implicitly give an ǫ-cut sparsifier with O(n2/ǫ2) hyperedges. Chen, Khanna,
and Nagda [CKN20] improved this bound to O(n log n/ǫ2), which is almost tight because one needs
Ω(n/ǫ2) edges even for ordinary graphs [ACK+16, CKST19].

Spielman and Teng [ST11] introduced the notion of a spectral sparsifier for ordinary graphs
and showed that every graph on n vertices admits an ǫ-spectral sparsifier with O(n logO(1) n/ǫ2)
edges. This bound was later improved to O(n/ǫ2) [BSS12], which is tight [ACK+16, CKST19]. The
literature on graph sparsification is too vast to cover here, including [ST11, SS11, BSS12, ZLO15,
LS15, LS17] and many other constructions, and we refer the reader to the surveys [Vis13, Ten16].

For an ordinary graph G = (V,E,w), the Laplacian of G is the matrix LG = DG −AG, where
DG ∈ R

V ×V is the diagonal (weighted) degree matrix and AG ∈ R
V ×V is the adjacency matrix of

G. Then, the energy QG, defined in (1), can be written also as

QG(x) = x⊤LGx.

For a hypergraph H = (V,E,w), it is known that we can define a (multi-valued) Laplacian operator

LH : RV → 2R
V

, so that
QH(x) = x⊤y

for every x ∈ R
V and y ∈ LH(x) [Lou15, CLTZ18, Yos19] (hence we can write QH(x) also as

x⊤LH(x) without ambiguity). Although the Laplacian operator LH is no longer a linear operator,
its mathematical property has been actively investigated [IMTY19, FSY18, IKT21] through the
theory of monotone operators and evolution equations [Kom67, Miy92].

Yoshida [Yos16] proposed a Laplacian operator for directed graphs and used it to study struc-
tures of real-world networks. The Laplacian operators for graphs, hypergraphs, and directed graphs
mentioned above were later unified and generalized as Laplacian operator for submodular transfor-
mations/submodular hypergraphs [LM18, Yos19].

2 Preliminaries

In this paper, we deal with spectral sparsification of hypergraphs. For the sake of generality, we
consider weighted hypergraphs denoted H = (V,E,w), where V is the vertex set of size n, E is
the hyperedge set of size m, and w : E → R+ is the set of hyperedge weights. We will also,
however, deal with ordinary graphs, that is graphs where each edge contains two vertices exactly.
In order to distinguish clearly between graphs and hypergraphs, we will typically denote graphs as
G = (V, F, z), where V is the vertex set, F is the edge set, and z : F → R+ is the set of edge weights.
In general we will use f and g to denote ordinary edges, while reserving e to denote hyperedges.

For simplicity all graphs and hypergraphs we consider in this paper will be connected.

2

2.1 Spectral Graph Theory

Definition 2.1. The Laplacian of a weighted graph G = (V, F, z) is defined as the matrix LG ∈
R

V ×V such that

(LG)uv =

d(u) if u = v,

−z(u, v) if (u, v) ∈ F ,

0 otherwise.

Here d(u) denotes the weighted degree of u, that is the sum of all weights of incident edges. Thus
LG is a positive semidefinite matrix, and its quadratic form can be written as

x⊤LGx =
∑

(u,v)∈F

z(u, v) · (xu − xv)2.

The spectral sparsifier of G is defined as a reweighted subgraph which closely approximates the
quadratic form of the Laplacian on every possible vector.

Definition 2.2. Let G = (V, F, z) be a weighted ordinary graph. Let G̃ = (V, F̃ , z̃) be a reweighted
subgraph of G, defined by z̃ : F → R+, where F̃ = {f ∈ F | z̃(f) > 0}. For ǫ > 0, G̃ is an ǫ-spectral
sparsifier of G if for every x ∈ R

V

x⊤L
G̃
x ∈ (1± ǫ) · x⊤LGx.

The quadratic form of the graph Laplacian from Definition 2.1 can be generalized to hyper-
graphs. Although this generalization is highly non-linear, we still refer to it as the “quadratic form”
of the hypergraph.

Definition 2.3. The quadratic form (or sometimes energy) of a hypergraph H = (V,E,w) is
defined on the input vector x ∈ R

V as

QH(x) =
∑

e∈E

w(e) · max
u,v∈e

(xu − xv)2.

Consequently, we may also define the concept of spectral sparsification in hypergraphs, analo-
gously to Definition 2.2:

Definition 2.4. Let H = (V,E,w) be a weighted hypergraph. Let H̃ = (V, Ẽ, w̃) be a reweighted
subgraph of H, defined by w̃ : E → R+, where Ẽ = {e ∈ E | w̃(e) > 0}. For ǫ > 0, H̃ is an
ǫ-spectral sparsifier of H if for every x ∈ R

V

Q
H̃

(x) ∈ (1± ǫ) ·QH(x).

2.2 Effective Resistance

Definition 2.5. Let G = (V, F, z) be a weighted ordinary graph. The effective resistance of a pair
of vertices (u, v) is defined as

RG(u, v) = (χu − χv)⊤L+
G(χu − χv).

Here χu ∈ R
V is the vector with all zeros, and a single 1 at the coordinate corresponding to u. L+

G

is the Moore-Penrose pseudo-inverse of LG, which is positive semidefinite.
We may write R(u, v) in cases where G is clear from context.

3

We will often use the notation RG(f) = RG(u, v) where f = (u, v) is an edge. It is important
to note, however, that effective resistance is a function of the vertex pair, not the edge, and does
not depend directly on the weight of f .

We now state several well-known and useful facts about effective resistance.

Fact 2.6. The effective resistance of an edge (u, v) is alternatively defined as

RG(u, v) = max
x∈RV

(xu − xv)2

x⊤Lx
.

Fact 2.7. Effective resistance constitutes a metric on V .

Fact 2.8. For any weighted graph G = (V, F, z) and any edge f ∈ F we have z(f) · RG(f) ≤ 1,
with equality if and only if f is a bridge.

Fact 2.9. For any weighted graph G = (V, F, z) we have

∑

f∈F

z(f) ·RG(f) = n− 1.

2.3 Chernoff Bound

Theorem 2.10 (Chernoff bound, see for example [AS08]). Let Z1, Z2, . . . , Zk be independent ran-
dom variables in the range [0, a]. Furthermore, let

∑
Zi = Z and let µ ≥ E(Z). Then for any

δ ∈ (0, 1),

P (|Z − E(Z)| ≥ δµ) ≤ 2 exp

(
−
δ2µ

3a

)
.

3 Technical Overview

3.1 Analyzing Ordinary Graphs

The sparsification of ordinary graphs is a highly studied topic, with several techniques proposed
for the construction of spectral sparsifiers throughout the years [ST11, SS11, BSS12, ZLO15, LS15,
LS17]. However, the analysis of spectral sparsifiers always relies heavily on the linear nature of the
graph Laplacian, e.g., using matrix concentration results such as matrix Bernstein [Tro11] or the
work of [RV07]. This presents a significant problem when attempting to generalize these techniques
to the highly non-linear setting of hypergraph spectral sparsification. Indeed, all previous results
lose at least a factor of r due to this obstacle. We therefore dedicate the entirety of our first technical
section (Section 4) to presenting a new proof of the existence of nearly linear spectral sparsifiers for
ordinary graphs. We use the algorithm from [SS11], which constructs a sparsifier G̃ by sampling
each edge with probability proportional to its effective resistance. However, our proof avoids using
matrix concentration inequalities, and instead relies on a more direct chaining technique for proving
the concentration of x⊤L

G̃
x around its expectation, i.e. x⊤LGx, for all x simultaneously. To our

knowledge, this is the first nearly-optimal direct analysis of spectral sparsification through effective
resistance sampling. It will also be the basis of our main result, as we adapt it to the hypergraph
setting in Sections 5 and 6.

More formally, for an input graphG = (V, F, z), we define G̃ as the result of sampling each edge f
of G independently with probability p(f) ≈ z(f)·RG(f), and setting its weight to z̃(f) = z(f)/p(f).
Our aim is then to prove

x⊤L
G̃
x ≈ x⊤LGx (2)

4

simultaneously for all x ∈ R
V . For simplicity we assume that x⊤LGx = 1. Equation (2) is in fact

the concentration of a random variable around its expectation, and so we can use Chernoff bound
to prove it for any specific x. Our plan is then to use a combination of Chernoff and union bounds
to prove it for all possible x. Since x can take any value in R

V we must discretize it to some ǫ-net
while retaining a good approximation to its quadratic form, i.e. x⊤LGx.

Let us take a closer look at the application of Chernoff bound to Equation (2): x⊤L
G̃
x is the sum

of the independent random variables z̃(u, v) · (xu − xv)2 for (u, v) ∈ F ; hence, by Theorem 2.10,
the strength of the bound depends crucially on the upper bound a on values that each random
individual random variable can possibly attain. The maximum value of z̃(u, v) · (xu − xv)2 is
attained when (u, v) is sampled in G̃, in which case it is ≈ (xu − xv)2/RG(u, v). Thus

P

(
x⊤L

G̃
x 6≈ x⊤LGx

)
/ exp

(
−

1

max(u,v)∈F (xu − xv)2/RG(u, v)

)
.

This upper bound can be as bad as exp(−Õ(1)) and is far too crude for our purposes—no sufficiently
sparse rounding scheme (i.e., discretization) exists for x. We turn to the technique of chaining—the
use of progressively finer and finer rounding schemes.

As seen above, the strength of our Chernoff bound depends primarily on the quantity (xu −
xv)2/RG(u, v) for each edge (u, v), which we call the “power” of the edge. Therefore, it makes sense
to partition the edges of G into a logarithmic number of classes based on their power, that is Fi

contains edges (u, v) for which (xu − xv)2 ≈ 2−i · RG(u, v). When focusing only on the subgraphs
G(Fi) induced by Fi, we get the more fine-tuned Chernoff bound

P

(
x⊤L

G̃(Fi)
x 6≈ x⊤LG(Fi)x

)
/ exp

(
−

1

max(u,v)∈Fi
(xu − xv)2/RG(u, v)

)
/ exp

(
−2i

)
.

We thus have the task of proposing a rounding scheme ϕi : RV → R
V specially for each class

Fi such that

• the image of ϕi is a finite set of size at most ≈ exp
(
2i
)
,

• the rounding approximately preserves the quantity (xu − xv)2 for (u, v) ∈ Fi.

To gain more intuition on what such a rounding scheme must look like, we draw inspiration
from the idea of resistive embedding from [SS11]. We map the edges in Fi, as well as our potential
vector x, into vectors in R

n in such a way that all the relevant quantities arise as norms or scalar
products:

(u, v) 7→ au,v =
L

+/2
G (χu − χv)∥∥∥L+/2
G (χu − χv)

∥∥∥
,

x 7→ yx = L
1/2
G x.

Notice that both au,v and yx are normalized (since x⊤LGx=1). Furthermore, the crucial quan-
tity, the power of the edge (u, v) arises as the square of a scalar product:

〈au,v, yx〉
2 =

(x⊤(χu − χv))2

(χu − χv)⊤L+
G(χu − χv)

=
(xu − xv)2

RG(u, v)
.

Thus we are interested in rounding yx in a way that preserves 〈au,v, yx〉
2 up to small multiplica-

tive error in all cases where it was ≈ 2−i to begin with. Thus, it suffices to guarantee an additive

5

error of at most / 2−i in our rounding scheme. This is the known problem of “compression of ap-
proximate inner products” and has been previously studied; [AK17] guarantees a rounding scheme
whose image is of size at most ≈ exp

(
2i
)
. This can be translated into a rounding scheme for

x ∈ R
V , with the same image-size, exactly as desired (see Lemma 4.2).

With the desired rounding scheme in hand, we can now use a combination of Chernoff and
union bounds to prove that for all x simultaneously

x⊤L
G̃(Fi)

x ≈ x⊤LG(Fi)x.

Summing this over all edge-classes gives us Equation 2.
For the detailed proof, which is considerably more complicated than the above sketch, see the

proof of Theorem 4.1 in Section 4.

3.2 Extension to Hypergraphs

To adapt the previous argument to the hypergraph setting, we use the idea of balanced weight
assignments from [CKN20]. Essentially, we construct an ordinary graph G = (V, F, z) to accompany
our input hypergraph H = (V,E,w) by replacing each hyperedge e with a clique Fe over the
vertices in e. However, unlike in some previous works on hypergraph sparsification, the clique Fe

is not assigned weights uniformly, but instead the weight is carefully distributed among the edges.
Intuitively, all the weight is shifted onto the most “important” edges. In the case of [CKN20], the
measure of importance was “strength”, a quantity relevant to cut sparsification, while in our case
it is effective resistance.

More formally, a weighting assignment z of the cliques is considered γ-balanced if for all e ∈ E

•
∑

f∈Fe
z(f) = w(e),

• and
γ · min

g∈Fe: z(g)>0
RG(g) ≥ max

f∈Fe

RG(f).

In words, all but the zero-weight edges of Fe have approximately the same effective resistance.
This allows hyperedge e to inherit this effective-resistance value as its importance when sampling
hyperedges. Our task is now to prove the existence of balanced weight assignments for all hyper-
graphs, and then to adapt the proof of Section 4.

Finding balanced weight assignments. In [CKN20], balanced weight assignments are con-
structed through the following intuitive process: Find a pair of edges violating the second con-
straint, that is f, g ∈ Fe where z(g) 6= 0 and f has significantly higher importance than g. Then
shift weight from g to f ; this alleviates the constraint violation either because the importances of g
and f become more similar, or simply because the weight of g decreases to 0. We call this resolving
the imbalance of f and g. [CKN20] strings together such steps, carefully ordered and discretized,
to eventually produce a balanced weight assignment of the input hypergraph.

However, their analysis relies heavily on a certain lemma about how “strength” (their measure
of edge importance) behaves under weight updates. Lemma 6 of [CKN20] states that altering the
weight of an edge f , will not affect edges of significantly greater “strength” than f . This is not the
case for effective resistances. It is easy to construct scenarios to the contrary; even ones in which
altering the weight of edges of low resistance can increase the maximum effective resistance in the
graph.

