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Abstract

We investigate the space complexity of two graph streaming problems: Max-Cut and its quan-
tum analogue, Quantum Max-Cut. Previous work by Kapralov and Krachun [STOC ‘19] re-
solved the classical complexity of the classical problem, showing that any (2−ε)-approximation
requires Ω(n) space (a 2-approximation is trivial with O(logn) space). We generalize both of
these qualifiers, demonstrating Ω(n) space lower bounds for (2 − ε)-approximating Max-Cut

and Quantum Max-Cut, even if the algorithm is allowed to maintain a quantum state. As
the trivial approximation algorithm for Quantum Max-Cut only gives a 4-approximation,
we show tightness with an algorithm that returns a (2 + ε)-approximation to the Quantum

Max-Cut value of a graph in O(logn) space. Our work resolves the quantum and classical
approximability of quantum and classical Max-Cut using o(n) space.

We prove our lower bounds through the techniques of Boolean Fourier analysis. We give the
first application of these methods to sequential one-way quantum communication, in which each
player receives a quantum message from the previous player, and can then perform arbitrary
quantum operations on it before sending it to the next. To this end, we show how Fourier-
analytic techniques may be used to understand the application of a quantum channel.

http://arxiv.org/abs/2206.00213v2


1 Introduction

Quantum approaches for discrete optimization, such as the Quantum Approximate Optimization
Algorithm (QAOA) have received significant attention. The seminal work of Farhi, Goldstone,
and Gutmann [FGG14] showed that QAOA applied to an NP-hard classical constraint satisfac-
tion problem (CSP) gave a better worst-case approximation than the best known classical ap-
proximation algorithm at the time. An improved classical approximation algorithm subsequently
followed [BMO+15]; however, this seeded the question of whether a quantum approximation algo-
rithm might offer a provably better approximation guarantee than the best classical approximation
for some CSP or discrete optimization problem, which still remains open. One potential barrier
is that classical hardness of approximation results may also restrict quantum approximation algo-
rithms. For example, it is generally not expected that NP ⊆ BQP, so a quantum approximation
is not expected to overcome NP-hardness of approximation results. Even possibly weaker hardness
assumptions such as Unique-Games-hardness may impede quantum approximations. It would be
surprising if a quantum approximation were able to achieve a (1/0.878 . . . − ε)-approximation1 for
the Maximum Cut Problem (Max-Cut), which is Unique-Games-hard [KKMO07].

Although the prospects for quantum approximations for classical CSPs may seem limited, a nat-
ural question is whether quantum approximations can offer provably better guarantees for quantum
versions of CSPs. The k-Local Hamiltonian Problem (k-LH) serves as the canonical QMA-hard
quantum generalization of k-CSP. A recent line of work has enjoyed success in devising nontriv-
ial classical approximations for 2-LH [GK12, BH16, BGKT19, GP19, PT21b, AGM20, PT21a,
AGMKS21]; however, truly quantum approximations for LH remain elusive. Hardness of approxi-
mation results with respect to QMA are even more elusive, as the existence of a quantum analogue
of the classical PCP theorem, a cornerstone for hardness of approximation, remains a major open
question [AAV13, NV18].

We seek to understand the power of quantum versus classical approximations for 2-CSP and
2-LH in the streaming setting, where space is the computational quantity of interest. In particular
we consider the Max-Cut (MC) and Quantum Max-Cut (QMC) problems. Max-Cut is a
prototypical CSP in the sense that approximation and hardness results are typically devised for
Max-Cut and then generalized to other CSPs; Quantum Max-Cut has emerged to serve a
similar role in approximating 2-LH. Quantum Max-Cut is also closely related to the quantum
Heisenberg model (see [GP19]), which is a well-studied model of quantum magnetism introduced
in the late 1920s.

For classical algorithms applied to classical Max-Cut, tight bounds2 for the space complex-
ity in terms of the approximation factor are known [KK19]—our work generalizes these results
in both ways, giving tight bounds on the approximation factor attainable in o(n) space by quan-
tum streaming algorithms for classical Max-Cut and by quantum and classical algorithms for
Quantum Max-Cut.

We find, perhaps surprisingly, that quantum streaming algorithms offer no advantage over clas-
sical ones in approximating Max-Cut or Quantum Max-Cut. Although our main contribution
is a quantum hardness result, the matching upper bound for approximating Quantum Max-Cut

in the stream requires analyzing a nontrivial streaming algorithm, which is a departure from the

1This result is more typically stated as 0.878 . . .+ ε, where an α-approximation is held to mean returning a value
in [α · OPT,OPT], for OPT the correct value. However, we follow previous work on streaming Max-Cut by instead
using a K-approximation to mean returning a value in [OPT, K · Opt].

2Up to log factors in the space complexity, as is typical for streaming algorithms.
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Max-Cut Quantum Max-Cut

Approximation Factor 2 + ε 2− ε 2 + ε 2− ε
Classical Algorithm O(log n) Ω(n) O(logn) Ω(n)

Quantum Algorithm O(log n) Ω(n) O(logn) Ω(n)

Table 1: The space needed by quantum and classical algorithms for quantum and classical Max-
Cut. Results from this paper are shown in bold.

case of Max-Cut.

1.1 Our Contributions

Ours is the first work to consider streaming versions of 2-LH or any kind of quantum optimization
problem. Just as the results of [KK19] have been expanded for more general CSPs, we expect that
our results for Quantum Max-Cut will apply to more general instances of 2-LH. Indeed there is
precedent for this in the standard approximation setting [HLP20, PT21b].

We give tight (up to an arbitrarily small additive constant in the approximation factor) char-
acterizations of the best possible approximation factor achievable in o(n) space for quantum and
classical algorithms for quantum and classical Max-Cut. Our results are laid out in Table 1.

Our lower bounds are encompassed in the following theorem (the classical lower bound for
Quantum Max-Cut is a special case of this, as any classical streaming algorithm can be imple-
mented as a quantum streaming algorithm).

Theorem 1. For any ε > 0, any quantum streaming algorithm for Max-Cut or Quantum

Max-Cut that returns a (2− ε)-approximation with probability 2/3 requires

n/2O(1/ε
2)

qubits of storage.

For Max-Cut the upper bound for (2 + ε)-approximation (in fact, even 2-approximation) is
trivial, as a graph on m edges always has Max-Cut value between m/2 and m. However, for
Quantum Max-Cut the trivial approximation is only a 4-approximation, so we give an algorithm
that returns a (2 + ε)-approximation using O(log n) space. We also give an algorithm for weighted
graphs, but in this case we are only able to attain a (5/2 + ε)-approximation (the lower bound
remains a 2-approximation).

Theorem 2. Let G be a weighted graph on n vertices with weights that are multiples of 1/poly(n).
Then for any ε, δ ∈ (0, 1) there is a streaming algorithm that returns a (5/2 + ε)-approximation to
the Quantum Max-Cut value of G with probability at least 1− δ using O

(
1
ε2

log 1
δ log n

)
space. If

all the weights in the graph are 1, it returns a (2 + ε)-approximation instead.

We note here two lacunae in our results for (unweighted) graphs. Firstly, for classical Max-Cut

it is possible to achieve a (1 + ε)-approximation in Õ(n) space, through the use of cut-preserving
sparsifiers [AG09]. However, analogous results on sparsifiers for general 2-local Hamiltonians are
not known, and indeed there are results pointing in the opposite direction [AZ19]. So while we can
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characterize the approximation factors possible in sublinear space the semi-streaming complexity
remains open. Secondly, our O(log n)-space upper bound for Quantum Max-Cut only gives a
(2 + ε)-approximation instead of a 2-approximation. This is a consequence of the fact that it is
based on graph parameters that must themselves be approximated rather than just the number of
edges, which can be calculated exactly.

Fourier Analysis for Quantum Channels The technical core of our lower bound is a quan-
tum communication complexity bound for a sequential one-way communication problem (originally
introduced in [KK19] in the classical setting), in which the first player sends a message to the sec-
ond player, the second to the third, and so on. Our bound for this problem is based on a novel
application of Boolean Fourier analysis3—in particular, we prove that a key inequality associated
with this problem, analyzed in [KK19] for the classical case, is preserved even in the presence of
quantum communication.

The application of Boolean Fourier Analysis to two-player one-way communication problems
in the classical setting goes back to [GKK+07], in which it was used to prove lower bounds for
the Boolean Hidden Matching problem (and its application to communication complexity more
generally goes back further, e.g. [Raz95, Kla07]). This problem, and its generalization in the
Boolean Hidden Hypermatching problem (analyzed in [VY11]), are the main route by which Fourier
analysis has contributed to lower bounds for streaming algorithms.

However, in later years these techniques have been extended to communication lower bounds
(and corresponding streaming lower bounds) with different configurations of players. In [KKP18]
they were applied to problems where many players communicate with a single referee, while
in [KKSV17] they were extended to problems where players communicate in a line, as is the
case in the Distributed Implicit Partition Problem (from [KK19]) we make use of in this paper.
In [CGS+22], a generalization of this problem was studied through the use of Fourier analysis on
Zn
q .

The core ingredient of most of these lower bounds is a hypercontractive Fourier coefficients
lemma from [KKL88], that can be seen as generalizing facts about sampling protocols, in which a
player chooses some subset of their input to send to protocols where players send arbitrary (classical)
messages. This lemma was generalized to matrix -valued functions in [BARdW08], opening the
door to the application of Fourier-analytic methods to lower bounds for quantum communication
protocols, as these can be seen as functions from inputs to density matrices.

This was first used to prove quantum lower bounds on the complexity of the Boolean Hidden
Hypermatching problem [SW12]. This result was further generalized in [DM20], while [AD21]
generalized the Fourier coefficients lemma further, in order to obtain quantum lower bounds for
Max-Cut and more general hypergraph problems. However, these are all two-player one-way
communication problems. We give the first application of Fourier-analytic techniques to sequential
quantum one-way communication. The key technical challenge is in finding methods for applying
Fourier analysis to the application of quantum channels.

In classical communication, as long as we consider a single “hard” input distribution, a player’s
message can be without loss of generality assumed to be a deterministic function of the message they
received and their input. In sequential quantum communication, however, the player may apply
an arbitrary quantum channel to the message they receive. Our key insight is that, as quantum
channels are linear operators, many of the techniques of Fourier analysis, including the convolution

3For a general overview of Boolean Fourier analysis, see [O’D14].
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lemma for Fourier coefficients, may be applied to them.

1.2 Other Related Work

Streaming bounds for Max-Cut The fact that that a 2-approximation for Max-Cut is possi-
ble in O(log n) space is an immediate consequence of the fact that the Max-Cut value is always at
least m/2. Less immediately, but still a consequence of standard results in streaming algorithms,
is the fact that it can be (1 + ε)-approximated in Õ(n) space, through sparsifiers that preserve cut
values [AG09]. The question, then, was whether a better approximation than the first could be
attained in less space than the second.

In [KK15, KKS15], it was shown that any (2 − ε)-approximation would require at least poly-
nomial space in n, while [KKSV17] showed that (1 + ε)-approximation would require Ω(n) space.
This left open the possibility of intermediate results, but [KK19] closed the door on this possibility,
proving that (2− ε)-approximation would require Ω(n) space for any constant ε > 0.

However, the above results are only for classical algorithms. In [AD21], a polynomial lower
bound was shown that applies even to quantum streaming algorithms, but this left open the pos-
sibility that a (2− ε) approximation was possible in o(n) space for quantum algorithms.

Quantum streaming algorithms The first work on quantum streaming was [LG06], which
showed that there are problems that that are exponentially easier for quantum streaming algorithms
than classical ones. In [GKK+08], it was shown that this is true even for a function that does not
depend on the order of the stream (the more “standard” streaming model).

Later work has investigated the question of whether quantum streaming can obtain advantages
over classical for problems of independent classical interest (as the aforementioned work is for
problems constructed for the purpose of proving separations). The problem of recognizing Dyck(2)
in the stream was considered as a candidate problem in [JN14, NT17], but only negative results
were found. For problems where ω(1) passes are allowed over the stream, [Mon16] and [HM19]
showed an advantage for the well-studied moment estimation problem. Later, [Kal22] showed that
an advantage exists in the one-pass setting for the problem of counting triangles in graph streams.

Approximating Quantum Max-Cut Quantum Max-Cut was introduced in [GP19], where
a classical 1/0.498-approximation algorithm was given, akin to the Goemans-Williamson algo-
rithm for Max-Cut, that produces an unentangled product state. Since the gap between the
best product state and best entangled quantum state on a single edge is two (see Section 3.3), at
best a 2-approximation is possible for algorithms that return product states, and so the 1/0.498-
approximation is nearly optimal among such algorithms. By rounding to entangled states, [AGM20]
gave the first approximation with guarantee better than 2. Subsequently [PT21a] showed how to
use higher levels of the quantum Lasserre hierarchy of semidefinite programs to obtain a slight
improvement over [AGM20].
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(a) In a YES case, only edges crossing the underlying partition are included.

(b) In a NO case, each edge received is included with probability 1

2
.

