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Abstract

In the classical prophet inequality, a gambler faces a sequence of items, whose values are
drawn independently from known distributions. Upon the arrival of each item, its value is
realized and the gambler either accepts it and the game ends, or irrevocably rejects it and
continues to the next item. The goal is to maximize the value of the selected item and compete
against the expected maximum value of all items. A tight competitive ratio of 1

2 is established in
the classical setting and various relaxations have been proposed to surpass the barrier, including
the i.i.d. model, the order selection model, and the random order model.

In this paper, we advance the study of the order selection prophet inequality, in which
the gambler is given the extra power for selecting the arrival order of the items. Our main
result is a 0.725-competitive algorithm, that substantially improves the state-of-the-art 0.669
ratio by Correa, Saona and Ziliotto (Math. Program. 2021), achieved in the harder random
order model. Recently, Agrawal, Sethuraman and Zhang (EC 2021) proved that the task of
selecting the optimal order is NP-hard. Despite this fact, we introduce a novel algorithm design
framework that translates the discrete order selection problem into a continuous arrival time
design problem. From this perspective, we can focus on the arrival time design without worrying
about the threshold optimization afterwards. As a side result, we achieve the optimal 0.745
competitive ratio by applying our algorithm to the i.i.d. model.

1 Introduction

Prophet inequality has been a cornerstone of optimal stopping theory, since the classical result
of Krengel and Sucheston [17, 18]. Consider a gambler facing a sequence of items, whose values
are drawn independently from known distributions. After seeing an item, the gambler observes its
realized value, and either accepts it and the game ends, or irrevocably rejects it and continues to
the next item. The classical prophet inequality states that the gambler can achieve at least half of
the expected maximum value. The latter is referred to as a prophet, who knows the realization of
all values beforehand. Furthermore, the ratio of half is proven to be the best possible in the worst
case. Later, Samuel-Cahn [21] showed that the competitive ratio1 of 1

2 can be achieved using a
single-threshold algorithm.

In the past fifteen years, there has been an increased interest of prophet inequality related
problems in the algorithmic game theory and online algorithms literature, due to its close connection
to mechanism design and posted pricing mechanisms [14]. Among the fruitful extensions of the
classical prophet inequality, a remarkable line of research focuses on surpassing the 1

2 impossibility
result by relaxing the worst case model. Consider the following three variants in progressive order
of difficulty.

∗ITCS, Shanghai University of Finance and Economics, ahqspbo@gmail.com
†ITCS, Shanghai University of Finance and Economics, tang.zhihao@mail.shufe.edu.cn
1We choose to use the terminology competitive ratio, due to the online nature of prophet inequality.

1

ar
X

iv
:2

20
4.

01
42

5v
1 

 [
cs

.D
S]

  4
 A

pr
 2

02
2



I.I.D. Model. Hill and Kertz [15] studied the case when the value distributions are identical
and designed a 1 − 1

e ≈ 0.632-competitive algorithm. They also constructed a family of instance
showing that no algorithm can be better than 0.745-competitive2. The 1− 1

e ratio is improved to
0.738 by Abolhassan et al. [1]. Recently, Correa et al. [8] designed an optimal 0.745-competitive
algorithm, matching the hardness of Hill and Kertz.

Order Selection Model. In this variant, the gambler is given an extra power for selecting the
arrival order of each item. This assumption is natural in the application of sequential posted
pricing mechanisms [6], as the mechanism designer plays the role of the gambler. Chawla et al. [6]
proposed an 1− 1

e -competitive algorithm and the ratio is later improved to 1− 1
e + 0.022 ≈ 0.654

by Beyhaghi et al. [4]. This variant subsumes the i.i.d. model as a special case. Indeed, when
the value distributions are identical, the extra power of order selection is useless. Very recently,
Agrawal, Sethuraman and Zhang [2] established a negative result, showing that the task of selecting
the optimal order is NP-hard, even when the support of each distribution is of size 3. They also
provide a 0.8-competitive algorithm when the support of each distribution is of size at most 2.

Random Order Model. This variant is also known as prophet secretary, in which items arrive
in a random order. This model can be viewed as a generalization of the i.i.d. model and is no
easier than the order selection model. Esfandiari et al. [12] initiated the study of this variant and
designed a 1 − 1

e -competitive algorithm. Later, the same 1 − 1
e ratio is achieved using different

strategies, including using personalized but time-invariant thresholds [8], and a single-threshold
algorithm with randomized tie-breaking [11]. Later, the ratio is improved to 1− 1

e + 1
400 by Azar,

Chiplunkar, and Kaplan [3] and to 0.669 by Correa, Saona, and Ziliotto [10]. The latter work also
establishes a hardness of

√
3 − 1 ≈ 0.732, showing a separation between the random order model

and the i.i.d. model.

1.1 Our Contributions.

In this work, we focus on the order selection model. Despite the NP-hardness of selecting the optimal
order, we strongly exploit the power of order selection and design a 0.725-competitive algorithm,
that substantially improve the state-of-the-art 0.669 ratio from the random order model. As a side
result, our algorithm is 0.745-competitive for the i.i.d. prophet inequality.

Previous Approaches. We briefly summarize the previous techniques. Naturally, an algorithm
is consisted of two parts: selecting the order and setting the thresholds. Each step is easy to optimize
on its own. Specifically, when the arrival order is fixed, the optimal thresholds can be calculated
through backward induction; when the thresholds are fixed for each item, we can calculate the
expected value of each item conditioning on that its value exceeds the threshold, and then set the
arrival order to be a descending order of the calculated values.

Chawla et al. [6] and Beyhaghi et al. [4] applied a two-step approach of first designing the
thresholds, and then selecting the order. Both works studied the order selection prophet inequality
from the perspective of sequential posted pricing mechanisms. It is implicitly shown by Chawla et
al. [6] that the latter setting reduces to the first setting.

The line of work studying prophet secretary [12, 3, 10] can be viewed as a two-step approach
of first selecting the order, and then designing the thresholds. More accurately, the algorithm
selects the uniform distribution over all permutations and then focuses on designing the thresholds.

2The constant Γ ≈ 0.745 is the unique solution to
∫ 1

0
1

y(1−ln y)+1/Γ−1
dy = 1.
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Figure 1: A summary of results. Our new results are marked in bold.

