
Derandomizing Directed Random Walks in Almost-Linear Time

Rasmus Kyng∗,
ETH Zurich

kyng@inf.ethz.ch

Simon Meierhans∗,
ETH Zurich

mesimon@inf.ethz.ch

Maximilian Probst Gutenberg∗,
ETH Zurich

maximilian.probst@inf.ethz.ch

August 24, 2022

Abstract

In this article, we present the first deterministic directed Laplacian L systems solver that
runs in time almost-linear in the number of non-zero entries of L. Previous reductions imply the
first deterministic almost-linear time algorithms for computing various fundamental quantities
on directed graphs including stationary distributions, personalized PageRank, hitting times and
escape probabilities.

We obtain these results by introducing partial symmetrization, a new technique that makes
the Laplacian of an Eulerian directed graph “less directed” in a useful sense, which may be
of independent interest. The usefulness of this technique comes from two key observations:
Firstly, the partially symmetrized Laplacian preconditions the original Eulerian Laplacian well
in Richardson iteration, enabling us to construct a solver for the original matrix from a solver for
the partially symmetrized one. Secondly, the undirected structure in the partially symmetrized
Laplacian makes it possible to sparsify the matrix very crudely, i.e. with large spectral error,
and still show that Richardson iterations convergence when using the sparsified matrix as a
preconditioner. This allows us to develop deterministic sparsification tools for the partially
symmetrized Laplacian.

Together with previous reductions from directed Laplacians to Eulerian Laplacians, our tech-
nique results in the first deterministic almost-linear time algorithm for solving linear equations
in directed Laplacians. To emphasize the generality of our new technique, we show that two
prominent existing (randomized) frameworks for solving linear equations in Eulerian Laplacians
can be derandomized in this way: the squaring-based framework of [CKP+17] and the sparsified
Cholesky-based framework of [PS22].

∗The research leading to these results has received funding from grant no. 200021 204787 of the Swiss National
Science Foundation.

ar
X

iv
:2

20
8.

10
95

9v
1

 [
cs

.D
S]

 2
3

A
ug

 2
02

2

1 Introduction

The development of spectral graph sparsification and nearly-linear time solvers for Laplacian linear
equations initiated by the seminal article of Spielman and Teng [ST04], that has since been split
into three parts [ST13, ST11, ST14], is foundational for algorithmic spectral graph theory and
one of the success stories in the design of graph algorithms. Until recently, spectral techniques
were mainly used for analysing undirected graphs. While many of the techniques developed in
algorithmic spectral graph theory heavily use that Laplacians of undirected graphs are symmetric,
positive semi-definite matrices, Cohen-Kelner-Peebles-Peng-Sidford-Vladu [CKP+16a] first demon-
strated that the structure of directed Laplacians can be used to accelerate linear equation solvers.
Together with Rao they later introduced the first notion of spectral approximation for directed
Laplacians [CKP+17], which enabled them to develop sparsification tools in the directed setting.
These tools were used to build the first almost-linear time directed Laplacian solver, operating in
the framework of an undirected Laplacian solver by Peng and Spielman [PS14]. The runtime was
improved to nearly-linear time by Cohen-Kelner-Kyng-Peebles-Peng-Rao-Sidford [CKK+18] and
further improved by Peng and Song [PS22] very recently. Both operate within sparsified-Cholesky
frameworks for solving undirected Laplacian linear equations: [CKK+18] uses the framework of
Kyng and Sachdeva [KS16] and [PS22] uses the framework of Kyng-Lee-Peng-Sachdeva-Spielman
[KLP+16].

All previous fast algorithms for solving directed Laplacian linear equations rely on sampling
for globally sparsifying directed graphs while retaining a spectral (1± ε)-approximation guarantee
for some ε < 1, according to the notion of approximation by [CKP+17]1. This suggests two main
approaches to derandomizing these solvers: (1) developing a fast deterministic (1± ε)-approximate
spectral sparsification routine or (2) introducing cruder forms of approximation and adapting the
algorithms to cope with weaker guarantees. However, even for undirected graphs, no deterministic
almost-linear time algorithms that achieve (1 ± ε)-approximate spectral sparsification are known,
and this is a major obstacle to approach (1). We circumvent this issue by instead taking the route
(2): we develop a new way of measuring approximation via the suitability as a preconditoner in
Richardson, which allows cruder guarantees. We achieve this by introducing a “robustification” step
before sparsification, which we call β-partial symmetrization. Partial symmetrization counteracts
the fragility of directed approximations and is at the core of our new crude deterministic sparsifi-
cation procedure for Eulerian Laplacians. It lets us derandomize the frameworks of [CKP+17] and
[PS22] with an almost-linear runtime.

1.1 Prior Work

Undirected Laplacian Solvers. The first nearly-linear time Laplacian solver [ST13, ST11,
ST14] sparked the development of a field producing a whole host of distinct algorithms for solving
Laplacian linear equations [KMP14, KMP11, KOSZ13, CKP+14, PS14, KLP+16, KS16, JS21]. Of
these, our algorithm is most similar to [PS14] and its directed counterpart [CKP+17], which works
by repeatedly squaring the adjacency matrix. In Appendix C we consider a Cholesky-factorisation
based framework, which is motivated by [KLP+16] in the undirected setting and was recently
translated to the directed setting by [PS22].

1When we refer to (1 ± ε)-approximations for Eulerian Laplacians in the introduction and overview we mean
ε-approximations as in Definition 3.1. We use this naming for convenience when comparing to undirected approxi-
mations.

1

Spectral Sparsification. A crucial building block for spectral graph algorithms, including
linear equation solvers, is the ability to sparsify undirected graphs while preserving their spectral
properties. This is a stronger notion of sparsification than cut-sparsifiers, which only preserve
the approximate size of cuts. Such spectral sparsifiers were first introduced in [ST11], and later
strengthened and simplified by Spielman and Srivastava [SS11]. It is known that for every n-vertex
graph there exists a spectral sparsifier with O(n)-edges, and such sparsifiers can be constructed
deterministically, as shown by Batson, Spielman, and Srivastava [BSS12]. However, no deterministic
almost-linear time algorithms are known for (1 ± ε)-spectral sparsification. Recently, Chuzhoy-
Gao-Li-Nanongkai-Peng-Saranurak [CGL+20a] presented an almost-linear time algorithm achieving
no(1)-spectral sparsifiers for undirected graphs via deterministic expander decompositions. Our
algorithm relies on both their sparsification and their expander decomposition results.

Directed Laplacian Solvers. Before [CKP+16a, CKP+17] it was unclear that directed Lapla-
cians, which are a natural generalization of undirected Laplacians to directed graphs, also exhibit
properties that allow for useful notions of sparsification and/or accelerated solving of linear equa-
tions. The reduction to strongly connected Eulerian Laplacians recovered some of the spectral
properties of undirected Laplacians, and allowed for the development of a useful notion of spar-
sification. Current fast algorithms for solving Eulerian Laplacian linear equations either follow
a squaring [CKP+17] or a sparsified-Cholesky approach [CKK+18, PS22]. Both rely on spectral
sparsification techniques developed in [CKP+17].

Low Space Algorithms. Recently, the first deterministic Õ(logN)-space solver for Eulerian
Laplacians was introduced by Ahmadinejad-Kelner-Murtagh-Peebles-Sidford-Vadhan [AKM+20].
They show that the Rozeman and Vadhan [RV05] deterministic squaring conserves approximation
under squaring for a new, stronger measure of approximation. The directed to Eulerian reduction
remains a major obstacle to solving directed Laplacian linear equations in small space.

Applications of Directed Laplacian Solvers. There are numerous applications of directed
Laplacian solvers given in Section 7 of [CKP+16c], most of which are deterministic reductions to
directed Laplacian system solving. The deterministic ones include

• solving large classes of linear systems,

• computing personalised PageRank vectors,

• estimating the stationary distribution,

• and simulating random walks.

Since the reductions are deterministic, we obtain deterministic almost-linear time algorithms for
all these problems2.

1.2 Our Contributions

We introduce the first notion of crude approximation for Eulerian Laplacians L. It is defined
via the suitability as a preconditioner in the Richardson iteration and sparse approximations are

2Note that we require an upper bound κ on the condition number, and hence mixing time.

2

constructed using partial symmetrization to increase robustness. This technique allows us to trade
off additional Richardson iterations for a behaviour more akin to the undirected setting. The
obtained deterministic crude global sparsification routine ultimately allows us to derandomize two
prominent frameworks for solving directed Laplacian linear equations. We summarize our main
result assuming polynomially bounded edge weights and condition number.

Theorem 1.1 (Informal Version of Theorem 7.1). Given an Eulerian Laplacian LG−→
associated

with a strongly connected Eulerian Graph G−→ with n vertices and m edges, a vector b ∈ im(LG−→
),

and a parameter ε ∈ (0, 1) the algorithm SolveEulerian(LG−→
, ε) in time m1+o(1) log ε−1 computes

a vector x satisfying ∥∥∥x − L+
G−→
b
∥∥∥
U LG−→

≤ ε
∥∥∥L+

G−→
b
∥∥∥
U LG−→

where UA = (A + AT)/2 for any square matrix A.

Previous reductions allow us to reduce general directed Laplacian solvers to logO(1)(nκ−1ε−1)
Eulerian solves with polynomially bounded condition number and edge weights. We state the main
theorem as a corollary.

Theorem 1.2. Given a directed Laplacian LG−→
= DG−→

−AT
G−→

associated with a directed Graph G−→
with n vertices and m edges, a vector b ∈ im(LG−→

), a parameter ε ∈ (0, 1) and an upper bound κ ≥
max(κ(DG−→

), κ(LG−→
)) there is an algorithm SolveFull(LG−→

, ε) that in time m1+o(1) logO(1)(κε−1)

computes a vector x satisfying ∥∥∥x − L+
G−→
b
∥∥∥

2
≤ ε

∥∥∥L+
G−→
b
∥∥∥

2

where κ(A) = ‖A‖2 ·
∥∥A+

∥∥
2

denotes the condition number of a given matrix A.

A key application of these results is the deterministic simulation of random walks in almost-
linear time as presented in Sections 7.4 and 7.5 of [CKP+16c].

Crude Global Sparsification. Our global sparsification routine is based on first increasing
the robustness via β-partial symmetrization. Then we bucket by edge weight and layer partitions
of undirected and unweighted graphs into expanders. First, the directed part in such an expander
can be sparsified in a crude way that conserves the degrees. Then, the undirected part can be
replaced with a sparse expander. Since the undirected part is scaled with a factor β by β-partial
symmetrization it dominates the directed part which allows us to bound the error of the first step.

Open Questions. Our techniques, in particular β-partial symmetrization, might be of inter-
est for deterministically simulating random walks in small space. Further, the development of a
composable notion of crude approximation for Eulerian Laplacians is an interesting task. However,
there are Eulerian Laplcians that do not precondtion each other regardless of stepsize, which is a
major obstruction (See Appendix D).

3

2 Overview

Existing randomized algorithms for solving linear equations in directed Eulerian Laplacians can be
classified as belonging to one of two general frameworks: squaring-solvers and sparsified-cholesky-
solvers. Both heavily rely on (1± ε)-approximate graph sparsification techniques for two separate
tasks: 1) globally sparsifying a directed graph G−→ with m-edges in time close to m and 2) sparsifying

the square graph G−→
2 in time close to m. The square graph G−→

2 is the graph with adjacency matrix

AG−→
D−1

G−→
AG−→

where AG−→
denotes the adjacency matrix of G−→ and DG−→

denotes the diagonal matrix

containing the degrees of the Eulerian graph G−→. For some graphs the running time of 2) is sublinear

in the number of edges of the sparsified graph G−→
2 since squaring can drastically increase the density.

We provide derandomized algorithms for both tasks, allowing us to derandomize two prominent
frameworks. We focus on the squaring-solver [CKP+17], and sketch the sparsified-Cholesky solver
[PS22] in Appendix C3.

While we match the (1± ε)-approximation and roughly the runtime of randomized routines for
2), our algorithm for globally sparsifying directed graphs only achieves a crude no(1)-approximation
guarantee. This is not surprising, since deterministic (1 ± ε)-approximate sparsification in almost
linear time is an open problem even for undirected graphs. However, the current notions of spec-
tral approximation for directed graphs due to [CKP+17] break down for approximation factor ε
larger than 1. To address this problem, we directly define approximation via the suitability as a
preconditioner in the Richardson iteration. In particular, suppose we want to solve a linear equa-
tion in M , by preconditioning with a matrix N . Roughly speaking, if, in an appropriate norm
‖·‖, we have

∥∥I im(M) −N+M
∥∥ ≤ 1 − α, then we can solve the linear equation in M to high

accuracy using Õ(1/α) preconditioned Richardson iterations where we apply M and N+ once
per iteration. A priori, it may be surprising that our approach relies on distinguishing the case
1−

∥∥I im(M) −N+M
∥∥ ≥ no(−1) from the case 1−

∥∥I im(M) −N+M
∥∥ ≈ 0, however, our partial

symmetrization technique and a careful choice of norm makes this possible.
Our notion of high-error approximation is not directly composable, but it does algorithmically

compose: If A is precondioned by B and B is preconditioned by C , then a solver for A can
be constructed with access to B and C+ using two layers of preconditioned Richardson. The
development of a directly composable notion of spectral approximation in directed graphs for
approximation factors larger than 1 remains an interesting open problem.

2.1 Global Sparsification

Given an Eulerian graph G−→ = G−→0 our sparsification routine does not directly produce a sparse

graph G̃−→ = G−→3, but does so via a detour involving two other graphs G−→1 and G−→2:

• G−→0 is the initial graph G−→.

• G−→1 is obtained by β-partially-symmetrizing G−→0. It has a directed and a undirected part.

• G−→2 is obtained from G−→1 by sparsifying its directed part without touching the undirected part.

• G−→3 is obtained by also sparsifying the undirected part.

3[PS22] also relies on randomness for finding a linear sized almost independent subset. We provide a simple
procedure to derandomize this step in Appendix C.3.

4

We call such a bundle of four directed graphs a quadruple. Our construction ensures that L+
G−→i+1

is a suitable preconditioner for LG−→i with respect to the norm ‖·‖U LG−→i+1
→U LG−→i+1

for i = 0, 1, 2,

meaning that L+
G−→i

can be (approximately) applied by applying L+
G−→i+1

for N = Exp(O((log n)1/10))

times via the preconditioned Richardson iteration4. Given an oracle for applying L+
G−→3

we can use it

N times to apply L+
G−→2

, and then in turn apply L+
G−→1

via N applications of L+
G−→2

, until we can finally

apply L+
G−→0

. This yields a procedure for applying L+
G−→0

that relies on N3 = Exp(O((log n)1/10))

applications of L+
G−→3

. Next we describe the way the graphs G−→1, G−→2 and G−→3 are constructed in more

detail. Our full global sparsification results are presented in Section 4.

Figure 1: Obtaining G−→1 from G−→0 via β-partial symmetrization. Given the graph G−→0 as depicted
on the left hand side, we add β times its undirectification. This could double the amount of edges,
but the graph G−→1 has much less directed structure, which we will use to sparsify it in the next
steps.

From G−→0 to G−→1: Robustness through Partial Symmetrization. Let U(G−→0) denote the
undirectification of the graph G−→0, i.e. the graph obtained by replacing each directed edge with an

undirected edge of half the weight. Then we simply obtain G−→1 = β · U(G−→0) + G−→0 where β = no(1)

is a sub-polynomial factor. Surprisingly, even though G−→1 removes a lot of directed structure, L+
G−→0

can be applied via O(β) applications of L+
G−→1

. Although G−→1 might seem similar to β · U(G−→0), in

fact, they behave very differently. The key technical observation is that∥∥∥∥L+/2
U(G−→1)(LG−→0 − LG−→1)L

+/2
U(G−→1)

∥∥∥∥
2

=

∥∥∥∥L+/2
(1+β)·U(G−→0)Lβ·U(G−→0)L

+/2
(1+β)·U(G−→0)

∥∥∥∥
2

=
1

β + 1

which relies on the fact that the directed graphs cancel out additively, only leaving us with sym-
metric Laplacians. See Figure 1 for an illustration.

From G−→1 to G−→2: Patching Expander Parts. The graph G−→1 = β · U(G−→0) + G−→0 is made

up of two parts: an undirected graph β · U(G−→0) and a directed graph G−→0. In this step we aim
to sparsify the directed part by constructing a sparse graph R−→ with the same in- and out-degrees

as G−→0. Then G−→2 = β · U(G−→0) + R−→. Our strategy for obtaining R−→ relies on the structure of the

undirected graph U(G−→0) and deterministic expander decompositions as presented in [CGL+20a].

4Because not all approximations refer to the same norm, this does unfortunately not ensure that L+
G−→3

is a suitable

preconditioner for LG−→0 .