6

Thus the analysis of [CKN20] does not extend to our setting. Instead we use a potential
function argument to say that we make irreversible progress whenever we resolve the imbalance of
two edges f and g. Our choice of potential function is surprising, and is one of the main technical
contributions of this paper. We define the spanning tree potential (or ST-potential) of a connected
weighted ordinary graph G = (V, F, z), denoted Ψ(G). For edge weights that equal 1 uniformly
(that is for unweighted graphs) it is simply the logarithm of the number of distinct spanning trees
in G. In weighted graphs it is generalized to

Ψ(G) = log

∑

T ∈T

∏

f∈T

z(f)

 ,

where T denotes the set of all spanning trees in G. Due to the relationship between spanning
tree sampling and effective resistances (see for example [Lov93]) we can prove a crucial update
formula for Ψ(G): if an edge f has its weight changed by λ ∈ R, the ST-potential increases by
log(1 + λ ·R(f)). Since whenever we resolve the imbalance of a pair of edges, we shift weight from
the edge of lower effective resistance to that of higher effective resistance, this allows us to argue
that the ST-potential always increases throughout the process, which eventually terminates in a
balanced weight assignment (see Algorithm 1 and Theorem 5.8).

This proves the existence of balanced weight assignments, which suffices to show the existence
of nearly linear size spectral sparsifiers for all hypergraphs. However, to improve running time
(from exponential to polynomial in the input size), we introduce the novel concept of approximate
balanced weight assignments, by slightly relaxing the definition. These are still sufficient to aid in
constructing spectral sparsifiers, and are faster to construct using Algorithm 2.

For more details on the ST-potential, as well as the construction of balanced weight assignments
see Section 5.

Using balanced weight assignments to construct hypergraph spectral sparsifiers. Given
a hypergraph H = (V,E,w) and its balanced weight assignment G = (V, F, z) we assign importance
to each hyperedge proportionally to the maximum effective resistance in Fe (the clique correspond-
ing to e). Thus we perform importance sampling, which samples each hyperedge independently
with probability p(e) ≈ w(e) ·maxf∈Fe

RG(f).
The broad strokes of the hypergraph proof in Section 6 proceed very similarly to those of the

proof for ordinary graphs in Section 4. However, numerous details need to be figured out in order
to bridge the gap between the two settings. It is interesting to note that our rounding scheme is
exactly the same as in Section 4, to the point of even being defined in terms of G, not H. (Indeed
it is impossible to define such a rounding scheme directly in terms of H; Lemma 4.2 relies heavily
on the linear nature of the ordinary graph Laplacian.) Nevertheless, we manage to extend the
approximation guarantee of the rounding scheme from edges to hyperedges (see Claim 6.3).

For the detailed analysis of hypergraph spectral sparsification through effective resistance-based
importance sampling, see Section 6.

3.3 Speed-Up

Using a results of Sections 5 and 6 we can put together a polynomial time algorithm for spectral
sparsification of hypergraphs. Simply run Algorithm 2 to produce an approximate balanced weight
assignment, and then use importance sampling (Algorithm 3). The bottleneck of this procedure is
constructing the weight assignment, which takes time O(m·poly (n)). (Given the weight assignment,
it is trivial to implement importance sampling).

7

In Section 7 we reduce this to the nearly optimal Õ(mr + poly (n)). (Note that O(mr) is the
size of the input.) Our first step is the common trick of using a faster sparsification algorithm, but
one which produces a larger output, to preprocess the input hypergraph. We use the algorithm
of [BST19] which – with small modifications – can be made to run in the desired Õ(mr+ poly (n))
time. The resulting hypergraph has only polynomially many hyperedges (in n); however, the aspect
ratio of edge weights (that is the ratio between the largest and smallest edge weights) can naturally
be exponential in n.

Unfortunately, Algorithm 2 scales linearly in the aspect ratio of edge weights (see Theorem 5.10)
and so we propose another algorithm for finding a balanced weight assignment – one specifically
designed for the setting when the input graph is polynomially sparse, but has exponential aspect
ratio.

Suppose our input hypergraph, H = (V,E,w) has edge weights in the range [1, exp(n)]. We
then divide hyperedges into weight categories such as Ei = {e ∈ E|w(e) ∈ [n10(i−1), n10i)}. We
then bisect H into two hypergraphs H1 and H2, where H1 contains all hyperedges in odd numbered
categories, and H2 all those in even numbered categories. This results in hyergraphs (H1 and H2)
where hyperedges fall into extremely well-separated categories; so extremely in fact, that the weight
of a hyperedge in a higher category (for example e ∈ Ei ⊆ H1) has higher weight than all hyperedges
of all lower categories combined, that is

w(e)≫
∑

e′∈E<i∩H1

w(e′).

We use this property to independently find weight assignments on H1 and H2. Informally, we go
through the categories of hyperedges, from heaviest to lightest, resolving all instances of imbalance.
We never return to a category once we moved on, and we prove that no amount of changes to the
weight assignment of lower categories can disrupt the balance of a higher category, due to the huge
discrepency in weights. For a more detailed and formal argument see Section 7.2.

4 Warm-Up: Ordinary Graphs

We begin by reproving the famous theorem of Spielman and Srivastava [SS11], which states that
sampling edges of a graph with probability proportional to their effective resistance (and then
reweighting appropriately) results in a spectral sparsifier with high probability. We prove a some-
what weaker version of the theorem, where we oversample by an O(ǫ−4 log3 n) factor, as opposed to
the ǫ−2 log n factor in the original. Another slight difference is that our version samples every edge
independently, instead of sampling a predetermined number of edges with replacement in [SS11].
More recent proofs of the theorem of [SS11] that use the matrix Bernstein inequality as opposed
to [RV07] also use the same distribution as ours.

Theorem 4.1 (A slightly weaker version of [SS11]). Let G = (V, F, z) be a weighted ordinary graph
with n vertices and let 1/n ≤ ǫ ≤ 1/2. For every edge f ∈ F , let p(f) = min(1, λ · z(f) ·RG(f)) for
a sufficiently large factor λ = Θ(ǫ−4 log3 n). Sample each edge f ∈ F independently with probability
p(f), and give it weight z̃(f) = z(f)/p(f) if sampled. The resulting graph, G̃ = (V, F̃ , z̃) is an
ǫ-spectral sparsifier of G with probability at least 1−O(log n/n).

The original proof of this theorem used a concentration bound for matrices [RV07] (later sim-
plified to use the matrix Bernstein inequality) to prove that x⊤L

G̃
x is close to its expectation

simultaneously for all x ∈ R
n, as required by Definition 2.2. This type of argument is difficult

to adapt to hypergraph sparsification, because the extension of quadratic forms to hypergraphs

8

is highly non-linear. We thus present an alternative proof that uses more primitive techniques to
bypass the reliance on linear algebra.
Proof of Theorem 4.1: By Definition 2.2, we must prove that for every x ∈ R

V ,

x⊤L
G̃
x ∈ (1± ǫ) · x⊤LGx. (3)

We may assume without loss of generality that x⊤LGx = 1. We denote the set of vectors x
where this is satisfied as SG ⊆ R

V . Furthermore, we simplify notation by denoting LG as L, and
L

G̃
as L̃. Moreover, for any subset of edges F ′ ⊆ F , we denote the Laplacian of the subgraph of G

corresponding to F ′ by LF ′ , and similarly for the subgraph of G̃ by L̃F ′.
It is clear from the construction of G̃ that

E

(
x⊤L̃x

)
= x⊤Lx.

Therefore, we are in effect trying to prove the concentration of a random variable around its
expectation in Equation (3). Indeed, for any specific x, Equation (3) holds with high probability
by Chernoff bound (Theorem 2.10). (One can consider x⊤Lx as the sum of independent random
variables of the form z̃(u, v) · (xu − xv)2.)

In order to prove the concentration for all x ∈ SG simultaneously, we employ a net argument,
where we “round” x to some vector from a finite set and apply a union bound on the rounded
vectors. However, our rounding scheme is progressive and has O(log n) “levels” with increasingly
finer resolution. Each x will then determine a partition of the edges into levels, and we will prove
concentration for each rounded vector and each level (subset of edges), and then apply a union
bound over all these choices.

The existence of these rounding functions is guaranteed by the following lemma, which we will
prove in Section 4.1.

Lemma 4.2. Let G = (V, F, z) be a connected weighted graph. Then for every i ∈ N there exists a
rounding function

ϕi : SG → R
V

such that for all x ∈ SG, denoting x(i) := ϕi(x), we have:

1. The image of ϕi is a finite set of cardinality |ϕi(S
G)| ≤ exp

(
800C log n · 2i/ǫ2

)
, where C > 0

is the absolute constant from Theorem 4.5.

2. For every edge f = (u, v) ∈ F such that max
(
(xu − xv)2, (x

(i)
u − x

(i)
v)2

)
≥ 2−i · RG(f),

(xu − xv)2 ∈

(
1±

ǫ

7

)
· (x(i)

u − x
(i)
v)2.

The second guarantee of Lemma 4.2 can be expressed in terms of the Laplacian of a single edge,
resulting in the following corollary.

Corollary 4.3. For a rounding function ϕ satisfying the guarantees of Lemma 4.2, and an edge

f = (u, v) ∈ F such that max
(
(xu − xv)2, (x

(i)
u − x

(i)
v)2

)
≥ 2−i ·RG(f),

x⊤L{f}x ∈

(
1±

ǫ

7

)
· x(i)⊤L{f}x

(i).

9

Let us take a sequence of the rounding functions ϕi guaranteed by Lemma 4.2 for i = 1, . . . , I :=
log2(7n/ǫ) ≤ 3 log n. For each x ∈ SG, it yields a sequence of rounded vectors x(i) = ϕi(x) for
i = 1, . . . , I. Furthermore, we use x(i) to define the subset of edges F ′

i ⊆ F by

F ′
i :=

{
f = (u, v) ∈ F

∣∣∣∣
(
x(i)

u − x
(i)
v

)2
≥ 2−i ·RG(f)

}
.

That is, the second guarantee of Lemma 4.2 holds for ϕi on edges in F ′
i . Finally, we use {F ′

i}i
to partition F as follows. Let the base case be F0 = F ′

0 := {f ∈ F | p(f) = 1}, where we recall
that p(f) = min(1, λ · z(f) · RG(f)). For each i ∈ [I], let Fi := F ′

i \
⋃i−1

j=0 F
′
j , and finally let

FI+1 = F \
⋃I

i=0 F
′
i .

Thus we have partitioned F in such a way that the second guarantee of Lemma 4.2 applies to
edges in Fi, with respect to ϕi. Furthermore, Fi are defined in terms of x(i) (and x(j) for j < i)
instead of x, so that the number of possible sets Fi is finite, and bounded thanks to the first
guarantee of Lemma 4.2.

We establish the following claim for later use.

Claim 4.4. For all i ∈ [I] and f = (u, v) ∈ Fi, we have

(x(i)
u − x

(i)
v)2 ≤ 3 · 2−i · RG(f).

Proof. The second guarantee of Lemma 4.2 for ϕi applies to f , and thus (x
(i)
u −x

(i)
v)2 ≤ (xu−xv)2 ·

(1− ǫ/7)−1.
Consider first the case i = 1. By Fact 2.6 and since x ∈ SG, we have (xu−xv)2 ≤ RG(f)·x⊤Lx =

RG(f), and we indeed get (x
(i)
u − x

(i)
v)2 ≤ RG(f) · (1− ǫ/7)−1 ≤ 3 · 2−1 ·RG(f).

Now consider i > 1, and suppose towards contradiction that (x
(i)
u −x

(i)
v)2 > 3·2−i ·RG(f). Notice

that the second guarantee of Lemma 4.2 also applies to f for ϕi−1, and thus (x
(i−1)
u − x

(i−1)
v)2 ≥

(x
(i)
u − x

(i)
v)2 · (1 + ǫ/7)−1 · (1− ǫ/7) ≥ 2−i+1 ·RG(f). This implies that f ∈ F ′

i−1, which contradicts

the assumption f ∈ Fi = F ′
i \
⋃i−1

j=0 F
′
j .

We will consider each group of edges Fi separately, and prove that x⊤L̃Fi
x concentrates around

its expectation, x⊤LFi
x. More precisely, we will first prove concentration for every specific (x(i), Fi),

and then extend the concentration to all possibilities simultaneously via union bound. This is well-
defined because each Fi depends on x(1), . . . , x(i) but not directly on x.

Edges in F0. By definition, every edge f ∈ F0 has p(f) = 1, and thus x⊤L̃F0x is completely
deterministic and equal to x⊤LF0x.

Edges in Fi for i ∈ [I]. Note that Fi is designed so that, by Corollary 4.3, for every edge

f ∈ Fi we have
∣∣∣x⊤L{f}x− x

(i)⊤L{f}x
(i)
∣∣∣ ≤ ǫ/7 · x(i)⊤L{f}x

(i), and since L̃{f} is a multiple of L{f}

similarly have
∣∣∣x⊤L̃{f}x− x

(i)⊤L̃{f}x
(i)
∣∣∣ ≤ ǫ/7 · x(i)⊤L̃{f}x

(i). Informally, this allows us to prove

concentration only for vectors x(i) instead of all x, and thus we next aim to bound the error

∣∣∣x(i)⊤LFi
x(i) − x(i)⊤L̃Fi

x(i)
∣∣∣

for each i ∈ [I] with high probability. It will then remain to bound the error introduced on the
remaining edges (the ones in FI+1).

10

Fix i ∈ [I] and notice that over all possible vectors x ∈ SG, there are only finitely many possible
values for (x(i), Fi). Therefore, we can focus on a single value of x(i) and Fi, and then use a union
bound over all settings.

Let us therefore fix also x(i) and Fi. We will use Chernoff bounds to prove that with high
probability, over the randomness of sampling edges to G̃,

∣∣∣x(i)⊤LFi
x(i) − x(i)⊤L̃Fi

x(i)
∣∣∣ ≤

ǫ

7I
. (4)

Indeed, note that
x(i)⊤L̃Fi

x(i) =
∑

f=(u,v)∈Fi

z̃(f) · (x(i)
u − x

(i)
v)2,

where z̃(f) are independent random variables with expectation E(z̃(f)) = z(f). Therefore, we
can apply the Chernoff bound from Theorem 2.10 with {Zi}i being z̃(f) · (xu − xv)2 for each
f = (u, v) ∈ Fi, and their sum being Z = x(i)⊤L̃Fi

x(i) with E(Z) = x(i)⊤LFi
x(i). We need to set

a as an upper bound on z̃(f) · (x
(i)
u − x

(i)
v)2. Observe that z̃(f) is maximal when f is sampled, in

which case it equals z(f)/p(f) where p(f) = λ · z(f) · RG(f), since f 6∈ F0. We thus get, using
Claim 4.4,

∀f = (u, v) ∈ Fi,
z(f) · (x

(i)
u − x

(i)
v)2

λ · z(f) · RG(f)
=

1

λ
·

(x
(i)
u − x

(i)
v)2

RG(f)
≤

3 · 2−i

λ
=: a.