Remarkably, prior to our work, the state-of-the-art 0.669 ratio for the order selection prophet
inequality is established in the random order setting by Correa, Saona, and Ziliotto [10].

Our Perspective: Arrival Time Design. Recall a folklore continuous formulation of the
prophet secretary problem. Let the time horizon be [0, 1] and assume that each item i arrives at
time ti ∼ Uni[0, 1] (i.e., the uniform distribution over [0, 1]). This formulation is equivalent to the
random arrival order and often eases the analysis. Specifically, under this formulation, Correa,
Saona and Ziliotto [10] carefully set time-dependent thresholds and accept the first item whose
value exceeds the threshold on its arrival time.

We provide a novel point of view by re-scaling the time horizon. We first fix the time-dependent
thresholds. Specifically, at time t, we set the threshold to be the value τ(t) so that the maximum
value of all items is larger than it with probability exactly t. Then, we design an arrival time
distribution Fi for each item i and let the items arrive at a random time with respect to Fi. In
principle, this formulation is without loss of generality, since we can choose the distributions to be
deterministic. Under this formulation, we only need to optimize for the arrival times. Moreover,
the continuous formulation allows us to adapt the analysis framework from the i.i.d. setting [8] and
the random order setting [10]. Noticeably, if the distributions Fi are identical, our algorithm can
be implemented in the prophet secretary setting. See Section 2 for a more detailed discussion.

Our Results. We explicitly construct arrival time distributions and achieve a competitive ratio of
Γ = lnα+1

lnα+1−α ≈ 0.725, where α ≈ 0.211 is the unique solution3 to
∫ 1
α

lnα+1
(lnα+1)(−x·lnx+x)−αdx+ 1

lnα = 0.
Furthermore, our algorithm serves as an alternative optimal Γ ≈ 0.745-competitive algorithm

for the i.i.d. setting, with only one parameter modified, compared to our algorithm in the order
selection setting. Our unified analysis bridges the i.i.d. setting and the order selection setting, and
suggests that our novel arrival time design perspective to be the right framework.

3For completeness, we provide a proof of the uniqueness of α in Appendix B.
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1.2 Related Work

There is a vast literature on prophet inequalities. We refer interested readers to the survey of Hill
and Kertz [16] for the classical results, the suvery of Lucier [20] for the economic perspective of
prophet inequalities, and the survey of Correa et al. [7] for more recent developments. Below, we
review the most related works.

Hajiaghayi et al. [14], and Chawla et al. [6] observed a close relation between prophet inequalities
and sequential posted pricing. They showed that designing posted pricing mechanisms can be
reduced to the prophet inequality problem. Recently, Correa et al. [9] proved that the two settings
are indeed equivalent.

Besides the results that we have discussed before, there are a few special cases in which better
competitive ratios are known for the order selection prophet inequality problem. When the number
of items is a small constant, Beyhaghi et al. [4] obtained a better competitive ratio than their
general bound of 0.654. If each type of distribution occurs at least Ω(log n) times, Abolhassani et
al. [1] improved the competitive ratio to 0.738 for the order selection model. Liu et al. [19] relaxed
the problem by allowing the algorithm to remove a constant number of items. After so, they showed
that the competitive ratio can be arbitrary close to 0.745 against the relaxed prophet.

Closely related to the order selection prophet inequality is the optimal ordering problem. This
problem shares the same input model as the order selection prophet inequality, while the benchmark
is changed to the optimal online algorithm instead of the expected maximum value. Agrawal,
Sethuraman and Zhang [2] proved that the problem is NP-hard, and designed a FPTAS when the
support of each distribution is of size 3. Fu et al. [13] gave a PTAS when each distribution has
a constant support size. Chakraborty et al. [5] obtained a PTAS without any assumption on the
support of the distribution. Their original results were stated in the setting of sequential posted
pricing mechanisms, that can be translated to the optimal ordering problem by the reduction of
Correa et al. [9]. Liu et al. [19] improved the results to an EPTAS based on a novel decomposition
technique.

2 Preliminaries

Let there be n items, whose values ~v = (v1, v2, · · · , vn) are drawn independently from known
distributions D = D1 ×D2 × · · · ×Dn. The algorithm first selects an arrival order of the n items.
Then, the items arrive in a sequence according to the selected order. Upon the arrival of an item,
its value is realized and the algorithm either accepts the item and stops, or rejects the item and
continues to the next. Our goal is to maximize the expected value of the selected item and compare
against the prophet

OPT
def
== E

[
max
i
vi

]
.

For the ease of presentation, we assume the value distributions Di’s are continuous distributions.
The extension to discrete distributions can be implemented by a careful tie-breaking rule. We refer
to [10] for a detailed explanation.

Our algorithm is parameterized by n distributions Fi for each i ∈ [n], supported on [0, 1].
Consider the following algorithm:

4



Independent Arrival Time ({Fi}).
• Sample independently ti ∼ Fi for each i. We refer to ti as the arrival time of item i.

• Let the items arrive in ascending order according to their arrival times.

• We accept the first item i with vi > τ(ti), where τ(t) is the threshold that

Pr

[
max
i
vi > τ(t)

]
= t

Remark. Before we go to the detailed analysis of our algorithm, it is worthwhile to make a
comparison with the algorithm by Correa, Saona, and Ziliotto [10] for the prophet secretary problem.
In the prophet secretary problem (and other online optimization problems with random arrival), a
folklore formulation is to assume that each item i arrives at time ti ∼ Uni[0, 1] (i.e., the uniform
distribution over [0, 1]). Correa, Saona, and Ziliotto first set time-dependent thresholds τ(α(t)) at
time t, with an appropriate function α, and then accept the first item whose value exceeds the
threshold.

Alternatively, we re-scale the time horizon by fixing the threshold to be τ(t) at time t, and
then let the items arrive according to carefully chosen distributions. Indeed, if all the distributions
Fi’s are identical, our algorithm can be implemented in the prophet secretary setting. Specifically,
for any function α, by setting Fi(α

−1(t)) = t for every item i, our algorithm is equivalent to the
algorithm of Correa, Saona, and Ziliotto [10]. On the other hand, our formulation admits a natural
generalization to the order selection setting by allowing non-identical Fi’s.