Figure 1: The graphs each player receives when reducing DIHP to Max-Cut.

2 Proof Overview

2.1 Lower Bounds

Our lower bounds for the quantum streaming complexity of Max-Cut and Quantum Max-Cut

are derived from a new analysis of the Distributional Implicit Hidden Partition (DIHP) problem
introduced in [KK19] to prove lower bounds for the streaming complexity of approximating classical
Max-Cut. We restate this problem here.

2.1.1 The Distributed Implicit Hidden Partition Problem

In an instance of DIHP(n, α, T ), T players are each given a partial matching Mt of αn edges on
n vertices, with each edge labelled with a bit. Either these bit labels are generated by choosing a
random partition of [n] and assigning 1 to the edges crossing the partition (a YES case) or they
are chosen uniformly at random (a NO case).

The players are allowed one-way communication, from player i to player i + 1 for each i, and
are additionally given the matching edges (but not the edge labels) of every previous player for
free. Their goal is to determine whether their inputs were drawn from a YES case or a NO case
with probability at least 2/3 over the random draw and any internal randomness they may use.

Reduction to Classical Max-Cut If each player t creates the graph Gt consisting of edges
labelled 1 in Mt, G =

⋃
tGt will be bipartite in a YES case, and close to random in a NO case.

This means it is possible to cut every edge in the first case, and not much more than half of them
in the second. Therefore, an algorithm that returns a (2 − ε)-approximation to Max-Cut can
distinguish them if ε is large enough (by making α small enough and T large enough, we can make
the necessary ε arbitrarily small). Therefore, a Max-Cut algorithm using S space gives a protocol
in which each player sends a size-S message, by having each player run the algorithm on their
input and then send their algorithm’s state to the next player. The graphs the players get with
this reduction are illustrated in Figure 1.

One problem with this is that, if the players’ matchings are randomly chosen they may share
edges. Our approach to this differs somewhat from that of [KK19]. Instead of considering multi-
graphs, we take advantage of the fact that player t is allowed to know the matching (but not the
edge labels) of players s < t. This means we can have them decline to add edges that are present
in previous matchings, guaranteeing that the final graph is simple. We show that, as the number
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of edges thus removed is small, it has little effect on the reduction.

Extending the Reduction to Quantum Max-Cut The reduction to Quantum Max-Cut uses
exactly the same mapping from DIHP instances to graphs. We consider the following SDP,

max
f :V→Sn−1

∑

uv∈E

−〈f(u), f(v)〉

which is a shifted version of the standard Goemans-Williamson SDP for Max-Cut. In particular,
its optimal value is an upper bound on 2K − m, where K is the Max-Cut value of a graph.
Usefully, when 2K −m is small, a converse property holds, as the optimal value of this SDP is at
most a constant factor times larger than 2K − m [CW04]. This means the graphs generated by
NO instances of DIHP will have small values of this SDP.

This gives us a Quantum Max-Cut lower bound, because this SDP also upper bounds 4
3Q−m

3 ,
where Q is the Quantum Max-Cut value of the graph4. So NO instances will create graphs with
Quantum Max-Cut value approximately m/4. Conversely YES instances will create graphs with
Quantum Max-Cut value at least m/2, as they are bipartite and the Quantum Max-Cut value
is always at least half the Max-Cut value. So a (2− ε) approximation algorithm would suffice to
distinguish between the two.

2.1.2 Quantum Communication Lower Bounds for DIHP

In [KK19] it was shown that DIHP is hard when the players are only allowed to send classical
messages, requiring Ω(n) space when α and T are constant. The majority of the technical difficulty
of our lower bounds is in proving that DIHP is hard even if the players are allowed to send
quantum messages. This immediately implies that quantum algorithms must use Ω(n) space to
(2− ε)-approximate Max-Cut or Quantum Max-Cut, and so no quantum advantage for either
problem is possible.

Reduction to Boolean Fourier Analysis As with the classical lower bound of [KK19], our
proof depends on applying Fourier analysis to functions on the Boolean cube. In particular, we
will show that a bound on Fourier coefficients used in the classical proof is maintained even in the
presence of quantum communication. We start by providing an intuition for the significance of this
bound.

Suppose the game is in a YES case, and so player t’s input depends only on the matching
Mt and the randomly chosen partition (which we may write x ∈ {0, 1}n, with the bit of vertex i
determining which side of the partition it is on). Then, fixing (Ms)

t
s=1, we can write a function

ft : {0, 1}n → C
2β×2β

where f(x) is the density matrix sent by player t if the partition is x, and β is the number of qubits
used to represent that state.

Now suppose player t + 1 would like to determine whether they are in a YES or a NO case.
They have received ft(x) if they are in a YES case, and they want to determine if it is consistent

4See Section 2.3 of [HNP+21]. Note that in the cited work, both Quantum Max-Cut and the SDP are scaled by
1
m

relative to our usage.
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with being in a YES case. In addition, they have the bit labels of the edges in Mt+1. Therefore, for
any odd-cardinality set of edges in Mt+1, they know the parity of the set of vertices in x matched
by these edges. We write such sets of vertices as M tr

t+1s for a string s ∈ {0, 1}αn indexing a subset
of the edges in Mt+1.

Now suppose the player looked at only one of these sets s, and so knew the parity of the vertices
M tr

t+1s alone. To tell whether ft(x) could come from a YES instance, they need5 its average value
when the parity of M tr

t+1s is 0 to be distinguishable from its average value when the parity of M tr
t+1s

is 1.

The distinguishability of two distributions over quantum states is given by the trace norm of
the difference between their density matrices, so the quantity the player would need to be large is

1

2

∥∥∥∥∥∥∥∥∥

1

2n−1

∑

x∈{0,1}n:
x·M tr

t+1s=0

ft(x)−
1

2n−1

∑

x∈{0,1}n:
x·M tr

t+1s=1

ft(x)

∥∥∥∥∥∥∥∥∥
1

=
1

2n

∥∥∥∥∥∥
∑

x∈{0,1}n

ft(x)(−1)x·M
tr

t+1s

∥∥∥∥∥∥
1

= ‖f̂t(M tr

t+1s)‖1

where we now introduce f̂t, the Fourier transform of ft, given by

f̂(S) =
1

2n

∑

x∈{0,1}n

f(x)(−1)S·x.

It turns out that this sums nicely—it can be shown that player T ’s ability to distinguish between
a YES and a NO case is bounded by

T∑

t=1

∑

s∈{0,1}αn\{∅}

‖f̂t(M tr

t+1s)‖1

and so our goal will be to prove that this sum is small in expectation over (Mt)
T
t=1.

To prove this, we bound the total value of weight-2ℓ Fourier coefficients for every ℓ. As a
∼
(αn

ℓ

)
/
(n
2ℓ

)
fraction of these will end up being matched by a set of ℓ matching edges, it suffices to

prove that the value is bounded by6

(√
βn

ℓ

)ℓ

where we have dropped some constants exponential in T and ℓ. Then if β ≪ n, this expression will
be small enough for the final states to be hard to distinguish.

The Evolution of Fourier Coefficients We will bound the expression above by induction on
t, considering how these coefficients evolve based on the message sent from player t to player t+1.
This is where the quantum difficulty of the proof will arise, and is the most important novel element
in our analysis—the combinatorial aspects of the evolution are similar to those in the classical case

5We are eliding the possibility that, for instance, the state player t+1 receives is impossible or unlikely in a YES

case due to, for instance, only arising if a triangle in previously arrived edges has every edge labelled 1. However it
turns out this possibility is already accounted for by considering what a previous player would’ve seen on receiving
the third edge of that triangle.

6This expression changes somewhat when ℓ ≥ β, but we will disregard those highest-order terms in this overview.
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S

⇒
S ⊕M tr

t s

Figure 2: When player t receives the matching Mt, each subset s of the edges in Mt and each
Fourier coefficient f̂t−1(S) corresponds to a new Fourier coefficient f̂t(S ⊕M tr

t s). In this example
s includes a = 1 edge internal to S, b = 2 edges with one endpoint in S, and c = 1 edge outside, so
the resulting coefficient S ⊕M tr

t s has weight |S|+ a− c = 5.

but now player t may apply a quantum channel to generate ft rather than sending a deterministic7

message based on their input and the message ft−1.

The base case of the induction is straightforward (for simplicity we can think of player 1 as
receiving 0β from a player 0, and consider only an inductive step). For the inductive step, we
need to understand the effect of player t applying a quantum channel A to ft−1(x). This quantum
channel itself is determined by player t’s input, and therefore (again fixing (Ms)

t
s=1) we can write

Ax for its value when the underlying partition is x. As quantum channels are linear operators, we
can define a Fourier transform

ÂS =
1

2n

∑

x∈{0,1}n

Ax(−1)S·x

that in particular obeys the convolution lemma for the Boolean Fourier transform, which tells us
that

̂Axft−1(x)(S) =
∑

U

ÂU f̂t−1(U ⊕ S).

Using the fact that ÂU is 0 whenever U is not Mts for some s ∈ {0, 1}αn (intuitively, this is because
Ax only depends on the edge labels of the edges in Mt), we can write down “mass transfer” lemmas
describing how coefficients of weight 2ℓ2 of ft are formed from coefficients of weight 2ℓ1 of ft−1.

We want to know how much weight can be contributed to ̂Axft−1(x)(S) from ÂU f̂t−1(M
tr
t s ⊕ S)

where |S| = ℓ2 and M tr
t s⊕ S = ℓ1.

We can think of this in terms of three more parameters, a the number of edges from M tr
t s that

are entirely contained in S, b the number of edges that each have one endpoint in S, c the number
that are entirely outside of S (so ℓ2 = ℓ1−a+ c). We end up with the amount of “mass” transferred
from ℓ1-weight coefficients via M tr

t s with this property being bounded by

∑

S∈{0,1}n

|S|=2ℓ1

∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

IS(u)BS(v)
∑

w∈{0,1}αn

|w|=c

‖Ât
M tr

t (u⊕v⊕w)f̂t−1(S)‖1

where IS(u) and BS(v) are indicator variables on whether M tr
t u is entirely contained in S and M tr

t v
has one endpoint of each edge in S. See Figure 2 for an illustration.

The final tool we need to bound this is an extension of the matrix-valued Fourier coefficients in-
equality, a consequence of Theorem 1 of [BARdW08] (itself a generalization of a lemma of [KKL88])

7When proving a lower bound for a classical communication problem with a known input distribution, one may
without loss of generality assume the players act deterministically.
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that has previously been used for two-player quantum lower bounds [SW12, DM20, AD21]. This
will tell us that8 ∑

w∈{0,1}αn

|w|=c

‖Ât
M tr

t (u⊕v⊕w)f̂t−1(S)‖1 =

(
O(β)

c

)∥∥∥f̂t−1(S)
∥∥∥
1
.

With this in place, and using the fact that

P[IS(u)BS(v)] ∼
(ℓ1
a

)
(
n
a

) ·
(ℓ1
b

)
(
n
b

)

we can bound the above in expectation over Mt, and from then the proof becomes an exercise in
carefully evaluating sums.

2.2 Space Upper Bounds for Quantum Max-Cut

For classical Max-Cut a trivial classical algorithm achieving a 2-approximation in logarithmic
space is already known—count the number of edges (or total weight for a weighted graph) m and
report m, which is at most twice the true value. As our lower bound for quantum algorithms for
classical Max-Cut is the same as the classical one, nothing more is needed here. However, for
Quantum Max-Cut the story is a bit different. The trivial lower bound in this case is m/4, and
so the aforementioned algorithm would only guarantee a 4-approximation.

We give a simple algorithm that achieves a (2 + ε)-approximation in the unweighted case, and
a (5/2 + ε)-approximation in the weighted case. The basic idea will be the same in both cases, so
for ease of exposition the rest of the discussion in this section will assume a weighted graph, and
we will point out where every edge having unit weight allows a better approximation.

Upper Bounding the QMC Value Let m be the total weight of the graph, and let W =∑
u∈V maxv∈N(u) wuv, the sum of the max-weight edges incident to each vertex (so W is just the

number of non-isolated vertices in the unweighted case). It is known [AGM20] (see Lemma 24) that

m

2
+
W

4

is an upper bound for Quantum Max-Cut. So we want lower bounds in terms of m and W .

Lower Bounding the QMC Value in General Weighted Graphs We use a modified version
of an argument of [AGM20]. Consider the subgraph formed by taking the highest-weight edge
incident to every vertex. We can decompose this into a matching M consisting of every edge
“chosen” by two vertices, and a forest F of all the other edges (note that the two together are also
a forest). Abusing notation to use the names of the objects to also denote their total weights, we
have 2M + F =W .

Now, for any edge, it is possible to earn Quantum Max-Cut energy equal to its weight by
assigning its vertices the singlet. Secondly, when we have a collection of vertex-disjoint graphs it is
possible to maximize each of their Quantum Max-Cut energies separately and still earn energy
we/4 for each edge e between distinct pairs of graphs. So there is a solution earning M+(m−M)/4.