5

expander

Figure 2: Obtaining G−→2 from G−→1 via patching. The dashed box contains the complete bipartite
graph, which is a good expander. We use this information to drastically sparsify the directed part
on the same vertex set V ′, only ensuring that the degrees match up by increasing the weight of the
edges. Since the induced subgraph on V ′ remains a good expander when summing up, this does
not alter the spectral structure of the graph by much.

Our main technical observation here is that given a vertex set V ′ so that U(G−→0)[V ′] is a good enough

expander, we can replace the directed graph G−→0[V ′] in G−→1 with any other directed graph R−→
′, as

long as G−→0[V ′] and R−→
′ have exactly the same in- and out-degrees, retaining a close approximation

between G−→1 − G−→0[V ′] + R−→
′ and G−→1. Our algorithm for constructing R−→ first removes the weighted

structure from U(G−→0) by bucketing by edge weight, and then layers deterministic undirected and
unweighted expander decompositions. These are partitions of undirected and unweighted graphs
into expanding parts and a remainder, and the layering is achieved by recursing on the remainder.
A single expanding part can be greedily sparsified using any sparse greedily constructed graph R−→

′

as introduced above. Summing up all of these yields R−→. Crucially, while the error sums up over
layers and buckets, the disjointness of the expander parts ensures this is not the case within a single
decomposition. See Figure 2 for an illustration.

Figure 3: Obtaining G−→3 from G−→2 via undirected sparsification. The undirected part β ·U(G−→) of G−→2

is sparsified using previously known spectral sparsification routines for undirected graphs. Since
both remaining parts are sparse, their sum is a sparse graph.

From G−→2 to G−→3: Scaling an Undirected Sparsifier. Finally we sparsify the undirected

part β · U(G−→0) obtaining a sparse undirected graph H and let G−→3 = H + R−→. This can be achieved
via known theorems for deterministic low-accuracy undirected graph sparsification provided by
[CGL+20b]. To obtain a good preconditioner we have to scale H, but not R−→, with the inverse of
an appropriate rate η. This relies crucially on our observation that when the approximation error
is only on the undirected part, learning rates can be leveraged more effectively than for general
Eulerian approximation. We are left with a sum of two sparse graphs H and R−→, which is a sparse
directed graph. See Figure 3 for an illustration.

6

2.2 Sparsified Squaring

Given a directed graph G−→ with Laplacian LG−→
= DG−→

−AT
G−→
∈ Rn×n, the Laplacian of its square

G−→
2 is given by

LG−→
2 = DG−→

− AT
G−→
D−1

G−→
AT
G−→︸ ︷︷ ︸

adjacency matrix

= DG−→
−

n∑
i=1

1

DG−→
(i, i)

(A(i, :))T · (A(:, i))T︸ ︷︷ ︸
ATi

.

We consider the directed product graphs Li = D i −AT
i with adjacency matrix Ai. Consider the

matrix

L =

(
diag(Ai1) 0

0 diag(AT
i 1)

)
−
(

0 Ai

AT
i 0

)
which is the Laplacian of a bipartite product graph G. Such graphs are constant expanders, which
allows for a simple trick. First, we sparsify the undirected bipartite product graph L to high
accuracy ε, by adapting a procedure from [KLP+15] to be degree preserving. We call the sparse

bipartite graph we obtain L̃. Then we obtain a sparsified version Ã
T
i of AT

i by simply taking the

bottom left block of L̃. We show that L̃i = D i − Ã
T
i is a ε/Φ2-approximation of Li, where Φ is

the expansion of G. Using the fact that bipartite product graphs are constant expanders lets us
directly translate the approximation guarantee, up to a constant overhead in runtime. We obtain
an (1 ± ε)-approximation L

G̃−→
2 =

∑n
i=1 L̃i of LG−→

2 with nnz(L
G̃−→

2) ≤ O(nnz(LG−→
)ε−4) in almost

linear time. Similar deterministic squaring techniques were developed for small space algorithms
[RV05, AKM+20], albeit the slightly different guarantees. We believe its likely that their approach
to be adapted to our setting, but for convenience we adapt a more direct approach.

2.3 The Squaring Framework

Consider an Eulerian Laplacian LG−→
= DG−→

−AT
G−→

where AG−→
is the adjacency matrix of an Eulerian

graph G−→ and DG−→
is the diagonal matrix containing the degrees. Then the normalised Laplacian

is given by N = I −AT where A = D
+/2
G−→

AT
G−→
D

+/2
G−→

, having the property that ‖A‖2 ≤ 1. The

Neumann series expansion yields

(I −A)+b =

∞∑
i=0

Aib =

∞∏
i=0

(
I + A2k

)
b

for b orthogonal to the kernel of (I−A)+. Given a 1/ poly(n) lower bound on the smallest eigenvalue
λ∗ of I −A, truncating the product expansion after Θ(log n) factors (and hence squarings) yields
a constant relative error. A very convenient equality in the same spirit is given by

(I −A)+b = (I −A2)+(I + A)b (1)

for b orthogonal to the kernel of (I −A)+ which is at the center of the squaring mechanism of
[CKP+16b], the algorithm our squaring solver resembles most. Their squaring scheme is in turn
inspired by the squaring solver for symmetric Laplacians presented in [PS14].

7

This leaves us with the task of solving linear equations in I −A2, which is another normalised
Laplacian. However, this is the normalised Laplacian of the square graph G−→

2, and it can be
shown that squaring drastically improves the condition number of the problem, such that after k =
Θ(log n) squaring steps linear equations can be solved to high accuracy quickly via a simple iterative

scheme. To avoid periodic behaviours we consider the normalised adjacency matrix A(α)
l := αI +

(1− α)Aj , which can be interpreted as adding self loops proportional to the out-degrees of G−→.

Sparsified Squaring. Since squaring not only improves the condition number, but may also
quickly increase the density of the graph, we let A0 = A and iteratively obtain Aj+1 by implicitly

sparsifying (A(α)
j)2 using our sparsified squaring technique with accuracy parameter ε. We can

conclude from (1) that

(I −A)+b ≈ (1− α)d−1 (I −Ad)
+
(
I + (A

(α)
d−1)2

)
· · ·
(
I − (A

(α)
0)2

)
︸ ︷︷ ︸

:=Z

b

as we can ensure that b is orthogonal to the known kernel of (I −A)+. However, the repeated
sparsification accumulates an error proportional to εed, and it is imperative that it stays below 1
such that Z is an approximate pseudoinverse of I −A. Therefore, we have to choose ε proportional
to e−d. We conclude from the previous subsection that nnz(Ad) = O(nnz(A)e4d2). Unfortunately,
we cannot set d = Θ(log n) without ending up with potentially dense matrices. Therefore, we set
d = Θ((log n)1/3) and have e4d2 = no(1).

Global Sparsification and Chains of Sparse Matrices. Since d = Θ((log n)1/3) squarings
do not sufficiently decrease the condition number, we globally sparsify after d sparsified squarings

and repeat. Given A(0)
0 = D

+/2
G−→

AG−→
D

+/2
G−→

for i = 0, ...,Θ((log n)2/3) we iteratively construct:

• Given A(i)
0 , construct A(i)

0 , ...,A(i)
d by sparsified squaring as described in the previous para-

graph.

• Let H−→ be the graph with adjacency matrix D
1/2
G−→

A(i)
d D

1/2
G−→

. Globally sparsify H−→ obtaining H̃−→.

Then let A(i+1)
0 = D

+/2
G−→

AH̃−→
D

+/2
G−→

.

We discuss these collections of squaring chains linked by global sparsification in Section 6. For
our algorithm to run in almost-linear time, it is imperative that these chains are constructed once,
and then our algorithm operates recursively on them.

The Recursive Algorithm. Our global sparsification routine allows us to solve linear equations

in I −A(i)
0 by solving Exp(O((log n)1/10)) linear equations in I −A(i+1)

0 . Since linear equations

in I − A(Θ(logn)2/3)
0 are easy to solve using standard iterative procedures, this is the depth of

our recursion. Therefore, the total amount of branches is Exp(O((log n)2/3+1/10)) = no(1). Since
all involved matrices contain an almost linear amount of entries, this gives an almost linear time
deterministic algorithm for solving linear equations involving Eulerian Laplacians. That is, be-
cause preconditioned Richardson only does matrix vector multiplications with the matrix and the
preconditioner.

8

2.4 The Sparsified-Cholesky Framework

Very recently [PS22] showed that the framework of [KLP+16] directly works for Eulerian Laplacians
by developing new tools for analysing the accumulation of error. Our sparsification tools can also
be used to derandomize this algorithm. Unlike the squaring framework, which makes progress by
improving the condition number, sparsified-Cholesky frameworks operate by eliminating rows and
columns like Gaussian elimination. Such elimination steps can be directly interpreted as deleting
a vertex from the graph and adding a weighted clique.

Some algorithms eliminate one vertex at a time [KS16, CKK+18], but [KLP+16] and [PS22]
eliminate a large set of Ω(n) vertices together. To do so, a linear sized ρ-row-column-diagonally-
dominant (ρ-RCDD) subset V ′ of the vertices is chosen for some constant ρ. A set of vertices is
ρ-RCDD, if for each vertex a ρ-fraction of the weighted in-edges come from V \V ′ and a ρ-fraction
of the weighted out-edges go to V \ V ′5. Then the vertices belonging to this set can be eliminated
using O(log log n) sparsified squaring operations. While randomized algorithms using this paradigm
can afford to globally sparsify after each squaring step, we have to allow for some build up of the
edge count. Namely, we wait for a subpolynomial number of elimination rounds, and then globally
sparsify and recurse. As previously, global sparsifications correspond to branching points when
applying the inverse. We give a more detailed description in Appendix C.

2.5 Reduction to the Eulerian Setting with bounded Condition Number

Previous work [CKP+16c, CKP+16b] reduced solving linear equations in directed Laplacians L =
D − AT to solving logO(1)(nκ−1ε−1) systems involving Eulerian Laplacians with polynomially
bounded condition number and edge weights to constant accuracy, where κ is an upper bound
on the maximum of κ(D) and κ(L) (See Appendix D and F of [CKP+16b] and Sections 5, 7.1 and
7.3 of [CKP+16c]). They use that edge weights are polynomially bounded in the proof of Lemma
C.3 in Appendix C of [CKP+16b]. Different reductions to the Eulerian case were presented by
Ahmadinejad-Jambulapati-Saberi-Sidford [AJSS19] and in the thesis of Peebles [Pee19].

3 Preliminaries

3.1 Linear Algebra

Matrices. We denote matrices as bold upper case letters A. For a matrix A ∈ Rn×n, we let
nnz(A) denote its number of non-zero entries and for X ⊆ [n], Y ⊆ [n] we let A(X,Y) = AXY

denote the |X|×|Y | submatrix containing the entries with index in X×Y . If X = Y , we write A[X]
as a shorthand for A(X,X). When selecting submatrices, we let l : u denote the set {l, l+1, . . . , u}
for u ≥ l and : the set of all columns/rows, e.g. A(1 : 3, :) denotes the submatrix of A consisting
of the first 3 rows of A. Further, we let A+ denote the Moore-Penrose-Pseudoinverse of matrix A.
Finally, I denotes the identity matrix. Sometimes we denote its dimension with I n.

Vectors. We denote vectors as bold lower case letters v . Further, we let 1 denote the all
ones vector, 0 the zero vector and e i denotes the i-th vector of the standard basis. Sometimes we
indicate the dimension with 1n and 0n.

5Notice that [KLP+15] is concerned with the undirected case.

9

The Loewner-order. For symmetric matrices A and B , we let A � B iff for all vectors x :
xTAx ≤ xTBx . We define ≺,� and � analogously. If a symmetric matrix A satisfies 0 � A we
call it PSD. For a PSD matrix A, we let A1/2 denote the unique matrix so that A1/2A1/2 = A.

Norms. For every vector x , we let ‖x‖H :=
√
xTHx for a PSD matrix H. We let ‖M ‖H→H :=

maxx 6=0
‖Mx‖H
‖x‖H

for a PSD matrix H. Notice that ‖M ‖H→H =
∥∥∥H1/2MH+/2

∥∥∥
2
. Further, we let

‖M ‖1 and ‖M ‖∞ denote the maximum `1 norm of a column and row of M respectively.

Condition Number. For a matrix A ∈ Rn×n we let κ(A) := ‖A‖2
∥∥A+

∥∥
2

denote its con-
dition number. Further, for PSD matrices A and B with the same kernel we let κ(A,B) :=
κ(A+/2BA+/2).

Misc. We let Exp(x) := ex. In this paper Õ(·) suppresses poly-logarithmic factors in n. For a
PSD matrix A, we let λ∗(A) denote its smallest nonzero eigenvalue.

3.2 Graphs

General Notation. We let G = (V,E, ω) denote an undirected graph where ω(e) = ω(u, v)
denotes the weight of edge e = (u, v). Further, we let G−→ = (V,E, ω), where the edge weight

ω(e) = ω(u, v) of edge e now depends on its direction. Sometimes we omit ω for unit weight (aka
unweighted) graphs. When sometimes also write V (G−→), E(G−→) and ωG−→

to avoid ambiguity. We let

ωmax and ωmin denote the maximum and minimum edge weight respectively.

Undirectification. For a directed graph G−→ = (V,E, ω), we let U(G−→) = (V,E′, ω), with {u, v} ∈
E′ iff (u, v) ∈ E or (v, u) ∈ E and ω{u, v} = 1

2(ω(u, v)+ω(u, v)), denote its undirectification (where
we use the convention ω(u, v) = 0 for (u, v) /∈ E).

Induced Subgraphs. For G = (V,E, ω) and X ⊆ V we let G[X] denote the induced subgraph
on X. For a directed graph G−→ we define G−→[X] analogously.

3.3 Graph Laplacians

General Notation. For a undirected graph G = (V,E, ω) we denote its (graph) Laplacian as
LG = DG−AG where DG is the diagonal matrices containing the degrees and AG(i, j) = AG(j, i) =
ω((i, j)). Generalizing this notation to directed graphs G−→ = (V,E, ω), we let LG−→

= DG−→
− AT

G−→
where the adjacency matrix is given by AG−→

(i, j) = ω((i, j)) and the diagonal matrix DG−→
(i, i) =∑

j AG−→
(i, j) contains the out degrees. Naturally 1TLG−→

= 0. For an undirected graph G, we let

degG(v) be the (weighted) degree of vertex v. For directed graphs we let deg−G(v) and deg+
G(v)

denote in- and out-degree respectively.

Eulerian Laplacians. If LG−→
1 = 0 we call a Laplacian Eulerian. This correspond to the

underlying directed graph G−→ being Eulerian, i.e. having equal in- and out-degree for each vertex.

10

Symmetrization. For any matrix A we denote UA = U (A) := 1
2(A+AT). Notice that for an

Eulerian Laplacian LG−→
we have U LG−→

= LU(G−→). This is a crucial fact exploited by all algorithms

for directed Laplacians including ours. Symmetric Laplacians are PSD.

Induced subgraphs and submatrices. The reader should note that for a Laplacian LG−→
the

matrices LG−→[X] and LG−→
[X] are not equivalent unless there is no edge from X to V \ X or vice

versa. Specifically, while the off-diagonal entries are equal, we have DG−→[X](i, i) ≤ DG−→
[X](i, i).

3.4 Directed Graph Approximation

We will use the notions of approximation for directed graphs introduced in [CKP+16b].

Definition 3.1 (Asymmetric Matrix Approximation, Definition 3.1 in [CKP+16b]). A (possibly
asymmetric) matrix Ã is said to be an ε-matrix-approximation of A if

1. UA is a symmetric PSD matrix, with ker(UA) ⊆ ker(Ã−A) ∩ ker((Ã−A)T).

2.
∥∥∥U+/2

A (Ã−A)U
+/2
A

∥∥∥
2
≤ ε

Remark 3.2. Notice that Definition 3.1 is not symmetric.

3.5 Expanders

Expander graphs, or expanders for short, play a central role in both the workings and analysis of
our algorithms. Notice that while our algorithm operates on directed graphs, we only use expanders
in the context of undirected graphs. Whenever we use the term expander, we mean expanders with
respect to conductance. We follow the notational conventions of [CGL+20b].

Definition 3.3 (Conductance). For a weighted but undirected graph G = (V,E, ω), given a set
∅ ⊂ S ⊂ V we let δG(S) :=

∑
(u,v)∈E:u∈S,v /∈S ω(u, v) and volG(S) :=

∑
v∈S

∑
u∈V ω(u, v). Then we

define the conductance

ΦG(S) =
δG(S)

min{volG(S), volG(V \ S)}
.

Definition 3.4 (Expander). We call a graph G = (V,E, ω) a Φ-expander (with respect to conduc-
tance) if minS:∅⊂S⊂V ΦG(S) ≥ Φ. We further let ΦG = minS:∅⊂S⊂V ΦG(S).