Analysis. Our analysis is similar to the framework of [10]. We abuse ALG to denote our algorithm
and to denote the (random) value of the accepted item of our algorithm. We show the competitive
ratio of our algorithm through the following stronger statement.

Lemma 2.1. For the order selection prophet inequality, there exists distributions {Fi}i∈[n], so that
for every t ∈ [0, 1]:

Pr [ALG > τ(t)] ≥ Γ · t = Γ ·Pr

[
max
i
vi > τ(t)

]
,

where Γ = lnα+1
lnα+1−α ≈ 0.725 and α ≈ 0.211 is the unique solution to

∫ 1
α

lnα+1
(lnα+1)(−x·lnx+x)−αdx +

1
lnα = 0.

Observe that for any non-negative random variable V , we have E[V ] =
∫∞

0 Pr[V > τ ]dτ . The
above lemma immediately concludes the competitive ratio of our algorithm.

Theorem 2.1. The independent arrival time algorithm with functions {Fi} chosen in Lemma 2.1
is Γ ≈ 0.725-competitive for the order selection prophet inequality. I.e., E[ALG] ≥ Γ · OPT.

As a side result, for the i.i.d. prophet inequality, i.e., when the distributions D1, D2, · · · , Dn

are identical, our construction in Lemma 2.1 works with a different parameter Γ ≈ 0.745. Thus,
we give an alternative optimal competitive algorithm for the i.i.d. prophet inequality. Formally,
we prove the following lemma and theorem.

5



Lemma 2.2. For the i.i.d. prophet inequality, there exists distributions {Fi}i∈[n], so that for every
t ∈ [0, 1]:

Pr [ALG > τ(t)] ≥ Γ · t = Γ ·Pr

[
max
i
vi > τ(t)

]
,

where Γ ≈ 0.745 is the unique solution to
∫ 1

0
1

y(1−ln y)+1/Γ−1dy = 1.

Theorem 2.2. The independent arrival time algorithm with functions {Fi} chosen in Lemma 2.2
is Γ ≈ 0.745-competitive for the i.i.d. prophet inequality. I.e., E[ALG] ≥ Γ · OPT.

3 Analysis

In this section, we prove Lemma 2.1 and 2.2. We first provide the construction of the distributions
{Fi} in Section 3.1, and then prove the stated inequality of Lemma 2.1 and 2.2 in Section 3.2.

Without specifying the constant Γ and assuming that our distributions {Fi} are well-defined,
our constructions and analysis are unified for the non-i.i.d. case and the i.i.d. case.

Finally, in Section 3.3, we find the largest possible constants Γ for our algorithm to be well-
defined for the non-i.i.d. case and the i.i.d. case, respectively.

3.1 Construction of {Fi}

We explicitly construct the distributions {Fi}i∈[n] by defining their probability density functions.
We first introduce some notations. For every t ∈ [0, 1] and i ∈ [n], let

pi(t)
def
== Pr [vi > τ(t)] and qi(t)

def
== Pr

[
max
j 6=i

vi > τ(t)

]
.

With the assumption that the value distributions {Di} are continuous, we have that pi(t), qi(t) are
non-decreasing continuous functions. Hence, they are differentiable almost everywhere and we will
use p′i(t), q

′
i(t) to denote the derivatives. We have the following simple observation according to the

definition of pi(t), qi(t): ∏
i

(1− pi(t)) = 1− t, ∀t ∈ [0, 1] (1)∏
j 6=i

(1− pj(t)) = 1− qi(t), ∀t ∈ [0, 1],∀i ∈ [n] (2)

By taking derivatives on both sides of (1), we have∑
i

p′i(t) · (1− qi(t)) =
∑
i

p′i(t) ·
∏
j 6=i

(1− pj(t)) = 1. (3)

Consider equation (1) when t = 1, we have
∏
i(1 − pi(1)) = 0. Hence, there exists at least

one index i with pi(1) = 1. Without loss of generality, let it be the index 1. Consequently,
qi(1) = 1−

∏
j 6=i(1− qj(1)) = 1 for all i 6= 1.

Now, we define the distributions as the following.
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Construction of {Fi}.

• Let g(t)
def
== Γ · (

∑
i(1− qi(t)) · pi(t)− t) + 1 be an auxiliary function.

• For every item i, let fi(t)
def
== Γ· q

′
i(t)
g(t) ·exp

(
−Γ ·

∫ t
0
q′i(s)·pi(s)

g(s) ds
)

be the probability density

function for its arrival time ti ∈ [0, 1) and let ti = 1 with probability 1−
∫ 1

0 fi(t)dt.

Remark. We use almost the same construction for the non-i.i.d. case and the i.i.d. case, except
for a different choice of the constant Γ. We shall specify the choice of Γ later when it becomes
crucial.

We need to be careful when multiple items arrive at time t = 1, since the distributions Fi’s might
have point masses on ti = 1 according to our construction. We resolve this issue by doing a special
treatment for item 1: 1) if ti = 1 for i 6= 1, we reject item i without looking at its realized value; 2)
if t1 = 1, we accept it without looking at its realized value. Recall that p1(1) = Pr[v1 > τ(1)] = 1,
there is no difference between always accepting item 1 and setting a threshold of τ(1) to item 1.

Intuition. The construction might look mysterious at the first glance, with the complicated
formulas. Indeed, our construction is driven by the analysis and is derived after solving a set
of differential equations. We provide an informal argument in Appendix A to provide intuitions
how we derive the above distributions. For readers who are familiar with the analysis framework of
Correa, Saona, and Ziliotto [10], it would be helpful to check the informal argument before verifying
the correctness of our proof. For other readers, we also encourage reading the informal argument
after going through the full analysis. Nevertheless, our formal proof below is self-contained.

We first prove two useful mathematical properties of the functions {fi(t)} and g(t).

Lemma 3.1. The functions fi(t), g(t) satisfy that

1. 1−
∫ t

0 pi(s)fi(s)ds = exp
(
−Γ
∫ t

0
q′i(s)·pi(s)

g(s) ds
)

, ∀t ∈ [0, 1], ∀i ∈ [n];

2. g(t) =
∏
i

(
1−

∫ t
0 fi(s)pi(s)ds

)
, ∀t ∈ [0, 1].

