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Cut query algorithms with star contraction

Simon Apers∗ Yuval Efron† Pawe l Gawrychowski‡ Troy Lee§

Sagnik Mukhopadhyay¶ Danupon Nanongkai‖

Abstract

We study the complexity of determining the edge connectivity of a simple graph with cut
queries. We show that (i) there is a bounded-error randomized algorithm that computes edge
connectivity with O(n) cut queries, and (ii) there is a bounded-error quantum algorithm that
computes edge connectivity with Õ(

√
n) cut queries. To prove these results we introduce a new

technique, called star contraction, to randomly contract edges of a graph while preserving non-
trivial minimum cuts. In star contraction vertices randomly contract an edge incident on a small
set of randomly chosen “center” vertices. In contrast to the related 2-out contraction technique
of Ghaffari, Nowicki, and Thorup [SODA’20], star contraction only contracts vertex-disjoint star
subgraphs, which allows it to be efficiently implemented via cut queries.

The O(n) bound from item (i) was not known even for the simpler problem of connectivity,
and it improves the O(n log3 n) upper bound by Rubinstein, Schramm, and Weinberg [ITCS’18].
The bound is tight under the reasonable conjecture that the randomized communication com-
plexity of connectivity is Ω(n logn), an open question since the seminal work of Babai, Frankl,
and Simon [FOCS’86]. The bound also excludes using edge connectivity on simple graphs to
prove a superlinear randomized query lower bound for minimizing a symmetric submodular
function. The quantum algorithm from item (ii) gives a nearly-quadratic separation with the
randomized complexity, and addresses an open question of Lee, Santha, and Zhang [SODA’21].
The algorithm can alternatively be viewed as computing the edge connectivity of a simple graph
with Õ(

√
n) matrix-vector multiplication queries to its adjacency matrix.

Finally, we demonstrate the use of star contraction outside of the cut query setting by
designing a one-pass semi-streaming algorithm for computing edge connectivity in the complete
vertex arrival setting. This contrasts with the edge arrival setting where two passes are required.
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1 Introduction and contribution

The minimization of a submodular function is a classic problem in combinatorial optimization.
Over a universe V , a submodular function f : 2V → R is a function that satisfies f(S) + f(T ) ≥
f(S ∩ T ) + f(S ∪ T ) for all subsets S, T ⊆ V . The submodular function minimization (SFM)
problem is the task of computing minS⊆V f(S). The SFM problem generalizes several well known
combinatorial optimization problems such as computing the minimum weight of an st-cut in a
directed graph and the matroid intersection problem. The SFM problem comes in another flavor
when the submodular function f is symmetric, i.e. also satisfies f(S) = f(V \ S) for all S. In this
case, ∅ and V are trivial minimizers, so the interesting problem is to compute min∅(S(V f(S), the
non-trivial minimum. The global minimum cut problem on an undirected graph is an instance of
non-trivial symmetric submodular function minimization, which we denote by sym-SFM.

The size of the truth table of a submodular function is exponential in the size of V , so (sym-)SFM
is typically studied in the setting where we have access to an evaluation oracle for f , that is, we can
query any S ⊆ V and receive the answer f(S). When |V | = n, Grötschel, Lovász, and Schrijver
[GLS88] showed that the ellipsoid method can be used to solve SFM with Õ(n5) oracle queries and
overall running time Õ(n7) [McC05, Theorem 2.8]. Since then a long line of work has developed
faster and simpler (combinatorial) algorithms for SFM [Sch00, IFF01, Orl09, LSW15, DVZ21, Jia21].
The work of [Jia21] shows that SFM can be solved by a deterministic algorithm making O(n2 log n)
queries to an evaluation oracle. By the isolating cut lemma of [LP20] this immediately also gives
an Õ(n2) query randomized algorithm for sym-SFM [CQ21, MN21]. In the deterministic case, the
best upper bound on the number of queries to solve sym-SFM remains the O(n3) algorithm of
Queyranne [Que98].

While sym-SFM is a much more general problem, it has a close relationship with one of its
simplest instantiations: the global minimum cut problem. In this problem we are given a weighted
and undirected graph G = (V,E,w) and the task is to find the minimum weight of set of edges
whose removal disconnects G. For a subset S ⊆ V let cutG(S) be the set of edges of G with exactly
one endpoint in S. The cut function f : 2V → R, where f(S) = w(cutG(S)) is the total weight of
edges in cutG(S), is a symmetric submodular function. Evaluation queries in this case are called
cut queries and the goal is to compute λ(G) := min∅(S(V w(cutG(S)) with as few cut queries as
possible.

Both the best known deterministic and randomized algorithms for sym-SFM use ideas that
originated in the study of minimum cuts: Queyranne’s algorithm is based on the Stoer-Wagner
minimum cut algorithm [SW97], and the best randomized algorithm makes use of the isolating cut
lemma originally developed in the context of a deterministic minimum cut algorithm [LP20]. On
the lower bound side, the best known bounds on the query complexity of sym-SFM are Ω(n) in the
deterministic case [HMT88, Har08] and Ω(n/ log n) in the randomized case [BFS86] (see Table 1).
Both of these bounds can be shown for the cut query complexity of determining the weight of a
minimum cut in a simple graph.1 The weight of a minimum cut in simple graph G is known as the
edge connectivity of G, and is the minimum number of edges whose removal disconnects the graph.
The aforementioned lower bounds even hold for the more special case of determining if the edge
connectivity is positive, i.e. if the graph is connected or not.

Recent work has given randomized algorithms that can compute λ(G) with O(n log3 n) cut
queries in the case of simple graphs [RSW18] and n logO(1)(n) cut queries in the case of weighted
graphs [MN20]. For the deterministic case, however, the best upper bound remains O(n2/ log n)
[GK00] and proceeds by learning the entire graph. Researchers continue to study the minimum
cut problem as a candidate to show superlinear query lower bounds on sym-SFM. Graur, Pollner,

1We say that a graph is simple if it is undirected and unweighted and contains at most one edge between any pair
of vertices.
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Ramaswamy and Weinberg [GPRW20] introduced a linear-algebraic lower bound technique known
as the cut dimension to show a deterministic cut query lower bound of 3n/2− 2 for minimum cut
on weighted graphs. Lee, Li, Santha, and Zhang [LLSZ21] show that the cut dimension cannot
show lower bounds larger than 2n− 3, but use a generalization of the cut dimension to show a cut
query lower bound of 2n− 2, the current best lower bound known on sym-SFM in general.

Despite this work, showing a superlinear lower bound on the query complexity of sym-SFM
remains elusive. In this paper, we show that for randomized algorithms and the special case of
edge connectivity there is actually a linear upper bound.

Theorem 1.1. There is a randomized algorithm that makes O(n) cut queries and outputs the edge
connectivity of a simple input graph G with probability at least 2/3.

In particular one cannot hope to prove superlinear lower bounds on the randomized query
complexity of sym-SFM via the edge connectivity problem. It remains open if Theorem 1.1 is
tight. The best known lower bound is Ω(n log log(n)/ log(n)) which follows from the Ω(n log log n)
randomized communication complexity lower bound for edge connectivity by Assadi and Dudeja
[AD21]. An o(n) randomized cut query upper bound on edge connectivity would in particular imply
a randomized communication complexity protocol for determining if a graph is connected with
o(n log n) bits,2 resolving one of the longest standing open problems in communication complexity.
Graph connectivity was a focus of many early works on communication complexity [HMT88, BFS86,
RS95], and while a deterministic lower bound of Ω(n log n) was established early on [HMT88], to this
day the randomized communication complexity is only known to be between Ω(n) and O(n log n).

Theorem 1.1 even improves the previous best cut query upper bound for deciding if a graph is
connected. Harvey [Har08, Theorem 5.10] gave a deterministic O(n log n) cut query upper bound
for connectivity, and we are not aware of any better upper bound in the randomized case. For the
case of connectivity we can give a linear upper bound even for zero-error algorithms.

Theorem 1.2. Let G = (V,E) be a simple n-vertex graph. There is a zero-error randomized
algorithm that makes O(n) cut queries in expectation and outputs a spanning forest of G.

The best lower bound we are aware of in this case is Ω(n log log(n)/ log(n)) which follows from
the non-deterministic communication complexity lower bound for connectivity of Ω(n log log(n)) by
Raz and Spieker [RS95].

A key to both Theorem 1.1 and Theorem 1.2 is to think in terms of matrix-vector multiplication
queries. If A is the adjacency matrix of an n-vertex simple graph G, in a matrix-vector multipli-
cation query we can query any vector x ∈ {0, 1}n and receive the answer Ax. If G has maximum
degree d, and so A has at most d ones in every row, we can learn the entire graph G with only
O(d log n) matrix-vector multiplication queries—this is one of the key ideas behind compressed
sensing. As a single matrix-vector multiplication query can be simulated with O(n) cut queries,
this shows that we can learn G with O(nd log n) cut queries. Grebinski and Kucherov [GK00] show
the surprising fact that if G is bipartite with maximum degree d, and the left and right hand sides
are roughly the same size, then one can actually learn G with only O(nd) cut queries. This savings
of a log n factor over the trivial simulation is key to our improved algorithms.

We use this idea to design a primitive called Recover-k-From-All. Given two disjoint subsets
S, T of vertices, with the promise that all vertices in S have at least k neighbors in T , Recover-
k-From-All makes O(kn) cut queries and learns at least k neighbors in T of every vertex in S.

2With shared randomness the parties can simulate a randomized cut query algorithm with an O(log n) multi-
plicative overhead: whenever the algorithm makes a cut query, the parties communicate the number of cut edges in
their part of the graph with O(log n) bits. By Newman’s theorem, this protocol can be simulated without shared
randomness (and with only an additive O(log n) overhead).
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Connectivity Edge Connectivity

Lower Upper Lower Upper

Deterministic
Ω(n)

[HMT88]
O(n log n)

[Har08]
Ω(n)

[HMT88]
O
(

n2

logn

)

[GK00]

Zero-error
Ω
(
n log log(n)

log(n)

)

[RS95]

O(n)
(Theorem 1.2)

Ω(n)
[LS21]

O
(

n2

logn

)

[GK00]

Bounded-error
Ω
(

n
logn

)

[BFS86]

O(n)
(Theorem 1.2)

Ω
(
n log log(n)

log(n)

)

[AD21]

O(n)
(Theorem 1.1)

Quantum Ω(1)
O(log5(n))

[AL21]
Ω(1)

Õ(
√
n)

(Theorem 1.3)

Table 1: The cut query complexity of connectivity and edge connectivity on simple graphs in
various models. The upper bounds on edge connectivity in the deterministic and zero-error models
follow from using [GK00, Section 4.1] to learn the full graph with O(n2/ log(n)) cut queries. The
bound in [GK00] is stated for additive queries, but the same argument holds for cut queries: with
O(n/ log(n)) cut queries we can learn the neighborhood of a vertex by Lemma 5.4.

This routine is the heart of our algorithm for Theorem 1.2, which uses it to implement Bor̊uvka’s
spanning forest algorithm.

It is less obvious how such a primitive is useful to compute edge connectivity as it only gives
us local snapshots of sparse bipartite induced subgraphs. To this end we develop a new technique
for edge connectivity called star contraction. Star contraction is inspired by the randomized 2-out
contraction algorithm of Ghaffari, Nowicki and Thorup [GNT20]. In that algorithm, each vertex
independently and uniformly at random selects two incident edges. Ghaffari et al. show that when
the selected edges are contracted the resulting graph G′ has only O(n/δ(G)) vertices with high
probability, where δ(G) is the minimum degree of G, and further with constant probability no edge
of a non-trivial minimum cut3 is contracted. When these good things happen the edge connectivity
of G is the minimum of δ(G) and the edge connectivity of G′.

2-out contraction is not very compatible with our primitive Recover-k-From-All because of the
combination of requiring independent sampling and choosing an edge incident to a vertex uniformly
at random. Instead, in star contraction we first randomly choose a subset R of size Θ(n log(n)/δ(G)).
With high probability every vertex in V \R will have a neighbor in R, and in star contraction we
only contract edges with an endpoint in R. The fact that the edges that we want to contract
are incident on a small number of vertices is a key to the savings of star contraction over 2-out
contraction in the cut query model. Further, if for every vertex in v ∈ V \ R we contract an
edge connecting it to R then the contracted graph G′ will automatically have its size bounded by
|R| = Θ(n log(n)/δ(G)). While proving the contracted graph has few vertices is the most difficult
part of the argument in 2-out contraction, for star contraction it is trivial (although the bound we
get is larger by a log n factor).

The tricky part remaining is how to choose a neighbor in R for each v ∈ V \R without having
too high a probability of choosing a neighbor on the other side of a non-trivial minimum cut. In
our main technical contribution, we show that each v ∈ V \ R can learn just a constant number
of neighbors in R without too high a fraction of them being on the opposite side of a non-trivial
minimum cut. Moreover, we can allow correlations between the neighbors learned for different

3We call a cut trivial if it isolates a single vertex.
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vertices which allows us to efficiently learn these constant number of neighbors using Recover-k-
From-All with constant k.

Not surprisingly, the aforementioned matrix-vector multiplication perspective also leads to effi-
cient randomized algorithms for edge connectivity in the matrix-vector multiplication query model.
While this model has been used previously in the study of sequential graph algorithms [OSV12] and
(implicitly) in streaming algorithms for graph problems [AGM12], it began to be studied in and
of itself relatively recently in the work of [SWYZ21], and has since seen several several follow-ups
[CHL21, AL21]. More surprisingly, it turns out that the study of quantum algorithms with cut
query access to a graph is also closely related to the matrix-vector multiplication model. This is
because with O(log n) cut queries a quantum algorithm can simulate a restricted form of a matrix-
vector multiplication query, namely it can compute Ax in the entries where x is zero (this is implicit
in [LSZ21] and made explicit in [AL21, Corollary 11]). Lee, Santha and Zhang [LSZ21] used this
to show that a quantum algorithm making only O(log6 n) cut queries can decide if an n-vertex sim-
ple graph is connected [LSZ21, Theorem 44], a nearly exponential speedup over the best possible
randomized algorithm. They left it as an open question whether any quantum speedup is possible
for the problem of edge connectivity. This problem is particularly interesting because not much is
known about the complexity of (sym)-SFM with respect to quantum algorithms, either in terms
of upper or lower bounds (some work has been done on approximation algorithms for SFM, see
[HRRS19]). The best classical algorithms for (sym)-SFM tend to be highly sequential, a feature
which is typically hard to speed up quantumly. Our matrix-vector multiplication perspective leads
to a quantum improvement for the cut query complexity of edge connectivity, as shown by the
following theorem.

Theorem 1.3. There is a quantum algorithm that makes Õ(
√
n) cut queries and outputs the

edge connectivity of the input simple graph G correctly with high probability. Similarly, there is a
randomized algorithm making Õ(

√
n) matrix-vector multiplication queries to the adjacency matrix

of G that outputs the edge connectivity of the input simple graph G correctly with high probability.

The quantum part of this theorem gives a near-quadratic speedup over the best possible ran-
domized algorithm. Moreover, there is a natural bottleneck to giving a o(

√
n) quantum cut query

algorithm for edge connectivity, which is that even computing the minimum degree of a graph
seems to require Ω(

√
n) quantum cut queries.4 There is a very natural O(

√
n) quantum algorithm

for computing the minimum degree: the degree of a single vertex can be computed with one cut
query, and one can then use quantum minimum finding [DH96] on top of this to find the minimum
degree with O(

√
n) cut queries. We conjecture that this simple algorithm is optimal, which would

imply that the quantum statement of Theorem 1.3 is tight up to polylogarithmic factors.
As a final application, we use our new star contraction technique to obtain a one-pass Õ(n)-

space algorithm for computing edge connectivity with high probability in the complete vertex-arrival
streaming model. In this model, the vertices of the graph G arrive in an arbitrary order with all
incident edges. This contrasts with the edge-arrival streaming model, where edges of G arrive
in arbitrary order, for which a Ω̃(n2) lower bound was proven on the space complexity of a one-
pass algorithm that computes the edge connectivity [Zel11]. This bound can be modified to also
prove an Ω(n2) lower bound on the one-pass space complexity of edge connectivity in the more
restrictive explicit vertex-arrival model, where the vertices of G arrive only with the edges incident
on the previously seen vertices, as was considered in e.g. [CDK19]. For completeness, we include
a proof sketch of this lower bound in Appendix C.1. If however the vertices arrive with edges
incident on the previously seen vertices in a random order, then our technique still implies an Õ(n)-

4It is intuitive that computing the edge connectivity of a graph is more difficult than computing the minimum
degree, and we formalize this via a simple reduction in Appendix D.
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space algorithm. For comparison, we also discuss why it is not clear how to use the related 2-out
contraction technique to achieve these results.

2 Technical overview

In the following sections we introduce one of the main tools in this work, star contraction, and give
a sketch of the classical and quantum cut query algorithms that make use of star contraction.

2.1 Star contraction

The main workhorse for proving our results is a new technique for randomly contracting edges of
a simple graph while preserving a non-trivial minimum cut with constant probability. The idea
of contracting edges while preserving non-trivial minimum cuts comes from the celebrated result
of Kawarabayashi and Thorup (Fulkerson Prize 2021) [KT19], which gave the first near-linear
time deterministic algorithm for computing the edge connectivity of a simple graph. A critical
observation in their work is the following: we can contract edges in a simple graph G to get a
graph G′ so that (i) G′ has Õ(n/δ(G)) vertices and Õ(n) edges, where δ(G) is the minimum degree
of G, and (ii) all non-trivial minimum cuts in G are preserved (i.e., no edge participating in a
non-trivial minimum cut is contracted). In particular, if G has a non-trivial minimum cut then
λ(G′) = λ(G). Such a contraction is useful for computing edge connectivity since when the edge
connectivity is large and there is a non-trivial minimum cut (which is usually harder to handle),
the contraction significantly sparsifies and reduces the number of vertices of the graph. We call
this type of contraction a KT contraction.

The KT contraction technique has been highly influential, and many works have since used
and studied it. The algorithm for KT contraction given in [KT19] takes time O(m log12 n) in
the sequential setting when the graph has m edges. This was later improved by Henzinger,
Rao, and Wang [HRW20] to O(m log2 n(log log n)2). Using an expander decomposition algorithm
[CGL+20, SW19, NS17, Wul17] as a black box, Saranurak [Sar21] showed a slower but simpler
Õ(m1+o(1)) time algorithm to compute a KT contraction. All these algorithms are deterministic
but rather complicated, making them hard to adapt to other settings. Rubinstein, Schramm, and
Weinberg [RSW18] provide a randomized algorithm for computing a KT contraction that is efficient
in the cut-query setting, and leads to their aforementioned O(n log3 n) cut query algorithm for edge
connectivity.

Most relevant for our work is the beautiful 2-out contraction algorithm by Ghaffari, Nowicki,
and Thorup [GNT20]. In this algorithm, every vertex independently at random (with replacement)
chooses two of its incident edges to contract. Ghaffari et al. show that the resulting contracted graph
G′ has only O(n/δ(G)) vertices with high probability, and moreover if G has a non-trivial minimum
cut then λ(G) = λ(G′) with constant probability. They use this algorithm to get the current fastest
randomized algorithm for edge connectivity with runtime5 O(min{m+n log2 n,m log n}), and they
also obtain improved algorithms for edge connectivity in the distributed setting.

Although [GNT20] did not study the cut query model, the 2-out contraction approach gives
a simple randomized algorithm for edge connectivity with O(n log n) cut queries, improving the
bound from [RSW18]. As this is very related to our approach, we give an outline of the proof here.
First, we can compute δ(G) with n cut queries by querying |cut({v})| for every vertex v. The next
thing to notice is that for any vertex v we can randomly choose a neighbor of v with O(log n) cut
queries using a randomized version of binary search. This is because with 3 cut queries we can

5The stated bound in [GNT20] is O(min{m + n log3 n,m log n}), but more recent work on the minimum cut
problem by [GMW20] improves it to the bound we quote here.
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compute |E(v, S)| for any set S ⊆ V \ {v} (see Proposition 3.6), and thus can continue searching
for a neighbor of v in the set S with probability proportional to this number. Thus with O(n log n)
queries we can perform 2-out contraction and identify the sets of vertices forming the “supervertices”
of the contracted graph G′. By the main theorem of [GNT20], with high probability G′ will have
O(n/δ(G)) supervertices. The remaining task is to compute the edge connectivity of G′. To do this
we can make use of a very useful tool developed by Nagamochi and Ibaraki [NI92] called a sparse r-
edge connectivity certificate. Let F be the set of edges found by repeating r times: (i) find a spanning
forest of G′ and (ii) add the edges of this spanning forest to F and remove them from G′. Then
Nagamochi and Ibaraki show that if |cutG(S)| ≤ r then cutG(S) = cutF (S). In particular, the edge
connectivity of a sparse δ(G)-edge connectivity certificate of G′ will equal τ = min{δ(G), λ(G′)}.
Contraction cannot decrease edge connectivity, so if λ(G) = δ(G) then τ will always be the correct
answer; if λ(G) < δ(G) then it will be correct whenever we do not contract an edge of a non-trivial
minimum cut in the 2-out contraction, which happens with constant probability. We can find a
single spanning forest of G′ deterministically with O(n log(n)/δ(G)) cut queries [Har08, Theorem
5.10], thus we can find a sparse δ(G)-edge connectivity certificate of G′ with O(n log n) cut queries
overall.

It is not obvious how to independently sample a uniformly random neighbor of every vertex
without spending Ω(log n) cut queries on average per vertex. Even with the very powerful matrix-
vector multiplication queries, where one can learn the entire neighborhood of a vertex with a single
query, it is not clear what else one can do to avoid spending Ω(1) queries per vertex on average to
implement 2-out contraction.

We introduce a new graph contraction technique called star contraction that allows one to
take advantage of the power of cut and matrix-vector multiplication queries to process vertices in
parallel. For greater flexibility in the applications to different types of queries, we state this as a
general method that can be instantiated in various ways.

Technique 2.1 (Star contraction). Let G = (V,E) be a simple graph and p ∈ (0, 1] be a probability
parameter (think of p ∈ Θ̃(1/δ(G))).

1. Define a set of “center vertices” R where every vertex is put into R independently at random
with probability p.

2. Define a set of “star edges” X by doing the following for every vertex v /∈ R: pick a neighbor
c ∈ R (if it exists) and put the edge {v, c} into X. The set X is a collection of star subgraphs
centered at vertices in R.

Output the graph G′ obtained from G by contracting all edges in X.

Note that in item 2 we do not specify how to pick a neighbor in R. The rule for doing this will
vary in our applications. The nice thing about the star contraction framework is that no matter
what rule is used here, the number of vertices in G′ will always be at most |R| plus the number of
vertices in V \ R that have no neighbor in R. By taking p = Θ(log(n)/δ(G)), for example, with
high probability all vertices will have a neighbor in R and hence G′ will only have O(n log(n)/δ(G))
many vertices. This leaves one only with the question of choosing a good rule to instantiate item 2
that does not choose an edge of non-trivial minimum cut with too high a probability, and that can
be efficiently performed in the query model of interest.