We let δ := ǫ/(14I), we can bound

x(i)⊤LFi
x(i) ≤

(
1 +

ǫ

7

)
· x⊤LFi

x ≤

(
1 +

ǫ

7

)
· x⊤Lx = 1 +

ǫ

7
≤ 2 =: µ.

(This is true for an arbitrary preimage x ∈ ϕ−1
i (x(i)).)

Finally, Theorem 2.10 implies

P

(∣∣∣x(i)⊤LFi
x(i) − x(i)⊤L̃Fi

x(i)
∣∣∣ ≥

ǫ

7I

)
≤ 2 exp

(
−
δ2µ

3 · a

)

= 2 exp

(
−

ǫ2

196I2 · 2

9 · 2−i/λ

)

≤ 2 exp

(
−

ǫ2 · 2i · λ

10000 log2(n)

)

= 2 exp

(
−

2000C log n · 2i

ǫ2

)
,

where the last step by setting λ = 2 · 107 · C log3 n/ǫ4, where C > 0 is the absolute constant from
Theorem 4.5.

We can now use a union bound to bound the probability that Equation (4) holds simultaneously
for all values of (x(i), Fi). Fi depends only on F ′

j for j ∈ [i], which in turn depend on x(j) for the

same values of j. By the first guarantee of Lemma 4.2, the number of possible vectors x(j) is at
most exp

(
800C log n · 2j/ǫ2

)
, where C > 0 is the absolute constant from Theorem 4.5. Therefore,

the number of possible pairs (x(i), Fi) is at most

i∏

j=1

exp

(
800C log n · 2j

ǫ2

)
= exp

i∑

j=1

800C log n · 2j

ǫ2

 ≤ exp

(
1600C log n · 2i

ǫ2

)
.

11

Finally, the probability that Equation (4) does not hold simultaneously for all pairs (x(i), Fi) is at
most

exp

(
1600C log n · 2i

ǫ2

)
· 2 exp

(
−

2000C log n · 2i

ǫ2

)
= 2 exp

(
−

400C log n · 2i

ǫ2

)
≤

1

n
.

Edges in FI+1. First we show that for any x ∈ SG and any edge f = (u, v) ∈ FI+1 we have that
(xu − xv)2 ≤ ǫ · RG(f)/(6n). Suppose for contradiction that this is not the case. Then the second

guarantee of Lemma 4.2 applies and (x
(I)
u −x

(I)
v)2 ≥ (xu−xv)2 ·(1−ǫ/7) ≥ ǫ·RG(e)/(6n)·(1−ǫ/7) ≥

ǫ ·RG(e)/(7n). Therefore f ∈ F ′
I , which contradicts the assumption f ∈ FI+1. (Here we used that

I was defined to be log2(7n/ǫ).)

Next, we would like to bound
∣∣∣x⊤L̃FI+1

x− x⊤LFI+1
x
∣∣∣ by showing that both terms are small.

First,

x⊤LFI+1
x =

∑

f=(u,v)∈FI+1

z(f) · (xu − xv)2 ≤
∑

f∈FI+1

z(f) · ǫ ·
RG(f)

6n
≤

ǫ

6n
·
∑

f∈F

z(f) · RG(f) ≤
ǫ

6
,

where the last inequality uses Fact 2.9. Second, we start similarly,

x⊤L̃FI+1
x =

∑

f=(u,v)∈FI+1

z̃(f) · (xu − xv)2 ≤
∑

f∈FI+1

z̃(f) · ǫ ·
RG(f)

6n
≤

ǫ

6n
·
∑

f∈F

z̃(f) ·RG(f),

and ideally we would like to show that
∑
z̃(f) · RG(f) ≤ 2n. This is not always true, but it is a

random event, independent of the choice of x, and can be shown to hold with high probability using
our Chernoff bound from Theorem 2.10. Indeed, z̃(f) · RG(f) are independent random variables
with maximum value when f is sampled, in which case z̃(f) = z(f)/p(f), and thus

z̃(f) · RG(f) ≤
z(f) · RG(f)

p(f)
=

z(f) · RG(f)

min(1, λ · z(f) ·RG(f))
= max (z(f) ·RG(f), 1/λ) ≤ 1 =: a,

where the last inequality uses Fact 2.8. We apply Theorem 2.10 by setting δ := 1 and µ := n
(which we may do by Fact 2.9), and obtain

P

∑

f∈F

z̃(f) · RG(f) ≥ 2n

 ≤ 2 exp

(
−
n

3

)
.

Therefore, with probability at least 1−O(1/n),

∣∣∣x⊤L̃FI+1
x− x⊤LFI+1

x
∣∣∣ ≤

ǫ

2
. (5)

Putting everything together. By the above derivations, Equation (4) holds for all i and all
(x(i), Fi) simultaneously, as well as Equation (5) holds with probability at least 1 − O(log n/n).
Assuming henceforth that this high probability event occurs, we shall deduce that Equation (3)
holds for all x ∈ SG. Indeed, by the triangle inequality and Equation (5),

∣∣∣x⊤L̃x− x⊤Lx
∣∣∣ ≤

I+1∑

i=0

∣∣∣x⊤L̃Fi
x− x⊤LFi

x
∣∣∣ ≤ 0 +

I∑

i=1

∣∣∣x⊤L̃Fi
x− x⊤LFi

x
∣∣∣+

ǫ

2
.

12

Now for each i ∈ [I], we can approximate terms involving x by x(i) and vice versa, formalized by the

aforementioned fact that for every (u, v) ∈ Fi we have |(xu−xv)2−(x
(i)
u −x

(i)
v)2| ≤ ǫ/7 ·(x

(i)
u −x

(i)
v)2

(see the second condition of Lemma 4.2 and the definition of F ′
i ⊆ Fi), and get

∣∣∣x⊤L̃Fi
x− x⊤LFi

x
∣∣∣ ≤

∣∣∣x⊤L̃Fi
x− x(i)⊤L̃Fi

x(i)
∣∣∣+

∣∣∣x(i)⊤L̃Fi
x(i) − x(i)⊤LFi

x(i)
∣∣∣+

∣∣∣x(i)⊤LFi
x(i) − x⊤LFi

x
∣∣∣

≤
ǫ

7
· x(i)⊤L̃Fi

x(i) +
∣∣∣x(i)⊤L̃Fi

x(i) − x(i)⊤LFi
x(i)

∣∣∣+
ǫ

7
· x(i)⊤LFi

x(i)

now we use the triangle inequality,

≤
ǫ

7
· x(i)⊤LFi

x(i) +

(
1 +

ǫ

7

)
·
∣∣∣x(i)⊤L̃Fi

x(i) − x(i)⊤LFi
x(i)

∣∣∣+
ǫ

7
· x(i)⊤LFi

x(i)

and now we crucially use Equation (4),

≤

(
1 +

ǫ

7

)
·
ǫ

7I
+

2ǫ

7
·

(
1−

ǫ

7

)−1

· x⊤LFi
x

≤
ǫ

6I
+

2ǫ

6
· x⊤LFi

x.

Substituting this into our previous bound, we obtain

∣∣∣x⊤L̃x− x⊤L̃x
∣∣∣ ≤

I∑

i=1

(
ǫ

6I
+
ǫ

3
· x⊤LFi

x

)
+
ǫ

2
≤
ǫ

6
+
ǫ

3
· x⊤Lx+

ǫ

2
= ǫ · x⊤Lx,

where the last equality uses x⊤Lx = 1. This completes the proof of Theorem 4.1.

4.1 Proof of Lemma 4.2

To prove Lemma 4.2, we use the following Theorem:

Theorem 4.5 (Theorem VI.1 of [AK17]). Let a1, . . . , am ∈ R
n be vectors of norm at most 1 and

let η ∈ (0, 1). Then, over all vectors y ∈ R
n of norm at most 1, the number of possible values of

the “rounded vector” (⌊
〈a1, y〉

η

⌋
,

⌊
〈a2, y〉

η

⌋
, . . . ,

⌊
〈ak, y〉

η

⌋)

is at most exp
(

C log m
η2

)
for some absolute constant C > 0.

Remark 4.6. In fact, the original theorem (Theorem 6.1 in [AK17]) is stated with stronger re-
quirements on m and η, and a stronger consequence. However, we can easily get the weaker upper
bound of exp(O(logm/η2)) stated in Theorem 4.5 of this paper, by setting the variables appropri-
ately: ε := η, n := max(m, 1/η2), and k := n, where the left hand side always represents their
variable names and the right hand side ours.

Proof of Lemma 4.2: We use the idea of resistive embedding introduced in []. Note that L = LG

is a positive semidefinite matrix, and we denote by L+/2 the square root of its Moore-Penrose
pseudo-inverse. For each (unordered) vertex pair (u, v), let bu,v ∈ R

V be the vector with all zero
coordinates, except for the coordinates associated with u and v, which are 1 and −1 (ordered
arbitrarily). With each vertex pair (u, v), we associate the vector

au,v =
L+/2bu,v

‖L+/2bu,v‖2
.

13

Furthermore, we associate with each x ∈ SG the vector yx = L1/2x.
We can then apply Theorem 4.5 to {au,v | (u, v) ∈

(V
2

)
} and all possible yx, setting η =

ǫ · 2−i/2/20. Indeed, au,v is normalized by definition, and also yx is normalized because x ∈ SG and
thus

‖yx‖
2
2 = x⊤L1/2L1/2x = x⊤Lx = 1.

For each possible value of the rounded vector
(⌊
〈au,v, yx〉

η

⌋)

(u,v)∈(V
2)

choose a representative x ∈ SG, and let ϕi map each x ∈ SG to its representative (i.e., with the same
rounded vector). Then by Theorem 4.5, the image of ϕi is of size |ϕi(S

G)| ≤ exp
(
800C log n · 2i/ǫ2

)
,

as claimed. Recall that we denote ϕi(x) by x(i); then
(⌊
〈au,v, yx〉

η

⌋)

(u,v)∈(V
2)

=

(⌊
〈au,v, yx(i)〉

η

⌋)

(u,v)∈(V
2)
.

It follows that for all f = (u, v) ∈ F and all x ∈ SG,

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤ η. (6)

Furthermore, bu,v is perpendicular to the null-space of L (which is spanned by the all-ones vector
because G is connected), thus L1/2L+/2bu,v = bu,v and

〈au,v, yx〉
2 =

(
x⊤L1/2L+/2bu,v

)2

b⊤
u,vL

+/2L+/2bu,v
=

(
x⊤bu,v

)2

b⊤
u,vL

+bu,v
=

(xu − xv)2

RG(u, v)
. (7)

To prove the second guarantee of Lemma 4.2, let f = (u, v) ∈ F and x ∈ SG and consider first

the case
(
x

(i)
u − x

(i)
v

)2
≥ 2−i · RG(f), which by (7) is equivalent to 〈au,v, yx(i)〉2 ≥ 2−i. This means

that the absolute error bound η in Equation (6) implies a relative error bound, namely,

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤ η =
ǫ · 2−i/2

20
≤

ǫ

20
· |〈au,v, yx(i)〉| .

The other case (xu − xv)2 ≥ 2−i · RG(f) is similar up to constants; by (7), this case is equivalent
to 〈au,v, yx〉

2 ≥ 2−i, and thus

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤ η =
ǫ · 2−i/2

20
≤

ǫ

20
· |〈au,v, yx〉| ,

which implies

|〈au,v, yx〉 − 〈au,v, yx(i)〉| ≤
ǫ

20
·

(
1−

ǫ

20

)−1

|〈au,v, yx〉| ≤
ǫ

16
· |〈au,v, yx(i)〉| .

Now in both cases,
∣∣∣〈au,v, yx〉

2 − 〈au,v, yx(i)〉2
∣∣∣ = |〈au,v, yx〉 − 〈au,v, yx(i)〉| · |〈au,v, yx〉+ 〈au,v, yx(i)〉|

≤
ǫ

16
· |〈au,v, yx(i)〉| ·

(
2 +

ǫ

16

)
· |〈au,v, yx(i)〉|

≤
ǫ

7
· 〈au,v, yx(i)〉2.

Using (7) and scaling by RG(u, v), we can write this as (xu − xv)2 ∈ (1± ǫ/7) · (x
(i)
u − x

(i)
v)2, which

completes the proof of Lemma 4.2.

14

5 γ-Balanced Weight Assignments

Our strategy for generalizing the techniques of Section 4 to hypergraphs is similar to that of [CKN20].
Intuitively, we wish to replace each hyperedge of the input hypergraph with a weighted clique in
such a way that the “importance” of each edge in the same clique is roughly the same. However,
our measure of importance is effective resistance, whereas in [CKN20] it is the strength of the edge
(see [BK15]), which is a measure particularly useful to cut sparsification. Specifically, we use the
following definition.

Definition 5.1. Given a hypergraph H = (V,E,w), a weight assignment of H is a weighted
(ordinary) graph G = (V, F, z) such that

• F is the multiset
⋃

e∈E Fe, where Fe is a set of edges forming a clique on the support of e

•
∑

f∈Fe
z(f) = w(e).

Note that this definition allows for parallel edges in G.
Moreover, if G satisfies

γ · min
g∈Fe: z(g)>0

RG(g) ≥ max
f∈Fe

RG(f)

for γ > 1, then we call it γ-balanced.

The goal of this section is to show the existence of constant-balanced weight assignments for all
weighted hypergraphs, and to define an efficient algorithm that outputs such a weight assignment.

5.1 Spanning Tree Potential

In order to show the existence (and give an efficient construction) of γ-balanced weight assignments
we introduce the concept of spanning tree potentials for weighted ordinary graphs.

Definition 5.2 (Spanning tree potential, ST-potential for short). For a connected weighted graph
G = (V, F, z) let T(G) be the set of all spanning trees of G. Then we define the spanning tree
potential of G as

Ψ(G) = log

∑

T ∈T(G)

∏

f∈T

z(f)

 . (8)

Remark 5.3. Note that the value of ST-potential stays the same after replacing parallel edges f1

and f2 with a single edge f of weight z(f) := z(f1) + z(f2).

We formalize the concept of edge updates to graphs and see how those updates affect ST-
potential.

Definition 5.4. If G = (V, F, z) is a weighted graph, λ ∈ R, and f ∈
(V

2

)
, then G + λ · f is the

weighted graph (V, F ′, z′), where the weight of f is increased by λ. Formally,

• F ′ = F , z′(f) = z(f) + λ, and z′(g) = z(g) for all g 6= f , if f ∈ F ,

• or F ′ = F + {f}, z′(f) = λ, and z′(g) = z(g) for all g 6= f , if f 6∈ F .