Proof. We verify the first equation by plugging in the definition of fi to the left hand side:

1−
∫ t

0
pi(s)fi(s)ds = 1−

∫ t

0
pi(s) · Γ ·

q′i(s)

g(s)
· exp

(
−Γ ·

∫ s

0

q′i(x) · pi(x)

g(x)
dx

)
ds

= 1 +

∫ t

s=0
1 d

(
exp

(
−Γ ·

∫ s

0

q′i(x) · pi(x)

g(x)
dx

))
= 1 + exp

(
−Γ ·

∫ s

0

q′i(x) · pi(x)

g(x)
dx

)∣∣∣∣t
s=0

= exp

(
−Γ ·

∫ t

0

q′i(s) · pi(s)
g(s)

ds

)
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Next, we prove the second statement. We first calculate the derivative of function g(t):

g′(t) =

(
Γ ·

(∑
i

(1− qi(t)) · pi(t)− t

)
+ 1

)′
= −Γ ·

∑
i

q′i(t) · pi(t) + Γ ·
∑
i

(1− qi(t)) · p′i(t)− Γ
(3)
= −Γ ·

∑
i

q′i(t) · pi(t). (4)

Then, by applying the first stated equation, we have:

∏
i

(
1−

∫ t

0
pi(s)fi(s)ds

)
=
∏
i

exp

(
−Γ ·

∫ t

0

q′i(s) · pi(s)
g(s)

ds

)
= exp

(∫ t

0

−Γ ·
∑

i q
′
i(s) · pi(s)

g(s)
ds

)
(4)
= exp

(∫ t

0

g′(s)

g(s)
ds

)
= exp

(
ln g(s)|ts=0

)
=
g(t)

g(0)
= g(t).

3.2 Competitive Analysis

For our algorithm to be well-defined, we need to verify that the distributions are valid, i.e.∫ 1
0 fi(t)dt ≤ 1 for all i ∈ [n]. This is the crucial place where we have different constants Γ for

the non-i.i.d. case and i.i.d. case respectively.

Lemma 3.2. For the i.i.d. case, for Γ ≈ 0.745 (the unique solution to
∫ 1

0
1

y(1−ln y)+1/Γ−1dy = 1),

and for each i ∈ [n], we have ∫ 1

0
fi(t)dt ≤ 1.

For the non-i.i.d. case, we prove the following stronger statement that automatically implies
the validity of our algorithm.

Lemma 3.3. For the non-i.i.d. case, for Γ = lnα+1
lnα+1−α ≈ 0.725 where α ≈ 0.211 is the unique

solution to
∫ 1
α

lnα+1
(lnα+1)(−x·lnx+x)−αdx+ 1

lnα = 0, and for each i ∈ [n], we have

(1− Γ · qi(1)) ·
(

1−
∫ 1

0
fi(t)dt

)
· exp

(
Γ

∫ 1

0

q′i(s) · pi(s)
g(s)

ds

)
≥ Γ · (1− qi(1)).

We defer the proofs of the above lemmas to the next subsection and continue proving the stated
inequality of Lemma 2.1 and 2.2, assuming the validity of our algorithm.

Fixing an arbitrary time t ∈ [0, 1], the event that our algorithm accepts an item with value
larger than τ(t) belongs to one of the following n+ 1 possibilities:

• Our algorithm stops before time t. In this case, the accepted value must be larger than τ(t),
since the threshold function τ is decreasing.

• For some i ∈ [n], our algorithms accepts item i at time ti ≥ t and vi > τ(t).

We introduce notations Ai(t), Bi(t) for each i ∈ [n] to denote the following events:

• Ai(t): item i arrives at time ti < t and vi > τ(ti).

• Bi(t): item i is accepted by our algorithm at time ti ≥ t and vi > τ(t).

8



Lemma 3.4. For any t ∈ [0, 1], Pr[ALG stops before time t] = 1− g(t).

Proof. Observe that our algorithm stops before time t if and only if at least one of the events
{Ai(t)}i happens. Moreover, the events Ai(t) are independent from each other for different i’s.
Consequently,

Pr [ALG stops before time t] = Pr [∪iAi(t)] = 1−
∏
i

(1−Pr [Ai(t)])

= 1−
∏
i

(
1−

∫ t

0
pi(ti) · fi(ti)dti

)
= 1− g(t),

where the last equation follows from the second statement of Lemma 3.1.

Next, we study the events {Bi(t)}.

Lemma 3.5. For any t ∈ [0, 1] and i ∈ [n], Pr[Bi(t)] ≥ Γ · pi(t) · (1− qi(t)).

Proof. For any i, fixing the arrival time ti ∈ (t, 1) of i and conditioning on that its realized value vi is
larger than τ(t), our algorithm accepts it as long as we haven’t stopped before time ti. Specifically,
the last event happens when none of the {Aj(ti)}j 6=i happens. Thus,

Pr [Bi(t)] ≥
∫ 1

t
fi(ti) ·Pr [vi > τ(t)] ·Pr [i is accepted by ALG | ti, vi > τ(t)] dti

=

∫ 1

t
fi(ti) · pi(t) ·

∏
j 6=i

(1−Pr [Aj(ti)]) dti

= pi(t) ·
∫ 1

t
fi(ti) ·

∏
j 6=i

(
1−

∫ ti

0
pj(tj) · fj(tj)dtj

)
dti

= pi(t) ·
∫ 1

t
fi(ti) ·

∏
j

(
1−

∫ ti
0 pj(tj) · fj(tj)dtj

)
1−

∫ ti
0 pi(s)fi(s)ds

dti

= pi(t) ·
∫ 1

t
fi(ti) ·

g(ti)

exp
(
−Γ
∫ ti

0
q′i(s)·pi(s)

g(s) ds
)dti (by Lemma 3.1)

= pi(t) ·
∫ 1

t
fi(ti) · g(ti) · exp

(
Γ

∫ ti

0

q′i(s) · pi(s)
g(s)

ds

)
dti

= pi(t)

∫ 1

t
Γ · q′i(ti)dti (by the definition of fi)

= Γ · pi(t) · (qi(1)− qi(t))

For i 6= 1, we conclude the proof of the statement by noticing that qi(1) = 1. However, q1(1) not
necessarily equals 1. We remark that for the i.i.d. case, all distributions are symmetric and the
above analysis is sufficient since qi(1) = 1 for all i ∈ [n]. The rest of our proof is only for the
non-i.i.d. case.