8Again, this has to be somewhat changed when c is particularly large.
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Figure 3: Proving a lower bound for the optimal Quantum Max-Cut value of a weighted graph.
The edges “chosen” by one vertex (in solid black) form a tree T , while the edges “chosen” by two (in
solid red) form a matching M . There is an assignment earning energy T+M

2 = 12 from assigning a
perfect classical cut to T ∪M , and one earning energy M + M−m

4 = 14 from assigning the singlet
to every edge in M and earning we/4 on every other edge.

Secondly, as M ∪ F is a forest, cutting it clasically earns energy (M + F )/2, as any classical
cut gives a quantum cut earning at least half as much energy. By minimizing these two expressions
subject to 2M + F =W it can be shown that the Quantum Max-Cut value is at least

m

5
+
W

10

giving a (5/2)-approximation determined only by m and W . We illustrate this construction in
Figure 3.

Lower Bounding the QMC Value in Unweighted Graphs In the unweighted case we have
the advantage that any method for choosing a maximal tree chooses one of optimal weight, and so
(inspired by a method of [GY21]) we consider depth-first search trees. We will assume the graph is
connected—note that m, W , and the Quantum Max-Cut value all sum up over components, so
as long as the lower bound we show is linear in m and W this will immediately generalize.

In the weighted case, trying to optimize the energy we earned from our tree meant potentially
earning nothing from edges outside the tree, as we had no control over how they might cross
the tree. However, with a DFS tree, we have the following useful property: for any node in the
tree, the subtrees rooted at its children are disconnected from each other (because otherwise those
connecting edges would have been explored before both subtrees were). This means we can do
the following: choose either the even or odd levels (with level i being edges from depth-i vertices
to depth-(i + 1) vertices) of the tree, one of which will contain at least half the edges; call this
set of edges H. Now, H consists of disjoint bipartite subgraphs, and no edge outside the tree
connects two edges in the same level of H. Thus, as noted above for the weighted case, there
is an optimal Quantum Max-Cut solution for H that still earns 1/4 from every edge outside
the tree, and from the edges in the unchosen levels. An optimal classical solution of this kind on
H earns a Quantum Max-Cut value of 1/2 on each edge in H (by randomly selecting either a
fixed assignment that cuts all the edges or the “bit-flipped” assignment, independently for each
component of H).

Now, as the tree contains W − 1 edges, merely using the optimal classical solution would only
earn us at least W−1

4 + m−(W−1)/2
4 , which is not quite as strong as we want. But each level of the

tree is a disjoint union of stars, and the optimal Quantum Max-Cut assignment for a star with
d leaves earns d+1

2 . So we can earn at least 1/2 more energy, giving us

W − 1

4
+
m− (W − 1)/2

4
+

1

2
>
m

4
+
W

8

for a 2-approximation determined only by m and W . We illustrate this construction in Figure 4.

10



Figure 4: Proving a lower bound for the optimal Quantum Max-Cut value of an unweighted
graph based on a DFS tree (the solid edges in the graph). The heavier half of the levels in the DFS
(colored in red) are given an optimal assignment, and then every other edge (solid and dashed)
earns 1/4. The total energy earned in this example is 3

2 + 3
2 +

7
4 = 4.75.

Estimating W in the Stream To obtain an actual algorithm we will need a (1+ε)-multiplicative
approximation to m/2 + W/4. Counting m is trivial, and in the unweighted case W can be
approximated with cardinality estimation algorithms. So the problem we need to resolve (ideally
in O(log n) space) is estimating ∑

u∈V

max
v∈N(u)

wuv

in the stream. Our approach is to use reservoir sampling to sample edges e with probability
proportion to we, choose an endpoint at random, and then check whether they are higher-weight
than every edge that arrives after them in the stream (since we can’t check edges that arrive
earlier). If we defined an estimator that is 1 whenever this happened and 0 otherwise, we would
get a contribution of we/2 for every vertex u and v ∈ N(u) such that wuv was a “scenic viewpoint”,
an edge of higher weight than all subsequent edges incident to u.

To correct for this, we also check the weight w′ of the highest-weight edge to arrive incident to
u after uv (calling it 0 if uv is the last edge) and then subtract w′/wuv. This gives us an estimator
with expectation

W/2m

and constant variance, that we can compute in logarithmic space. So we could have trouble getting
a multiplicative estimate of W if m ≫ W , but this isn’t a problem—we only want an estimate
of m/2 +W/4, and so a εm-approximation of W suffices. This then gives us our full streaming
algorithm, obtaining a (2 + ε)- and (5/2 + ε)-approximation in the unweighted and weighted case,
respectively, using O(log n) space if ε is constant.

3 Preliminaries

3.1 Notation

We will generally write β for the number of qubits an algorithm uses. We will therefore write the
state of the algorithm as a density matrix in C2β×2β . However, when considering Quantum Max-

Cut assignments, qubits will typically correspond to vertices in a graph (V,E), in which case we
will use n to denote both |V | and the number of qubits; we expect this will be clear from context.

In defining Quantum Max-Cut, we will need to use the Pauli matrices. These are defined as:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
.

The notation σi is used to denote a Pauli matrix σ ∈ {X,Y,Z} acting on qubit i:

σi = I ⊗ I ⊗ . . .⊗ σ ⊗ . . .⊗ I ∈ C
2n×2n ,

11



where the σ occurs at position i. A Pauli term or term refers to a tensor product of Pauli operators
(e.g., XiXj). We say a term is k-local if it is the tensor product of exactly k (non-identity) Pauli
operators (e.g., I is 0-local, Yi is 1-local, and XiZj is 2-local). A term is odd-local if it is k-local for
some odd k, and it is even-local otherwise.

The 4n Pauli terms each square to I and are orthonormal under the Hilbert-Schmidt inner
product, i.e., 1

2n Tr[a2] = 1
2n Tr[I] = 1 and 1

2n Tr[ab] = 0 for distinct Pauli terms a, b. Consequently
every Hermitian operator A acting on n qubits (i.e., A ∈ C2n×2n) can be written as a linear
combination of Pauli terms with real coefficients.

When we write ‖.‖p for a matrix, we mean the Schatten p-norm, defined as the p-norm of the
singular values of the matrix (also known as the trace norm when p = 1). The matrixD representing
the state of the algorithm will therefore be positive semi-definite, Hermitian, and satisfy ‖D‖1 = 1.

We will often be using x ∈ {0, 1}n to represent a subset of [n]. In a slight abuse of notation, we
will sometimes use x ∈ {0, 1}n and x ⊆ [n] interchangeably, when this does not cause ambiguity.
We use the “weight” of a set x to refer to |x|, usually in the context of a Fourier coefficient. When
dealing with a Fourier coefficient f̂(x) (defined later in this section), we use “mass” informally to
refer to its magnitude.

In a graph G = (V,E), we use N(v) to denote the neighborhood of a vertex v ∈ V , defined as
{u ∈ V : uv ∈ E}.

3.2 Quantum Streaming Algorithms

As our lower bounds are based on reductions from communication complexity, they will be valid
for the strong definition of quantum streaming, in which the algorithm maintains β qubits and has
a family of quantum channels (Aσ)σ∈A where A is the alphabet of all possible updates that can
appear in the stream. On seeing update σ, the algorithm applies Aσ to its current state. We will
therefore not need to concern ourselves with questions about ancillary qubits—for more discussion
on the subtleties involved here, see section 2.4 of [NT17].

3.3 Quantum and Classical Max-Cut

We define Max-Cut and Quantum Max-Cut as follows.

Definition 3 (Max-Cut). Given a graph G = (V,E) with weights wuv ≥ 0 for uv ∈ E, find the
value of

max
f :V→{−1,1}

∑

uv∈E

wuv
1− f(u)f(v)

2
.

An unweighted instance is one where wuv = 1 for all uv ∈ E.

In other words, we seek to assign each vertex u to a side of a cut in a graph (a side designated
by f(u) = −1 or f(u) = 1) to maximize the weight of edges crossing the cut. Max-Cut is an
instance of classical 2-CSP, and one may define a related instance of 2-LH that is closely related to
the anti-ferromagnetic quantum Heisenberg model that has extensively been studied by physicists.

Definition 4 (Quantum Max-Cut). Given a graph G = (V,E) with weights wuv ≥ 0 for uv ∈ E,
find the maximum eigenvalue (or energy) of

Q =
∑

uv∈E

wuv
I −XuXv − YuYv − ZuZv

4
.
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An unweighted instance is one where wuv = 1 for all uv ∈ E.

While Max-Cut is NP-hard, Quantum Max-Cut is QMA-hard [CM16, PM15]. Although
Quantum Max-Cut is cast as a maximum-eigenvalue problem, we note that Q ∈ C2n×2n is
exponentially large in the number of vertices, corresponding to qubits, n. We may also express
Max-Cut in such a form, where we seek to find the maximum eigenvalue of

M =
∑

uv∈E

wuv
I − ZuZv

2
.

To see that this is equivalent to Definition 3, consider |ψ〉 = |s1 . . . sn〉, with su ∈ {0, 1}. Then

〈ψ|M |ψ〉 =
∑

uv∈E

wuv
1− 〈ψ|ZuZv|ψ〉

2

=
∑

uv∈E

wuv
1− 〈su|Z|su〉〈sv|Z|sv〉

2

=
∑

uv∈E

wuv
1− (1− 2su)(1 − 2sv)

2
, (1)

and we may take f(u) = 1 − 2su to obtain the desired correspondence. So maximizing 〈ψ|M |ψ〉
over computational basis states |ψ〉 corresponds to Max-Cut; however, we observe that M is a
diagonal matrix in the computational basis, so that a basis state achieves the maximum eigenvalue.
One way to see that Max-Cut and Quantum Max-Cut are related is that the diagonals of M
and Q differ by a factor of two, and so Quantum Max-Cut captures Max-Cut if we restrict
ourselves to classical solutions, i.e., basis states.

The quantum nature of Quantum Max-Cut may be better understood by observing that if
we look at a graph consisting of a single unweighted edge, we have

Q =
I −X ⊗X − Y ⊗ Y − Z ⊗ Z

4
= |ψ−〉〈ψ−|, (2)

where |ψ−〉 = (|01〉−|10〉)/
√
2 is the maximally entangled singlet state. Thus the maximum energy

of one is obtained by assigning the singlet to the two qubits. The diagonal of Q is (|01〉〈01| +
|10〉〈10|)/2, so a classical solution (basis state) can earn energy at most half by cutting the edge,
which corresponds to “anti-aligning” or assigning different {−1, 1}-values to the endpoints, in the
sense of Definition 3. A quantum solution can obtain an additional energy of half by taking an
“anti-aligned” superposition of the two ways of cutting an edge.

Approximation algorithms We say (following previous work on streaming Max-Cut that an
algorithm K-approximates a function f(G) of a graph G if it returns a value in [f(G),Kf(G)]. In
our space-limited setting, we only focus on approximating the objective value of a problem rather
than also producing a corresponding feasible solution.

3.4 Fourier Analysis

For a function f on the Boolean cube {0, 1}n, the Fourier transform is given by

f̂(S) =
1

2n

∑

x∈{0,1}n

f(x)(−1)x·S

13



where S ranges over {0, 1}n. Note that this is well-defined if f takes values in a field F or vector
space over F such that Z ⊂ F. In particular, we will use it when f takes values in C, in the space
of square matrices over C, and in the space of linear operators on the space of square matrices over
C. In the latter case, to reduce ambiguity about function arguments, we will write

ÂS =
1

2n

∑

x∈{0,1}n

Ax(−1)S·x

when Ax is a family of such linear operators parametrized by x ∈ {0, 1}n. As
∑

S∈{0,1}n(−1)S·x is
2n when x = 0n and 0 otherwise, we can also write

f(x) =
∑

S∈{0,1}n

f̂(S)(−1)x·S

and so the Fourier transform is self-inverse up to a scale factor of 2−n.

We will use the following hypercontractive inequality from [BARdW08], which takes the place
of an inequality of [KKL88] that is typically used in applications of Fourier analysis to classical
streaming.

Theorem 5 (Theorem 1 in [BARdW08]). For every f : {0, 1}n → Cm×m and 1 ≤ p ≤ 2,

∑

S⊆[n]

(p− 1)|S|‖f̂(S)‖2p ≤


 1

2n

∑

x∈{0,1}n

‖f(x)‖pp




1/p

where ‖·‖1 is the Schatten (nuclear) 1-norm.

We will also use Parseval’s identity.

Theorem 6 (Parseval). For any function f : {0, 1}n → R,

1

2n

∑

x∈{0,1}n

f(x)2 =
∑

S⊆[n]

f̂(S)2.

Useful Lemmas The convolution lemmas and applications of hypercontractivity in this section
will be extensions of standard results in Fourier analysis, but we will need slightly stronger or more
general versions, so we prove them here.

We will need an extension of the convolution theorem for Fourier transforms to the matrix-
valued case.