Given a vector d ∈ Rn>0 we let G(d) denote the weighted and undirected graph on n vertices

with ω(i, j) = d(i)·d(j)
‖d‖1

. Note that LG(d) = diag(d)− ddT

‖d‖1
.

Fact 3.5 (Observation 6.6 in [CGL+20b]). G(d) is a 1/2-expander.

We will frequently use that Laplacians LH = DH −AT
H of good expanders H are well approx-

imated by LG(diag(DH)). To establish this, we need the following lemma.

Lemma 3.6 (Lemma 6.7 in [CGL+20b]). Let G and H be two undirected weighted n-vertex graphs
on the same vertex set, such that DG = DH . Assume further that Φ(G),Φ(H) ≥ Φ for some

threshold Φ. Then for any real vector x ∈ Rn: Φ2

4 xTLGx ≤ xTLHx
T ≤ 4

Φ2x
TLGx .

11

We state a direct corollary in a form that turns out to be convenient for our arguments.

Corollary 3.7 (Non Uniform Degree Bound). Given a Φ-expander G with Laplacian LG = DG −
AT
G we have

Φ2

4
(DG −

dGd
T
G

‖dG‖1
) � LG �

4

Φ2
(DG −

dGd
T
G

‖dG‖1
)

for dG = diag(DG) and Φ ≤ 1/2.

Proof. Directly follows from Fact 3.5 and Lemma 3.6.

Next we state the definition of the expander decomposition for unweighted and undirected
graphs in the notation of [CGL+20b].

Definition 3.8 (See Section 6 of [CGL+20b], Proposed by [KVV04, GR99]). A (ε,Φ)-expander
decomposition of a undirected and unweighted graph G = (V,E) is a partition P = {V1, ..., Vk} of
the vertex set V such that for all i ∈ [k] the conductance of G[Vi] is at least Φ and

∑k
i=1 δG(Vi) ≤

ε volG(V).

The next theorem shows that expander decompositions can be computed in almost linear time.

Theorem 3.9 (Corollary 7.7 in [CGL+20b]). There is a deterministic algorithm that, given an
undirected and unweighted graph G = (V,E) with m edges and parameters ε ∈ (0, 1] and 1 ≤
r ≤ O(logm), computes a (ε,Φ)-expander decomposition of G with Φ ≥ Ω(ε/(logm)O(r2)) in time

O
(
m1+O(1/r)+o(1) · (logm)O(r2)

)
.

Finally, we adapt the previous theorem to interface more conveniently with our statements.

Corollary 3.10 (Expander Decomposition). There is a deterministic algorithm ExpDecomp(G, γ)
that, given an undirected and unweighted graph G = (V,E) with m edges and a constant γ ∈ (0, 1),
computes a (1/2, 1

Exp((logn)γ))-expander decomposition in time m1+o(1).

Proof. Follows directly from Theorem 3.9.

3.6 Preconditioned Richardson

The next lemma analyses preconditioned Richardson (Algorithm 1) for asymmetric matrices.

Lemma 3.11 (Preconditioned Richardson, Lemma 4.2 in [CKP+16b]). Let b ∈ Rn and M ,Z ,U ∈
Rn×n such that U is symmetric positive definite, ker(U) ⊆ ker(M) = ker(M T) = ker(Z) =
ker(Z T), and b ∈ im(M). Then N iterations of preconditioned Richardson with step size η > 0,
result in a vector xN = PreconRichardson(M ,Z , b, η,N) so that∥∥xN −M+b

∥∥
U
≤
∥∥I im(M) − ηZM

∥∥N
U→U

∥∥M+b
∥∥
U
.

Furthermore preconditioned Richardson implements a linear operator, in the sense that xN = ZNb
for some matrix ZN only depending on Z ,M , η and N .

The previous lemma leads to the notion of an approximate pseudoinverse by measuring the
suitability of a matrix as a preconditioner.

12

Definition 3.12 (Approximate Pseudoinverse, Definition 4.3 in [CKP+16b]). Matrix Z is an ε-
approximate-pseudoinverse of matrix M with respect to a PSD matrix U , if ker(U) ⊆ ker(M) =
ker(M)T = ker(Z) = ker(Z T), and∥∥I im(M) − ZM

∥∥
U→U

≤ ε.

Algorithm 1: PreconRichardson(M ,Z , b, η,N)

1 x 0 = 0
2 for i = 0, ..., N - 1 do
3 x i+1 = x i + ηZ (b −Mx i)
4 end
5 return xN

Finally, we state three more lemmas that are crucial for arguing about approximate pseudoin-
verses. The first two are often applied consecutively to upper bound

∥∥I im(M) − ZM
∥∥
U Z→U Z

with

a variational form.

Lemma 3.13 (Part of Lemma B.9 in [CKP+16b]). If L is a matrix with ker(L) = ker(LT) =
ker(U L), and U L is positive semidefinite, then for any matrix A with the same left and right
kernels as L we have

‖A‖U L→U L
≤
∥∥∥U+/2

L LAU
+/2
L

∥∥∥
2

Lemma 3.14 (Part of Lemma B.2 in [CKP+16b]). For all A ∈ Rn×n and symmetric PSD M ,N ∈
Rn×n such that ker(M) ⊆ ker(AT) and ker(N) ⊆ ker(A) we have∥∥∥M+/2AN+/2

∥∥∥
2

= 2 max
x ,y 6=0

xTAy

xTMx + yTNy

where we define 0/0 to be 0.

Lemma 3.15 (Part of Lemma B.4 in [CKP+16b]). For a PSD diagonal matrix D and any matrix
M ∈ Rn×n∥∥∥D−1/2MD−1/2

∥∥∥
2
≤ max{

∥∥D−1M
∥∥
∞ ,
∥∥D−1M T

∥∥
∞} = max{

∥∥M TD−1
∥∥

1
,
∥∥MD−1

∥∥
1
}.

4 Global Sparsification for Directed Laplacians

In this section we describe our low accuracy global sparsification routine. This constitutes the
backbone of our algorithm. We first formally define the β-partial-symmetrization of an Eulerian
graph G−→. See Figure 4 for an illustration.

Definition 4.1. For an Eulerian directed graph G−→ we call U (β)(G−→) := β · U(G−→) + G−→ its β-partial-
symmetrization.

13

Remark 4.2. LU(β)(G−→) = βU LG−→
+ LG−→

.

There are three steps in our sparsification procedure.

1. The first step relies on what may be the most crucial observation. Given an Eulerian directed
graph G−→ = G−→0, we let G−→1 = U (β)(G−→) = β · U(G−→) + G−→ be the graph obtained from G−→0

by β-partial symmetrization. Then, surprisingly, LG−→1 can be used as a preconditioner for

solving linear equations in LG−→0 in time O(β) using Richardson. We call U (β)(G−→) the β-

partial-symmetrization of G−→.

2. A partial-symmetrization is naturally interpreted as the sum of an undirected graph β · U(G−→)

and a directed graph G−→. We expander decompose the undirected graph β · U(G−→) into parts
V1, V2, ..., Vk. Then a simple greedy patching scheme can be used to sparsify the induced
subgraphs G−→[Vi] leveraging the expander structure for error control. In our actual algorithm
we additionally bucket by edge weight and layer expander decompositions. The former allows
us to treat the graph as unweighted and the latter ensures that every edge is in an expander
after O(log n) layers. The Laplacian of the obtained graph G−→2 = β · U(G−→) + R−→ can then be
used as a preconditioner for LG−→1

3. Lastly, the undirected graph β ·U(G−→) can be sparsified via previously known deterministic al-

gorithms presented in [CGL+20b]. We obtain G−→3 = β
η G̃+R−→ which in turn is a preconditioner

for G−→2.

= +

Figure 4: This drawing illustrates the concept of an β-partial-symmetrization. We use boldness
to roughly indicate edge weights. On the left hand side an Eulerian graph G−→ is depicted. On the
right hand side its β-partial-symmetrization is drawn, alongside its natural split into an undirected
and directed part.

We define pseudoinverse sparsification quadruples. Constructing these is at the core of our
global sparsification routine.

Definition 4.3. (Sparsification quadruple) We call strongly connected n-vertex Eulerian graphs
G−→0, G−→1, G−→2, G−→3 a (γ, β, η)-quadruple for some constant γ ∈ (0, 1) if

1. L+
G−→i

is a
(

1− 1
Exp(O((logn)γ))

)
-approximate pseudoinverse of LG−→i−1 with respect to U LG−→i

for

i = 1, 2, 3.

2. 1
Exp(O((logn)γ))U LG−→i−1

� U LG−→i
� Exp(O((log n)γ))U LG−→i−1

for i ∈ {1, 2, 3}.

3. |E(G−→3)| = Õ(n). |E(G−→i)| ≤ 2|E(G−→0)|+ Õ(n) for i = 1, 2.

14

4. For all vertices v: deg+
G−→0

(v) = deg−G−→0
(v) = (1 + β) deg+

G−→i
(v) = (1 + β) deg−G−→i

(v) for i = 1, 2

and deg+
G−→0

(v) = (1 + β
η) deg+

G−→3
(v) = (1 + β

η) deg−G−→3
(v).

We then state the main lemma of this section. It shows that it is possible to construct a
(γ, β, η)-quadruple in almost linear time.

Lemma 4.4 (Global Sparsification). For every m-edge, strongly connected Eulerian graph G−→ = G−→0

and a constant γ ∈ (0, 1) the routine G−→1, G−→2, G−→3 = GlobalSparsification(G−→, γ) yields a (γ, β =

Exp(O((log n)γ)), η = Exp(−3(log n)γ))-quadruple G−→0, G−→1, G−→2, G−→3. The runtime is m1+o(1).

Remark 4.5. While in the description of our algorithm, β scales linearly in O

(
log

(
ωmaxG−→
ωminG−→

))
,

we assume throughout the paper that β = Õ(1) · Exp(2(log n)γ) is fixed to a global upper bound as

log

(
ωmaxG−→
ωminG−→

)
= Õ(1) for all graphs G−→ we work with. This avoids clutter in the analysis.

Algorithm 2: GlobalSparsification(G−→, γ)

1 β = L · Exp(2 · (log n)γ) for L = 128 · 20 · P · log n and P =

⌈
log

(
ωmax
G−→
ωmin
G−→

)⌉
.

2 η = Exp(−3 · (log n)γ)

3 G−→1 = βU(G−→) + G−→ ; // Note that G−→1 = U (β)(G−→).

4 R−→ = SparsifyDirected(G−→, γ)

5 G−→2 = βU(G−→) + R−→
6 G̃ = SpectralSparsifyDeg(U(G−→), γ)

7 G−→3 = β
η G̃+ R−→

8 return G−→1, G−→2, G−→3

4.1 Preconditioning with the Partial-Symmetrization

Our next lemma shows that LU(β)(G−→) is a good preconditioner in terms of Lemma 3.11.

Lemma 4.6. For every Eulerian Laplacian LG−→0 the matrix L+
G−→1

is an (1 − 1
1+β)-approximate

pseudoinverse of LG−→0 with respect to U LG−→1
if G−→1 = U (β)(G−→0).

Proof. First recall that L+
G−→1

= L+
U(β)(G−→)

. We have

∥∥∥∥I im(LG−→
) − L+

U(β)(G−→)
LG−→

∥∥∥∥
U L
U(β)(G−→)

→U L
U(β)(G−→)

≤
∥∥∥∥U+/2

LU(β)(G−→)
(LU(β)(G−→) − LG−→

)U
+/2
LU(β)(G−→)

∥∥∥∥
2

15

by Lemma 3.13. With Remark 4.2 we conclude∥∥∥∥U+/2
LU(β)(G−→)

(LU(β)(G−→) − LG−→
)U

+/2
LU(β)(G−→)

∥∥∥∥
2

= β

∥∥∥∥U+/2
LU(β)(G−→)

U LG−→
U

+/2
LU(β)(G−→)

∥∥∥∥
2

=
β

1 + β

∥∥∥∥U+/2
LG−→

U LG−→
U

+/2
LG−→

∥∥∥∥
2

=
β

1 + β
= 1− 1

1 + β

where we use that U LU(β)(G−→)
= LU(U(β)(G−→)) = (1 + β)U LG−→

. The lemma follows from chaining the

calculations.

4.2 Sparsifying the Directed Part

Given LG−→1 = βU LG−→
+LG−→

, we aim to obtain a sparse directed graph R−→ with the same in- and out-

degrees as G−→ so that the directed Laplacian LG−→2 = βU LG−→
+ LR−→

preconditions LG−→
. Our strategy

closely follows common strategies for sparsifying undirected graphs via expander decompositions.
First we get rid of most of the weighted structure by bucketing by edge weight. We obtain Õ(1)
graphs G−→

(i) with close to uniform edge weight such that
∑

i G−→
(i) = G−→.

We let H(i) denote the unweighted and undirected graph with the same edges as G−→
(i). Then

we layer j = 1, ..., O(log n) undirected and unweighted expander decompositions on this graph,

where each of them peels of at least 1/2 of the remaining edges E
(i,j)
r . This procedure computes

O(log n) partitions V
(i,j)

1 , ..., V
(i,j)
k(i,j) of the vertex set, such that for each component V

(i,j)
p the graph

H(i)[V
(i,j)
p] is an expander. In the j-th layer, we put the remaining edges of the directed graph G−→

(i)

that do not go across sets in the partition V
(i,j)

1 , ..., V
(i,j)
k(i,j) into the graph G−→

(i,j) and remove them
from the set of remaining edges.

The expander structure allows us to sparsify G−→
(i,j) via a greedy patching scheme obtaining

G̃−→
(i,j)

. Finally, we sum up across layers and buckets and obtain R−→ =
∑

i,j G̃−→
(i,j)

. We leverage the
robustness introduced by partial symmetrization to bound the error. See Algorithm 3 for detailed
pseudocode. We first state the main lemma of this subsection, which analyses this algorithm.

Lemma 4.7. Let R−→ = SparsifyDirected(G−→, γ) for γ ∈ (0, 1) constant. Then L+
G−→2

= (βU LG−→
+

LR−→
)+ is a 1/2-approximate pseudoinverse of LG−→1 = LUβ(G−→) with respect to U LG−→2

for β = Õ(1) ·
Exp(2 · (log n)γ). Further, the graph R−→ has Õ(n) edges and the same in- and out-degrees as G−→.

The proof of Lemma 4.7 relies on analysing the error incurred by sparsifying each individual

expander decomposition, i.e. the cost of replacing G−→
(i,j) with G̃−→

(i,j)
. Then we conclude by just

summing up the error. The next lemma carefully analyses the amount of error sparsifying such
an expander decomposition creates. It crucially relies on the fact that the expander parts form a
disjoint partition, and therefore the error does not scale in the number of expanders.

Lemma 4.8. In the context of Sparsify() in Algorithm 3 we have∥∥∥∥U+/2
LG−→

(G−→
(i,j) − G̃−→

(i,j)
)U

+/2
LG−→

∥∥∥∥
2

≤ 128 · Exp(2 · (log n)γ)

for every edge weight bucket i and expander decomposition layer j.

16

Algorithm 3: SparsifyDirected(G−→, γ) and subroutines Sparsify() and Patch()

1 Algorithm SparsifyDirected(G−→, γ)

2 P =

⌈
log

(
ωmax
G−→
ωmin
G−→

)⌉
3 for i = 1, ..., P do

4 E(i) = {e ∈ E(G−→) : ωminG−→
· 2i−1 ≤ ωG−→(e) < ωminG−→

· 2i}

5 G̃−→
(i)

= Sparsify(G−→
(i) = (V (G−→), E(i), ωG−→

))

6 end

7 return R−→ =
∑P

i=1 G̃−→
(i)

8 Procedure Sparsify(G−→
(i))

9 Let H(i) denote the unweighted and undirected graph with the same edges as U(G−→
(i))

10 for j = 1, ..., 10 log n do

11 E
(i,j)
r = E(H(i))−

⋃j−1
l=1 E(H(i,j)); E−→

(i,j)
r = E(G−→

(i))−
⋃j−1
l=1 E(G−→

(i,j))

12 V
(i,j)

1 , ..., V
(i,j)
k(i,j) = ExpDecomp((V (H(i)), E

(i,j)
r), γ)

13 E(H(i,j)) =
⋃k(i,j)
p=1 {(u, v) ∈ E(i,j)

r : u ∈ V (i,j)
p ∧ v ∈ V (i,j)

p }
14 E(G−→

(i,j)) =
⋃k(i,j)
p=1 {(u, v) ∈ E−→

(i,j)
r : u ∈ V (i,j)

p ∧ v ∈ V (i,j)
p }

15 H(i,j) = (V (H(i)), E(H(i,j))); G−→
(i,j) = (V (G−→

(i)), E(G−→
(i,j)), ωG−→

(i))

16 G̃−→
(i,j)

=
∑k(i,j)

p=1 Patch(G−→
(i,j)[V

(i,j)
p])

17 end

18 return G̃−→
(i)

=
∑10 logn

j=1 G̃−→
(i,j)

19 Procedure Patch(H−→)

20 Let aaa, b ∈ Rn
≥0 so that aaa(v) = deg+

H−→
(v) and b(v) = deg−H−→

(v). // Note ‖aaa‖1 = ‖b‖1.