Note that the above analysis ignores the point mass of F1 on t1 = 1 and recall that we have a
special treatment of item 1 when it arrives at time 1. It suffices to calculate the extra probability

9



when item 1 is accepted at time 1 and v1 > τ(t).

Pr [ALG accepts item 1 at time 1 and v1 > τ(t)]

= Pr [t1 = 1] ·Pr [v1 > τ(t)] ·
∏
j 6=1

(1−Pr [Aj(1)])

=

(
1−

∫ 1

0
f1(t1)dt1

)
· p1(t) ·

(
g(1) · exp

(
Γ

∫ 1

0

q′1(s) · p1(s)

g(s)
ds

))
= (1− Γ · q1(1)) · p1(t) ·

(
1−

∫ 1

0
f1(t1)dt1

)
· exp

(
Γ

∫ 1

0

q′1(s) · p1(s)

g(s)
ds

)
≥ Γ · p1(t) · (1− q1(1)).

Here, the third equality follows from the fact that g(1) = Γ · (
∑

i(1− qi(1)) · pi(1)− 1) + 1 =
1−Γ ·q1(1); the last inequality follows from Lemma 3.3. This concludes the proof of the lemma.

Equipped with the above lemmas, we conclude the proof of Lemma 2.1 and 2.2.

Pr [ALG > τ(t)] = Pr [ALG stops before time t] +
∑
i

Pr [Bi(t)]

≥ 1− g(t) +
∑
i

Γ · pi(t) · (1− qi(t)) (by Lemma 3.4 and 3.5)

= 1−

(
Γ ·

(∑
i

(1− qi(t)) · pi(t)− t

)
+ 1

)
+ Γ ·

∑
i

pi(t) · (1− qi(t))

= Γ · t .

3.3 Calculation of Γ

Finally, we prove Lemma 3.2 and 3.3. Recall the definition of fi(t). We have that∫ 1

0
fi(t)dt =

∫ 1

0

Γ · q′i(t)

g(t) exp
(

Γ ·
∫ t

0
q′i(s)·pi(s)

g(s) ds
)dt

Since qi(t) is continuous and non-decreasing, we do the following change of variables: for x ∈
[0, qi(1)],

• q−1
i (x)

def
== sup {t | qi(t) ≤ x};

• p̃i(x)
def
== pi(q

−1
i (x)) and g̃i(x)

def
== g(q−1

i (x)).

Then,∫ 1

0
fi(t)dt =

∫ 1

t=0

Γ

g(t) exp
(

Γ ·
∫ t
s=0

pi(s)
g(s) dqi(s)

)dqi(t) =

∫ qi(1)

0

Γ

g̃i(x) exp
(

Γ ·
∫ x

0
p̃i(y)
g̃i(y)dy

)dx .

Remark. If qi(t) is strictly monotonically increasing, our definition of q−1
i (x) is the standard

inverse function of qi(t). The above change of variables works for arbitrary absolute continuous
non-decreasing function qi(t). Indeed, for any Lebesgue measurable function h ≥ 0 and a ≤ b,∫ b

a
h(t)q′i(t)dt =

∫ b

a
h(q−1

i (qi(t)))q
′
i(t)dt =

∫ qi(b)

qi(a)
h(q−1

i (x))dx,

10



where the first equation follows from the fact that the Lebesgue measure of {x | h(q−1
i (qi(t)))q

′
i(t) 6=

h(t)q′i(t)} equals 0.

3.3.1 I.I.D.: Proof of Lemma 3.2

We start with the case of i.i.d. distributions. Within this subsection, Γ ≈ 0.745 is the unique
solution to

∫ 1
0

1
y(1−ln y)+1/Γ−1dy = 1. By symmetry, all functions pi(t) are the same. Since

∏
i(1−

pi(t)) = 1− t, we have that for all i

pi(t) = 1− (1− t)
1
n and qi(t) = 1−

∏
j 6=i

(1− pj(t)) = 1− (1− t)
n−1
n

Consequently, we have

p̃i(x) = 1− (1− q−1
i (x))

1
n = 1− (1− x)

1
n−1

and g̃i(x) = Γ ·

∑
j

(1− qj(q−1
i (x))) · pj(q−1

i (x))− q−1
i (x)

+ 1

= Γ ·

∑
j

(1− x) · p̃i(x)− q−1
i (x)

+ 1 (since pi, qi are the same for all i)

= Γ ·
(
n
(

1− x− (1− x)
n

n−1

)
− 1 + (1− x)

n
n−1

)
+ 1

We have the following mathematical fact, whose proof involves tedious calculations that we
defer to Appendix B.

Claim 3.1. For any x ∈ [0, 1], we have

g̃i(x) · exp

(
Γ ·
∫ x

0

p̃i(y)

g̃i(y)
dy

)
≥ Γ · (−(1− x) ln(1− x)− x) + 1

Applying the above claim and recalling that qi(1) = 1, we have that∫ 1

0
fi(t)dt =

∫ 1

0

Γ

g̃i(x) · exp
(

Γ ·
∫ x

0
p̃i(y)
g̃i(y)dy

)dx ≤
∫ 1

0

Γ

Γ · (−(1− x) ln(1− x)− x) + 1
dx

=

∫ 1

0

Γ

Γ · (−y · ln y − (1− y)) + 1
dy (let y = 1− x)

=

∫ 1

0

1

y(1− ln y) + 1
Γ − 1

dy = 1,

where the last equality follows from the definition of Γ.

3.3.2 Non-I.I.D.: Proof of Lemma 3.3

Finally, we derive the constant Γ for the non-i.i.d. case. In contrast to the analysis for the i.i.d.
case, we no longer have explicit expressions for functions pi(t), qi(t). The challenge is to prove that
for all possible pi(t), qi(t), the stated inequality holds. Within this subsection, Γ = lnα+1

lnα+1−α ≈ 0.725
and α ≈ 0.211 is the unique solution of the following equation on (0, 1)∫ 1

α

lnα+ 1

(lnα+ 1) (−x · lnx+ x)− α
dx+

1

lnα
= 0.

11



We first observe the following property regarding functions p̃i(x) and g̃i(x).

