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Abstract

We give a 0.5368-competitive algorithm for edge-weighted online bipartite matching. Prior
to our work, the best competitive ratio was 0.5086 due to Fahrbach, Huang, Tao, and Zadi-
moghaddam (FOCS 2020). They achieved their breakthrough result by developing a subroutine
called online correlated selection (OCS) which takes as input a sequence of pairs and selects one
item from each pair. Importantly, the selections the OCS makes are negatively correlated.

We achieve our result by defining multiway OCSes which receive arbitrarily many elements
at each step, rather than just two. In addition to better competitive ratios, our formulation
allows for a simpler reduction from edge-weighted online bipartite matching to OCSes. While
Fahrbach et al. used a factor-revealing linear program to optimize the competitive ratio, our
analysis directly connects the competitive ratio to the parameters of the multiway OCS. Finally,
we show that the formulation of Farhbach et al. can achieve a competitive ratio of at most 0.5239,
confirming that multiway OCSes are strictly more powerful.

http://arxiv.org/abs/2106.05579v2


1 Introduction

The matching problem has played a pivotal role in the development of algorithmic techniques in
combinatorial optimization. The online version of the problem was one of the first graph opti-
mization problems studied in the online literature. Karp, Vazirani and Vazirani [KVV90] initiated
a study of the problem and gave a 1 − 1/e competitive algorithm for unweighted graphs. Here,
the vertices of one side (the offline side) are known to the algorithm in advance. The vertices of
the other side appear in an online fashion. As they appear, they must be matched irrevocably
to an offline vertex (or discarded). Since the work of [KVV90], online bipartite matching received
considerable attention and their ideas were applied to a variety of other online assignment problems.

More than a decade later, the emergence of sponsored search auctions gave renewed impetus to
the study of online matching and its variants. There is a natural correspondence here – the offline
side corresponds to advertisers and the online side corresponds to impressions (i.e. opportunities
to place ads). Aggarwal et al [AGKM11] generalized the [KVV90] result to the vertex-weighted
case, obtaining a 1− 1/e competitive algorithm.

The edge-weighted case had remained a tantalizing open problem until very recently. Here, it
is not hard to see that no non-trivial competitive ratio is possible without giving the algorithm
additional flexibility. Researchers have focused on the free disposal setting where offline vertices
can be assigned multiple online vertices but the contribution of an offline vertex to the objective
function is the largest of the edge weights assigned to that vertex. (i.e. previously matched edges
can be disposed for free to make room for higher weight edges). In the display advertising setting,
this corresponds to assigning multiple impressions to an advertiser.

For the edge weighted problem, a natural greedy algorithm achieves competitive ratio 0.5. This
was the best known until the recent breakthrough by Fahrbach, Huang, Tao and Zadimoghaddam
[FHTZ20] who gave a 0.5086 competitive algorithm. One of their main technical contributions was
a novel algorithmic ingredient called online correlated selection (OCS). This is an online subroutine
that takes a sequence of pairs of vertices as input and selects one vertex from each pair such that
decisions across pairs are negatively correlated. A suitable quantification of this negative correlation
was plugged into a factor revealing linear program to obtain a bound on the competitive ratio.

In this work we give generalize the OCS definition of Fahrbach et al [FHTZ20] to multiway
OCSes which take in multiple vertices at each step. Our analysis directly connects the parameters
of our multiway OCS to the eventual competitive ratio without the need to go through a factor
revealing linear program. We give a general framework for obtaining multiway OCSes and instanti-
ate this framework to obtain an improved competitive ratio of 0.5368 for online weighted matching.
Finally, we show that the OCS definition of Fahrbach et al [FHTZ20] cannot lead to a competitive
ratio better than 0.5239 demonstrating that our multiway OCSes are strictly more powerful.

1.1 Related Work

Online weighted matching has been extensively studied in the literature. See the excellent survey
by Mehta [Meh13] for a comprehensive overview. Two popular settings where competitive ratios
better than 0.5 have been obtained are
(1) the case where offline vertices have large capacity (i.e a large number of online vertices can be
assigned to an offline vertex). This includes work of Kalyanasundaram and Pruhs [KP00], Feldman
et al [FKM+09] on Display Ads and work on the Adwords problem [MSVV07, BJN07].
(2) the case where stochastic information is available about the online vertices. This includes work
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in the setting where online vertices are drawn from a known or unknown distribution [FMMM09,
KMT11, DJSW19, HMZ11, MGS12, MP12, JL14] or the setting that they arrive in a random order
[GM08, DH09, FHK+10, MY11, MGZ12, MWZ14, HTWZ19].
In addition to these, several recent advances have been made in more general settings including
non-bipartite graphs and different arrival models [HKT+18, GKS19, GKM+19, HPT+19].

1.2 Problem definition: Edge-weighted online bipartite matching

Consider some weighted bipartite graph G = (L,R,w), where L and R are the left and right vertices
respectively. If there is an edge between i ∈ L and j ∈ R, then wij > 0 is the weight of that edge.
Otherwise, wij = 0.

At the start, the algorithm is given the entire set of left vertices, L, but no information about
R or w. The vertices from R appear in an online fashion, one by one. Hence, we refer to L as
the offline vertices R as the online vertices. When an online vertex j ∈ R appears, the entries wij

for each i ∈ L are revealed to the algorithm. The algorithm must irrevocably decide which offline
vertex to match j to before the next online vertex appears.

The objective is to maximize the total weight of the matching. We operate in the free disposal
model. This means a single offline vertex i may be matched to multiple online vertices, but only
the weight of its heaviest edge is counted towards the objective. We say a randomized algorithm is
“Γ-competitive” or “has competitive ratio of Γ” if the expected objective of the algorithm’s output
is within a multiplicative factor of Γ of the optimal objective with hindsight.

2 Online correlated selection: Motivation and application

We withhold a full preliminaries section until Section 6, mentioning for now that we use boldface
(e.g. x ∼ D) to denote random variables.

It is well-known that even for unweighted online bipartite matching, deterministic algorithms
cannot achieve a competitive ratio better than 0.5. In this section, we’ll investigate what form of
randomness is needed to push the competitive ratio beyond 0.5.

At the jth time step, the portion of the graph corresponding to j ∈ R is revealed to the algorithm
and it must irrevocably match it to some ij ∈ L. In order to achieve a competitive ratio better
than 0.5, the choices i1, i2, . . . must use randomness. What if those choices are independent?

Lemma 2.1. Even for unweighted online bipartite matching, no algorithm making decisions that
are independent across time steps can achieve a competitive ratio better than 0.5.

We include a proof of Lemma 2.1 in Appendix A. In order to break the 0.5-competitive barrier,
not only does the algorithm need to carefully select a marginal distribution for each ij , it also needs
some “smarts” in deciding how to realize ij — they cannot simply be independent. The key insight
underlying Online Correlated Selection (OCS) is that these tasks can be tackled individually.

We separate the online algorithm into two components. The first component is fully determin-
istic and has access to the input instance. At the jth time step, it chooses a marginal distribution
for ij as a deterministic function of the portion of the graph revealed so far. In particular, that
marginal distribution does not depend on the realizations of i1, . . . , ij−1.

The second component, the OCS, is given the marginal distribution ij , but not given any other
information about the input instance — It cannot “directly see” the graph. At the jth time step, it
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At time step j . . . Deterministic Component Randomized Component (OCS)

Information revealed The edge weights, wij for each
i ∈ L

The marginal distribution for ij
(from the deterministic compo-
nent) and the values for i′j for
each j′ < j

Information hidden The randomized selections of the
OCS

The input instance

Output A marginal distribution for ij A realization for ij

Figure 1: We separate a matching algorithm into a deterministic component and randomized
component, each with different responsibilities and access to information.

chooses a realization for ij consistent with the desired marginal as a function of its own randomness.
In particular, the realization for ij can depend on the previous realizations of i1, . . . , ij−1. This
separation of responsibilities is summarized in Figure 1.

In the following definition, a probability vector is a nonnegative vector whose elements sum to
1. It represents a marginal distribution over elements in L.

Definition 1 (Continuous OCS). Consider a set of ground elements, L. A continuous OCS is
an online algorithm that at each time step j = 1, 2, . . ., receives a probability vector p(j) with |L|
elements and irrevocably chooses a winner in ij ∈ L among those with (p(j))i > 0.

By Lemma 2.1, in order to achieve a competitive ratio of greater than 0.5, the OCS cannot
simply choose winners independently at each round according to the desired marginal distribution.
In the next subsection, we examine what properties an OCS needs to have to allow for better
competitive ratios.

2.1 What makes a good OCS?

The algorithm’s goal is to maximize the expected weight of the matching over the randomness of
the OCS. Having many online vertices j ∈ R matched to the same offline vertex i ∈ L can be
wasteful. This is because only the heaviest match counts for the objective. To counteract this, the
choices the OCS makes will be negatively correlated. In particular we wish for, j 6= j′ ∈ R, that:

Pr[ij = ij′ = i] < (p(j))i · (p
(j′))i

Unfortunately, it is impossible for the OCS to negatively correlated decisions across all time steps by
any non-negligible amount. We formalize that impossibility in Lemma A.1, proved in Appendix A.
To get around that, we negatively correlated time steps that are “close” temporally. Let S =
{j1, j1 + 1, . . . , j2} be a set of consecutive time steps. We’ll require our OCS to satisfy

Pr[ij 6= i for every j ∈ S] ≤ f




∑

j∈S

p
(j)
i





where f : R≥0 → [0, 1] is a function quantifying the negative correlation of an OCS. The OCS
that chooses winners independently at each round according to the marginal distribution satisfies
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the above equation with ftrivial(x) := e−x. OCSes with “good” negative correlation have f(x) <
ftrivial(x) and the amount f is smaller than ftrivial directly connects to competitive ratio of the
resulting algorithm.

The selections at time steps that are very far apart temporally will essentially be independent,
as in the following definition.

Definition 2 (Quantifying a continuous OCS, informal version of Definition 12). For any function
f : R≥0 → [0, 1], an f -continuous OCS is a continuous OCS with the following guarantee. For any
element i ∈ L and S1, . . . , Sk each sets of consecutive time steps,

Pr[ij 6= i for every j ∈ S1 ∪ . . . ∪ Sk] ≤
k∏

ℓ=1

f




∑

j∈Sk

(p(j))i



 .

We give an algorithm for edge-weighted online bipartite matching using an f -OCS as a subrou-
tine and are able to directly connect the competitive ratio to f .

Theorem 1 (Informal version of Theorem 6). For any differentiable and convex f : R≥0 → [0, 1],
if there is an f -continuous OCS, there is an algorithm for edge-weighted online bipartite matching
with competitive ratio of

Γ := 1−

∫ ∞

0
e−tf(t)dt.

As expected, using ftrivial(x) := e−x gives a competitive ratio of 0.5. Any f -OCS for f strictly
less than ftrivial gives a competitive ratio that breaks the 0.5 barrier.

The proof of Theorem 1 uses a similar online primal-dual formulation as that of [FHTZ20]. We
find that using our definition for an OCS in place of theirs substantially simplifies that analysis.
In particular, we derive a simple analytic formula for the competitive ratio whereas they use a
factor-revealing LP. The source of that simplification is that their algorithm needs to decide which
of three round types, “deterministic,” “randomized,” or “unmatched,” to execute at each time step.
Our continuous formulation implicitly interpolates between all three round types.

2.2 Discrete OCSes

We define discrete OCSes for two reasons.

1. It allows us to relate our results to those of [FHTZ20] who used (what we call) a discrete
OCS.

2. Later, to construct a continuous OCS, we will first construct a discrete OCS and use a
reduction to turn it into a continuous OCS.

The following definition of an m-discrete OCS is equivalent to a continuous OCS where each
element in the probability vector is forced to be an integer multiple of 1

m
. Therefore, continuous

OCSes are generalizations of discrete OCSes.

Definition 3 (Discrete OCS). Consider a set of ground elements, L. An m-discrete OCS is an
online algorithm that at each time step j = 1, 2, . . ., is given a size-m multiset Aj of elements in L
and irrevocably selects a single winner ij ∈ Aj.
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We quantify the quality of a discrete OCS similarly as for continuous OCSes.

Definition 4 (Quantifying a discrete OCS). For any m ∈ Z≥2 and F : Z≥0 → [0, 1], an (F,m)-
discrete OCS is an m-discrete OCS with the following guarantee. For any element i ∈ L and
S1, . . . , Sk each sets of consecutive time steps,

Pr[ij 6= i for every j ∈ S1 ∪ . . . ∪ Sk] ≤
k∏

ℓ=1

F




∑

j∈Sk

counti(Aj)



 .

where counti(Aj) is the number of times i appears in the multiset Aj .

For example, the OCS that independently and uniformly ij from Aj at each round achieves
Ftrivial(n) = (1− 1/m)n. Our goal is to construct OCSes with F < Ftrivial, which directly leads to
competitive ratios better than 1

2 .

Theorem 2 (Informal version of Theorem 7). For any m ∈ N and convex F : Z≥0 → [0, 1], if
is there an (F,m)-discrete OCS, there is an algorithm for edge-weighted online bipartite matching
with competitive ratio of

Γ := 1−
∞∑

n=0

mn

(m+ 1)n+1
· F (n).

We prove (a formal version of) Theorem 2 by showing how to construct a continuous OCS from
a discrete OCS and then applying Theorem 1. This is done in Section 8.

Lastly, we connect our OCS definition to that of Fahrbach et al.

Definition 5 (γ-OCS, Definition 2 of [FHTZ20]). For any γ ∈ (0, 1), a γ-OCS is an (F, 2)-discrete
OCS where

F (n) := 2−n · (1− γ)max(n−1,0).

As a straightforward application of Theorem 2, we derive an explicit formula mapping γ to a
competitive ratio.

Theorem 3. For any γ ∈ (0, 1), if there is a γ-OCS, there is an algorithm for edge-weighted online
bipartite matching with a competitive ratio of

Γ =
3 + 2γ

6 + 3γ
. (1)

We experimentally compared the competitive ratio from Equation (1) to those of the gain-
sharing LP used in [FHTZ20]. For every γ ∈ {0, 0.01, . . . 0.46}, the competitive ratios are within
an additive 10−8 of one-another. That small difference is likely due to rounding issues. For γ ∈
{0.47, 0.48, . . . , 1}, our equation gives a greater competitive ratio. Note that, as we later prove in
Lemma 2.2, γ-OCSes can only exist for γ ≤ 1

3 and our competitive ratio appears to match theirs
on that range.

Lastly, we remark that “perfect negative correlation” for Definition 5 corresponds to γ = 1. As
noted in [FHTZ20] and can be confirmed by plugging γ = 1 into Theorem 3, that corresponds to
a competitive ratio of Γ = 5

9 . This is far from the best known upper bound of Γ = 1 − 1
e
. On the
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other hand, perfect negative correlation for a continuous OCS corresponds to f(x) = (1−x)+ which
gives a competitive ratio of Γ = 1 − 1

e
. While perfect negative correlation is impossible, the fact

that it corresponds to a competitive ratio equal to the best known upper bound seems to suggest
that continuous OCSes are a step in the right direction towards finding the optimal competitive
ratio.

2.3 Negative results

We prove the following for Fahrbach et al.’s formulation of an OCS.

Lemma 2.2. No γ-OCS exists for γ > 1
3 .

Both Theorem 3 and the factor-revealing LP of [FHTZ20] agree that the competitive ratio for
γ = 1

3 is less than 0.5239. This is an upper bound on the competitive ratios that can be achieved
simply by constructing better γ-OCSes. Our competitive ratio of 0.5368 is larger, confirming that
multiway OCSes are strictly more powerful.