Note that the definition applies to λ < 0 as well, but in this case f must be present in the graph
with weight at least |λ| in order for G+ λ · f to be valid.

15

Lemma 5.5. For any weighted graph G, λ ∈ R and f ∈
(V

2

)
such that G+ λ · f is well defined, we

have
Ψ(G+ λ · f) = Ψ(G) + log (λRG(f) + 1) , (9)

Proof. We use the famous result that if we sample a spanning tree T randomly from T(G) such
that

P(T = T) ∝
∏

g∈T

z(g),

then the marginal probability P(f ∈ T) is z(f) · R(f) for all f ∈ F (see, e.g., [Lov93]). Let T be
a random variable drawn from such a distribution. By the definition of the distribution of T we
have that

P(f ∈ T) =
∑

T ∈T(G):T ∋f

P(T = T) =

∑
T ∈T(G):T ∋f

∏
g∈T z(g)∑

T ∈T(G)

∏
g∈T z(g)

(10)

Therefore, we have for the weight function z′ of G+ λ · f ,

Ψ(G+ λ · f) = log

∑

T ∈T(G′)

∏

g∈T

z′(g)

= log

∑

T ∈T(G)

∏

g∈T

z(g) ·

(
1 +

λ

z(f)

)
1(g=f)

= log

∑

T ∈T

(
1 +

λ

z(f)

)
1(f∈T) ∏

g∈T

z(g)

= log

∑

T ∈T(G)

∏

g∈T

z(g) +
λ

z(f)
·

∑

T ∈T(G):T ∋f

∏

g∈T

z(g)

 .

We can transform the second term by Equation (10) to continue:

= log

∑

T ∈T(G)

∏

g∈T

z(g) +
λ

z(f)
· P(f ∈ T) ·

∑

T ∈T(G)

∏

g∈T

z(g)

= log

∑

T ∈T(G)

∏

g∈T

z(g)

 + log

(
λ

z(f)
· P(f ∈ T) + 1

)

= Ψ(G) + log(λRG(f) + 1)

as claimed. Note that the above calculation is legitimate for positive λ as well as negative.

5.2 Existence of γ-Balanced Weight Assignments

We will now use ST-potential to construct a γ-balanced weight assignment of an arbitrary hyper-
graph. We can analyze a simple greedy algorithm, which identifies edge pairs contradicting the
γ-balancedness condition in Definition 5.1, and simply shifts weight from the one with smaller ef-
fective resistance to the one with the larger effective resistance (see Algorithm 1). One can show
that such an step can be designed to only increase the ST-potential of a weight assignment, and
thus the algorithm eventually terminates, returning a γ-balanced weight assignment.

16

Algorithm 1 Algorithm for constructing a γ-balanced weight assignment.

1: procedure GreedyBalancing(H = (V,E,w), γ)
2: For all e ∈ E and for all f ∈ Fe, initialize z(f) to w(e)/

(|e|
2

)

3: G← (V,
⋃

e∈E Fe, z)
4: while G is not a γ-balanced weight assignment of H do

5: Select e ∈ E, and f, g ∈ Fe, such that RG(f) > γ ·RG(g) and z(g) > 0
6: λ← min (z(g), (γ − 1)/(2γ · RG(g)))
7: z(f)← z(f) + λ
8: z(g)← z(g) − λ

9: return G

The following tells how much the effective resistance of an edge changes by updating the weight
of another edge. Although the proof is simple and this result is already known, we include the
proof for completeness.

Lemma 5.6. If G = (V, F, z) is a weighted graph, let λ ∈ R, and f ∈
(V

2

)
, then for any g ∈

(V
2

)

RG+λ·f (g) = RG(g)−
λ ·
(
b⊤

g L
+
Gbf

)2

1 + λ · RG(f)
.

Proof. Note that
LG+λ·f = LG + λbf b

⊤
f .

Therefore, by the Sherman-Morrison formula for Moore-Penrose pseudoinverse (see for exam-
ple [Mey73]), we can expand the formula for the effective resistance of g:

RG+λ·f (g) = b⊤
g L

+
G+λ·fbg = b⊤

g

(
LG + λbfb

⊤
f

)+
bg = b⊤

g

(
L+

G −
L+

Gbfλb
⊤
f L

+
G

1 + λb⊤
f L

+
Gbf

)
bg

= b⊤
g L

+
Gbg −

λb⊤
g L

+
Gbfb

⊤
f L

+
Gbg

1 + λb⊤
f L

+
Gbf

= RG(g)−
λ ·
(
b⊤

g L
+
Gbf

)2

1 + λ · RG(f)
.

Lemma 5.7. Let G = (V, F, z) be a weighted graph and let γ > 1. Let f, g be two edges in F such
that RG(f) > γ ·RG(g). Then for any λ ≤ z(g), shifting λ weight from g to f results in an increase
of at least

log
(
1 + λγ ·RG(g)− λ · RG(g)− λ2γ · RG(g)2

)

in the ST-potential of G.

Proof. We simply apply the update formula for ST-potential (Lemma 5.5) twice, along with
Lemma 5.6. For simplicity, we use tfg to denote b⊤

f L
+
Gbg. Then the increase in ST-potential

is

log (λ · RG(f) + 1) + log (−λ ·RG+λ·f (g) + 1)

= log (λ · RG(f) + 1) + log

(
−λ ·

(
RG(g) −

λt2fg

1 + λRG(f)

)
+ 1

)

= log

[
(λ ·RG(f) + 1) ·

(
−λ ·

(
RG(g)−

λt2fg

1 + λRG(f)

)
+ 1

)]

17

= log
(
1 + λ · RG(f)− λ · RG(g)− λ2 ·RG(f)RG(g) + λ2t2fg

)

≥ log
(
1 + λγ · RG(g)− λ ·RG(g) − λ2γ · RG(g)2

)
,

as claimed.

Theorem 5.8. For γ > 1, Algorithm 1 terminates and returns a γ-balanced weight assignment of
H.

Proof. It is clear by the condition of the while-loop that if Algorithm 1 terminates, it returns a
γ-balanced weight assignment. Also, the condition

∑
f∈Fe

z(f) = w(e) is never violated. Therefore,
in Line 1, there must indeed always be some e ∈ E and some f, g ∈ Fe such that RG(f) > γ ·RG(g)
and z(g) > 0, otherwise G would already be γ-balanced. It remains to prove that Algorithm 1
always terminates.

Let us examine the evolution of Ψ(G) throughout the algorithm. First, note that G never
becomes disconnected, and hence Ψ(G) always remains defined. Indeed, in order for G to become
disconnected, we would have to set λ to z(g) for a bridge g. However, if g is a bridge, RG(g) = 1/z(g)
by Fact 2.8, and λ is set instead to (γ − 1)z(g)/(2γ) < z(g).

In each iteration of the while-loop (which we call a step) we move λ weight from some edge g
to some other edge f . By Lemma 5.7 this results in a change of

log
(
1 + λγ ·RG(g) − λ ·RG(g)− λ2γ ·RG(g)2

)
.

Here we distinguish between the following two cases: If λ = (γ − 1)/(2γ · RG(g)) exactly, then
the increase in Ψ(G) is at least log(1+(γ−1)2/(2γ)− (γ−1)2/(4γ)) ≥ log(1+(γ−1)2/(4γ)) =: cγ .
On the other hand, if λ = z(g) ≤ (γ − 1)/(2γ · RG(g)) then the increase in Ψ(G) is at least
log(1 + λγ ·RG(g) − λ ·RG(g)− λ(γ − 1) ·RG(g)/2) > log(1) = 0.

Overall there are two possibilities each step:

1. Ψ(G) increases by at least cγ > 0,

2. or z(g) becomes 0, and Ψ(G) increases by a positive amount.

Let the initial setting of G (before the while-loop) be G0. Let G∞ be the complete graph on V
with uniform edge weights of

∑
e∈E w(e) on each edge. Since G always satisfies

∑

f∈F

z(f) =
∑

e∈E

∑

f∈Fe

z(f) =
∑

e∈E

w(e),

Ψ(G) will always be less than Ψ(G∞) by monotonicity of Ψ. Thus, there can be at most (Ψ(G∞)−
Ψ(G0))/cγ steps of type 1. Therefore, after a certain point, there can only be steps of type 2; we
focus on this stage of the algorithm.

We further categorize steps of type 2 based on the initial weight of f :

2a. The initial weight of f is greater than 0,

2b. the initial weight of f is exactly 0.

Steps of type 2a increase the total number of edges of weight exactly 0, since by definition,
neither f nor g starts out with weight 0, but z(g) becomes 0. On the other hand, steps of type 2b
do not decrease the total number of edges of weight 0. Therefore, after a certain point, there can
only be steps of type 2b; we focus on this stage of the algorithm.

18

At this point, the set of all edge weight values, that is

⋃

f∈F

{z(f)},

remains unchanged. Indeed at every step we simply switch the values of z(f) and z(g). Therefore,
there are only a finite number of possible states for G to be in. None of these can be repeated, as
Ψ(G) increases by a positive amount after each step, and therefore, Algorithm 1 must terminate,
returning a γ-balanced weight assignment of H.

This proves the existence of γ-balanced weight assignment, which suffices to show the existence
of nearly-linear-sized spectral sparsifiers (as we will see in Section 6). Unfortunately, the above
proof shows no bound on the running time of Algorithm 1 beyond 2O(m).

5.3 Polynomial-Time Construction

In this section, we introduce a relaxation of the concept of γ-balanced weight assignment. This
will still be sufficient to get spectral sparsifiers of nearly linear size, while also allowing the greedy
algorithm to terminate in a polynomial number of steps.

Definition 5.9. For 0 < η ≤ 1 and γ > 1, an η-approximate γ-balanced weight assignment of
H = (V,E,w) is defined exactly as above in Definition 5.1, except with the final condition relaxed
to

γ · min
g∈Fe: z(g)≥η·w(e)

RG(g) ≥ max
f∈Fe

RG(f).

That is, we allow edges not only of weight 0, but also of weight less than η ·w(e) to be small outliers
in terms of effective resistance.

We modify Algorithm 1 to search for approximate γ-balanced weight assignments.

Algorithm 2 Algorithm for constructing an η-approximate γ-balanced weight assignment.

1: procedure GreedyApproxBalancing(H = (V,E,w), γ, η)
2: For all e ∈ E and for all f ∈ Fe, initialize z(f) to w(e)/

(|e|
2

)

3: G← (V,
⋃
Fe, z)

4: while G is not an η-approximate γ-balanced weight assignment of H do

5: Select e ∈ E, and f, g ∈ Fe, such that RG(f) > γ ·RG(g) and z(g) > η · w(e)
6: λ← min (z(g), 1/(2RG(g)))
7: z(f)← z(f) + λ
8: z(g)← z(g) − λ

9: return G

Theorem 5.10. Let H = (V,E,w) be a weighted hypergraph Then for γ ≥ 4 and η > 0, Algo-
rithm 2 terminates within M/(ηwmin) ·poly (n log(M/wmin)) rounds and returns an η-approximate
γ-balanced weight assignment for H, where wmin := mine∈E w(e) and M :=

∑
e∈E w(e).

Proof. It is clear by the condition of the while-loop that if Algorithm 2 terminates, then it returns
an η-approximate γ-balanced weight assignment. Also, the condition

∑
f∈Fe

z(f) = w(e) is never
violated. Therefore, in Line 2, there must indeed always be some e ∈ E and some f, g ∈ Fe such
that RG(f) > γ and z(g) > η ·w(e), otherwise G would already be η-approximately γ-balanced. It
remains to prove that Algorithm 2 terminates within M/(ηwmin) · poly (n log(M/wmin)) rounds.

19

Let G0 be the starting graph of Algorithm 2, and G∞ be the complete graph on V with uniform
edge weights of M . Since Ψ(G∞) is always greater than Ψ(G) at every moment in the algorithm, we
can upper bound the total increase in ST-potential throughout the algorithm by Ψ(G∞)−Ψ(G0).
Let us upper bound Ψ(G∞) − Ψ(G0). To this end we will produce a sequence of updates to G0

resulting in G∞, and we will upper bound the contribution of each update.
Since mine∈E w(e) = wmin, minf∈F z(f) ≥ wmin/n

2 in G0. Furthermore, since H is connected,
G0 is connected as well and must contain a spanning tree with edges of weight at least wmin/n

2 and
therefore minu,v∈V RG0(u, v) ≤ n/(wmin/n

2) = n3/wmin. To transform G0 to G∞, we simply add
to each vertex pair (u, v) a sufficient amount of weight to make w(u, v) = M . This is an update of
+λ · (u, v) with λ ≤ M and R(u, v) ≤ n3/wmin, which contributes by at most log(Mn3/wmin + 1)
to Ψ by Lemma 5.5. The total contribution of all such updates on the way from G0 to G∞ is at
most

∑

u,v∈V

log

(
Mn3

wmin
+ 1

)
= poly

(
n log

(
M

wmin

))
.

We now lower bound the minimum increase of Ψ after each step of Algorithm 2. We are able to
do this thanks to the modification in Definition 5.9 of approximate γ-balanced weight assignment.

Due to Lemma 5.7, the contribution of each update to the potential Ψ(G) is at least

log
(
1 + λγ ·RG(g)− λ · RG(g)− λ2γ · RG(g)2

)

At each step, λ is set to either z(g) or 1/(2RG(g)). If λ = 1/(2RG(g)), the increase in Ψ(G) is at
least log(1 + (γ − 1)/2 − γ/4) ≥ log(5/4). On the other hand, if λ = z(g) ≤ 1/(2RG(g)), then the
increase in Ψ(G) is at least

log(1 + λγ ·RG(g) − λ · RG(g)− λγ · RG(g)/2) ≥ log(1 + λ · RG(g))

= log(1 + z(g) ·RG(g))

≥ log(1 + η · wmin · RG(g)).

To lower bound this, note that for all g

RG(g) ≥ RG∞(g) =
2

Mn
.

This gives us that after each round of the algorithm Ψ(G) increases by at least

log(1 + η · wmin · RG(g)) ≥
2 · 2ηwmin/(nM)

2 + 2ηwmin/(nM)
≥

4ηwmin/(nM)

4
=
ηwmin

nM
,

where we used log(1 + x) ≥ (2x)/(2 + x) for x ≥ 0 in the first inequality and we assumed
n is sufficiently large in the second inequality. Thus the algorithm takes at most M/(ηwmin) ·
poly (n log(M/wmin)) steps.