Lemma 7. Let f , g be functions on {0, 1}n such that the range of f is contained in either C or
Ca×b, and the range of g is contained in either C or Cb×c, where a, b, c ∈ N. Then

f̂ g(S) =
∑

T∈{0,1}n

f̂(T )ĝ(T ⊕ S)

for all S ∈ {0, 1}n.
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Proof.

f̂ g(S) = E
x

[
f(x)g(x)(−1)S·x

]

= E
x


 ∑

T∈{0,1}n

f̂(T )(−1)T ·xg(x)(−1)S·x



=
∑

T∈{0,1}n

f̂(T )E
x

[
g(x)(−1)(T⊕S)·x

]

=
∑

T∈{0,1}n

f̂(T )ĝ(T ⊕ S)

We will use Theorem 5 to derive two lemmas that bound the Fourier mass of functions that
output density matrices (or, more generally, matrices with bounded trace norm), one for lower-
degree coefficients and one for all coefficients. Both will be based on the following corollary of
Theorem 5. Our proof is along the lines of that of Lemma 10 in [AD21], but in a slightly different
setting.

Lemma 8. For any f : {0, 1}n → C2β×2β such that ‖f(x)‖1 ≤ 1 for all x, for any 0 ≤ δ ≤ 1,

∑

S⊆[n]

δ|S|‖f̂(S)‖21 ≤ 22δβ .

Proof. Setting p = 1 + δ, we obtain

∑

S⊆[n]

δ|S|‖f̂(S)‖21+δ ≤


 1

2n

∑

x∈{0,1}n

‖f(x)‖1+δ
1+δ




1
1+δ

≤


 1

2n

∑

x∈{0,1}n

‖f(x)‖1+δ
1




1
1+δ

= 1

Next, note that for any q, 2−β‖f̂(S)‖qq can be viewed as E[|X|q], where X is uniformly chosen from

the singular values of f̂(S). So by Jensen’s inequality, we obtain

‖f̂(S)‖1+δ =
(
2β E

[
|X|1+δ

]) 1
1+δ

≥ 2
β

1+δ E[|X|]

= 2
β

1+δ
−β‖f̂(S)‖1

≥ 2−δβ‖f̂(S)‖1

and so the corollary follows.

We can now bound lower order terms of the Fourier expansion with a careful choice of δ.
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Lemma 9. For any f : {0, 1}n → C2β×2β such that ‖f(x)‖1 ≤ 1 for all x, and for any k ∈ [β],

∑

S⊆[n]:
|S|=k

‖f̂(S)‖21 ≤
(
O(β)

k

)k

∑

S⊆[n]:
|S|=k

‖f̂(S)‖1 ≤
(
O
(√
βn
)

k

)k

Proof. Set δ = k/β in Lemma 8. Then we get

∑

S⊆[n]:
|S|=k

‖f̂(S)‖21 ≤
(
β

k

)k ∑

S⊆[n]

(
k

β

)|S|

‖f̂(S)‖21

≤
(
β

k

)k

22k

=

(
O(β)

k

)k

.

The second line then follows from applying Cauchy-Schwarz, as for any non-negative-valued function
g on subsets of [n],

∑

S⊆[n]

g(S) ≤
√∑

S⊆[n]

g(S) ·
√∑

S⊆[n]

1 ≤
√∑

S⊆[n]

g(S) ·
√(

n

k

)

We can also obtain a general bound with a less careful choice of δ.

Lemma 10. For any f : {0, 1}n → C2β×2β such that ‖f(x)‖1 ≤ 1 for all x,

∑

S⊆[n]

‖f̂(S)‖21 ≤ 22β

∑

S⊆[n]

‖f̂(S)‖1 ≤
(
O(n)

k

)k/2

Proof. Set δ = 1 in Lemma 8. The second line then follows from Cauchy-Schwarz as in the previous
proof.

For scalar-valued functions, a stronger version of the above (for the 2-norm) is given by Parseval’s
identity9 (Theorem 6). This will allow us to characterize the Fourier coefficients of a function that
checks whether its input satisfies a collection of linear constraints.

9This can be proved for matrix-valued functions too, but we will not need it.
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Lemma 11. Let M ∈ {0, 1}k×n be a matrix over Z2. Let y ∈ {0, 1}k, and define q : {0, 1}n → {0, 1}
by

q(x) =

{
1 if Mx = y

0 otherwise.

Then for every s ∈ {0, 1}k,
q̂(M trs) =

|q−1(1)|
2n

(−1)s·y

and every other Fourier coefficient of q is 0.

Proof. We first prove the part of this theorem pertaining to coefficients of the form M trs. We have

q̂(M trs) =
1

2n

∑

x∈{0,1}n

q(x)(−1)x·(M trs)

=
1

2n

∑

x∈{0,1}n

q(x)(−1)xtrM trs

=
1

2n

∑

x∈{0,1}n

q(x)(−1)ytrs

=
|q−1(1)|

2n
(−1)s·y

where the third line makes use of the fact that q(x) = 1 iff Mx = y. We will now use Parseval’s
identity (Theorem 6) to show that every other coefficient must be 0. Now, if Mx = y has no
solutions x, every coefficient will be 0 and the theorem will hold trivially.

So suppose it has at least one solution. Then by the Rank-Nullity theorem and the fact we
are working over Z2, the number of solutions |q−1(1)| is 2n−r, where r is the dimension of the row
space of M . Furthermore, 2r is the number of distinct coefficients M ts. So

∑

z∈{0,1}n:
∃s∈{0,1}k ,T=M trs

q̂(z)2 = 2r
|q−1(1)|2

22n

=
|q−1(1)|

2n

=
1

2n

∑

x∈{0,1}n

q(x)2

which by Parseval is the sum of the square of every Fourier coefficient of q, so as q is real-valued
its other Fourier coefficients must all be 0.

As well as being used directly, this will also allow us to restrict the set of non-zero Fourier
coefficients for any function that only depends on a linear function of its inputs.

Lemma 12. Let f be a real or complex (matrix or scalar)-valued function on {0, 1}n, and let M
be a matrix over Z2 and g another function such that f(x) = g(Mx) for all x ∈ {0, 1}n. Then for
every S ∈ {0, 1}n,

f̂(S) = 0

unless S is M trs for some s ∈ {0, 1}k.
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Proof. We can write

f(x) =
∑

y∈{0,1}k

qy(x)g(y)

where qy is the indicator function of Mx = y, as in Lemma 11. So then, if S is not M trs for some

s ∈ {0, 1}k , q̂y(S) = 0 for all y by Lemma 11 and so f̂(S) = 0.

Finally, we will need a generalization of the convolution theorem to arbitrary linear operators.
For a family of linear operators (Ax)x∈{0,1}n we will write, by analogy to the Fourier transform,

Âs =
1

2n

∑

x∈{0,1}n

(−1)x·sAx.

Lemma 13. Let (Ax)x∈{0,1}n : L1 → L2 be a family of linear operators, f : {0, 1}n → L1 any
function, and g : {0, 1}n → L2 be given by

g(x) = Axf(x).

Then
ĝ(S) =

∑

T∈{0,1}n

ÂT f̂(S ⊕ T )

for all S ∈ {0, 1}n.

Proof.

∑

T∈{0,1}n

ÂT f̂(S ⊕ T ) =
1

22n

∑

T,x,y∈{0,1}n

(−1)x·T+y·(S⊕T )Axf(y)

=
1

22n

∑

T,x,y∈{0,1}n

(−1)(x⊕y)·T+y·SAxf(y)

=
1

2n

∑

x,y∈{0,1}n

(−1)y·SAxf(y)I(x = y)

=
1

2n

∑

x∈{0,1}n

(−1)x·SAxf(x)

= ĝ(S)

4 Communication Problem

We will use the Distributional Implicit Hidden Partition (DIHP) problem of [KK19].

In a DIHP(n, α, T ) instance, for n, T ∈ N and α ∈ (0, 1/2) such that αn ∈ N, T players indexed
by t ∈ [T ] each receive the incidence matrix of a matching Mt ∈ {0, 1}αn×n along with bit labels
wt ∈ {0, 1}αn.

The bit labels are private to their respective players, while each player t knows Ms for all s ≤ t.
The players will communicate sequentially, from player i to player i + 1, and the objective is for
player T to determine which of the following two distributions the inputs were drawn from:
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YES Draw X ∼ U ({0, 1}n). For each t ∈ [T ], set wt =MtX.

NO For each t ∈ [T ], draw wt ∼ U ({0, 1}αn).

5 Reducing Quantum and Classical Max-Cut to DIHP

In this section we will prove that any Max-Cut or QMC algorithm gives a DIHP protocol.

Theorem 14. There exists a constant C > 0 such that, for any ε, δ ∈ (0, 1] and n a multiple of
⌈C/ε⌉ · ⌈C3/ε2⌉, the following holds: Suppose there is a streaming algorithm that returns a (2− ε)-
approximation to the Max-Cut size of an n-vertex graph, or a (2− ε)-approximation to its QMC
value, in S space with probability 1 − δ. Then DIHP(n, 1/⌈C/ε⌉, ⌈C3/ε2⌉) has a protocol using
S + 2 log n space that succeeds with probability 1− δ − 2−n.

An immediate consequence of this is that, if we can show that solving DIHP(n, α, T ) with
probability 2/3 requires Ω(n) space for all sufficiently small constants α, T , then any algorithm
giving a (2 − ε)-approximation to Max-Cut or QMC with 2/3 probability for some constant ε
requires Ω(n) space.

Our reduction will be based on a graph encoding of DIHP. We can generate a graph from
a DIHP instance by, for each matching Mt and the ith edge in that matching, adding the edge
to the graph iff (wt)i = 1 and the edge is not in Ms for any s ≤ t. Note that as player t knows
(Ms)s≤t, they can construct this graph in the stream, as their own input and (Ms)s≤t will suffice
to determine which edges to insert.

We write GY for the distribution on graphs generated thus conditioned on the DIHP instance
being a YES case, and GN for the distribution conditioned on a NO case. Let G denote a draw
from one of these distributions, and m the number of edges in G. We will show, in both cases, a
(2− ε)-separation between the cut value of a draw from GY and GN (as a fraction of m), with high
probability.

Lemma 15. Let G be drawn from GY . Then the Max-Cut value of G is m and the QMC value
is at least m/2.

Proof. G will always be bipartite, as every edge will cross the bipartition given by X. Therefore,
the Max-Cut value will be m, and as any classical cut always earns at least half its value for
QMC, the QMC value is at least m/2.

To lower-bound the cut value, we will start with classical Max-Cut and then show that this
implies the corresponding QMC bound.

Lemma 16. Let G be drawn from GN , and let n ≥ T . Then, with probability 1− en(1−Ω(α2T)), the
Max-Cut value of G is less than m/(2 −O(1/n + α)).

Proof. We start by proving that m is at least αTn/8 with high probability. Consider the probability
that the ith edge of the tth matching is included in G, conditioned on on (Ms)

t−1
s=1 and edges

1, . . . , i−1 of Mt. Then, the ith edge of Mt is uniformly distributed among those edges not incident
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to any of the i− 1 edges from Mt conditioned on, and it will be included with probability 1/2 if it
is none of the edges in (Ms)

t−1
s=1. So it is included with probability at least

1

2
·
(n
2

)
− (i− 1)n− α(t− 1)n(n

2

) ≤ n2 − n− 2αn2 − 2αnT

2n2
≤ 1

2
− 1/n − α− αT/n ≤ 1

2
− 1/n − 2α

as n ≥ T . We may assume 1/n−2α ≤ 1/4, as otherwise the lemma follows trivially by choosing the
constants in Ω(·) and O(·) to be large enough. So the distribution of m stochastically dominates
Bi(nαT, 1/4) and so by the Chernoff bounds,

m ≥ αnT

8

with probability at least
1− e−Ω(nαT ).

Now, conditioning on any value of m ≥ αnT
8 , consider any cut of the [n] vertices. Now, consider

the probability that any one of those m edges crosses the cut. For the ith edge of Mt, even if we
condition on the entire state of the game except for (Mt)i, and additionally condition on the edge
being included in the graph, its location is uniformly distributed over at least

(n
2

)
− 2αn2 −αnT ≥

n2(1 − 1/n − 5α)/2 possible locations (as the other edges from the same player’s αn-matching
exclude no more than 2αn2 possibilities, 2n for each of them, while the edges from other players’
matchings can exclude at most 1 edge each, for a total of no more than αnT ). So the probability
it will cross the cut is at most

1

2(1 − 1/n− 5α)

as at most n2/4 of the possible locations for the edge will cross the cut. As this holds conditioning
on any value of the rest of the input, it will also hold conditioning on any part of it, and so the

number of edges crossing the cut is stochastically dominated by Bi
(
m, 1

2−1/n−5α

)
, and so by again

applying the Chernoff bounds and assuming that 1−1/n−6α ≥ 1/2 (as otherwise the lemma again
holds trivially), it is less than

m

2(1 − 1/n− 6α)
=

m

2− 1/n − 5α
+Ω(αm)

with probability at least

1− e−Ω(α2m) = 1− e−Ω(α3n2T) = 1− e−Ω(α2nT)

conditioned on any m ≥ nαT/8 and using the fact that αn ∈ N. The lemma follows by taking a
union bound over all 2n possible cuts.