3 Constructing a multiway OCS: Meta algorithm overview

We give a meta algorithm for constructing m-discrete OCSes given a “win distribution,” W, over
[0, 1]N. A sample fromW is a sequence of probabilities, (x1,x2, . . .), with the quality of the resulting
OCS (i.e. the function F in Definition 4) depending on how negatively correlated the elements in
that sequence are. During initialization, the meta algorithm draws an independent “win sequence”,
(x1(i),x2(i), . . .) for each i ∈ L. Our OCS also stores an index within the win distribution, k(i) for
each i ∈ L that is initialized to ki = 1.

At each time step, the OCS receives Aj = {i1, . . . , im}. For each i ∈ Aj , it determines the
“desired win probability” of i in this time step. In the case where i appears exactly once in Aj , this
desired win probability is exactly equal to xk(i)(i). When i appears r ≥ 2 times in Aj , the desired
win probability is the probability i would win in at least one of the next r rounds if it appeared
exactly once in each. Then, a tournament algorithm takes in these desired win probabilities and
selects a single winner for the round consistent with the desired win probabilities and k(i) is
incremented r times. We include pseudocode for our meta algorithm in Figure 2, though defer
description of the win distribution and tournament subroutine for later.

The fact that the desired win probabilities of different vertices are independent makes analysis
tractable. To achieve a competitive ratio better than 0.5, we need the winners of our OCS to be
negatively correlated. We achieve this by making the random variables in the sequence returned
by the win distribution negatively correlated. This way, if i has a small chance of winning in one
round, it has a larger chance of winning in other rounds. In particular, we need two types of
negative correlation for (x1,x2, . . .) ∼ W.

1. A qualitative and long-distanced negative correlation. We need to ensure there doesn’t exist
any positive correlation between xk1 and xk2 even for k1 and k2 far apart. We prove that
our win probabilities satisfy a generalization of negatively correlated random variables called
negative association.

Definition 6 (Negative association [JDP83]). Random variables x1,x2, . . . ,xn are said to
be negatively associated if, for every pair of disjoint subsets A1, A2 ⊆ [n] and nondecreasing

6



OCSW ,T

1. Initialization: For each i ∈ L, independently draw a x(i) ∼ W and initialize an index
k1(i)← 1

2. Upon receiving Aj = {i1, . . . , im}

(a) Determine desired win probabilities: For each i ∈ Aj, let rj(i) be it’s multi-
plicity in Aj . Compute the desired win probability

wj(i) := 1−

rj(i)−1
∏

ℓ=0

(

1− xkj(i)+ℓ

)

(2)

(b) Choose a winner: Use a (possibly randomized) tournament subroutine, T , to
select a single i ∈ Aj as winner. This is done so that the probability each i ∈ Aj

wins is at least wj(i).

(c) Increment counters: For each i ∈ L, increment kj+1(i)← kj(i) + rj(i)

Figure 2: Our meta algorithm for constructing OCSes as a function of a win distribution,
W and tournament subroutine T

functions f1, f2,

Cov[f1(xA1), f2(xA2)] ≤ 0

where xA is the vector (xi1 ,xi2 , . . . ,xi|A|
) when A = {i1, i2, . . . , i|A|}.

Proving this ends up being essential to showing our OCS has any guarantees, even those
matching the trivial fully independent OCS.

2. A quantitative and short-distanced negative correlation. We want the values of xj, and xj′ to
be strongly negatively correlated whenever j is “close to” j′. The magnitude of this negative
correlation directly ties into the probability that i is selected in consecutive time steps and
therefore the quality of our OCS.

We prove a meta theorem on the quality of the algorithm in Figure 2 as a function of the win
distribution.

Theorem 4 (Quality of our meta algorithm). Let W be a win-distribution with the following three
properties.

1. Negatively associated: For any n ≥ 1 and x ∼ W, the variables x1, . . . ,xn are negative
associated.

2. Shift-invariant: For any n ≥ 1 and x ∼ W, the distribution of (x1,x2, . . .) is identical to
that of (xn,xn+1, . . .).

7



3. Sufficiently small: For each r ∈ [m − 1] and t ∈ [0, 1], defining w(r) to be the random
variable representing the distribution of the desired win probability for a vertex of multiplicity
r,

w(r) ∼

(

1−
r∏

ℓ=1

(1− xℓ)

)

where x ∼ W,

the following holds

E
x∼W

[(

w(r) − t
)

+

]

≤ 1− t−
m− r

m
·
(

1− t
m

m−r

)

(3)

where (z)+ is short hand for max(z, 0).

Then, there exists some tournament subroutine T for which OCSW ,T is a (f,m)-discrete OCS for

F (n) := E
x∼W

[
n∏

ℓ=1

(1− xℓ)

]

. (4)

Each of the three criteria of Theorem 4 are desirable for intuitive reasons. Let S1, . . . , Sk be
disjoints set of time steps. Negative association ensures that,

Pr[i never selected in
k⋃

ℓ=1

Sℓ] ≤
k∏

ℓ=1

Pr[i never selected in Sℓ].

Shift-invariance ensures that the probability that i is not selected in a set of n consecutive ap-
pearances is independent of when those appearances occur. Finally, w(r) being sufficiently small
ensures that it’s possible for a tournament subroutine to guarantee that the probability i wins a
round with desired win probability w is at least w.

Our proof of Theorem 4 leverages a number of tools from probability theory. We use many
closure properties of negatively associated variables given in [JDP83] and also prove some additional
ones. Later, we formalize what it means for one variable to be “larger and more spread out” than
another using the increasing convex order. We do so to take advantage of a powerful result by
Müller and Rüschendorf [MR01] which generalizes a classic result of Strassen [Str65]. That result
guarantees the existence of a particular coupling (a, b) whenever b is “larger and more spread out”
than a.

4 Organization of the remainder of this paper

Section 5 compares our results to concurrent works and Section 6 summarizes our notation. The
remainder of this paper is devoted to proving our main theorem:

Theorem 5. There is a Γ = 0.5368-competitive algorithm for edge-weighted online bipartite match-
ing.

The sections are ordered as successive reductions from edge-weighted online bipartite matching
with some proofs deferred to the appendix.
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• In Section 7, we give the formal version of Definition 2, specifying the requirements a con-
tinuous OCS has to meet to be useful for edge-weighted online bipartite matching. We also
state and prove the formal version of Theorem 1 mapping that definition to a competitive
ratio.

• In Section 8, we show to construct a continuous OCS from a discrete OCS and then give the
formal version of Theorem 2 mapping a discrete OCS to a competitive ratio. We also give
the proof of Theorem 3 and of Theorem 5 as a consequence of the discrete OCS construction
in later sections.

• In Section 9, we prove Theorem 4 which gives a discrete OCS from a win distribution.

• In Section 10, we construct a win distribution meeting the requirements of Theorem 4 and
optimize its parameters to achieve a 0.5368-competitive algorithm.

• Finally, in Section 11, we provide a short proof of Lemma 2.2 upper bounding the competitive
ratio achievable by the OCS definition of [FHTZ20].

5 Comparison to the concurrent work

5.1 The work of Gao et al.

Concurrently and independently, Gao et al. also explored the use of multiway OCSes in the con-
struction of improved online matching algorithms [GHH+21]. The bulk of their work focuses on
vertex-weighted online bipartite matching. This is a special case of edge-weighted online bipartite
matching where we assume that all edges to each offline vertex have the same weight. While an
algorithm achieving the optimal competitive ratio competitive ratio of (1 − 1

e
) ≈ 0.632 is known

in this setting [AGKM11], Gao et al. are able to show that OCSes can also be used to tackle this
problem and achieve a competitive ratio of 0.593.

They do so by developing a definition of multiway OCSes similar to our definition of continuous
OCSes. In the vertex-weighted setting we only care about whether an element i is selected at least
once at some time step and do not care about which time step it is selected in. Their definition for a
“multi-way semi-OCS” is equivalent to Definition 2 where we take k = 1 and S1 the set containing
all time steps. For vertex-weighted online bipartite matching, they derive the same formula for the
competitive ratio as we do in Theorem 1 using “multi-way semi-OCSes.” A similar result could be
derived using our algorithm by never executing Equation (10) (since we only care about whether a
vertex is matched, not when it is matched). The resulting algorithm and analysis simplifies.

We stress that extending multiway OCSes to the historically challenging edge-weighted setting
requires overcoming additional hurdles.

1. The informal definition of Definition 2 isn’t strong enough to derive Theorem 1. We needed to
identify an additional constraint on the OCS (see “partially ignore small gaps” of Definition 12)
that is both feasible to construct and sufficient to developing an algorithm for edge-weighted
online bipartite matching.

2. Constructing a multiway OCS is more challenging than a “multi-way semi-OCS” and we need
to develop a new framework to do so. For example, in the construction of Gao et al., the
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probability a vertex is selected in a late time step can be made arbitrarily small (since they
only need each vertex to be matched once), and so would not meet our definition.

Gao et al. also contribute to the edge-weighted setting. In this setting, they give 0.519-
competitive algorithm by constructing an improved 2-way OCS. Their result improves upon the
competitive ratio of Fahrbach et al. [FHTZ20] though isn’t as large as ours. Finally, they prove
that no γ-OCS exists for γ > 1

4 , which is stronger than the 1
3 bound we show in Lemma 2.2. For

our purposes, the conclusion is the same: Multiway OCSes are strictly more powerful than two-way
OCSes for edge-weighted online bipartite matching.

5.2 The work of Shin and An

Also concurrently and independently, Shin and An created a 3-discrete OCS an applied it to edge-
weighted online bipartite matching [SA21]. They construct their 3-discrete OCS by running two
parallel instance of a γ-OCS (which is 2-discrete). Upon receiving a set of three elements, two are
chosen uniformly at random to be passed to one of the γ-OCSes. The winner and the third element
are passed into the other γ-OCS to decide the overall winner of the round.

Then, they show how to use this 3-discrete OCS for edge-weighted online bipartite matching. To
do so, they extend the analysis and factor-revealing LP of Farhbach et al. and derive a competitive
ratio of 0.5093. We note that plugging in the parameters of their 3-discrete OCS into Theorem 2
gives the same competitive ratio up to the four digits of accuracy provided in their paper, though
with a completely different derivation than theirs.

6 Preliminaries

For brevity, we use decreasing in place of nondecreasing and increasing in place of nondecreasing.
The notation (x)+ is used as shorthand for max(x, 0).

We use boldface (e.g. x ∼ D) to denote random variables. The notation a
d
= b signifies that

a and b have the same distribution. The following distributions are of interest.

1. The uniform distribution x ∼ Uniform(0, 1), gives a continuous x equally likely to be any-
where on the interval [0, 1].

2. The Bernoulli distribution, x ∼ Ber(p), gives a discrete x that is 1 with probability p and 0
otherwise.

3. The geometric distribution, x ∼ Geo(p) gives i − 1, where i is the smallest index such that

yi = 1 for y1,y2, . . .
iid
∼ Ber(p).

4. The Poisson distribution, x ∼ Poi(λ) gives x defined as the following limit

x := lim
n→∞

(
n∑

i=1

xi where xi
iid
∼ Ber(λ/n)

)

.

5. The categorical distribution, i ∼ Categorical(p1, . . . , pm) where
∑m

j=1 pj = 1, gives a discrete
i where i = i with probability pi.
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We’ll need various ways to compare distributions. The simplest is stochastic dominance.

Definition 7 (Stochastic dominance). Let a and b be random variables over R. We say that a
stochastically dominates b, denoted a � b if, for any t ∈ R,

Pr[a ≤ t] ≤ Pr[b ≤ t]

Definition 8 (Stochastically increasing/decreasing functions). A stochastic function f from Rn

to a distribution over R is said to be increasing in coordinate i ∈ [n] if for any x, y ∈ Rn where
xj = yj for each j 6= i and xi ≥ yi, f(x) stochastically dominates f(y). It is said to be stochastically
decreasing in coordinate i if the f(y) stochastically dominates f(x) under the same conditions. A
function is stochastically increasing (or decreasing) if it is stochastically increasing (or decreasing)
in all of its coordinates.

In some proofs, we’ll need for one distribution to be “less spread out” than another. We use
the following two notions. For a more thorough overview, see [SS07].

Definition 9 (Convex order). Let a, b be two univariate random variables such that,

E[φ(a)] ≤ E[φ(b)]

for all convex functions φ : R → R for which the above expectations exist. Then, we say a is
smaller than b in the convex order and denote this,

a �cx b.

Similar to the above, but where we restrict φ to be increasing,

Definition 10 (Increasing convex order). Let a, b be two univariate random variables such that,

E[φ(a)] ≤ E[φ(b)]

for all increasing convex functions φ : R→ R for which the above expectations exist. Then, we say
a is smaller than b in the increasing convex order and denote this,

a �icx b.

Finally, we’ll use discrete derivatives.

Definition 11 (Discrete derivative). For any function F : Z→ R, the discrete derivative of F is
defined as

(∆F )(n) := F (n+ 1)− F (n).

We use the notation ∆(ℓ) to denote the discrete derivative operator composed ℓ times.

11



7 Continuous OCS: Formal definition and theorems

In this section we formalize our definition of the parameters of a continuous OCS and the relation
between those parameters and the competitive ratio. Recall in Definition 2, we guarantee the
probability i isn’t picked in two consecutive sequences of time steps, S1 and S2, is at most

f(weighti(S1)) · f(weighti(S2)). (5)

where weighti(S) =
∑

j∈S(p
(j))i. On the other hand, if S1 and S2 are actually consecutive, then

the probability i isn’t picked is at most

f
(
weighti(S1) + weighti(S2)

)
. (6)

Good OCSes will have f(x+ y) < f(x) · f(y) and so Equation (6) gives a stronger guarantee than
Equation (5). Now, suppose that S1 and S2 are “almost” consecutive. For S1 = {j1, . . . , j2} and
S2 = {j3, . . . , j4}, perhaps its the case that j3 = j2 + 2. Then, intuitively, we should expect a
guarantee close to that of Equation (6) to hold.

Let G be the time steps in the “gap”, meaning G := {j2+1, . . . , j3−1}. For some rate parameter

r and w :=
∏

j∈G(1 − ·p
(j)
i )r, we will guarantee that the probability i is not selected in S1 or S2 is

at most

w · f
(
weighti(S1) + weighti(S2)

)
+ (1− w) · f(weighti(S1)) · f(weighti(S2))

Essentially, when determining the probability i is picked, we pretend the gap G doesn’t exist with
probability w. This guarantee smoothly interpolates between Equations (5) and (6) as S1 and S2

grow further apart. We generalize this idea to more than two sets in the following definition.

Definition 12 (Parameters of a continuous OCS, formal version of Definition 2). For any rate
r ≥ 0 and function f : R≥0 → [0, 1], an (f, r)-continuous OCS is a continuous OCS with the
following guarantee. For any element i ∈ L and set of time steps S,

Pr[ij 6= i for every j ∈ S] ≤ F(S, p)

where p is the vector whose jth entry is (p(j))i and F satisfies

1. Consecutive: If S = {j1, . . . , j2}, then

F(S, p) ≤ f




∑

j∈S

pj





2. Partially ignore small gaps: For any disjoint (not necessarily consecutive) S1, S2 ⊆ N

satisfying

j1 < j2 for each j1 ∈ S1, j2 ∈ S2

Let j⋆ be some time step between j1, j2 for every j1 ∈ S1, j2 ∈ S2. For

(delj⋆(p))j :=

{

pj j < j⋆

pj+1 j ≥ j⋆

delj⋆(S1 ∪ S2) := {j for each j ∈ S1} ∪ {j − 1 for each j ∈ S2}

12



Then, for w = (1− pj⋆)
r,

F(S1 ∪ S2, p) ≤ w · F(delj⋆(S1 ∪ S2),delj⋆(p)) + (1− w) · F(S1, p) · F(S2, p) (7)

Smaller r corresponds to ignoring larger gaps, making the OCS anticorrelated over larger dis-
tances. Instead of setting w = (1− pj⋆)

r, we could have instead set w = e−pj⋆ ·r, w = (1− r · pj⋆)+,
or other functions where −r ≤ dw

dpj⋆
≤ 0, and our proof of Theorem 6 would still work. The choice

we make here plays well with the proof of Lemma 8.1.
We next give a formal version of Theorem 1, with the main difference being that r can’t be too

large.