6 Hypergraph Sparsification

In this section, we prove the existence of a spectral sparsifier with a nearly linear number of
hyperedges, that is, the first part of Theorem 1. We discuss efficient construction of spectral
sparsifier in Section 7.

To construct a spectral sparsifier, we first produce a 1/n2-approximate γ-balanced weight as-
signment for the input hypergraph, where γ ≥ 4. We can use Algorithm 2 for this. We then assign

20

to each hyperedge e importance equal to the maximum effective resistance in Fe (see Definition 5.1).
We then perform typical importance sampling on the hyperedges, oversampling by a factor of λ (to
be set later). A formal description is given in Algorithm 3.

Algorithm 3 ǫ-spectral sparsification for a hypergraph, using importance sampling.

1: procedure Sparsification(H = (V,E,w), G = (V, F, z), ǫ, λ)
2: H̃ = (V, Ẽ, w̃)← (V, ∅, 0)
3: for all e ∈ E do

4: Rmax(e)← maxf∈Fe
RG(f)

5: p(e)← min(1, w(e) ·Rmax(e) · λ)
6: With probability p(e), Ẽ ← E ∪ {e} and w̃(e)← w(e)/p(e)

7: return H̃

In the rest of this section, we show the correctness of this approach. We first bound the size of
the hypergraph output by Algorithm 3. We then prove that the output H̃ is indeed an ǫ-spectral
sparsifier of H—this is the technical core of the section.

Lemma 6.1. Let H = (V,E,w) be a weighted hypergraph and let G = (V, F, z) be its 1/n2-
approximate γ-balanced weight assignment for γ ≥ 4. Then, Algorithm 3 returns a hypergraph of
expected size E(|Ẽ|) ≤ 2λγn.

Proof. Each hyperedge e contributes p(e) ≤ w(e) · Rmax(e) · λ to E(|Ẽ|), and it thus suffices to
bound

∑

e∈E

w(e) · Rmax(e) ≤ 2γ · n. (11)

We proceed to prove this inequality. For each e ∈ E, let us partition Fe into two groups,

F
(1)
e = {f ∈ Fe | γ ·RG(f) ≥ Rmax(e)} and the remaining edges F

(2)
e = Fe \F

(1)
e . By Definition 5.9,

these remaining edges f ∈ F
(2)
e satisfy z(f) ≤ w(e)/n2. Then, by Fact 2.9, we have

n− 1 =
∑

f∈F

z(f) · RG(f) =
∑

e∈E

∑

f∈Fe

z(f) ·RG(f) ≥
∑

e∈E

∑

f∈F
(1)
e

z(f) ·
1

γ
·Rmax(e),

where the second equality is due to the fact that F is the multiset
⋃

e∈E Fe by Definition 5.1. For
the inner summation, we can bound

∑

f∈F
(1)
e

z(f) ≥
∑

f∈Fe

z(f)−
∑

f∈F
(2)
e

w(e)

n2
≥ w(e) −

1

2
· w(e) =

1

2
· w(e),

and altogether we obtain
∑

e∈E w(e) ·Rmax(e) ≤ 2γ · (n− 1), which completes the proof.

Setting γ = 4, for example, thus produces a linear-size output. We now prove that the output
is indeed a spectral sparsifier of H.

Lemma 6.2. Let H = (V,E,w) be a weighted hypergraph and let G = (V, F, z) be its 1/n2-
approximate γ-balanced weight assignment for some constant γ ≥ 4. Then executing Algorithm 3
on H, G, 1/n ≤ ǫ < 1, and λ = O(log3(n)/ǫ4), returns with probability at least 1−O(log(n)/n) an
ǫ-spectral sparsifier of H.

21

Proof. We proceed similarly to our proof of Theorem 4.1 in Section 4. By Definition 2.4, we must
prove that for every x ∈ R

V , ∣∣∣QH(x)−Q
H̃

(x)
∣∣∣ ≤ ǫ ·QH(x), (12)

Since Equation (12) is invariant to scaling, we may assume without loss of generality that x⊤LGx =
1, and we denote the set of such vectors by SG ⊆ R

V . Notice that SG is defined with respect to
LG and not QH , however it implies that QH(x) ≥ 1 because for all x ∈ SG,

QH(x) =
∑

e∈E

w(e) · max
u∗,v∗∈e

(xu∗ − xv∗)2 =
∑

e∈E

∑

f∈Fe

z(f) · max
u∗,v∗∈e

(xu∗ − xv∗)2 (13)

≥
∑

e∈E

∑

f=(u,v)∈Fe

z(f) · (xu − xv)2 =
∑

f=(u,v)∈F

z(f) · (xu − xv)2 = x⊤LGx = 1.

For any E′ ⊆ E, we denote the quadratic form Q(x) restricted only to the hyperedges E′ in H
by QE′(x), and similarly in the hypergraph H̃ by Q̃E′(x). If E′ = E, we omit the subscript. It is
clear by the construction of H̃ that

E

(
Q̃(x)

)
= Q(x).

Therefore, for any specific vector x, Equation (12) holds by Chernoff bound (Theorem 2.10). In
order to prove it simultaneously for all x ∈ SG, we again use progressively finer and finer roundings
of x, as guaranteed by Lemma 4.2.

Indeed, fix a sequence of the rounding functions ϕi guaranteed by Lemma 4.2 for i = 1, . . . , I :=
log2(14γn/ǫ) ≤ 3 log n (since γ is a fixed constant and n is sufficiently large), and denote the
sequence of rounded vectors for x ∈ SG by x(i) = ϕi(x). We define for each x(i) the set of
hyperedges

E′
i :=

{
e ∈ E

∣∣∣∣ max
u,v∈e

(
x(i)

u − x
(i)
v

)2
≥ 2−i ·Rmax(e)

}
,

where by definition Rmax(e) = maxf∈Fe
RG(f). This set E′

i is designed such that the rounding ϕi

will conserve (to within a small multiplicative error) Q{e}(x) for any e ∈ E′
i (we will see a proof

of this fact later on). We can now define a partition of E based on the sets E′
i. First, recall that

p(e) = min(1, λ ·w(e) ·Rmax(e)), and let the base case be E0 = E′
0 := {e ∈ E | p(e) = 1}. Then for

each i = 1, . . . , I, let

Ei := E′
i \

i−1⋃

j=0

E′
j .

Finally, let EI+1 := E \
⋃I

i=0 E
′
i.

We begin with two useful claims that will help us bridge the gap between the ordinary graph
and the hypergraph settings. First, we extend the second guarantee of Lemma 4.2 to hyperedges.

Claim 6.3. For all x ∈ SG and e ∈ E such that

max

(
max
u,v∈e

(xu − xv)2,max
u,v∈e

(x(i)
u − x

(i)
v)2

)
≥ 2−i ·Rmax(e),

we have

max
u,v∈e

(xu − xv)2 ∈

(
1±

ǫ

7

)
· max

u,v∈e
(x(i)

u − x
(i)
v)2. (14)

Proof. We focus on the case when maxu,v∈e(x
(i)
u −x

(i)
v)2 ≥ 2−i·Rmax(e). The case when maxu,v∈e(xu−

xv)2 ≥ 2−i ·Rmax(e) follows by an identical argument.

22

For one direction, let the pair u∗, v∗ ∈ e maximize (x
(i)
u − x

(i)
v)2. Now

(x
(i)
u∗ − x

(i)
v∗)2 = max

u,v∈E
(x(i)

u − x
(i)
v)2 ≥ 2−i · Rmax(e) = 2−i ·max

f∈Fe

RG(f) ≥ 2−i ·RG(u∗, v∗),

hence the second guarantee of Lemma 4.2 holds for (u∗, v∗), and consequently

(x
(i)
u∗ − x

(i)
v∗)2 ≤

(
1−

ǫ

7

)−1

· (xu∗ − xv∗)2 ≤

(
1−

ǫ

7

)−1

· max
u,v∈e

(xu − xv)2.

The other direction follows by a similar argument, but is slightly more complicated. The

asymmetry is due to our assumption (that maxu,v∈e(x
(i)
u − x

(i)
v) ≥ 2−i ·Rmax(e)) being in terms of

x(i) instead of x.
Let u∗, v∗ be a vertex pair u, v ∈ e that maximizes (xu − xv)2. Here we distinguish two cases:

If (xu∗ − xv∗)2 < 2−i ·Rmax(e), we are immediately done, since

max
u,v∈e

(xu − xv)2 = (xu∗ − xv∗)2 ≤ 2−i ·Rmax(e) ≤ max
u,v∈e

(x(i)
u − x

(i)
v)2.

On the other hand, if (xu∗ −xv∗)2 ≥ 2−i ·Rmax(e), we proceed identically to the first half of the
proof:

(xu∗ − xv∗)2 ≥ 2−i ·Rmax(e) = 2−i ·max
f∈Fe

RG(f) ≥ 2−i ·RG(u∗, v∗).

Therefore, the second guarantee of Lemma 4.2 holds for (u∗, v∗) in G, and in particular

(xu∗ − xv∗)2 ≤

(
1 +

ǫ

7

)
· (x

(i)
u∗ − x

(i)
v∗)2 ≤

(
1 +

ǫ

7

)
· max

u,v∈e
(x(i)

u − x
(i)
v)2.

We thus obtain an analogue to Corollary 4.3 from Section 4.

Corollary 6.4. For every edge e ∈ Ei,

Q{e}(x) ∈

(
1±

ǫ

7

)
·Q{e}(x(i)).

The same holds also for Q̃{e} (because it is a multiple of Q{e}).

Proof. We have that e ∈ Ei ⊆ E
′
i and hence maxu,v∈e(x

(i)
u −x

(i)
v)2 ≥ 2−i ·Rmax(e). We can therefore

apply Claim 6.3 and scale up by w(e) to get the desired result.

Next, we prove an analogue to Claim 4.4 from Section 4.

Claim 6.5. For all i ∈ [I] and e ∈ Ei, we have

max
u,v∈e

(x(i)
u − x

(i)
v)2 ≤ 3 · 2−i ·Rmax(e).

Proof. The proof proceeds nearly identically to that of Claim 4.4.

The condition of Claim 6.3 holds for e ∈ Ei and hence we have maxu,v∈e(x
(i)
u − x

(i)
v)2 ≤ (1 −

ǫ/7)−1 ·maxu,v∈e(xu − xv)2.

23

Consider first the case i = 1. Let u∗, v∗ ∈ e maximize (xu − xv)2. Then by Fact 2.6 and since
x ∈ SG, we have maxu,v∈e(xu − xv)2 = (xu∗ − xv∗)2 ≤ RG(u∗, v∗) · x⊤LGx = RG(u∗, v∗), and we
indeed get

max
u,v∈e

(x(i)
u − x

(i)
v)2 ≤ max

u,v∈e
(xu − xv)2 ·

(
1−

ǫ

7

)−1

≤ RG(u∗, v∗) ·

(
1−

ǫ

7

)−1

≤ Rmax(e) ·

(
1−

ǫ

7

)−1

≤ 3 · 2−1 ·Rmax(e).

Now consider i > 1, and suppose towards contradiction that maxu,v∈e(x
(i)
u − x

(i)
v)2 > 3 · 2−i ·

Rmax(e). Notice that since maxu,v∈e(xu − xv)2 ≥ 2−i+1 · Rmax(e), Claim 6.3 still applies to e with
respect to ϕi−1. Thus

max
u,v∈e

(x(i−1)
u − x(i−1)

v)2 ≥ max
u,v∈e

(xu − xv)2 ·

(
1 +

ǫ

7

)−1

≥ max
u,v∈e

(x(i)
u − x

(i)
v)2 ·

(
1−

ǫ

7

)
·

(
1 +

ǫ

7

)−1

≥ 2−i+1 ·Rmax(e).

This implies that e ∈ E′
i−1, which contradicts the assumption e ∈ Ei.

We consider each group of hyperedges Ei separately, and prove that the quadratic form is well
approximated on this subset with high probability, that is

Q̃Ei
(x) ≈ QEi

(x).

Hyperedges in E0. By definition, for all e ∈ E0, we have p(e) = 1. Therefore, Q̃E0(x) = QE0(x)
deterministically.

Hyperedges in Ei for i ∈ [I]. Similarly to the case of ordinary graphs in Section 4, we want to
consider x(i) instead of x. We may do this due to Corollary 6.4. Therefore, we can focus on proving
that QEi

(x(i)) ≈ Q̃Ei
(x(i)).

Consider a specific i ∈ [I]. We wish to prove that with high probability, simultaneously for all
values of x(i) and E(i), ∣∣∣Q̃Ei

(x(i))−QEi
(x(i))

∣∣∣ ≤
ǫ ·Q(x)

7I
. (15)

Since (by the first guarantee of Lemma 4.2) there are only finitely many values (x(i), Ei), we can
prove that Equation (15) holds with high probability individually for each such pair, and then use
a union bound over all pairs.

The former can be done using Chernoff bounds (Theorem 2.10); we begin with this. Let us fix
x(i) and Ei. Recall that

Q̃Ei
(x(i)) =

∑

e∈Ei

w̃(e) · max
u,v∈e

(x(i)
u − x

(i)
v)2

24

is the sum of independent random variables with expectation E(Q̃Ei
(x(i))) = QEi

(x(i)) because
E(w̃(e)) = w(e) by definition. To apply Chernoff bounds (Theorem 2.10), we need to set the
variables a, δ and µ. We set δ := ǫ/(14I), and using Corollary 6.4, we can bound

QEi
(x(i)) ≤

(
1−

ǫ

7

)−1

·QEi
(x) ≤ 2Q(x) =: µ.

(This is true for an arbitrary preimage x ∈ ϕ−1
i (x(i)).) We also need to set a as an upper bound

on the largest possible value of any variable of the form w̃(e) · maxu,v∈e(x
(i)
u − x

(i)
v)2 for e ∈ Ei.

Such a variable takes its maximum value when e is sampled to the sparsifier H̃, in which case
w̃(e) = w(e)/p(e) = w(e)/(λ · w(e) · Rmax(e)) = 1/(λ · Rmax(e)), since e 6∈ E0. Therefore, the
random variable in question is upper bounded, using Claim 6.5, by

max
e∈Ei

maxu,v∈e(x
(i)
u − x

(i)
v)2

λ ·Rmax(e)
≤

3 · 2−i

λ
=: a.