This upper bounds the Max-Cut value of a NO instance. To extend this bound to Quantum

Max-Cut, we use the fact that the natural semidefinite programming (SDP) relaxation of Max-

Cut also gives an SDP relaxation of QMC, and this relaxation becomes tight as the max-cut value
tends towards 1/2. Specifically, we use the vector program

max
f :V→Sn−1

∑

uv∈E

−〈f(u), f(v)〉 (3)
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for a graph G = (V,E). The above vector program is equivalent to the standard Goemans-
Williamson vector program

max
f :V→Sn−1

∑

uv∈E

1− 〈f(u), f(v)〉
2

,

and may be solved as an SDP [GW95]. Thus if the optimal value of (3) is K, the Max-Cut value
of G is at most (m+K)/2. A related vector program also gives an upper bound for QMC, so that
its value is at most (m+ 3K)/4 [GP19].

Conversely, we also have that if the Max-Cut value of G is at most n/2 + ε, then K = O(ε),
by [CW04]. This allows us to prove the following lemma:

Lemma 17. Let G be drawn from GN , and let n ≥ T . Then, with probability 1− e1−O(α2nT), the
QMC value of G is less than m/(4 −O(1/n+ α)).

Proof. By Lemma 16, with this probability the Max-Cut value is at least m/(2 − O(1/n + α)),
and so the SDP value is O((1/n + α)m). This in turn implies that the QMC value is less than
m/(4 −O(1/n+ α)).

We may now prove Theorem 14.

Theorem 14. There exists a constant C > 0 such that, for any ε, δ ∈ (0, 1] and n a multiple of
⌈C/ε⌉ · ⌈C3/ε2⌉, the following holds: Suppose there is a streaming algorithm that returns a (2− ε)-
approximation to the Max-Cut size of an n-vertex graph, or a (2− ε)-approximation to its QMC
value, in S space with probability 1 − δ. Then DIHP(n, 1/⌈C/ε⌉, ⌈C3/ε2⌉) has a protocol using
S + 2 log n space that succeeds with probability 1− δ − 2−n.

Proof. The protocol will be as follows:

• Each player in turn gives every edge in their matching Mt with bit label 1 to the algorithm,
unless the edge appears in a previous player’s matching Ms. They keep track of m, the
number of edges input this way.

• The final player uses the algorithm to approximate Max-Cut/QMC, returning YES if the
returned value is at least m/(2 − ε) (for Max-Cut) or at least m/(4 − ε) (for QMC) and
NO otherwise.

This will cost S space to maintain the algorithm, and 2 log n space to maintain the counter.

The player’s input is now a draw from GY conditioned on the problem being in a YES instance,
or from GN conditioned on it being in a NO instance. Lemma 15 guarantees that a draw from GY
will have Max-Cut value m and QMC value at least m/2.

Provided C is chosen to be large enough, Lemmas 16 and 17 say that a draw from GN will have
Max-Cut value less than m/(2− ε) and QMC value less than m/(4− ε) with probability at least

1− 2−n(1−O(⌈C/ε⌉−2·⌈C3/ε2⌉)) = 1− 2−n

and so as the algorithm succeeds with probability 1− δ, the protocol will return the correct answer
with probability at least 1− δ − 2−n.
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6 Quantum Lower Bound for DIHP

6.1 Reduction to Fourier Analysis

Let β be the number of qubits each player may send to the next. For simplicity we will think of the
final player, T , sending an β-qubit message (consisting of either YES or NO with another β − 1
bits fixed at |0〉). We will think of the first player as receiving a message from “player 0” that is

fixed as |0〉β . We write gt : {0, 1}αTn :→ C2β×2β for player t’s message as a function of the edge

labels of the first t matchings, and ft : {0, 1}n :→ C2β×2β for ft(x) = gt
(
(Msx)

t
s=1

)
. Note that both

functions depend on the first t matchings (Ms)
t
s=1. Note also that as these messages are density

matrices, they in particular have trace norm 1.

Now, we define
φt = E

x∼U({0,1}n),y∼U({0,1}nα(T-t))

[
gT
(
(Msx)

t
s=1, y

)]

so for any given set of matchings (Mt)
tr
t=1, the total variation difference between the final player’s

output in a YES and a NO case is given by

‖φT − φ0‖1.

Lemma 18.

‖φT − φ0‖1 ≤
T−1∑

t=1

∑

s∈{0,1}αn\{∅}

∥∥∥f̂t(M tr

t+1s)
∥∥∥
1

Proof. We first note that φ1 and φ0 are identical, as M1x is uniformly distributed. It will therefore
suffice to prove that, for all t ∈ [T − 1],

‖φt+1 − φt‖1 ≤
∑

s∈{0,1}αn\{∅}

∥∥∥f̂t(M tr

t+1s)
∥∥∥
1

and the theorem will then follow by the triangle inequality. Now, we note that φt+1 and φt are
given by applying the same quantum channel to

E
x∼U({0,1}n)

[
gt+1

(
(Msx)

t+1
s=1

)]

and
E

x∼U({0,1}n),y∼U({0,1}αn)

[
gt+1

(
(Msx)

t
s=1, y

)]

respectively. Therefore, it will suffice to bound the trace norm of

E
x∼U({0,1}n),y∼U({0,1}αn)

[
gt+1

(
(Msx)

t+1
s=1

)
− gt+1

(
(Msx)

t
s=1, y

)]

which we may rewrite as

E
x∼U({0,1}n),y∼U({0,1}αn)

[
AMt+1x(ft(x)−Ay(ft(x)))

]
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where Ay is the quantum channel that player t+1 applies to the message received from player t to
generate the message sent onwards, if player (t+1)’s bit labels are y (this channel may also depend
on the matchings (Ms)

t+1
s=1).

Writing qy for the indicator function on y =Mt+1x, this in turn equals

E
x∼U({0,1}n),y∼U({0,1}αn)

[2αnqy(x)Ay(ft(x))−Ay(ft(x))]

which by the linearity of Ay can be rewritten as

E
y∼U({0,1}αn)

[
Ay

(
2αnq̂yft(∅)− f̂t(∅)

)]
.

Now, by Lemmas 7 and 11,

q̂yft(∅) =
∑

S∈{0,1}n

q̂y(S)f̂t(S)

=
∑

s∈{0,1}αn

|q−1
y (1)|
2n

f̂t(M
tr

t+1s)(−1)s·y

= 2−αn
∑

s∈{0,1}αn

f̂t(M
tr

t+1s)(−1)s·y

as a 2−αn fraction of strings x satisfy Mt+1x = y. Putting this together, we get

‖φt+1 − φt‖1 ≤

∥∥∥∥∥∥
E

y∼U({0,1}αn)


Ay


 ∑

s∈{0,1}αn\{∅}

f̂t(M
tr

t+1s)(−1)s·y




∥∥∥∥∥∥
1

≤ E
y∼U({0,1}αn)



∥∥∥∥∥∥
Ay


 ∑

s∈{0,1}αn\{∅}

f̂t(M
tr

t+1s)(−1)s·y


∥∥∥∥∥∥
1




= E
y∼U({0,1}αn)



∥∥∥∥∥∥

∑

s∈{0,1}αn\{∅}

f̂t(M
tr

t+1s)(−1)s·y
∥∥∥∥∥∥
1




≤
∑

s∈{0,1}αn\{∅}

∥∥∥f̂t(M tr

t+1s)
∥∥∥
1

completing the proof.

6.2 Evolution of Fourier Coefficients

In this section we will show that, in expectation over the matchings, the even-degree Fourier
coefficients of f remain small enough in magnitude for Lemma 18 to give a useful bound.

Lemma 19. There exists constants C > 1,D > 1 such that, for all ℓ ∈ [n/2] and t ∈ [T ], if
β ≤ n/Dt and α ≤ 1/D,

∑

S∈{0,1}n

|S|=2ℓ

E
(Ms)ts=1

[
‖f̂t(S)‖1

]
≤
(
Ctn

ℓ
·max

{
β

ℓ
, 1

})ℓ/2

.
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We write At
x for the quantum channel player t applies to the state received from player t− 1,

if the input player t sees is (Mt,Mtx) (the family (Ax)x∈{0,1}n will therefore depend on Mt and
nothing else). This means that ft(x) = At

xft−1(x) and so we may apply Lemma 13 to get

f̂t(S) =
∑

U∈{0,1}n

ÂU f̂t−1(U ⊕ S)

for all S ∈ {0, 1}n. Now we will show that we only need to care about the coefficients U that
correspond to sets of edges in the matching Mt.

Lemma 20. For all S ∈ {0, 1}n, Ât
S = 0 unless S =M tr

t s for some s ∈ {0, 1}αn.

Proof. Suppose S is not M tr
t s for any s. Then for any N ∈ C2β×2β , define

h(x) = At
xN .

As At
x depends only on Mtx, we may apply Lemma 12 to get that ĥ(S) = 0 and therefore Ât

SN = 0.

As this applies for all N , Ât
S = 0.

Applying this gives us

f̂t(S) =
∑

s∈{0,1}αn

Ât
M tr

t sf̂t−1(M
trs⊕ S)

and summing over S of weight 2ℓ2 for any ℓ2 ∈ [n/2], we get

∑

S∈{0,1}n

|S|=2ℓ2

‖f̂t(S)‖1 ≤
∑

S∈{0,1}n

|S|=2ℓ2

∑

s∈{0,1}αn

‖Ât
M tr

t sf̂t−1(M
trs⊕ S)‖1

=
∑

S∈{0,1}n

∑

s∈{0,1}αn

|M trs⊕S|=2ℓ2

‖Ât
M tr

t sf̂t−1(S)‖1.

Now we can write the total mass on weight-ℓ2 coefficients of f̂t in terms of the contributions from
each weight of coefficients of f̂t−1. Grouping s ∈ {0, 1}αn by the (always even) weight of M trs⊕S,
we get,

∑

S∈{0,1}n

|S|=2ℓ2

‖f̂t(S)‖1 ≤
⌊n/2⌋∑

ℓ1=0

τt(ℓ1, ℓ2)

where τt(ℓ1, ℓ2) is a bound on the amount of “mass transferred” between coefficients of weight ℓ1
and ℓ2 at step t, given by

τt(ℓ1, ℓ2) :=
∑

S∈{0,1}n

|S|=2ℓ1

∑

s∈{0,1}αn

|M tr
t s⊕S|=2ℓ2

‖Ât
M trsf̂t−1(S)‖1.

We now split s ∈ {0, 1}αn into smaller groups, based on parameters a, b, c ∈ N, where a is the
number of edges from M trs contained in S, b is the number with one endpoint in S and c is
the number outside of S (and so requiring that |M trs ⊕ S| = 2ℓ2 is equivalent to requiring that
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ℓ1 + c− a = ℓ2). Let IS(y) be the indicator variable on M tr
t y being contained in S, and BS(y) on

the ith column of M tr
t having intersection exactly 1 with S whenever yi = 1. Then we have

τt(ℓ1, ℓ2) ≤
∑

a,b,c∈N
ℓ1+c−a=ℓ2

τ(ℓ1, a, b, c)

for

τt(ℓ1, a, b, c) :=
∑

S∈{0,1}n

|S|=2ℓ1

∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

IS(u)BS(v)
∑

w∈{0,1}αn

|w|=c

‖Ât
M tr

t (u⊕v⊕w)f̂t−1(S)‖1.

We are now ready to bound this “mass transfer” in terms of the of weight-ℓ1 coefficients of f̂t−1,
in expectation over Mt. This will hold for any values of (Ms)

t−1
s=1 and (xs)

t
s=1 (note that Mt is

distributed independently of all these variables).

Lemma 21.

E
Mt

[τt(ℓ1, a, b, c)] ≤ 2O(ℓ1+c) · (α · a/n)a · (n/c)c/2 ·max{(β/c)c/2, 1} ·
∑

S∈{0,1}n

|S|=2ℓ1

‖f̂t−1(S)‖1

Proof. We start by bounding the innermost sum in τt, regardless of u, v, or Mt. Let Bty denote the
channel applied by player t on seeing y, so that Ax = BMtx for all x. For any fixed S ∈ {0, 1}n, let

g : {0, 1}αn → C2β×2β be given by

g(y) = (−1)(u⊕v)·yBtyf̂t−1(S)/‖f̂t−1(S)‖1.
Then for all w ∈ {0, 1}αn,

ĝ(w) =
1

2αn

∑

y∈{0,1}αn

(−1)(u⊕v⊕w)·yBtyf̂t−1(S)/‖f̂t−1(S)‖1

=
1

2αn

∑

y∈{0,1}αn

1

2(1−α)n

∑

x∈{0,1}n

Mtx=y

(−1)(u⊕v⊕w)·MtxAt
xf̂t−1(S)/‖f̂t−1(S)‖1

=
1

2n

∑

x∈{0,1}n

(−1)M tr
t (u⊕v⊕w)·xAt

xf̂t−1(S)/‖f̂t−1(S)‖1

= Ât
M tr

t (u⊕v⊕w)f̂t−1(S)/‖f̂t−1(S)‖1
and as applying a quantum channel can only shrink the trace norm, ‖g(x)‖1 ≤ 1 for all x. So we
may apply Lemmas 9 and 10 to obtain

1

‖f̂t−1(S)‖1

∑

w∈{0,1}αn

|w|=c

‖Ât
M tr

t (u⊕v⊕w)f̂t−1(S)‖1 =
∑

w∈{0,1}αn

|w|=c

‖ĝ(w)‖1

≤





(√
O(β·αn)

c

)c

c ≤ β
(
O(αn)

c

)c/2
c > β

≤
{
2O(c) · c−c · (βn)c/2 c ≤ β
2O(c) · c−c/2 · nc/2 c > β

= 2O(c) · (n/c)c/2 ·max{(β/c)c/2, 1}.
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With the inner sum bounded independently of u, v, and Mt, it will then suffice to have a bound on

E
Mt




∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

IS(u)BS(v)




that holds for all S.