21 E(H̃−→) = ∅; ωH̃−→
(e) = 0 for all e.

22 while ‖aaa‖ 6= 0 do
23 Let i and j be arbitrary such that aaa(i) > 0 and b(j) > 0.
24 w = min{aaa(i), b(j)}; aaa(i) = aaa(i)− w; b(j) = b(j)− w
25 E(H̃−→) = E(H̃−→) ∪ {(i, j)}; ω(i, j) = w

26 end

27 return H̃−→

17

Proof. G−→
(i,j) and G̃−→

(i,j)
are directed graphs with the same in and out degrees since Patch()

in Algorithm 3 preserves degrees exactly. Therefore 1 is in both the left and right kernel of

G−→
(i,j) − G̃−→

(i,j)
. We apply Lemma 3.14 twice and obtain

∥∥∥∥U+/2
LG−→

(LG−→
(i,j) − L

G̃−→
(i,j))U

+/2
LG−→

∥∥∥∥
2

= 2 max
x ,y 6=0

xT (LG−→
(i,j) − L

G̃−→
(i,j))y

xTU LG−→
x + yU LG−→

yT

i)

≤ 2 max
x ,y 6=0

xT (LG−→
(i,j) − L

G̃−→
(i,j))y

xTLU(G−→
(i,j))x + yLU(G−→

(i,j))y
T

ii)

≤ 2

ωmin
G−→
· 2i−2

max
x ,y 6=0

xT (LG−→
(i,j) − L

G̃−→
(i,j))y

xTLH(i,j)x + yLH(i,j)yT

=
1

ωmin
G−→
· 2i−2

∥∥∥∥L+/2

H(i,j)(LG−→
(i,j) − L

G̃−→
(i,j))L

+/2

H(i,j)

∥∥∥∥
2

(2)

where i) follows since LU(G−→
(i,j)) � U LG−→

because U(G−→
(i,j)) is a subgraph of U(G−→) and ii) uses that

all edge weights in U(G−→
i,j) are in [ωminG−→

· 2i−2, ωminG−→
· 2i]. Next we can use that the expander parts

V
(i,j)
p are disjoint in both G−→

(i,j) and G̃−→
(i,j)

to bound∥∥∥∥L+/2

H(i,j)(LG−→
(i,j) − L

G̃−→
(i,j))L

+/2

H(i,j)

∥∥∥∥
2

≤ max
p

∥∥∥∥L+/2

H(i,j)[V
(i,j)
p]

(L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)L
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥
2

(3)

since the spectral norm of a block diagonal matrix is upper bounded by the maximum spectral
norm of a block (See Fact A.1). Then, for every p ∈ {1, ..., k(i, j)} we have

∥∥∥∥L+/2

H(i,j)[V
(i,j)
p]

(L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)L
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥
2

i)
= 2 max

x ,y 6=0

xT (L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)y

xTL
H(i,j)[V

(i,j)
p]

x + yL
H(i,j)[V

(i,j)
p]

yT

ii)

≤ 8 · 22(logn)γ max
x ,y 6=0

xT (L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)y

xTL
G(d

(i,j)
p)

x + yL
G(d

(i,j)
p)

yT

(4)

for d
(i,j)
p being the degree vector of H(i,j)[V

(i,j)
p], where i) is by Lemma 3.14 and ii) is by the

expansion of H(i,j)[V
(i,j)
p] and Corollary 3.7. Let x ,y ⊥ 1 be maximising the right hand side of

the previous inequality. Then, also x ′ = x − xT d
(i,j)
p∥∥∥d (i,j)

p

∥∥∥
2

1 and y ′ = y − yT d
(i,j)
p∥∥∥d (i,j)

p

∥∥∥
2

1 are maximizing. We

18

obtain

2

xT (L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)y

xTL
G(d

(i,j)
p)

x + yL
G(d

(i,j)
p)

yT
= 2

x ′T (L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)y ′

x ′TL
G(d

(i,j)
p)

x ′ + y ′L
G(d

(i,j)
p)

y ′T

= 2

x ′T (L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)y ′

x ′TD
H(i,j)[V

(i,j)
p]

x ′ + y ′D
H(i,j)[V

(i,j)
p]

y ′T

=

∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

(L
G−→

(i,j)[V
(i,j)
p]
− L

G̃−→
(i,j)

[V
(i,j)
p]

)D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥
(5)

where the last equality is by Lemma 3.14. Next we upper bound∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

L
G−→

(i,j)[V
(i,j)
p]

D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥
and ∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

L
G̃−→

(i,j)
[V

(i,j)
p]

D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥ .
By Lemma 3.15 we have∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

L
G−→

(i,j)[V
(i,j)
p]

D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥ ≤ max

{∥∥∥∥LG−→
(i,j)[V

(i,j)
p]

D+

H(i,j)[V
(i,j)
p]

∥∥∥∥
1

,

∥∥∥∥LTG−→(i,j)[V
(i,j)
p]

D+

H(i,j)[V
(i,j)
p]

∥∥∥∥
1

}
.

Since for every v, the undirected graph ωmin
G−→
· 2i+1 ·H(i,j)[V

(i,j)
p] satisfies

deg
ωmin
G−→
·2i+1·H(i,j)[V

(i,j)
p]

(v) ≥ max

{
deg+

G−→
(i,j)[V

(i,j)
p]

(v), deg−
G−→

(i,j)[V
(i,j)
p]

(v)

}
we have ∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

L
G−→

(i,j)[V
(i,j)
p]

D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥ ≤ ωmin
G−→
· 2i+2. (6)

Since we only used the in and out degrees of G−→
(i,j)[V

(i,j)
p] in the above, and G̃−→

(i,j)
[V

(i,j)
p] has exactly

the same degrees, we analogously conclude∥∥∥∥D+/2

H(i,j)[V
(i,j)
p]

L
G̃−→

(i,j)
[V

(i,j)
p]

D
+/2

H(i,j)[V
(i,j)
p]

∥∥∥∥ ≤ ωmin
G−→
· 2i+2. (7)

Chaining inequalities (2), (3), (4), (5), (6) and (7) yields∥∥∥(U LG−→
)+/2(G−→

(i,j) − G̃−→
(i,j)

)(U LG−→
)+/2

∥∥∥
2
≤ 128 · Exp(2 · (log n)γ)

which concludes our proof.

Next we analyse the number of edges of G̃−→
(i,j)

19

Lemma 4.9. |E(G̃−→
(i,j)

)| = O(n).

Proof. It is easy to see that the patching routine adds at most 2|V (i,j)
p | edges to graph G̃−→

(i,j)
[V

(i,j)
p],

since each added edge repairs either the desired in-degree or the desired out-degree of a vertex.

The result follows since
∑

p |V
(i,j)
p | = n.

We show the main lemma of this subsection by summing up the parts.

Proof of Lemma 4.7. Notice that each expander decomposition peels of half of the edges, and thus
every edge is part of an unique expander part by the end of the procedure Sparsify() in Algorithm
3. Thus our algorithm exactly preserves the in- and out-degrees of G−→1 = β · U(G−→) + G−→, since each

individual patching exactly preserves degrees. Since the graph G−→2 = β · U(G−→) + R−→ remains

connected the null-spaces are unaltered. Further, since R−→ is the sum of ˜O(1) graphs with O(n)

edges the total amount of edges of R−→ is bounded by Õ(n).
Finally, we show the approximation bound. By Lemma 3.13 we have∥∥∥I im(U(β)(G−→

)− L+
G−→2

LG−→1

∥∥∥
U LG−→2

→U LG−→2

≤
∥∥∥∥U+/2

LG−→2
(LR−→

− LG−→
)U

+/2
LG−→2

∥∥∥∥ .
We use Lemma 3.14 to obtain∥∥∥∥U+/2

LG−→2
(LR−→

− LG−→
)U

+/2
LG−→2

∥∥∥∥ = 2 max
x ,y 6=0

xT (LR−→
− LG−→

)y

xT (βU LG−→
+ U LR−→

)x + yT (βU LG−→
+ U LR−→

)y

≤ 2 max
x ,y 6=0

xT (LR−→
− LG−→

)y

βxTU LG−→
x + βyTU LG−→

y
.

Using Lemma 3.14 again we have

2 max
x ,y 6=0

xT (LR−→
− LG−→

)y

βxTU LG−→
x + βyTU LG−→

y
=

1

β

∥∥∥∥U+/2
LG−→

(LR−→
− LG−→

)U
+/2
LG−→

∥∥∥∥
2

=
1

β

∥∥∥∥∥∥U+/2
LG−→

∑
i,j

(LG̃−→
(i,j) − LG−→

(i,j))U
+/2
LG−→

∥∥∥∥∥∥
2

≤ 1

β

∑
i,j

∥∥∥∥U+/2
LG−→

(LG̃−→
(i,j) − LG−→

(i,j))U
+/2
LG−→

∥∥∥∥
2

i)

≤ 10 · P · log n · 128 · Exp(2 · (log n)γ)

β

ii)

≤ 1

2

where i) follows from Lemma 4.8 and ii) is by β ≥ 128 · 20 · P · log n · Exp(2 · (log n)γ). Chaining
the inequalities shows the approximation statement and concludes our proof.

20

4.3 Sparsifying the Undirected Part

The final task we have left is to sparsify the undirected graph U(G−→). This can be more or less

directly achieved by employing a sparsification theorem presented in [CGL+20b]. Mainly for nota-
tional convenience in our algorithm, we adapt this sparsifcation technique to be degree preserving
in Appendix B and state the resulting lemma here. See Lemma B.2 for the proof.

Lemma 4.10. (Degree Preserving Sparsification) There is a deterministic algorithm
SpectralSparsifyDeg(G, γ) (Algorithm 10) that given a parameter γ ∈ (0, 1) and an undirected

graph G = (V,E, ω) with n vertices and m edges such that that P := maxe∈E ω(e)
mine∈E ω(e) = poly(n) computes

G̃ satsifying

1. Exp(−(log n)γ)LG � LG̃ � Exp((log n)γ)LG

2. nnz(A) = Õ(n)

in time

Õ(m1+O(1/(logn)γ/2) · (logm)O((logn)γ)) = m1+o(1).

The graph G̃ has self loops and exactly the same degrees as G.

Next we apply degree preserving sparsification together with an appropriate scaling to sparsify
the undirected part.

Lemma 4.11. There exists a routine G̃ = SpectralSparsifyDeg(U(G−→), γ) (Algorithm 10) that

given the undirected graph U(G−→) computes an undirected graph G̃ with Õ(n) edges so that L+
G−→3

=

(βηLG̃ + LR−→
)+ is an

(
1− 1

2·Exp(4·(logn)γ)

)
-approximate pseudoinverse of LG−→2 = βU LG−→

+ LR−→
with

respect to U LG−→3
. The degrees of G̃ and U(G−→) are the same.

Proof. The sparsity and degree preservation follows directly from Lemma 4.10. To show the ap-
proximation property, we use Lemma 3.13 and obtain∥∥∥I im(LG−→

) − L+
G−→3

LG−→2

∥∥∥
U LG−→3

→U LG−→3

≤
∥∥∥∥U+/2

LG−→3

(
β

η
LG̃ − βLU(G−→)

)
U

+/2
LG−→3

∥∥∥∥
2

. (8)

Then we use Lemma 3.14 twice with β
ηLG̃ �

β
ηLG̃ + U LR−→

to obtain

∥∥∥∥U+/2
LG−→3

(
β

η
LG̃ − βLU(G−→)

)
U

+/2
LG−→3

∥∥∥∥
2

= 2 max
x ,y 6=0

xT
(
β
ηLG̃ − βLU(G−→)

)
y

xT (βηLG̃ + U LR−→
)x + yT (βηLG̃ + U LR−→

)y

≤ 2 max
x ,y 6=0

xT
(
β
ηLG̃ − βLU(G−→)

)
y

xT (βηLG̃)x + yT (βηLG̃)y

=
∥∥∥L+/2

G̃
(LG̃ − ηLU(G−→))L

+/2

G̃

∥∥∥ . (9)

21

Next we compute ∥∥∥L+/2

G̃
(LG̃ − ηLU(G−→))L

+/2

G̃

∥∥∥ =
∥∥∥I im(LG̃) − ηL

+/2

G̃
LU(G−→)L

+/2

G̃

∥∥∥
2
. (10)

We use the standard strategy of bounding the square. Let M := L
+/2

G̃
LU(G−→)L

+/2

G̃
be a shorthand.

Then we have∥∥∥I im(LG̃) − ηM
∥∥∥

2
= max

x∈im(LG̃):‖x‖2=1
xT (I imU(G−→) − ηM)T (I imU(G−→) − ηM)x

= 1 + max
x∈imLG̃:‖x‖2=1

−2ηxTMx + η2xTM 2x

≤ 1− 2ηλ∗(M) + η2 ‖M ‖22

where λ∗(M) denotes the smallest non-zero eigenvalue of M . We first lower bound λ∗(M). By
Lemma 4.10 we have

1

2(logn)γ
LG̃ � LU(G−→)

1

2(logn)γ
I im(G̃) � L

+/2

G̃
LU(G−→)L

+/2

G̃

and thus Exp(−(log n)γ) ≤ λ∗(M). We obtain ‖M ‖2 ≤ Exp(2 · (log n)γ) in an analogous way from

Lemma 4.10. Then, we use η = Exp(−3(log n)γ) ≤ λ∗(M)

‖M‖22
to conclude.

∥∥∥I im(LG̃) − ηM
∥∥∥

2
≤ 1− 1

2 · Exp(4 · (log n)γ)
(11)

where we use
√

1− ε ≤ 1 − ε/2 for ε ∈ (0, 1). Chaining inequalities (8), (9), (10) and (11) shows
the desired approximate pseudoinverse property and finishes the proof.

4.4 Loss in Condition Number

The overarching goal of the recursion of a squaring solver is to reduce the condition number of
the undirectification of the graph. When a constant condition number is reached, the recursion
terminates. However, since our sparsification has relatively low accuracy, we have to ensure that
our losses do not outweigh our gains when we call it. In this subsection we bound the loss in
condition number incurred by our global sparsification routine. We address the loss in condition
number incurred by all of the three steps. To do so we consider spectral bounds.

By Partial Symmetrization. The first part is the easiest. Since U LU(β)(G−→)
= (1 + β)U LG−→

β-partial-symmetrization does not change the condition number. Further we observe

Observation 4.12. U LG−→
� U LU(β)(G−→)

� (1 + β)U LG−→

22

By Sparsifying the Directed Part. Next we analyse the loss incurred by patching undirected
expanders. This part crucially relies on a spectral upper bound on U LR−→

. We show the following

lemma

Lemma 4.13. βU LG−→
� βU LG−→

+ U LR−→
� (β + Õ(1) · Exp(2(log n)γ))U LG−→

Proof. The first inequality, βU LG−→
� βU LG−→

+ U LR−→
, is clear since 0 � LU(R−→) = U LR−→

. To upper

bound U LR−→
we compute∥∥∥∥U+/2

LG−→
(U LR−→

−U LG−→
)U

+/2
LG−→

∥∥∥∥
2

≤ 2

∥∥∥∥U+/2
LG−→

(LG−→
− LR−→

)U
+/2
LG−→

∥∥∥∥
2

= 2

∥∥∥∥∥∥U+/2
LG−→

∑
i,j

(LG−→
(i,j) − LG̃−→

(i,j))U
+/2
LG−→

∥∥∥∥∥∥
2

≤ 2
∑
i,j

∥∥∥∥U+/2
LG−→

(LG−→
(i,j) − LG̃−→

(i,j))U
+/2
LG−→

∥∥∥∥
2

≤ Õ(1) · Exp(2(log n)γ)

where we use that the sum is over Õ(1) edge weight buckets i and Õ(1) expander decomposition
layers j. We conclude

U
+/2
LG−→

(U LR−→
−U LG−→

)U
+/2
LG−→
� Õ(1) · Exp(2(log n)γ)I im(LG−→

)

U
+/2
LG−→

U LR−→
U

+/2
LG−→
− I im(LG−→

) � Õ(1) · Exp(2(log n)γ)I im(LG−→
)

U LR−→
� Õ(1) · Exp(2(log n)γ)U LG−→

.

This concludes our proof.

By Sparsifying the Undirected Part. Finally, we analyse the loss incurred by undirected
sparsification. This part directly follows from the approximation guarantee of Lemma 4.10.

Lemma 4.14. For G̃ = SpectralSparsifyDeg(U(G−→), γ) we have

Exp(−4(log n)γ)U LG−→2
� U LG−→3

� Exp(4(log n)γ)U LG−→2

Proof. Recall that U LG−→2
= βU LG−→

+ U LR−→
and U LG−→3

= β
ηLG̃ + U LR−→

. We show the following
stronger statement

Exp(−4(log n)γ)βU LG−→
+ U LR−→

� β

η
LG̃ + U LR−→

� Exp(4(log n)γ)βU LG−→
+ U LR−→

.