Finally, Theorem 2.10 implies

P

(∣∣∣QEi
(x(i) − Q̃Ei

(x(i)))
∣∣∣ ≥

ǫ ·Q(x)

7I

)
≤ 2 exp

(
−
δ2µ

3a

)

= 2 exp

(
−

ǫ2

196I2 ·Q(x)

3 · 3 · 2−i/λ

)

≤ 2 exp

(
−

ǫ2 · 2i · λ

10000 log2(n)

)

= 2 exp

(
−

2000C log(n) · 2i

ǫ2

)
,

where the last step is by setting λ = 2 · 107 · C log3(n)/ǫ4.
We now turn to applying a union bound over all possible values of (x(i), Ei). Much like Fi in

the proof of Theorem 4.1, Ei depends on all E′
j for j ≤ i, which in turn depend on all x(j) for j ≤ i.

Since x(j) = ϕj(x), by the first guarantee of Lemma 4.2, there are at most exp(800C log(n) · 2j/ǫ2)
possible vectors x(j) (where C is the absolute constant from Theorem 4.5). Therefore, the number
of possible pairs (x(i), Ei) is at most

i∏

j=1

exp

(
800C log(n) · 2j

ǫ2

)
= exp

i∑

j=1

800C log(n) · 2j

ǫ2

 ≤ exp

(
1600C log(n) · 2i

ǫ2

)
.

Putting together the Chernoff bound and the union bound, we get that Equation (15) holds
simultaneously for all values of (x(i), Ei) except with probability at most

exp

(
1600C log(n) · 2i

ǫ2

)
· 2 exp

(
−

2000C log(n) · 2i

ǫ2

)
= 2 exp

(
−

400C log(n) · 2i

ǫ2

)
≤

1

n
.

Hyperedges in EI+1. Recall that I = log2(14γ · n/ǫ). First we show that for any hyperedge
e ∈ EI+1, we have that maxu,v∈e(xu−xv)2 ≤ ǫ·Rmax(e)/(12γ ·n). Indeed, suppose for contradiction
that this is not the case, and let u∗, v∗ ∈ e be a vertex pair that maximizes (xu − xv)2. Then, by

the second guarantee of Lemma 4.2, we have that (x
(I)
u∗ − x

(I)
v∗)2 ≥ (xu∗ − xv∗)2 · (1 − ǫ/7) ≥

25

ǫ · Rmax(e) · (1 − ǫ/7)/(12γ · n) ≥ ǫ · Rmax(e)/(14γ · n). Therefore, e ∈ E′
I , which contradicts

e ∈ EI+1.
We show that |Q̃EI+1

− QEI+1
| is small by showing that each of the two terms is individually

small. First,

QEI+1
(x) =

∑

e∈EI+1

w(e) · max
u,v∈e

(xu − xv)2 ≤
∑

e∈EI+1

w(e) ·
ǫ ·Rmax(e)

12γ · n
≤

ǫ

12γ · n
·
∑

e∈E

w(e) · Rmax(e) ≤
ǫ

6
,

where the last inequality uses Equation (11). Second, we start similarly,

Q̃EI+1
(x) =

∑

e∈EI+1

w̃(e) · max
u,v∈e

(xu − xv)2 ≤
∑

e∈EI+1

w̃(e) ·
ǫ ·Rmax(e)

12γ · n
≤

ǫ

12γ · n
·
∑

e∈E

w̃(e) · Rmax(e),

and ideally we would like to show that
∑
w̃(e)·Rmax(e) ≤ 4γ·n. This is a random event, independent

of the choice of x, whose probability we can bound using the Chernoff bound (Theorem 2.10).
Recall that E0 = {e ∈ E | p(e) = 1}, and denote its complement by E0 := {e ∈ E | p(e) =
λ · w(e) · Rmax(e)}. Since E(

∑
w̃(e) · Rmax(e)) =

∑
w(e) · Rmax(e) ≤ 2γ · n (using Equation (11))

and
∑

e∈E0
w̃(e) ·Rmax(e) is deterministic by definition of E0, we have that

P

(
∑

e∈E

w̃(e) ·Rmax(e) ≥ 4γ · n

)
≤ P

(∣∣∣∣∣
∑

e∈E

w̃(e) ·Rmax(e)− E

(
∑

e∈E

w̃(e) ·Rmax(e)

)∣∣∣∣∣ ≥ 2γ · n

)

= P

∣∣∣∣∣∣

∑

e∈E0

w̃(e) · Rmax(e)− E

∑

e∈E0

w̃(e) ·Rmax(e)

∣∣∣∣∣∣
≥ 2γ · n

 .

We bound this by applying Theorem 2.10 for the independent random variables w̃(e) ·Rmax(e)
where e ∈ E0. The maximum value of such a variable occurs when e is sampled, in which case it
is exactly w̃(e) ·Rmax(e) = Rmax(e) · w(e)/p(e) = 1/λ ≤ 1 =: a. Setting δ := 1 and µ := 2γ · n (we
may do this due to Equation (11)), we get

P

(
∑

e∈E

w̃(e) · Rmax(e) ≥ 4γ · n

)
≤ 2 exp

(
−

2γ · n

3

)
≤

1

n
.

In conclusion, with probability at least 1−O(1/n),

∣∣∣Q̃EI+1
(x)−QEI+1

(x)
∣∣∣ ≤

ǫ

2
. (16)

Putting everything together. The final part of the proof proceeds identically to that of The-
orem 4.1. We have seen that Equation (15) holds simultaneously for all i and (x(i), Ei), as well as
Equation (16) holds with probability at least 1 − O(log(n)/n). Conditioning on these events, we
can deduce Equation (12), thus concluding the proof of Lemma 6.2.

For completeness we repeat the derivation:

∣∣∣QEi
(x)− Q̃Ei

(x)
∣∣∣ ≤

∣∣∣QEi
(x)−QEi

(x(i))
∣∣∣+

∣∣∣QEi
(x(i))− Q̃Ei

(x(i))
∣∣∣+

∣∣∣Q̃Ei
(x(i))− Q̃Ei

(x)
∣∣∣

≤
ǫ

7
·QEi

(x(i)) +
∣∣∣QEi

(x(i))− Q̃Ei
(x(i))

∣∣∣ +
ǫ

7
· Q̃Ei

(x(i)) (by Corollary 6.4)

≤
2ǫ

7
·QEi

(x(i)) +

(
1 +

ǫ

7

)
·
∣∣∣QEi

(x(i))− Q̃Ei
(x(i))

∣∣∣

26

≤
2ǫ

7
·

(
1−

ǫ

7

)−1

·QEi
(x) +

(
1 +

ǫ

7

)
·
ǫ ·Q(x)

7I
(by Corollary 6.4 and Equation (15))

≤
ǫ

3
·QEi

(x) +
ǫ ·Q(x)

6I
.

Therefore, we have

∣∣∣Q(x)− Q̃(x)
∣∣∣ ≤

∣∣∣QE0(x)− Q̃E0(x)
∣∣∣+

I∑

i=1

∣∣∣QEi
(x)− Q̃Ei

(x)
∣∣∣+

∣∣∣QEI+1
(x)− Q̃EI+1

(x)
∣∣∣

≤0 +
I∑

i=1

(
ǫ

3
·QEi

(x) +
ǫ ·Q(x)

6I

)
+
ǫ

2
(by Equation (16))

≤
ǫ

3
·Q(x) +

ǫ

6
·Q(x) +

ǫ

2
≤ǫ ·Q(x), (by Equation (13))

as claimed.

Combining Theorem 5.10 and Lemmas 6.1 and 6.2, we get the first part of Theorem 1.

7 Nearly Optimal Speed-Up

In the previous section, we have proved the existence of nearly linear sized spectral sparsifiers for
hypergraphs. We have also provided an method for constructing such sparsifiers: we construct an
approximate balanced weight assignment of the input hypergraph using Algorithm 2, and then con-
struct a sparsifier using Algorithm 3. However, the running time of Algorithm 2 on an unweighted
hypergraph is m ·poly (n), which is large; in this section we improve this to Õ(mr) + poly (n), that
is, we prove the second part of Theorem 1. As we mentioned in the introduction, with a small mod-
ification, this leads to an algorithm with time complexity Õ(

∑
e∈E |e|+poly (n)) that constructs an

ǫ-spectral-sparsifier of nearly linear size. This running time is optimal to within polylogarithmic
factors in n, unless the size of the input hypergraph is polynomially small in n.

Our algorithm consists of two steps. First we apply the algorithm of [BST19], which—with
small modifications—can be shown to run in Õ(mr) + poly (n) time, but which produces a larger
spectral sparsifier. We then aim to sparsify the resulting weighted hypergraph using our methods.
Unfortunately, even though the resulting hypergraph has only polynomially many hyperedges (in
n), the range of edge weights may still be exponential, meaning that Algorithm 2 is not efficient
for finding an approximate balanced weight assignment on it (recall Theorem 5.10). We propose a
variation of Algorithm 2 adapted for this setting which runs in polynomial time.

7.1 Fast Algorithm for Constructing Polynomial-Sized Sparsifiers

In this section, we recall and slightly modify the algorithm of [BST19] for producing polynomial-
sized spectral sparsifiers for hypergraphs.

Definition 7.1. For a weighted hypergraph H = (V,E), let G(H) denote the “associated graph” of
H, which is defined as follows: Replace each hyperedge e of E with a clique of uniform weight w(e)
on the support of e. (Note that this may produce parallel edges.)

27

Theorem 7.2 ([BST19]). Let H = (V,E,w) be a hypergraph where all hyperedges have size between
r/2 and r. Then, for some absolute constant c, the following process produces an ǫ-spectral sparsifier
for H with probability at least 1− 1/n: Let G(H) be the associated graph of H. For each hyperedge
e ∈ E, let

Rmax(e) = max
u,v∈e

RG(H)(u, v).

Sample each hyperedge e independently with some probability

p(e) ≥ min

(
1,
w(e) · Rmax(e) · r4 log n

cǫ2

)
, (17)

and if sampled give it weight w̃(e) = w(e)/p(e).

Remark 7.3. In fact, in [BST19], the result is stated slightly less generally, for unweighted hy-
pergraphs, and without allowing oversampling (that is p(e) is set exactly to the right hand side in
Equation 17, instead of being lower bounded by it). However, this version holds by an identical
proof.

The trivial implementation of this takes time Ω(mr2) in general for two different reasons: First,
it takes Ω(mr2) time to replace each of the m hyperedges with a clique of size r2. Second, it takes
Ω(mr2) time to find maxu,v∈eRG(H)(u, v) for all m hyperedges. However, with some simple tricks in

the implementation both bottlenecks can be avoided to reduce the running time to Õ(mr+poly (n)).
To achieve this, we first replace cliques in the associated graph of the input hypergraph with

sparse graphs guaranteed by the following fact:

Fact 7.4. It follows by Theorem 4.1 that for every r, there exists a (weighted) graph G∗
r with r

vertices and Õ(r) edges such that G∗
r is a 1/2-spectral sparsifier to the r-clique.

Second, to calculate Rmax(e) approximately, we do not take the maximum over all pairs of
vertices in e, but only over (u0, v) for all v ∈ e but for some fixed u0. Since effective resistance is a
metric (see Fact 2.7), this provides a 2-approximation to Rmax(e) by triangle inequality.

Algorithm 4 Fast algorithm for computing a polynomial-sized spectral sparsifier for an approxi-
mately uniform hypergraph.

1: procedure UniformSparsification(H = (V,E,w), r, ǫ)
2: G = (V, F, z)← (V, ∅, 0)
3: for all e ∈ E do

4: Add a copy of G∗
|e| to G, supported on e, with weights scaled up by w(e)

5: Calculate RG(u, v) for all u, v ∈ V
6: H̃ = (V, Ẽ, w̃)← (V, ∅, 0)
7: for all e ∈ E do

8: u0 ← an arbitrary vertex in e
9: R̃max(e)← maxv∈e RG(u0, v)

10: p(e)← min

(
1, 4w(e)·R̃max(e)·r4 log n

cǫ2

)

11: Add e to Ẽ with probability p(e) with weight w̃(e)← w(e)/p(e)

12: return H̃

Lemma 7.5. If the input hypergraph H = (V,E,w) only has hyperedges of size between r/2 and
r, then Algorithm 4 runs in Õ(mr) + poly (n) time, returning an ǫ-spectral sparsifier to H with

28

probability at least 1 − 1/n. Furthermore, the output has at most 4n5 log n/(cǫ2) hyperedges in
expectation, where c is the absolute constant from Theorem 7.2.

Proof. It takes Õ(mr) time to construct the graph G (here Line 4 takes Õ(r) time) and its Laplacian.
All pairs effective resistances can then be calculated in poly (n) time and stored in a table, resulting
in an O(r) time bound for the calculation of R̃max(e) in Line 9.

To show that the output is an ǫ-spectral sparsifier of H with high probability, it suffices to
verify Equation 17 of Theorem 7.2, ie. that p(e) is always at least

w(e) · max
u,v∈e

RG(H)(u, v) ·
r4 log n

cǫ2
.

For this, it suffices to show that R̃max(e) (as defined in Line 9 of Algorithm 4) is at least maxu,v∈e

RG(H)(u, v)/4. Since w(e) · G∗
|e| is a 1/2-spectral sparsifier of the clique on e (of uniform edge

weight w(e)), it follows by the additivity of Laplacians that G from Algorithm 4 is a 1/2-spectral
sparsifier of G(H) from Definition 7.1. Therefore, RG(u, v) ≥ RG(H)(u, v)/2 for all u, v ∈ V (recall
Definition 2.5). Finally, since RG is a metric on V (by Fact 2.7),

max
v∈e

RG(u0, v) ≥ max
u,v∈e

RG(u, v)/2.

Indeed, if (u∗, v∗) maximizes RG(u, v), then by triangle inequality RG(u∗, v∗) ≤ RG(u∗, u0) +
RG(u0, v

∗); one of the latter two must be at least RG(u∗, v∗)/2.
This concludes the proof of correctness; we must finally prove the upper bound on the expected

size of the output H̃. Since r4 ≤ n4, it suffices to show that
∑

e∈E w(e) · R̃max(e) ≤ n. First note
that ∑

e∈E

w(e) · R̃max(e) ≤
∑

e∈E

w(e) · max
u,v∈e

RG(u, v) ≤ 2
∑

e∈E

w(e) ·RG(H)(u, v),

since G is a 1/2-spectral sparsifier of G(H). Then, since the weight of (u, v) in G(H) is exactly
w(e) by definition, we have that

∑

e∈E

w(e) · R̃max(e) ≤
∑

f∈F (H)

zG(H)(f) ·RG(H)(f) = n− 1,

by Fact 2.9, where F (H) denotes the edge-set of G(H) and zG(H) denotes the weight function of
G(H).