Theorem 6 (Formal version of Theorem 1). For any thrice differentiable convex f : R≥0 → [0, 1]
where f and f ′ are log-concave, meaning

f ′′(x) · f(x) ≤ (f ′(x))2 for all x ≥ 0

f ′′′(x) · f ′(x) ≤ (f ′′(x))2 for all x ≥ 0

let,

Γ := 1−

∫ ∞

0
e−tf(t)dt. (8)

For any r satisfying

r ≤
−f ′(0) − Γ

Γ + (1− Γ) · f ′(0)
(9)

If there is a (f, r)-continuous OCS, then there is a Γ-competitive algorithm for edge-weighted online
bipartite matching.

In most cases, f ′(0) = −1 as OCSes of interest have f between ftrivial = e−x and fperfect =
(1−x)+. When f ′(0) = 1, Equation (9) imposes an upper bound on r of 1−Γ

2Γ−1 , which is a decreasing
function of Γ on the interval (0.5, 1). Hence, the larger a competitive ratio we want, the smaller r
has to be, meaning the OCS must be anticorrelated over larger distances.

The remainder of this section is devoted to proving Theorem 6. The algorithm uses an online
primal-dual approach.

7.1 Primal dual formulation

We begin with the standard primal linear program for (offline) edge-weighted bipartite matching.
Let wij be the weight of the edge between i ∈ L to j ∈ R where wij = 0 indicate no such edge
exists and xij be the probability that (i, j) is the heaviest edge matched to vertex i.

max
∑

i∈L

∑

j∈R

wijxij

s.t.
∑

j∈R

xij ≤ 1 ∀i ∈ L

∑

i∈L

xij ≤ 1 ∀j ∈ R

xij ≥ 0 ∀i ∈ L, j ∈ R

13



This gives rise to a dual linear program.

min
∑

i∈L

αi +
∑

j∈R

βj

s.t. αi + βj ≥ wij ∀i ∈ L, j ∈ R

αi ≥ 0 ∀i ∈ L

βj ≥ 0 ∀j ∈ R

We use P to denote the primal objective and D to denote the dual objective. Our online algorithm
will simultaneously maintain a matching for the graph and a dual assignment that will meet the
following two criteria.

Fact 7.1 (Lemma 2 from [FHTZ20]). Suppose an algorithm maintains primal and dual assignments
such that, for some 0 ≤ Γ ≤ 1, the following conditions hold at all time steps.

1. Approximate dual feasibility: For any i ∈ L and j ∈ R

αi + βj ≥ Γ · wij

2. Reverse weak duality: The objectives of the primal and dual assignments satisfy P ≥ D.

Then the algorithm is Γ-competitive.

Inspired by [DHK+16, FHTZ20], we do not directly maintain the primal variables xij . Instead,
for each i ∈ L and weight-level w ≥ 0, we define

yi(w) := Pr[i not matched to a vertex of weight at least w]

In contrast, [DHK+16, FHTZ20] defines their yi(w) to be yi(w) = 1−yi(w). We find our “reversed”
definition simplifies later analysis. The primal objective is then

P =
∑

i∈L

∫ ∞

0
(1− yi(w))dw

Similarly, we introduce and maintain new variables αi(w) for each i ∈ L and weight-level w ≥ 0
and then set the value of αi to

αi =

∫ ∞

0
(Γ− αi(w))dw.

Remark 1. Note that yi(w) and αi(w) are both step functions with at most one change per unique
value in the set {wij | j ∈ R}. Hence, they can be stored efficiently.

7.2 High level algorithmic overview

Fix some (f, r)-continuous OCS. At each time step j ∈ [T ], the values wij are revealed for every
i ∈ L. As a function of these weights and the state of the primal and dual variables, the algorithm
will determine a probability vector p(j) to pass into the OCS. Then, it updates the primal variables
to account for the probability each vertex is matched to j and the dual variables to maintain the
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conditions dual feasibility and reverse weak duality. The OCS selects a winner in L based on the
p(j) it is passed in, and that winner is matched to vertex j. We give pseudocode for the entire
algorithm at the end of this section in Figure 3.

We wish to emphasize that the primal-dual algorithm does not “know” which offline vertex j
is matched too. Instead, it only maintains the probability that each i is matched to a vertex at
each weight-level. This separates the algorithm into a deterministic component, the primal-dual
portion, and a randomized component, the OCS.

The remainder of this section is divided as follows. In Section 7.3 and Section 7.4, we define
how the primal and dual variables respectively are updated given p(j). In particular, βj is set to
exactly the minimum value so that approximate dual feasiblity holds. In Section 7.5 we will discuss
how p(j) is determined. In Section 7.6, we will prove that reverse weak duality holds, completing
the proof that our algorithm is Γ-competitive.

Throughout this section, f : R≥0 → [0, 1] and r ∈ R+ refer to the parameters of our OCS.

7.3 Primal updates

For each i ∈ L and weight-level w ≥ 0, we maintain two random variables initialized as follows.

xi(w)
init
←− 0 with probability 1

ci(w)
init
←− 1 with probability 1

Our algorithm maintains the distribution over (xi(w), ci(w)) rather than just a single element
of it. See Remark 2 for the computational complexity of maintaining this distribution.

At time step j, our algorithm will pass a vector p(j) into the OCS. After doing so, it updates,
for each w ≤ wij ,

xi(w)← xi(w) + (p(j))i

For each w > wij , with probability 1− (1− (p(j))i)
r we set

ci(w)← ci(w) · f(xi(w))

xi(w)← 0
(10)

Otherwise, we leave ci(w) and xi(w) unchanged. This is the step that makes ci(w) and xi(w)
random quantities rather than fixed.

At all steps, we maintain that

yi(w) = E[ci(w) · f(xi(w))]

Note that these updates correspond to Definition 12. For S = {j ∈ R|wij ≥ w}, that definition
guarantees the probability that i is not matched to a vertex in S is at most yi(w).

Remark 2. The full support of (xi(w), ci(w)) can be exponentially large, and so inefficient to
maintain. However, our updates never need full access to the distribution over (xi(w), ci(w). It is
sufficient to maintain a distribution over the possible values of xi(w), and for each possible value
for xi(w) = x, the quantity E[ci(w) | xi(w) = x]. Since there are only |R| many possible values for
xi(w), that information can be stored and operated on efficiently.
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7.4 Dual updates

Our dual updates depend on some function a : R≥0 → [0,Γ] with the properties in the below
Lemma.

Lemma 7.2. Let f : R≥0 → [0, 1] be thrice differentiable, convex, log concave, have a log concave
derivative, and satisfy f(0) = 1. Define a : R≥0 → [0,Γ] as

a(x) := f(x)−

∫ ∞

0
e−tf(t+ x)dt. (11)

For r satisfying Equation (9) and Γ defined in Equation (8), a satisfies the below properties.

a′(x) = f ′(x) + a(x) ∀x ≥ 0 (12)

a′(x) ≤ 0 ∀x ≥ 0 (13)

a(0) = Γ (14)

f(x) · a(0) = f(x) · Γ ≤ a(x) ∀x ≥ 0 (15)

r · (a(x) − f(x) · Γ) ≤ Γ− a(x) ∀x ≥ 0 (16)

We prove Lemma 7.2 in Appendix B. For the remainder of this section, let a be as defined in
Equation (11).

For any i ∈ L and weight-level w ≥ 0, we maintain that

αi(w) = E
[

ci(w) · a
(
xi(w)

)]

,

where ci(w), xi(w) are the same as in the primal updates. After αi is updated at time step j, we
set βj to the minimum value so that approximate dual feasibility holds. Specifically,

βj = max
(

0,max
i∈L

Γ · wij − αi

)

(17)

For the above setting of βj, dual feasibility will hold for wij at time step j. It will remain satisfied
as long αi never decreases in future time steps. At any time step j′, if (p(j

′))i = 0, then αi is not
changed at that time step. The following proposition guarantees that if (p(j

′))i > 0, then αi can
only increase, which implies dual feasibility remains satisfied.

Proposition 7.3. Fix some time step j. For each i ∈ L, w ≥ 0 and p ∈ [0, 1], let αi[p] and αi(w)[p]
denote the value that would be assigned to αi and αi(w) respectively at the end of this time step if
(p(j))i = p. Then,

1. αi[p] is a continuous and increasing function of p.

2. αi(w)[p] is a continuous and decreasing function of p.

Proof. Recall that

αi :=

∫ ∞

0
(Γ− αi(w))dw,
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so it is sufficient to prove that αi(w)[p] is a continuous and decreasing function of p. First, consider
the case where w ≤ wij . Then, using xi(w), ci(w) as their values before the updates from round j,

d

dp
αi(w)[p] = E[ci(w) · a

′(xi(w) + p)].

This derivative exists and is at most 0 by Equation (13), so αi(w)[0] is continuous and decreasing.
Next, consider the case where w > wij. Then,

d

dp
αi(w)[p] =

d

dp
(1− (1− p)r) · E

[

ci(w) ·
(
f(xi(w) · a(0)− a(xi(w))

)
]

= r · (1− p)r−1 ·E

[

ci(w) ·
(
f(xi(w) · a(0)− a(xi(w))

)
]

≤ 0 (Equation (15))

Once again, the derivative exists and is less than 0.

7.5 Determining the probability vector

At time step j, our algorithm receives wij for all i ∈ L. It then sets p(j) to a vector satisfying
Lemma 7.4.

Note that the p(j) given by Lemma 7.4 can have a sum of elements that is less than 1, but
Definition 1 requires the sum of the elements to be 1. To remedy this, we just create a dummy
vertex and assign any excess probability to it.

Lemma 7.4. It is always possible to choose p(j) so that, after the updates corresponding to p(j),

βj =
∑

i∈L

(p(j))i · (Γ · wij − αi) (18)

Proof. Let αi[p] be as defined in Proposition 7.3. For each i ∈ L and β ≥ 0, let pi[β] be the lowest
possible value of p ≥ 0 such that Γ · wij − αi[p] ≤ β. We note two properties about this function.

1. pi[β] is a continuous and decreasing function of β. This follows from Proposition 7.3’s guar-
antee that αi[p] is a continuous and increasing function of p.

2. For any β ≥ 0, if pi[β] ≥ 0, then Γ ·wij −αi[p] = β. This follows from the continuity of αi[p].

First, consider the case where
∑

i∈L pi[0] ≤ 1. In this case, set (p(j))i = pi[0] for each i ∈ L.
Then, βj will be set to 0 in Equation (17) and

∑

i∈L

(p(j))i · (Γ · wij − αi)

=
∑

i∈L

(p(j))i · (0) (pi[β] ≥ 0 =⇒ wij − αi[p] = β applied with β = 0)

= 0 = βj .

Otherwise,
∑

i∈L pi[0] > 1. Note that limβ→∞
∑

i∈L pi[β] = 0. By the intermediate value
theorem applied to β 7→

∑

i∈L pi[β], there is some choice β⋆ for which
∑

i∈L pi[β
⋆] = 1.
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In this case, set (p(j))i = pi[β
⋆] for each i ∈ L. Then, βj will be set to β⋆ in Equation (17) and

∑

i∈L

(p(j))i · (Γ · wij − αi)

=
∑

i∈L

(p
(j)
i ) · β⋆ (pi[β] ≥ 0 =⇒ wij − αi[p] = β applied with β = β⋆)

= 1 · β⋆ (
∑

i∈L pi[β
⋆] = 1)

= β⋆ = βj .

7.6 Reverse weak duality

Since we already have that approximate dual feasibility holds, we only need to prove that reverse
weak duality holds to complete the proof that this algorithm is Γ-competitive. At the start of
our algorithm we have that P = D = 0. Let ∆jP and ∆jD be the amount the primal and dual
respectively increase after the update corresponding to j ∈ R. We will prove that ∆jP ≥ ∆jD
which guarantees reverse weak duality holds.

Lemma 7.5. For any j ∈ R, if p(j) is set as in Lemma 7.4, then ∆jP ≥ ∆jD.

Proof. For each primal and dual variable, we use a superscript of (j) to refer to its value after the
jth update. Similarly, a superscript of (j−1) refers to its value before the update. For any variable
var, we use the shorthand ∆jvar to refer var(j) − var(j−1).

∆jP −∆jD =

(

−
∑

i∈L

∫ ∞

0
∆jyi(w)dw

)

−

(

−
∑

i∈L

∫ ∞

0
∆jαi(w)dw + βj

)

=
∑

i∈L

(

−

∫ ∞

0
(∆jyi(w)−∆jαi(w))dw

)

−

(
∑

i∈L

(p(j))i · (Γ · wij − α
(j)
i )

)

Recall that αi =
∫∞
0 (Γ− αi(w))dw. Therefore,

Γ · wij − α
(j)
i =

(∫ wij

0
Γ · dw

)

−

(∫ ∞

0
(Γ− α

(j)
i (w))dw

)

=

(∫ wij

0
α
(j)
i (w)dw

)

−

(
∫ ∞

wij

(Γ− α
(j)
i (w))dw

)

Combining the above equations, we have that

∆jP −∆jD =
∑

i∈L

(∫ wij

0

(

−∆jyi(w) + ∆jαi(w)− (p(j))i · α
(j)
i (w)

)

dw

)

+
∑

i∈L

(
∫ ∞

wij

(

−∆jyi(w) + ∆jαi(w) + (p(j))i ·
(
Γ− α

(j)
i (w)

))

dw

)
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We will show that for any choice of w ≥ 0 and i ∈ L, the corresponding term in the above
equation is positive. This implies that ∆jP −∆jD is also positive.

Case 1: w ≤ wij . We wish to show that −∆jyi(w) + ∆jαi(w) − (p(j))i · α
(j)
i (w) ≥ 0. We expand

each term separately.

∆jyi(w) = y
(j)
i (w) − y

(j−1)
i (w)

= E
[

c
(j)
i (w) · (f(x

(j)
i (w) − f(x

(j)
i (w)− (p(j))i))

]

= E

[
∫ x

(j)
i (w)

x
(j)
i (w)−(p(j))i

c
(j)
i (w) · f ′(x)dx

]

Similarly,

∆jαi(w) = α
(j)
i (w)− α

(j−1)
i (w)

= E
[

c
(j)
i (w) · (a(x

(j)
i (w)− a(x

(j)
i (w) − (p(j))i))

]

= E

[
∫ x

(j)
i (w)

x
(j)
i (w)−(p(j))i

c
(j)
i (w) · a′(x)dx

]

Finally,

(p(j))i · α
(j)
i (w) = (p(j))i ·E

[

c
(j)
i (w) · a(x

(j)
i (w))

]

=

∫ x
(j)
i (w)

x
(j)
i (w)−(p(j))i

E
[

c
(j)
i (w) · a(x

(j)
i (w))

]

dx

= E

[
∫ x

(j)
i (w)

x
(j)
i (w)−(p(j))i

c
(j)
i (w) · a(x

(j)
i (w))dx

]

Comparing the above three equations, it is enough to show that for any x < x
(j)
i (w), that −f ′(x)+

a′(x)− a(x
(j)
i ) ≥ 0.

−f ′(x) + a′(x)− a(x
(j)
i ) ≥ −f ′(x) + a′(x)− a(x) (a is decreasing)

= 0 (Equation (12))

This completes the first case.