After substracting U LR−→
and dividing by β we have

Exp(−4(log n)γ)U LG−→
� 1

η
LG̃ � Exp(4(log n)γ)U LG−→

which directly follows from Lemma 4.10.

23

4.5 Proof of Lemma 4.4

Now that we have assembled the pieces we are ready to prove Lemma 4.4, the main lemma of this
section.

Proof of Lemma 4.4. We show each point in the enumeration seperately.

1. The statement for i = 1 is by Lemma 4.6 and β = Õ(1) · Exp(2(log n)γ), for i = 2 it is by
Lemma 4.7 and for i = 3 it is by Lemma 4.11.

2. The statement for i = 1 is by Observation 4.12, for i = 2 it is by Lemma 4.13 and for i = 3
it is by Lemma 4.14.

3. Clearly, G−→1 has at most twice as many edges as G−→ = G−→0. Further, |E(G−→2)| ≤ |E(G−→1)| +
|E(R−→)| and |E(R−→)| = Õ(n) by Lemma 4.7. Finally |E(G−→3)| ≤ |E(G̃)| + |E(R−→)| = Õ(n) by
Lemma 4.11 and Lemma 4.7. .

4. Adding β times the undirectifaction to an Eulerian graph increases the in- and out- degrees
by exactly a factor of (1 + β). Then the statement follows from the degree preservation of
our sparsification routines shown in Lemma 4.7 and Lemma 4.11 and the extra scaling by 1

η
of the undirected part of G−→3

Finally, the runtime follows from Corollary 3.10.

5 Approximately Squaring Directed Laplacians

Given a directed Eulerian Laplacian LG−→
= DG−→

− AT
G−→

we call LG−→
2 = DG−→

− AT
G−→
D−1

G−→
AT
G−→

its

square. The squaring operation not only preserves degrees, but also Eulerianness. In this section
we introduce a deterministic algorithm for high accuracy sparsification of the square of an Eulerian
Laplacian in roughly nnz(LG−→

) time. Since squaring can drastically increase the density, the run-

time of this routine sometimes has to be sub-linear in the size of the graph it is approximating.
Thus it is clear that we can only afford work with implicit representations of LG−→

2 . Our routines

are based on and inspired by [KLP+15] and [PS21]. A similar sparisification routine is developed
in [AKM+20]. We first state the main lemma of this section.

Lemma 5.1. For every strongly connected Eulerian Laplacian LG−→
= DG−→

− AT
G−→

the algorithm

SparseSquare(G−→, ε) computes a strongly connected Eulerian graph G̃−→
2

in time O(nnz(LG−→
)1+o(1)/ε4)

so that L
G̃−→

2 = D
G̃−→

2−AT

G̃−→
2 is an ε-graph-approximation of LG−→

2 = DG−→
−AT

G−→
D−1

G−→
AT
G−→

, nnz(LG−→
2) =

O(nnz(LG̃−→
)/ε4) and degrees are preserved.

As evident from the pseudocode of SparseSquare() (Algorithm 4) our approach to implicitly
sparsifying LG−→

2 breaks down its adjacency matrix into rank one contributions

AT
G−→
D−1

G−→
AT
G−→

=
n∑
i=1

D−1
G−→

(i, i)(AG−→
(i, :))T · (AG−→

(:, i))T︸ ︷︷ ︸
=:AG−→i

24

as commonplace in randomized squaring sparsification algorithms [PS21]. Then SparseProduct()
(Algorithm 4) computes AH−→i , a suitable sparse approximation of AG−→i . The full adjacency matrix

is obtained by simply summing up these contributions. Note that SparseProduct() will preserve
in- and out-degrees exactly, ensuring that the resulting approximation preserves degrees, which in
turn ensures LG−→

2 being Eulerian.

Algorithm 4: SparseSquare(G−→, ε)

1 for i = 1, ..., n do
2 AH−→i = SparseProduct(AG−→

(i, :),AG−→
(:, i), ε)

3 end
4 A

G̃−→
2 =

∑n
i=1 AH−→i

5 return G̃−→
2

5.1 Deterministically Sparsifying Bipartite Product Graphs

High accuracy spectral sparsifiers for undirected bipartite product graphs are known to the litera-
ture [KLP+15]. We will first adapt these to our setting by showing that a simple greedy patching
scheme can be employed to ensure the conservation of degrees. Then we will directly use sparsified
bipartite product graphs to build SparseProduct() (Algorithm 4), our routine for sparsifying
LG−→i . We start by defining the central object of this subsection.

Definition 5.2. For aaa ∈ Rn≥0 and b ∈ Rn≥0 positive vectors so that ‖aaa‖1 = ‖b‖1 = d, let

LG(aaa,b) :=

(
diag(aaa) 0

0 diag(b)

)
−

(
0 baaaT

d
aaabT

d 0

)
be the Laplacian of the undirected bipartite product graph G(aaa, b) of aaa and b.

Definition 5.3. We call an undirected graph Laplacian

LG̃(aaa,b) =

(
diag(aaa) 0

0 diag(b)

)
−
(

0 C

C T 0

)
with C ∈ Rn×n≥0 an ε-bipartite-sparsifier of LG(aaa,b) if

(1− ε)LG̃(aaa,b) � LG(aaa,b) � (1 + ε)LG̃(aaa,b)

and nnz(LG̃(aaa,b)) = O((nnz(aaa) + nnz(b))/ε4).

Next we introduce the previously known spectral sparsification lemma we will use.

Lemma 5.4 (Lemma G.16 in [KLP+15]). There is a routine WeightedBipartiteExpander(aaa, b, ε)
such that for any vectors aaa, b ∈ Rn≥0 and a parameter ε ∈ (0, 1/2], it returns in time O((nnz(aaa) +

nnz(b))ε−4) a bipartite graph G̃(aaa, b) on the same bipartition as G(aaa, b) with O((nnz(aaa)+nnz(b))ε−4)
edges such that

(1− ε)LG̃(aaa,b) � LG(aaa,b) � (1 + ε)LG̃(aaa,b)

25

The routine SparseBipartite() (Algorithm 5) combines WeightedBipartiteExpander()
from Lemma 5.4 with the greedy patching procedure BipartitePatching() (Algorithm 5) to
construct an ε-bipartite-sparsifier. We first show the desired runtime and preservation of degrees.

Algorithm 5: SparseBipartite(aaa, b, ε) and BipartitePatching(aaa, b,dA,dB)

1 Algorithm SparseBipartite(aaa, b, ε)
2 ε′ = ε/128
3 H1 = WeightedBipartiteExpander(aaa, b, ε′)
4 H2 = H1/(1 + ε′)
5 d = diag(DH2)
6 LR = BipartitePatching(aaa, b,d(1 : n),d((n+ 1) : 2n))
7 return LH2 + LR
8 Procedure BipartitePatching(aaa, b,dA,dB)

9 ãaa = aaa − dA

10 b̃ = b − dB

11 LR = 02n×2n

12 while ãaa 6= 0 do

13 Let i and j be arbitrary such that ãaa(i) > 0 and b̃(j) > 0.

14 w = min{ãaa(i), b̃(j)}
15 ãaa(i) = ãaa(i)− w
16 b̃(j) = b̃(j)− w
17 LR = LR + w(e i − ej+n)(e i − ej+n)T

18 end
19 return LR

Lemma 5.5. The routine LG̃(aaa,b) = SparseBipartite(aaa, b, ε) with aaa, b ∈ Rn≥0 so that ‖aaa‖1 =

‖b‖1, and ε ≤ 1/2 terminates in time O((nnz(aaa) + nnz(b))/ε4) and ensures DG̃(aaa,b) = DG(aaa,b).

Proof. Since for any graph G we have eTv LGev = degG(v) for all v it is easy to see that the
spectral approximation of WeightedBipartiteExpander() from Lemma 5.4 preserves degrees
in the sense that for all v

(1− ε′) degG(aaa,b)(v) ≤ degH1
≤ (1 + ε′) degG(aaa,b) .

From this it is immediate that degH2
(v) ≤ degG(aaa,b)(v). Then the routine BipartitePatching()

iteratively computes the Laplacian of a bipartite patching graph so that degR(v) = degG(aaa,b)(v)−
degH2

(v) for all v. It is clear that both H2 and G(aaa, b) being bipartite ensures the invariant that

‖ãaa‖1 =
∥∥∥b̃∥∥∥

1
throughout the execution of BipartitePatching() and ãaa 6= 0 =⇒ b̃ 6= 0. Since

each edge (u, v) added to R either ensures ãaa(u) = 0 or b̃(v) = 0 the routine terminates after at
most nnz(aaa)+nnz(b) edges are added since nnz(ãaa)+nnz(b̃) ≤ nnz(aaa)+nnz(b) initially. The result
follows from these observations and Lemma 5.4.

To conclude this subsection we would like to use Lemma 5.4 to show that SparseBipartite()
(Algorithm 5) computes an ε-bipartite-sparsifier of LG(aaa,b). The remaining obstruction is the quan-

26

tification of the error introduced by the BipartitePatching() (Algorithm 5). Our analysis of this
error relies on the high expansion of G(aaa, b).

Figure 5: This figure depicts a bipartite graph G(aaa, b), where the set S as defined in Lemma 5.6
consits of the vertices highlighted with black dots. Then the set is split into parts SA and SB as
indicated.

Lemma 5.6. G(aaa, b) is a 1/2-expander.

Proof. Consider any cut ∅ ⊂ S ⊂ V . Without loss of generality, let volG(aaa,b)(S) ≤ volG(aaa,b)(V \S).
We distinguish between the two parts A and B of the bipartite graph and let SA ⊆ A and SB ⊆ B
so that SA ∪ SB = S. We first introduce some terminology that will prove useful:

d := ‖aaa‖1 (= ‖b‖1) tASA :=
∑
v∈SA

aaa(v) tBSB :=
∑
v∈SB

b(v).

See Figure 5 for a drawing of the situation. Then we have

δG(aaa,b)(S) =
∑
u∈SA

∑
v∈B\SB

aaa(u)b(v)

‖aaa‖1
+
∑
v∈SB

∑
u∈A\Sa

aaa(u)b(v)

‖aaa‖1

=
1

d
(tASA(d− tBSB) + tBSB (d− tASA))

and

volG(aaa,b)(S) =
∑
u∈SA

∑
v∈B

aaa(u)b(v)

‖aaa‖1
+
∑
v∈SB

∑
u∈A

aaa(u)b(v)

‖aaa‖1

= tASA + tBSB .

Finally we show

δG(aaa,b)(S)

volG(aaa,b)(S)
≥ 1/2 ⇐⇒ (tASA(d− tBSB) + tBSB (d− tASA)) ≥ d

2
(tASA + tBSB)

⇐⇒ d

2
(tASA + tBSB) ≥ 2tBSB t

A
SA
.

Using volG(aaa,b)(S) ≤ volG(aaa,b)(V \ S) and d = volG(aaa,b)(V) we have d ≥ tASA + tBSB and thus

d(tASA + tBSB) ≥ (tASA)2 + (tASA)2 + 2tASAt
B
SB
≥ 4tASAt

B
SB

by since for any real numbers a and b we have a2 + b2 ≥ 2ab.

27

Using the expansion of LG(aaa,b), we give a spectral upper bound on the error by patching next.

Lemma 5.7. In the context of SparseBipartite(aaa, b, ε) with aaa, b ∈ Rn≥0, ‖aaa‖1 = ‖b‖1, we have
LR � 128ε′LG(aaa,b).

Proof. As observed in the proof of Lemma 5.5 we have degR(v) = degG(aaa,b)(v) − degH2
(v) for all

v. Since degH2
(v) ≥ 1−ε′

1+ε′ degG(aaa,b)(v) by Lemma 5.4 we have

degR(v) ≤ degG(aaa,b)−
1− ε′

1 + ε′
degG(aaa,b)(v) ≤ 4ε′ degG(aaa,b)(v). (12)

In the following, let d = diag(DG(aaa,b)) be the degree vector of G(aaa, b). We use Lemma 3.14 and
arrive at ∥∥∥L+/2

G(aaa,b)LRL
+/2
G(aaa,b)

∥∥∥
2

= 2 max
x ,y 6=0

xTLRy

xTLG(aaa,b)x + yTLG(aaa,b)y
(13)

Let x and y be maximizing the right hand side of (13) and x ,y ⊥ 1. Then, x ′ = x − xT d
‖d‖2

1 and

y ′ = y − yT d
‖d‖2

1 are also maximizing since the all-ones vector is in the kernel of Laplacian matrices.

By Corollary 3.7 and Lemma 5.6 we have 1
16(diag(d)− ddT

‖d‖1
) � LG(aaa,b). We calculate

∥∥∥L+/2
G(aaa,b)LRL

+/2
G(aaa,b)

∥∥∥
2

= 2
x ′TLRy

′

x ′TLG(aaa,b)x ′ + y ′TLG(aaa,b)y ′

≤ 32
x ′TLRy

′

x ′T (diag(d)− ddT

‖d‖1
)x ′ + y ′T (diag(d)− ddT

‖d‖1
)y ′

= 32
x ′TLRy

′

x ′T diag(d)x ′ + y ′T diag(d)y ′

≤ 16
∥∥∥diag(d)+/2LR diag(d)+/2

∥∥∥
where the last line follows from another application of Lemma 3.14. By Lemma 3.15 and (12) we
have ∥∥∥diag(d)+/2LR diag(d)+/2

∥∥∥ ≤ ∥∥LRDG(aaa,b)

∥∥
1
≤ 8ε′.

We conclude

LR � 128ε′LG(aaa,b).

Finally, we assemble the pieces and show that SparseBipartite() sparsifies G(aaa, b) while
preserving degrees.

Lemma 5.8. There is a routine SparseBipartite(aaa, b, ε) that given aaa, b ∈ Rn≥0 and a parameter

ε ≤ 1/2 computes in O((nnz(a) + nnz(b))ε−4) time an ε-bipartite sparsifier LG̃(aaa,b) of LG(aaa,b).

28

Proof. The runtime and degree preservation is clear from Lemma 5.5. Further, we have

1− ε′

1 + ε′
LG(aaa,b) � LH2 � LH2 + LR = LH

and LH2 � LG(aaa,b) by Lemma 5.4. From Lemma 5.7 we conclude

1− ε′

1 + ε′
LG(aaa,b) � LH � (1 + 128ε′)LG(aaa,b).

The desired approximation follows since ε′ = ε/128.

5.2 Sparsifying Directed Product Graphs via Bipartite Product Graphs

The subroutine SparseProduct() (Algorithm 4) exploits relationships between directed graphs
and bipartite graphs, allowing us to reduce our problem to the sparsification problem on bipartite
product graphs we solved in the previous subsection. Our object of interest in this subsection is
defined as follows.

Definition 5.9. For aaa ∈ Rn≥0 and b ∈ Rn≥0 positive vectors so that ‖aaa‖1 = ‖b‖1 = d, let

LG−→(aaa,b) := diag(b)− aaabT

d

denote the directed product graph of aaa and b.

Inspecting LG(aaa,b) from Definition 5.2 yields a natural approach to sparsifying LG−→(aaa,b): Compute

a ε-bipartite sparsifier LH and then simply retrieve the adjacency matrix from its bottom left
block. This is exactly what SparseProduct() (Algorithm 4) does. Somewhat surprisingly, this
approach directly yields a high accuracy approximation of LG−→(aaa,b) with a mere constant factor loss in

approximation. The argument relies on the fact that G(aaa, b) is a constant expander (Lemma 5.6),
which would be a serious obstruction for extending this strategy to sparsifying general directed
graphs. For a graphical explanation of the relationship between directed graphs and bipartite
graphs see Figure 6.

Figure 6: A directed graph naturally has an associated bipartite graph on twice as many vertices.
The directed edge (i, j) is then associated with the undirected edge (i, j + |V |). For example, in
the figure the two dashed edges are associated.

Lemma 5.10. For aaa, b ∈ Rn≥0 so that ‖aaa‖1 = ‖b‖1 and ε ≤ 1/2 the routine SparseProduct(aaa, b, ε)
(Algorithm 4) yields an ε-graph-approximation LG̃−→(aaa,b) of LG−→(aaa,b) with nnz(LG̃−→(aaa,b)) = O((nnz(aaa)+

nnz(b))ε−4) in time O((nnz(aaa) + nnz(b))ε−4). The in- and out-degrees of G̃−→(aaa, b) and G−→(aaa, b) are
identical.