The most natural rule to instantiate item 2 of Technique 2.1 is to have each vertex in V \ R
independently and uniformly at random choose a neighbor in R. We refer to this instantiation
as uniform star contraction. The analysis of this case suffices for our algorithms in the quantum
cut query model, the matrix-vector multiplication query model, and the streaming model. As an
example, in the matrix-vector multiplication and quantum cut query settings we can learn all the
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neighbors of a vertex with Õ(1) queries. Hence, we can learn all edges incident on the center
vertices R with only Õ(|R|) queries, which then allows us to implement uniform star contraction.
Now if δ(G) is large (and we choose p = Θ(log(n)/δ(G)) as above) then the query cost Õ(|R|) will
be small, and we will take advantage of this. This contrasts with the case of 2-out contraction,
where in general there does not exist a small set so that all contracted edges are incident on this set
(as an example, consider the case where G is the complete graph). Formally, we show the following
theorem about uniform star contraction.

Theorem 2.2. Let G = (V,E) be an n-vertex simple graph with λ(G) < δ(G). Then uniform star
contraction with p = 1200 lnn

δ(G) gives G′ where

1. G′ has at most 2400n ln(n)/δ(G) vertices with probability at least 1− 1/n4, and

2. λ(G′) = λ(G) with probability at least 2 · 3−13.

We give an overview of the proof here. As mentioned, the number of vertices in the contracted
graph G′ is at most |R| plus the number of vertices in V \R that have no neighbor in R. By a Chernoff
bound, with high probability |R| will be at most twice its expectation, which is Θ(n log(n)/δ(G)).
Further, the expected number of neighbors of any vertex v among the centers R is Ω(log n). Thus,
by a Chernoff bound plus a union bound, every vertex in V \ R will have a neighbor in R with
high probability. This argument nearly trivially bounds the number of vertices in G′. In contrast,
bounding the number of vertices in G′ is the most complicated part of the proof for the analog of
Theorem 2.2 for 2-out contraction, although it must be noted the bound obtained there is better
by a factor of log n. Another nice property of star contraction is that each connected component
of G′ has diameter 2, a property that is useful for designing algorithms in models of distributed
computing. Ghaffari et al. show that after 2-out contraction the average diameter of a component
is O(log δ(G)) with high probability [GNT20, Lemma 5.1].6

For the second item of the theorem it is useful to first review the proof of the analogous statement
for 2-out contraction. Let C be a non-trivial minimum cut of G. Let a random 1-out sample of G
be the set of edges obtained by independently and uniformly at random selecting an edge incident
to each vertex. A 2-out contraction is exactly the process of independently performing two random
1-out samples of G and contracting all the selected edges. The probability that we contract an edge
of C in performing a 2-out contraction is exactly the square of the probability that we select an
edge of C in a random 1-out sample.

For every vertex v let d(v) be the degree of v and c(v) be the number of u such that {u, v} ∈ C.
Let N(C) = {v ∈ V : c(v) > 0} be the set of vertices incident to C. When we take a random 1-out
sample of G, the probability that we do not choose an edge of C is exactly

∏

v∈N(C)

(
1− c(v)

d(v)

)
. (1)

At first it might seem that this probability could be very small. The key to lower bounding it
combines two observations:

c(v)

d(v)
≤ 1/2 for every v ∈ N(C) (2)

∑

v∈N(C)

c(v)

d(v)
≤ 2

|C|
δ(G)

≤ 2. (3)

6Perhaps more comparable to our case, Ghaffari et al. also obtain a worst-case upper bound of O(log n) on the
diameters of the connected components of a contracted graph G′ with O(n log(n)/δ(G)) vertices obtained by only
contracting a subset of the edges selected in a 2-out sample [GNT20, Remark 5.3].
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The first inequality follows from the fact that C is a non-trivial cut, and if Eq. (2) did not hold
then we could move v to the other side and obtain a smaller cut. To derive Eq. (3) we use the fact
that d(v) ≥ δ(G) and |C| ≤ δ(G).

How small can Eq. (1) be under the constraints of Eq. (2) and Eq. (3)? In fact it is always
at least 1/16: some thought shows that the minimum of Eq. (1) will be achieved at an extreme
point of the set of constraints, which is obtained when 4 vertices have c(v)/d(v) = 1/2, thereby
saturating both Eq. (2) and Eq. (3).7 The lower bound of 1/16 is tight as can be seen by taking a
non-trivial minimum cut of the cycle graph. This completes the slick argument that indeed 2-out
contraction will not contract an edge of a non-trivial minimum cut with constant probability.

Correctness of our algorithms based on star contraction is proven using analogs of Eq. (2) and
Eq. (3) (with slightly worse constants). We again illustrate the correctness proof for the case of
uniform star contraction. Let dR(v) = |E(v,R\{v})| and cR(v) = |C∩E(v,R\{v})|. As an analog
of Eq. (3), we directly show that for all v ∈ V

ER

[
cR(v)

dR(v)

∣∣∣∣ dR(v) > 0

]
=

c(v)

d(v)
. (4)

Therefore by linearity of expectation and Eq. (3) we have E[
∑

v:dR(v)>0 cR(v)/dR(v)] ≤ 2, and by
Markov’s inequality the sum will not significantly exceed this quantity with constant probability.
To prove an analog of Eq. (2) we again use the fact that, with high probability, dR(v) = Ω(log n)
for all v. By Eq. (4) we also know that E[cR(v)/dR(v) | dR(v) > 0] = c(v)/d(v) ≤ 1/2. Thus for
cR(v)/dR(v) to exceed 2/3 we must have cR(v) = Ω(log n) and cR(v) exceeding its expected value
by a constant factor bigger than 1. We then again use a Chernoff bound to show that for each v
individually this does not happen with high probability, and finally apply a union bound over all v.

2.2 Matrix-vector multiplication and quantum cut query algorithm

As a direct application of our uniform star contraction procedure we obtain an algorithm for com-
puting the edge connectivity of a simple graph with Õ(

√
n) quantum cut queries (i.e., Theorem 1.3)

or matrix-vector multiplication queries to the adjacency matrix. We sketch the algorithm here
and postpone details to Section 4.3. The algorithm uses the following primitives (which we can
run either on the original graph, a vertex-induced subgraph, or a vertex-induced subgraph with an
explicit set of edges removed):

P1. Find all neighbors of a vertex. This can be done with 1 matrix-vector multiplication query
to the adjacency matrix (for a vertex v, query Aχv with χv the standard basis vector corre-
sponding to vertex v) or O(log n) quantum cut queries (this is implicitly shown in [LSZ21]
and made explicit in [AL21, Corollary 11]).

P2. Construct a spanning forest. This can be done with polylog(n) matrix-vector multiplication
queries [AL21] or polylog(n) quantum cut queries [LSZ21].

P3. Compute the minimum degree. This takes 1 matrix-vector multiplication query (query for the
matrix-vector product A1, with 1 the all-ones vector) or O(

√
n) quantum cut queries (run

quantum minimum finding on the vertex degrees).

P4. Compute a cut query. This can clearly be done with 1 matrix-vector multiplication or quan-
tum cut query.

7See Proposition 4.1 for a proof. One can alternatively obtain a looser bound by using the inequality 1 − x ≥
exp(−x/(1 − x)) for 0 < x < 1, as is done in [GNT20].
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Uniform star contraction for a given parameter p can be implemented with just the first primitive:
(i) pick a random subset of vertices R by including every vertex independently at random with
probability p, (ii) for every vertex in R learn all its neighbors, explicitly giving the set cut(R),
and (iii) for every vertex v not in R, select a random edge in cut(R) incident to v (if it exists).
Contracting the resulting star graphs yields (the supervertices of) the contracted graph G′. We
only make queries in step (ii). By primitive P1, this can be done with O(|R|) queries, and this is
O(np) in expectation.

We can now easily sketch our algorithm for computing the edge connectivity of the input graph G
using the above primitives:

1. Compute the minimum degree δ(G) using primitive P3.

2. If δ(G) ≤ √n, find a sparse δ(G)-edge connectivity certificate using primitive P2. Output the
edge connectivity of the connectivity certificate.

3. If δ(G) >
√
n, do uniform star contraction with p ∈ Θ(log(n)/δ(G)), resulting in a contracted

multigraph G′ that has Õ(
√
n) vertices with high probability. Run the randomized algorithm

from [MN20] (Theorem 3.10) to compute λ(G′).

Step 1. can be implemented with O(
√
n) matrix-vector multiplication or quantum cut queries by P3.

Step 2. costs polylog(n) queries per spanning forest by P2, thus Õ(δ(G)) ∈ Õ(
√
n) queries overall.

In step 3. we have |R| = O(
√
n log n) with high probability, in which case the star contraction can

be done with O(
√
n log n) queries by P1. The algorithm of [MN20] can compute the weight of a

minimum cut in a weighted N -vertex graph with high probability after Õ(N) classical cut queries,
thus by primitive P4 we can compute λ(G′) with Õ(

√
n) queries.

2.3 Randomized cut-query algorithm

Finally we describe our randomized O(n) cut query algorithm for edge connectivity. It does not
seem possible to achieve this result using uniform star contraction as we did in the quantum cut
query and matrix-vector multiplication query case. The reason is that a vertex in V \ R could
have up to |R| many neighbors in R and it is too expensive to learn all of these neighbors with cut
queries. Instead we use another variation on star contraction that we call sparse star contraction.
We show that instead of choosing a uniformly random neighbor in R, we can instead first learn
a bipartite subgraph between V \ R and R where each vertex in V \ R has constant degree. We
then do 1-out contraction by independently choosing, for each v ∈ V \ R, a uniformly random
neighbor in this sparse bipartite subgraph. Our main technical contribution is to show that this
process can be done while preserving a non-trivial minimum cut with constant probability. We
call this technique sparse star contraction as the contraction is performed on a bipartite subgraph
with only O(n) edges. To actually learn this sparse bipartite subgraph with O(n) cut queries we
use our second main tool, which is the separating matrix framework of Grebinski and Kucherov
[GK98, GK00]. We next elaborate on sparse star contraction and the separating matrix framework
in more detail.

Sparse star contraction. To put sparse star contraction into context we begin with a more
general scenario. We can imagine a general form of a randomized contraction algorithm that first
learns a spanning subgraph H = (V,E′) of the input graph G = (V,E), and then for each vertex
v ∈ V independently at random selects an edge incident to v in H. Finally, the selected edges are
contracted in the original graph G. In our case it will further be useful to think of H as a directed
graph, where we will choose a random outgoing edge from each vertex. This point of view gives us
more control over which endpoints can contract an edge. We make the following definition.
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Definition 2.3 (Directed subgraph, 1-out contraction). Let G = (V,E) be a simple graph. We
say that the directed graph H = (V,A) is a directed subgraph of G if every arc (u, v) ∈ A satisfies
{u, v} ∈ E. In a random 1-out sample of H, we independently and uniformly at random choose an
outgoing edge in H from every vertex that has one. In a random 1-out contraction of H, we take
a random 1-out sample of H and output the graph G′ obtained by contracting the sampled edges in
G.

Note that in a directed subgraph H, for any edge {u, v} of G, we can either have both arcs
(u, v), (v, u) in H, just one of them, or neither of them. When we speak about doing 1-out con-
traction on an undirected subgraph it should be interpreted that all edges are oriented in both
directions.

With this terminology, uniform star contraction corresponds to doing a random 1-out contrac-
tion on the directed subgraph H which is the induced bipartite graph between V \ R and R with
all edges directed from V \R to R.

There are two properties that we want in a directed subgraph H. The first is that after a
random 1-out contraction on H the contracted graph does not have too many vertices. We can
automatically guarantee this condition by working in the star contraction framework. The second
is that in taking a random 1-out sample of H we do not have too high probability of selecting an
edge of a non-trivial minimum cut. We can precisely extract a sufficient condition that makes a
directed subgraph H “good for contracting” in this second sense.

Definition 2.4 ((α, β)-good for contracting). Let G = (V,E) be a simple graph and C ⊆ E. Let
H = (V,A) be a directed subgraph of G. For every u ∈ V let qu = Prv:(u,v)∈A[{u, v} ∈ C] if
|{(u, v) ∈ A : v ∈ V }| > 0 and qu = 0 otherwise. We say that H is (α, β)-good for contracting with
respect to C if it satisfies the following two conditions

1. max property: maxu qu ≤ α, and

2. sum property:
∑

u qu ≤ β.

An undirected subgraph of G is (α, β)-good for contracting if and only if its directed version where
all edges are directed in both directions is.

As an example, it follows from Eq. (2) and Eq. (3) used in the correctness proof of 2-out
contraction that G itself is (1/2, 2)-good for contracting for any non-trivial minimum cut C. In
Corollary 4.2 we show that if H is (α, β)-good for contracting with respect to C then the probability
we do not select an edge of C in a random 1-out sample of H is at least (1− α)⌈β/α⌉.

In sparse star contraction, we again start out by choosing a random set R by taking each vertex
v to be in R with probability p, although we take p = Θ(log(δ(G))/δ(G)) to be slightly smaller
than what we used before. With constant probability the number of vertices in V \ R with no
neighbor in R will be O(n/δ(G)), and R itself will satisfy |R| = O(n log(δ(G))/δ(G)). Let H be the
induced bipartite subgraph between V \ R and R with all edges directed from V \ R. In uniform
start contraction we do a random 1-out contraction on H. For the randomized cut query algorithm
we will learn a sparse subgraph H ′ of H that has the property that every v ∈ V \ R that has
an outgoing edge in H also has an outgoing edge in H ′. No matter what H ′ we take with this
property we are guaranteed that after 1-out contraction the resulting contracted graph will have
O(n log(δ(G))/δ(G)) vertices. Our main technical contribution (in particular Lemma 6.1) shows
that we can find such an H ′ that is (α, β)-good for contracting for α < 1 and small constant β that
has constant degree. As H ′ only has O(n) edges, we can hope to learn it with O(n) cut queries,
and we show this can indeed be done using the separating matrix machinery, described next.
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Separating matrices and Recover-k-From-All. The second key tool of our algorithm is the
separating matrix machinery. This toolset is best described by first considering an immediate obsta-
cle to our O(n) cut query algorithm for edge connectivity: an O(n) bound is not even known for the
simpler problem of determining if a graph is connected. Harvey gave a deterministic O(n log n) cut
query algorithm for connectivity [Har08, Theorem 5.10], and we are not aware of any better result
in the randomized case. Besides the fact that connectivity is a special case of edge connectivity,
our algorithmic framework will also heavily rely on being able to efficiently find spanning forests
to construct sparse r-edge connectivity certificates.

Harvey’s connectivity algorithm, which can also find a spanning forest, is an implementation
of Prim’s spanning forest algorithm in the cut query model. This algorithm can equally well be
implemented with a weaker oracle that simply reports whether or not there exists an edge between
two disjoint sets S and T (this is known in the literature as a bipartite independent set oracle,
see e.g. [BHR+20]). Interestingly, Harvey’s algorithm is actually optimal if restricted to this type
of queries. Indeed, any deterministic algorithm that determines connectivity while making use
of an oracle that returns 1 bit of information must make Ω(n log n) queries. This follows from
the aforementioned deterministic Ω(n log n) 2-party communication complexity lower bound for
deciding if a graph is connected [HMT88].8

The key now to both our zero-error O(n) cut query algorithm for finding a spanning forest
and our randomized O(n) cut query algorithm for edge connectivity is to make use of the fact
that a cut query actually returns Ω(log n) bits of information. This power was first harnessed by
Grebinski and Kucherov [GK98, GK00] who studied a related, but more powerful, query known
as an additive query. In this model, when the input is a simple n-vertex graph with adjacency
matrix A one can query two Boolean vectors x, y ∈ {0, 1}n and receive the answer xTAy. Grebinski
and Kucherov [GK00] showed the surprising fact that one can learn an n-vertex simple graph with
only O(n2/ log n) additive queries, achieving the information theoretic lower bound. The main
tool in the proof of Grebinski and Kucherov is the use of separating matrices: the existence of an
O(n/ log n)-by-n matrix B such that Bx 6= By for any two distinct n-dimensional Boolean vectors
x and y. In Lemma 5.4 we use the separating matrix framework of Grebinski and Kucherov to
show that if S, T are disjoint subsets of V that are polynomially related in size and dT (v) ≤ ℓ for
every v ∈ S, then we can learn all edges between S and T with only O(ℓ|S|) cut queries.

This fact is the heart of the subroutine Recover-k-From-All (Algorithm 5.7) which plays a key
role in both the spanning forest and edge connectivity algorithms. The input to this algorithm is two
disjoint subsets S, T ⊆ V that are polynomially related in size with the promise that dT (v) ≥ ℓ for
every v ∈ S. Recover-k-From-All is a zero-error randomized algorithm that can then learn min{k, ℓ}
neighbors in T for every vertex v ∈ S and makes O(k|S|) cut queries in expectation. Recover-k-
From-All is based on ideas from ℓ0 sampling (e.g. Theorem 2 of [JST11]), which is similarly used in
the connectivity algorithm in the semi-streaming model by Ahn, Guha, and MacGregor [AGM12].
First we put vertices in S into O(log n) buckets by putting together those vertices with similar
values of dT (v). For the bucket B with degree around r into T , we randomly subsample a set
T ′ ⊆ T by putting each vertex of T into T ′ with probability 2k/r. We call a vertex in the bucket
“caught” if dT ′(v) is close to its expectation (e.g., it is in [k, 8k]). Letting B′ ⊆ B be the set of caught
vertices, we can then learn E(B′, T ′) with O(k|B′|) cut queries.9 This is repeated on all buckets
until all vertices have been caught. As we expect to catch a constant fraction of the remaining

8We do not know of any such superlinear lower bound for randomized algorithms making bipartite indpendent set
queries or the randomized communication complexity of connectivity. The best known bounded-error randomized
communication complexity lower bound of Ω(n) follows from a reduction from set-disjointness [BFS86, Corollary 7.4]
or the inner-product mod 2 function [IKL+12, Theorem 1] on Θ(n) bit inputs.

9We assume that B′, T ′ are polynomially related in size for this high level description. Handling smaller B′ is a
technicality postponed to the full proof.
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vertices in a bucket with each iteration, and the complexity of an iteration scales with the number
of remaining vertices, one can argue that the expected number of queries overall is O(kn).

Edge connectivity. Now that we described the main tools, we can describe the main algorithm.
To make the exposition simpler, we begin with explaining how star contraction and Recover-k-
From-All can be used to give a randomized O(n log log n) cut query algorithm for edge connectivity.
This algorithm is given in Section 6. We then describe the additional trick needed to reduce the
query complexity to O(n), which is given in Section 7. The basic algorithm essentially follows the
same steps as used in the quantum cut query case.

1. Compute the minimum degree δ(G).

2. Perform sparse star contraction:

(a) Choose a set R by taking each v ∈ V to be in R with probability Θ(log(δ(G))/δ(G)).
Let H be the directed subgraph obtained by picking every edge between V \ R and R
and directing it from V \R to R.

(b) Use Recover-k-From-All with constant k on V \R and R to learn a sparse subgraph H ′

of H.

(c) Do a random 1-out contraction on H ′ and let G′ be the resulting graph.

3. Compute the edge connectivity of G′, and output the minimum of this and δ(G).

As in the proof of Theorem 2.2, we can again argue that with constant probability (i) H is (α, β)-
good for contracting for some α < 1 and constant β (more specifically, for α = 3/5 and β = 8)
with respect to a non-trivial minimum cut, and (ii) that only O(n/δ(G)) vertices in V \R have no
neighbor in R. Now, however, it is too expensive to learn the entire subgraph H as in the quantum
cut query algorithm, or even to independently sample a uniformly random neighbor in R for each
v ∈ V \ R within the O(n) query budget. Instead, we use Recover-k-From-All with constant k to
learn a sparse subgraph H ′ of H, where H ′ has an outgoing edge for every v ∈ V \ R that has
one in H. Moreover, the outgoing neighbors of v in H ′ are learned from a random set of vertices,
conditioned on this set having at least one and not too many neighbors of v. This can be done with
O(n) queries. We then do a random 1-out contraction on the explicitly known graph H ′. Letting
G′ be the result of this contraction, we finally compute the edge connectivity of G′ and output the
minimum of this and δ(G).

We postpone describing how we compute the edge connectivity of G′ and instead focus on
showing that H ′ is still (α′, β′)-good for contracting for some α′ < 1 and constant β′. As we use
a constant k in Recover-k-From-All, we only expect to find a constant number of neighbors of a
particular vertex v. We have to show that, even in this very small sample, not too high a fraction
of neighbors are on the opposite side of a non-trivial cut from v, for all vertices v incident on the
cut. In this low probability sampling regime, a Chernoff bound can only upper bound the failure
probability for a particular vertex by a constant, which is not good enough as we have to union
bound over the possibly growing number of vertices incident on the cut.

Instead, in Lemma 6.1, we show the following statement. Let v ∈ V \ R and C be a non-
trivial minimum cut of G. Let R′ ⊆ R be chosen by putting each vertex of R into R′ with
probability p = 2k/dR(v) conditioned on dR′(v) > 0. We have already mentioned the fact that
ER′ [cR′(v)/dR′ (v) | dR′(v) > 0] = cR(v)/dR(v). We show that as long as k ≥ 10

Pr
R′

[
cR′(v)

dR′(v)
≥ cR(v)

dR(v)
+

1

10
| dR′(v) > 0

]
≤ 200

k

cR(v)

dR(v)
.
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We know that
∑

v:cR(v)>0 cR(v)/dR(v) ≤ 8 since H is (3/5, 8)-good for contracting. Hence, by
relating the failure probability to a sum that is bounded, and taking k to be a large constant, we
can again use a union bound to argue that H ′ satisfies the max property with α′ = 7/10 with
constant probability.

After a random 1-out contraction on H ′ the contracted graph G′ has O(n log(δ(G))
δ(G) ) vertices.

Ideally, however, we would like it to only have O(n/δ(G)) vertices. As we describe next, we can then
compute λ(G′) with O(n) queries by finding a sparse δ(G)-edge connectivity certificate. To further
reduce the size of the contracted graph, we use Recover-k-From-All with k = Θ(log(δ(G))) to learn
a directed subgraph H2 of G[R] where all but O(n/δ(G)) vertices have outdegree h = Ω(log(δ(G)).
This requires O(log(δ(G))|R|) = O(n) cut queries. As was done with H ′ we can similarly argue
that H2 is (α, β)-good for contracting for yet other α < 1 and constant β. We then do a 2-out
contraction on H2. We can use a lemma of [GNT20, Lemma 2.5] to conclude that 2-out contraction
on H2 reduces the number of vertices in G[R] by a factor of h and thus it becomes O(n/δ(G)).
As all but O(n/δ(G)) vertices in V \R are connected to a vertex in R this reduces the number of
vertices in G′ overall to O(n/δ(G)).

Spanning forests and sparse edge connectivity certificates. In order to accomplish step 3. of
the algorithm we show that we can construct a sparse r-edge connectivity certificate in a contracted
graph with q vertices using O(n + rq log(n)/ log(q)) cut queries. This lets us construct a sparse
δ(G)-edge connectivity certificate of G′ with O(n) queries when G′ has O(n/δ(G)) vertices. In the
final part of this section we give an overview of the key ideas that go into this algorithm and the
obvious prerequisite of constructing a spanning forest with O(n) cut queries.

Our spanning forest algorithm follows the framework of Bor̊uvka’s spanning forest algorithm
as has been used in several works related to matrix-vector multiplication queries [AGM12, LSZ21,
AL21]. The application here requires several additional tricks to stay within the O(n) query budget.