Case 2: w > wij. We wish to show that −∆jyi(w) + ∆jαi(w) + (p(j))i ·
(
Γ − α

(j)
i (w)

)
≥ 0. For

w > wij, yi(w) does not change. Hence, we only need to expand the other two terms. Recall that,
for w ≥ wij , we set ci(w) ← ci(w) · f(xi(w)) and xi(w) ← 0 with probability 1 − (1 − (p(j))i)

r.
Otherwise, we leave the parameters unchanged. Expanding,

∆jαi(w) = E
[

(1− (1− (p(j))i)
r) · c

(j−1)
i (w) ·

(
f(x

(j−1)
i (w)) · a(0) − a(x

(j−1)
i (w))

)]

.
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Recall from Equation (15) that f(x) · a(0) ≤ a(x) for all x ≥ 0. Therefore, we may replace the
1− (1− (p(j))i)

r factor with an upper bound on it, in this case r · (p(j))i, and bound,

∆jαi(w) ≥ E
[

r · (p(j))i · c
(j−1)
i (w) ·

(
f(x

(j−1)
i (w)) · a(0)− a(x

(j−1)
i (w))

)]

.

Using the fact that α
(j)
i (w) ≤ α

(j−1)
i (w), which follows from Proposition 7.3, we expand the other

term of our desired inequality.

(p(j))i ·
(
Γ− α

(j)
i (w)

)
≥ (p(j))i ·

(
Γ− α

(j−1)
i (w)

)

= (p(j))i · E
[

Γ− c
(j−1)
i (w) · a(x

(j−1)
i (w))

]

The desired inequality holds as long as, for all x ≥ 0,

r · (f(x) · a(0)− a(x)) + (Γ− a(x)) ≥ 0.

which is equivalent to Equation (16). This completes the proof of the second case and reverse weak
duality.

8 From discrete to continuous OCSes

In this section, we show how to construct a continuous OCS from a discrete OCS. That will allow
us to prove Theorems 2 and 3.

Lemma 8.1. If there is an (F,m)-discrete OCS for convex F , there is an (f, r = m)-continuous
OCS for

f(x) := E
k∼Poi(λ=m·x)

[F (k)] (19)

The continuous OCS algorithm in Lemma 8.1 is simple. When the continuous OCS receives
the probability vector p(j), it sets the multiset Aj = {i1, . . . , im} where each iℓ is sampled iid from
Categorical(p(j)). It passes this multiset into the (F,m)-discrete OCS, and then selects the same
vertex selected by the discrete OCS. We include pseudocode for this reduction in Figure 4.

Before analyzing this OCS, we’ll need some well-known facts about the convex order (recall
Definition 9).

Fact 8.2 (Theorem 3.A.4 of [SS07]). For any univariate random variables a, b, if there exists a

coupling (â, b̂) where a
d
= â and b

d
= b̂ such that

E[b̂ | â] = â

then a �cx b.

Fact 8.3 (Theorem 3.A.12(d) of [SS07]). The convex order is closed under convolution: Let
a1, . . . ,ak and b1, . . . , bk each be independent univariate random variables. If aℓ �cx bℓ for each
ℓ = 1, . . . ,m, then

m∑

ℓ=1

aℓ �cx

m∑

ℓ=1

bℓ.
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MatchOnline(L)

1. Initialization: For each i ∈ L, and w ≥ 0, initialize the distributions xi(w), ci(w) as

xi(w)
init
←− 0 with probability 1

ci(w)
init
←− 1 with probability 1

The algorithm maintains the distribution of possible (xi(w), ci(w)) over the randomness
in Step 3b.

2. Invariants: For each i ∈ L and w ≥ 0, maintain the primal variables, where the
expectations are over the distribution of (xi(w), ci(w)),

yi(w) = E[ci(w) · f(xi(w))]

and dual variables

αi(w) = E
[

ci(w) · a
(
xi(w)

)]

,

where a is the function from Lemma 7.2.

3. Upon receiving wij for each i ∈ L

(a) Determine input to OCS: Using Lemma 7.4, determine p(j) to satisfy
Equation (18). This choice of p(j) is a function of the current state of the al-
gorithm as well as wij for each i ∈ L.

(b) Update distribution of (xi(w), ci(w)): For each i ∈ L and w ≤ wij , update

xi(w)← xi(w) + (p(j))i.

For each w > wij, with probability 1− (1− (p(j))i)
r set

ci(w)← ci(w) · f(xi(w))

xi(w)← 0

Otherwise, leave ci(w) and xi(w) unchanged. This is the step that makes ci(w)
and xi(w) random variables rather than fixed.

(c) Invariants: Maintain the primal and dual variables as in Step 2.

(d) Match: Pass p(j) into the OCS and match j to the winning vertex.

Figure 3: The algorithm for edge-weighted online bipartite matching. For computational
efficiency concerns, see Remarks 1 and 2.
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ContinuousOCS(O,m)

Upon receiving p(j)

1. Sample: For each k = 1, . . . ,m, sample independently ik ∼ Categorical(p(j)).

2. Use discrete OCS: Pass the mulitiset Aj = {i1, . . . , im} into O and return the
same winner as it.

Figure 4: A construction for a continuous OCS using black-box access to a m-discrete
OCS O.

The following proposition is a simple consequence of the above two facts.

Proposition 8.4. For any p1, . . . , pn ∈ [0, 1], let xi ∼ Ber(pi) and y ∼ Poi(λ =
∑n

i=1 pi). Then,

n∑

i=1

xi �cx y.

Proof. By Fact 8.3, it is enough to prove that xi �cx yi where yi ∼ Poi(λ = pi). First, we note
that yi is more likely to be 0 than xi.

Pr[yi = 0] =
pki · e

−pi

0!
= e−(pi) ≥ (1− pi) = Pr[xi = 0].

Consider the following coupling: First draw ŷi ∼ Poi(pi). If ŷi = 0, then with probability (Pr[xi =
0])/(Pr[yi = 0]), set x̂i = 0 as well. Otherwise, set x̂i = 1.

We verify that this coupling meets the criteria of Fact 8.2 which implies xi �cx yi. By design,

we have that ŷi
d
= yi and x̂i

d
= xi. If x̂i = 0, then ŷi = 0 as well, so

E[ŷi | x̂i = 0] = 0

Then, using the law of total expectation, we have that

E[ŷi | x̂i = 0] · Pr[x̂i = 0] + E[ŷi | x̂i = 1] · Pr[x̂i = 1] = E[ŷi]

Substituting E[ŷi | x̂i = 0] = 0, E[ŷi] = pi, and Pr[x̂i = 1] = pi, we have that

E[ŷi | x̂i = 1] = 1.

Therefore, by Fact 8.2, xi �cx yi.

Now, we are ready to prove Lemma 8.1.

Proof. Let A be some (F,m) discrete OCS. We construct a continuous OCS B as in Figure 4:
Whenever B receives the probability vector p(j), it sets Aj = {i1, . . . , im} where each iℓ is sampled
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iid from Categorical(p(j)). It passes this multiset into A, and selects the same winner that A
selected. By Definition 4, for any disjoint consecutive sequences of time steps S1, . . . , Sk,

Pr[i never selected in S1 ∪ . . . ∪ Sk] ≤
k∏

ℓ=1

F (counti(Sℓ))

where counti(Sℓ) is a random variable defined as

counti(Sℓ) :=
∑

j∈Sℓ

(rj(i)) where rj(i) is the multiplicity of i in Aj.

Based on how we defined Aj, we have that rj(i) is the sum of m independent variables distributed
according to Ber((p(j))i). Therefore, by Proposition 8.4,

counti(Sℓ) �cx kℓ where kℓ ∼ Poi



m ·
∑

j∈Sℓ

(p(j))i



 .

We are ready to show that B meets the requirements of Definition 12. First, we consider some
consecutive S = {j1, . . . , j2}. Since F is convex,

Pr[i not selected in S] = E[F (counti(S))]

≤ E[F (k)] where k ∼ Poi



m ·
∑

j∈S

(p(j))i



 (counti(S) �cx k)

= f




∑

j∈S

(p(j))i



 (Equation (19))

For the second requirement, “partially ignore small gaps,” of Definition 12, consider any disjoint
S1, S2 ⊆ N where every element of S1 precedes every element of S2. Define j⋆ as in Definition 12.
Then, the probability rj⋆(i) = 0 is w = (1 − (p(j

⋆))i)
m. If rj⋆(i) = 0 then the probability i is

selected in S1 ∪S2 is the same as if the time step j⋆ didn’t exist (since A won’t see i in it). Hence,
Equation (7) holds.

In order to give a formal version of Theorem 2 we’ll need to know the derivatives of f . There
is a convenient relation between the discrete derivatives of F and the derivatives of f .

Lemma 8.5. Choose any F : Z≥0 → R, m ∈ Z and let f : R≥0 → R be

f(x) = E
k∼Poi(mx)

[F (k)].

Then, for any ℓ ∈ N and x ∈ R≥0, the derivatives satisfy the relation

f (ℓ)(x) = mℓ · E
k∼Poi(mx)

[∆(ℓ)F (k)].

23



Proof. It is enough to prove the case where ℓ = 1, as larger ℓ follow by induction. The remainder
of this proof is algebraic manipulations. We expand

f ′(x) =
d

dx

(
∞∑

k=0

e−mx · (mx)k

k!
· F (k)

)

=

∞∑

k=0

(
d

dx
e−mxxk

)

·
mk · F (k)

k!

We’ll use the linearity of derivatives. To do so, we first compute the derivative of the above
coefficients.

d

dx
e−mxxk =

{

−me−mx · xk k = 0

−me−mx · xk + ke−mxxk−1 k ≥ 1

Therefore,

f ′(x) = −m ·
∞∑

k=0

e−mx · (mx)k

k!
· F (k) +

∞∑

k=1

ke−mx(mx)k−1 ·m

k!
· F (k)

= m ·

(

−
∞∑

k=0

e−mx · (mx)k

k!
· F (k) +

∞∑

k=0

e−mx(mx)k ·m

k!
· F (k + 1)

)

= m ·

(
∞∑

k=0

e−mx · (mx)k

k!
· (F (k + 1)− F (k))

)

= E
k∼Poi(mx)

[∆F (k)],

as desired.

As a consequence, we give the main theorem of this subsection, a formal version of Theorem 2

Theorem 7 (Formal version of Theorem 2). For any m ∈ N and convex F : Z≥0 → [0, 1] satisfying,
for any k1, k2 ∈ Z≥0,

∆(2)F (k1) · F (k2) + F (k1) ·∆
(2)F (k2) ≤ 2 ·∆F (k1) ·∆F (k2) (20)

∆(3)F (k1) ·∆F (k2) + ∆F (k1) ·∆
(3)F (k2) ≤ 2 ·∆(2)F (k1) ·∆

(2)F (k2) (21)

Let

Γ := 1−
∞∑

n=0

mn

(m+ 1)n+1
· F (n), (22)

and suppose that

m ≤
−m ·∆F (0)− Γ

Γ + (1− Γ) ·m ·∆F (0)
. (23)

Then, if there an (F,m)-discrete OCS, there is an Γ-competitive algorithm for edge-weighted online
bipartite matching.
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Proof. Apply Lemma 8.1 to construct an (f,m)-continuous OCS for f defined Equation (19). We
wish to apply Theorem 6 to that continuous OCS. If F is convex, then f is convex by Lemma 8.5.
We verify that f and f ′ are log-concave:

f ′′(x) · f(x)− (f ′(x))2 = E
k1,k2∼Poi(mx)

[

∆(2)F (k1) · F (k2)−∆F (k1) ·∆F (k2)
]

≤ 0.

f ′′′(x) · f ′(x)− (f ′′(x))2 = E
k1,k2∼Poi(mx)

[

∆(3)F (k1) ·∆F (k2)−∆(2)F (k1) ·∆
(2)F (k2)

]

≤ 0.

Therefore, the desired result holds with

Γ = 1−

∫ ∞

0
e−t E

k∼Poi(mt)
[F (k)]dt

We just need to show the above simplifies to Equation (22).

1− Γ =

∫ ∞

0
e−t

∞∑

k=0

Pr[Poi(m · t) = k] · F (k)dt

=

∫ ∞

0
e−t

∞∑

k=0

e−mt · (mt)k

k!
· F (k)dt

=

∞∑

k=0

mk

k!
F (k) ·

∫ ∞

0
e−(m+1)t · tkdt

=

∞∑

k=0

mk

k!
F (k) ·

(
k!

(m+ 1)k+1

)

=

∞∑

k=0

mk

(m+ 1)k+1
· F (k).

Hence, Theorem 6 guarantees the same competitive ratio as in Theorem 7.

Remark 3. Equation (23) constrains how large m can be (we should think of m ·∆F (0) as fixed; it
is −1 in our constructions). For that reason, we are forced to set m ≤ 6 in order to achieve a com-
petitive ratio of more than 0.533. Depending on the construction, the constraint in Equation (23)
may not be fully necessary. That constraint comes from the fact that in Lemma 8.1, the continuous
OCS is (f, r)-continuous for r = m. There may be tighter bounds for r that allow m to be set sig-
nificantly higher. For our constructions, we believe even in the case of m→∞, that r approaches
some constant. Since Equation (22) is often increasing in m (it is for various constructions we
tried), more tight analysis of r coupled with larger m could lead to an improved competitive ratio.

8.1 Proof of Theorems 3 and 5

We first prove the following more general result, and then use it for both Theorems 3 and 5.

Lemma 8.6. For any m,k⋆ ∈ N, c ∈ [0, 1], and F : Z≥0 → [0, 1] where, for all k ≥ k⋆,

F (k) = F (k⋆) · (1− c)k−k⋆ . (24)
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Suppose that Equations (20) and (21) hold for all k1, k2 < k⋆, that for all k < k⋆, that ∆2F (k) ≥ 0
and

∆(2)F (k) + 2c ·∆F (k) + c2 · F (k) ≤ 0 (25)

∆(3)F (k) + 2c ·∆(2)F (k) + c2 ·∆F (k) ≥ 0. (26)

Let,

Γ := 1−

(
k⋆−1∑

n=0

mn

(m+ 1)n+1
· F (n)

)

−

(
m

m+ 1

)k⋆

·
1

1 +m · c
· F (k⋆), (27)

and suppose that

m ≤
−m ·∆F (0)− Γ

Γ + (1− Γ) ·m ·∆F (0)
. (28)

Then, if there is an (F,m)-discrete OCS, there is an Γ-competitive algorithm for edge-weighted
online bipartite matching.

Proof. To verify the conditions of Theorem 7, we need to compute the derivatives of F in the case
where k ≥ k⋆.

∆(ℓ)F (k) = (−c)ℓ · F (k) for k ≥ k⋆

Therefore, the condition ∆(2)F (k) ≥ 0 for k < k⋆ is enough to guarantee that F is convex.
We need to show Equations (20) and (21) holds in the case where exactly one of k1 and k2 is

at least k⋆ and in the case where both are at least k⋆. In the case where k1, k2 ≥ k⋆, Equation (20)
simplifies to

c2 · F (k1) · F (k2) + c2 · F (k1) · F (k2) ≤ 2c2 · F (k1) · F (k2)

and Equation (21) to

c4 · F (k1) · F (k2) + c4 · F (k1) · F (k2) ≤ 2c4 · F (k1) · F (k2)

both of which hold with equality. Consider the other case, where exactly one of k1, k2 is less than
k⋆. Without loss of generality, let it be k2. Then, Equation (20) requires

c2F (k1)F (k2) + F (k1)∆
(2)F (k2) ≤ 2(−c)F (k1)∆F (k2)

which is equivalent to Equation (25). Similarly Equation (21) requires

−c3 · F (k1) ·∆F (k2)− c · F (k1) ·∆
(3)F (k2) ≤ 2c2 · F (k1) ·∆

(2)F (k2)
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which is equivalent to Equation (26). Therefore, we can apply Theorem 7 to determine the com-
petitive ratio. First, we compute

∞∑

n=k⋆

mn

(m+ 1)n+1
· F (n) =

∞∑

n=k⋆

mn

(m+ 1)n+1
· F (k⋆) · (1− c)n−k⋆

=

mk⋆

(m+1)k⋆+1 · F (k⋆)

1− m
m+1 · (1− c)

=

(
m

m+ 1

)k⋆

·
1

(m+ 1)−m · (1− c)
· F (k⋆)

=

(
m

m+ 1

)k⋆

·
1

1 +m · c
· F (k⋆)

By Equation (22), the competitive ratio is,

Γ = 1−
∞∑

n=0

mn

(m+ 1)n+1
· F (n)

= 1−

(
k⋆−1∑

n=0

mn

(m+ 1)n+1

)

−

(
m

m+ 1

)k⋆

·
1

1 +m · c
· F (k⋆).