Claim 3.2. For each x ∈ [0, qi(1)], we have

g̃i(x) ≥ Γ · (−(1− x) · ln(1− x) · (1− p̃i(x))− x) + 1 (5)

Proof. For notation simplicity, let t = q−1
i (x). Since (1 − qi(t)) · (1 − pi(t)) = 1 − t, we have that

pi(t) = 1− 1−t
1−qi(t) = x−t

1−x . Then,

g̃i(x) = Γ ·

∑
j

(1− qj(t)) · pj(t)− t

+ 1 = Γ ·

∑
j 6=i

(1− qj(t)) · pj(t) + (1− qi(t)) · pi(t)− t

+ 1

= Γ ·

(1− t) ·
∑
j 6=i

pj(t)

1− pj(t)
+ (1− x) · x− t

1− x
− t

+ 1

≥ Γ ·

(1− t) ·
∑
j 6=i

ln

(
1

1− pj(t)

)
− x

+ 1 = Γ ·

(
(1− t) · ln

(
1∏

j 6=i(1− pj(t))

)
− x

)
+ 1

= Γ ·
(

(1− t) · ln
(

1

1− qi(t)

)
− x
)

+ 1

= Γ · (−(1− qi(t)) · (1− pi(t)) · ln (1− qi(t))− x) + 1

= Γ · (−(1− x) · ln(1− x) · (1− p̃i(x))− x) + 1

Here, the third equality holds since (1 − qj(t)) · (1 − pj(t)) = 1 − t for all j; the inequality holds
since p

1−p ≥ ln 1
1−p for all p ∈ [0, 1).

Observe that functions p̃i(x), g̃i(x) are only defined on [0, qi(1)]. We further extend the two
functions by defining p̃i(x) = 1 and g̃i(x) = 1−Γ ·x for x ∈ (qi(1), 1]. It is straightforward to verify
that the extended functions satisfy (5) for all x ∈ [0, 1]. This condition is the only property that
we are going to use for functions p̃i and g̃i. Specifically, we prove the following technical lemma.

Lemma 3.6. Suppose functions p̃, g̃ : [0, 1]→ [0, 1] satisfies that

g̃(x) ≥ Γ · (−(1− x) · ln(1− x) · (1− p̃(x))− x) + 1.

Then ∫ 1

0

Γ

g̃(x) exp
(

Γ ·
∫ x

0
p̃(y)
g̃(y)dy

)dx ≤ 1.

We defer the proof of the lemma to Appendix B. By applying it to the extended functions

12



p̃i(x), g̃i(x), we conclude the proof of Lemma 3.3:

(1− Γ · qi(1)) ·
(

1−
∫ 1

0
fi(t)dt

)
· exp

(
Γ

∫ 1

0

q′i(s) · pi(s)
g(s)

ds

)

= (1− Γ · qi(1)) ·

1−
∫ qi(1)

0

Γ

g̃i(x) exp
(

Γ ·
∫ x

0
p̃i(y)
g̃i(y)dy

)dx

 exp

(
Γ

∫ qi(1)

0

p̃i(x)

g̃i(x)
dx

)

≥ (1− Γ · qi(1)) ·

∫ 1

qi(1)

Γ

g̃i(x) exp
(

Γ ·
∫ x

0
p̃i(y)
g̃i(y)dy

)dx

 exp

(
Γ

∫ qi(1)

0

p̃i(x)

g̃i(x)
dx

)
(by Lemma 3.6)

= (1− Γ · qi(1)) ·
∫ 1

qi(1)

Γ

(1− Γ · x) exp
(

Γ ·
∫ x
qi(1)

1
1−Γ·ydy

)dx (by our extension of p̃i, g̃i)

= (1− Γ · qi(1)) ·
∫ 1

qi(1)

Γ

(1− Γ · x) exp
(
− ln(1− Γ · y)|xqi(1)

)dx

= (1− Γ · qi(1)) ·
∫ 1

qi(1)

Γ

1− Γ · qi(1)
dx

= Γ · (1− qi(1)) .
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A Informal Arguments

For readers who are familiar with the analysis of Correa, Saona, and Ziliotto [10], or readers who
have finished reading Section 3.2, we explain how the arrival time distributions are designed in this
section. Specifically, we start with our analysis without specifying the distributions Fi.

Pr[ALG ≥ τ(t)] ≥ 1−
∏
i

(
1−

∫ t

0
pi(ti)fi(ti)dti

)

+
∑
i

pi(t) · ∫ 1

t

∏
j 6=i

(
1−

∫ ti

0
pj(tj)fj(tj)dtj

)
fi(ti)dti


Here, the first line corresponds to the case when our algorithm stops before time t (refer to
Lemma 3.4) and the second line corresponds to the case when our algorithm stops after time t
(refer to Lemma 3.5).

We aim at designing functions {fi} so that the right hand side equals Γ · t for every t ∈ [0, 1].
Denote the right hand side by H(t). Then we have,

H ′(t) =
∑
i

pi(t)fi(t) ·
∏
j 6=i

(
1−

∫ t

0
pi(tj)fj(tj)dtj

)
−
∑
i

pi(t)fi(t) ·
∏
j 6=i

(
1−

∫ t

0
pj(tj)fj(tj)dtj

)

+
∑
i

p′i(t) · ∫ 1

t

∏
j 6=i

(
1−

∫ ti

0
pj(tj)fj(tj) ddtj

)
fi(ti)dti


=
∑
i

p′i(t) · ∫ 1

t

∏
j 6=i

(
1−

∫ ti

0
pj(tj)fj(tj)dtj

)
fi(ti)dti


Recall equation (3),

∑
i p
′
i(t) · (1 − qi(t)) = 1 for all t. If we set {fi} to satisfy the following

equations, we shall automatically have that H ′(t) = Γ for all t ∈ [0, 1].∫ 1

t

∏
j 6=i

(
1−

∫ ti

0
pj(tj)fj(tj)dtj

)
fi(ti)dti = Γ · (1− qi(t)), ∀i ∈ [n]

⇐⇒
∏
j 6=i

(
1−

∫ ti

0
pj(tj)fj(tj)dtj

)
fi(ti) = −Γ · q′i(t), ∀i ∈ [n]

We remark that this is only a sufficient but not necessary condition for our algorithm to work. We
then solve the above set of differential equations and achieve our constructions of {fi}.