First note that, there are
( n
2a

)
possible sets of vertices that can be matched by a size-a subset

of the matching Mt, and
(
ℓ1
2a

)
of them are contained in S. So IS(u) is 1 with probability

(
ℓ1
2a

)
/
(
n
2a

)
.

Then, for any u, conditioned on IS(u) = 1, any v not disjoint from u has probability zero of
having BS(v) = 1, as no edge can have both endpoints in S while also having exactly one endpoint.
Meanwhile, for a size-b disjoint v, there are 2b ways to choose one endpoint from each edge in the
subset of Mt indexed by v, and then a

( b
ℓ1−a

)
/
( b
n−a

)
probability that these endpoints are all in S,

so E[BS(v)|IS(u) = 1] ≤ 2b
(

b
ℓ1−a

)
/
(

b
n−a

)
.

Therefore, and assuming a, b ≤ ℓ1 and ℓ1 ≤ n/2 as otherwise the lemma would hold trivially,

E
Mt




∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

IS(u)BS(v)


 ≤

∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

(
ℓ1
2a

)
( n
2a

) · 2b ·
(
ℓ1−a
b

)
(n−a

b

)

≤
∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

2ℓ1

(n/2a)2a
· 2b · 2ℓ1

((n − a)/b)b

=
∑

u∈{0,1}αn

|u|=a

∑

v∈{0,1}αn

|v|=b

2O(ℓ1) · a2abb · n−2a−b

=

(
αn

a

)(
αn

b

)
2O(ℓ1) · a2abb · n−2a−b

≤ 2O(ℓ1) · (α · a)a · n−a

and so the lemma follows.

This will give us the inductive step we need to prove Lemma 19. We will need one further small
lemma about integers for our proof.

Lemma 22. For any x, y, z ∈ N>0 and x ≤ y + z,

xx

yy · zz ≤
2O(y+z)

(y + z − x)y+z−x
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Proof. Without loss of generality we will assume that y ≤ z.

xx

yy · zz = 2z
xx

yy · (2z)z

≤ 2z
xx

(y + z)!

≤ 2O(y+z) xx

(y + z)y+z

≤ 2O(y+z) 1

(y + z)y+z−x

≤ 2O(y+z)

(y + z − x)y+z−x

Lemma 19. There exists constants C > 1,D > 1 such that, for all ℓ ∈ [n/2] and t ∈ [T ], if
β ≤ n/Dt and α ≤ 1/D,

∑

S∈{0,1}n

|S|=2ℓ

E
(Ms)ts=1

[
‖f̂t(S)‖1

]
≤
(
Ctn

ℓ
·max

{
β

ℓ
, 1

})ℓ/2

.

Proof. We proceed by induction on t, proving the slightly stronger version that includes t = 0. For
t = 0, the result holds trivially because f0 is constant and so ‖f̂0(S)‖1 ≤ 1 if S = ∅ and 0 otherwise.

Now, suppose there is a constant C > 0 such that the lemma holds for t−1. We will show that,
if C is chosen to be a large enough constant,

∑

S∈{0,1}n

|S|=2ℓ

E
(Ms)ts=1

[
‖f̂t(S)‖1

]
≤
(
Ctn

ℓ
·max

{
β

ℓ
, 1

})ℓ/2

for any given ℓ ∈ N. We will split this into two parts, the low degree case (ℓ ≤ β) and the high
degree case (ℓ > β).

Low Degree Case We have

∑

S∈{0,1}n

|S|=2ℓ

‖f̂t(S)‖1 ≤
β∑

ℓ′=1

τt(ℓ
′, ℓ) +

⌊n/2⌋∑

ℓ′=β+1

τt(ℓ
′, ℓ). (4)

We will start by using the inductive hypothesis and Lemma 21 to bound the first sum in (4).
Recall that we can bound τt(ℓ

′, ℓ) as a sum over τt(ℓ
′, a, b, c) such that ℓ = ℓ′ + c− a, and note that

τt(ℓ
′, a, b, c) can only be non-zero 0 if 2a+ b ≤ 2ℓ′. For any a, b, c satisfying both criteria (which as
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ℓ′ and ℓ are both at most β, also imply c < β, we have, by Lemma 21 and our inductive hypothesis,

E
(Ms)ts=1

[
τt(ℓ

′, a, b, c)
]
≤ 2O(ℓ′+c) · (a/n)a · (

√
βn/c)c ·

(√
Ct−1βn

ℓ′

)ℓ′

= 2O(ℓ′+c) · aa

ccℓ′ℓ
′
· (βn)(ℓ′+c−a)/2 · (β/n)a/2 · C

ℓ′(t−1)
2

≤ 2O(ℓ′+c) ·
(√

βn

ℓ

)ℓ

· (β/n)max{(ℓ′−ℓ)/2,0} · C
ℓ′(t−1)

2

Now, using the fact that a, b ≤ ℓ′ and so there are at most ℓ′ possibilities for each (and since
ℓ− ℓ′ = c− a, at most ℓ′ possibilities for c), we have

E
(Ms)ts=1

[
τt(ℓ

′, ℓ)
]
≤ 2O(ℓ′+c) ·

(√
βn

ℓ

)ℓ

· (β/n)max{(ℓ′−ℓ)/2,0} · Cℓ′(t−1)/2

and so, using the fact that c = ℓ− ℓ′ + a ≤ ℓ,
β∑

ℓ′=1

E
(Ms)ts=1

[
τ1(ℓ

′, ℓ)
]
=

ℓ∑

ℓ′=1

E
(Ms)ts=1

[
τ1(ℓ

′, ℓ)
]
+

β∑

ℓ′=ℓ+1

E
(Ms)ts=1

[
τ1(ℓ

′, ℓ)
]

≤
(√

βn

ℓ

)ℓ

·
(

ℓ∑

ℓ′=1

2O(ℓ+ℓ′) · C
ℓ′(t−1)

2 +

β∑

ℓ′=ℓ+1

2O(ℓ+ℓ′) · C
ℓ′(t−1)

2 (β/n)
(ℓ′−ℓ)

2

)

≤
(√

βn

ℓ

)ℓ

·
(

ℓ∑

ℓ′=1

2O(ℓ+ℓ′) · C
ℓ′(t−1)

2 +

β∑

ℓ′=ℓ+1

2O(ℓ+ℓ′) · C
ℓ′(t−1)

2 D
−t(ℓ′−ℓ)

2

)

≤
(√

βn

ℓ

)ℓ

· 2O(ℓ) · C
ℓ(t−1)

2

≤ 1

2

(√
Ctβn

ℓ

)ℓ

provided that C is chosen to be a sufficiently large constant and D is chosen to be sufficiently larger
than C.

Now, we use Lemma 21, the inductive hypothesis, and Lemma 10 to bound the second sum
in (4). Putting these together, we have for a, b, c such that ℓ = ℓ′+c−a, ℓ′ > β ≥ ℓ, and τt(ℓ

′, a, b, c)
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is non-zero (which in particular implies 2a+ b ≤ 2ℓ′),

E
(Ms)ts=1

[
τt(ℓ

′, a, b, c)
]
≤ 2O(ℓ′+c) · (α · a/n)a · (n/c)c/2 ·

∑

S∈{0,1}n

|S|=2ℓ′

‖f̂t−1(S)‖1

≤ 2O(ℓ′) · αa · (a/n)a/2 · (n/c)c/2 ·min

{(
Ct−1n

ℓ′

)ℓ′/2

,
(n
ℓ′

)ℓ′
}
· (a/n)a/2

≤ 2O(ℓ′) · αℓ′−ℓ · (a/n)a/2 · (n/c)c/2 ·
(
Ct−1n

ℓ′

)ℓ/2

·
(n
ℓ′

)(ℓ′−ℓ)
· (a/n)(ℓ′−ℓ)/2

≤ 2O(ℓ′) · αℓ′−ℓ · aa/2

cc/2ℓ′ℓ
′/2
· n(ℓ′+c−a)/2 · C(t−1)ℓ/2 · (a/ℓ′)(ℓ′−ℓ)/2

≤ 2O(ℓ′) · αℓ′−ℓ ·
(

n

ℓ′ + c− a

)(ℓ′+c−a)/2

· C(t−1)ℓ/2

≤ 2O(ℓ′) · αℓ′−ℓ ·
(n
ℓ

)ℓ/2
· C(t−1)ℓ/2

≤ 2O(ℓ′) · αℓ′−ℓ ·
(√

βn

ℓ

)ℓ

· C(t−1)ℓ/2

≤ 2O(ℓ′) · (1/D)ℓ
′−ℓ ·

(√
Ct−1βn

ℓ

)ℓ

.

making use of Lemma 22. Again using the fact that there are no more than ℓ′ choices for each of
a, b, c that give non-zero τt, we get

E
(Ms)ts=1

[
τ(ℓ′, ℓ)

]
≤ 2O(ℓ′) · (1/D)ℓ

′−ℓ ·
(√

Ct−1βn

ℓ

)ℓ

and so summing over all ℓ′ > m gives us

⌊n/2⌋∑

ℓ′=β+1

E
(Ms)ts=1

[
τ(ℓ′, ℓ)

]
≤ 1

2

(√
Ctβn

ℓ

)ℓ

provided C and D are chosen to be sufficiently large. Adding our bounds on the first and second
sum in (4) completes the inductive step for ℓ ≤ β.

High Degree Case For this case we will use the fact that (x/y)y ≤
(x
y

)
≤ 2x when y ∈ [x]. Let

ℓ ∈ (β, n/2] ∩ Z). For any ℓ′, a, b, c such that a, b ≤ ℓ′ and ℓ′ + c− a = ℓ we get, by Lemma 21, our
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inductive hypothesis, and Lemma 10,

τt(ℓ
′, a, b, c) ≤ 2O(ℓ′+c) · (α · a/n)a · (n/c)c/2 ·max{(β/c)c/2, 1}

·min

{(
Ct−1n

ℓ′
·max

{
β

ℓ′
, 1

})ℓ′/2

,
(n
ℓ′

)ℓ′
}

≤ 2O(ℓ′+c) · αa · (a/n)a/2 · (n/c)c/2 · 2β

·
(
Ct−1n

ℓ′

)min{ℓ/2,ℓ′/2}

· 2ℓ′ · (n/ℓ′)max{(ℓ′−ℓ),0} · (a/n)a/2

≤ 2O(ℓ+ℓ′) · a
a/2ℓ′ℓ

′/2

cc/2
· n(ℓ′−a+c)/2 · C(t−1)ℓ/2 · αmax{ℓ′−ℓ,0}

· C(t−1)min{(ℓ′−ℓ)/2,0} · (n/ℓ′)max{(ℓ−ℓ′)/2,0} · (a/n)max{(ℓ−ℓ′)/2,0}

≤ 2O(ℓ+ℓ′) ·
(
Ct−1n

ℓ

)ℓ/2

·max{1/C, 1/D}|ℓ′−ℓ|

and once again we use the fact that there are no more than ℓ′ choices for a, b, c to obtain

E
(Ms)ts=1

[
τ(ℓ′, ℓ)

]
≤ 2O(ℓ′+c) ·

(
Ct−1n

ℓ

)ℓ/2

·max{1/C, 1/D}|ℓ′−ℓ|.

We may then sum over all ℓ′ to obtain

⌊n/2⌋∑

ℓ′=β+1

E
(Ms)ts=1

[
τ(ℓ′, ℓ)

]
≤
(√

Ctn

ℓ

)ℓ/2

provided C and D are chosen to be sufficiently large.

6.3 Completing the Bound

Theorem 23. For any constant δ > 0, there exists a constant C > 0 such that, for any α < 1/C,
n, T ∈ N, DIHP(n, α, T ) requires at least n/CT communication to solve with probability 1/2 + δ
in the one-way quantum communication model.