Algorithm 4 only works under the constraint that the input hypergraph is approximately uni-
form – that is, the sizes of hyperedges all fall into the range [r/2, r]. This is easily circumvented,
however: Given an arbitrary input hypergraph, one can simply partition the hyperedges into a
logarithmic number of parts based on cardinality. We then sparsify the parts, and combine the
resulting sparsifiers, losing only a log n factor in size.

We formalize this in the following algorithm and corollary.

Algorithm 5 Fast algorithm for computing a polynomial-sized spectral sparsifier for an arbitrary
hypergraph.

1: procedure PolynomialSizeSparsification(H = (V,E,w), ǫ)
2: for i from 1 to log n do

3: Ei ← {e ∈ E
∣∣|e| ∈ [2i, 2i+1)}

4: Hi ← (V,Ei, w)
5: H̃i ← UniformSparsification(Hi, 2

i+1, ǫ) ⊲ Algorithm 4

6: return H̃ ← ∪log n
i=1 H̃i

29

Here the final line means that we take all hyperedges (with associated weights) from all of
H̃1, . . . , H̃log n.

Corollary 7.6. Algorithm 5 runs in Õ(mr)+poly (n) time, returning an ǫ-spectral sprasifier of the
input H with probability at least 1− log n/n. Furthermore, the output has at most 4n5 log2(n)/(cǫ2)
hyperedges in expectation, where c is the absolute constant from Theorem 7.2.

7.2 Even Faster Construction for γ-Balanced Weight Assignments

It is difficult to get a stronger bound on the number of rounds of Algorithm 2, than that of
Theorem 5.10, at least in its full generality. Instead, here we define a specific class of hypergraphs
for which a better algorithm exists.

Definition 7.7. A weighted hypergraph H = (V,E,w) is called (α, β)-separated for parameters α ≥
1 and β ≥ 1 if the hyperedge set E is partitioned into E1, . . . , Eℓ, satisfying the two requirements:

for all i ∈ {1, 2, . . . , ℓ}, max
e∈Ei

w(e) ≤ α · min
e∈Ei

w(e),

for all i, j ∈ {1, 2, . . . , ℓ}, i < j, min
e∈Ei

w(e) ≥ β ·max
e∈Ej

w(e).

Our next algorithm exploits the structure of separated hypergraphs in order to more efficiently
construct approximate balanced weight assignments on them. Intuitively, one can think of the
different weight classes in separated hypergraphs as only weakly interacting, which is the source
of our speedup. In particular, it is important to note that we will get a speedup for hypergraphs
where the total number of hyperedges is small in comparison to the amount of separation between
the weight classes (i.e., hypergraphs that are produced by the sparsification procedure from the
previous section)—this is what ultimately ensures that the different weight classes only interact in
a limited manner.

Algorithm 6 Computing an η-approximate γ-balanced weight assignment for an (α, β)-separated
hypergraph.

1: procedure SeparatedApproxBalancing(H = (V,E,w),(Ei)
ℓ
i=1, α, β, γ, η)

2: For all e ∈ E and for all f ∈ Fe initialize z(f)← w(e)/
(|e|

2

)

3: G← (V,
⋃
Fe, z)

4: for i = 1, . . . , ℓ do

5: while there exists e ∈ Ei violating the conditions of η-approximate γ-balancedness do

6: Select such e ∈ Ei and f, g ∈ Fe, such that RG(f) > γ · RG(g) and z(g) > η · w(e)
7: λ← min (z(g), 1/(2RG(g)))
8: z(f)← z(f) + λ
9: z(g)← z(g)− λ

10: return G.

In fact, Algorithm 6 is very similar to Algorithm 2. However, it corrects discrepancies in
heavier hyperedges first, and once a category of hyperedges (Ei) has been corrected, the algorithm
never goes back to it, not even if the approximate balancedness becomes violated. For this reason,
the resulting output, G, will not necessarily be γ-balanced. However, the structure of separated
hypergraphs will allow us to bound the number of rounds using α, instead of the global aspect ratio
of weights, which could be much larger.

30

The crucial property of separated hypergraphs (and their weight assignments) which we exploit
is that the heavier edges have a much greater influence on the effective resistance of a vertex pair
than the lighter edges. More specifically, for some i ∈ [ℓ] we can define the subgraph G+ containing
only edges in Fe for e ∈ Ej where j ≤ i. Then, when calculating the effective resistance RG(u, v)—
under certain circumstances—we can simply calculate RG+(u, v) instead, ignoring the contribution
of the remaining edges. We formalize this in the following lemma and its corollary.

Lemma 7.8. Let G+ = (V,E+, z+) and G− = (V,E−, z−) be two weighted ordinary graphs on the
same vertex set. Let the total weight of all edges in G− be bounded by ζ. Let G = G+ ∪G− be the
union of the two graphs, that is G = (V,E+ ∪ E−, z+ ∪ z−). Then, for any vertex pair (u, v) ∈ V
in the same connected component of G+, we can bound the effective resistance RG(u, v) in terms
of RG+ as follows:

1

RG(u, v)
≤

1

RG+(u, v)
+ ζ.

Proof. To prove this inequality, we use the alternate definition of effective resistance from Fact 2.6.
That is

RG+(u, v) = max
x∈RV

(xu − xv)2

x⊤LG+x
.

Let x∗ maximize the above formula. We may assume without loss of generality that x∗
u = 0 and

x∗
v = 1 since the formula is both shift and scale invariant. From this it follows that x∗⊤LG+x

∗ =
1/RG+(u, v). We can further assume without loss of generality that x∗

a ∈ [0, 1] for all a ∈ V .
Indeed, let the connected component of u and v in G+ be C ⊆ V . Then for a ∈ V \ C, we may
simply assume that x∗

a is always 0. To see that x∗
a ∈ [0, 1] for all a ∈ C, suppose for contradiction

that maxa∈C x
∗
a > 1. Let the highest value of x∗ in C be µ1 > 1 and the second highest distinct

value be µ2. Then one can change the x∗-value of vertices from µ1 to µ2, thereby strictly increasing
the value of (x∗

u − x∗
v)2/x∗⊤LG+x

∗. This is a contradiction, since x∗ maximizes the formula by
definition. An identical argument by contradiction rules out that mina∈C x

∗
a < 0.

We can now upper bound 1/RG(u, v) using the same alternate definition from Fact 2.6:

RG(u, v) = max
x∈RV

(xu − xv)2

x⊤LGx
≥

(x∗
u − x

∗
v)2

x∗⊤LGx∗
=

1

1/RG+(u, v) + x∗⊤LG−
x∗
.

Now
x∗⊤LG−

x∗ =
∑

(a,b)∈E−

z−(a, b) · (x∗
a − x

∗
b)2 ≤

∑

(a,b)∈E−

z−(a, b) ≤ ζ.

Therefore
1

RG(u, v)
≤

1

RG+(u, v)
+ ζ,

as claimed.

Corollary 7.9. Let G+ = (V,E+, z+) and G− = (V,E−, z−) be two weighted ordinary graphs on
the same vertex set. Let the total weight of all edges in G− be bounded by ζ. Let G = G+ ∪G− be
the union of the two graphs, that is G = (V,E+ ∪E−, z+ ∪ z−). Then for any vertex pair u, v ∈ V ,
if RG(u, v) ≤ 1/(5ζ) then we can bound the effective resistance RG(u, v) in terms of RG+(u, v) as
follows:

RG(u, v) ≥
4

5
·RG+(u, v).

31

Proof. We wish to apply Lemma 7.8, for which we must first show that u and v are in the same con-
nected component in G+. This is indeed the case: If u and v are in different connected components
of G+, we can use the alternate definition of effective resistance from Fact 2.6:

RG(u, v) = max
x∈RV

(xu − xv)2

x⊤LGx
≥

(x0
u − x

0
v)2

x0⊤LGx0
,

where x0 is 0 on the connected component of u in G+, and 1 everywhere else (including v). Now

(x0
u − x

0
v)2

x0⊤LGx0
=

1

x0⊤LG+x
0 + x0⊤LG−

x0
=

1

x0⊤LG−
x0

=
1

∑
(a,b)∈E−

z−(a, b) · (x0
a − x

0
b)2
≥

1

ζ
.

This is a contradiction; therefore, u and v are indeed in the same connected component of G+.
We can now apply Lemma 7.8:

1

RG+(u, v)
≥

1

RG(u, v)
− ζ ≥

4

5
·

1

RG(u, v)
,

as claimed.

We are now ready to analyze Algorithm 6.

Theorem 7.10. Let H = (V,E,w) be an (α, β)-separated weighted hypergraph with β ≥ 5|E| ·γ/η.
Let M = w(E) be the total hyperedge weight in H, and let wmin the minimum hyperedge weight.
Then for γ ≥ 4, Algorithm 6 terminates within α/η · |E|2 ·poly (n log(M/wmin)) rounds and returns
an η-approximate 2γ-balanced weight assignment for H.

Proof. We call executions of the while-loop rounds and executions of the for-loop phases. It will be
useful to denote wi,min := mine∈Ei

w(e) and wi,max := maxe∈Ei
w(e). The definition of separated

hypergraphs (Definition 7.7) then ensures that wi,max ≤ α · wi,min and wi,min ≥ β · wi+1,max.

Algorithm Correctness. We first prove that upon termination, Algorithm 6 indeed returns
an η-approximate 2γ-balanced weight assignment. Consider a hyperedge e and edges f, g ∈ Fe,
with z(g) ≥ η · w(e). We will show that RG∗(f) ≤ 2γ · RG∗(g), where G∗ is the final weight
assignment returned by the algorithm at Line 10. This is exactly what is required by the definition
of approximate balancedness, i.e. Definition 5.9. Suppose e ∈ Ei. Note that by the condition of
the while-loop, at the termination of the ith phase, e, f , and g satisfied even the stronger condition
of η-approximate γ-balancedness. Let us denote by G′ the weight assignment graph at the end of
phase i.

Let us partition the edges of G∗ and G′ based on the weight of the corresponding hyperedge.
Denote E≤i :=

⋃i
j=1Ej and E>i :=

⋃ℓ
j=i+1Ej. Similarly, let F≤i :=

⋃
e∈E≤i

Fe and F>i :=⋃
e∈E>i

Fe. Finally, let G∗
≤i and G∗

>i be G∗ restricted to F≤i and F>i respectively, and define G′
≤i

and G′
>i similarly. Note that G∗

≤i = G′
≤i, since the algorithm never alters the weight assignments

of E≤i after phase i.
From here, we will use two applications of Corollary 7.9. First, set G+ := G′

≤i, G− := G′
>i

(which makes G = G′), and (u, v) := f . Then ζ is the total weight of all edges in G′
>i, which is the

total weight of all hyperedges in E>i, which is at most wi+1,max · |E|. We verify the condition on
RG′(f) from Corollary 7.9: RG′(f) ≤ γ ·RG′(g), by the approximate γ-balancedness condition on e
in G′. Since z(g) ≥ η ·w(e) (in both G∗ and G′), we have that z(g) ≥ η ·wi,min, and hence by Fact 2.8

32

RG′(g) ≤ 1/(η ·wi,min). Finally, putting these together, as well as using the (α, β)-separated quality
of H, we get

RG′(f) ≤
γ

η · wi,min
≤

γ

ηβ · wi+1,max
≤

1

5ζ
,

by assumption on β. We can indeed apply Corollary 7.9, which gives us

RG′(f) ≥
4

5
· RG≤i

(f). (18)

We apply Corollary 7.9 again, this time setting G+ := G∗
≤i, G− := G∗

>i (which makes G = G∗),
and (u, v) := g. Then ζ ≤ wi+1,max · |E| by an identical argument to the previous setting. We
verify the condition on RG∗(g) from Corollary 7.9: RG∗(g) ≤ 1/(η · wi,min) by Fact 2.8, since
z(g) ≥ η · w(e) ≥ η · wi,min by assumption (in both G∗ and G′). Therefore, by an identical
derivation to the previous case RG∗(g) ≤ 1/(5ζ). We can indeed apply Corollary 7.9, which gives
us

RG∗(g) ≥
4

5
·RG≤i

(g). (19)

Putting together Equations (18) and (19), along with the fact that f and g satisfied the condition
of approximate γ-balancedness at the time of G′ (that is at the end of phase i), we get

RG∗(f) ≤ RG≤i
(f) ≤

5

4
· RG′(f) ≤

5γ

4
· RG′(g) ≤

5γ

4
·RG≤i

(g) ≤
25γ

16
· RG∗(g) ≤ 2γ · RG∗(g),

which concludes the proof that G∗ is η-approximately 2γ-balanced.

Running Time. Next, we prove that Algorithm 6 terminates within α/η·|E|2·poly (n log(M/wmin))
rounds. Similarly to the proof of Theorem 5.10, we can bound the total growth of the ST-potential
over the course of the algorithm by defining G0 and G∞. Specifically, if G0 is the starting graph of
Algorithm 6 and G∞ is the complete graph of uniform edge weight M , then as before,

Ψ(G∞)−Ψ(G0) ≤ poly (n log(M/wmin)) .

We will now prove that the total number of rounds in the ith phase is at most |Ei| · α/η · |E| ·
poly (n log(M/wmin)). Due to Lemma 5.7, the contribution of each update to the potential Ψ(G)
is at least

log
(
1 + λγ ·RG(g) − λ ·RG(g)− λ2γ ·RG(g)2

)
.

Similarly to the proof of Theorem 5.10, this either means that λ = 1/(2RG(g)) and therefore the
increase to Ψ is at least log(5/4), or that λ = z(g) ≤ 1/(2RG(g)), in which case the increase to Ψ is
at least log(1+z(g) ·RG(g)). In the latter case, we further distinguish based on the value of RG(g).

1. λ = 1/(2RG(g)). In this case the ST-potential increases by at least log(5/4), and so there
can be at most poly (n log(M/wmin)) such rounds.

2. λ = z(g) and RG(g) > 1/(5wi,max · |E|). In this case the ST-potential increases by at least
log(1 + z(g) · RG(g)). Since g was selected in this round, z(g) ≥ η · w(e) ≥ η · wi,min, and
therefore the increase in Ψ(G) is at least

log(1 + z(g) · RG(g)) ≥ log

(
1 +

η · wi,min

5wi,max · |E|

)
≥ log

(
1 +

η

5α · |E|

)
≥

η

10α · |E|
.

Thus, there can be at most α/η · |E| · poly (n log(M/wmin)) such rounds.

33

3. λ = z(g) and RG(g) ≤ 1/(5wi,max · |E|). This is the most complicated case to analyze and we
will be focusing on this for the rest of the proof.