B Missing Proofs

B.1 Uniqueness of α

Lemma. There exists a unique α ∈ (0, 1), satisfying the following equation∫ 1

α

lnα+ 1

(lnα+ 1) (−x · lnx+ x)− α
dx+

1

lnα
= 0.
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Proof. Denote

Y (z)
def
==

∫ 1

z

ln z + 1

(ln z + 1) (−x · lnx+ x)− z
dx+

1

ln z
.

We calculate the derivative of Y (z).

Y ′(z) =

∫ 1

z

1
z ((ln z + 1)(−x lnx+ x)− z)− (ln z + 1)

(−x lnx+x
z − 1

)
((ln z + 1)(−x lnx+ x)− z)2

dx− ln z + 1

(ln z + 1)(−z ln z + z)− z

− 1

z(ln z)2

=
1

z ln z
+

∫ 1

z

ln z

((ln z + 1)(−x lnx+ x)− z)2
dx < 0,

where the last inequality holds by ln z < 0 for z ∈ (0, 1). Therefore, we obtain the monotonicity
of Y (z) on (0, 1). Since Y (0+) > 0 and Y (1−) < 0, there exists the unique α ∈ (0, 1) such that
Y (α) = 0. Moreover, our numerical result shows that α ≈ 0.211.

B.2 Proof of Claim 3.1

We restate the claim as the following.

Claim. For any x ∈ [0, 1], we have

g̃i(x) · exp

(
Γ ·
∫ x

0

p̃i(y)

g̃i(y)
dy

)
≥ Γ · (−(1− x) ln(1− x)− x) + 1 ,

where p̃i(x) = 1− (1− x)
1

n−1 and g̃i(x) = Γ ·
(
−1 + (1− x)

n
n−1

)
+ 1.

Proof. Let h(x)
def
== Γ · (−(1− x) ln(1− x)− x) + 1. We first calculate the derivatives of g̃i(x) and

h(x):

• g̃′i(x) = Γ ·
(
n
(
−1 + n

n−1(1− x)
1

n−1

)
− n

n−1(1− x)
1

n−1

)
= Γ · n ·

(
(1− x)

1
n−1 − 1

)
• h′(x) = Γ · (ln(1− x) + 1−x

1−x − 1) = Γ · ln(1− x).

Let I(x)
def
== Γ ·

∫ x
0
p̃i(y)
g̃i(y)dy − lnh(x) + ln g̃i(x). It suffices to show that I(x) ≥ 0. We calculate the

16



derivative of I(x).

I ′(x) = Γ · p̃i(x)

g̃i(x)
− h′(x)

h(x)
+
g̃′i(x)

g̃i(x)

=
Γ
(

1− (1− x)
1

n−1

)
+ Γ · n ·

(
(1− x)

1
n−1 − 1

)
g̃i(x)

− Γ · ln(x)

h(x)

= Γ ·

(n− 1)
(

(1− x)
1

n−1 − 1
)

g̃i(x)
− ln(1− x)

h(x)


= Γ ·

(
(n− 1)

(
(1− x)

1
n−1 − 1

)
· (Γ · (−(1− x) ln(1− x)− x) + 1)

g̃i(x) · h(x)

−
ln(1− x) ·

(
Γ ·
(
n
(

1− x− (1− x)
n

n−1

)
− 1 + (1− x)

n
n−1

)
+ 1
)

g̃i(x) · h(x)

)

=
Γ · (1− Γx) ·

(
− ln(1− x) + (n− 1)((1− x)

1
n−1 − 1)

)
g̃i(x) · h(x)

Furthermore, by applying ez ≥ z + 1 to z = ln(1−x)
n−1 , we have

(n− 1)((1− x)
1

n−1 − 1) = (n− 1)(e
ln(1−x)
n−1 − 1) ≥ (n− 1) · ln(1− x)

n− 1
= ln(1− x).

Hence, I ′(x) ≥ 0. As a result, we have I(x) ≥ I(0) = Γ · 0− lnh(0) + ln g̃i(0) = 0, which concludes
the proof of the claim.

B.3 Proof of Lemma 3.6

Recall the statement of the lemma. Here Γ = lnα+1
lnα+1−α ≈ 0.725 and α ≈ 0.211 is the unique solution

of the following equation on (0, 1)∫ 1

α

lnα+ 1

(lnα+ 1) (−x · lnx+ x)− α
dx+

1

lnα
= 0.

Lemma. Suppose functions p̃, g̃ : [0, 1]→ [0, 1] satisfies that

g̃(x) ≥ Γ · (−(1− x) · ln(1− x) · (1− p̃(x))− x) + 1.

Then ∫ 1

0

Γ

g̃(x) exp
(

Γ ·
∫ x

0
p̃(y)
g̃(y)dy

)dx ≤ 1.

Proof. Fix arbitrary functions p̃(x), g̃(x) that satisfy the stated condition. Define G : [0, 1]→ [0,∞)
as the following

G(z)
def
==

∫ 1

z

Γ

g̃(x) exp
(

Γ ·
∫ x
z
p̃(y)
g̃(y)dy

)dx.
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Then it is equivalent to prove that G(0) ≤ 1. Taking the derivative of G(z), we have

G′(z) = − Γ

g̃(z)
+

∫ 1

z

Γ

g̃(x) exp
(

Γ ·
∫ x
z
p̃(y)
g̃(y)dy

) · Γ · p̃(z)
g̃(z)

dx =
Γ

g̃(z)
· (p̃(z) ·G(z)− 1)

≥ min

(
−Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
,
−Γ · (1−G(z))

1− Γ · z

)
, (6)

where the inequality follows from the stated condition of p̃(z), g̃(z) and the fact that the minimum
must be achieved when p̃(z) = 0 or 1.

Next, we show that for any continuous function G : [0, 1] → [0,∞) satisfying equation (6) and
G(1) = 0, we have G(0) ≤ 1.

Define two auxiliary functions.

• H(z)
def
== Γ(−(1−z)·ln(1−z))

Γ·(−(1−z)·ln(1−z)−z)+1 . This is the function with −Γ
Γ·(−(1−z)·ln(1−z)−z)+1 = −Γ·(1−H(z))

1−Γ·z .

Specifically, by equation (6), we shall use G′(z) ≥ −Γ·(1−G(z))
1−Γ·z when G(z) ≤ H(z); and use

G′(z) ≥ −Γ
Γ·(−(1−z)·ln(1−z)−z)+1 when G(z) > H(z).