29

Algorithm 6: SparseProduct(aaa, b, ε)

1 d = ‖aaa‖1 (= ‖b‖)
2 AG̃(aaa,b) = SparseBipartite(aaa, b, ε/128)

3 AT
G̃−→(aaa,b)

= AG̃(aaa,b)((n+ 1) : 2n, 1 : n)

4 return AG̃−→(aaa,b)

Proof. The runtime and sparsity is clear from Lemma 5.8. The preservation of in- and out-degrees
follows from the preservation of degrees in the biaprtite graph. It remains to show that∥∥∥∥L+/2

U(G−→(aaa,b))(LG−→(aaa,b) − LG̃−→(aaa,b))L
+/2
U(G−→(aaa,b))

∥∥∥∥ ≤ ε.
By Lemma 3.14 we have∥∥∥∥L+/2

U(G−→(aaa,b))(LG−→(aaa,b) − LG̃−→(aaa,b))L
+/2
U(G−→(aaa,b))

∥∥∥∥ = 2 max
x ,y 6=0

xT (LG−→(aaa,b) − LG̃−→(aaa,b))y

xTLU(G−→(aaa,b))x + yTLU(G−→(aaa,b))y
. (14)

Since LG−→(aaa,b) and LG̃−→(aaa,b) have identical in- and out-degrees, it is clear that 1 is in both the left

and right kernel of (LG−→(aaa,b) −LG̃−→(aaa,b)) We let x ,y ⊥ 1 be maximizing the right hand side of (14).

Further, we let d := diag(DG(aaa,b)) and

x̂ :=

(
x
x

)
ŷ :=

(
y
y

)
x̂ ′ := x̂ − x̂Td

‖d‖2
12n ŷ ′ := ŷ − ŷTd

‖d‖2
12n

x ′ := x − x̂Td

‖d‖2
1n y ′ := y − ŷTd

‖d‖2
1n x̃ =

(
0
x ′

)
ỹ =

(
y ′

0

)
.

Then we have∥∥∥∥L+/2
U(G−→(aaa,b))(LG−→(aaa,b) − LG̃−→(aaa,b))L

+/2
U(G−→(aaa,b))

∥∥∥∥ = 2
xT (LG−→(aaa,b) − LG̃−→(aaa,b))y

xTLU(G−→(aaa,b))x + yTLU(G−→(aaa,b))y

= 2
x ′T (LG−→(aaa,b) − LG̃−→(aaa,b))y

′

xTLU(G−→(aaa,b))x + yTLU(G−→(aaa,b))y

= 4
x̃T (LG(aaa,b) − LG̃(aaa,b))ỹ

x̂ ′TLG(aaa,b)x̂
′ + ŷ ′TLG(aaa,b)ŷ

′

i)

≤ 64
x̃T (LG(aaa,b) − LG̃(aaa,b))ỹ

x̂ ′T diag(d)x̂ ′ + ŷ ′T diag(d)ŷ ′

ii)

≤ 64
x̃T (LG(aaa,b) − LG̃(aaa,b))ỹ

x̃T diag(d)x̃ + ỹT diag(d)ỹ

where i) holds since LG(d) � 16LG(aaa,b) by Corollary 3.7 and x ′TLG(d)x
′ = x ′TDG(d)x

′ by the

choice of x ′. Analogously we have y ′T diag(d)y ′ ≤ 16y ′LG(aaa,b)y
′. Further, ii) holds since setting

30

parts of the vectors x ′ and y ′ to zero only decreases the value of the quadratic form with a positive
diagonal matrix. Using LG(aaa,b) � 2DG(aaa,b) = 2 diag(d) and Lemma 3.14 we conclude

64
x̃T (LG(aaa,b) − LG̃−→(aaa,b))ỹ

x̃T diag(d)x̃ + ỹT diag(d)ỹ
≤ 128

x̃T (LG(aaa,b) − LG̃−→(aaa,b))ỹ

x̃TLG(aaa,b)x̃ + ỹTLG(aaa,b)ỹ

= 128
∥∥∥L+/2

G(aaa,b)(LG(aaa,b) − LG̃−→(aaa,b))L
+/2
G(aaa,b)

∥∥∥
2
≤ ε

where the last inequality follows from Lemma 5.8 since we call SparseBipartite() with accuracy
ε/128. This concludes the proof.

Finally, we use Lemma 5.10 to prove Lemma 5.1.

Proof of Lemma 5.1. By Lemma 5.10 each individual call to SparseProduct() conserves in- and
out-degrees, and thus L

G̃−→
2 and LG−→

2 are Eulerian Laplacians with the same in- and out-degrees.

Further, by Lemma 5.10, we have that∥∥∥∥L+/2
U(G−→i)

(LG−→i − LH−→i)L
+/2
U(Gi)

∥∥∥∥
2

≤ ε

By Lemma 3.14 we conclude that for all x ,y 6= 0

xT (LG−→i − LH−→i)y ≤
ε

2
(xTLU(G−→i)x + yTLU(G−→i)y).

Finally, using Lemma 3.14 again, we have for some vectors x ,y∥∥∥∥U+/2
LG−→

2
(LG−→

2 − L
G̃−→

2)U
+/2
LG−→

2

∥∥∥∥
2

=

∥∥∥∥∥U+/2

L2
G−→

(
n∑
i=1

LG−→i − LH−→i)U
+/2
LG−→

2

∥∥∥∥∥
2

= 2
xT (

∑n
i=1 LG−→i − LH−→i)y

xTU LG−→
2x + yTU LG−→

2y

≤ ε

∑n
i=1

(
xTLU(G−→i)x + yTLU(G−→i)y

)
xTU LG−→

2x + yTU LG−→
2y

= ε

where we used that
∑n

i=1 LU(G−→i) = U LG−→
2 . Clearly, this also shows that

The runtime and sparsity directly follow from Lemma 5.10.

6 Deterministic Square Sparsifier Chains

In this section we define the collection of Õ(1) sparse matrices our algorithm operates on. This
collection will be computed once, not recursively, and relies on square sparsifier chains.

Definition 6.1 (Square Sparsifier Chain, Definition 4.6 in [CKP+16b]). We call sequences of
matrices S = A0,A1...,Ad ∈ Rn×n a square sparsifier chain of length d with parameter 0 < α ≤ 1

2
and error ε ≤ 1

2 (or a (d, ε, α)-square chain for short) if under the definitions Li = I −Ai and

A(α) = αI + (1− α)Ai the following hold

31

1. ‖Ai‖2 ≤ 1 for all i.

2. I −Ai is an ε-approximation of I − (A(α)
i)2 for all i ≥ 1.

3. ker(Li) = ker(LTi) = ker(Lj) = ker(LTj) = ker(U Li) = ker(U Lj) for all i, j.

Since we cannot afford to run our global sparsification routine after each squaring operation
while still achieving an almost-linear runtime, we compute chains of depth d = O((log n)δ) for δ =
1/3 and then globally sparsify. These global sparsifications will naturally correspond to branching
points of our recursive algorithm, since we have to rectify the loss due to global sparsification. We
first define pseudoinverse chains.

Definition 6.2 (Pseudoinverse Chain). We call a collection C = {G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=0

with S(i) = {A(i)
0 ,A(i)

1 , ...,A(i)
d } a (k, d, α, ε, γ)-pseudoinverse chain if

1. S(i) is a (d, ε, α)-square chain for all i.

2. G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 is a γ-quadruple for all i.

3. 1

1+β
η

D
+/2
G−→

AT

G−→
(i)
3

D
+/2
G−→

= A(i)
0 for all i.

4. D
+/2
G−→

AT

G−→
(i+1)
0

D
+/2
G−→

= A(i)
d for all i < k.

where G−→ = G−→
(0)
0 and η

β is as in Algorithm 2 and D
G−→

(i)
0

= DG−→
for all i.

We then state some previous work that will be useful for showing that Algorithm 7 creates a
pseudoinverse chain. The following lemma shows that ε-approximations behave well under diagonal
rescalings.

Lemma 6.3 (Lemma 3.7 in [CKP+16b]). If Ã ∈ Rn×n is an ε-approximation of A ∈ Rn×n and
M ∈ Rn×n satisfies ker(M T) ⊆ ker(UA), then M T ÃM is an ε-approximation of M TAM .

And the next lemma will be used to show the first point in Definition 6.1.

Lemma 6.4 (Lemma 4.7 in [CKP+16b]). If for A ∈ Rn×n and D = diag(A1) the matrix L = D−
AT is an Eulerian Laplacian associated with a strongly connected graph then,

∥∥∥D−1/2ATD−1/2
∥∥∥

2
≤

1 and ker(L) = ker(LT) = ker(U L)

Given these results, we first show a lemma about the subroutine SquareChain() in Algo-
rithm 7.

Lemma 6.5. Given a strongly connected Eulerian graph 1

1+β
η

G−→
(i)
3 with m = Õ(n) edges and de-

gree matrix DG−→
, as well as parameters α ∈ (0, 1) and δ ∈ (0, 1/2) the subroutine G−→

(i+1)
0 ,S(i) =

SquareChain

(
1

1+β
η

G−→
(i)
3 , d = Θ((log n)δ), α, ε = 1

30·Exp(5d)

)
computes a (d, ε, α)-square chain S(i)

and a graph G−→
(i+1)
0 with degree matrix DG−→

so that

32

Algorithm 7: ChainConstruction(G−→, k, d, α, ε, γ) and SquareChain(Ĝ−→
(i), d, α, ε)

1 Algorithm ChainConstruction(G−→
(0)
0 = G−→, k, d, α, ε, γ)

2 for i = 0, ..., k do

3 G−→
(i)
1 , G−→

(i)
2 , G−→

(i)
3 = GlobalSparsification(G−→

(i)
0 , γ) ; // See Algorithm 2.

// Scale back degrees by η
β before building the next chain

4 G−→
(i+1)
0 ,S(i) = SquareChain(1

1+β
η

G−→
(i)
3 , d, α, ε)

5 end

6 return C = {G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=0

7 Procedure SquareChain(G−→
(i,0) = 1

1+β
η

G−→
(i)
3 , d, α, ε)

8 for j = 1, ..., d do
9 Let GD denote the graph with adjacency matrix DG−→

, only consisting of self-loops.

10 G−→
(i,j) = SparseSquare((1− α)G−→

(i,j−1) + αGD, ε) ; // See Algorithm 4.

11 end
// We use DG−→

= DG−→
(i,0) = DG−→

(i,j) here since we preserve degrees.

12 return G−→
(i+1)
0 = G−→

(i,d),S(i) = {A(i)
j = D

+/2
G−→

AT
G−→

(i,j)D
+/2
G−→
}dj=0

1. nnz(A(i)
j) = n1+o(1) for j = 0, ..., d.

2. D
+/2
G−→

AT
G−→

(i,0)D
+/2
G−→

= A(i)
0 and 1

1+β
η

D
+/2
G−→

AT

G−→
(i)
3

D
+/2
G−→

= A(i)
d

Proof. Notice that DG−→
= DG−→

(i,0) = DG−→
(i,d) since degrees are exactly preserved by Spars-

eSquare(). We first show that S(i) is a (d, ε, α)-square chain. Since the graph (1−α)G−→
(i,j−1)+αGD

has the adjacency matrix (1− α)AG−→
(i,j−1) + αDG−→

(i,j−1) , its square contains a multiple of G−→
(i,j−1)

as a subgraph and is therefore strongly connected, if G−→
(i,j−1) is strongly connected. Then by

Lemma 5.1 G−→
(i,j) is strongly connected. Together with Lemma 6.3 and Lemma 6.4 this yields the

properties of a (d, ε, α)-square chain by induction. It remains to show sparsity.

Initially, we have that nnz(A(i)
0) = Õ(n). By Lemma 5.1 we have

nnz(A(i)
j+1) ≤ C nnz(A(i)

j)/ε4 = 30C · Exp(20(log n)δ) · nnz(A(i)
j)

for some constant C. By induction, we conclude

nnz(A(i)
j) ≤ (30C)j · Exp(20j(log n)δ) · nnz(A(i)

0) ≤ Exp(O((log n)2δ)) · Õ(n) = n1+o(1)

where we used that δ < 1/2 is a constant.

Next we show that ChainConstruction() in Algorithm 7 deterministically computes a pseu-
doinverse chain in almost linear time, using the machinery we developed.

33

Lemma 6.6. For constants δ, γ ∈ (0, 1/2), γ < δ, k ≥ 1 , α = 1/4 and a strongly connected Eule-
rian graph G−→ with m edges the algorithm C = ChainConstruction(G−→, k, d = O((log n)δ), α, ε =

1/(30 · Exp(5d)), γ) computes a (k, d, α, ε, γ)-pseudoinverse chain C in time m1+o(1) so that

1. |E(G−→
(0)
j)| ≤ 2m+ Õ(n) for j = 1, 2, |E(G−→

(0)
3)| = Õ(n).

2. |E(G−→
(i)
j)| = n1+o(1) for i > 0, j = 0, 1, 2, 3.

3. nnz(A(i)
j) = n1+o(1) for all i, j.

Proof. Follows directly from Lemma 6.5 and Lemma 4.4.

Before concluding with a lemma about the improvement in condition number of a pseudoinverse
chain, we show a convenient corollary about the quadruplets introduced in Section 4 and state a
lemma about the improvement in condition number due to squaring.

Corollary 6.7. Given a (γ, β = Exp(O((log n)γ)), η = Exp(−3(log n)γ))-quadruple G−→0, G−→1, G−→2, G−→3

for γ ∈ (0, 1) constant, we have

Exp(−O((log n)γ))λ∗(D
+/2
G−→0

LG−→0D
+/2
G−→0

) ≤ η

β
λ∗(D

+/2
G−→0

LG−→3D
+/2
G−→0

)

Proof. By the second property of Definition 4.3 we have

Exp(−O((log n)γ))D
+/2
G−→0

LG−→0D
+/2
G−→0
� D

+/2
G−→0

LG−→3D
+/2
G−→0

.

Since η
β ≥ Exp(−O((log n)γ)) we conclude the lemma.

Lemma 6.8 (Lemma 4.9 in [CKP+16b]). For length d ≥ 1, parameter α = 1/4 and error ε ∈
(1, 1/2) and a (d, α, ε)-chain A0,A1, ...,Ad the following hold:

1. κ(I −Ai, I = Ai−1) ≤ 21 for all i = 1, ..., d.

2. λ∗(I −Ad) ≥ min{1/4, λ∗(I −A0) · ((1− ε)1.25)d}.

Finally, we show that a deep enough pseudoinverse chain reaches a constant condition number.

Lemma 6.9. Given γ, δ, ε, α, C and G−→ as in Lemma 6.6 where we set k = Θ(log(1/λ̂∗)/(log n)δ)

for 1/poly(n) ≤ λ̂∗ ≤ λ∗(D+/2
G−→

U LG−→
D

+/2
G−→

) we have λ∗(D
+/2
G−→

U L
G−→

(k)
0

D
+/2
G−→

) ≥ 1/4

Proof. By Corollary 6.7 we have for every i = 0, 1, ..., k

Exp(−O((log n)γ)) · λ∗(D+/2
G−→

L
G−→

(i)
0

D
+/2
G−→

) ≤ η

β
· λ∗(D+/2

G−→
L
G−→

(i)
3

D
+/2
G−→

)

and by Lemma 6.8 we have

min{1.125dλ∗(
η

β
D

+/2
G−→

L
G−→

(i)
3

D
+/2
G−→

), 1/4} ≤ λ∗(D+/2
G−→

L
G−→

(i+1)
0

D
+/2
G−→

).

Therefore each of the k chains improves the minimum eigenvalue by 1.125d

Exp(O((logn)γ)) = Exp(Ω((log n)δ))

for δ > λ and d = Θ((log n)δ) big enough. After k = Θ(log(λ̂∗)/d) iterations this ensures the thresh-
old 1/4 is reached.

34

7 A Deterministic Squaring Solver

In this section, we build our recursive squaring solver on top of the pseudoinverse chain constructed
in the previous section. It is inspired by and closely follows the solver presented in [CKP+16b].
In our algorithm, the global sparsifications of the pseudoinverse chain correspond to branching
points of the recursion. This is necessary since we incur relatively high sub-polynomial losses when
globally sparsifying. We state the main theorem of this section.

Theorem 7.1 (Deterministic Eulerian Solver). Given the Laplacian LG−→
of a strongly connected

Eulerian graph G−→ with m edges and polynomially bounded edge weights, a parameter ε ∈ (0, 1) and a

lower bound λ̂∗ on λ∗(D
+/2
G−→

LG−→
D

+/2
G−→

) so that λ̂∗ ≥ 1/poly(n) the algorithm SolveEulerian(LG−→
, ε, λ̂∗)

(Algorithm 9) deterministically computes a vector x so that∥∥∥x − L+
G−→
b
∥∥∥
U LG−→

≤ ε
∥∥∥L+

G−→
b
∥∥∥
U LG−→

in time m1+o(1) · log 1
ε for a vector b ∈ im(LG−→

).

The following lemma re-interprets preconditioned Richardson in terms of augmenting the quality
of a pseudoinverse.