Suppose we are in the ith phase of Algorithm 6 and we have e ∈ Ei and f, g ∈ Fe such that
RG(f) > γ ·RG(g) ≥ 4 ·RG(g). Further suppose that RG(g) ≤ 1/(5wi,max · |E|). Similarly to before,
we divide G into two graphs: G<i consisting of edges belonging to hyperedges from Ej for j < i,
and G≥i consisting of edges belonging to hyperedges from Ej for j ≥ i. (Note that earlier in this
proof we used the slightly different split into G≤i and G>i.) We can again use Corollary 7.9 to
relate RG to RG<i

.
We apply Corollary 7.9, setting G+ := G<i, G− := G≥i (which makes G from Corollary 7.9

the current graph G), and (u, v) := g. Then ζ is the total weight of all edges in G≥i, which is
the total weight of all hyperedges in E≥i, which is at most wi,max · |E|. Our above assumption
RG(g) ≤ 1/(5wi,max · |E|) exactly guarantees that RG(g) ≤ 1/(5ζ) is satisfied and we can therefore
apply Corollary 7.9:

RG<i
(g) ≤

5

4
· RG(g) ≤

5

4γ
RG(f) ≤

5

16
RG(f) ≤

5

16
RG<i

(g) < RG<i
(f).

In words, such weight transfers are always from edges of lower G<i-resistance to those of strictly
higher G<i-resistance—a metric that never changes, since G<i is unchanged during the ith stage of
the algorithm. Therefore, there cannot be n4 · |Ei| consecutive steps of type 3 in phase i. We prove
this formally in the following claim.

Claim 7.11. There cannot be n4 · |Ei| consecutive rounds of type 3 in phase i.

Proof. Suppose for contradiction that there is a sequence of n4 · |Ei| rounds of type 3. Then there
must be a hyperedge e ∈ Ei for which at least n4 of these updates take place in Fe. We know that
updates can only shift weight from g to f where RG<i

(f) > RG<i
(g). Therefore, let us order the

edges of Fe by RG<i
, that is, let ρ : Fe → N be such that the jth largest edge in terms of RG<i

, say
f , has ρ(f) = j (breaking ties arbitrarily). Then we can define a local potential function for e:

ψe(G) =
∑

f∈Fe

ρ(f) · 1(z(f) > 0).

Note that ψe starts out as at most 1 + 2 + · · · + |Fe| ≤ n4, and after every update of type 3 it
decreases by at least one. Since we have no updates of any type other than 3 (by assumption), and
updates to other hyperedges do not affect ψe, we arrive at the contradiction that ψe must become
negative.

As a result of Claim 7.11, every consecutive sequence of n4 · |Ei| rounds must contain an update
of type 1 or 2. Since we showed that there are at most α/η · |E| ·poly (n log(M/wmin)) such updates,
there can be at most |Ei| · α/η · |E| · poly (n log(M/wmin)) rounds in phase i. Summing this over
all phases, we get that there can be at most α/η · |E|2 · poly (n log(M/wmin)) rounds overall, as
claimed.

7.3 Proof of the Second Part of Theorem 1

We are now ready to prove the second part of Theorem 1. Specifically, we prove that FastSpar-

sification (Algorithm 7 below) provides the result of Theorem 1:

34

Algorithm 7 Algorithm constructing nearly linear-sized spectral sparsifier, in nearly linear time.

1: procedure FastSparsification(H = (V,E,w))
2: H ′ = (V,E′, w′)← PolynomialSizeSparsification(H, ǫ/3) ⊲ Algorithm 5
3: for i from 1 to n do

4: E′
i ← {e ∈ E

′
i | w

′(e) ∈ [n10(i−1), n10i)}

5: H ′
1 ← (V,

⋃
j∈{1,...,n},j odd Ei, w

′)
6: H ′

2 ← (V,
⋃

j∈{1,...,n},j even Ei, w
′)

7: G1 ← SeparatedApproxBalancing(H ′
1, (Ej)j odd, n

10, n10, 4, 1/n2) ⊲ Algorithm 6
8: G2 ← SeparatedApproxBalancing(H ′

2, (Ej)j even, n
10, n10, 4, 1/n2)

9: λ← Θ(ǫ−4 log3 n)
10: H̃1 ← Sparsification(H ′

1, G1, ǫ/3, λ) ⊲ Algorithm 3
11: H̃2 ← Sparsification(H ′

2, G2, ǫ/3, λ)
12: return H̃ ← H̃1 ∪ H̃2

In the final line H̃ ← H̃1∪ H̃2 means that we take the union of hyperedges and weight functions
from H̃1 and H̃2, since both are on the same vertex set V .
Proof of the second part of Theorem 1: Indeed, Algorithm 7 does exactly that.

First note a few observations about the steps of Algorithm 7: Notice that PolynomialSizeS-

parsification produces hyperedge weights only in the range [1, n10n), so E′ is partitioned into E′
i

for i from 1 to n. Next, H ′
1 and H ′

2 are indeed (n10, n10)-separated hypergraphs by the definitions
in Lines 4, 5, and 6. Furthermore, note that β ≥ 5|E| · γ/η holds (as required by Theorem 7.10),
since β = n10, η = 1/n2, and |E| = o(n8) by the size guarantee of Corollary 7.6. Finally, G1 and G2

are 1/n2-approximate 8-balanced weight assignments of H ′
1 and H ′

2 respectively, by Theorem 7.10.
Therefore, by Lemma 6.2, H̃1 and H̃2 are ǫ/3-spectral sparsifiers of H ′

1 and H ′
2 respectively. By

the additivity of the hypergraph quadratic form H̃ is an ǫ/3-spectral sparsifier of H ′. Since H ′ is
itself an ǫ/3-spectral sparsifier of H, this means that H̃ is an ǫ-spectral sparsifier of H, as claimed.

Moreover, by Lemma 6.1, H̃1 and H̃2 are both of size at most O(n log3(n)/ǫ4) (since we set λ
to be Θ(log3(n)/ǫ4)), and therefore so is H̃.

Finally, Algorithm 7 runs in time Õ(mr+ poly (n)). Indeed PolynomialSizeSparsification

runs in time Õ(mr) + poly (n), as shown in Lemma 7.6; SeparatedApproxBalancing runs in
time poly (n) by Theorem 7.10, since α = poly (n) and M = exp(O(n)); Sparsification runs in
time poly (n), since the input hypergraph is of poly (n) size.

References

[ACK+16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff,
and Qin Zhang. On sketching quadratic forms. In Proceedings of the 2016 Confer-
ence on Innovations in Theoretical Computer Science (ITCS), pages 311–319, 2016.
doi:10.1145/2840728.2840753.

[AK17] N. Alon and B. Klartag. Optimal compression of approximate inner products and di-
mension reduction. In Proceedings of the IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 639–650, 2017. doi:10.1109/FOCS.2017.65.

[AS08] Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, 2008.

35

https://doi.org/10.1145/2840728.2840753
https://doi.org/10.1109/FOCS.2017.65

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts
and flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.
doi:10.1137/070705970.

[BSS12] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan spar-
sifiers. SIAM Journal on Computing, 41(6):1704–1721, 2012. doi:10.1137/090772873.

[BST19] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions
of sparsification for graphs and hypergraphs. In Proceedings of the IEEE 60th An-
nual Symposium on Foundations of Computer Science (FOCS), pages 910–928, 2019.
doi:10.1109/focs.2019.00059.

[CKN20] Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsi-
fiers. In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 61–72, 2020. doi:10.1109/FOCS46700.2020.00015.

[CKST19] Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower
bounds for sketching graph cuts. In Proceedings of the 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2565–2569, 2019.

[CLTZ18] T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral
properties of hypergraph Laplacian and approximation algorithms. Journal of the ACM,
65(3):1–48, 2018. doi:10.1145/3178123.

[FSY18] Kaito Fujii, Tasuku Soma, and Yuichi Yoshida. Polynomial-time algorithms for sub-
modular Laplacian systems, 2018. arXiv:1803.10923.

[HSJR13] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The
total variation on hypergraphs - learning on hypergraphs revisited. In Advances in
Neural Information Processing Systems 26 (NIPS), pages 2427–2435, 2013.

[IKT21] Masahiro Ikeda, Yu Kitabeppu, and Yuuki Takai. Coarse Ricci curvature of hypergraphs
and its generalization, 2021. arXiv:2102.00698.

[IMTY19] Masahiro Ikeda, Atsushi Miyauchi, Yuuki Takai, and Yuichi Yoshida. Finding Cheeger
cuts in hypergraphs via heat equation, 2019. arXiv:1809.04396.

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
(ITCS), pages 367–376, 2015. doi:10.1145/2688073.2688093.

[KKTY21] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards
tight bounds for spectral sparsification of hypergraphs. In Proceedings of the 53rd Annual
ACM Symposium on Theory of Computing (STOC), 2021. to appear.

[Kom67] Yukio Komura. Nonlinear semi-groups in Hilbert space. Journal of the Mathematical
Society of Japan, 19(4):493–507, 1967.

[LM18] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-Laplacians, Cheeger in-
equalities and spectral clustering. In Proceedings of the 35th International Conference
on Machine Learning (ICML), volume 80, pages 3020–3029, 2018.

36

https://doi.org/10.1137/070705970
https://doi.org/10.1137/090772873
https://doi.org/10.1109/focs.2019.00059
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1145/3178123
http://arxiv.org/abs/1803.10923
http://arxiv.org/abs/2102.00698
http://arxiv.org/abs/1809.04396
https://doi.org/10.1145/2688073.2688093

[Lou15] Anand Louis. Hypergraph Markov operators, eigenvalues and approximation algo-
rithms. In Proceedings of the 47th Annual ACM on Symposium on Theory of Computing
(STOC), pages 713–722, 2015. doi:10.1145/2746539.2746555.

[Lov93] László Lovász. Random walks on graphs: A survey. In D. Miklós,
Vera T. Sós, and T. Szönyi, editors, Combinatorics, Paul ErdHos is eighty.
Vol. 2, pages 353–397. János Bolyai Mathematical Society, 1993. URL:
http://bolyai.math.elte.hu/~lovasz/erdos.pdf.

[LS15] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 250–269. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.24.

[LS17] Yin Tat Lee and He Sun. An sdp-based algorithm for linear-sized spectral spar-
sification. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 678–687. ACM, 2017.
doi:10.1145/3055399.3055477.

[Mey73] C. Meyer. Generalized inversion of modified matrices. SIAM Journal on Applied Math-
ematics, 24(3):315–323, 1973.

[Miy92] Isao Miyadera. Nonlinear Semigroups, volume 109. American Mathematical Soc., 1992.

[NR13] Ilan Newman and Yuri Rabinovich. On multiplicative λ-approximations and
some geometric applications. SIAM Journal on Computing, 42(3):855–883, 2013.
doi:10.1137/100801809.

[RV07] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An ap-
proach through geometric functional analysis. Journal of the ACM, 54(4):21, 2007.
doi:10.1145/1255443.1255449.

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011. doi:10.1137/08074489x.

[SY19] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2570–2581. jan 2019. doi:10.1137/1.9781611975482.159.

[Ten16] Shang-Hua Teng. Scalable algorithms for data and network analysis. Foun-
dations and Trends® in Theoretical Computer Science, 12(1-2):1–274, 2016.
doi:10.1561/0400000051.

[TMIY20] Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. Hypergraph clus-
tering based on PageRank. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages 1970–1978, 2020.
doi:10.1145/3394486.3403248.

37

https://doi.org/10.1145/2746539.2746555
http://bolyai.math.elte.hu/~lovasz/erdos.pdf
https://doi.org/10.1109/FOCS.2015.24
https://doi.org/10.1145/3055399.3055477
https://doi.org/10.1137/100801809
https://doi.org/10.1145/1255443.1255449
https://doi.org/10.1137/080734029
https://doi.org/10.1137/08074489x
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1561/0400000051
https://doi.org/10.1145/3394486.3403248

[Tro11] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2011. doi:10.1007/s10208-011-9099-z.

[Vis13] Nisheeth K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Computer
Science, 8(1–2):1–141, 2013. doi:10.1561/0400000054.

[YNN+20] Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis,
and Partha Talukdar. NHP: Neural hypergraph link prediction. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management
(CIKM), pages 1705–1714, 2020. doi:10.1145/3340531.3411870.

[YNY+19] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis,
and Partha P. Talukdar. HyperGCN: A new method for training graph convolutional
networks on hypergraphs. In Advances in Neural Information Processing Systems 32,
pages 1509–1520, 2019.

[Yos16] Yuichi Yoshida. Nonlinear Laplacian for digraphs and its applications to network anal-
ysis. In Proceedings of the 9th ACM International Conference on Web Search and Data
Mining (WSDM), pages 483–492, 2016. doi:10.1145/2835776.2835785.

[Yos19] Yuichi Yoshida. Cheeger inequalities for submodular transformations. In Proceedings of
the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2582–
2601, 2019. doi:10.1137/1.9781611975482.160.

[ZHTC20] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan. Re-revisiting
learning on hypergraphs: Confidence interval, subgradient method, and extension to
multiclass. IEEE Transactions on Knowledge and Data Engineering, 32(3):506–518,
2020. doi:10.1109/tkde.2018.2880448.

[ZLO15] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
237–245. ACM, 2015. doi:10.1145/2746539.2746610.

38

https://doi.org/10.1007/s10208-011-9099-z
https://doi.org/10.1561/0400000054
https://doi.org/10.1145/3340531.3411870
https://doi.org/10.1145/2835776.2835785
https://doi.org/10.1137/1.9781611975482.160
https://doi.org/10.1109/tkde.2018.2880448
https://doi.org/10.1145/2746539.2746610

	1 Introduction
	1.1 Additional Related Work

	2 Preliminaries
	2.1 Spectral Graph Theory
	2.2 Effective Resistance
	2.3 Chernoff Bound

	3 Technical Overview
	3.1 Analyzing Ordinary Graphs
	3.2 Extension to Hypergraphs
	3.3 Speed-Up

	4 Warm-Up: Ordinary Graphs
	4.1 Proof of Lemma 4.2

	5 -Balanced Weight Assignments
	5.1 Spanning Tree Potential
	5.2 Existence of -Balanced Weight Assignments
	5.3 Polynomial-Time Construction

	6 Hypergraph Sparsification
	7 Nearly Optimal Speed-Up
	7.1 Fast Algorithm for Constructing Polynomial-Sized Sparsifiers
	7.2 Even Faster Construction for -Balanced Weight Assignments
	7.3 Proof of the Second Part of Theorem 1