• K(z)
def
== Γ·(1−z)

1−Γ·z for z ∈ [0, 1]. This is the solution to K ′(z) = −Γ·(1−K(z))
1−Γ·z .

Let z1 be the root of K(z) = H(z) on [0, 1). We have

Γ (−(1− z1) · ln(1− z1))

Γ · (−(1− z1) · ln(1− z1)− z1) + 1
=

Γ · (1− z1)

1− Γ · z1
=⇒ (1− Γ) · ln(1− z1) + 1− Γ · z1 = 0

⇐⇒ Γ =
ln(1− z1) + 1

ln(1− z1) + z1

Recall that the constant Γ = lnα+1
lnα+1−α , we have z1 = 1 − α ≈ 0.789. Moreover, for z ∈ [0, z1),

H(z) < K(z); for z ∈ (z1, 1), we have H(z) > K(z). Refer to Figure 2.

Let z0
def
== inf {z | G(z) ≤ H(z), z ∈ [0, 1]}. Note that z0 is well-defined since G(1) = 1 = H(1).

We claim that z0 ≤ z1. It suffices to prove G(z1) ≤ H(z1) and we prove it by contradiction.
Suppose otherwise G(z1) > H(z1). Notice that for sufficiently small ε > 0, it holds that

G(z) < H(z) for z ∈ [1− ε, 1). Because for z ∈ [1− ε, 1),

G′(z)−H ′(z) = G′(z)− Γ · ((1− Γ) · ln(1− z)− Γ · z + 1)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2

≥ min

(
−Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
,
−Γ · (1−G(z))

1− Γ · z

)
− Γ · ((1− Γ) · ln(1− z)− Γ · z + 1)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2

≥ −Γ

1− Γ · z
− Γ · ((1− Γ) · ln(1− z)− Γ · z + 1)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2 > 0.

The first inequality holds by equation (6); the second inequality holds by the fact that both
−Γ

Γ·(−(1−z)·ln(1−z)−z)+1 and −Γ·(1−G(z))
1−Γ·z are at least −Γ

1−Γz ; the last inequality holds since

lim
z→1−

(
−Γ

1− Γ · z
− Γ · ((1− Γ) · ln(1− z)− Γ · z + 1)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2

)
= +∞.

18



Figure 2: Plots of H(z) and K(z)

Then for z ∈ (1− ε, 1),

G(z)−H(z) = G(1)−H(1)−
∫ 1

z

(
G′(t)−H ′(t)

)
dt = −

∫ 1

z

(
G′(t)−H ′(t)

)
dt < 0.

Let z2 = inf{z | z ∈ (0, 1], G(y) ≤ H(y) for ∀y ∈ [z, 1)}. According to the derivation above,
we have z2 ≤ 1− ε. Moreover, since both G,H are continuous functions, we have G(z2) = H(z2).
Since G(z1) > H(z1), we have z2 ∈ (z1, 1− ε]. According to the definition of z2 and H(z), for every
z ∈ [z2, 1],

G′(z) ≥ min

(
−Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
,
−Γ · (1−G(z))

1− Γ · z

)
=
−Γ · (1−G(z))

1− Γ · z
=⇒ ((1− Γz) ·G(z))′ = (1− Γz) ·G′(z)− Γ ·G(z) ≥ −Γ

=⇒ (1− Γ) ·G(1)− (1− Γz) ·G(z) ≥ −Γ · (1− z)

=⇒ G(z) ≤ Γ · (1− z)
1− Γz

= K(z).

Moreover, K(z) < H(z) for z ∈ (z1, 1) by the definition of z1. This implies that G(z) < H(z) for
z ∈ [z2, 1), that contradicts G(z2) = H(z2). Therefore, we have z0 ≤ z1.
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For z ∈ [0, z0), we have G(z) > H(z), and, hence

G′(z) ≥ min

(
−Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
,
−Γ · (1−G(z))

1− Γ · z

)
=

−Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
.

Thus,

G(0) = G(z0)−
∫ z0

0
G′(z)dz ≤ H(z0) +

∫ z0

0

Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
dz (7)

Let L(z)
def
== H(z)+

∫ z
0

Γ
Γ·(−(1−x)·ln(1−x)−x)+1dx. We verify that L′(z) ≥ 0 for z ∈ [0, z1]. Indeed,

L′(z) =
Γ · ((1− Γ) · ln(1− z)− Γ · z + 1)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2 +
Γ

Γ · (−(1− z) · ln(1− z)− z) + 1

=
Γ · ((Γ · z − 2 · Γ + 1) · ln(1− z)− 2 · Γ · z + 2)

(Γ · (−(1− z) · ln(1− z)− z) + 1)2 .

Denote the numerator by l(z) = (Γ·z−2·Γ+1)·ln(1−z)−2·Γ·z+2. Then l′(z) = Γ·ln(1−z)+ Γ·z−1
1−z ≤

0. In order to prove L′(z) ≥ 0 for z ∈ [0, z1], it suffices to verify that:

l(z1) = (Γ · z1 − 2 · Γ + 1) · ln(1− z1)− 2 · Γ · z1 + 2

= (Γ · z1 − 2 · Γ + 1) ·
(
−1− Γ · z1

1− Γ

)
− 2 · Γ · z1 + 2 =

(1− Γ · z1)2

1− Γ
≥ 0.

Finally, by the monotonicity of L(z) on [0, z1] and the fact that z0 ≤ z1, we have

G(0)
(7)

≤ L(z0) ≤ L(z1) = H(z1) +

∫ z1

0

Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
dz

= K(z1) +

∫ z1

0

Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
dz

=
Γ · (1− z1)

1− Γ · z1
+

∫ z1

0

Γ

Γ · (−(1− z) · ln(1− z)− z) + 1
dz

=
lnα+ 1

lnα
+

∫ 1−α

0

lnα+1
lnα+1−α

lnα+1
lnα+1−α · (−(1− z) · ln(1− z)− z) + 1

dz

= 1 +
1

lnα
+

∫ 1

α

lnα+1
lnα+1−α

lnα+1
lnα+1−α · (−y · ln y + y − 1) + 1

dy (let y = 1− z)

= 1 +
1

lnα
+

∫ 1

α

lnα+ 1

(lnα+ 1) · (−y · ln y + y)− α
dy = 1,

where the last equality follows from the definition of constant α.
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