Next we prove the following theorem, restated for convenience.

Theorem 3. For any γ ∈ (0, 1), if there is a γ-OCS, there is an algorithm for edge-weighted online
bipartite matching with a competitive ratio of

Γ =
3 + 2γ

6 + 3γ
. (1)

Proof. Recall that a γ-OCS is (F, 2)-discrete OCS for F ,

F (k) := 2−k · (1− γ)(k−1)+ .

F has the form in Equation (24) for k⋆ = 1 and c = 1+γ
2 . We compute discrete derivatives for

k = 0:

F (0) = 1

∆F (0) = −1
2

∆(2)F (0) =
1− γ

4

∆(3)F (0) =
γ2 + 4γ − 1

8

The second derivative is positive for all γ ∈ (0, 1), so F is convex. We verify Equations (20) and (21)
for all k1, k2 < k⋆. The only such case is when k1 = k2 = 0 in which case we need the following
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n 0 1 2 3 4 5 6 7 8 9 n ≥ 10
F (n) 1.0 0.833 0.677 0.54 0.426 0.333 0.260 0.201 0.156 0.121 0.093 · 0.773n−10

Figure 5: We prove the existence of an (F, 6)-discrete OCS for the F described in this table. The
construction is given in Sections 3 and 10 with the hyperparameter p = 0.48.

quantities to be nonpositive.

2 ·
1− γ

4
− 2

(

−
1

2

)2

= −
γ

2
≤ 0.

2 ·

(

−
1

2

)

·
γ2 + 4γ − 1

8
− 2 ·

(
1− γ

4

)2

= −
γ(γ + 1)

4
≤ 0.

We verify Equations (25) and (26) for k = 0

1− γ

4
+ 2

(
1 + γ

2

)(

−
1

2

)

+

(
1 + γ

2

)2

· 1 =
γ · (γ − 1)

4
≤ 0

γ2 + 4γ − 1

8
+ 2

(
1 + γ

2

)

·
1− γ

4
+

(
1 + γ

2

)2

· (−
1

2
) =

γ(1− γ)

4
≥ 0

Then, we compute the competitive ratio.

Γ = 1−

(
k⋆−1∑

n=0

mn

(m+ 1)n+1
· F (n)

)

−

(
m

m+ 1

)k⋆

·
1

1 +m · c
· F (k⋆)

= 1−
1

3
· 1−

2

3
·

1

2 + γ
·
1

2

=
3 + 2γ

6 + 3γ

Lastly, we need to verify Equation (28). Since ∆F (0) = − 1
m
, the upper bound on m simplifies to

1− Γ

Γ− (1− Γ)
=

1− Γ

2Γ− 1

This is a decreasing function of Γ. The largest possible value for Γ is 5
9 , corresponding to when

γ = 1. In the case, the above simplifies to 4. Since m = 2 ≤ 4, Equation (28) holds.

Theorem 5 is a consequence of Lemma 8.6 and the existence of an (F, 6)-discrete OCS for
the F : Z≥0 → [0, 1] described in Figure 5. In a publicly available Colab notebook1, we verify
that OCS has the properties required by Lemma 8.6 and that the competitive ratio computed by
Equation (27) is Γ ≥ 0.5368.

1To see our code, go to https://colab.research.google.com/drive/1yQErphKVkwwPPXsUWGT2b-nIPPaLBtnh?usp=sharing
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9 From win distributions to discrete OCSes

In this section, we prove the following meta theorem, restated for convenience. Recall the pseu-
docode for OCSW ,T is given in Figure 2.

Theorem 4 (Quality of our meta algorithm). Let W be a win-distribution with the following three
properties.

1. Negatively associated: For any n ≥ 1 and x ∼ W, the variables x1, . . . ,xn are negative
associated.

2. Shift-invariant: For any n ≥ 1 and x ∼ W, the distribution of (x1,x2, . . .) is identical to
that of (xn,xn+1, . . .).

3. Sufficiently small: For each r ∈ [m − 1] and t ∈ [0, 1], defining w(r) to be the random
variable representing the distribution of the desired win probability for a vertex of multiplicity
r,

w(r) ∼

(

1−
r∏

ℓ=1

(1− xℓ)

)

where x ∼ W,

the following holds

E
x∼W

[(

w(r) − t
)

+

]

≤ 1− t−
m− r

m
·
(

1− t
m

m−r

)

(3)

where (z)+ is short hand for max(z, 0).

Then, there exists some tournament subroutine T for which OCSW ,T is a (f,m)-discrete OCS for

F (n) := E
x∼W

[
n∏

ℓ=1

(1− xℓ)

]

. (4)

We break the proof of Theorem 4 into two steps: In Lemma 9.1 we assuming the existence
of a tournament subroutine with some desirable properties. Then, in Lemma 9.12, we prove the
existence of such a tournament subroutine as long as the win distribution is sufficiently small.

9.1 Proof of Section 9 assuming a good tournament subroutine

We prove the following Lemma.

Lemma 9.1. Let W be a win-distribution with the following properties.

1. Negatively associated: For any n ≥ 1 and x ∼ W, the variables x1, . . . ,xn are negative
associated.

2. Shift-invariant: For any n ≥ 1 and x ∼ W, the distribution of x1,x2, . . . is identical to
that of xn,xn+1, . . ..

Let T be a tournament subroutine with the following properties.
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1. Consistent: For each w ∈ [0, 1], the probability i wins round j given that wj(i) = w is at
least w.

2. Stochastic ordering: Whether i wins round j is a stochastically increasing function of wj(i)
and a stochastically decreasing function of wj(i

′) for each i′ 6= i.

Then, OCSW ,T is a (F,m)-discrete OCS for

F (n) := E
x∼D

[
n∏

ℓ=1

(1− xℓ)

]

.

We’ll need a variety of desirable properties satisfied by negatively associated variables. All of
the below facts have short proofs (see [JDP83]).

Fact 9.2. If x1, . . . ,xn are independent, then they are negatively associated.

Fact 9.3. The union of independent sets of negatively associated random variables is also negatively
associated.

Fact 9.4. Any subset of a set of negatively associated variables is also negatively associated.

Fact 9.5. Increasing functions defined on disjoint subsets of negatively associated random variables
are also negatively associated.

Next, we prove an analogue of Fact 9.5 for stochastically increasing functions.

Proposition 9.6. Stochastically increasing functions defined on disjoint subsets of negatively as-
sociated random variables are also negatively associated.

Proof. Let x = x1, . . . ,xn be negatively associated, A1, . . . , Am ⊆ [n] disjoint subsets, and f1, . . . ,fm

stochastically increasing functions. We draw y1, . . . ,ym
iid
∼ Uniform(0, 1). By Fact 9.2 and Fact 9.3,

the set (x1, . . . ,xn,y1, . . . ,ym) is together negatively associated. Then, we define zi for each i ∈M
as,

zi = min v such that Pr[fi(xAi
) ≤ v] ≥ yi

Then the distribution of zi is equivalent to that of fi(xAi
). Furthermore, since fi is stochastically

increasing, zi is an increasing function of xAi
and yi. By Fact 9.5, z1, . . . ,zm are negatively

associated.

As a quick corollary of the above,

Corollary 9.7. Let x = x1, . . . ,xn be negatively associated. For any stochastically increasing
functions f1, . . . ,fm defined on disjoint coordinates of x, A1, . . . , Am respectively,

E

[
m∏

i=1

fi(xAi
)

]

≤
m∏

i=1

E [fi(xAi
)]

Proof. Let zi be the output of fi(xAi
) for i = 1, . . . ,m. Then, by Proposition 9.6, z1, . . . ,zm are

negatively associated. By repeated application of Definition 6, we have the desired result.
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We’ll also need that negative association is preserved under negation.2

Proposition 9.8. Let x1, . . . ,xn be negatively associated. Then −x1, . . . ,−xn are also negatively
associated

Proof. Let f1, f2 be increasing functions over disjoint coordinates A1, A2 ⊆ [n]. We wish to prove

Cov[f1((−x)A1), f2((−x)A2)] ≤ 0.

Since −f1((−x)A1) and −f2((−x)A2) are increasing and disjoint functions of x and x is negatively
associated,

Cov[−f1((−x)A1),−f2((−x)A2)] ≤ 0.

The Lemma follows from the fact that Cov[−a,−b] = Cov[a, b] for any random variables a, b.

With the above properties established, we are able to make progress towards proving Lemma 9.1.
First, we establish that the desired win probabilities are negatively associated.

Proposition 9.9. Under the conditions of Lemma 9.1, for each i ∈ L, the variables w1(i),w2(i), . . .
in Figure 2 are negatively associated.

Proof. First, we claim that for any r ≥ 1, the function 1 −
∏r

i=1(1 − xi) is an increasing function
of x1, . . . , xr. This is by a series of compositions.

(xi 7→ 1− xi) is decreasing

=⇒ ((x1, . . . , xr) 7→
r∏

i=1

(1− xi)) is decreasing

=⇒ ((x1, . . . , xr) 7→ 1−
r∏

i=1

(1− xi)) is increasing

Therefore, wj(i) are increasing functions of disjoint subsets of (x1(i),x2(i), . . .). The desired result
follows from Fact 9.5.

Lemma 9.10. Under the conditions of Lemma 9.1, for any i ∈ L and disjoint subsets of time steps
S1, . . . , Sk ⊆ [T ]

Pr[i never a winner in

k⋃

ℓ=1

Sℓ] ≤
k∏

ℓ=1

Pr[i never a winner in Sℓ]

Proof. According to the properties of T , whether i never wins in Sℓ is a stochastically increasing
function of (−wj(i)) and of wj(i

′) for each i′ 6= i, j ∈ Sℓ. By Proposition 9.8 and Proposition 9.9,
the variables (−w1(i),−w2(i), . . .) are negatively associated. Applying Fact 9.3, we have that

∞⋃

j=1



{−wj(i)} ∪
⋃

i′ 6=i

wj(i
′)



 are collectively negatively associated.

The desired results follows Corollary 9.7.

2Negative association is only preserved under negation of all the variables. Negating only some variables can

create a positive correlation.

31



Lemma 9.10 allows us to prove Lemma 9.1 by just considering how the OCS behaves on consec-
utive subsequences rather than on unions of consecutive subsequences. We prove a final ingredient.

Lemma 9.11. Under the conditions of Lemma 9.1, for any i ∈ L, subset of time steps S ⊆ [T ] in
which i appears, and desired win probabilities wj(i) for each j ∈ S,

Pr[i never a winner in S | wj(i) = wj(i) for each j ∈ S] ≤
∏

j∈S

(1− wj(i)).

Proof. Just as in Lemma 9.10,

∞⋃

j=1




⋃

i′ 6=i

wj(i
′)



 are all negatively associated.

Whether i loses in round j is a stochastically increasing function of wj(i
′) for each i 6= i′. Applying

Corollary 9.7,

Pr[i never a winner in S | wj(i) = wj(i) for each j ∈ S]

≤
∏

j∈S

(Pr[i loses in round j | wj(i) = wj(i)])

By the consistency of T , Pr[i loses in round j | wj(i) = wj(i)] is at most 1 − wj(i), proving the
desired result.

Finally, we prove Lemma 9.1.

Proof of Lemma 9.1. Our goal is to prove that for any vertex i ∈ L and disjoint consecutive time
steps S1, . . . , Sk, that

Pr[i never a winner in S1, . . . , Sk] ≤
k∏

ℓ=1

F (counti(Sℓ))

where f is as defined in Equation (4). By Lemma 9.10 and the assumption thatW is shift-invariant,
it is enough to prove, for rj(i) := the number of appearances of i in Aj ,

Pr[i never a winner in S := {1, . . . ,m}] ≤ F





m∑

j=1

rj(i)



 .
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We compute,

Pr[i never a winner in S] = E
w1(i),...,wm(i)

[Pr[i never a winner in S | w1(i), . . . ,wm(i)]]

≤ E
w1(i),...,wm(i)




∏

j∈S

(1−wj(i))



 (Lemma 9.11)

= E
x(i)∼W




∏

j∈S





rj(i)−1
∏

ℓ=0

(

1− xkj(i)+ℓ

)







 (Equation (2))

= E
x(i)∼W





r1(i)+...+rm(i)
∏

ℓ=1

(1− xℓ)



 (Combine products)

= F




∑

j∈S

rj(i)



 (Equation (4))

as desired.

9.2 Design of the tournament subroutine

In this subsection, we prove the following Lemma which completes the proof of Theorem 4.

Lemma 9.12 (Sufficiently small =⇒ good T ). LetW be a win-distribution for which the following
holds. For each r ∈ [m − 1] define w(r) to be the random variable representing the distribution of
the desired win probability of a vertex of multiplicity r,

w(r) ∼

(

1−
r∏

ℓ=1

(1− xℓ)

)

where x ∼ W,

If, for each t ∈ [0, 1] and r ∈ [m− 1],

E
x∼W

[(

w(r) − t
)

+

]

≤ 1− t−
m− r

m
·
(

1− t
m

m−r

)

, (29)

then there is a tournament subroutine, T with the following properties.

1. Consistent: For each w ∈ [0, 1], the probability i wins round j given that wj(i) = w is at
least w.

2. Stochastic ordering: The probability i wins a round is a stochastically increasing function
of wj(i) and a stochastically decreasing function of wj(i

′) for each i′ 6= i.

Our tournament subroutine will be simple: We’ll design stochastically increasing strength func-
tions S1, . . . ,Sm−1 that map a desired win probability to a “strength.” For each i ∈ Aj , we set
its strength to Srj(i)(wj(i)), and the vertex with the highest strength wins the round. We give
pseudocode for this subroutine in Figure 6.

As long as the strength functions are stochastically increasing, the stochastic ordering criteria
of Lemma 9.12 will hold. On the other hand, consistency is more challenging. The following
fundamental question underlies this subsection.
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TS1,...,Sm−1

1. If there is a vertex with rj(i) = m, then select i as the winner.

2. Otherwise, for each i ∈ Aj, sample a strength,

sj(i) := Srj(i)(wj(i)),

and choose the i maximizing sj(i) as the winner.

Figure 6: A tournament subroutine for returning a winner given desired win probabilities
sj(i) and multiplicities rj(i). This subroutine is parameterized by strength functions
S1, . . . ,Sm−1.

For which distributions of w(r) is it possible to design stochastically increasing strength

functions such that the probability i wins round j given wj(i) = w is at least w. (♦)

Consider the case where r = 1. Since there can only be one winner in a round, for (♦) to hold,
it must be the case that E[w(1)] ≤ 1

m
. It turns out, that condition is not sufficient. Suppose that

w(1) is 1 with probability 1
m

and 0 otherwise. Then, there is a nonzero probability that 2 (or
more) vertices will both declare that they should win with probability 1, making (♦) impossible.
This example shows that not only do we want the expectation of w(1) to be small, we want its
distribution to not be too spread out.