The algorithm proceeds in rounds and maintains the invariant that in each round there is a
paritition S1, . . . , St of V and a spanning tree for each Si in the partition. Initially, each Si is just
a single vertex. In each round, it performs the following two steps:

1. For each Si, it finds a vertex that has at least one neighbor outside Si. We call such vertices
active vertices. Whether or not a vertex is active can be determined with a constant number of
cut queries by computing |E(v, S̄i)| for v ∈ Si. We go over each Si looking for an active vertex;
once we find an active vertex in Si we move on to Si+1. The vertices that are discovered to
be inactive are ignored for all future rounds of the algorithm.

2. Next we randomly bipartition the set of connected components and use Recover-k-From-All
with constant k to learn, for each active vertices on one side, a neighbor on the other side.
As in the case of Bor̊uvka’s algorithm, we then combine the components which are connected
by edges we discovered and reduce the number of components by a constant fraction.

Note that, across all iterations of step 1, we make at most n many useless queries (i.e., queries where
we find a vertex to be inactive). So we only need to account for the query complexity of step 2. Here
we crucially use the fact that we can reduce the number of connected components by a constant
factor to show that total number of cut queries required over all invocations of Recover-k-From-All
is bounded by O(n).

The next task is to extend the spanning forest algorithm to also construct sparse edge connectiv-
ity certificates. For our application we will want to construct a sparse edge connectivity certificate
of the contracted graph G′, which is an integer weighted graph with q ∈ o(n) vertices. The most
natural idea would be to extend our spanning forest algorithm to construct a spanning forest of
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such a graph while making only O(q) cut queries. We could then directly construct a sparse r-
edge connectivity certificate with O(rq) cut queries by iteratively finding one spanning forest at a
time. Unfortunately, we do not know how to find a spanning forest in a contracted graph more
efficiently. The reason is that if the adjacency matrix of the graph has entries with magnitude M
this introduces an extra log(M + 1) factor into the separating matrix bounds, which we cannot
afford.

Instead we revisit the spanning forest algorithm and further parallelize Bor̊uvka’s algorithm
by simultaneously building the different forests of the sparse edge connectivity certificate.10 We
also crucially make use of the fact that G′ is not an arbitrary integer weighted graph, but the
contraction of a simple graph G, and that for our application we can afford an extra additive O(n)
term. The fact that G′ is a contraction of a simple graph allows us to keep using the separating
matrix machinery on Boolean matrices by working on appropriate submatrices of the adjacency
matrix of G, and the extra O(n) term is used to identify these submatrices.

Let F1, · · · , Fr be the spanning forests that we want to compute, recalling that Fi is spanning
forest in the graph G \ (

⋃
j<i Fi). Initially, each Fi is empty. As before, we use steps 1. and 2. to

find edges to extend these spanning tree. However, the crucial difference is the following: We find
these edges with respect to the connected components of the last tree Fr, and we add each of these
edges into the spanning forest Fi for the least value of i where it does not create a cycle. It is not

hard to see that the set of connected components {S(i)
1 , · · · , S(i)

ti
} of Fi for different i ∈ [r] form a

laminar family: {S(i+1)
1 , · · · , S(i+1)

ti+1
} is a refinement of {S(i)

1 , · · · , S(i)
ti
}. However, we cannot expect

that the number of connected components of Fr will decrease by a constant factor in each round
as before. We can however show that it happens within O(r) rounds. This, together with a similar
accounting of cut queries as before, leads to the following theorem.

Theorem 2.5 (Informal version, see Theorem 5.9). Let G = (V,E) be an n-vertex simple graph,
and let G′ = (V ′, E′) be a contraction of G with q supervertices, for q sufficiently large. There is a
zero-error randomized algorithm that makes O(n+ rq log(n)/ log(q)) cut queries in expectation and
outputs a sparse r-edge connectivity certificate for G′.

2.4 Open questions

Our work raises some open questions that concern both upper bounds and lower bounds.

Lower bounds. The tightness of a number of our algorithms hinges on a positive answer to the
following questions.

• Can we show a lower bound of Ω(n log n) for the randomized two-party communication com-
plexity of edge connectivity? The current best known bound in the randomized case is
Ω(n log log n) [AD21], while the deterministic communication complexity of this problem is
known to be Ω(n log n) [HMT88]. A positive answer to this question implies an Ω(n) lower
bound on the randomized cut query complexity of edge connectivity, showing that Theo-
rem 1.1 is tight. On the flip side, a randomized algorithm for edge connectivity making
o(n) cut queries would imply a negative answer to this question. It is reasonable to think
that a lower bound of of Ω(n log n) for the randomized two-party communication complexity
should hold even for the simpler problem of deciding if graph is connected, and we conjecture

10Nagamochi-Ibaraki [NI92] also construct all spanning forests of the sparse edge connectivity certificate in parallel.
They iterate over each edge of the graph and place it in the first spanning forest in which it does not create a cycle.
We cannot afford to iterate over all edges and instead modify Bor̊uvka’s algorithm to build the spanning forests in
parallel.
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this to be true. Proving this would resolve the randomized communication complexity of
connectivity, which has remained open since the work of Babai, Frankl, and Simon [BFS86].

• Does computing the minimum degree of a simple graph indeed require Ω(
√
n) quantum cut

queries? As mentioned before, quantum minimum finding gives a simple O(
√
n) upper bound.

By a reduction from minimum degree to edge connectivity (Appendix D), a positive answer
would imply that our Õ(

√
n) quantum cut query algorithm for edge connectivity is tight (up

to polylogarithmic factors).

Upper bounds. Our algorithms could give rise to new algorithms and upper bounds in a number
of ways.

• Weighted graphs: Can we find a minimum cut in a weighted graph with O(n) cut queries?
This would not violate any currently known lower bound, and it would improve on the
O(n polylog n) cut query algorithm from [MN20]. Similarly, can we find a minimum cut
in a weighted graph with o(n) quantum cut queries or matrix-vector queries?

• (Approximate) edge connectivity with polylog(n) queries: We mentioned that a key
bottleneck for edge connectivity with quantum cut queries is computing the minimum degree,
which might require Ω(

√
n) quantum cut queries. In contrast, we can approximate the mini-

mum degree with polylog(n) quantum cut queries [LSZ21]. The possibility hence remains of
approximating the edge connectivity with polylog(n) quantum cut queries. We also note that
the minimum degree can be computed with exactly 1 matrix-vector query to the adjacency
matrix. Hence, computing the edge connectivity with polylog(n) matrix-vector queries is also
an interesting open question.

• Zero-error and deterministic: Can we make our zero-error O(n) cut query algorithm
for connectivity deterministic? Alternatively, could we make our randomized O(n) cut query
algorithm for edge connectivity zero-error? Both improvements would lead to tight algorithms
(see Table 1).

2.5 Organization

In Section 3, we define and state the necessary preliminary results that we need to state the technical
details in the subsequent sections. In Section 4, we give a formal proof of the correctness of uniform
star contraction and provide three direct applications: in Section 4.3, we design efficient quantum
cut query and matrix-vector multiplication query algorithms (thereby proving Theorem 1.3), in
Section 4.4, we provide one-pass semi-streaming algorithms for edge connectivity in the complete
and random vertex arrival model, and in Section 4.5, we show a linear-time sequential algorithm for
edge connectivity for dense graphs. Next, in Section 5, we show a zero-error algorithm for computing
a spanning forest with O(n) cut queries. In Section 6 we give a randomized O(n log log n) cut query
algorithm for edge connectivity which combines many of the ideas from the previous sections.
Finally, in Section 7, we add one additional trick to give a randomized O(n) cut query algorithm
for edge connectivity, thereby proving Theorem 1.1.

3 Preliminaries

Notation (strings, sets and matrices). For a string x ∈ {0, 1}n we use |x| for the number
of ones in x. For a positive integer n we let [n] = {1, . . . , n}. For a set S ⊆ [n] we use S̄ for the
complement of S and |S| for its cardinality. Given a matrix M of dimension k-by-ℓ, we denote
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the ith row of M as M(i, :). Note that M(i, :) is a vector of dimension ℓ. Given a set of column
indices R ⊆ [ℓ], we define M(i, R) to be the subvector of M(i, :) that has entries restricted to the
indices in R. Clearly M(i, R) has dimension |R|. For a subset R ⊆ [n], we let χR ∈ {0, 1}n be the
characteristic vector of R, that is, χR(i) = 1 if i ∈ R and χR(i) = 0 otherwise.

Notation (graphs). Let V be a finite set and V (2) the set of all 2-element subsets of V . We
represent a weighted graph G by the triple G = (V,E,w), where E ⊆ V (2) is the set of edges
and w : E → R>0 assigns a positive weight to each edge. For a subset of edges F ⊆ E we let
w(F ) =

∑
f∈F w(f). When the weight of every edge is 1, we call the graph unweighted. We will

consider two kinds of unweighted graphs, multigraphs and simple graphs. In a multigraph E is
allowed to be a multiset of V (2) while in a simple graph it is simply a subset. In both cases we drop
the weight function and write the graph as G = (V,E). The inputs to our algorithms will always be
simple graphs, and multigraphs only arise by considering contractions of a simple graph, described
below. We typically denote the number of vertices |V | = n and the number of edges |E| = m.

Let G = (V,E,w) be a weighted graph. For disjoint sets S, T ⊆ V we let EG(S, T ) = {e ∈ E :
|e ∩ S| = |e ∩ T | = 1}. As shorthand, we use cutG(S) = EG(S, S̄) for the cut defined by S, the
set of edges with exactly one endpoint in S. We will drop the subscript when the graph is clear
from context. We let λ(G) = min∅6=S(V w(cutG(S)) be the weight of a minimum cut of G. When
G is unweighted we call λ(G) the edge connectivity of G. The degree of a vertex v is denoted by
d(v) = |cut({v})| and the number of edges from v into a subset R is dR(v) = |E({v}, R \ {v})|.
Finally, the minimum degree of a graph is denoted by δ(G) = minv∈V d(v).

We will also consider directed graphs H = (V,A) where A ⊆ {(u, v) : u, v ∈ V, u 6= v} is set
of directed edges or arcs. Directed graphs in this work will always arise by taking a (subgraph
of a) simple graph and orienting the edges, possibly in both directions. We will use analogous

notations with arrows on top of them for directed graphs. For disjoint sets S, T we let
−→
EH(S, T ) =

{(u, v) ∈ A : u ∈ S, v ∈ T} for the set of arcs directed from S to T and use the shorthand
−→
cutH(S) =

−→
EH(S, S̄) for the set of arcs leaving S. Again we drop the subscript when the graph is

clear from context.
Finally, in our algorithms we will look at contractions of simple graphs. For a simple graph

G = (V,E) and a subset of edges F ⊆ E, the multigraph G′ = (V ′, E′) formed by contracting the
edges F in G is defined as follows. V ′ is the set of connected components of F . We will sometimes
refer to the vertices of G′ as supervertices as they are sets of vertices of G. For S, T ∈ V ′ the
number of edges between S, T in G′ is |EG(S, T )|. We will sometimes instead view a contraction
of a simple graph as an integer weighted graph, as a cut query cannot distinguish between these
representations.

Useful bounds. Next, we define some useful algebraic bounds which we use in the analysis of
our algorithms.

Claim 3.1. Let b1, . . . , bt satisfy
∑t

i=1 bi = n and bi ≥ 1 for all i = 1, . . . , t. Then

t∑

i=1

bi
log(2bi)

≤ 3n

log(2n/t)
.

Proof. Let e = 2.718 . . . be Euler’s constant. On the interval [1,∞) the function x/ log(e2x) is
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concave and satisfies x/ log(2x) ≤ 3x/ log(e2x). Therefore by Jensen’s inequality

t∑

i=1

bi
log(2bi)

≤ 3
t∑

i=1

bi
log(e2bi)

≤ 3n

log(e2n/t)
.

Claim 3.2. Let b1, . . . , bk satisfy
∑

i bi = n. Then
∑k

i=1 log(bi) ≤ k log(n/k).

Proof. By concavity of log(x) we have

1

k

k∑

i=1

log bi ≤ log

(
k∑

i=1

bi/k

)
= log(n/k) ,

which gives the claim.

We will frequently make use of the following versions of the Chernoff bound.

Lemma 3.3. Let X1, . . . ,Xn be independent random variables taking values in {0, 1}. Let X =∑n
i=1Xi and µ = E[X]. Then

Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2) for any 0 ≤ δ ≤ 1 (5)

Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ)) for any 0 ≤ δ (6)

In particular, if µ ≥ 10 then Pr[µ/2 ≤ X ≤ 2µ] ≥ 1/2.

3.1 Edge connectivity certificates

Here we mention a few known results regarding so-called connectivity certificates (or, in our case,
edge connectivity certificate), which we define next.

Definition 3.4 (sparse edge connectivity certificate). Let G = (V,E) be an n-vertex unweighted
multigraph. A sparse r-edge connectivity certificate for G is a subgraph Ĥ = (V, F ) with at most
rn edges and with the property that |cutĤ(S)| = min{r, |cutG(S)|} for any S ⊆ V .

A famous result of Nagamochi and Ibaraki [NI92] gives a recipe for computing a sparse edge
connectivity certificate efficiently by packing edge disjoint spanning forests.

Theorem 3.5 ([NI92]). Let G = (V,E) be an unweighted multigraph with m edges and for i ∈ [r] let
Fi be a spanning forest of (V,E \⋃i−1

j=1 Fj). Then Ĥ = (V,
⋃r

j=1 Fj) is a sparse r-edge connectivity
certificate for G. In addition, this sparse certificate can be constructed by a deterministic algorithm
in time O(m).

3.2 Cut query primitives

In this section, we state a few primitives in the cut query model that we use in various places of our
algorithms. Most of these results appear in similar guise in [RSW18, MN20]. We mention them
here for completeness.

Proposition 3.6 (Claim 5.1 in [MN20]). Let G = (V,E,w) be a weighted graph and S, T ⊆ V be
disjoint sets. The quantity w(E(S, T )) can be computed with 3 cut queries.
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Proof. Let A be the adjacency matrix of G, i.e. A(u, v) = w({u, v}). Then

w(E(S, T )) = χT
SAχT =

1

2

(
χT
S̄AχS + χT

T̄AχT − χT
S∪TAχS∪T

)
.

The proposition follows by noting that χT
R̄
AχR = w(cut(R)) can be evaluated with a single cut

query, for any R ⊆ [n].

The following two corollaries follow easily from Proposition 3.6.

Corollary 3.7. Let G = (V,E,w) be a weighted graph. For disjoint subsets S, T ⊂ V , let G′ =
(S ∪ T,E(S, T ), w′) be the induced bipartite subgraph between S and T , where w′ is the weight
function w restricted to E(S, T ). Let AG′ ∈ R|S|×|T | be the bipartite adjacency matrix of G′. We
can simulate a query of the form xTAG′y for x ∈ {0, 1}|S| and y ∈ {0, 1}|T | with 3 cut queries to G.

Proof. Let Sx ⊆ S and Ty ⊆ T denote the supports of x and y, respectively. Then the corollary
follows by noting that xTAG′y = w(E(Sx, Ty)) and using Proposition 3.6.

Corollary 3.8. Let G = (V,E) be an unweighted multigraph. Let subsets V ′ ⊆ V and X ⊆ E be
given explicitly, and define the graph G′ = (V ′, E′) by setting E′ = {{u, v} ∈ E \ X | u, v ∈ V ′}.
Then we can simulate a cut query to G′ with 3 cut queries to G.

Proof. Consider cutG′(S) in G′ for a vertex set S ⊂ V ′. It is easy to observe that |cutG′(S)| =
|EG(S, V ′ \ S) \X|. The subscripts G and G′ clarify the corresponding graph associated with the
edge set. We can compute |EG(S, V ′ \ S)| by making 3 cut queries to G using Proposition 3.6. As
we know the set X explicitly, we can compute |EG(S, V ′ \S)∩X| without queries. Subtracting the
latter from the former we get the value of |cutG′(S)|.

Proposition 3.9 (Randomized binary search). Let G = (V,E) be a simple graph. Let v ∈ V and
let R ⊆ V \{v}. There is a randomized algorithm that, if dR(v) > 0, can output a uniformly random
neighbor of v in R with O(log n) cut queries.

Proof. This is a simple variation on [RSW18, Corollary 2.2] which we describe for completeness.
Use a single cut query to check whether v has a neighbor in R. If so, do the following recursively,

until we end up with a single neighbor of v: split R into two sets R1 and R2 with |R1| = ⌈|R|/2⌉
and |R2| = ⌊|R|/2⌋, and learn the number of neighbors dR1(v) and dR2(v) of v in R1 resp. R2. Each
of these can be computed with 3 cut queries by Proposition 3.6. Now pick R1 with probability
dR1(v)/(dR1(v) + dR2(v)) and otherwise pick R2. If the chosen set has a single vertex then return
that vertex, otherwise recurse on the chosen set.

Finally, a much more involved primitive is the following randomized cut query algorithm for
finding a minimum cut in a weighted graph by Mukhopadhyay and Nanongkai [MN20].

Theorem 3.10 ([MN20, Section 5.1]). Let G = (V,E,w) be a weighted graph with n vertices. There
is a randomized algorithm that computes λ(G) with high probability after O(n log8 n) cut queries.11

4 Star contraction and direct applications

In this section we give the full proof of the uniform star contraction theorem stated in the intro-
duction (Theorem 2.2). We then derive several direct applications of it.

11The bound is stated as Õ(n) in [MN20] but we need a concrete exponent in the polylog term to make our
algorithm explicit. We take log8(n) as a conservative over-estimate; the true cost of the algorithm in [MN20] is likely
smaller.
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4.1 (α, β)-good for contracting

We prove some preliminaries to set the scene. First, we verify that if a directed subgraph H is (α, β)-
good for contracting for C (Definition 2.4) then in taking a random 1-out sample of H we do not
have too high a probability of selecting an edge of C. Let G = (V,E) be a simple graph and C ⊆ E.
Let H = (V,A) be a directed subgraph of G. For every v ∈ V let qv = Pru:(v,u)∈A[{u, v} ∈ C] if
|{(v, u) ∈ A : u ∈ V }| > 0 and qv = 0 otherwise. The probability we do not choose an edge of C
when taking a random 1-out sample on H is exactly

∏

v∈V
(1− qv) .

We can lower bound this probability via the next proposition. A very similar statement is given in
[GNT20, Lemma 2.7]; we give an alternative analysis that improves the bound by a constant factor.

Proposition 4.1. Let n be a positive integer, 0 ≤ α < 1, and β ≥ 1. Define

F (α, β) = minimize
x∈Rn

∏

i

(1− xi)

subject to
∑

i

xi = β,

0 ≤ xi ≤ α .

Then F (α, β) ≥ (1− α)⌈β/α⌉.

Proof. We instead analyze ln(F (α, β)) whose objective function is
∑

i ln(1−xi). The problem then
becomes the minimization of a continuous concave function over a compact convex set K. By the
Krein-Milman theorem [Rud91, Section 3.23], K is the closed convex hull of its extreme points and
therefore by Jensen’s inequality a global optimum will occur at an extremal point. It is clear that
F (α, β) ≥ F (α, β′) for β ≤ β′. Therefore we instead lower bound F (α, β′) with β′ = α⌈β/α⌉. The
extremal points in the set 0 ≤ xi ≤ α,

∑
i xi = β′ have β′/α non-zero entries which are all equal to

α. Plugging this in gives the bound.

Corollary 4.2. If H is (α, β)-good for contracting with respect to C then the probability an edge
of C is not selected in taking a random 1-out sample of H is at least (1− α)⌈β/α⌉.

Finally, we note a simple property of an (α, β)-good for contracting subgraph.

Proposition 4.3. Let G = (V,E) be a simple graph, C ⊆ E a set of edges, and H a directed
subgraph of G that is (α, β)-good for contracting with respect to C. For v ∈ V if we form the graph
H ′ from H by removing all outgoing edges of v in H then H ′ is also (α, β)-good for contracting
with respect to C.

With these preliminaries in hand to set the scene, we next give the proof of the uniform star
contraction theorem (Theorem 2.2). There a subset R ⊆ V is chosen randomly and H is taken to
be (V,

−→
cut(V \R)), where

−→
cut(V \R) denotes the edges in cut(V \R) directed from V \R to R.

4.2 Full proof of uniform star contraction

In this section we prove Theorem 2.2, which for convenience is restated here.

Theorem 2.2. Let G = (V,E) be an n-vertex simple graph with λ(G) < δ(G). Then uniform star
contraction with p = 1200 lnn

δ(G) gives G′ where
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1. G′ has at most 2400n ln(n)/δ(G) vertices with probability at least 1− 1/n4, and

2. λ(G′) = λ(G) with probability at least 2 · 3−13.

We first show two propositions that will help to prove Theorem 2.2. In uniform star contraction
we do a random 1-out contraction on the graph H = (V,

−→
cut(V \ R)) where R is chosen randomly

by putting each vertex into R with probability p. As in doing 1-out contraction on H we choose
a neighbor of every vertex in V \ R that has one, the total number of vertices in G′ can be upper
bounded by |R| plus the number of vertices in V \ R that have no neighbor in R. The next
proposition bounds the probability that these values are much larger than their expectations.

Proposition 4.4. Let G = (V,E) be an n-vertex graph. Randomly choose a set of vertices R by
putting each vertex into R independently at random with probability p. Then

1. PrR[|R| ≥ 2pn] ≤ exp(−pn/3).

2. PrR[dR(v) ≤ 0.9pd(v)] ≤ exp(−pd(v)/200) for any v ∈ V .

Proof. Both items follows directly from a Chernoff bound. For the first item we use Eq. (6) and
for the second Eq. (5).

Proposition 4.4 will handle item 1 of Theorem 2.2. We next show that H = (V,
−→
cut(V \ R)) is

(2/3, 8)-good for contracting with probability at least 2/3. This will imply item 2 by Corollary 4.2.
We single out showing that H has the “sum property” (item 2 of Definition 2.4) with constant
probability in the next proposition. We go ahead and prove a slightly more general statement than
is needed for Theorem 2.2, but which will be used in the O(n) randomized cut query algorithm
for edge connectivity. It is also interesting to note that this statement holds for any sampling
probability p.

Proposition 4.5. Let G = (V,E) be a simple n-vertex graph and let C ⊆ E. Let 0 < f ≤ g ≤ n
be positive integers. Choose a set R by putting each vertex of V into R independently at random
with probability p. Then for any v ∈ V

ER

[
cR(v)

dR(v)

∣∣∣∣ f ≤ dR(v) ≤ g

]
=

c(v)

d(v)
(7)

Proof. Let d be the degree of v and c be the number of edges of C incident to it. The proposi-
tion is equivalent to the following purely probabilistic statement. Let X1, . . . ,Xc, Z1, . . . , Zd−c be
independent and identically distributed Bernoulli random variables that are 1 with probability p.
Xi = 1 represents the event that the ith edge of C incident to v is selected, and Zi = 1 the event
that the ith non-edge of C incident to v is selected. Then X =

∑c
i=1Xi is the random variable for

the total number of edges of C incident to v selected and Y = X +
∑d−c

i=1 Zi is the random variable
for the total number of edges incident to v selected. We want to show E[X/Y | f ≤ Y ≤ g] = c/d.

For 0 < b ≤ d let us first compute E[X/Y | Y = b] = (1/b)E[X | Y = b]. We claim that
E[X | Y = b] = cb/d. By linearity of conditional expectation, E[X | Y = b] =

∑c
i=1 E[Xi | Y = b].