Proof. Let C ′,D′ correspond to the constants C,D from Lemma 19. We will choose C to be larger
than max (C ′)6,D′, 2. Consider a protocol using β ≤ n/CT communication (with C to be specified
later). We will start by assuming that β ≥ log T , then show how to remove this assumption. Using
the notation of Section 6.1, the probability that the final player outputs the correct answer for any
given matchings (Mt)

T
t=1 is bounded by

1

2
+

1

2
‖φT − φ0‖1

and so (applying Lemmas 18 and 19, and Lemma 10 for higher-degree Fourier terms), the success
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probability is bounded by 1/2 plus

E
(Mt)Tt=1

[‖φT − φ0‖1] ≤
T−1∑

t=1

∑

s∈{0,1}αn\{∅}

E
(Mt)Tt=1

[∥∥∥f̂t(M tr

t+1s)
∥∥∥
1

]

=

T−1∑

t=1

αn∑

ℓ=1

∑

S∈{0,1}n

|S|=2ℓ

∑

s∈{0,1}αn

E
(Ms)ts=1

[
‖f̂(S)‖1 · P

Mt+1

[
M tr

t+1s = S
]]

≤
T−1∑

t=1

αn∑

ℓ=1

∑

S∈{0,1}n

|S|=2ℓ

E
(Ms)ts=1

[
‖f̂(S)‖1

]
·
(
αn

ℓ

)
/

(
n

2ℓ

)

≤
T−1∑

t=1

αn∑

ℓ=1

(
O(α · ℓ)

n

)ℓ ∑

S∈{0,1}n

|S|=2ℓ

E
(Ms)ts=1

[
‖f̂(S)‖1

]

≤
T−1∑

t=1




β∑

ℓ=1

(
O(ℓ)

n

)ℓ

·
(
Ct/3
√
βn

ℓ

)ℓ

+
αn∑

ℓ=β+1

(
O(α · ℓ)

n

)ℓ

·
(
O(n)

ℓ

)ℓ



≤
T−1∑

t=1




β∑

ℓ=1

C−tℓ/6 +

αn∑

ℓ=β+1

(1/C)ℓ




= O
(
C−1/6 + T/Cβ

)

< δ

provided C is chosen to be large enough. So the protocol cannot achieve 2/3 success probability.

We now have a constant C > 0 such that no protocol using β ∈ (log T, n/CT ) communication
can succeed. We will now show that no protocol using β < n/(2C)T communicating can succeed,
which will suffice to prove the lemma. If (log T, n/CT ) contains at least one integer β′, we can
“pad” any β < log T qubit protocol to use β′ qubits by adding β′ − β qubits that are never used,
without affecting the success probability. So as no β′ qubit protocol can succeed, neither can any
β qubit protocol. Conversely, if the interval (log T, n/CT ) contains no integers, n/CT < log T + 1,
and so n/(2C)T < (log T + 1)/CT < 1 as C > 2. So then the result holds trivially.

Our main result now follows as a corollary.

Theorem 1. For any ε > 0, any quantum streaming algorithm for Max-Cut or Quantum

Max-Cut that returns a (2− ε)-approximation with probability 2/3 requires

n/2O(1/ε
2)

qubits of storage.

Proof. By setting the constant in O(·) large enough that 2O(1/ε
2) ≥ ⌈C ′/ε⌉ · ⌈C ′3/ε2⌉, we may

reduce to DIHP via Theorem 14 and then apply Theorem 23 to conclude that any algorithm

for (2 − ε)-approximating Max-Cut with probability 2/3 requires at least n/C⌈C′3/ε2⌉ − 2 log n
bits, where we use C ′ for the constant C in Theorem 14. Then there is a constant D such that

n/D1/ε2 < max
{
n/C⌈C′3/ε2⌉ − 2 log n, 1

}
, and so the result follows (as clearly any algorithm must

use at least 1 qubit of storage).
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7 Space Complexity Upper Bounds for Quantum Max-Cut

Unlike in the classical case, where the trivial algorithm offers the best result possible in o(n) space,
the trivial algorithm for Quantum Max-Cut offers only a 4-approximation. In this section we
show how to attain a (2+ ε)-approximation for unweighted Quantum Max-Cut and a (5/2 + ε)-
approximation to weighted Quantum Max-Cut. We will show this by proving (in Lemmas 27
and 28) that these approximations can be derived from two quantities, the sum of the edge weights,
and the sum of the max-weight edge at each vertex (in the unweighted case, the number of edges
and non-isolated vertices, respectively).

The first of these quantities can be calculated exactly with a single counter—we show that the
second can also be calculated in small space (Lemma 29), giving us as a consequence the following
result.

Theorem 2. Let G be a weighted graph on n vertices with weights that are multiples of 1/poly(n).
Then for any ε, δ ∈ (0, 1) there is a streaming algorithm that returns a (5/2 + ε)-approximation to
the Quantum Max-Cut value of G with probability at least 1− δ using O

(
1
ε2

log 1
δ log n

)
space. If

all the weights in the graph are 1, it returns a (2 + ε)-approximation instead.

7.1 Approximating Quantum Max-Cut from Simple Graph Parameters

For a (weighted) graph G = (V,E,w) we will write m =
∑

e∈E we and W =
∑

u∈V maxv∈N(u) wuv.
In the unweighted case we will use the same definitions with every weight considered to be 1 (so m
is the number of edges and W the number of non-isolated vertices). We have the following upper
bound for the Quantum Max-Cut of a graph.

Lemma 24 (Lemma 5, [AGM20]). The Quantum Max-Cut value of G is at most m/2 +W/4.

Remark 25. The Quantum Max-Cut terms employed in [AGM20] are twice the ones we employ.
Their Lemma 5 gives a bound for stars, and taking half the sum of this bound applied to the star
around each vertex in G yields the bound stated in the above lemma.

We will use this to obtain approximations to Quantum Max-Cut in terms of m and W . We
will use the following facts about Quantum Max-Cut:

Lemma 26 (Quantum Max-Cut facts).

(a) The Quantum Max-Cut value is at least half the classical max-cut value.

(b) For any given edge uv, we can earn energy wuv for it by assigning a singlet to its two vertices.

(c) For a vertex with d incident weight-1 edges, there is an assignment to it and its neighbors
that earns total energy d+1

2 .

(d) For any set of assignments to disjoint subgraphs (Hi)i∈I , there is an assignment that preserves
the energy of these assignments on their subgraphs while earning 1/4 for every edge between
a pair of subgraphs.

Proof. For the following we let Quv = (I − XuXv − YuYv − ZuZv)/4 be a Quantum Max-Cut

term acting on qubits u and v.
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For (a), if |ψ〉 = |s1 . . . sn〉, with su ∈ {0, 1}, then 〈ψ|XuXv|ψ〉 = 〈ψ|YuYv|ψ〉 = 0. Thus,
following Equation (1),

〈ψ|Quv|ψ〉 =
1− 〈ψ|ZuZv|ψ〉

4
=

1

2

1− (1− 2su)(1 − 2sv)

2
,

and if we interpret each su as assigning u to a side of a cut, then 〈ψ|Quv |ψ〉 is precisely half the
value this cut earns on edge uv.

For (b) we recall from Equation (2) that assigning a singlet10 to qubits u and v earns a maximum
weighted energy of wuv.

For (c), consider a vertex u with d incident edges, {uv}v∈N (i may have additional incident edges
to vertices outside N). The proof of Lemma 5 in [AGM20] demonstrates that there is a quantum
state |ψ〉 on u∪N such that 〈ψ|∑uv:v∈N Quv|ψ〉 = d+1

2 . (Moreover, ψ resides in the single-excitation
subspace, span{|10 . . . 0〉, |01 . . . 0〉, . . . , |00 . . . 1〉}, and its coefficients in this subspace correspond
to the coefficients of a maximum eigenvector of a (d + 1) × (d + 1) matrix, a graph Laplacian in
fact.)

For (d) suppose we have assigned mixed states ρi to disjoint subgraphs Hi of our graph G. In
other words we assign the state ρ = ⊗iρi to the qubits in ∪iHi. We show that we may replace each
ρi with a state ρ′i so that

(i) ρ′i contains no 1-local terms, and

(ii) Tr[Quvρ
′
i] = Tr[Quvρi], for all uv ∈ Hi.

Property (ii) ensures that the energy earned on edges within each Hi are preserved. Property (i)
implies that ρ′ = ⊗iρ

′
i cannot contain any terms of the form XuXv, YuYv, or ZuZv for u and v in

different Hi; hence, Tr[XuXvρ
′] = Tr[YuYvρ

′] = Tr[ZuZvρ
′] = 0, and consequently Tr[Quvρ

′] = 1/4,
for such uv.

We construct ρ′i from ρi as follows. For a Hermitian operator A, let A− be the operator obtained
from A by negating the coefficient of each odd-local term. We have Tr[ρ−i ] = Tr[ρi] = 1, and we
next show that ρ−i � 0 since ρi � 0. Proceed by contrapositive and assume there is a |ψ〉 such that
〈ψ|ρ−i |ψ〉 < 0. Set P = |ψ〉〈ψ|. We have

Tr[ρi(P
−)2] = Tr[ρi(P

2)−] = Tr[ρ−i P
2] = Tr[ρ−i P ] = 〈ψ|ρ−|ψ〉 < 0, (5)

where the third equality follows because P 2 = P . The first two equalities hold because for Hermitian
A and B acting on n qubits,

• (A−)2 = (A2)−: the only terms appearing in B2 are those of the form ab where a, b are
commuting terms of B; consequently ab is odd-local if and only if exactly one of a, b is.

• Tr[AB−] = Tr[A−B]: we have 1
2n Tr[AB−] = 〈u, v−〉 = 〈u−, v〉 = 1

2n Tr[A−B], where u, v
are Bloch vectors11 of A,B respectively, and w− negates the entries of w corresponding to
odd-local terms.

10Technically we mean taking the n-qubit state ρ = Quv.
11A Bloch vector of a Hermitian operator A acting on n qubits is the vector of the 4n real coefficients of the Pauli

terms of A.
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Since ρ � 0, Tr[ρiA
2] must be nonnegative for any Hermitian A, and Equation (5) demonstrates

that ρ−i � 0. Finally we get the desired state ρ′i = (ρi + ρ−i )/2, which has no odd-local terms, and
the even-local terms remain the same as ρi. The latter ensures that Property (ii) holds.

Lemma 27. The Quantum Max-Cut value of G is at least m/5 +W/10.

Proof. We use a modified version of an argument in the proof of Theorem 3 in [AGM20]. Ifm ≥ 2W ,
we can use the fact that the Quantum Max-Cut value is at least m/4 (by (a) and considering a
random assignment) to get a lower bound of

m/4 = m/5 +m/20 ≥ m/5 +W/10.

So suppose m < 2W . Now order the edges of G by weight (with arbitrary but consistent tiebreakers
when edges have the same weight). Let H be the subgraph formed by choosing the maximum weight
edge incident to each vertex. Note that H is a forest, as for any cycle, each edge must have greater
weight than at least one of the next or the previous edge in the cycle. But maintaining this through
the cycle would eventually require that the first edge in the cycle had greater weight than itself.

Let M denote all the edges in H that were “chosen” by (had the greatest weight of any edge
incident to) both their endpoints. This is then a matching. Let F denote the rest of H. Let M
and F denote the total weight of each, so 2M + F =W . AsM is a matching we may use (b) and
(d) to choose an assignment to it that earns we on each edge e in the matching, plus we/4 for every
other edge e in the graph, for a total Quantum Max-Cut value of M +m/4.

As F∪M is a forest, and therefore has a value F+M classical cut, (a) tells us that its Quantum

Max-Cut value is at least F/2+M/2. So substituting in F =W −2M , the Quantum Max-Cut

value is at least
max{M +m/4,W/2 −M/2}

and so as M ≥ 0, and W/2 > m/4, this is minimized when M + m/4 = W/2 −M/2, so when
3M/2 =W/2−m/4. We can therefore conclude that the Quantum Max-Cut value is at least

m/12 +W/3 = m/5− 7m/60 +W/3

≥ m/5− 7W/30 +W/3

= m/5 +W/10

completing the proof.

Lemma 28. Let G be unweighted. Then the Quantum Max-Cut value of G is at least m/4+W/8.

Proof. We will use a technique inspired by a method of [GY21] for proving lower bounds for weighted
Max-Cut. In particular we take advantage of the fact that, for any vertex in a DFS, the subtrees
rooted at its children will be disconnected from each other. (If there were an edge between u and
v in two different subtrees, and u was explored before v, then edge uv would have been followed
by the DFS, and v would have been included in the same subtree as u.)

We will assume G is connected—by property (d), the Quantum Max-Cut value of a graph is
at least the sum of the Quantum Max-Cut value of its components, so as the value of m and W
for G is the sum of the values for its components, this will suffice to prove the result for general G.

Now let T be a DFS tree for G, started from an arbitrary vertex v. T will contain W − 1 edges
(as W is just the vertex count for an unweighted graph). For all i ∈ N, let Ti denote the set of
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edges in T between a vertex at depth i in the tree and one at depth i + 1, so T =
⋃W

i=1 Ti. Note
that each Ti is a union of stars (formed by the depth-i vertices and their children), and because
of the aforementioned disconnected subtree property, there are no edges in G \ Ti connecting two
vertices in Ti.