We will show that these two notions – how large and spread out w(r) is – fully capture when
(♦) is possible. Recall the following definition which formalizes the notion of “large and spread
out.”

Definition 10 (Increasing convex order). Let a, b be two univariate random variables such that,

E[φ(a)] ≤ E[φ(b)]

for all increasing convex functions φ : R→ R for which the above expectations exist. Then, we say
a is smaller than b in the increasing convex order and denote this,

a �icx b.

The following Lemma formalizes our intuition that as long as the desired win probabilities are
sufficiently small and not spread out, (♦) holds.

Lemma 9.13 (Increasing convex order → (♦)). For any random variables w(1) . . . ,w(m−1) and
w′(1) . . . ,w′(m−1), if

w(r) �icx w′(r) for each r = 1, . . . ,m− 1,

and (♦) holds for (w′(1), . . . ,w′(m−1)), then it also holds for (w(1), . . . ,w(m−1)).

Our proof of Lemma 9.13 leverages a powerful theorem of Müller and Rüschendorf.
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Theorem 8 ([MR01]). For univariate random variables a, b, the following are equivalent.

1. a is smaller than b in the increasing convex order.

2. There is a coupling of (â, b̂) such that the marginal distribution of â and b̂ are the same as
those of a and b respectively, and, for any choice of a,

E[b̂ | â] ≥ â.

Furthermore, the stochastic function mapping a 7→ (b̂ | â = a) is stochastically increasing.

Theorem 8 is a generalization of a classic result by Strassen [Str65] who proved the same result
without the restriction that a 7→ (b̂ | â = a) be stochastically increasing. We’ll need the stronger
result since we want our strength functions to be stochastically increasing.

Proof of Lemma 9.13. For each r ∈ [m − 1], let (ŵ(r), ŵ′(r)) be the coupling guaranteed to exist
by Theorem 8 and let S ′

1, . . . ,S
′
m−1 be the strength functions satisfying (♦) for w′(1) . . . ,w′(m−1).

Define, for each r ∈ [m− 1],

Sr(w) := S
′
r(ŵ

′) where ŵ′ ∼ (ŵ′(r) | ŵ(r) = w).

We claim that S1, . . . ,Sm−1 are strength functions satisfying (♦) for (w(1), . . . ,w(m−1)). First,
since the composition of stochastically increasing functions is stochastically increasing, Sr is stochas-
tically increasing for all r ∈ [m− 1]. Second, the probability i wins a round with strength w is at
least E[ŵ′(r) | ŵ(r) = w], which is at least w.

Remark 4 (Computational efficiency of Lemma 9.13). Computing Sr requires knowing the cou-
pling (ŵ(r), ŵ′(r)). If ŵ(r) and ŵ′(r) are discrete random variables, finding a desired coupling is
simply a linear program. If they are continuous, they can be discretized to any desired accuracy
and then treated as discrete.

In order to use Lemma 9.13, we need to be able to verify when one variable is smaller, in the
increasing convex order, than another. We use the following well known characterization.

Fact 9.14 ([SS07]). For univariate random variables a, b, the following are equivalent.

1. a is smaller than b in the increasing convex order.

2. For every t ∈ R,

E[(a− t)+] ≤ E[(b− t)+].

We complete the proof of Lemma 9.12 by giving a particular choice for (w(1), . . . ,w(m−1)) on
which (♦) holds.

Lemma 9.15. For each r ∈ [m− 1], let w(r) be the random variable supported on [0, 1] satisfying

E[(w(r) − t)+] = 1− t−
m− r

m
·
(

1− t
m

m−r

)

∀t ∈ [0, 1] (30)

Then, (♦) holds for (w(1), . . . ,w(m−1))
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Proof. Straightforward computation verifies that Equation (30) is equivalent to each w(r) having
the CDF.

Pr[w(r) ≤ t] = t
r

m−r ∀t ∈ [0, 1].

Consider the strength functions, for each r ∈ [m− 1],

Sr(w) := w
1

m−r .

For each r ∈ [m− 1], we have that

Pr[Sr(w
(r)) ≤ t] = Pr[w(r) ≤ tm−r] = tr.

Therefore, Sr(w
(r)) is distributed according to the max of r independent variables drawn from

Uniform(0, 1). A vertex i is selected in a round if its strength is larger than the strengths of each
of the other vertices. If i has multiplicity r(i), then the max strength of the other vertices is
distributed according to the maximum of m− r(i) independent uniforms. Therefore,

Pr[i selected with strength w] = Pr[max of (m− r(i)) independent uniforms < Sr(i)(w)]

= Sr(i)(w)
m−r(i)

= w,

Furthermore, Sr is increasing for all r ∈ [m− 1]. Therefore, both criteria of (♦) hold.

10 Constructing a win distribution

In this section we will construct a distribution (x1,x2, . . .) ∼ W that meets the three criteria of
Theorem 4 and also leads to a good competitive ratio. We do this in two steps. First, we construct
a “seed distribution” D that returns an infinite sequence (y1,y2, . . .) of random variables that are
negatively associated and shift-invariant, but the values yj do not represent probabilities (they are
unbounded). Then, for a carefully chosen increasing function W , we set xk = W (yk) to ensure the
third criteria of Theorem 4 holds. We can think of W as mapping an output of D to a desired win
probability.

In the remainder of this section, p is a hyperparameter than impacts the distribution of D and
W. For concreteness, we will eventually set p = 0.48 to optimize the competitive ratio, a value we
selected using brute-force search.

Definition 13 (D). A sample (y1,y2, . . .) ∼ D is generated by the following process, where each
random choice is independent.

1. Initialize z1 ∼ Geo(p).

2. For k = 1, 2, . . .,

(a) With probability p, set yk = zk and then reset z, setting zk+1 ← 0.

(b) Otherwise, set yk = −1 and increment z, setting zk+1 ← zk + 1

It will often by convenient for us to refer to the following variants of D.
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Definition 14. We use the following notation to specify variants of D.

1. For any v ≥ 0, we use Dv to refer to the generative process of Definition 13 where z1 is
initialized to v instead of drawn from Geo(p).

2. For any n ≥ 1, we use D(n) to refer to first n element of D; i.e. to y1, . . . ,yn where y ∼ D.

3. We use D(y, z) to refer to the distribution that outputs two infinite sequences, one correspond-
ing to the (y1,y2, . . .) and the other to the (z1,z2, . . .) in Definition 13.

We’ll also mix and match the above notation. For example, we might use y,z ∼ D(n)(y, z) as
shorthand for y and z are each n-tuples containing y1, . . . ,yn and z1, . . . ,zn respectively.

By examining the generative process in Definition 13, we observe that D is almost memoryless.

Fact 10.1 (D is memoryless except for z). For any k, v ≥ 0 and y,z ∼ D(y, z), the following
distributions are identical.

1. The distribution of (yk,yk+1, . . .) conditioned on zk = v.

2. The distribution Dv.

First, we prove that D is shift-invariant. This amounts to proving that for any k ≥ 1, zk is
distributed according to a Geo(p).

Proposition 10.2. Let y,z ∼ D(y, z). Then, for any k ≥ 1, zk is distributed according to a
Geo(p) distribution,

Pr[zk = v] = (1− p)vṗ.

Proof. By induction on k; z1 is initialized from a geometric distribution, so Proposition 10.2 holds
for k = 1.

For the inductive step, consider some k > 1, zk = 0 only it was reset at that round, which
happens with probability p. For v ≥ 1

Pr[zk = v] = (1− p) · Pr[zk−1 = v − 1]

= (1− p) · (1− p)v−1 · p

= (1− p)v · p.

Therefore, zk ∼ Geo(p).

As a corollary of Fact 10.1 and Proposition 10.2, the following holds.

Corollary 10.3 (D is shift-invariant). For any k ≥ 1 and y ∼ D, the distribution of y1,y2, . . . is
identical to that of yk,yk+1, . . ..
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10.1 D is negatively associated

We devote this subsection to establishing that D is negatively associated. Recall the definition for
negatively associated variables.

Definition 6 (Negative association [JDP83]). Random variables x1,x2, . . . ,xn are said to be neg-
atively associated if, for every pair of disjoint subsets A1, A2 ⊆ [n] and nondecreasing functions
f1, f2,

Cov[f1(xA1), f2(xA2)] ≤ 0

where xA is the vector (xi1 ,xi2 , . . . ,xi|A|
) when A = {i1, i2, . . . , i|A|}.

For starters, we prove (a strengthening of) the above definition holds for D(n) and D
(n)
0 if we

restrict A1 = {n}.

Lemma 10.4. For any n ≥ 1 and indices S ⊆ [n− 1], let y1, . . . ,yn be drawn as

(y1, . . . ,yn) ∼ (D(n) | yi = −1 for each i ∈ S)

Then, for any increasing functions f1 : Z→ R, f2 : Z
n−1 → R,

Cov
y1,...,yn

[
f1(yn), f2(y1, . . . ,yn−1)

]
≤ 0

The same is true when using D
(n)
0 rather than D(n).

We only prove Lemma 10.4 for D(n) as the proof for D
(n)
0 is identical. Throughout the following

proof, the distribution on y1, . . . ,yn is by default (D(n) | yi = −1 for each i ∈ S).

Proof. Without loss of generality, we can assume f1(−1) = 0; otherwise, add an appropriate con-
stant to f1 so that it’s true. Since f1 is an increasing function of yn and yn ≥ −1, we can write,

f1(k) =

k∑

j=0

g(j)

for an appropriate nonnegative function g : Z≥0 → R≥0. We then expand the first term of the
desired covariance.

E
y1,...,yn

[
f1(yn) · f2(y1 · . . . ,yn−1)

]
=

∞∑

k=−1

f1(k) · Pr[yn = k] ·E
[
f2(y1, . . . ,yn−1) | yn = k

]

=
∞∑

k=−1

k∑

j=0

g(j) · Pr[yn = k] ·E
[
f2(y1, . . . ,yn−1) | yn = k

]

=

∞∑

j=0

∞∑

k=j

g(j) · Pr[yn = k] · E
[
f2(y1, . . . ,yn−1) | yn = k

]

=

∞∑

j=0

g(j) · Pr[yn ≥ j] · E
[
f2(y1, . . . ,yn−1) | yn ≥ j

]
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We claim that E
[
f2(y1, . . . ,yn−1) | yn ≥ j

]
is a decreasing function of j. First we note that

conditioning on (yn ≥ j) forces that yn−j = . . . = yn−j−1 = −1 and leaves the distribution of
y1, . . . ,yn−j−2 unchanged.

Suppose we draw y1, . . . ,yn−1 conditioned on (yn ≥ j). Then, we set yn−(j+1) to −1 and
leave all other y1, . . . ,yn−1 unchanged. This is equivalent to drawing y1, . . . ,yn−1 conditioned on
(yn ≥ j + 1). Importantly, setting yn−(j+1) = −1 can only decrease the value of f2(y1, . . . ,yn−1),
because f2 is increasing. Therefore, we have that,

E
[
f2(y1, . . . ,yn−1) | yn ≥ j

]
is decreasing in j. (31)

We can now prove the desired result.

E
[
f1(yn) · f2(y1 · . . . ,yn−1)

]

=

∞∑

j=0

g(j) · Pr[yn ≥ j] · E
[
f2(y1, . . . ,yn−1) | yn ≥ j

]

≤
∞∑

j=0

g(j) · Pr[yn ≥ j] · E
[
f2(y1, . . . ,yn−1) | yn ≥ −1

]

=





∞∑

j=0

g(j) · Pr[yn ≥ j]



 ·
(
E
[
f2(y1, . . . ,yn−1)

])

= E
[
f1(yn)

]
·E
[
f2(y1 · . . . ,yn−1)

]
.

Where the inequality follows from Equation (31).

Next, we prove that D(n) is negatively associated.

Lemma 10.5. For any n ≥ 1, draw y1, . . . ,yn ∼ D
(n). Then, y1, . . . ,yn are negatively associated.

Proof. By induction on n. For n = 1, the desired result holds because a single variable is vacuously
negatively associated.

For any n ≥ 2 fix some disjoint sets A1, A2 ⊆ [n] and increasing functions f1 : Z|A1| → R, f2 :
Z|A2| → R. Without loss of generality, we can assume that n ∈ A1 and n /∈ A2. We define an
“averaging” of f1 that does not depend upon yn.

f̄1(yA1) := E
y∼D(n)

[
f1(yA1) | yi = yi for each i ∈ (A1 \ {n})

]

Importantly, neither f̄1 nor f2 depend on yn, so we can apply the inductive hypothesis.

E[f̄1(yA1) · f2(yA2)] ≤ E[f̄1(yA1)] · E[f2(yA2)] (32)

Furthermore, f̄1 and f1 have the same expectation. Our next goal is to show that

E[f1(yA1) · f2(yA2)] ≤ E[f̄1(yA1) · f2(yA2)]

The above two equations will imply the desired result.
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Define the “left signature” of some y1, . . . , yn as follows. If yi = −1 for all i ∈ A1 \ {n}, then
the signature is L(y1, . . . , yn) = ∅. Otherwise, let i⋆ be the largest i ∈ A1 \ {n} where yi ≥ 0 and
the signature is L(y1, . . . , yn) = (y1, . . . , yi⋆). We claim for any choice of left signature, ℓ, that

E[f1(yA1) · f2(yA2) | L(y) = ℓ] ≤ E[f̄1(yA1) · f2(yA2) | L(y) = ℓ].

First consider the case where ℓ 6= ∅. Conditioning upon signature ℓ is equivalent to:

1. Fixing the values of y1, . . . ,yi⋆ to those in ℓ.

2. Conditioning on yj = −1 for all j ∈ A1 \ {n} where j > i⋆.

By Fact 10.1, the distribution of yi⋆+1, . . . ,yn is the same as D
(n−i⋆)
0 conditioned on some of the

elements being −1. This is a distribution for which we can apply Lemma 10.4. We also need f1
to just depend on the last bit, yn. Fortunately, conditioning on the signature fixes all bits in A1

except for yn so that property is satisfied. Therefore, by Lemma 10.4.

E[f1(yA1) · f2(yA2) | L(y) = ℓ] ≤ E[f1(yA1) | L(y) = ℓ] · E[f2(yA2) | L(y) = ℓ] (33)

In the other case where ℓ = ∅, conditioning on ℓ is equivalent to drawing y1, . . . ,yn from (D(n) |
yi = −1 for each i ∈ A1 \ {n}). Once again, after this conditioning, f1 only depends on yn, so we
can apply Lemma 10.4 and Equation (33) holds.

Next, we wish to substitute in f̄1 for f1. Fixing L(y) = ℓ fixes all variables in A1 except for n.
By the definition of f̄1, we have that

E[f1(yA1) | L(y) = ℓ] = f̄1(x) for any x where L(x) = ℓ. (34)

We’ll use two aspects of the above equation:

1. That f̄1(x) has the same expectation as f1 when conditioning on the signature.

2. That f̄1(x) is constant when conditioning on the signature.

, Combining the above with Equation (33), where ℓ is drawn from L(y) for y ∼ D(n),

E
[
f1(yA1) · f2(yA2)

]
= E

ℓ

[
E[f1(yA1) · f2(yA2) | L(y) = ℓ]

]
(Law of total expectation)

≤ E
ℓ

[
E[f1(yA1) | L(y) = ℓ] ·E[f2(yA2) | L(y) = ℓ]

]
(Equation (33))

= E
ℓ

[
E[f̄1(yA1) | L(y) = ℓ] ·E[f2(yA2) | L(y) = ℓ]

]
(Equation (34))

= E
ℓ

[
E[f̄1(yA1) · f2(yA2) | L(y) = ℓ]

]
(f̄1 constant conditioned on ℓ)

= E
[
f̄1(yA1) · f2(yA2)

]
(Law of total expectation)

≤ E
[
f̄1(yA1)

]
·E
[
f2(yA2)

]
(Equation (32))

= E
[
f1(yA1)

]
·E
[
f2(yA2)

]
(E
[
f1
]
= E

[
f̄1
]
)

Hence f1(yA1) and f2(yA2) are negatively correlated, so y1, . . . ,yn satisfy the definition of negative
association.
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10.2 Choosing W

Recall that we will set the output of W to (W (y1),W (y2), . . .) for y ∼ D, where W is some
increasing function. Our goal in this section is to make W as large as possible while still ensuring
that the output of W isn’t too large, meaning Equation (3) holds.