As each Xi and Zj are identically distributed, E[Xi | Y = b] is independent of i and also equal to

E[Zj | Y = b] for j = 1, . . . , d − b. Thus b =
∑c

i=1 E[Xi | Y = b] +
∑d−c

j=1 E[Zj | Y = b] = d · E[Xi |
Y = b] for any i. This implies E[Xi | Y = b] = b/d and so E[X | Y = b] = cb/d.

As E[X | Y = b] = cb/d for any 0 < b ≤ d, we directly obtain E[X/Y | f ≤ Y ≤ g] = c/d for
any integers 0 < f ≤ g.
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Lemma 4.6. Let G = (V,E) be a simple graph and C be a non-trivial minimum cut of G. Choose
a set R by putting each v ∈ V into R independently at random with probability p ≥ 1200 ln(n)/δ(G).
Then the directed subgraph H = (V,

−→
cut(V \ R)) is (2/3, 8)-good for contracting with respect to C

with probability at least 2/3.

Proof. As C is a non-trivial minimum cut we know that
∑

v:c(v)>0 c(v)/d(v) ≤ 2 (see Eq. (3)
and following discussion). Together with Proposition 4.5, linearity of expectation, and Markov’s
inequality gives

Pr
R




∑

v:cR(v)>0

cR(v)

dR(v)
≥ 8


 ≤ 1/4 ,

showing the “sum property” of Definition 2.4 holds except with probability 1/4. Note that we did
not have to use the fact that p ≥ 1200 ln(n)/δ(G) here, this holds for any p.

It remains to show the “max property” of Definition 2.4, where we do use the assumption that
p is not too small. For any v ∈ V we have dR(v) ≥ 0.9pd(v) except with probability at most
exp(−6 lnn) by item 2 of Proposition 4.4. Thus except with probability n−5 this will hold for all v
by a union bound. Let us add this to our error probability and assume this holds in the rest of the
proof. The expected value of cR(v) is pc(v) and we know that c(v)/d(v) ≤ 1/2 because C is non-
trivial. Thus E[cR(v)] ≤ pd(v)/2 and to have cR(v)/dR(v) > 2/3 we must have cR(v) > 1.2E[cR(v)]
and cR(v) > 720 ln n, the latter because we are in the case dR(v) ≥ 0.9 · 1200 ln n. A Chernoff
bound thus gives the probability this happens is at most n−8. Hence by a union bound this will be
true for all v except with probability at most n−7.

This shows that H = (V,
−→
cut(V \ R)) is (2/3, 8)-good for contracting with respect to C except

with probability at most 1/4 + n−5 + n−7 ≤ 1/3 over the choice of R.

With these tools in hand, we can now prove Theorem 2.2.

Proof of Theorem 2.2. Let us first show item 1. The number of vertices in G′ can be upper bounded
by |R| plus the number of vertices in V \R that have no neighbor in R. By item 1 of Proposition 4.4
|R| will be at most twice its expected value, which is 2400n ln(n)/δ(G), except with probability at
most n−400. By item 2 of Proposition 4.4 the probability that a vertex has no neighbor in R is at
most exp(−6 lnn). Thus by a union bound, except with probability n−5, every vertex in V \R will
have a neighbor in R. Both items will hold with probability at least 1− 1/n4. This completes the
proof of item 1.

For item 2, let C be a non-trivial cut realizing λ(G). With the choice of p in the theorem we
know that H = (V,

−→
cut(V \R) is (2/3, 8)-good for contracting with respect to C with probability at

least 2/3 over the choice of R by Lemma 4.6. When this happens, we do not select an edge of C in
doing a random 1-out sample of H with probability at least 3−12 by Corollary 4.2. Not selecting an
edge of C to contract implies that in the contracted graph G′, for every super-vertex S, all vertices
in S will lie on the same side of the cut C. This in turn gives λ(G) = λ(G′). Thus overall item 2
of the theorem holds with probability at least 2 · 3−13.

4.3 Quantum cut queries and matrix-vector multiplication queries

In this subsection we consider randomized algorithms that can make matrix-vector multiplication
queries to the adjacency matrix of a graph and quantum algorithms with cut queries to a graph.
In the former, if A is the adjacency matrix of an n-vertex simple graph G, one can query a vector
x ∈ {0, 1}n and receive the answer Ax.

As described in Section 2.2, our proof works for any query model that has the following prim-
itives, which we now state more formally. We say that an algorithm that can perform these
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operations in the stated costs has MDCP access to the graph, which stands for “Minimum Degree
and Cut Product.” The origin of the name is explained below in Remark 4.12.

Definition 4.7 (MDCP access). Let G = (V,E) be a simple graph. We say a query model has
MDCP access to G if it can execute the following query operations with high probability in the
specified cost.

1. Minimum degree queries: One can query mindeg(G) and receive as answer the minimum
degree of G. The cost is O(

√
n log n).

2. Neighborhood queries: For any vertex v ∈ V , the characteristic vector nbh(v) ∈ {0, 1}n of v
can be computed with cost O(log n).

3. Spanning forest queries: For any subset E′ ⊆ E known to the algorithm one can compute a
spanning forest spf(G,E′) of G′ = (V,E \ E′). The cost is O(log6 n).

4. Cut queries: For any S ⊆ V one can compute |cut(S)| with cost O(1).

The formulation of the spanning forest query may seem unusual. It is formulated in this way
to allow the computation of sparse edge connectivity certificates using the technique of Nagamochi-
Ibaraki given in Theorem 3.5. Further, both matrix-vector multiplication queries and quantum cut
queries allow one to compute a spanning forest in a polylogarithmic number of queries, as shown
later in this section (Lemma 4.11).

Proposition 4.8. Let G = (V,E) be an n-vertex simple graph and 0 < r ≤ n an integer. There
is a deterministic algorithm with MDCP access to G that computes a sparse r-edge connectivity
certificate for G with cost O(r log6 n).

Proof. This follows directly from the construction of an r-sparse edge connectivity certificate by
Nagamochi and Ibaraki [NI92] given in Theorem 3.5. Let F0 = ∅. For i = 1, . . . r one computes
Fi = spf(G,

⋃i−1
j=0 Fj) with a query of cost O(log6 n). At stage i the edges in

⋃i−1
j=0 Fj are all known

to the algorithm from previous queries so this is a valid query. The total cost is O(r log6 n) and a
sparse r-edge connectivity certificate is given by

⋃r
j=1 Fj .

Theorem 4.10. Let G be an n-vertex simple graph. There is a randomized algorithm with MDCP
access to G that outputs the edge connectivity of G with high probability and has total query cost of
Õ(
√
n).

Proof. The algorithm is given in Algorithm 4.9. We go through the steps to describe in more detail
their implementation and give their cost.

In the first step we compute the minimum degree δ of the graph, which can be done with cost
O(
√
n log n). The rest of the algorithm breaks down into two cases depending on δ.

If δ <
√
n then λ(G) <

√
n as well. Thus by definition, if F is a sparse

√
n-edge connectivity

certificate for G we will have λ(G) = λ(F ) and the algorithm will output correctly in line 4. The
cost of computing a sparse

√
n-edge connectivity certificate is O(

√
n log6 n) by Proposition 4.8.

Thus overall in the low degree case the query cost is O(
√
n log6 n).

Let us now consider the case where δ ≥ √n. We first describe the implementation of each step
in the for loop beginning on line 7 and its cost. In each iteration of the for loop we do uniform
star contraction with p = 1200 ln(n)/δ as detailed in lines 8–14. By item 1 of Theorem 2.2 the
probability that we abort in line 10 or line 15 is n−4, thus the probability we abort in any iteration of
the for loop is O(n−3). We add this to our error bound and henceforth assume this does not happen.
The cost of line 11 is thus O(n log2(n)/δ) as we are assured in this step that |R| ≤ 2400 ln(n)/δ.
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Algorithm 4.9 MDCP query algorithm for edge connectivity

Input: MDCP query access to a simple graph G
Output: λ(G)

1: δ ← mindeg(G).
2: if δ <

√
n then

3: Compute a sparse
√
n-edge connectivity certificate F of G.

4: Output λ(F ).
5: else
6: best←∞
7: for all i = 1, . . . , ⌈100 log n⌉ do
8: R← ∅
9: for all v ∈ V do Put v in R at random with probability 1200 ln(n)/δ.

10: if |R| > 2400n ln(n)/δ then Abort.

11: for all c ∈ R do Query nbh(c).

12: X ← ∅
13: for all v ∈ V \ R do Choose a neighbor u ∈ R of v uniformly at random (if it exists)

and add {u, v} to X.

14: Let G′ be the multigraph formed from G by contracting all edges in X.
15: if G′ has more than 2400n ln(n)/δ vertices then Abort.

16: if λ(G′) < best then best← λ(G′).

17: Output the minimum of δ and best.

Once we know all neighbors of all vertices in R, for each v ∈ V \ R we can compile a list B(v)
of its neighbors in R. We then use these lists to execute line 13.

Next we argue that MDCP access to G gives us cut query access to the multigraph G′ con-
structed in line 14. We can compute the connected components of the set of edges X. Say that
this gives the partition P = {A1, . . . , At} of V . Then P is the vertex set of G′ and by Theorem 2.2
we have |P| = O(n log(n)/δ) with high probability. To execute the cut query |cutG′(T )| for T ⊆ P,
note that |cutG′(T )| = |cutG(S)| where S =

⋃
A∈T A. Thus with MDCP access to G we can answer

cut queries to G′. Therefore to execute line 16 we can run the randomized cut query algorithm of
[MN20] quoted in Theorem 3.10 to compute λ(G′) with high probability. The cost of this step is
O(n log9(n)/δ). Thus over all O(log n) iterations of the for loop the total cost is O(n log10(n)/δ).
As δ ≥ √n the total cost in this case is O(

√
n log10(n)).

Now let us argue correctness in the high degree case. Even when item 2 of Theorem 2.2 does
not hold in the star contraction, the graph G′ is always a contraction of G and thus λ(G′) ≥ λ(G).
As we compute λ(G′) correctly with high probability in line 16, with high probability we have
best ≥ λ(G) and so the algorithm will output correctly if λ(G) = δ. If λ(G) < δ by Theorem 2.2
we will have λ(G′) = λ(G) with probability at least 2 · 3−13 in each iteration of the for loop. Thus
in this case, as we repeat the star contraction 100 log n times and take the minimum result, with
high probability we will have best = λ(G), and the algorithm will output correctly.

Next we show that with both quantum cut queries and matrix-vector multiplication queries to
the adjacency matrix of G we can simulate MDCP access to G.

Lemma 4.11. Let G be a simple graph. A quantum algorithm with cut query access to G and a
randomized algorithm with matrix-vector multiplication queries to the adjacency matrix of G both
have MDCP access to G.
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Proof. Let A be the adjacency matrix of G = (V,E). For two vectors x, y ∈ Rn let x◦y ∈ Rn be their
entrywise product, and let 1 be the n-dimensional all one vector. Lee, Santha, and Zhang [LSZ21]
use a generalization of the Bernstein-Vazirani algorithm [BV97] to show that for any x ∈ {0, 1}n a
quantum algorithm can with certainty compute Ax ◦ (1−x) with O(log n) cut queries. This power
was stated explicitly in [AL21, Corollary 11]. One can also clearly compute Ax ◦ (1− x) with one
matrix-vector query to the adjacency matrix. We postpone item 1 for now and first discuss items 2
and 3 together for the two models in terms of Ax ◦ (1− x) queries.

For item 2 note that we can learn the neighborhood of v via the query Aev ◦ (1− χ{v}).
For item 3, Auza and Lee [AL21, Theorem 8], in simplifying and quantitatively improving the

results of [LSZ21], show that one can compute a spanning forest of G with high probability with
O(log5 n) many Ax ◦ (1 − x) queries. Say that one explicitly knows a set of edges E′ ⊆ E. Let
B be the adjacency matrix of the graph (V,E′) and A′ be the adjacency matrix of the graph
G′ = (V,E \E′). Thus A′ = A−B and we can compute A′x ◦ (1−x) = Ax ◦ (1−x)−Bx ◦ (1−x)
from Ax ◦ (1 − x) as Bx ◦ (1 − x) is known explicitly. This allows us to also compute spanning
forests of G′ with high probability in O(log5 n) many Ax ◦ (1− x) queries as well.

For item 4 it is clear that a quantum cut query algorithm can compute a classical cut query.
Since (1−x)TAx = (1−x)T (Ax ◦ (1−x)), one can also compute a cut query with one Ax ◦ (1−x)
query.

Item 1 is where the arguments diverge. It is not obvious how to compute the minimum degree
with o(n) queries of the form Ax ◦ (1 − x). However, the minimum degree can be computed with
one matrix-vector multiplication query as all degrees are given by A1.

For the quantum case, note that the degree of one vertex can be computed with a single classical
cut query. Thus we can find the minimum degree with high probability in O(

√
n log n) quantum

cut queries using the quantum minimum finding routine of Dürr and Høyer [DH96, Theorem 1].

Remark 4.12. As can be seen from the proof of Lemma 4.11, to simulate MDCP access it suffices
to be able to

1. Compute mindeg(G) with high probability in cost O(
√
n log(n)).

2. Compute Ax ◦ (1 − x) with high probability in cost O(log n) for any x ∈ {0, 1}, where A is
the adjacency matrix of G. We call this a cut product.

This is a smaller set of primitives that can still be used in Theorem 4.10 to give a Õ(
√
n) cost

algorithm for edge connectivity, and is the origin of the name Minimum Degree and Cut Product.
We chose to define MDCP access with a more verbose but less mysterious set of primitives for
greater clarity.

4.4 One-pass semi-streaming algorithms

Next, we consider applications of star contraction for edge connectivity computation in various
settings of the streaming model of computation. Specifically, we consider the following settings.

1. Explicit vertex arrivals, in which vertices appear in an arbitrary order, along with all edges
incident to previously seen vertices.

2. Complete vertex arrivals, in which vertices appear in an arbitrary order, along with all incident
edges.

3. Random vertex arrivals, in which vertices appear in a random order, along with all edges
incident to previously seen vertices.
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For a related model of streaming computation where the edges arrive in arbitrary order, [Zel11]
showed a Ω(n2) space lower bound against any one-pass randomized algorithm that correctly com-
putes edge connectivity. We observe that this lower bound construction also gives a lower bound
of the same strength for the explicit vertex arrival setting.12 We include a proof sketch in Ap-
pendix C.1.

Observation 4.13. [Follows from [Zel11]] Any one-pass streaming algorithm computing the edge
connectivity of a simple graph in the explicit vertex arrival setting requires Ω(n2) memory.

Next, we employ uniform star contraction to prove that the random vertex arrival setting allows
to circumvent the aforementioned lower bound. In contrast, we discuss in Remark 4.17 that it is
not clear how to use the related 2-out contraction technique for this purpose. Formally, we prove
the following.

Theorem 4.14. There is a one-pass streaming algorithm, using Õ(n) memory, that given a simple
graph G = (V,E) in the random vertex arrival setting, computes the edge connectivity of G with
high probability.

Proof. We run in parallel ⌈log(n)⌉ independent instances of an algorithm, each of which uses a
different estimate d = 2ℓ for the minimum degree δ(G), with ℓ = 0, 1, 2, . . . , ⌈log(n)⌉ − 1. Each
algorithm aborts if it uses more than Õ(n) memory, and we will show that if d = 2ℓ is such that
d ≤ δ(G) < 2d then with high probability the corresponding algorithm will not abort and will
correctly output λ(G). Since we know δ(G) exactly by the end of the stream (we can keep track of
all degrees with Õ(n) memory), we can filter out the correct outcome at the end of the algorithm.

In the remainder we describe the algorithm for the value d satisfying d ≤ δ(G) < 2d. It will be
clear that the algorithms for different estimates are independent, and hence can be run in parallel.
In a single pass, the algorithm will perform uniform star contraction on G. Simultaneously, it will
construct a sparse 2d-edge connectivity certificate on the contracted graph and compute the edge
connectivity of this certificate. Finally, in order to boost the constant success probability of uniform
star contraction, we will run r ∈ Θ(log n) parallel repetitions of this. This last step will require
some care, as every instance uses the same randomness from the input stream, and this needs to
be done appropriately to ensure independence.

The key idea to simulate a single implementation of star contraction in the random vertex
arrival model is the following: because the vertices arrive in a random order, we can select the first
Θ(n log(n)/d) vertices as the set of centers R, and put all other vertices in V \R. Because each vertex
v ∈ V \R comes with all edges incident to R, we can for each such vertex v sample a uniform and
independent neighbor in R in a single pass, thereby performing uniform star contraction. Dealing
with r parallel repetitions requires a slightly more complicated approach, as we need to ensure
independence and hence cannot reuse the same set of centers. Nonetheless, we can still assume
that all sampled centers come at the start of the stream. This is captured by the following lemma,
whose proof we postpone to Appendix C.2.

Lemma 4.15. There is a sampling procedure that operates within Õ(n) space and, given a stream S
of n vertices, outputs Y1, . . . , Yr ⊆ [n] after reading the first |⋃r

i=1 Yi| vertices. The distribution D
on (Y1, . . . , Yr) defined by the procedure admits the following property. For every R1, . . . , Rr ⊆ [n]:

Pr
S∼Sn,(Y1,...,Yr)∼D

[Y1 = R1, . . . , Yr = Rr] =
r∏

i=1

Pr
Xi∼B([n],p)

[Xi = Ri] .

12This does not follow as a black box reduction. Rather, the edge stream admitted by the lower bound construction
of [Zel11] is actually an explicit vertex arrival stream. Hence the same argument provides an Ω(n2) space lower bound.
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In each independent repetition of star contraction, we want to sample a subset R by choosing
every vertex with probability p = 1200 lnn

d under the additional condition that |R| ≤ 2pn. This is
done by applying Lemma 4.15 to obtain the subsets R1, . . . , Rr, where Ri is the subset that should
be used in the ith repetition. Let B =

⋃r
i=1 Ri. By the properties of the sampling procedure, the

subsets are generated after reading the first |B| vertices from the stream. Then, the ith repetition
uses Ri as the set of centers and performs uniform star contraction for the subsequent vertices
in the input stream (i.e., those that follow the first |B| vertices). For each of these, we choose a
uniformly random edge towards Ri and contract it in G′

i. All vertices in B, and the subsequent
vertices in the input stream with no edge towards Ri, are simply kept in the contracted graph G′

i.

We will argue that the number of vertices in G′
i is still Õ(n/d) with high probability, even though

(as opposed to the original uniform star contraction) we never contract any of the vertices of B in
G′

i. In parallel, we build a 2d-edge connectivity certificate F i
1 ∪ · · · ∪ F i

2d of G′
i, where the F i

k’s are
edge disjoint spanning forests of G′

i (as in the Nagamochi-Ibaraki certificate, Theorem 3.5). As an
invariant throughout the stream, we will have that F i

1∪· · ·∪F i
2d is a 2d-edge connectivity certificate

of the (potentially contracted) subgraph G′
i seen so far. Since this subgraph will only have Õ(n/d)

vertices throughout the stream, the certificate will only contain Õ(n) edges.
We summarize the ith parallel repetition in full detail. The set Ri can be accessed after reading

the first |B| vertices from the input stream, and it is computed together with all sets R1, . . . , Rr

using Lemma 4.15 globally, outside of the ith repetition itself. Recall that we abort each repetition
as soon as its memory usage exceeds Õ(n), in which case we set the ith outcome to be λi =∞.

1. Initialize F i
1, . . . , F

i
2d as empty forests and set Ri = ∅. Initialize a mapping ri : V → V to be

the identity (through the stream this will keep track of the contracted vertices).

2. For the jth vertex arrival v with edges e1, ..., eℓ between v to previously seen vertices, the
following is done:

(a) Uniform star contraction: If j ≤ |B|, do nothing. If j > |B|, pick a uniformly
random center w from the center neighborhood NRi

(v) (if it exists) and set ri(v) = w.
This amounts to contracting the edge {v,w}. For each et among e1, . . . , eℓ, except
for the contracted edge which is discarded, change the endpoints of et = {v, u} to be
{ri(v), ri(u)}, discard any self loops. At the end of the stream, the vertices with the
same ri(·) values constitute a vertex in G′

i.

(b) Maintaining of 2d-edge connectivity certificate: For each (relabelled) incident
edge et among e1, . . . , eℓ, add et to F i

k where k is the minimal index for which F i
k ∪ {et}

contains no cycles. If there is no such k, discard the edge.

3. If the repetition did not abort by the end of the stream, we compute the edge connectivity
of the connectivity certificate λ(G′

i) and set λi = λ(G′
i). Note that λi ≥ λ(G).

Finally, we combine the r parallel repetitions by outputting min{δ(G), λ1, . . . , λr}.

Analysis. As mentioned before, it suffices to prove correctness and a Õ(n) memory bound only
for the algorithm that has an estimate d such that d ≤ δ(G) < 2d. By Lemma 4.15, a run of the
whole algorithm for such an estimate is equivalent to r ∈ Θ(log n) independent repetitions of a
variant of the uniform star contraction with p = 1200 lnn

d , except that vertices from B remain in the
contracted graph.

A single repetition can be analysed as follows. Sample each vertex with probability p = 1200 lnn
d

to obtain the set of centers R. Then, for some set of vertices B such that R ⊆ B and |B| ≤ 2rpn,
proceed as follows. For any vertex in [n] \B, choose a uniform random edge towards R (if it exists)
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and contract it. This results in a contracted graph G′. By item 2 of Proposition 4.4 and d ≤ d(v),
the probability that a vertex in [n] \ B has no neighbor in R is at most n−6. Hence, by a union
bound, |G′| = |B| except with probability at most n−5 over the choice of R. Next, we want to lower
bound the probability that λ(G) = λ(G′), assuming that λ(G′) < δ(G). Let C be a non-trivial
minimum cut of G. By Lemma 4.6, H = (V,

−→
cut(V \R) is (2/3, 8)-good for contracting with respect

to C with probability at least 2/3 over the choice of R. We perform a random 1-out contraction
on a subgraph of H, so the probability of not contracting an edge of C is at least as large as when
performing a random 1-out contraction on the whole H, which is at least 3−12 by Corollary 4.2
over the choice of R. Thus λ(G′) = λ(G) with probability at least 2/3 · 3−12 over the choice of R.

By union bound, the overall probability of error is at most the sum of probabilities that some
repetition aborts due to using too much memory and the probability that λ(G′

i) > λ(G) holds for
every i = 1, . . . , r, both over the choice of R1, . . . , Rr. By item 1 of Proposition 4.4, |Ri| ≤ 2rpn
except with probability n−400, thus |B| ≤ 2rpn except with probability r · n−400. For each i =
1, . . . , r we have |G′

i| = |B| except with probability at most n−5. Overall, no repetition aborts
except with probability r · n−400 + r · n−5 = O(n−4). For each i = 1, . . . , r independently, we have
λ(G′

i) = λ(G) with probability at least 2/3 ·3−12 over the choice of Ri. Thus, at least one repetition
correctly determines λ(G) except with probability at most (1− 2/3 · 3−12)Θ(logn) = n−Ω(1).

We can prove a similar result for the complete vertex arrival setting, in which the vertices arrive
in an arbitrary order with all edges incident on them. The proof follows along the same lines, but is
simpler in this case because we can randomly sample sets of centers offline before the stream begins.
As a vertex arrives with all its edges, we can immediately randomly choose an edge incident on the
set of centers to implement star contraction. In parallel we also construct a sparse edge connectivity
certificate. Due to the similarities with Theorem 4.14, we move the proof to Appendix C.3.