Lemma 7.2 (Pseudoinverse Improvement, Lemma 4.4 in [CKP+16b]). If Z is an ε-approximate-
pseudoinverse of M with respect to U , for ε ∈ (0, 1), b ∈ im(M) and N ≥ 0, then xN =
PreconRichardson(M ,Z , b, 1, N) computes xN = ZNb for some matrix ZN only depending
on Z , M and N , such that ZN is an εN -approximate pseudoinverse of M with respect to U .

Our algorithm frequently uses preconditioned Richardson to boost the quality of pseudoinverses.
Following [CKP+16b] we let ZN = PreconRichardson(M ,Z , ·, η,N) denote the implicit matrix
ZN as in Lemma 7.2. To apply it to a vector b, we need to apply the (possibly implicit) matrices
M and Z a total of N times. Before we show the main technical lemma of this section, we reference
previous work that we use in the proof. We first state a lemma about solving well conditioned linear
equations with Richardson which we will use to establish the base case of our recursion

Lemma 7.3 (Lemma 4.5 in [CKP+16b]). Let M ∈ Rn×n such that UM is PSD with ker(M) =
ker(M T). Then for parameters η ≤ λ∗(UM)/ ‖M‖22 and N > 0 we have that the resulting matrix
ZN = PreconRichardson(M , ηI im(M), ·, 1, N) is an Exp(−Nηλ∗(UM)/2)-approximate pseu-
doinverse.

Then we state a lemma that formalises obtaining preconditioners via squaring as introduced in
the overview.

Lemma 7.4 (Lemma 4.13 in [CKP+16b]). Let the sequence A0, ...,Ad be an (d, ε, α)-chain as
specified in Definition 6.1, with ε ≤ 1/2 and α ≤ 1/4. Using the notation from Definition 6.1,
consider the matrix

Z̄ i,i+∆ = (1− α)∆ (I −Ai+∆)+ (I + Ai+∆−1) · · · (I + Ai) ,

for any i, ∆ ≥ 0. Then Z̄ i,i+∆ is an (Exp(5∆) ·ε)-approximate pseudoinverse of I −Ai with respect
to I −UAi.

35

Finally, we need two lemmas about composing approximate pseudoinverses and changing norms.

Lemma 7.5 (Lemma 4.10 in [CKP+16b]). If matrix Z is an ε-approximate pseudoinverse of M

with respect to U , and M̃
+

is an ε′-approximate pseudoinverse of Z+ with respect to U , and has

the same left and right kernels as M and Z , then M̃
+

is an (ε+ε′+εε′)-approximate pseudoinverse
of M with respect to U .

Lemma 7.6 (Lemma 4.12 in [CKP+16b]). Let Z ,M ,U ∈ Rn×n be matrices such that U is PSD,
and ker(Z) = ker(Z T) = ker(M) = ker(M T) ⊇ ker(U). Then the following holds:

1. (Preserved under right multiplication) Let C ∈ Rn×n such that both C and C T are invariant
on the kernel of M in the sense that x ∈ ker(M) if and only if Cx ∈ ker(M), and similarly
for C⊥. Then Z is an ε-approximate pseudoinverse for CM with respect to U if and only
if ZC is an ε-approximate pseudoinverse for M with respect to U .

2. (Approximately preserved under norm change) If Z is an ε-approximate pseudoinverse for

M with respect to U , then for any PSD matrix Ũ , such that ker(Ũ) = ker(U), Z is an

(ε

√
κ(Ũ ,U))-approximate pseudoinverse of M with respect to Ũ .

These results, together with the properties of pseudoinverse chains, allow us to show the follow-
ing main technical lemma of this section, which establishes correctness of the algorithm SolveRe-
cursive() (Algorithm 8).

Lemma 7.7. Given the tail C = {G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l of a (k, d = Θ((log n)1/3), α =

1/4, ε0 = 1
30 Exp(5d) , γ = 1/10)-pseudoinverse chain as in Lemma 6.9, and a parameter ε ∈ (0, 1/2)

the algorithm SolveRecursive(C, ε) computes an ε-approximate pseudoinverse Z
(l)
0 of D

+/2
G−→

LG−→
D

+/2
G−→

with respect to D
+/2
G−→

U LG−→
D

+/2
G−→

where DG−→
= D

G−→
(l)
0

.

Proof. We use that DG−→
= D

G−→
(i)
0

for all i by Definition 6.2. The proof is by induction on k − l.

• Base case: k − l = 0. We land in the if case of the algorithm SolveRecursive() and

denote I −A = D
+/2
G−→

L
G−→

(k)
0

D
+/2
G−→

as in the algorithm. Then we have λ∗(I −UA) ≥ 1/4 by

Lemma 6.9, which is exactly what we set out to achieve with squaring. By Lemma 6.4 we
further have ‖I −A‖22 ≤ 4. Then the base case follows directly from Lemma 7.3.

• Step case: k−l > 0. We land in the else case of the algorithm SolveRecursive() and let C′ =
{G−→

(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l+1. Then the induction hypothesis is that SolveRecursive(C′, ε)

returns an ε-approximate pseudoinverse Z
(l+1)
0 of D

+/2
G−→

L
G−→

(l+1)
0

D
+/2
G−→

with respect to D
+/2
G−→

U L
G−→

(l+1)
0

D
+/2
G−→

.

To establish the step case we rely on a second, nested induction of constant depth, showing the

correctness of the subroutine Peel(). Namely, we show that Z
(l)
p = Peel({G−→

(l)
j }3j=p,S(l), C′, ε)

returns an ε-approximate pseudoinverse Z
(l)
p of D

+/2
G−→

L
G−→

(l)
p
D

+/2
G−→

with respect to D
+/2
G−→

U L
G−→

(l)
p

D
+/2
G−→

for p = 0, 1, 2, 3. The nested induction is on 3− p.

36

Algorithm 8: SolveRecursive(C = {G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l, ε) and Peel()

// We let G−→
(l)
0 = G−→ in these algorithms.

1 Algorithm SolveRecursive(C = {G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l, ε)

2 if l = k then
// Leaf of Recursion

3 A = D
+/2
G−→

AT

G−→
(k)
0

D
+/2
G−→

4 Z
(k)
0 = PreconRichardson(I −A, 1

16I im(I−A), ·, 1, 256 log(1/ε))

5 else

6 Z
(l)
0 = Peel({G−→

(l)
j }3j=0,S(l), C′ = {G−→

(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l+1, ε)

7 end

8 return Z
(l)
0

9 Procedure Peel({G−→
(l)
j }3j=p,S(l), C′ = {G−→

(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l+1, ε)

10 if p = 3 then

// We have S(l) = A(l)
0 , ...,A(l)

d and we let A(l,1/4)
t = 3

4A
(l)
t + 1

4I

11 Z
(l+1)
0 = SolveRecursive(C′, 1

30·Exp(5d))

12 Z = (3/4)d+1Z
(l+1)
0 (I + A(l,1/4)

d−1) · · · (I + A(l,1/4)
0)

13 Z
(l)
3 = PreconRichardson(D

+/2
G−→

L
G−→

(l)
p
D

+/2
G−→

, (1 + β
η)Z , ·, 1, log(1/ε))

14 else

15 Z
(l)
p+1 = Peel({G−→

(l)
j }3j=p+1,S(l), C′, 1

Exp(Θ((logn)γ)))

16 Z
(l)
p = PreconRichardson(D

+/2
G−→

L
G−→

(l)
p
D

+/2
G−→

,Z
(l)
p+1, ·, 1,Exp(Θ((log n)γ)) · log(1/ε))

17 end

18 return Z
(l)
p

37

– Nested base case: 3−p = 0. We land in the if case of the procedure Peel(). Noting that

I − A(l)
d = D

+/2
G−→

L
G−→

(l+1)
0

D
+/2
G−→

by Definition 6.2, we have that Z
(l+1)
0 is an 1

30·Exp(5d) -

approximate pseudoinverse of I − A(l)
d with respect to I − UA(l)

d

by the induction

hypothesis of the main induction. Then, by Lemma 7.4 Z is an 1/30 approximate

pseudoinverse of I − A(l)
0 with respect to I − UA(l)

0

. Recall that I − A(l)
0 = (1 +

β
η)−1D

+/2
G−→

L
G−→

(l)
3

D
+/2
G−→

. By Lemma 7.2 the matrix Z
(l)
3 = Peel({G−→

(l)
3 }3j=p,S(l), C′, ε) is

an ε-approximate pseudoinverse of D
+/2
G−→

L
G−→

(l)
3

D
+/2
G−→

with respect to D
+/2
G−→

U L
G−→

(l)
3

D
+/2
G−→

since the factor (1 + β
η) cancels. This establishes the base case.

– Nested step case: p < 3. We land in the else case of the procedure Peel(). By

the induction hypothesis Z
(l)
p+1 is a

(
ε1 = 1

Exp(Θ((logn)γ))

)
-approximate pseudoinverse of

D
+/2
G−→

L
G−→

(l)
p+1

D
+/2
G−→

with respect to D
+/2
G−→

U L
G−→

(l)
p+1

D
+/2
G−→

. Further, we have that D
1/2
G−→

L+

G−→
(l)
p+1

D
1/2
G−→

is an
(
ε2 = 1− 1

Exp(O((logn)γ))

)
-approximate pseudoinverse of D

1/2
G−→

L+

G−→
(l)
p

D
1/2
G−→

with re-

spect to D
1/2
G−→

U L+

G−→
(l)
p+1

D
1/2
G−→

by Definition 4.3. Combining the two with Lemma 7.5

yields that Z
(l)
p+1 is an

(
ε1 + ε2 + ε1ε2 = 1− 1

Exp(O((logn)γ))

)
-approximate pseudoinverse

of D
1/2
G−→

L+

G−→
(l)
p

D
1/2
G−→

with respect to D
1/2
G−→

U L+

G−→
(l)
p+1

D
1/2
G−→

, where we choose ε1 small enough.

By Lemma 7.2, Exp(Θ((log n)γ) log(1/ε)) iterations of preconditioned Richardson suffice
to reduce the error to ε. However, the resulting approximate pseudoinverse is with respect

to D
1/2
G−→

U L+

G−→
(l)
p+1

D
1/2
G−→

instead of D
1/2
G−→

U L+

G−→
(l)
p

D
1/2
G−→

. By the second point in Definition 4.3

and Lemma 7.6 another factor of Õ(1) in the iteration count suffices to translate between
norms. This factor can be subsumed in the iteration count Exp(Θ((log n)γ) log(1/ε)).

Therefore, Z
(l)
p is an ε-approximate pseudoinverse of D

1/2
G−→

L+

G−→
(l)
p

D
1/2
G−→

with respect to

D
1/2
G−→

U L+

G−→
(l)
p

D
1/2
G−→

, which concludes the step case.

The nested induction establishes that Z
(l)
0 is an ε-approximate pseudoinverse of D

+/2
G−→

L
G−→

(l)
0

D
+/2
G−→

with respect to D
+/2
G−→

U L
G−→

(l)
0

D
+/2
G−→

. This concludes the step case, since SolveRecursive(C =

{G−→
(i)
0 , G−→

(i)
1 , G−→

(i)
2 , G−→

(i)
3 ,S(i)}ki=l, ε) returns Z

(l)
0 . The lemma follows by induction.

Before we conclude with the main theorem of this section, we analyse the runtime of SolveEu-
lerian(LG−→

, b, ε, λ̂∗).

Lemma 7.8. Given λ̂∗ ≥ 1/poly(n), the Laplacian of an Eulerian graph G−→ with n-vertices and m-

edges, a vector b ∈ Rn so that b ∈ im(LG−→
) and a parameter ε ∈ (0, 1), SolveEulerian(LG−→

, b, ε, λ̂∗)

runs in time m1+o(1) log(1/ε).

38

Algorithm 9: SolveEulerian(LG−→
, b, ε, λ̂∗)

1 d = Θ((log n)1/3); k = C log(1/λ̂∗)/d ∈ O((log n)2/3); ε0 = 1
30·Exp(5d)

2 C = ChainConstruction(G−→, k, d, δ = 1/3, ε0, γ = 1/10)

3 Z = SolveRecursive(C, 1/10)

4 Ẑ = PreconRichardson(D
+/2
G−→

LG−→
D

+/2
G−→

,Z , ·, 1, log(1/ε))

5 return D
+/2
G−→

ẐD
+/2
G−→

b

Proof. The pseudoinverse chain is built inm1+o(1) time by Lemma 6.6. By Definition 6.2 all matrices
involved have at most m1+o(1) edges, and Richardson only ever multiplies with these matrices.
Therefore it suffices to show that the total branching of our recursion SolveRecursive() is no(1).
There are 4 branching points for each level l ∈ [k] for k = Θ((log n)2/3) in the procedure Peel()
in Algorithm 8. Each of these branches by a factor at most f = Exp(Θ((log n)1/10)). Therefore
the total branching is at most fk ≤ O(1) · Exp((log n)4/5) = no(1). Finally SolveEulerian()
contributes another factor of O(log(1/ε)). This concludes the proof.

Finally, we put the pieces together and show Theorem 7.1.

Proof of Theorem 7.1. The runtime follows from Lemma 7.8. C is a pseudoinverse chain by Lemma 6.6.

Then, by Lemma 7.7 we have that Z is a 1/10 approximate pseudoinverse of D
+/2
G−→

LG−→
D

+/2
G−→

with re-

spect to D
+/2
G−→

U LG−→
D

+/2
G−→

. Therefore Ẑ in SolveEulerian() is an ε-approximate pseudoinverse of

D
+/2
G−→

LG−→
D

+/2
G−→

with respect to D
+/2
G−→

U LG−→
D

+/2
G−→

by Lemma 7.2. The result follows from Lemma 3.11

and the diagonal rescaling.

39

References

[AJSS19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford.
Perron-Frobenius Theory in Nearly Linear Time: Positive Eigenvectors, M-matrices,
Graph Kernels, and Other Applications, pages 1387–1404. 2019. 9

[AKM+20] AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sid-
ford, and Salil Vadhan. High-precision estimation of random walks in small space.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 1295–1306, 2020. 2, 7, 24

[BSS12] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsi-
fiers. SIAM Journal on Computing, 41(6):1704–1721, 2012. 2

[CGL+20a] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applica-
tions to dynamic connectivity, flows, and beyond. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 1158–1167. IEEE, 2020. 2, 5

[CGL+20b] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applications
to dynamic connectivity, flows, and beyond, 2020. 6, 11, 12, 14, 21, 43

[CKK+18] Michael B. Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng,
Anup B. Rao, and Aaron Sidford. Solving directed laplacian systems in nearly-linear
time through sparse lu factorizations. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 898–909, 2018. 1, 2, 9

[CKP+14] Michael B. Cohen, Rasmus Kyng, Jakub W. Pachocki, Richard Peng, and Anup B.
Rao. Preconditioning in expectation. CoRR, abs/1401.6236, 2014. 1

[CKP+16a] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and
Adrian Vladu. Faster algorithms for computing the stationary distribution, simulating
random walks, and more. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 583–592, 2016. 1, 2

[CKP+16b] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao,
Aaron Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains
and new spectral primitives for directed graphs. CoRR, abs/1611.00755, 2016. 7, 9,
11, 12, 13, 31, 32, 34, 35, 36, 45

[CKP+16c] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford,
and Adrian Vladu. Faster algorithms for computing the stationary distribution, sim-
ulating random walks, and more. CoRR, abs/1608.03270, 2016. 2, 3, 9

[CKP+17] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains and
new spectral primitives for directed graphs. In Proceedings of the 49th Annual ACM

40

SIGACT Symposium on Theory of Computing, STOC 2017, page 410–419, New York,
NY, USA, 2017. Association for Computing Machinery. , 1, 2, 4

[GR99] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree
graphs. Combinatorica, 19(3):335–373, 1999. 12

[JS21] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster lapla-
cian system solvers. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 540–559, 2021. 1

[KLP+15] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spiel-
man. Sparsified cholesky and multigrid solvers for connection laplacians. CoRR,
abs/1512.01892, 2015. 7, 9, 24, 25, 44, 45

[KLP+16] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of
the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page
842–850, New York, NY, USA, 2016. Association for Computing Machinery. 1, 9

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for sdd
linear systems. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 590–598, 2011. 1

[KMP14] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
sdd linear systems. SIAM Journal on Computing, 43(1):337–354, 2014. 1

[KOSZ13] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving sdd systems in nearly-linear time. In Pro-
ceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC
’13, page 911–920, New York, NY, USA, 2013. Association for Computing Machinery.
1

[KS16] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians
- fast, sparse, and simple. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 573–582, 2016. 1, 9

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497–515, may 2004. 12

[Pee19] John Peebles. Fast spectral primitives for directed graphs. PhD thesis, Massachusetts
Institute of Technology, 2019. 9

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for sdd linear systems.
In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing,
STOC ’14, page 333–342, New York, NY, USA, 2014. Association for Computing
Machinery. 1, 7

[PS21] Richard Peng and Zhuoqing Song. Sparsified block elimination for directed laplacians.
CoRR, abs/2111.10257, 2021. 24, 25, 44, 45

41

[PS22] Richard Peng and Zhuoqing Song. Sparsified block elimination for directed laplacians.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2022, page 557–567, New York, NY, USA, 2022. Association for Computing
Machinery. , 1, 2, 4, 9

[RV05] Eyal Rozenman and Salil Vadhan. Derandomized squaring of graphs. In Chandra
Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, pages
436–447, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. 2, 7

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. 2

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph par-
titioning, graph sparsification, and solving linear systems. In Proceedings of the Thirty-
Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page 81–90, New
York, NY, USA, 2004. Association for Computing Machinery. 1

[ST11] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011. 1, 2

[ST13] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM Journal on
Computing, 42(1):1–26, 2013. 1

[ST14] Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for precondi-
tioning and solving symmetric, diagonally dominant linear systems. SIAM Journal on
Matrix Analysis and Applications, 35(3):835–885, 2014. 1

42

A Linear Algebra

Fact A.1. For a block diagonal matrix A =

A1

. . .