Let T ′ be whichever of
⋃W

i=1 T2i and
⋃W

i=1 T2i+1 has the most edges, so |T ′| = (W − 1)/2. Now,
T ′ is a union of stars, and by property (c), for each star with degree d there is an assignment
earning d+1

2 on it. Now, as these stars are disjoint, and the edges in G \ T ′ are all between stars,
property (d) implies that there is an assignment to G earning

|T ′|+ 1

2
+
m− |T ′|

4
=
m

4
+
|T ′|
8

+
1

2

≥ m

4
+
W − 1

8
+

1

2

>
m

4
+
W

8

energy, completing the proof.

7.2 Estimating W in the Stream

In this section we give a simple classical algorithm for estimating W in logarithmic space.

Lemma 29. Let G be a weighted graph on n vertices with weights that are multiples of 1/poly(n).
Then for any (ε, δ) ∈ (0, 1) there is a streaming algorithm that returns an εm-additive approximation
to W using O

(
1
ε2

log 1
δ log n

)
space.

We will use Algorithm 1 to obtain an estimator for W which we will then amplify.

Algorithm 1 A log-space algorithm for estimating W in the stream.

Sample e from E with probability proportional to we.
Sample v from the two endpoints of e, each with probability 1/2.
if e is the last edge to arrive incident to v in the stream then

X← 1
else if we < wf for some f incident to v that arrives after e in the stream then

X← 0
else

w′ ← the greatest weight of any edge to arrive incident to v after e in the stream.
X← 1− w′/we

end if
return X

Lemma 30. Algorithm 1 can be implemented in the stream using O(log n) space.

Proof. By using reservoir sampling, we can sample e while only storing one edge (and its weight)
at a time. Then, whenever we have a candidate sample for e, we can track the highest-weight edge
to arrive incident to v that arrives after e (throwing it out if our reservoir sampling procedure gives
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us a new candidate for e). This requires tracking just two edges, each requiring O(log n) space to
store with its weight.

Lemma 31.
E[X] =W/2m

Proof. Let Se,u denote the event that the edge e and its endpoint u are sampled, so P[Se,u] = we/2m.
We can then write

E[X] =
∑

u∈V

∑

v∈N(u)

E[X|Suv,u]wuv/2m

Now, for any vertex v ∈ N(u) such that wuv < wf for some f that appears after uv in the stream
and is incident to u, E[X|Suv,u] = 0.

So let N ′ be the set of vertices v ∈ N(u) such that wuv ≥ wf for all f incident to u that appear
after uv in the stream. Order N ′ as (vi)

k
i=1 in the order they arrive in the stream, and let wi denote

the weight of uvi. Then, E[X|Suvk,u] = 1, while for each i ∈ [k − 1], E[X|Suvi,u] = 1 − wi+1/wi.
Therefore,

k∑

i=1

E[X|Suvi,u]wi/2m = wk/2m+
k−1∑

i=1

(wi − wi+1)/2m = w1/2m = max
v∈N(u)

wuv/2m

and so by summing over all u ∈ V the result follows.

Lemma 32.
Var(X) ≤ 1

Proof. This follows immediately from the fact that X takes values in the range [0, 1].

We can now prove Lemma 29.

Lemma 29. Let G be a weighted graph on n vertices with weights that are multiples of 1/poly(n).
Then for any (ε, δ) ∈ (0, 1) there is a streaming algorithm that returns an εm-additive approximation
to W using O

(
1
ε2

log 1
δ log n

)
space.

Proof. We have that 2mX is an unbiased estimator for W , with variance 4m2. By repeating
Algorithm 1 Θ

(
ε2
)

times in parallel and averaging these estimators, we may obtain a variance
ε2m2/9 estimator, and so by Chebyshev, with probability 2/3 it will be within εm of W . We
may then repeat this entire process Θ(log 1/δ) times and take the median to obtain a εm-additive
estimator of W with probability 1− δ.

Each iteration can be performed in parallel and requires O(log n) space, completing the proof.

7.3 Completing the Upper Bound

Theorem 2 now follows immediately.

Theorem 2. Let G be a weighted graph on n vertices with weights that are multiples of 1/poly(n).
Then for any ε, δ ∈ (0, 1) there is a streaming algorithm that returns a (5/2 + ε)-approximation to
the Quantum Max-Cut value of G with probability at least 1− δ using O

(
1
ε2

log 1
δ log n

)
space. If

all the weights in the graph are 1, it returns a (2 + ε)-approximation instead.
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Proof. By the lemmas of 7, it is sufficient to estimate 2m+W to (1± ε′)-multiplicative accuracy
for a sufficiently small ε′ = Θ(ε). m can be calculated exactly with a single counter in bOlog n
space. By Lemma 29, we can calculate W to ε′m-additive accuracy in O

(
1
ε2

log 1
δ

)
space.

Acknowledgements

The authors were supported by the Laboratory Directed Research and Development program at
Sandia National Laboratories, a multimission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. Also supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Accelerated Research in Quantum Computing
program.

37



References

[AAV13] Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: the quantum pcp
conjecture. Acm sigact news, 44(2):47–79, 2013.

[AD21] Srinivasan Arunachalam and João F Doriguello. Matrix hypercontractivity, streaming
algorithms and ldcs: the large alphabet case. arXiv preprint arXiv:2109.02600, 2021.

[AG09] K. Ahn and S. Guha. Graph sparsification in the semi-streaming model. ICALP,
pages 328–338, 2009.

[AGM20] Anurag Anshu, David Gosset, and Karen Morenz. Beyond Product State Approxima-
tions for a Quantum Analogue of Max Cut. In Steven T. Flammia, editor, 15th Con-
ference on the Theory of Quantum Computation, Communication and Cryptography
(TQC 2020), volume 158 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 7:1–7:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

[AGMKS21] Anurag Anshu, David Gosset, Karen J Morenz Korol, and Mehdi Soleimanifar.
Improved approximation algorithms for bounded-degree local hamiltonians. arXiv
preprint arXiv:2105.01193, 2021.

[AZ19] Dorit Aharonov and Leo Zhou. Hamiltonian sparsification and gap-simulation. In
10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 2:1–2:21, 2019.

[BARdW08] Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality
for matrix-valued functions with applications to quantum computing and ldcs. In Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
2008.

[BGKT19] Sergey Bravyi, David Gosset, Robert König, and Kristan Temme. Approximation
algorithms for quantum many-body problems. Journal of Mathematical Physics,
60(3):032203, 2019.

[BH16] Fernando GSL Brandão and Aram W Harrow. Product-state approximations to quan-
tum states. Communications in Mathematical Physics, 342(1):47–80, 2016.

[BMO+15] Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev,
David Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, and John
Wright. Beating the Random Assignment on Constraint Satisfaction Problems of
Bounded Degree. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 110–123, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CGS+22] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and San-
thoshini Velusamy. Linear space streaming lower bounds for approximating CSPs.
In STOC’22, 2022.

38



[CM16] Toby Cubitt and Ashley Montanaro. Complexity classification of local hamiltonian
problems. SIAM Journal on Computing, 45(2):268–316, 2016.

[CW04] M. Charikar and A. Wirth. Maximizing quadratic programs: extending grothendieck’s
inequality. In 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 54–60, 2004.

[DM20] João F. Doriguello and Ashley Montanaro. Exponential Quantum Communication
Reductions from Generalizations of the Boolean Hidden Matching Problem. In 15th
Conference on the Theory of Quantum Computation, Communication and Cryptogra-
phy (TQC 2020), volume 158, pages 1:1–1:16, 2020.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate opti-
mization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[GK12] Sevag Gharibian and Julia Kempe. Approximation algorithms for qma-complete prob-
lems. SIAM Journal on Computing, 41(4):1028–1050, 2012.

[GKK+07] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separations for one-way quantum communication complexity, with appli-
cations to cryptography. In Proceedings of the Thirty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’07, pages 516–525, New York, NY, USA, 2007. ACM.

[GKK+08] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf.
Exponential separation for one-way quantum communication complexity, with appli-
cations to cryptography. SIAM J. Comput., 38(5):1695–1708, 2008.

[GP19] Sevag Gharibian and Ojas Parekh. Almost Optimal Classical Approximation Algo-
rithms for a Quantum Generalization of Max-Cut. In Dimitris Achlioptas and Lás-
zló A. Végh, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, nov 1995.

[GY21] Gregory Gutin and Anders Yeo. Lower bounds for maximum weighted cut. arXiv
preprint arXiv:2104.05536, 2021.

[HLP20] Sean Hallgren, Eunou Lee, and Ojas Parekh. An approximation algorithm for the
MAX-2-Local Hamiltonian problem. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[HM19] Yassine Hamoudi and Frédéric Magniez. Quantum Chebyshev’s Inequality and Ap-
plications. In 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 69:1–69:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

39



[HNP+21] Yeongwoo Hwang, Joe Neeman, Ojas Parekh, Kevin Thompson, and John Wright.
Unique games hardness of quantum max-cut, and a vector-valued borell’s inequality.
arXiv preprint arXiv:2111.01254, 2021.

[JN14] Rahul Jain and Ashwin Nayak. The Space Complexity of Recognizing Well-
Parenthesized Expressions in the Streaming Model: The Index Function Revisited.
IEEE Transactions on Information Theory, 60(10):6646–6668, October 2014.

[Kal22] John Kallaugher. A quantum advantage for a natural streaming problem. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
897–908, 2022.

[KK15] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Sci-
ence, pages 367–376, 2015.

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approx-
imating max-cut. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pages 277–288, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
SFCS ’88, pages 68–80, Washington, DC, USA, 1988. IEEE Computer Society.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal in-
approximability results for max-cut and other 2-variable csps? SIAM J. Comput.,
37(1):319–357, 2007.

[KKP18] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of
graph and hypergraph counting. In 2018 IEEE 59th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 556–567. IEEE, 2018.

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating MAX-CUT. In 26th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2015.

[KKSV17] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 +
Ω(1))-Approximation to MAX-CUT requires linear space. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1703–1722, 2017.

[Kla07] Hartmut Klauck. Lower bounds for quantum communication complexity. SIAM Jour-
nal on Computing, 37(1):20–46, 2007.

[LG06] François Le Gall. Exponential separation of quantum and classical online space com-
plexity. In Proceedings of the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures, SPAA ’06, pages 67–73, New York, NY, USA, July 2006.
Association for Computing Machinery.

[Mon16] Ashley Montanaro. The quantum complexity of approximating the frequency mo-
ments. Quantum Info. Comput., 16(13–14):1169–1190, October 2016.

40



[NT17] Ashwin Nayak and Dave Touchette. Augmented index and quantum streaming algo-
rithms for dyck(2). In Proceedings of the 32nd Computational Complexity Conference,
CCC ’17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[NV18] Anand Natarajan and Thomas Vidick. Low-degree testing for quantum states, and
a quantum entangled games pcp for qma. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 731–742. IEEE, 2018.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.

[PM15] Stephen Piddock and Ashley Montanaro. The complexity of antiferromagnetic inter-
actions and 2d lattices. arXiv preprint arXiv:1506.04014, 2015.

[PT21a] Ojas Parekh and Kevin Thompson. Application of the Level-2 Quantum Lasserre
Hierarchy in Quantum Approximation Algorithms. In 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 102:1–102:20, 2021.

[PT21b] Ojas Parekh and Kevin Thompson. Beating Random Assignment for Approximating
Quantum 2-Local Hamiltonian Problems. In 29th Annual European Symposium on Al-
gorithms (ESA 2021), volume 204 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 74:1–74:18, 2021.

[Raz95] Ran Raz. Fourier analysis for probabilistic communication complexity. Computational
Complexity, 5(3):205–221, 1995.

[SW12] Yaoyun Shi and Xiaodi Wu. Limits of quantum one-way communication by matrix
hypercontractive inequality. 2012.

[VY11] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by
reversals, and other problems. SODA, pages 11–25, 2011.

41


	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work

	2 Proof Overview
	2.1 Lower Bounds
	2.1.1 The Distributed Implicit Hidden Partition Problem
	2.1.2 Quantum Communication Lower Bounds for DIHP

	2.2 Space Upper Bounds for Quantum Max-Cut

	3 Preliminaries
	3.1 Notation
	3.2 Quantum Streaming Algorithms
	3.3 Quantum and Classical Max-Cut
	3.4 Fourier Analysis

	4 Communication Problem
	5 Reducing Quantum and Classical Max-Cut to DIHP
	6 Quantum Lower Bound for DIHP
	6.1 Reduction to Fourier Analysis
	6.2 Evolution of Fourier Coefficients
	6.3 Completing the Bound

	7 Space Complexity Upper Bounds for Quantum Max-Cut
	7.1 Approximating Quantum Max-Cut from Simple Graph Parameters
	7.2 Estimating W in the Stream
	7.3 Completing the Upper Bound