Theorem 4.16. There is a one-pass streaming algorithm, using Õ(n) memory, that given a simple
graph G = (V,E) in the complete vertex arrival setting, computes the edge connectivity of G with
high probability.

Remark 4.17. While we cannot rule it out, it is not obvious how to prove either Theorem 4.14 or
Theorem 4.16 using 2-out contraction [GNT20]. We crucially use two features of star contraction
in the proofs. The first is that when we see a vertex in the stream we can immediately choose its
edges to be contracted, which allows us to contract the graph “on-the-go.” In the random vertex
arrival model we cannot randomly choose 2 edges incident to a vertex when the vertex arrives, as at
that point we have not seen all of its neighbors. To naively implement 2-out this means contracting
edges has to be delayed until the end of the stream which prohibits constructing the sparse edge
connectivity certificate with Õ(n) memory.

The difficulty of using 2-out contraction to obtain the complete vertex arrival result is more sub-
tle. Here we do see all incident edges to a vertex when the vertex arrives, thus we can immediately
select two random incident edges to contract. However, in this case it is not clear that the (partly)
contracted graph throughout the stream has no more than Õ(n/δ(G)) components. This property
is needed to ensure that we can keep a sparse δ(G)-edge connectivity certificate of the contracted
graph throughout the stream using a memory of size only Õ(n). For star contraction, this issue
is resolved by a second key feature of star contraction that we make use of in our proofs. At any
point in the stream, the contracted graph on the vertices seen so far has size at most the number
of centers, and thus its size can be bounded by Õ(n/δ(G)) in the branch of the computation with
the correct degree estimate.
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4.5 Linear time sequential algorithm for slightly dense graphs

In this section, we give another illustration on how to use the star contraction algorithm. Similar
to the approach in the state-of-the-art O(m+ n log2 n) algorithm [GNT20] for computing the edge
connectivity of a simple graph, we use it to obtain a simple O(m+n polylog(n)) sequential algorithm.
Formally, we prove the following theorem.

Theorem 4.18. There is a randomized algorithm with running time O(m+n log3 n) that computes
the edge connectivity of a simple graph G = (V,E) with success probability at least 2/3.

The proof of this theorem is achieved via an application of uniform star contraction as in
Theorem 2.2. The naive implementation requires O(m) time by sampling vertices independently
into R in O(n) time, and then choosing a random neighbor in R for each v 6∈ R in O(

∑
v∈V

d(v)) =

O(m) time. We combine this with the connectivity certificate algorithm from Theorem 3.5, whose
implementation in the sequential setting also requires O(m) time [NI92], and the following recent
result.

Theorem 4.19 ([GMW20]). There is an algorithm that with high probability computes the weight of
a minimum cut in a weighted graph G = (V,E,w) with n vertices and m edges in time O(m log2 n).

Proof of Theorem 4.18. The algorithm proceeds as follows: Given G = (V,E), compute δ(G) in
O(m) time. If λ(G) ≥ δ(G) then this corresponds to the edge connectivity. Now assume λ(G) <
δ(G). We perform uniform star contraction as in Theorem 2.2 on G to obtain G′ with O(n logn

δ(G) )

vertices, and with constant probability we have that λ(G) = λ(G′). Construct in time O(m) a sparse
δ(G)-edge connectivity certificate (Theorem 3.5) G′′ of G′ with O(n log n) edges. Finally, apply
Theorem 4.19 on G′′ to compute λ(G′′) = λ(G′) with witness S ⊆ V . Since |E(G′′)| = O(n log n)
this takes O(n log3 n) time. If we output min{λ(G′), δ(G)} then this yields the correct output
with constant probability. We can boost the success probability to above 2/3 by repeating this a
constant number of times, and outputting the smallest value achieved.

5 Finding a spanning forest with O(n) cut queries

In this section we describe an O(n) cut query algorithm for constructing a spanning forest of a
simple graph. This proves that the cut query complexity of graph connectivity is O(n), which was
not known before. We also describe a variation of the algorithm for constructing a connectivity
certificate, which is a key building block of the edge connectivity algorithm described in the next
section.

Let us first describe a simple algorithm to find a spanning forest of a graph using O(n log n) cut
queries given by Harvey [Har08, Theorem 5.10]. For the application to finding a sparse edge con-
nectivity certificate it will be useful to define the algorithm more generally to work on a contraction
of a graph.

Lemma 5.1 (Simple spanning forest algorithm). Let G = (V,E) be an n-vertex simple graph.
Let G′ be a contraction of G with q many supervertices, which are given explicitly as the partition
P = {A1, . . . , At} of V . There is a deterministic algorithm that outputs a set of edges F ⊆ E that
form a spanning forest of G′ and makes O(q log n) cut queries to G.

Proof. We follow the plan of Prim’s spanning forest algorithm. We begin at an arbitrary supervertex
A of G′ and initialize F = ∅. We want to find an edge {u, v} ∈ E with u ∈ A and v /∈ A. We first
identify a vertex u ∈ V which has an edge leaving A by doing binary search with queries of the
form |E(S, Ā)| for S ⊆ A. This takes at most log n many cut queries. Then we want to find one
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of the neighbors v ∈ Ā of u by doing binary search asking queries of the form |E(v, S)| for S ⊆ Ā.
We add {u, v} to F and let G′′ be the graph G′ with supervertex A merged with the supervertex
containing v. Let A′ be the name of this new supervertex. We then repeat this procedure on G′′

and A′. We keep repeating this procedure until we find a supervertex with no outgoing edges. This
supervertex represents a connected component in G′. If the supervertex is not all of V then we
arbitrarily choose another supervertex of the graph and begin the procedure again. There are at
most q iterations and each iteration costs O(log n) cut queries, thus the total number of cut queries
is O(q log n).

An important insight now is that in the proof of Lemma 5.1 we did not use the full power of cut
queries. For the binary search routines in the proof we might as well have used bipartite independent
set queries, which return just a single bit telling if |E(S, T )| is zero or positive for two disjoint sets
S and T . Notice that the (deterministic) algorithm is optimal for that type of queries. Indeed, by
the Ω(n log n) deterministic communication complexity lower bound for connectivity [HMT88], any
deterministic algorithm for connectivity must make Ω(n log n) such 1-bit queries.

Crucially, the situation is different with cut queries, which return Ω(log n) bits of information
per query in a simple graph. Taking advantage of this additional information suggests an avenue
towards saving a log n factor over the simple algorithm, and this is the approach we follow to give
a zero-error randomized algorithm to compute a spanning forest of a simple graph with O(n) cut
queries.

5.1 Separating matrices and learning buckets

The fact that a cut query returns Ω(log n) bits allows us to use the remarkable result that there
is a matrix A ∈ {0, 1}k×n with k = O(n/ log n) such that one can recover any Boolean vector
x ∈ {0, 1}n given the product Ax. At a very high level, this log n factor reduction in the size of
k over the obvious bound is the key that allows us to save a log n factor in the spanning forest
computation. Such a matrix A is called a separating matrix and formally defined next.

Definition 5.2 (Separating matrix). A k-by-n Boolean matrix B is called a separating matrix for
the set S ⊆ {0, 1, . . . , d}n if for all x, y ∈ S with x 6= y it holds that Bx 6= By.

Theorem 5.3 ([GK98, Theorem A.1], [GK00, Theorem 1]). There exists a k-by-n separating matrix
for

1. The set {0, 1, . . . , d}n with k ≤ 8⌈log(d + 1)⌉n/ log(2n).

2. The set Sℓ = {x ∈ {0, 1}n : |x| ≤ ℓ} with k = O(ℓ log(2n)/ log(2ℓ)).

Grebinski and Kucherov [GK00, Theorem 5] use separating matrices to show that if A is the
adjacency matrix of a simple n-vertex graph G with maximum degree ℓ, then one can learn G with
O(ℓn) queries of the form xTAy for Boolean vectors x, y ∈ {0, 1}n. We will use separating matrices
for a very similar application, although we focus on bipartite graphs where the left hand side has
bounded degree ℓ, and want to express the complexity in terms of the number of vertices on the
left hand side. To this end, let M be an m-by-n Boolean matrix and suppose that every row has at
most ℓ ones. Suppose that we have xTMy query access to M for Boolean vectors x, y. One should
imagine M being a bipartite adjacency matrix of a bipartite subgraph of G, in which case we can
simulate xTMy with cut queries to G, and think of ℓ as constant or slowly growing in a typical
application. The next lemma shows that if m and n are polynomially related then we can learn M
with O(ℓm) queries. A very similar theorem is shown by Grebinski and Kucherov [GK00, Theorem
4] for the case m = n.
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Lemma 5.4. Let M ∈ {0, 1}m×n be an m-by-n matrix with at most ℓ non-zero entries per row.

There is a deterministic algorithm that learns M with O
(
ℓm log(2n)
log(2m)

)
many queries of the form

xTMy with Boolean vectors x, y.

Proof. Let Y be a separating matrix with O(ℓ log(2n)/ log(2ℓ)) rows for the set Sℓ ⊆ {0, 1}n of
Boolean vectors with at most ℓ non-zero entries, which exists by item 2 of Theorem 5.3. From
MY T we can recover M . Every column of MY T has integer entries of magnitude at most ℓ. Let X
be a separating matrix with 8m⌈log(ℓ+ 1)⌉/ log(2m) rows for the set {0, 1, . . . , ℓ}m which exists by
item 1 of Theorem 5.3. We can recover MY T from XMY T . Putting it together we can compute
XMY T with a number of xTMy queries of order

ℓm log(2n)⌈log(ℓ + 1)⌉
log(2m) log(2ℓ)

≤ ℓm log(2n)

log(2m)
.

Using this lemma we can describe a key subroutine LearnBucket[M ](r, k) that will be used both
in the spanning forest algorithm and in the edge connectivity algorithm. In this algorithm we have
oracle access to a matrix M via xTMy queries for Boolean vectors x and y. The oracle access to
M is indicated by having M in brackets in the call of the algorithm. The promise is that every row
of M has between r and 2r many ones—in our applications this arises from “bucketing” together
vertices with similar degrees, hence the name. The number k is a parameter indicating how many
ones we want to learn from each row of M—the algorithm will learn min{k, r} many ones from
each row. In the application to finding a spanning forest we just need to find a single one in every
row and we take k to be a large constant. In the edge connectivity algorithm we will also apply
LearnBucket where k is growing. For the application to edge connectivity, we will require that the
found neighbors are selected in a sufficiently random fashion, as recorded in the “further” statement
of the theorem. This statement is not needed for the application to finding a spanning forest and
can be skipped on a first reading.

Algorithm 5.5 LearnBucket[M ](r, k)

Input: xTMy query access to a Boolean matrix M ∈ {0, 1}m×n, a natural number r with the
promise that all rows of M have at least r and at most 2r ones, and a parameter k.

Output: The output consists of a list Z[i] for each i ∈ [m] where M(i, Z[i][j]) = 1 for all i, j
and each Z[i] has at least min{k, r} many elements.

1: B = [m]
2: while B is non-empty do
3: Choose Q ⊆ [n] by putting each a ∈ [n] into Q independently with probability q =

min{2kr , 1}.
4: for j ∈ B do
5: ones(j)← χT

{j}MχQ. ⊲ ones(j) is number of ones in M(j,Q)

6: Set K ← {j ∈ B : min{r, k} ≤ ones(j) ≤ 8k}.
7: if |K| > 0 then
8: Learn the submatrix M(K,Q) by Lemma 5.4 and populate Z[i] for all i ∈ K.
9: B ← B \K.

10: Return all lists Z[i].

Lemma 5.6. Let m,n be positive integers and M ∈ {0, 1}m×n be a Boolean matrix where every
row has at least r and at most 2r ones. Let k ≥ 10 and ℓ = min{r, k}. Suppose we can query xTMy
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for any x ∈ {0, 1}m, y ∈ {0, 1}n. There is a zero-error randomized algorithm, LearnBucket[M ](r, k)
given in Algorithm 5.5, that makes

O

(
m +

km log(n)

log(2m)

)

queries in expectation and for each i ∈ [m] outputs a list Z[i] such that M(i, Z[i][j]) = 1 for all
i ∈ [m] and j, and each Z[i] contains at least ℓ many elements. Let d(i) be the number of ones
in row i. Further, Z[i] contains all the ones of M(i, :) contained in a set Q chosen by putting
each j ∈ [n] into Q independently at random with probability q ≥ min{2k/d(i), 1}, conditioned on
M(i,Q) having at least f and at most g ones, where 0 < f ≤ qd(i)/2 and g ≥ 2qd(i).

Proof. The algorithm is given by Algorithm 5.5. We first consider the (trivial) case where 2k ≥ r,
in which case the sampling probability q = 1. In this case, in the first iteration of the while loop
K = [m] and we learn the entire matrix M deterministically via Lemma 5.4. The cost of this
is O(2rm log(n)/ log(2m)) = O(km log(n)/ log(2m)) and we learn at least r ones in each row as
desired.

Now consider the case that 2k < r, in which case the goal is to learn the positions of k ones in
every row of M . We first show correctness. At the start of the while loop B = [m], and we only
remove a row index j from B if it is in the set K processed in line 8. On this line we deterministically
learn the entire submatrix M(K,Q). Further we are guaranteed that each row of M(K,Q) has at
least k ones by the definition of K on line 6. Thus when j is removed from B we are guaranteed
that we have learned the positions of at least k ones in row j. This process continues until B is
empty, thus the algorithm is correct with zero error.

Let us now argue about the complexity. In any iteration of the while loop, for each j ∈ B the
expected value of ones(j) is in the interval [2k, 4k]. Therefore by a Chernoff bound (Lemma 3.3)
using the fact that k ≥ 10, for any j ∈ B we have k ≤ ones(j) ≤ 8k with probability at least 1/2.
Thus E[|K|] ≥ |B|/2, and letting bi be a random variable for the size of B at the start of the ith

iteration of the while loop we have E[bi+1 | bi = s] ≤ s/2. From this it follows that the expected
number of iterations of the while loop is at most 2(log(m) + 1) (see [DJW12, Theorem 3]). The
fact that E[bi+1 | bi = s] ≤ s/2 also implies E[bi+1] ≤ E[bi]/2 and so the expected number of queries
from line 5 is

E

[
∑

i

bi

]
=
∑

i

E[bi] ≤
∑

i

m

2i
≤ 2m .

We next turn to queries made in line 8. By Lemma 5.4 the number of queries in an execution
of this line is O(k|K| log(|Q|)/ log(2|K|)) ∈ O(k|K| log(n)/ log(2|K|)). Let Y be a random variable
for the number of times line 8 is executed. As the sum of |K| over all executions of line 8 is at most
m, we must have Y ≤ m. Further E[Y ] ≤ 2 logm + 1 as it is at most the total expected number of
iterations of the while loop. By Claim 3.1, when Y = t the overall number queries from line 8 is
O(km log(n)/ log(2m/t)). Thus the expected number of queries from line 8 overall is of order

m∑

t=1

km log(n)

log(2m/t)
Pr[Y = t] ≤

√
m∑

t=1

2km log(n)

log(2m)
Pr[Y = t] + km log(n) Pr[Y >

√
m] . (8)

By Markov’s inequality Pr[Y >
√
m] ≤ 2(log(m) + 1)/

√
m. Hence we can upper bound Eq. (8) by

2km log(n)

log(2m)
+

2(log(m) + 1)√
m

km log(n) ∈ O

(
km log(n)

log(2m)

)
.

The “further” statement follows from the definition of Q on line 3. This set is taken by putting
each i ∈ [n] into Q independently at random with probability q = min{2k/r, 1} ≥ min{2k/d(i), 1}
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as d(i) ≥ r. Z[i] contains exactly the ones in M(i,Q) for the first such Q chosen that has at least
f = min{k, r} ≤ qd(i)/2 and at most g = 8k ≥ 2qd(i) ones by line 8.

LearnBucket is restricted in that it requires the matrix to have approximately uniform row
sums. In the next algorithm, Recover-k-From-All, we use LearnBucket as a subroutine to locate
the position of min{k, d} ones in each row of a matrix with the weaker promise that every row
has at least d ones. With respect to its goal, Recover-k-From-All is very similar to the primitive
RecoverOneFromAll introduced by [AL21] in the study of connectivity algorithms with matrix-
vector multiplication queries. RecoverOneFromAll was in turn inspired by the Recover primitive
used by [ACK21] for connectivity algorithms with linear and OR queries.

We follow the same algorithmic plan used by [AL21] in RecoverOneFromAll, which is to count
the number of ones in each row, bucket rows together with similar number of ones, and then operate
on each bucket separately. The main difference is in the implementation of learning the position
of ones for each row in a bucket. We use separating matrices for this in LearnBucket while the
technique in [AL21] is based on combinatorial group testing algorithms.

Algorithm 5.7 Recover-k-From-All[M ](k)

Input: xTMy query access to a Boolean matrix M ∈ {0, 1}m×n and a parameter k.
Output: Let d be the minimum number of ones in a row of m. For ℓ = min{d, k} the output

is a list Z[i] for each i ∈ [m] such that Z[i] has at least ℓ elements and M(i, Z[i][j]) = 1 for all
i ∈ [m] and j.

1: for j ∈ [m] do
2: d(j)← χT

{j}M1. ⊲ d(j) is the number of ones in row j

3: d← minj d(j).
4: for a = 0 to ⌈log(n/d)⌉ do
5: Ba ← {j ∈ [m] : d(j) ∈ [d2a, d2a+1)}.
6: Za ← LearnBucket[M(Ba, :)](d2a, k).

7: Output all adjacency lists Za.

Lemma 5.8. Let M ∈ {0, 1}m×n be a Boolean matrix where every row has at least d > 0 ones. Let
k ≥ 10 and ℓ = min{k, d}. Suppose we can query xTMy for any x ∈ {0, 1}m, y ∈ {0, 1}n. There is
a zero-error randomized algorithm that outputs a list Z[i] with at least ℓ elements for each i ∈ [m]
satisfying M(i, Z[i][j]) = 1 for all i ∈ [m] and j, and makes

O

(
m +

km log(n)

log(2m/ log(n))

)

queries in expectation. Let d(i) be the number of ones in row i. Further, Z[i] contains all the ones
of M(i, :) contained in a set Q chosen by putting each j ∈ [n] into Q independently at random with
probability q ≥ min{2k/d(i), 1}, conditioned on M(i,Q) having at least f and at most g ones, where
0 < f ≤ qd(i)/2 and g ≥ 2qd(i).

Proof. The algorithm is given in Algorithm 5.7. In line 2 we compute the number of ones in
each row of the matrix and then bucket the vertices accordingly in line 5. Thus in the call to
LearnBucket(d2i, k) for those rows in Bi the promise that each row has number of ones in [d2i, d2i+1)
will hold and LearnBucket will return the positions of min{d2i, k} ≥ min{d, k} ones for each row
of Bi by Lemma 5.6. This shows correctness.

Let us now examine the complexity. There are m queries made in line 2. The rest of the
queries are made in the for loop. In the execution of the for loop on Ba we make O(|Ba| +
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k|Ba| log(n)/ log(2|Ba|)) queries in expectation by Lemma 5.6. Thus by Claim 3.1 the total number

of queries is at most O
(
m + km log(n)

log(2m/ log(n))

)
.

The “further” statement follows immediately from the “further” statement of Lemma 5.6.

5.2 Spanning forest algorithm

Now we are ready to describe a zero-error randomized algorithm to compute a spanning forest of
a simple n-vertex graph with O(n) cut queries in expectation. Compared to the simple spanning
forest algorithm, the first high level idea is to switch from a Prim style spanning forest algorithm
to one based on Bor̊uvka’s algorithm, which is known to work well in parallel settings. Here the
basic task it to find an outgoing edge from each of the connected sets S1, . . . , St. The second idea
is to use Lemma 5.8 to do this in parallel and save a log n factor compared to the naive sequential
computation.

Theorem 1.2. Let G = (V,E) be a simple n-vertex graph. There is a zero-error randomized
algorithm that makes O(n) cut queries in expectation and outputs a spanning forest of G.

Proof. We will follow Bor̊uvka’s spanning forest algorithm. The algorithm proceeds in rounds and
maintains the invariant that in each round there is a paritition S1, . . . , St of V and a spanning tree
for each Si in the partition. Initially, each Si is just a single vertex.

In a generic round the goal is to find an outgoing edge from each Si that is not already a
connected component. To help with this, we will label every vertex v ∈ V as Active or Inactive.
Initially, all vertices are marked Active. If in any round we learn that v ∈ Si has no edge going
outside of Si then we mark it as Inactive. An inactive vertex is not useful to the algorithm because it
will not have an edge leaving its component in any future round of the algorithm. We will similarly
call a set Si Active if and only if it contains an active vertex, and Inactive otherwise. A set that is
Inactive is a connected component.

Once we have found an outgoing edge from each Si that has one, we select a subset of these
edges that is cycle free with respect to the partition S1, . . . , St. These edges are used to merge
the corresponding sets of the partition and update the spanning trees accordingly. If t′ sets among
S1, . . . , St are Active, then the cycle free subset of edges will have size at least t′/2, and every edge
added reduces the number of active sets by at least 1. It follows that the number of Active sets
decreases by a factor of at least two in each round. We will crucially use this geometric decrease
in our analysis of the algorithm. Once the number of Active sets falls below n/ log(n) we switch to
the simple spanning forest algorithm from Lemma 5.1 to finish finding a spanning forest.

We now formally describe the actions of the algorithm in a generic round where we have sets
S1, . . . , St and a spanning tree for each Si. There are two main steps to a round.

Step 1: For each active Si find a v ∈ Si that has a neighbor outside of Si. Let t be the
number of sets that were Active at the end of the previous round, and say without loss of generality
these are the sets S1, . . . , St. For each i = 1, . . . , t we do the following. We query |E(v, S̄i)| for
each Active vertex v ∈ Si until we find a vertex with |E(v, S̄i)| > 0. In such case we mark v as
the representative of Si and move on to Si+1 without any further queries in Si. For all vertices in
Si with |E(v, S̄i)| = 0 we mark v as Inactive. If all vertices in Si become Inactive then Si becomes
Inactive: it is a connected component and we do not need to process it in future rounds.

As we only make queries in Si until we find an Active vertex, the total number of queries in
a round is O(t + w), where w is the number of vertices that become Inactive in the round. These
vertices will never be queried again, so the term for Inactive vertices will only contribute O(n)
queries over all the rounds.
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Step 2: Learn an outgoing edge from a constant fraction of the representatives. Let
t′ be the number of Active sets after Step 1 (so we have already determined that St′+1, . . . , St are
connected components). Equivalently, t′ denotes the number of representatives found in step 1, and
say without loss of generality these are from the sets S1, . . . , St′ .

For i = 1, . . . , t′ we color each Si red or blue independently at random with equal probability.
All vertices in Si are given the color of Si. For each red representative we then count how many
neighbors it has colored blue. This can be done with O(t′) cut queries. Let W be the set of
red representatives that have a blue neighbor, and consider the submatrix M of the adjacency
matrix with rows labeled by elements of W and columns labeled by vertices colored blue. By
Lemma 5.8 with k = 10, for every element of W we can learn the name of a blue neighbor with
O(t′ + t′ log(n)/ log(2t′/ log n)) cut queries.

Now let us compute the expected number of components at the end of the round. In expectation,
1/2 of the representatives labeled red will have a neighbor colored blue. We learn one edge crossing
the red-blue cut from each red representative. This set of edges is necessarily cycle free with respect
to S1, . . . , St′ . Thus by this process in expectation we will find a cycle free set of edges of size at
least t′/4. As any cycle free set of edges is of size at most t′, this means that by a reverse Markov
inequality we will find a cycle free set of edges of size at least t′/8 with probability at least 1/7.
Hence with probability at least 1/7 the number of Active sets at the start of the next round is at
most 7t′/8.