First, consider the case when every Aj does not contain duplicates (meaning rj(i) ≤ 1 for all
i). In this case, we have that the desired win probability of each vertex i ∈ Aj is

wj(i) = xkj(i) = W (ykj(i))

One natural way to pick a winner this round is to pick the vertex with the largest ykj(i), breaking
ties at random. Indeed, we choose W in such a way that this occurs. Let imax(y1, . . . , ym) be the
function that return the index i maximizing yi, choosing randomly from maximal yi in the case of
a tie. We define

W (y) := Pr
y2,...,ym

iid
∼D(1)

[imax(y,y2, . . . ,ym) = 1] (35)

This W (y) is a general choice than can work for any seed distribution D and, as long as D has neg-
ative correlations, this choice of W results in W having negative correlations as well. Furthermore,
the reason that we need Equation (3) is so that it’s possible to design a tournament subroutine,
and this choice of W (y) allows for an easy tournament subroutine when each vertex only appears
once in Aj : Just pick the vertex with largest desired win probability. Indeed, in Lemma 10.7, we
show that Equation (3) holds in the case of r = 1, though it still needs to be verified separately for
r ≥ 2. First, we compute the function W for our D.

Lemma 10.6. For W defined in Equation (35) and D in Definition 13,

W (y) =
G(y + 1)m −G(y)m

m · (G(y + 1)−G(y))
where G(v) :=

{

0 if v = −1

(1− p) + p · (1− (1− p)v) if v ≥ 0

(36)

Proof. Let y1, . . . ,ym be m independent samples from D(1), and let i⋆ = imax(y1,y2, . . . ,ym). We
wish to compute the probability i⋆ = 1 as a function of y1. First, we observe that G as defined in
Equation (36) satisfies, for each i = 1, . . . ,m,

G(v) = Pr[yi ≤ v − 1] (37)

We consider a different process for generating y1, . . . ,ym that simplifies the analysis. In general,
we can generate any univariate random variable y by first generating a ∼ Uniform(0, 1) and then
setting y to the smallest v such that Pr[y ≤ v] ≥ a. Applying this to our setting, we first sample
a1, . . . ,am ∼ Uniform(0, 1) and then for each i ∈ [m] set yi to the smallest v such thatG(v+1) ≥ ai.
Then, we set i⋆ to the unique i maximizing ai (which exists with probability 1 since the ai are
continuous).

This generating process for (y1, . . . ,ym, i⋆) gives the same joint distribution as the original, so
we are free to analyze it instead. Then, the distribution of ai conditioned on yi is given by

(ai | yi = y) ∼ Uniform(G(y), G(y + 1)).
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We next compute the desired result.

Pr[i⋆ = 1 | y1 = y] = Pr[ai < a1 for all i = 2, . . . ,m | y1 = y]

= E
a1

[
(a1)

m−1
]

(ai ∼ Uniform(0, 1) for each i = 2, . . . ,m)

=
1

G(y + 1)−G(y)
·

∫ G(y+1)

G(y)
tm−1dt (a1 ∼ Uniform(G(y), G(y + 1)))

=
G(y + 1)m −G(y)m

m · (G(y + 1)−G(y))
,

which is exactly the definition of W (y).

Next, we prove that using theW from Equation (35) makes our win distribution satisfy Equation (3)
for r = 1. We prove the following Lemma for our particular choice of D but note that a similar
result holds for any D (as long as W is defined as Equation (35) as a function of that D).

Lemma 10.7 (Sufficiently small for r = 1). Let W be as defined in Equation (35). For any
t ∈ (0, 1),

E
y∼D(1)

[
(W (y)− t)+

]
≤ 1− t−

m− 1

m
·
(

1− t
m

m−1

)

In particular, Equation (3) holds for r = 1.

Proof. Straightforward computation verifies that if a ∼ Uniform(0, 1) and z = am−1, then for all
t ∈ (0, 1)

E
z

[
(z − t)+

]
= 1− t−

m− 1

m
·
(

1− t
m

m−1

)

.

Let w have the distribution of W (y) when y ∼ D(1). By Fact 9.14, the desired result is equivalent
to showing that w �icx z. We’ll instead prove w �cx z (a stronger statement) and do so via
Fact 8.2.

To use Fact 8.2, we need to couple w and z. Consider the following coupled generating process.

1. Draw a ∼ Uniform(0, 1).

2. Set ẑ = am−1.

3. Set ŷ to smallest v ∈ Z≥−1 such that G(v + 1) ≥ y where G is defined as in Equation (36).

4. Set ŵ = W (ŷ).

Clearly ẑ
d
= z as they have the same generative process. Furthermore, in the proof of Lemma 10.6,

we argued that ŷ
d
= y which also implies ŵ

d
= w. Hence, in order to apply Fact 8.2 and complete

the proof of this Lemma, it is sufficient to show that E[x̂ | ŵ] = ŵ. Equivalently, we wish to show
that

E[x̂ | ŷ] = W (ŷ).

Based on our generative process, the distribution (â | ŷ) is given by Uniform(G(ŷ), G(ŷ + 1)).
From the proof of Lemma 10.6, we have that the expectation of x̂ = am−1 conditioned on a ∼
Uniform(G(ŷ), G(ŷ + 1)) is exactly given by W (ŷ), as desired.
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For computational reasons, we don’t directly use Equation (35). Instead, we use a “capped”
version of W . For some ymax ≥ 0

W capped(y) := W (min(y, ymax))− 10−5.

For concreteness, ymax = 30 is sufficient to compute our competitive ratio. UsingW capped(y) instead

of W in Lemma 10.7 still works as it can only lead to a smaller Ey∼D(1)

[(
W capped(y)− t

)

+

]

. We

have a ymax to make the computation tractable. The 10−5 term is included because, without it,
rounding errors make it difficult to determine if Equation (3) holds. Note that we also use W capped

in place of W when computing the competitive ratio, so with more accurate computation (and less
aggressive capping), we could slightly increase the competitive ratio. We do not believe this would
change any of the first 4 digits of accuracy which we report.

To summarize, our distribution W is defined as follows: First draw (y1,y2, . . .) ∼ D, and then
output (x1,x2, . . .) where xj = W capped(yj). Since this W capped is increasing, the output of W is
negatively associated. Furthermore, it is shift-invariant just as D is.

We have verified that W satisfies the first two criteria of Theorem 4 and the third for r = 1.
Lastly, we verify the third for r = 2, . . . ,m−1 via a mix of straightforward algebra and computation.
The first r elements of W take on only finitely many values (though exponential in r). We fully
compute a representation of this distribution for each r = 2, . . . ,m−1. Given this representation, we
are able to exactly compute the distribution for w(r). Verifying Equation (3) amounts to verifying
that g(t) ≥ 0 for all t ∈ [0, 1] where

g(t) :=

(

1− t−
m− r

m
·
(

1− t
m

m−r

))

− E
x∼W

[(

w(r) − t
)

+

]

.

Let S be the (finitely sized) support of w(r). Then, the derivative of g is easy to compute.

g′(t) =

{

Prx∼W

[
w(r) ≥ t

]
− 1 + t

r
m−r if t /∈ S

undefined otherwise

We compute all the extreme points of g on the interval [0, 1]. If g(t) < 0 for some t on that interval,
it will also be negative at some extreme point. The extreme points can only occur at the border
(t = 0 or t = 1), where the derivative is undefined (on t ∈ S), or at a point where g′(t) = 0. Let V
be the set of distinct values for Prx∼W

[
w(r) ≥ t

]
, of which there are only |S| + 1 many. Then, if

g′(t) = 0, it implies that, for some v ∈ V

t = (1− v)
m−r

r .

Therefore, the total number of points we need to test for g(t) < 0 is finite (it has size 2 · |S| + 3).
We verify that g(t) ≥ 0 for each of those points in a publicly available Colab notebook3 implying
that Equation (3) holds.

As demonstrated in the Colab notebook, for our choice ofW, Equation (3) doesn’t hold for every
choice of the hyperparameter p. We found that for m = 6, it holds for all p ∈ {0.05, 0.06, . . . , 0.95},
but not for p = {0.01, . . . , 0.04, 0.96, . . . , 0.99}. In particular, it holds for p = 0.48, which is the
setting that maximized the resulting competitive ratio.

3To see our code, go to https://colab.research.google.com/drive/1yQErphKVkwwPPXsUWGT2b-nIPPaLBtnh?usp=sharing
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As a result of the above analysis and Theorem 4, we have constructed an (F,m)-discrete OCS
for the F defined in Equation (4), restated here for convenience.

F (n) := E
x∼W

[
n∏

ℓ=1

(1− xℓ)

]

Once again, we use computation (also in the Jupyter notebook) to determine F (n). Up to nmax =
10, we store a full representation of the first nmax elements from W and then use it to compute
F (n) for n ≤ nmax. For n > nmax, we can upper bound F (n) ≤ F (nmax) · (

F (nmax)
F (nmax−1))

n−nmax as a
result of the following Lemma.

Lemma 10.8. For the function F defined in Equation (4), the quantity F (n+1)
F (n) is decreasing in n.

Our proof of Lemma 10.8 holds for any increasing function W (so will also work for W capped),
but is specialized to our choice for D from Definition 13.

Proof. Draw y,z ∼ D(y, z) and then set ak = Ber(W (yk)). We can think of ak as indicating
whether the vertex i wins the kth time it appears. Then the following equation for F is equivalent
to Equation (4).

F (n) = Pr [a1 = · · · = an = 0]

Therefore,

F (n + 1)

F (n)
= Pr [an+1 = 0 | a1 = · · · = an = 0] .

We want the above quantity to be less than or equal to

F (n)

F (n − 1)
= Pr [an+1 = 0 | a2 = · · · = an = 0] .

using E to indicate the event [aj = 0 for each j ∈ {2, . . . , n}], proving that F (n+1)
F (n) ≤

F (n)
F (n−1) is

equivalent to

Pr[an+1 = 0 | E,a1 = 0] ≤ Pr[an+1 = 0 | E]. (38)

For each k = 1, . . . , n, we define the stochastic function hk : R≥0 → R≥0,

hk(z) = (zk+1 | z1 = z,a1 = · · · = ak = 0).

We claim that hk is a stochastically increasing function for all k = 1, . . . , n. For k = 1 this amounts
to proving following map is stochastically increasing

z 7→ (z2 | z1 = z, a1 = 0).

Recall that by Definition 13, z2 and z1 are related as follows.

1. With probability equal to p (the hyperparameter in Definition 13), z2 = 0. If this happens,
then y1 = z1.
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2. With probability 1− p, z2 = z1 + 1 and then y1 = −1

If the probability that the first branch happens conditioned on (z1 = z, a1 = 0) is decreasing in z
then h1 is stochastically increasing. We compute that probability using Bayes theorem.

Pr[y1 = z | a1 = 0,z1 = z] =
Pr[a1 = 0 | y1 = z, z1 = z] · Pr[y1 = z | z1 = z]

Pr[a1 = 0 | z1 = z]

=
(1−W (z))

p · (1−W (z)) + (1− p) · (1−W (−1))
· Pr[y1 = z | z1 = z]

The quantity Pr[y1 = z | z1 = z] is a constant (it is just equal to p). Since W is increasing, the
above is decreasing in z. Therefore, h1 is stochastically decreasing.

For k ≥ 2, by the inductive hypothesis, we may that assume hk−1 is stochastically increasing.
Then,

hk(z) = (zk+1 | z1 = z,a1 = · · · = ak = 0)

= (zk+1 | z2 = z′,a2 = · · · = ak = 0) where z′ ∼ (z2 | z1 = z, a1 = 0) (Fact 10.1)

= (hk−1 ◦ h1)(z) (D is shift invariant)

and since both hk−1 and h1 are stochastically increasing, so is hk. We are now ready to prove
Equation (38). If we condition on a1 = 0, then the distribution of z2 is that of a Geo(p) + 1. If
we do not condition on a1, that distribution is just Geo(p). Since hn is stochastically increasing
and Geo(p)+1 stochastically dominates Geo(p), the distribution of zn+1 conditioned on a = 0 and
E stochastically dominates the distribution of zn+1 just conditioning on E. The quantity yn+1

is a stochastically increasing function of zn+1 and the quantity an+1 is a stochastically increasing
function of yn+1. Therefore, the probability an+1 = 0 conditioned on E and a1 = 0 is lower than
just conditioning on E. Equation (38) holds and therefore the desired result does as well.

As a consequence of the above, we have proven the existence of an (F, 6)-OCS for the F in
Figure 5.

11 Proof of Lemma 2.2

Lemma 2.2. No γ-OCS exists for γ > 1
3 .

Proof. We prove that there is no 2-discrete OCS satisfying both of the following.

1. The probability a vertex is picked in a single time step it appears is 1
2

2. Let j1, j2 be two time steps vertex i appears in for which i never appears in a time step
between j1 and j2. Then, the probability i is selected in j1 or j2 is strictly greater than 5

6 .

This implies Lemma 2.2. Suppose, for the sake of contradiction, such an OCS exists. Feed in the
following three pairs into the OCS. ((a, b), (b, c), (a, b)). In the first round, the OCS must pick a
and b each with probability 1

2 .
Then, in order to guarantee that b is picked in one of the first two time steps with probability

more than 5
6 , if a is picked in the first round, b must be picked in the second round with probability

p2 >
2
3 .
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We also need the probability that c is picked in the second round to be 1
2 . To guarantee this,

in the case where b is picked in the first round, we need c to be picked with probability p2. Hence,
there is a 1

2 · p2 probability that b is picked in the first round and c in the second. Let p3 be the
probability that a is picked in this case. If p3 ≥

1
2 , then there is a

1

2
· p2 · p3 >

1

6

chance that b is not selected in the second or third round. On the other hand, if p3 ≤
1
2 , then there

is a

1

2
· p2 · (1− p3) >

1

6

chance that a is not selected in the first or third round. In both cases, we have a contradiction.
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A Missing proofs from Section 2

A.1 Proof that independent randomness is not enough

We prove the that algorithms which make independent selections at each time step cannot achieve
a competitive ratio better than that of the greedy algorithm.

Lemma 2.1. Even for unweighted online bipartite matching, no algorithm making decisions that
are independent across time steps can achieve a competitive ratio better than 0.5.
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Proof. For each n ∈ Z≥1, we’ll show that no algorithm using independent randomness can acheive
a competitive ratio better than 1

2 + 1
2n on every graph with n offline vertices. Fix some n ∈ Z≥1

and let G be the family of triangular graphs with vertices L = R = [n] defined as follows: For each
permutation π of [n], there is one graph G ∈ G. The first online vertex has an edge to every offline
vertex. Then, for each online vertex where j ≥ 2 has an edge to every offline vertex that j − 1 ∈ R
has an edge to except for πj−1.