Ak

 we have ‖A‖2 = maxi{‖Ai‖2}

Proof. Consider the matrix A =

(
A1

A2

)
. Then ‖A‖2 = maxv :‖v‖=1 ‖Av‖2 Now every v is

decomposable into ax and by so that Av =

(
aA1x
bA2y

)
and ‖x‖2 = 1, ‖y‖2 = 1 and a2 + b2 = 1.

But then

∥∥∥∥(aA1x
bA2y

)∥∥∥∥2

2

= a2 ‖A1x‖22 + b2 ‖A2y‖ ≤ (a2 + b2) max{‖A1x‖22 , ‖A2y‖22}. For k > 2 the

fact follows by induction.

B Degree Preserving Undirected Sparsification

We adapt the sparsification routine provided in Section 6.3 of [CGL+20b] to be degree preserving.
We first state their result.

Theorem B.1 (Corollary 6.4 in [CGL+20b]). There is a deterministic algorithm called
SpectralSparsify(G, r) that, given an undirected n-node m-edge graph G = (V,E, ω) with integer
edge weights ω bounded by U , and a parameter 1 ≤ r ≤ O(logm), computes a (logm)C·r

2
-spectral

sparsifier H for G, with |E(H)| ≤ O(n log n logU) for some constant C, in time

O(m1+O(1/r) · (logm)O(r2) logU).

Algorithm 10: SpectralSparsifyDeg(G, γ)

1 r = ((log n)γ/2/
√

2C)/(log logm)
2 let ωmin = mine∈E(G) ω(e) denote the minimum weight

3 let Ĝ be
4 H = SpectralSparsify(G, r)

5 AG̃ = AH/Exp(1
2 · (log n)γ) + DG −DH/Exp(

1

2
· (log n)γ)︸ ︷︷ ︸

self loops

6 return G̃

To make the sparsification degree preserving, we simply add self loops.

Lemma B.2. (Degree Preserving Sparsification, Lemma 4.10 restated) There is a deterministic
algorithm
SpectralSparsifyDeg(G, γ) that given a parameter γ ∈ (0, 1) and an undirected graph G =

(V,E, ω) with n vertices and m edges such that that P := maxe∈E ω(e)
mine∈E ω(e) = poly(n) computes G̃

satsifying

43

1. Exp(−(log n)γ)LG � LG̃ � Exp((log n)γ)LG

2. nnz(A) = Õ(n)

in time

Õ(m1+O(1/(logn)γ/2) · (logm)O((logn)γ)) = m1+o(1).

The graph G̃ has self loops and exactly the same degrees as G.

Proof. The runtime directly follows from the runtime of Theorem B.1. Further, since for our choice
of r we have (logm)C·r

2 ≤ Exp(1
2 · (log n)γ), we obtain

Exp(−1

2
· (log n)γ)LG � LH � Exp(

1

2
· (log n)γ)LG.

This directly allows us to conclude that for all v: degG(v) ≤ degG̃, and thus the self loops we add
are valid and ensure the preservation of degrees. Finally, we have

Exp(−(log n)γ)LG � LG̃ � LG

since self loops cancel and thus do not change the directed Laplacian. This proofs the desired
approximation and concludes our proof.

C Sketching the Cholesky Solver

Very recently, new techniques for analysing the error accumulation in sparsified-cholesky-solvers
for directed Laplacians lead to an algorithm with almost optimal dependence on the runtime of
the sparsifiation routine [PS21]. In this section, we sketch that our deterministic sparsification
routines can also be used to derandomize that framework. We first summarize the framework of
[KLP+15, PS21].

C.1 Sparsified-Cholesky for Directed Laplacians

Given a bi-partition (F,C)-of the vertex set V , the block Cholesky decomposition of an Eulerian
Laplacian L = LG−→

is given by

L =

(
I 0

LCFL
−1
FF I

)
·
(
LFF 0

0 Sc[L]F

)
·
(
I L−1

FFLFC
0 I

)
where Sc[L]F := LCC − LCFL

−1
FFLFC . The algorithm of [PS21] selects a ρ-RCDD (row-column-

diagonally-dominant) block LFF , and then computes the above decomposition, where the inverse
of LFF is not explicitly computed. Given that it is easy to approximately invert ρ-RCDD blocks
using iterative schemes, the main obstruction to apply the inverse of L is to apply the inverse of
Sc[L]F .

The augmented matrix view of partial block elimination introduced by [PS21] shows that Sc[L]F
can be explicitly approximated using O(log log n)-approximate squaring steps with moderate ac-
curacy ε ≈ 1

log logn . Since Sc[L]F is another Eulerian Laplacian, and through careful patching its
explicitly computed sparse approximation retains this property, the above decomposition can be
iterated until C has constant size. Since |F | = Ω(|F |+ |C|), Θ(log n) steps suffice.

44

C.2 Derandomizing the Sparsified-Cholesky Solver

There are three randomized pieces in [PS21].

• The sparsified squaring routines from [CKP+16b] are used to approximate Sc[L]F . We replace
these calls with our deterministic sparsified squaring routine (see Section 5).

• In [PS21] global sparsification is invoked at the start, and after each squaring to avoid any
build up of density. We cannot match this strategy using our global sparsification techniques.
Therefore, we only occasionally globally sparsify and recurse (see Section 4 and Section 6).

• The routine for selecting a ρ-RCDD subset is randomized [KLP+15, PS21]. We show that
this can be done deterministically in Appendix C.3.

Schur complement chains. Since we run our sparsified squaring algorithm without directly
following up with global sparsification, the density increases by a factor of 1

εd
after d block Cholesky

decomposition steps. Therefore, as in the squaring framework, we cannot afford to go to full depth
Θ(log n), but have to limit the depth to say Θ((log n)1/2), such that 1

εd
= no(1). Then, we invoke

our global sparsification technique, and continue on the globally sparsified schur complement.

The recursive algorithm. We apply our decomposition just like [PS21], but whenever we reach
a global sparsification point, we have to recursively branch to rectify the error this induced. If we
set the global sparsification error to Exp(O((log n)1/10)) as in the squaring algorithm, we obtain a
branching factor of Exp(O((log n)1/10)) and Θ((log n)1/2) depth. Therefore, the total branching is
bounded by no(1) and the algorithm runs in almost linear time, since all the matrices involved have
an almost linear amount of entries if we globally sparsify at the start.

C.3 Deterministically Finding a ρ-RCDD Subset

Given a directed and Eulerian Graph G−→ = (V,E, ω) on n vertices, we aim to find a set S ⊆ V so

that |S| > Ω(n) and for each vertex s in S∑
(v,s)∈E,v/∈S

ω(v, s) ≥ ρdeg−G−→
(s)

and ∑
(s,v)∈E,v/∈S

ω(s, v) ≥ ρ deg+
G−→

(s).

Namely, a ρ-fraction of its (weighted) in-neighbours and a ρ-fraction of its (weighted) out-neighbours
are not in S. Such a set S is called a ρ-RCDD subset, since it corresponds to a ρ-RCDD block of
the Eulerian Laplacian LG−→

. See Figure 7 for an illustration.

One Condition suffices. We first reduce the problem to finding an algorithm that satisfies one
of the two conditions.

45

Figure 7: The dark red vertices form a 1/2-RCDD subset S, since for each dark red vertex, half
the out-edges leave S, and half the in-edges come from outside S.

Lemma C.1. Given an algorithm for finding a subset S of V for a directed graph G−→ such that∑
(v,s)∈E,v/∈S

ω((v, s)) ≥ ρdeg−G−→
(s)

and |S| = Ω(n) we can find an ρ-RCDD subset S′ with |S′| = Ω(n).

Proof. Use the algorithm to find set S. Then look at the induced subgraph G−→
′ = G−→[S]. Reverse

the direction of all edges in G−→
′, and use the algorithm again.

Satisfying the in-edge Condition. Given the previous section, we are left with the task of
eliminating a constant weighted fraction of the in-edges. To do so, we define a potential for every
set S ⊂ V .

Definition C.2. Let Ψ(S) =
∑

v∈S
∑

(u,v)∈E,u∈S
ω((u,v))

deg−G−→
(v)

.

We first make a simple observation.

Lemma C.3. Given a set S such that Ψ(S)/|S| ≤ 1
2 , there is a subset S′ ⊆ S with |S′| ≥ 1

4 |S| and
for each s ∈ S′ ∑

(v,s)∈E,v/∈S

ω((v, s)) ≥ 1

4
deg−G−→

(s)

Proof. We have

Ψ(S) =
∑
v∈S

∑
(v,u)∈E,u∈S

ω((u, v))

deg−G−→
(v)
≤ 1

2
|S|

1

|S|
∑
v∈S

∑
(v,u)∈E,u∈S

ω((u, v))

deg−G−→
(v)
≤ 1

2
.

and we aim to show that there exists a set S′ ⊆ S so that for s ∈ S′∑
(s,u)∈E,u∈S

ω((u, s))

deg−G−→
(s)
≤ 3

4
.

46

But since the average value is below 1
2 at least a 1

4 -fraction of the values

∑
(v,u)∈E,u∈S

ω((u, v))

deg−G−→
(v)

are below 3
4 which shows our claim.

We are left with having to construct a set S as in Lemma C.3. We define an importance score
for each vertex, which we will use as a greedy criterion.

Definition C.4. Let score(v, S) =
∑

(v,u)∈E,u∈S
ω((v,u))

deg−G−→
(u)
−
∑

(u,v)∈E,u/∈S
ω((u,v))

deg−(v)
for v ∈ S.

Lemma C.5. For S ⊆ V we have ∑
v∈S

score(v, S) = Ψ(S)

Proof. We prove the lemma by induction. Initially, we have

Ψ(V) =
∑
v∈V

∑
(u,v)∈E

ω((u, v))

deg−G−→
(v)

= n =
∑
v∈V

score(v, V).

Now lets assume our lemma holds for S, and we show it holds for S \ {l}.

Ψ(S \ {l}) = Ψ(S)−
∑

(u,l)∈E,u∈S

ω(u, l)

deg−(l)
−

∑
(l,u)∈E,u∈S

ω(l, u)

deg−G−→
(u)

=
∑
v∈S

score(v, S)−
∑

(u,l)∈E,u∈S

ω(u, l)

deg−(l)
+

∑
(l,u)∈E,u∈S

ω(l, u)

deg−G−→
(u)

=
∑

v∈S\{l}

score(v, S \ {l}).

Therefore the claim holds by induction on the size of S.

Next we introduce our greedy algorithm based on the scores.

Lemma C.6. If Algorithm 11 terminates it returns a set S′ so that for all v ∈ S∑
(v,u)∈E,u∈Si

ω((u, v))

deg−G−→
(v)
≤ 3

4

and |S′| ≥ 1
4 |Si|.

Proof. Immediately follows from the description of Algorithm 11 and Lemma C.3.

Lemma C.7. For all i: Ψ(Si) ≤ Ψ(Si−1)− 3
2

47

Algorithm 11: FindDD(G−→)

1 S0 = V
2 i = 0
3 while Ψ(Si) > 0.5|Si| do
4 vi = arg maxv∈Si score(v, Si)
5 Si+1 = Si \ {vi}
6 i = i+ 1

7 end
8 S = Si; S

′ = S
9 for v ∈ S′ do

10 if
∑

(v,u)∈E,u∈Si
ω((u,v))

deg−G−→
(v)

> 3
4 then

11 S′ = S′ \ {v}
12 end

13 end
14 return S′

Proof. For any S we have

Ψ(S \ {l}) = Ψ(S)−
∑

(u,l)∈E,u∈S

ω(u, l)

deg−G−→
(l)
−

∑
(l,u)∈E,u∈S

ω(l, u)

deg−G−→
(u)

= Ψ(S)− score(l, S)− 1

and thus the lemma follows from the maximum being at least the average.

Lemma C.8. For the set S as in Algorithm 11 we have |S| ≥ 1
2 |V |.

Proof. Assume the contrary. Then more than n/2 vertices got eliminated, but in iteration n/2

Ψ(Sn/2) ≤ Ψ(V)− 3

2
n < 0.

So the while loop must have stopped then, which is a contradiction.

Lemma C.9. We can deterministically find a 1
4 -RCDD subset of an n-vertex m-edge Eulerian

graph G−→ with at least 1
64n vertices in Õ(m) time.

Proof. Follows from Lemma C.8, Lemma C.6 and the proof of Lemma C.1.

D Preconditioning a Cycle with its Transpose Fails

In this section we show that preconditioning the Laplacian of a length 5 cycle with its transpose
(the directed Laplacian of the graph with edges reversed) does not lead to converging behaviour on

48

some inputs. To this end, we consider the Laplacian

L =


1 −1
−1 1

−1 1
−1 1

−1 1


of said cycle. Computing the eigenvalues of (LT)+L yields one eigenvalue λ′ ≈ −0.3 − 0.95i
(See Figure 8). We conclude that I im(L) − η(LT)+L has an eigenvalue that is approximately
1+η ·0.3+η ·0.95i, which is strictly larger than 1 in magnitude for any step size η > 0 6. From this
we conclude that ρ(I im(L)− η(LT)+L) > 1. For E = I im(L)− η(LT)+L preconditioned Richardson
approximates

L+b = (I im(L) + E + E2 + E3 . . .)(LT)+b

by truncating the sum above. From our previous derivation we know that there is a complex vector
v = (LT)+b̂ (note that L and LT and their inverses all have the same image) for which the sum
does not converge. To show that this behaviour is also exhibited by a real vector, we decompose
v = v1 + iv2 into its real and imaginary part and conclude

Ev = Ev1 + iEv2.

Notice that E is a real valued matrix, and thus Ev1 is the real part of Ev . However, from this
we can conclude that if Ekv is large for some k, then either Ekv1 or Ekv2 must be large by the
triangle inequality.

Figure 8: Plot of the eigenvalues of (LT)+L, where L is the Laplacian of a directed cycle of length
5 with unit edge weight.

Since LT is the Laplacian of the same cycle as L with reversed edge directions this shows that
there are eulerian Laplacians that cannot be used as preconditioners with any step size. This is a
significant obstruction for developing a notion of high error sparsification for directed graphs.

6A similar argument can show that no complex step size η leads to a converging behaviour by realizing that
(LT)+L has an eigenvalue in each of the quadrants of the convex plane (See Figure 8).

49

	1 Introduction
	1.1 Prior Work
	1.2 Our Contributions

	2 Overview
	2.1 Global Sparsification
	2.2 Sparsified Squaring
	2.3 The Squaring Framework
	2.4 The Sparsified-Cholesky Framework
	2.5 Reduction to the Eulerian Setting with bounded Condition Number

	3 Preliminaries
	3.1 Linear Algebra
	3.2 Graphs
	3.3 Graph Laplacians
	3.4 Directed Graph Approximation
	3.5 Expanders
	3.6 Preconditioned Richardson

	4 Global Sparsification for Directed Laplacians
	4.1 Preconditioning with the Partial-Symmetrization
	4.2 Sparsifying the Directed Part
	4.3 Sparsifying the Undirected Part
	4.4 Loss in Condition Number
	4.5 Proof of lem:globalspars

	5 Approximately Squaring Directed Laplacians
	5.1 Deterministically Sparsifying Bipartite Product Graphs
	5.2 Sparsifying Directed Product Graphs via Bipartite Product Graphs

	6 Deterministic Square Sparsifier Chains
	7 A Deterministic Squaring Solver
	A Linear Algebra
	B Degree Preserving Undirected Sparsification
	C Sketching the Cholesky Solver
	C.1 Sparsified-Cholesky for Directed Laplacians
	C.2 Derandomizing the Sparsified-Cholesky Solver
	C.3 Deterministically Finding a -RCDD Subset

	D Preconditioning a Cycle with its Transpose Fails