Total number of queries. When there are t active sets remaining at the end of the previ-
ous round, then we have seen that the number of queries made in the current round is O(t +
t log(n)/ log(2t/ log(n))) ∈ O(t log(n)/ log(2t/ log(n))), plus a term which is O(n) over the course
of the algorithm. We have also argued that with probability at least 1/7 the number of active
components in the following round is at most 7t/8.

Let T (t) denote the expected number of queries made by the algorithm starting from when
there are t active sets remaining. As T (t) is monotonically increasing in t, we have that

T (t) ≤ f(t) +
6

7
T (t) +

1

7
T (7t/8) ,

where f(t) = O(t log(n)/ log(2t/(log n))). Equivalently, T (t)/7 ≤ f(t) + T (7t/8)/7, and letting
c = 7/8 we have that for any j we can bound

1

7
T (n) ≤ f(n) + f(cn) + f(c2n) + · · ·+ f(cjn) +

1

7
T (cj+1n).

Now notice that we switch to the algorithm in Lemma 5.1 once the number of active sets falls
below n/ log(n). In that case the remaining query complexity is O(n) and hence T (s) ∈ O(n)
for s ≤ n/ log(n). So it remains to bound f(n) + · · ·+ f(cjn) for cj ≥ 1/ log(n). By the definition
of f(t) this is of order

n log(n)

(
1

log(2n/ log n)
+

c

log(2cn/ log n)
+ · · ·+ cj

log(2cjn/ log n)

)
.

Using that cj ≥ 1/ log(n), for 0 ≤ i ≤ j we can bound all denominators by

log(2cin/ log n) ≥ log(2n)− 2 log(log(n)) ∈ Ω(log(n)).

This gives the bound f(n) + · · ·+ f(cjn) ∈ O(n(1 + c + · · · + cj)) ∈ O(n).
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5.3 Edge connectivity certificate

We can easily use the spanning forest algorithm from last section to construct a sparse r-edge
connectivity certificate by following the Nagamochi-Ibaraki approach of packing spanning forests.
This would require O(nr) cut queries. In our edge connectivity algorithm, however, we will first do
a star contraction on the input graph. This yields a contracted multigraph with significantly fewer
vertices (say q ≪ n), and we would like to construct an r-edge connectivity certificate with only
O(rq) queries. This would easily follow from modifying the spanning forest algorithm from the last
section to find a spanning forest of a multigraphs with q vertices using O(q) cut queries. However,
it is not clear whether this is possible.13

In the following theorem we show that it is nevertheless possible to obtain a sparse r-edge
connectivity certificate for a q-vertex contraction of an n-vertex simple graph efficiently, namely
with O(n + rq log(n)/ log(q)) cut queries. A key idea, as in the classic sequential algorithm of
Nagamochi-Ibaraki, is to build the r spanning forests in parallel.

Theorem 5.9 (Formal version of Theorem 2.5). Let G = (V,E) be an n-vertex simple graph, and
let G′ = (V ′, E′) be a contraction of G with q supervertices for q ≥ log2+ε(n) for some ε > 0. There
is a zero-error randomized algorithm that makes O(n+ rq log(n)/ log(q)) cut queries in expectation
and outputs a sparse r-edge connectivity certificate for G′.

Proof. We will make use of Theorem 3.5 and find F1, . . . , Fr such that Fi is a spanning forest of
(V ′, E′ \⋃i−1

j=1 Fj). We will follow the algorithm from Theorem 1.2 to find these r spanning forests
in parallel.

The algorithm proceeds in rounds. We maintain the invariant that each Fi is a collection of

trees F
(i)
1 , . . . , F

(i)
ti

in the graph G′
i = (V ′, E′ \⋃i−1

j=1 Fj). We let S
(i)
1 , . . . , S

(i)
ti

be the partition of V ′

induced by the connected components of the trees in Fi. Each Fi is initialized to be empty, and
thus corresponds to the trivial partition of V ′ by sets of size one. A key property that we maintain

is that the partitions form a laminar family: the partition S
(i+1)
1 , . . . , S

(i+1)
ti+1

is a refinement of the

partition S
(i)
1 , . . . , S

(i)
ti

. This property means that if a (super-)vertex U ∈ S
(r)
j has no edge leaving

S
(r)
j , then U will not have an edge leaving any of S

(r−1)
j , . . . , S

(1)
j either.

The adjacency matrix of the contracted graph G′ is no longer Boolean. To still take advantage
of separating matrices as in Lemma 5.4, we will actually operate on the vertices of V instead of the

(super-)vertices of V ′. To aid in this we use the notation T
(i)
j =

⋃
U∈S(i)

j

U , for all i = 1, . . . , r and

j.

We initialize all v ∈ V as Active. If at some point we discover that v ∈ T
(r)
j satisfies |E(v, T

(r)
j )| =

0 then we change v to Inactive. Indeed, by the aforementioned laminar property we know that

|E(v, T
(i)
j )| = 0 for all i ≤ r as well, and so it will not have an outgoing edge with respect to any

of the forests.
We again proceed in rounds, until the number of active components in Fr has decreased by a

factor of Ω(log n). Let G′
i be the graph G′ with supervertices contracted according to the edges in Fi,

for i = 1, . . . , r at this point of the algorithm. By the laminar property, the number of supervertices
in each of these contracted graphs is at most tr ∈ O(q/ log n). We first complete finding a spanning
forest of G′

1 using the simple spanning forest algorithm Lemma 5.1 with O(q) queries. We then
remove the edges found in completing the spanning forest of G′

1 from G′
2 and complete finding a

spanning forest for G′
2 via the simple spanning forest algorithm with O(q) queries. We continue in

this way removing previous edges found and finding spanning forests for each G′
i for i = 3, . . . , r to

finish finding a sparse r-edge connectivity certificate with O(rq) more queries.

13In particular, the separating matrix machinery encounters additional logarithmic factors in working with the
non-Boolean adjacency matrix of a weighted graph, which seem hard to avoid.
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Let us now describe a generic round k of the algorithm, where we have partitions S
(i)
1 , . . . , S

(i)
ti

for i = 1, . . . , r. In round k we will simulate queries to the graph G where all edges already a part
of F1, . . . , Fr are removed. We let Ek denote this set of edges.

Step 1. This step is very similar to step 1 of the algorithm in Theorem 1.2. For j = 1, . . . , tr we

query |Ek(v, T
(r)
j )| for v ∈ T

(r)
j ∩Active. If |Ek(v, T̄

(r)
j )| = 0 then v becomes Inactive; if |E(v, T̄

(r)
j )| >

0 then v becomes the representative of T
(r)
j and we move on to T

(r)
j+1 without any further queries

in T
(r)
j . The number of queries in this step is O(tr + w) where w is the number of vertices that

become Inactive in this round. Again, over all rounds the contribution to the number of queries
from vertices becoming inactive is O(n).

Step 2. Let t′r ≤ tr be the number of representatives found in the previous step, and let us assume

that these are representatives for the sets T
(r)
1 , . . . , T

(r)
t′r

. For j = 1, . . . , t′r we color each T
(r)
j red or

blue independently at random with equal probability, and give all vertices inside it the same color.

For each red representative v ∈ T
(r)
j we query its number of blue neighbors and let W be the set of

all red representatives where this number is positive. Consider the submatrix M of the adjacency
matrix of G whose rows are labeled by elements of W and columns are labeled by blue vertices.
By Lemma 5.8 with k = 10 for every element of W we can learn the name of a blue neighbor with
O(t′r + t′r log(n)/ log(2t′r/ log(n))) = O(t′r log(n)/ log(2t′r/ log(n))) cut queries.

Via this process we learn |W | edges. We add each of these edges into the spanning forest Fi for
the least value of i where it does not create a cycle. As this set of edges is necessarily cycle free
with respect to Fr, all of the edges can be inserted somewhere, and so the total number of sets in
the r forests goes down by at least |W |. The expected size of |W | is at least t′r/4 as we expect half
of the representatives to be red, and at least half of these to have a neighbor that is blue.

Total number of queries. The number of queries in a round depends on the number of com-
ponents in the last spanning forest Fr. Apart from the queries made discovering inactive vertices,
which we know is O(n) over the course of the entire algorithm, the number of queries made in a
round is O(t′r log(n)/ log(2t′r/ log(n))). Thus we must analyze how t′r decreases over the course of
the algorithm.

Claim 5.10. The number of active components in Fr decreases by a factor of 1/2 after 16r rounds
with probability at least 1/2.

Proof. Fix a round k, and suppose that at the start of round k the number of active components
of Fr is α. Note that then the total number of components over all F1, . . . , Fr is at most rα by the
laminar property of these components. We define two random variables at round k + i. Let Qi be
the random variable denoting the number of active components of Fr at the start of round k + i,
and let Wi be the random variable denoting the number of edges found in round k + i. The key
fact we need from the preceding discussion is that E[Wi] ≥ E[Qi]/4.

The total expected number of edges we find after ℓ rounds is

E

[
ℓ∑

i=1

Wi

]
=

ℓ∑

i=1

E[Wi] ≥
ℓ∑

i=1

E[Qi]/4 .

As every found edge decreases the number of components over all F1, . . . , Fr by one, and there
are at most rα components in total, this expectation is upper bounded by rα. As E[Qi] is a non-
increasing function with i it must therefore be the case that E[Qi] ≤ α/4 for all i ≥ 16r. Therefore,
by Markov’s inequality Pr[Qi ≥ α/2] ≤ 1/2 for all i ≥ 16r.
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We can now bound the total number of queries from the O(t′r log(n)/ log(2t′r/ log(n))) terms in
a similar way as we did in Theorem 1.2. Let T (s) be the cost of this term over the course of the
algorithm starting from when t′r = s. Let f(s) = s log(n)/ log(2s/ log(n)) be the round cost. Then
by Claim 5.10 we have T (s) ≤ 16rf(s) + T (s)/2 + T (s/2)/2. This means T (s) ≤ 32rf(s) + T (s/2).
With c = 1/2 and for any j, the quantity T (q) is hence of the order

32rq log(n)

(
1

log(2q/ log(n))
+

c

log(2cq/ log(n))
+ · · ·+ cj

log(2cjq/ log(n))

)
+ T (cj+1q) .

Once cj+1 ≤ 1/ log(n) we switch to the simpler algorithm, and so T (cj+1q) ∈ O(qr). Hence it re-
mains to bound the preceding sum for cj > 1/ log(n), in which case we can bound log(2ciq/ log(n)) ≥
log(2q/ log2(n)) ∈ Ω(log(q)) for all i ≤ j because by assumption q ≥ log2+ε(n) for some ε > 0. The
sum then becomes O(rq log(n)/ log(q)), finalizing the proof.

For the edge connectivity algorithm we will make use of a Monte Carlo version of Theorem 5.9,
which we state here for reference.

Corollary 5.11. Let G = (V,E) be an n-vertex simple graph, and let G′ = (V ′, E′) be a contraction
of G with q supervertices where q ≥ log2+ε(n) for some ε > 0. Let r ≤ n be a positive integer. There
is a randomized algorithm that makes O(n+rq log(n)/ log(q)) cut queries and with probability 99/100
outputs a sparse r-edge connectivity certificate for G′ and otherwise outputs FAIL.

6 Edge connectivity with O(n log logn) cut queries

6.1 Sparse star contraction

In our edge connectivity algorithm with quantum cut or matrix-vector multiplication queries we
used uniform star contraction—we randomly chose a set of center vertices R by taking each ver-
tex with probability p = Θ(log(n)/δ(G)), and considered the bipartite directed subgraph H =
(V,
−→
cut(V \R)). For every vertex in V \R we then independently at random chose an outgoing edge

in H and contracted the set of selected edges. For these algorithms we could afford to learn the
entire subgraph H when δ(G) ≥ √n within the desired Õ(

√
n) query bound.

In the randomized cut query model it is too expensive to learn H entirely. With our main tool
for learning a bipartite graph, Lemma 5.4, we expect to spend O(nℓ) queries to learn H, where ℓ
is the maximum degree of a vertex in V \R. To achieve our goal of an O(n) cut query algorithm,
therefore, we would like to work with a directed subgraph H where the left hand side has constant
degree.

To get an H where vertices on the left hand side have constant degree in expectation using
star contraction we would have to take p = Θ(1/δ(G)). In this case, however, in expectation Ω(n)
vertices would have no neighbor in R at all, thus doing 1-out contraction on H would not greatly
reduce the number of vertices in the contracted graph.

The solution in this section is to perform sparse star contraction that uses two different sampling
probabilities. First we randomly choose a set of center vertices R by taking each vertex with a
slightly larger probability p = Θ(log(δ(G))/δ(G)) and letting H = (V,

−→
cut(V \ R)). By a Chernoff

bound, with constant probability now only O(n/δ(G)) vertices in V \ R have no outgoing edge in
H. Let S ⊆ V \ R be the set of vertices with positive outdegree in H. We then find a subgraph
H ′ = (S ∪R,A) of H where every vertex in S has an outgoing edge, but the maximum degree of a
vertex in S is constant. In doing a random 1-out contraction on H ′, the resulting contracted graph
G′ will still only have |R|+O(n/δ(G)) ∈ O(n log(δ(G))/δ(G)) vertices, and intuitively we can hope
to learn such an H ′ with only O(n) cut queries as the left hand side has constant degree.
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The tricky part of doing this is to ensure that H ′ is still (α, β)-good for contracting with respect
to a non-trivial minimum cut for some α < 1 and constant β. We find the graph H ′ by using
Recover-k-From-All (Algorithm 5.7), taking k to be a large constant, to learn k neighbors of every
vertex in S. These learned edges define the graph H ′. To review, what happens in Recover-k-From-
All is that we first bucket the vertices in S into buckets with similar degrees in H. For a bucket
with degree approximately r, we then run LearnBucket (Algorithm 5.5) which samples a subset of
R′ ⊆ R by selecting each vertex of R with probability 2k/r. In expectation, each vertex in the
bucket has a constant number of neighbors in R′, as k is a constant. With cut queries we can
easily check which vertices in the bucket were successfully “caught”, where a vertex is caught if its
number of neighbors in R′ is within a constant factor of 2k, its expectation. For all the vertices
caught we then learn all their neighbors in the subsample and add these edges to H ′. We then
repeat this routine until all vertices in the bucket are caught.

From the point of view of a single vertex v ∈ S with degree r in H, its neighbors in H ′ will be its
neighbors in a random subset R′ of R, where each vertex of R is taken with probability p, conditioned
on dR′(v) being close to its expectation. We need to show that this process does not select too
high a fraction of edges from a non-trivial minimum cut even when p = 2k/r for a large constant
k. Specifically, we want to upper bound the probability that cR′(v)/dR′(v) ≥ c(v)/d(v) + 1/10.
This requires a different proof than we used in Lemma 4.6 where p = Ω(log(n)/δ(G)). With p this
large we can argue by a Chernoff bound that with high probability dR′(v) = Ω(log n) and then
again by a Chernoff bound that the probability that cR′(v) is both Ω(log n) and greatly exceeds
its expectation is negligible. When p = 2k/r with constant k, such an argument would only upper
bound the probability that cR′(v)/dR′ (v) ≥ c(v)/d(v) + 1/10 by an absolute constant. This is not
good enough for us because the number of vertices incident on a non-trivial minimum cut can be
Ω(δ(G)), so this does not allow us to use a union bound.

The key to our proof is to show that for p = 2k/r we can upper bound the probability that

cR′(v)/dR′ (v) ≥ c(v)/d(v)+1/10 by a small constant times c(v)
kd(v) . By relating the failure probability

to c(v)/d(v) and taking k to be a large enough constant, we can again use a union bound since we
know that

∑
v∈N(C) c(v)/d(v) ≤ 2. We prove this in Lemma 6.1. Then in Lemma 6.3 we formally

verify that (a small modification of) Recover-k-From-All has the required properties needed to
show that H ′ is indeed (α, β)-good for contracting. We prove these lemmas in the next subsection
before giving a randomized algorithm for edge connectivity making O(n log log n) cut queries in
Section 6.3. To get down to O(n) cut queries one more trick is needed, which is postponed to
Section 7.

6.2 Preparatory lemmas

Lemma 6.1. Let G = (V,E) be a simple n-vertex graph and let C ⊆ E. Let v ∈ N(C) and
k ≥ 10. Choose a set R by putting each vertex of V into R independently at random with probability
p ≥ 2k/d(v). Let 0 < f ≤ pd(v)/2 and g ≥ 2pd(v). Then

Pr
R

[
cR(v)

dR(v)
≥ c(v)

d(v)
+

1

10

∣∣∣ f ≤ dR(v) ≤ g

]
≤ 200

k

c(v)

d(v)
.

The proof is deferred to Appendix A. At a high-level, the idea of the proof is the following. We
already computed ER[ cR(v)

dR(v) | f ≤ dR(v) ≤ g] = c(v)/d(v) in Proposition 4.5. To prove Lemma 6.1

we also compute ER[ cR(v)2

dR(v)2
| f ≤ dR(v) ≤ g]. This allows us to upper bound the variance of

cR(v)/dR(v) by 2c(v)/(kd(v)) in Proposition A.5. We then obtain Lemma 6.1 by Chebyshev’s
inequality.

The next lemma summarizes the state of affairs after choosing the set R of centers using p =
Θ(log(δ(G))/δ(G)).
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Lemma 6.2. Let G = (V,E) be an n-vertex simple graph with minimum degree d ≥ 5 · 106 and let

C be a non-trivial minimum cut of G. Let p = 105 log(d)
d and choose a set R by putting each v ∈ V

into R independently at random with probability p. With probability at least 2/3 over the choice of
R the following conditions will simultaneously hold

1. |R| < 3·105n log(d)
d .

2. |{v ∈ V : dR(v) ≤ 5 · 104 log(d)}| ≤ n
103d

.

3. The graphs H = (V,
−→
cut(V \R)) and G[R] are (3/5, 8)-good for contracting with respect to C.14

Proof. We will upper bound the probability that each item does not happen. A union bound will
then give the lemma.

Item 1 The expected size of R is 105n log(d)/d. As the elements of R are chosen independently
we can apply a Chernoff bound to see that the probability that |R| ≥ 3 · 105n log(d)/d is at most
exp(−105n log(d)/d) < 10−3.

Item 2 For v ∈ V we have ER[dR(v)] ≥ 105 log(d). As the elements of R are chosen independently
we can apply a Chernoff bound to see that the probability over R that dR(v) ≤ 5 · 104 log(d) is at
most exp(−104 log(d)). Therefore the expected number of v with dR(v) ≤ 5 · 104 log(d) is at most
n/(106d), and by Markov’s inequality item (2) holds except with probability at most 10−3.

Item 3 As C is a non-trivial minimum cut, we know that c(v)/d(v) ≤ 1/2 for every v ∈ V .

As we sample with probability p = 105 log(d)
d ≥ 105 log(d)

d(v) we can apply Lemma 6.1 with k =

105 log(d)/2 to obtain PrR[cR(v)/dR(v) ≥ 3/5 | dR(v) > 0] ≤ 400
105 log(d)

c(v)
d(v) for any v ∈ V . Thus

as
∑

c∈N(C) c(v)/d(v) ≤ 2, by a union bound the probability that any v violates this is at most

800/(105 log(d)) ≤ 10−3.
Since E[cR(v)/dR(v) | dR(v) > 0] = c(v)/d(v) by Proposition 4.5, the probability

∑

v:cR(v)>0

cR(v)/dR(v) ≥ 8

is at most 1/4 by Markov’s inequality. This shows that both H and G[R] are (3/5, 8)-good for
contracting with respect to C except with probability at most 1/4 + 10−3.

Summing the three failure probabilities, overall the failure probability is at most 3·10−3 +1/4 <
1/3, giving the lemma.

To learn neighbors in R of vertices in V \R we will use the next lemma. This lemma describes
a worst-case version of the algorithm Recover-k-From-All (Algorithm 5.7) that was used in the
spanning forest algorithm. However, we need to make some further observations about this algo-
rithm, namely that neighbors are learned in a sufficiently random way that we are able to apply
Lemma 6.1.

Lemma 6.3. Let G = (V,E) be an n-vertex simple graph and C ⊆ E. Let h ≥ 10 be an integer.
Let S, T ⊆ V be disjoint subsets such that |S| ≥ |T |1/3 and dT (v) ≥ h for all v ∈ S. Suppose

that H = (S ∪ T,
−→
E (S, T )) is (α, β)-good for contracting with respect to C. There is a randomized

algorithm that makes O(h|S|) cut queries and with probability at most 1/100 outputs FAIL, and

14The fact that G[R] is good for contracting will only be used in the O(n) algorithm in the next section.
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otherwise explicitly outputs a graph H ′ = (S ∪ T,A) with A ⊆ −→E (S, T ) where every vertex in S has
outdegree at least h in H ′ and that with probability at least 1/10 + 200β/h is (α + 1/10, 10β)-good
for contracting with respect to C.

Algorithm 6.4 WC-Recover-k-From-All[G](S, T, k)

Input: Cut query access to a simple graph G = (V,E), two disjoint subsets S, T ⊆ V with
dT (v) ≥ h for all v ∈ S, and a parameter k.

Output: The adjacency list Z of a directed graph H ′ = (S ∪ T,A) with A ⊆ −→E (S, T ) such
that all vertices in S have outdegree at least min{k, h} in H ′.

1: Let A be the adjacency matrix of G and M = A(S, T ).
2: Run Recover-k-From-All[M ](k) (Algorithm 5.7) and terminate with FAIL if it makes more than

100 times its expected number of queries. Otherwise output the adjacency list Z returned.

Proof. We run a worst-case query complexity version of Recover-k-From-All Algorithm 5.7, which
we call WC-Recover-k-From-All[G](S, T, k) (Algorithm 6.4), with k = h. The original Recover-k-
From-All is stated as a zero-error algorithm and a bound is given on its expected number of queries.
Here we want a worst-case bound on the number of queries, so we set a clock on Recover-k-From-All
and terminate, outputting FAIL, if it makes more than 100 times its expected number of queries.
The probability that this happens is at most 1/100. As S, T are disjoint, we can compute xTMy
for any x ∈ {0, 1}|S|, y ∈ {0, 1}|T | with 3 cut queries to G by Corollary 3.7. Thus by Lemma 5.8
the number of queries made is O(h|S|), using the assumption |S| ≥ |T |1/3.

Now suppose that Recover-k-From-All terminates within 100 times its expected number of
queries and let Z be the adjacency list returned. This adjacency list defines the directed graph H ′.
By Lemma 5.8 every list Z[v] has at least k items, thus as we take k = h every vertex in S has
outdegree at least h in H ′. It remains to show that H ′ is (α+ 1/10, 10β)-good for contracting with
respect to C with probability at least 1/10 + 200β/h.

By the “further” statement of Lemma 5.8 the elements in Z[v] are the neighbors of v in a set Q
chosen by placing each vertex u ∈ T into Q with probability at least min{2k/dT (v), 1}, conditioned
on Q having at least f and at most g neighbors of v, for 0 < f ≤ qdT (v)/2 and g ≥ 2qdT (v). By
Proposition 4.5 we know that

EQ

[
cQ(v)

dQ(v)
| f ≤ dQ ≤ g

]
=

cT (v)

dT (v)
.