It’s not too hard to see that each G ∈ G has a perfect matching of all n edges formed by
matching j to πj. We’ll prove that for any algorithm using independent randomness, there is some
G ∈ G on which that algorithm has an expected number of matches at most n+1

2 .
Let A be some algorithm that uses independent randomness. At time step j, as a deterministic

function of the portion of the graph revealed so far, the algorithm decides on a distribution over L
on which to match the jth vertex to. Then, it independently picks a match for j independent of all
previous matches. In particular, if it picks a vertex in L that has been picked by some j′ < j, this
step is wasted. We’ll use p(j) to represent the distribution over L that A chooses for j ∈ R, where
(p(j))i is the probability that j is matched to i.

We will adversarial choose a G ∈ G depending on the algorithm A. Once the jth vertex arrives,
the edges of each j′ ∈ R for j′ ≤ j are known. This corresponds to knowing π1, . . . , πj−1. Then,
A must choose p(j), and we are free to adversarially choose πj as it only affects the portion of the
graph not yet revealed. Recall that whichever vertex we select as πj will be unable to be matched
in the future, as it will not have edges to any j′ ∈ R where j′ > j. We’ll set πj to the offline vertex
not yet removed that is least likely to be already matched. Formally,

πj = argmin
i∈L,i 6=πj′ for any j′ < j



1−
∏

j′≤j

(1− (p(j
′))i)



 . (39)

Next, we show that for any A using independent randomness, that on this adversarial choice of
G ∈ G, A matches at most n+1

2 edges in expectation. For each k ∈ [n], we define Rk to be the sum
over the last k offline nodes to be removed (the nodes πn−k+1, . . . , πn), that each is not matched
to one of the first n− k online nodes. Formally,

Rk :=
∑

i∈{πn−k+1,...,πn}

[i is not matched to j ∈ {π1, . . . , πn−k}]

We claim, and will prove by induction, that the expected number of matches made to the last k
offline nodes (the nodes πn−k+1, . . . , πn) is at most k − Rk ·

k−1
2k . As Rn = n, this immediately

implies the expected number of matches in the entire graph is at most n+1
2 , the desired result.

For our base case, when k = 1, we trivially have the expected number of matches of the last
vertex is at most 1. For the inductive case, fix some k ≥ 2. We consider the state after n − k
rounds have occurred. For each ℓ ∈ [k], let rℓ be the probability that πn−ℓ+1 is not matched in any
previous round (to j ∈ [n− k]) and qℓ := 1− (p(j))πn−ℓ+1

be the probability it is not matched in the
next round (to j = n− k + 1), given that it was not matched in previous rounds. As adversarially
chosen in Equation (39), πn−k+1 will be set to whichever node maximizes rℓ · qℓ. Let ℓ⋆ be the ℓ
maximizing rℓ · qℓ. Then, Rk−1 =

∑

ℓ 6=ℓ⋆ rℓ · qℓ. The expected number of matches to the last k

49



offline vertices is at most

f(r, q) := 1− rℓ⋆qℓ⋆
︸ ︷︷ ︸

Pr[πn−k+1 matched]

+ k − 1−
k − 2

2(k − 1)
·
∑

ℓ 6=ℓ⋆

rℓ · qℓ

︸ ︷︷ ︸

E[matches to πn−k+2, . . . , πn]

where ℓ⋆ = argmax
ℓ∈[k]

rℓ · qℓ.

We used the inductive hypothesis to bound E[matches to πn−k+2, . . . , πn]. Furthermore, rℓ and qℓ
obey some bounds

∑

ℓ∈[k]

rℓ = Rk (Definition of Rk)

∑

ℓ∈[k]

qℓ =
∑

ℓ∈[k]

1− (p(j))πn−ℓ+1
= k − 1

rℓ, qℓ ≥ 0 (for all ℓ ∈ [k])

(40)

The constraints of Equation (40) cause r1, . . . , rk and q1, . . . , qk to lie in a closed and bounded
space, and f is continuous. Therefore, f attains its maximum value in this space. We may assume
that Rk > 0, as if Rk = 0, f is k − 1 everywhere satisfying the above constraints. Similarly, as
we only care about cases when k ≥ 2, the sum of qℓ is also strictly more than 0. We claim the
maximum of f subject to constraints of Equation (40) occurs when

r1 = · · · = rk =
Rk

k
and q1 = · · · = qk =

k − 1

k
. (41)

Consider any other point, (r1, . . . , rk, q1, . . . , qk), satisfying the constraints of Equation (40). Using
the notation ∂f

∂x+
to the refer to the right derivative, how much f changes as x is increased by an

ε amount, and ∂f
∂x−

for the left derivatives,

1. If rℓ · qℓ < rℓ′ · qℓ′ for all ℓ
′ 6= ℓ, then,

∂f

∂rℓ
= −

k − 2

2(k − 1)
· qi

∂f

∂qℓ
= −

k − 2

2(k − 1)
· ri.

We note that the term k−2
2(k−1) is in [0, 12) for k ≥ 2. In particular, it is never more than 1,

and strictly more than 0 whenever k ≥ 3. When k = 2, it is easy to show the maximum of
f subject to the constraints of Equation (40) occurs at the point in Equation (41). For the
remainder of this proof, we consider the k ≥ 3 case where 0 < k−2

2(k−1) <
1
2 .

2. If rℓ · qℓ > rℓ′ · qℓ′ for all ℓ
′ 6= ℓ, then,

∂f

∂rℓ
= −qi

∂f

∂qℓ
= −ri.

3. If rℓ · qℓ ≥ rℓ′ · qℓ′ for all ℓ
′ 6= ℓ, and there is at least one ℓ′ 6= ℓ where rℓ · qℓ = rℓ′ · qℓ′ , then

∂f

∂(rℓ)+
= −qi

∂f

∂(qℓ)+
= −ri.

∂f

∂(rℓ)−
= −

k − 2

2(k − 1)
· qi

∂f

∂(qℓ)−
= −

k − 2

2(k − 1)
· ri.
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Consider some point (r1, . . . , rk, q1, . . . , qk) satisfying the constraints of Equation (40) that is not
the point in Equation (41). Then, there exists some a, b where ra · qa ≥ rℓ · qℓ for each ℓ 6= a, and
either ra 6= rb or qa 6= qb. Then, either ra > rb or qa > qb. Without loss of generality, we assume
ra > rb. Then, for sufficiently small ε, if we decrease qa ← qa − ε and increase qb ← ab + ε, the
value of f will increase and the constraints remain satisfied. Hence, the maximum value of f is

max
r,q

f(r, q) = 1−
Rk

k

k − 1

k
+ k − 1−

k − 2

2(k − 1)
· (k − 1) ·

Rk

k
·
k − 1

k

= k −Rk ·
k − 1

2k
.

Therefore, by induction, the maximum expected matches made to the last k offline nodes is at most
k −Rk ·

k−1
2k . Plugging in k = n gives the desired result.

A.2 Proof that it is impossible to negatively correlate all time steps

We prove that there does not exists a continuous OCS that negatively correlated every single time
step. This is why we choose to have our OCS only negatively correlate time steps that are close.

Lemma A.1. Let f : R≥0 → [0, 1] be a function on which there exists some rational x ∈ Q where
f(x) < e−x. Then, there does not exist a continuous OCS with the following guarantee: For any
element i ∈ L and set of time steps S,

Pr[ij 6= i for every j ∈ S] ≤ f




∑

j∈S

(p(j))i



 .

Note that f(x) = e−x corresponds to an OCS which picks an winner independently at each time
step, and negative correlation corresponds to f(x) < e−x.

Proof. Let x = a
b
for a, b ∈ Z. For k, n ∈ Z≥1, consider the input instance where |L| = b · k and

each of n time steps have p(j) uniform over L, meaning (p(j))i =
1
b·k for all i ∈ L, j ∈ [n]. We will

show that in the limit of n
k
→∞ and k →∞, the desired guarantee is impossible.

Assume, for the sake of guarantee, the desired result is possible. We will show that this implies
that the expected number of total winners is more than n, a contradiction as each time step has
only a single winner. Fix an arbitrary i ∈ V , and let zj be the event that i is not the winner in the
jth round. Then, by Jensen’s inequality,

E




∑

j∈[n]

zj



 ≤ ak

√
√
√
√
√
√E









∑

j∈[n]

zj





ak



.

Expanding (
∑

j∈[n] zj)
ak, there are n!

(n−ak)! terms which are the product of ak distinct zj1 , . . . ,zjak ,

and nak − n!
(n−ak)! which are the product of non-distinct events. Whenever zj1 , . . . ,zjk are non-

distinct, we use the lose upper bound that that E[zj1 · · · · · zjak ] ≤ 1. Whenever they are distinct,
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by the assumption on the quality of the OCS, it must be the case that E[zj1 · · · · · zjak ] ≤ f(x).
Therefore,

E




∑

j∈[n]

zj



 ≤ ak

√

n!

(n− ak)!
· f(x) + nak −

n!

(n− ak)!

≤ ak

√

n!

(n− ak)!
· ak
√

f(x) + ak

√

nak −
n!

(n− ak)!

In the limit of n
k
→∞,

E




∑

j∈[n]

zj



 ≤ n · (1− o(1) · ak
√

f(x)

< n · (1− o(1)) ·
ak

√

e−
ak
bk

= n · (1− o(1)) · e−
1
bk

Note that the expected number of times that i is the winner is n − E
[
∑

j∈[n] zj

]

. In the limit of

k →∞, this value is strictly more than n · 1
bk
. By symmetry, this is true of all bk different vertices

in L, implying, the total number of winner is more than n, a contradiction.

B Missing proofs from Section 7

Lemma 7.2. Let f : R≥0 → [0, 1] be thrice differentiable, convex, log concave, have a log concave
derivative, and satisfy f(0) = 1. Define a : R≥0 → [0,Γ] as

a(x) := f(x)−

∫ ∞

0
e−tf(t+ x)dt. (11)

For r satisfying Equation (9) and Γ defined in Equation (8), a satisfies the below properties.

a′(x) = f ′(x) + a(x) ∀x ≥ 0 (12)

a′(x) ≤ 0 ∀x ≥ 0 (13)

a(0) = Γ (14)

f(x) · a(0) = f(x) · Γ ≤ a(x) ∀x ≥ 0 (15)

r · (a(x) − f(x) · Γ) ≤ Γ− a(x) ∀x ≥ 0 (16)

Proof of Equation (12). Using integration by parts,

a′(x) = f ′(x)−

∫ ∞

0
e−tf ′(t+ x)dt

a′(x) = f ′(x)−

([

e−tf(t+ x)

]t=∞

t=0

+

∫ ∞

0
e−tf(t+ x)dt

)

(integration by parts)

a′(x) = f ′(x)−

(

−f(x) +

∫ ∞

0
e−tf(t+ x)dt

)

= f ′(x) + a(x).
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Proof of Equation (13). Using the convexity of f ,

a′(x) = f ′(x)−

∫ ∞

0
e−tf ′(t+ x)

≤ f ′(x)−

∫ ∞

0
e−tf ′(x) (f is convex)

= 0

Proof of Equation (14). This is immediate from the fact that f(0) = 1 and the definitions of a in
Equation (11) and of Γ in Equation (8).

We’ll use the following proposition.

Proposition B.1. If f : R≥0 → R≥0 is log-concave, then
∫ ∞

0

e−tf(t+ x)

f(x)
dt

is decreasing in x.

Proof. It is enough for f(t+x)
f(x) to be decreasing in x for any fixed t ≥ 0. The derivative of this

expression is

d

dx

(
f(t+ x)

f(x)

)

=
f(x)f ′(t+ x)− f(t+ x)f ′(x)

f(x)2
.

Hence, the desired expression is decreasing when

f ′(x)

f(x)
≥

f ′(t+ x)

f(t+ x)
.

f is log-concave iff f ′(x)
f(x) is decreasing in x. Therefore, the desired result follows by the fact that

t ≥ 0 and the log-concavity of f .

Proof of Equation (15). If f(x) = 0, the desired result holds. We wish to show that, for all x ≥ 0
where f(x) > 0,

f(x) · Γ

a(x)
≤ 1.

As f(0) = 1 and a(0) = Γ, the above expression is 1 when x = 0. Therefore, it is enough to show

that expression is decreasing. That’s equivalent to showing that f(x)
a(x) is decreasing, which, since we

only need to worry about the case where f(x) > 0, is equivalent to showing that a(x)
f(x) is increasing.

a(x)

f(x)
=

f(x)−
∫∞
0 e−tf(t+ x)dt

f(x)

= 1−

∫ ∞

0

e−tf(t+ x)

f(x)
dt

By Proposition B.1, the above is increasing as a consequence of the log-concavity of f .
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In order to prove Equation (16), we’ll need the following proposition.

Proposition B.2. For any continuous f, g : R≥0 → R≥0 where g > 0 satisfying

f(x)

g(x)
is decreasing for all x ≥ 0.

Let F (x) :=
∫ x

0 f(t)dt and G(x) :=
∫ x

0 g(t)dt. Then, the following is also decreasing for all x ≥ 0,

F (x)

G(x)
.

Proof. We compute the derivative of the desired expression:

d

dx

F (x)

G(x)
=

G(x)f(x)− F (x)g(x)

G(x)2

With a bit of rearranging, we have that the following are equivalent for all x > 0.

d

dx

F (x)

G(x)
< 0 ⇐⇒ z(x) :=

f(x)

g(x)
−

F (x)

G(x)
< 0

d

dx

F (x)

G(x)
= 0 ⇐⇒ z(x) :=

f(x)

g(x)
−

F (x)

G(x)
= 0

d

dx

F (x)

G(x)
> 0 ⇐⇒ z(x) :=

f(x)

g(x)
−

F (x)

G(x)
> 0

Also, by L’ Hôpital’s rule, limx→0 z(x) = 0. By continuity of z, if z(x) > 0 for some x > 0, it must

imply for some earlier x⋆ ∈ (0, x) that z(x⋆) ≥ 0 and z′(x⋆) > 0. However, as f(x)
g(x) is decreasing,

if z′(x⋆) > 0, it must be the case that F (x)
G(x) is decreasing at x⋆. This contradicts that z(x⋆) ≥ 0.

Therefore, z(x) ≤ 0 for all x > 0 and the desired expression is decreasing.

Proof of Equation (16). Combining Equations (13) and (14), we have that a(x) ≤ Γ for all x ≥ 0.
Therefore, if r = 0, we are done. Otherwise, we wish to show that, for all x ≥ 0,

1

r
≥ h(x) :=

a(x)− f(x) · Γ

Γ− a(x)

We will prove that h(x) is decreasing. Assuming that is true, the desired result follows because

h(x) ≤ lim
x→0

h(x) =
a′(0) − f ′(0) · Γ

−a′(0)
(L’ Hôpital’s rule)

=
f ′(0) + a(0)− f ′(0) · Γ

−(f ′(0) + a(0))
(Equation (12))

=
Γ + (1− Γ) · f ′(0)

−f ′(0)− Γ
(Equation (14))

≤
1

r
(Equation (9))
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Let us define A(x) := a(x)
Γ . Then

h(x) =
A(x)− f(x)

1−A(x)

=
(1− f(x))− (1−A(x))

1−A(x)

=
1− f(x)

1−A(x)
− 1

=

∫ x

0 f ′(t)dt
∫ x

0 A′(t)dt
− 1 (f(0) = A(0) = 1)

By Proposition B.2, in order to show h(x) is decreasing, it is enough to show that f ′(x)
A′(x) is decreasing.

Recall that A(x) := a(x)
Γ , so equivalently, we can show that f ′(x)

a′(x) is decreasing. Using the fact that

a′(x) and f ′(x) never change signs, we can instead show that a′(x)
f ′(x) is increasing.

a′(x)

f ′(x)
=

f ′(x)−
∫∞
0 e−tf ′(t+ x)dt

f ′(x)
(Equation (11))

= 1−

∫ ∞

0

e−tf ′(t+ x)

f ′(x)
dt

By Proposition B.1 and the log concavity of f ′, the above is increasing, completing the proof of
Equation (16).
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