As H is (α, β)-good for contracting, by linearity of expectation and Markov’s inequality we therefore
have that except with probability at most 1/10 over the choice of Q

∑

v∈S

[
cQ(v)

dQ(v)

]
≤ 10β .

Further as h ≥ 10 and Q satisfies the hypotheses of Lemma 6.1, we can invoke this lemma to
obtain

Pr
Q

[
cQ(v)

dQ(v)
≥ cT (v)

dT (v)
+

1

10
| f ≤ dQ(v) ≤ g

]
≤ 200

h

cT (v)

dT (v)
.

This will hold for all v ∈ S except with probability 200β/h by a union bound. This shows that H ′ is
(α + 1/10, 10β)-good for contracting with respect to C except with probability 1/10 + 200β/h.
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6.3 Algorithm and correctness

We are now ready for the main result of this section.

Theorem 6.5. There is a randomized algorithm that computes the edge connectivity of a simple
graph G with probability at least 2/3 after O(n log log n) cut queries. If δ(G) > log10(n) then only
O(n) cut queries are needed.

Algorithm 6.6 Randomized O(n log log n) cut query edge connectivity algorithm

Input: Cut query access to a simple graph G = (V,E) with adjacency matrix A.
Output: With constant probability outputs the edge connectivity of G.

1: Compute the minimum degree d of G.
2: if d < 5 · 106 then
3: Compute a sparse d-edge connectivity certificate via Corollary 5.11.
4: Return the edge connectivity of this certificate.

5: Choose a random set R by putting each vertex in R independently with probability p =
105 log(d)/d.

6: For each v ∈ V compute dR(v) = |E(v,R \ {v})|.
7: if |R| ≥ 3 · 105n log(d)/d or |{v ∈ V : dR(v) ≤ 5 · 104 log(d)}| > n/(103d) then
8: Return FAIL.
9: S ← (V \R) ∩ {v : dR(v) > 5 · 104 log(d)}.

10: Run WC-Recover-k-From-All[A(S,R)](5·103 ). If this returns FAIL then return FAIL, otherwise
let H ′ be the output.

11: Do a random 1-out contraction on H ′ and let G′ be the resulting multigraph.
12: if d ≤ log10 n then
13: Find a sparse d-edge connectivity certificate F of G′ via Corollary 5.11.
14: Compute a bipartition (Y, Y ) of V ′ corresponding to a minimum cut of F .
15: else
16: Compute a bipartition (Y, Y ) of V ′ corresponding to a minimum cut of G′ via the algorithm

of [MN20] (Theorem 3.10).

17: W ← ∪Wi∈Y Wi.
18: Return min{d, |cut(W )|}.

Proof. The claim follows from Algorithm 6.6. In the first step with n cut queries we compute
the minimum degree d. In line 2 we then handle the small degree case. As λ(G) ≤ d, the edge
connectivity of a sparse d-edge connectivity certificate of G will equal λ(G). This step succeeds
with probability at least 99/100 by Corollary 5.11 and takes O(nd) = O(n) cut queries.

We now assume we are in the d ≥ 5 · 106 case. As can be seen on line 18, the output of the
algorithm is the minimum of d and |cut(W )| for a subset W ⊆ V . Thus if d = λ(G) the algorithm
will always correctly return d.

Let us therefore focus on the case λ(G) < d, and let C be a fixed non-trivial minimum cut of
G. We randomly choose a set R by putting each v into R with probability p = 105 log(d)/d. Note
that p < 1 as we have already handled the small d case. R will satisfy the conditions of Lemma 6.2
with respect to C with probability at least 2/3. We condition on this good event happening for the
rest of the proof. In particular, items 1 and 2 of Lemma 6.2 mean that we will not fail in line 7.

Let S = (V \ R) ∩ {v : dR(v) > 5 · 104 log(d)}. By item 3 of Lemma 6.2 and Proposition 4.3

we know that H = (S ∪ R,
−→
E (S,R)) is (3/5, 8)-good for contracting with respect to C. On line

10 we run the algorithm WC-Recover-k-From-All on the sets S and R with k = 5 · 103. By
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Lemma 6.3 this takes O(n) cut queries. Further, by the same lemma, with probability at least
99/100 this algorithm will not fail, in which case it outputs a directed graph H ′ = (S ∪R,A) with

A ⊆ −→E (S,R), where every vertex in S has outdegree at least 1. Further, as H is (3/5, 8)-good for
contracting, by Lemma 6.3 H ′ will be (7/10, 80)-good for contracting except with probability at
most 1/10 + 1600/(5 · 103) ≤ 1/2. Thus overall the algorithm has succeeded up to this point with
probability at least (2/3) · (99/100) · (1/2) ≥ 3/10.

On line 11 we do a random 1-out contraction on H ′. As H ′ is (7/10, 80)-good for contracting
with respect to C, by Corollary 4.2 we do not contract an edge of C with probability at least
(1/5)110. In this case we will have λ(G′) = λ(G).

Let us compute the number N of supervertices in G′. This is at most |R| + n/(103d) ≤
4 · 105n log(d)/d because for every vertex in S we have contracted an edge connecting it to a vertex
in R, since every vertex in S has an outgoing edge in H ′. Therefore if d ≥ log10 n, the number of
vertices in G′ is O(n/ log9 n) and we can run the minimum cut algorithm of [MN20] (Theorem 3.10)
on G′ on line 16 to compute λ(G′) with O(N log8N) = O(n) cut queries. This algorithm succeeds
with high probability.

If d ≤ log10 n, then we find sparse d-edge connectivity certificate in line 13 using the algo-
rithm from Corollary 5.11. This algorithm correctly outputs a sparse d-edge connectivity certifi-
cate with probability 99/100 and otherwise outputs FAIL. The number of cut queries is O(n +
n log(n) log(d)/ log(n log(d)/d)) = O(n log d) = O(n log log n).

Thus with probability at least (3/10) · (1/5)110 · (99/100) we will have λ(G) = |cut(W )| for the
set W defined on line 17. Therefore by repeating the whole algorithm a sufficiently large constant
number of times and outputting the minimum of |cut(W )| over all sets W produced we can output
the edge connectivity with probability at least 2/3. The cut query complexity is dominated by
line 13 and is O(n log log n). In the case d > log10(n) we avoid doing this step and only make O(n)
cut queries.

7 Edge connectivity with O(n) cut queries

The bottleneck in the algorithm from the previous section is that the contracted graph G′ had
Ω(n log(δ(G))/δ(G)) vertices. We would like to get it down to O(n/δ(G)) so that we can compute
a sparse δ(G)-edge connectivity certificate of G′ with O(n) queries by Corollary 5.11.

The bound on the number of vertices in G′ resulted because we had to choose a set R of
Θ(n log(δ(G))/δ(G)) centers in order to ensure that a sufficient number of vertices had a neighbor
in R. Note, however, that we did not contract any edges inside the induced subgraph G[R]. As R
was chosen randomly, however, each vertex in R has Θ(log(δ(G))) neighbors in R in expectation.
As all but O(n/δ(G)) vertices are connected to a vertex in R, we could further reduce the number
of vertices in G′ by contracting edges in G[R].

We could potentially do this via another round of star contraction inside G[R]: as each vertex
in R has Θ(log(δ(G))) neighbors in R in expectation, we could randomly sample R′ ⊆ R by taking
each vertex of R to be in R′ with probability p′ = log log(δ(G))/ log δ(G). The expected size of
R′ is n log log(δ(G))/δ(G) and with constant probability all but O(n/δ(G)) many v ∈ R have a
neighbor in R′. Following this idea through can give an O(n log log log n) cut query algorithm for
edge connectivity.15 To actually get the number of vertices down to O(n/δ(G)), we follow a different
approach based on 2-out contraction rather than star contraction.

15In fact, repeatedly applying the same argument yields a query complexity O(n log log · · · log n) for any constant
number of log’s.
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7.1 2-out contraction on the centers

We will take advantage of the following lemma shown by Ghaffari, Nowicki, and Thorup about the
number of vertices in a graph after a random 2-out contraction.

Lemma 7.1 ([GNT20, Lemma 2.5]). Let G = (V,E) be a simple n-vertex graph with minimum
degree ℓ. Independently for each v ∈ V choose two outgoing edges {v, u1}, {v, u2} uniformly at
random and add them to a set X. Then with high probability the graph (V,X) has O(n/ℓ) connected
components.

A nice quality of this lemma is that it can also be applied to a subgraph of G. In other words,
if we learn a subgraph H = (V,E′) of G = (V,E) such that all vertices in V have degree at least h
in H then by doing 2-out contraction restricted to edges of H, we can still reduce the number of
vertices in the corresponding contraction of G to O(n/h).

This will be our approach with the induced subgraph G[R]. If we could learn a subgraph
H of G[R] where every vertex has degree Ω(log δ(G)), then by doing 2-out contraction on H we
could reduce the number of vertices in the contraction of G[R] by a log δ(G) factor, i.e. down to
O(n/δ(G)). Furthermore, using the algorithm WC-Recover-k-From-All with k = log δ(G) we can
hope to learn such a subgraph with O(n log2(δ(G))/δ(G)) = O(n) cut queries.

A direct obstacle to this plan is that G[R] can have Ω(n/δ(G)) many vertices with o(log δ(G))
neighbors in R. Luckily, we can deal with this by slightly generalizing Lemma 7.1. We show that
if there is a degree threshold h such that only O(n/h) vertices have degree less than h, then after
2-out contraction the contracted graph still has only O(n/h) supervertices.

While this appropriately reduces the size of the contracted graph, a second obstacle remains:
we have to ensure that we do not contract any edge of a non-trivial minimum cut. This is again
where the randomness properties of WC-Recover-k-From-All shown in Lemma 6.3 come in handy.
Using this lemma we will show that we can explicitly learn a directed subgraph H = (R,A) of G[R]
such that (i) all but O(n/δ(G)) vertices have degree at least h in H, and (ii) H is (α, β)-good for
contracting with respect to a non-trivial minimum cut for some α < 1 and constant β. We show
how to do this in Lemma 7.3 below.

As we view H as a directed graph, we also need to generalize Lemma 7.1 to this case, where
we sample only from outgoing edges, not incoming ones. Both generalizations are captured in the
following lemma. The proof follows the original proof of [GNT20] with minor modifications, and
we defer it to Appendix B. Similar to Lemma 7.1, this lemma also applies when H = (V,A) is a
subgraph of a larger graph G = (V,E).

Lemma 7.2 (cf. [GNT20, Lemma 2.5]). Let H = (V,A) be an n-vertex directed graph such that
all but τ vertices have out-degree at least ℓ ≥ 4. Independently for each v ∈ V choose two outgoing
edges (v, u1), (v, u2) uniformly at random and add them to a set X. Then with high probability the
graph (V,X) has at most τ + 2n/ℓ weakly connected components.

Next we give the algorithm based on WC-Recover-k-From-All that we will use to build the
directed subgraph H of G[R] on which we will perform the 2-out contraction.

Lemma 7.3. Let G = (V,E) be an n-vertex simple graph and C ⊆ E. Suppose that G is (α, β)-
good for contracting with respect to C. Let h ≥ max{1500β, 35} be such that for all but τ vertices
in v ∈ V it holds that d(v) ≥ 4h. There is a randomized algorithm that makes O(hn) cut queries
and with probability at most 3/100 outputs FAIL, and otherwise outputs a directed subgraph H of G
where all but τ+n/h vertices in V have outdegree at least h in H. Further, H is (α+1/5, 100β)-good
for contracting with respect to C with probability at least 1/2.
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Algorithm 7.4 LearnSubgraph[G](h)

Input: Cut query access to a simple graph G = (V,E) with adjacency matrix A and a
parameter h such that for all but τ vertices in v ∈ V it holds that d(v) ≥ 8h.

Output: A directed subgraph H of G where all but τ + n/h vertices have outdegree ≥ h.

1: Randomly partition V into two sets V1 and V2 = V \ V1 by putting each vertex independently
at random into V1 with probability 1/2 and otherwise into V2.

2: V ′
1 ← {v ∈ V1 : dV2(v) ≥ h}, V ′

2 ← {v ∈ V2 : dV1(v) ≥ h}.
3: if |V \ (V ′

1 ∪ V ′
2)| > τ + n/h then return FAIL.

4: Run WC-Recover-k-From-All[A(V ′
1 , V2)](h) and WC-Recover-k-From-All[A(V ′

2 , V1)](h). If ei-
ther call returns FAIL then return FAIL. Otherwise, let Z1 and Z2 be the outputs.

5: Return the directed graph H defined by the concatenation of Z1 and Z2.

Proof. The algorithm is given in Algorithm 7.4. Let us first check the probability that we fail on
line 3. We first randomly partition V into two sets V1 and V2 = V \ V1. Let V ′

1 = {v ∈ V1 :
dV2(v) ≥ h} and V ′

2 = {v ∈ V2 : dV1(v) ≥ h}. If v ∈ V1 has d(v) ≥ 4h then the probability that v
is not in V ′

1 is at most exp(−h/4) by a Chernoff bound (Eq. (5)). The same is true for any v ∈ V2,
therefore the expected number of vertices with degree at least 4h that are not in V ′

1 ∪V ′
2 is at most

n exp(−h/4). By Markov’s inequality therefore we have |V \ (V ′
1 ∪ V ′

2)| ≤ τ + n/h except with
probability h · exp(−h/4) ≤ 1/100 as h ≥ 35. Thus the probability that we fail on line 3 is at most
1/100. Checking this condition can be done with O(n) cut queries as we can compute dV2(v) with
a constant number of cut queries, and likewise for dV1(v).

By Proposition 4.5 we have E[cV2(v)/dV2(v) | dV2(v) > 0] = c(v)/d(v) for every v ∈ V1 and
E[cV1(v)/dV1(v) | dV1(v) > 0] = c(v)/d(v) for every v ∈ V2. Thus by Markov’s inequality we have

∑

v∈N(C)∩V ′

1

cV2(v)

dV2(v)
+

∑

v∈N(C)∩V ′

2

cV1(v)

dV1(v)
≤ 10β (9)

except with probability at most 1/10.
Further, by Lemma 6.1 as we sample with probability p = 1/2 we can apply Lemma 6.1 with

k = h together with a union bound to obtain that except with probability at most 200β/h we have

cV2(v)

dV2(v)
≤ c(v)

d(v)
+

1

10
for all v ∈ V ′

1 ,

cV1(v)

dV1(v)
≤ c(v)

d(v)
+

1

10
for all v ∈ V ′

2 .

(10)

To summarize, Eq. (9) and Eq. (10) show that the graph F = (V,
−→
E (V ′

1 , V2) ∪ −→E (V ′
2 , V1)) is (α +

1/10, 10β)-good for contracting with respect to C except with probability at most 1/10 + 200β/h.
We now condition on this good event that F is (α + 1/10, 10β)-good for contracting.

The goal now is to learn h neighbors in V2 of every vertex in V ′
1 , and vice versa, which we do

by running WC-Recover-k-From-All[A(V ′
1 , V2)](h) and WC-Recover-k-From-All[A(V ′

2 , V1)](h). The
total number of queries is O(hn) by Lemma 6.3. If either call outputs FAIL, then we abort and
output FAIL, which happens with probability at most 2/100. We now condition on both of these
calls being successful and let Z1 and Z2 be the adjacency lists returned. The directed subgraph
H is defined by the concatenation of Z1 and Z2. When these calls do not fail, every vertex of H
with positive outdegree has outdegree at least h, as each list in Z1, Z2 has at least h neighbors by
Lemma 6.3. Thus the number of vertices with zero outdegree in H is at most |V \(V ′

1∪V ′
2)| ≤ τ+n/h

assuming we did not FAIL in line 3. In summary, with probability at most 3/100 the algorithm
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outputs FAIL, and otherwise it always returns a directed subgraph H where all but at most τ +n/h
vertices have outdegree at least h. Further, item 3 of Lemma 6.3 together with the fact that F is
(α + 1/10, 10β)-good for contracting tells us that H is (α + 1/5, 100β)-good for contracting with
respect to C except with probability at most 1/10+200β/h. Thus overall, H will be (α+1/5, 100β)-
good for contracting with respect to C except with probability at most 2/10 + 400β/h ≤ 1/2.

7.2 Algorithm and correctness

We are now ready to give a randomized O(n) cut query algorithm for edge connectivity.

Theorem 7.5. There is a randomized algorithm that computes the edge connectivity of a simple
graph with probability at least 2/3 after O(n) cut queries.

Algorithm 7.6 Randomized O(n) cut query edge connectivity algorithm

Input: Cut query access to a simple graph G = (V,E) with minimum degree d < log10(n).
Output: With constant probability output the edge connectivity of G.

1: Compute the minimum degree d of G.
2: if d < 5 · 106 then
3: Compute a sparse d-edge connectivity certificate via Corollary 5.11.
4: Return the edge connectivity of this certificate.

5: Choose a random set R by putting each vertex into R independently at random with probability
p = 105 log(d)/d.

6: For each v ∈ V compute dR(v) = |E(v,R \ {v})|.
7: if |R| ≥ 3 · 105n log(d)/d OR |{v ∈ V : dR(v) ≤ 5 · 104 log(d)}| > n/(103d) then
8: Return FAIL.
9: Let S = (V \R) ∩ {v : dR(v) > 5 · 104 log(d)} and A be the adjacency matrix of G.

10: Run WC-Recover-k-From-All[A(S,R)](5·103 ). If this returns FAIL then return FAIL, otherwise
let H ′ be the output.

11: Run LearnSubgraph[G[R]](h) (Algorithm 7.4) with h = 5 ·104 log(d). If this returns FAIL then
return FAIL, otherwise let H be the output.

12: Take a random 1-out sample of H ′ and a random 2-out sample of H and contract all selected
edges in G. Let G′ be the resulting multigraph.

13: Return FAIL if G′ has more than n/(103d) + 3|R|/h vertices.
14: Find a sparse d-edge connectivity certificate F of G′ via Corollary 5.11.
15: Compute a bipartition (Y, Y ) of V ′ corresponding to a minimum cut of F .
16: W ← ⋃

Wi∈Y Wi.
17: Return min{d, |cut(W )|}.

Proof. We can restrict to the case that the minimum degree δ(G) ≤ log10 n because an O(n) cut
query algorithm for the case of larger degree is already handled by Theorem 6.5. The algorithm is
given in Algorithm 7.6. As argued in the proof of Algorithm 6.6, the algorithm will always return
correctly when the edge connectivity is achieved by a trivial cut. Let us therefore analyze the case
that the edge connectivity is achieved by a non-trivial cut C.

The algorithm is identical to Algorithm 6.6 until line 11. From the proof of Theorem 6.5, at
this point of the algorithm with probability at least 3/10 we will be in the state where

• The set R satisfies the three conditions of Lemma 6.2.
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• The call to WC-Recover-k-From-All did not fail, and the returned graph H ′ is (7/10, 80)-good
for contracting with respect to C.

Next, on line 11 we run Algorithm 7.4 on G[R] with h = 5 · 103 log(d). This takes O(n log2(d)/d) =
O(n) cut queries by Lemma 7.3. Note that by item 2 of Lemma 6.2, at most n/(103d) vertices in R
have dR(v) < 8h < 5 · 104 log(d), thus we can take τ = n/(103d) in Lemma 7.3. Further, by item 3
of Lemma 6.2 G[R] is (3/5, 8)-good for contracting with respect to C. With β = 8 our choice of h
satisfies h ≥ 1500β as we are in the case d ≥ 5 · 106. Thus we are in a position to apply Lemma 7.3,
which tells us that with probability at least 1/2 the directed subgraph H of G[R] returned by the
algorithm will be (7/10, 800)-good for contracting with respect to C. Let us assume this is the case,
and the probability the algorithm reaches this good state is at least (3/10)(1/2) = 3/20. Further
the number of vertices in R with outdegree less than h in H is at most n/(103d) + |R|/h.

As argued in the proof of Algorithm 6.6, the probability we do not select an edge of C in taking
a 1-out sample of H ′ is at least (1/5)110. As H is (7/10, 800)-good for contracting with respect to
C, by Proposition 4.1 the probability that we do not select an edge of C in taking a random 2-out
sample of H is at least (3/10)2286 . We apply Lemma 7.2 with degree threshold h to see that with
high probability (for concreteness say 99/100) the number of vertices in the contraction of G[R]
by the edges in the 2-out sample will be the number of vertices with outdegree < h, which is at
most n/(103d)+ |R|/h, plus 2|R|/h. In particular, we do not fail in line 13 with probability at least
99/100. Overall, we are now in the good case that all steps of the algorithm have been successful
with probability at least (3/20) · (1/5)110 · (3/10)2286 · (99/100), and G′ has at most 7n/d vertices.

Finally, we find a sparse d-edge connectivity certificate F of G′. By Corollary 5.11 this succeeds
with probability at least 99/100 and takes O(n+ n log(n)/ log(n/d)) queries, which is O(n) overall
as d < log10 n. Hence with probability at least (5/24) · (1/5)110 · (3/10)2286 · (99/100)2 we will
correctly output the edge connectivity on line 17. As we never output a value that is less than the
edge connectivity, we can repeat the whole algorithm a sufficiently large but constant number of
times and output the minimum of the values returned to boost the success probability to 2/3.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreement No 715672.
Danupon Nanongkai and Sagnik Mukhopadhyay were also supported by the Swedish Research
Council (Reg. No. 2015-04659 and 2019-05622). Troy Lee is supported in part by the Australian Re-
search Council Grant No: DP200100950. Pawe l Gawrychowski is partially supported by the Bekker
programme of the Polish National Agency for Academic Exchange (PPN/BEK/2020/1/00444).

References

[ACK21] Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and
single element recovery via linear and OR queries. In Proceedings of the 29th Annual
European Symposium on Algorithms (ESA ’21), volume 204 of LIPIcs, pages 7:1–7:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[AD21] Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global mini-
mum cuts. In Proceedings of the 4th Symposium on Simplicity in Algorithms (SOSA
’21), pages 172–180. SIAM, 2021.

46



[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via
linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA ’12), pages 459–467. SIAM, 2012.

[AL21] Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries.
CoRR, abs/2109.02115, 2021.
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[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer,
1988.

[GMW20] Pawe l Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O(m log2 n)
time. In Proceedings of the 47th International Colloquium on Automata, Languages, and
Programming (ICALP ’20), volume 168 of LIPIcs, pages 57:1–57:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In Proceedings of the 31st ACM-SIAM
Symposium on Discrete Algorithms (SODA ’20), pages 1260–1279. SIAM, 2020.

[GPRW20] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New
query lower bounds for submodular function minimization. In Proceedings of the 11th
Innovations in Theoretical Computer Science Conference (ITCS ’20), volume 151 of
LIPIcs, pages 64:1–64:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Har08] Nicholas J. A. Harvey. Matchings, matroids and submodular functions. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2008.

[HMT88] András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity
of graph properties. In Proceedings of the 20th Annual ACM-SIGACT Symposium on
Theory of Computing (STOC ’88), pages 186–191. ACM, 1988.

[HRRS19] Yassine Hamoudi, Patrick Rebentrost, Ansis Rosmanis, and Miklos Santha. Quantum
and classical algorithms for approximate submodular function minimization. Quantum
Information & Computation, 19(15&16):1325–1349, 2019.

[HRW20] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. SIAM Journal on Computing, 49(1):1–36, 2020.

[IFF01] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–777,
2001.
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exponential, the Lanczos method and an Õ(m)-time spectral algorithm for balanced
separator. In Proceedings of the 44th Annual ACM-SIGACT Symposium on Theory of
Computing Conference (STOC ’12), pages 1141–1160. ACM, 2012.

[Que98] Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical Pro-
gramming, 82:3–12, 1998.

[RS95] Ran Raz and Boris Spieker. On the “log rank”-conjecture in communication complexity.
Combinatorica, 15(4):567–588, 1995.

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact mini-
mum cuts without knowing the graph. In Proceedings of the 9th Innovations in Theoret-
ical Computer Science Conference (ITCS ’18), volume 94 of LIPIcs, pages 39:1–39:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Rud91] Walter Rudin. Functional Analysis. McGraw-Hill, 1991.

[Sar21] Thatchaphol Saranurak. A simple deterministic algorithm for edge connectivity. In
Proceedings of the 4th Symposium on Simplicity in Algorithms (SOSA ’21), pages 80–
85. SIAM, 2021.

[Sch00] Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355,
2000.

[SW97] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the 30th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’19), pages 2616–2635. SIAM, 2019.

[SWYZ21] Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix
through matrix-vector products. ACM Transactions on Algorithms (TALG), 17(4):1–
19, 2021.

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-
case update time. In Proceedings of the 49th Annual ACM-SIGACT Symposium on
Theory of Computing (STOC ’17), pages 1130–1143, 2017.

[Zel11] Mariano Zelke. Intractability of min- and max-cut in streaming graphs. Information
Processing Letters, 111(3):145–150, 2011.

A Proof of Lemma 6.1

Throughout this appendix we will use the following notation. Let 0 < c < d be positive integers.
Let X1, . . . ,Xc, Z1, . . . , Zd−c be independent and identically distributed Bernoulli random variables
that are 1 with probability p. Let X =

∑c
i=1Xi and Y =

∑c
i=1 Xi +

∑d−c
i=1 Zi. Note that X ∼

B(c, p), Y ∼ B(d, p) are both binomial random variables.
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Although the most of the statements in this appendix will be purely probabilistic, one can keep
in mind the following scenario. We have a graph G = (V,E) and a subset of edges C. Say that a
vertex v ∈ V had degree d and has c edges of C incident to it. We then sample a subset of edges
incident to v by independently taking each edge with probability p. Xi = 1 represents the event
that the ith edge of C incident to v is selected, and Zi = 1 the event that the ith non-edge of C
incident to v is selected. Then X =

∑c
i=1 Xi is the random variable for the total number of edges

of C incident to v selected and Y = X +
∑d−c

i=1 Zi is the random variable for the total number of
edges incident to v selected.

Proposition A.1.

E[X2 | Y = b] =
cb

d
+

c(c− 1)b(b− 1)

d(d − 1)
.

Proof. By linearity of conditional expectation, E[X2 | Y = b] =
∑

i,j E[XiXj | Y = b]. In the proof

of Proposition 4.5 we have already computed that E[X2
i | Y = b] = E[Xi | Y = b] = b/d. Recall

that Xi and Zj are identically distributed, so also E[Z2
i | Y = b] = b/d. For the same reason, the

following expected values are all equal (i) E[XiXj | Y = b] for i 6= j, (ii) E[ZiZj | Y = b] for i 6= j,
(iii) E[XiZj | Y = b] for any i, j. We then obtain the following for any i 6= j:

E[Y 2 | Y = b] = b2

E[(X1 + . . . + Xc + Z1 + . . . + Zd−c)
2 | Y = b] = b2

E[d(d− 1)XiXj + dX2
i | Y = b] = b2

=⇒ E[XiXj | Y = b] =
b(b− 1)

d(d − 1)
.

There are c terms of the form E[X2
i | Y = b] and c(c− 1) terms of the form E[XiXj | Y = b], giving

the proposition.

Definition A.2 (Conditional first inverse moment). Let d be a positive integer and f, g be integers
with 0 < f ≤ g ≤ d. Let p ∈ (0, 1]. Let Y ∼ B(d, p) be a binomial random variable. Define
Q(d, p, f, g) = E[1/Y | f ≤ Y ≤ g].

Proposition A.3. Let 0 < f ≤ g ≤ d. Then

E[X2/Y 2 | f ≤ Y ≤ g] =
c(c − 1)

d(d− 1)
+

(
c

d
− c(c − 1)

d(d− 1)

)
Q(d, p, f, g) .

Proof. Let γ = Pr[f ≤ Y ≤ g]. Then we have

E[X2/Y 2 | f ≤ Y ≤ g] =
1

γ

g∑

b=f

1

b2

c∑

a=0

a2 Pr[X = a, Y = b]

=
1

γ

g∑

b=f

Pr[Y = b]

b2
E[X2 | Y = b]

=
1

γ

g∑

b=f

Pr[Y = b]

(
c

bd
+

c(c − 1)(b− 1)

d(d− 1)b

)

=
c(c− 1)

d(d− 1)
+

(
c

d
− c(c − 1)

d(d− 1)

)
E[1/Y | f ≤ Y ≤ g] .
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In order to apply Proposition A.3 we will need to upper bound Q(d, p, f, g). Calculating the
inverse moments of a truncated binomial distribution is a well-studied problem and precise asymp-
totic estimates are known, see e.g. [MW99]. For our purposes a looser estimate suffices and we opt
for a simple self-contained proof adapted from [CS72].

Proposition A.4. Let Y ∼ B(d, p) and let 0 < f ≤ g be such that Pr[f ≤ Y ≤ g] ≥ 1/2. Then
Q(d, p, f, g) ≤ 4

pd .

Proof. We have

Q(d, p, f, g) =
1

Pr[f ≤ Y ≤ g]

g∑

b=f

Pr[Y = b]

b

≤ 1

Pr[f ≤ Y ≤ g]

d∑

b=1

1

b
pb(1− p)d−b

(
d

b

)

≤ 2

Pr[f ≤ Y ≤ g]

d∑

b=1

1

b + 1
pb(1− p)d−b

(
d

b

)

=
2

Pr[f ≤ Y ≤ g]

1

p(d + 1)

d∑

b=1

pb+1(1− p)d−b

(
d + 1

b + 1

)

≤ 2

Pr[f ≤ Y ≤ g]

1

p(d + 1)

≤ 4

pd
.

Proposition A.5. Let X,Y be the random variables defined in Proposition A.1. Then

Var[X/Y | f ≤ Y ≤ g] ≤ Q(d, p, f, g)
c

d
.

Proof. For convenience let Q = Q(d, p, f, g). We have

Var[X/Y | f ≤ Y ≤ g] = E[X2/Y 2 | f ≤ Y ≤ g]− E[X/Y | f ≤ Y ≤ g]2

=
c(c− 1)

d(d− 1)
+

(
c

d
− c(c− 1)

d(d− 1)

)
Q− c2

d2

=
c

d
(d− c)

(
Q

d− 1
− 1

d(d− 1)

)

≤ Q
c

d
.

We can now derive a more general version of Lemma 6.1.

Lemma A.6. Let G = (V,E) be a simple n-vertex graph and let C ⊆ E. Let v ∈ N(C) and
k ≥ 10. Choose a set R by putting each vertex of V into R independently at random with probability
p ≥ 2k/d(v). Let 0 < f ≤ pd(v)/2 and g ≥ 2pd(v). Then for any α > 0

Pr
R

[
cR(v)

dR(v)
≥ c(v)

d(v)
+ α

√
2

k

∣∣∣ f ≤ dR(v) ≤ g

]
≤ 1

α2

c(v)

d(v)
.

Proof. Let c = c(v) and d = d(v). Let us first upper bound Q(d, p, f, g) with p ≥ 2k/d. As k ≥ 10
by a Chernoff bound (the “in particular” of Lemma 3.3) the probability that R contains between
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f and g neighbors of v is at least 1/2. Thus we can apply Proposition A.4 to see that Q ≤ 2/k.
Therefore by Proposition A.5 we have Var[cR(v)/dR(v) | f ≤ dR(v) ≤ g] ≤ 2c/(kd). We can
therefore apply Chebyshev’s inequality to find

Pr
R

[
cR(v)

dR(v)
≥ c

d
+ t

√
2c

kd

∣∣∣ f ≤ dR(v) ≤ g

]
≤ 1

t2
.

Taking t = α
√

d(v)/c(v) gives the lemma.

Lemma 6.1 follows as an easy corollary by taking α = (1/10)
√

k/2.

Lemma 6.1. Let G = (V,E) be a simple n-vertex graph and let C ⊆ E. Let v ∈ N(C) and
k ≥ 10. Choose a set R by putting each vertex of V into R independently at random with probability
p ≥ 2k/d(v). Let 0 < f ≤ pd(v)/2 and g ≥ 2pd(v). Then

Pr
R

[
cR(v)

dR(v)
≥ c(v)

d(v)
+

1

10

∣∣∣ f ≤ dR(v) ≤ g

]
≤ 200

k

c(v)

d(v)
.

B Contraction lemma

To prove Lemma 7.2 we will closely follow the proof of the bound on the number of vertices after
2-out contraction given in [GNT20, Lemma 2.5]. To this end, we need the following definition and
lemma.

Definition B.1 (Stochastic domination). Let X and Y be two random variables not necessarily
defined on the same probability space. We say that Y stochastically dominates X, written X � Y ,
if for all λ ∈ R we have Pr[X ≤ λ] ≥ Pr[Y ≤ λ].

Lemma B.2 ([Doe20, Lemma 1.8.7]). Let X1, . . . ,Xn be arbitrary binary random variables, and
let Y1, . . . , Yn be independent binary random variables. If Pr[Xi = 1|X1 = x1, . . . ,Xi−1 = xi−1] ≤
Pr[Yi = 1] for all i = 1, . . . , n and all x1, . . . , xi−1 ∈ {0, 1} with Pr[X1 = x1, . . . ,Xi−1 = xi−1] > 0
then

n∑

i=1

Xi �
n∑

i=1

Yi .

We are now ready to prove the following.

Lemma 7.2 (cf. [GNT20, Lemma 2.5]). Let H = (V,A) be an n-vertex directed graph such that
all but τ vertices have out-degree at least ℓ ≥ 4. Independently for each v ∈ V choose two outgoing
edges (v, u1), (v, u2) uniformly at random and add them to a set X. Then with high probability the
graph (V,X) has at most τ + 2n/ℓ weakly connected components.

Proof. We will prove the theorem by considering adding edges to E′ in a specific order given by
Algorithm B.3. In this algorithm we maintain a set P of processed vertices, a set A of active
vertices, and a set S of sampled vertices. We use the notation A(v) = {u ∈ V : (v, u) ∈ E} and
u ∈R A(v) to denote choosing an element of A(v) uniformly at random.
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Algorithm B.3 Procedure to add sampled edges

1: E′ = ∅
2: P = {v ∈ V : outdeg(v) < ℓ}
3: while P 6= ∅ do
4: Select v ∈ P
5: A ← {v},S ← ∅
6: pflag← 0
7: while A \ S 6= ∅ do ⊲ A run of this while loop is called a phase
8: Select v ∈ A \ S
9: S ← S ∪ {v}

10: Sample u1, u2 ∈R A(v)
11: Update A← A∪ {u1, u2} and E′ ← E′ ∪ {{v, u1}, {v, u2}}
12: if u1 ∈ P ∨ u2 ∈ P then
13: pflag← 1

14: P ← P ∪A

Note that A is always a connected via edges in E′. We are interested in the properties of A
when it is added to the set of processed vertices in Line 14. We wish to upper bound the number
of times κ that A is added to P and the following two conditions hold

1. |A| < ℓ

2. pflag = 0

We can upper bound the number of connected components of G′ by τ + n/ℓ + κ. This is because

1. The initial size of P is τ ,

2. If pflag = 1 when A is added to P this means that A is connected to a set of vertices that
has already been processed and hence already counted,

3. The number of sets added where A ≥ ℓ is at most n/ℓ.

The remaining case is where pflag = 0 and A < ℓ, which is counted by κ.
Thus our task is to show that with high probability κ ≤ n/ℓ. To this end, define a random

variable Xi to be 1 if at the end of the ith phase |A| < ℓ and pflag = 0, and 0 otherwise. In other
words, Xi = 1 if and only if the ith phase contributes to increasing κ.

Let us consider the probability that at the end of a phase on line 14 |A| = x and pflag = 0 .
In this case we chose 2x many samples, and exactly x + 1 of these were already in A. Following
Ghaffari, Nowicki, and Thorup [GNT20] we say a sample is caught if it is already in A. The only
fact needed to make the [GNT20] proof go through is that the probability a sample is caught is at
most x−1

ℓ throughout the course of the phase. This holds in our case as P is initialized to have all
vertices of outdegree at most ℓ. Thus if pflag = 0 at the end of a phase then all vertices added to A
during the phase have outdegree at least ℓ and the probability that a sample on line 10 in already
in A is at most x−1

ℓ .

There are
( 2x
x+1

)
many sequences for the placement of the caught samples. Thus overall we can

upper bound the probability that |A| = x by

Px =

(
2x

x + 1

)(
x− 1

ℓ

)x+1

.
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Following the calculation in [GNT20] (displayed equation, bottom of page 7) it follows that

Pr[|A| ≤ ℓ

8e3
] ≤ 8

ℓ3
.

This means that Pr[Xi = 1|X1 = x1 . . . Xi−1 = xi−1] ≤ 8/ℓ3. Now define independent random
variables Yi that take value 1 with probability 8/ℓ3 and 0 otherwise. By Lemma B.2

Pr[
∑

i

Xi > γ] ≤ Pr[
∑

i

Yi > γ] .

As the Yi are independent we can upper bound the probability they exceed their expectation by
a Chernoff bound. We have E[

∑
i Yi] ≤ 8n/ℓ3. Thus for any γ ≥ 8n/ℓ3 and 0 < ε we have by a

Chernoff bound that Pr[
∑

i Yi ≥ (1 + ε)γ)] ≤ exp(− γε2

2+ε).

If n/(2ℓ) ≥ log2(n) then taking γ = n/(2ℓ) (which is at least 8n/ℓ3 as ℓ ≥ 4) and ε = 1
tells us that κ ≤ n/ℓ except with probability exp(− log2(n)/3). If n/(2ℓ) < log2(n) then 8n/ℓ3 ≤
64 log8(n)/n2 and so we can take γ = 8n/ℓ3 and ε = 1/(2γ) to see that κ ≤ 1/2 except with
exponentially small probability.

C Proofs in streaming model

C.1 Space lower bound in explicit vertex arrival setting

In this section, we sketch a proof of the following observation.

Observation 4.13. [Follows from [Zel11]] Any one-pass streaming algorithm computing the edge
connectivity of a simple graph in the explicit vertex arrival setting requires Ω(n2) memory.

For completeness, we describe the reduction of [Zel11] from the Index function problem16 in
the 2-party communication complexity setting to the problem of designing a one-pass streaming
algorithm with o(n2) memory in the edge arrival setting that computes the minimum cut of a given
graph. We then note that the exact same reduction can be implemented even if one considers the
explicit vertex arrival setting, thus proving Observation 4.13.

Formally, in the Index function problem, Alice is given a binary string x of length ℓ, and Bob
receives an index i ∈ [ℓ]. Bob’s goal is to learn the value of xi. A well known result [KNR99] states
that any one-way17 communication protocol that solves the Index function problem requires Ω(ℓ)
bits of communication.

The reduction: Let A be a one-pass streaming algorithm in the edge arrival setting using o(n2)
bits of memory that computes the minimum cut in any given graph G = (V,E) on n vertices. Now,

let x, i be an instance of the Index function problem such that x is of length n2−n
2 , and i ∈ [n

2−n
2 ].

Consider the following communication protocol in which Alice interprets x as the description of a
simple graph G = (V,E) on n vertices, Alice feeds the edges of G to A in an arbitrary order, and
then sends A’s working memory to Bob, along with the degrees of all vertices in G. Bob interprets
i as a pair of vertices a, b for which he wants to know whether (a, b) ∈ E. Bob continues the
execution of A by extending G into a graph G∗ = (V ∗, E∗), V ⊆ V ∗, E ⊆ E∗ as follows. Bob adds
two cliques S, T , each on 3n vertices to the graph G, connects all vertices in T to all the vertices
in the set V \{a, b}, and connects all vertices in S to both a and b. Finally, Bob adds a final vertex
c to the graph and connects it to dG(a) + dG(b)− 1 vertices in T ∪ V \{a, b}.

16[Zel11] refers to the problem as the bit vector probing problem
17A protocol consisting of a single message sent from Alice to Bob.
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Zelke [Zel11] proves that computing the minimum cut in the resulting graph allows Bob to infer
whether (a, b) ∈ E, thus proving the reduction.

Observation C.1. The above reduction can be implemented in the explicit vertex arrival setting.

Proof. We go over all insertions of edges to A and show that they can implemented in the vertex
arrival setting. First, Alice inserts G = (V,E) into A in an arbitrary order, thus if v1, ..., vn is any
arbitrary order on the vertices of G, we can insert the edges of G into A by inserting the vertices
in increasing order along with all incident edges to previously seen vertices. The same trick can be
applied to the insertion of S and T into A with the addition that every s ∈ S inserted is connected
to not only previously seen vertices of S, but also to {a, b}, which are also previously seen vertices,
and similarly for every vertex t ∈ T and the edges connecting t to V \{a, b}. Lastly, c can clearly
be added in the vertex arrival setting as it is the last vertex, so in particular all of its edges are
incident to previously seen vertices.

Observation C.1 combined with the soundness of the reduction proved in [Zel11] concludes the
proof of Observation 4.13.

C.2 Proof of parallel sampling lemma

Lemma 4.15. There is a sampling procedure that operates within Õ(n) space and, given a stream S
of n vertices, outputs Y1, . . . , Yr ⊆ [n] after reading the first |⋃r

i=1 Yi| vertices. The distribution D
on (Y1, . . . , Yr) defined by the procedure admits the following property. For every R1, . . . , Rr ⊆ [n]:

Pr
S∼Sn,(Y1,...,Yr)∼D

[Y1 = R1, . . . , Yr = Rr] =

r∏

i=1

Pr
Xi∼B([n],p)

[Xi = Ri] .

Proof. We begin with designing a procedure that outputs independent samples Y1, . . . , Yr ∼ B([n], p).
The procedure does not operate on a stream of vertices yet, and instead just samples vertices uni-
formly at random when necessary.

Algorithm C.2 Sampling independent subsets

Input: A probability parameter p, number of sets to sample r, and size of the universe n.
Output: Sets Y1, . . . , Yr that are independent samples from B([n], p) .

1: Independently sample X1, . . . ,Xr ∼ B([n], p).
2: For i = 1, . . . , r let ki = |Xi|.
3: Let f1 = k1 and for i = 2, . . . r let fi = |Xi \

⋃i−1
j=1Xj |.

4: Z0 ← ∅.
5: for i = 1, . . . , r do
6: Sample a uniformly random set S1 of size ki − fi from Zi−1.
7: Sample a uniformly random set S2 of size fi from [n] \ Zi−1.
8: Yi ← S1 ∪ S2 and Zi ← Zi−1 ∪ Yi.

9: Output Y1, . . . , Yr.

Proposition C.3. Given input parameters n, p, and r, Algorithm C.2 samples independent and
identically distributed sets Y1, . . . , Yr ∼ B([n], p).

Proof. Let (Y1, . . . , Yr) ∼ A indicate a sample from Algorithm C.2. For any sets R1, . . . , Rr ⊆ [n] we
show that the probability the algorithm outputs R1, . . . , Rr is equal to PrX1,...,Xr∼B([n],p)[X1 = R1∧
· · · ∧Xr = Rr]. We will decompose the latter probability as a product of conditional probabilities.
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The first conditional event we consider is that X1, . . . ,Xr satisfy some basic size and intersection
requirements to be equal to R1, . . . , Rr. Specifically, let S be the event that |Xi| = |Ri| for
i = 1, . . . , r and that |Xi \

⋃i−1
j=1Xj | = |Ri \

⋃i−1
j=1Rj | for i = 2, . . . , r. Then

Pr
X1,...,Xr∼B([n],p)

[X1 = R1 ∧ · · · ∧Xr = Rr]

= Pr
X1,...,Xr∼B([n],p)

[S] · Pr
X1,...,Xr∼B([n],p)

[X1 = R1 ∧ · · · ∧Xr = Rr | S] .

Let S ′ be the analogous event that Y1, . . . , Yr ∼ A satisfy the same size and intersection requirements
of R1, . . . , Rr. Note that by the first 3 lines of the algorithm we have PrX1,...,Xr∼B([n],p)[S] =
Pr(Y1,...,Yr)∼A[S ′]. To prove the lemma it thus suffices to show

Pr
X1,...,Xr∼B([n],p)

[X1 = R1 ∧ · · · ∧Xr = Rr | S] = Pr
(Y1,...,Yr)∼A

[Y1 = R1 ∧ · · · ∧ Yr = Rr | S ′] .

This will follow from showing

1. PrX1,...,Xr∼B([n],p)[X1 = R1 | S] = Pr(Y1,...,Yr)∼A[Y1 = R1 | S ′], and

2. for i = 2, . . . , r

Pr
X1,...,Xr∼B([n],p)

[Xi = Ri | S,Xj = Rj ,1 ≤ j < i]

= Pr
(Y1,...,Yr)∼A

[Yi = Ri | S, Yj = Rj , 1 ≤ j < i] .

Item 1 follows directly as, conditioned on S, X1 is a uniformly random subset of [n] of size |R1|, as
is Y1 conditioned on S ′. Consider now the second item for an arbitrary i. Let W =

⋃i−1
j=1Rj. Let

ki = |Ri| and fi = |Ri \W |. Conditioned on S, we know that |Xi| = ki and |Xi \W | = fi. Thus
subject to the conditional, Xi is the union of a uniformly random chosen set of size fi from [n] \W
and a uniformly random chosen set from W of size ki − fi. Similarly, conditioned on S and that
Yj = Rj for j = 1, . . . , i− 1 so that

⋃i−1
j=1 Yj = W , in the algorithm Yi is defined to be the union of

a uniformly chosen set from [n] \W of size fi and a uniformly random chosen set from W of size
ki − fi. Thus the two sides of the equation in item 2 are equal.

Next, we show how to apply Algorithm C.2 on a stream of vertices. To this end, line 7 is imple-
mented by repeatedly reading subsequent vertices from the given stream S (instead of repeatedly
sampling a vertex uniformly at random from the remaining vertices). As each read vertex is in-
cluded in Yi, after reading the first

⋃r
i=1 Yi vertices we can output the generated subsets Y1, . . . , Yr as

required. It remains to argue that the probability of generating Y1 = R, . . . , Yr = R, over a random
stream S and the random choices made by the algorithm, is equal to

∏r
i=1 PrXi∼B([n],p)[Xi = Ri].

By Proposition C.3, this is the case for the subsets Y1, . . . , Yr generated by Algorithm C.2. Next,
we argue that the probability of the original Algorithm C.2 generating Y1 = R, . . . , Yr = R (over
the random choices of the procedure) is the same as the probability of the modified Algorithm C.2
generating Y1 = R, . . . , Yr = R (over a random stream and the random choices made by the algo-
rithm). This is the case because while the latter samples the next vertex uniformly at random from
the remaining vertices, while the latter read the next vertex from the stream, which for a random
stream is chosen uniformly at random from the remaining vertices.

C.3 Proof of algorithm in complete vertex arrival setting

Theorem 4.16. There is a one-pass streaming algorithm, using Õ(n) memory, that given a simple
graph G = (V,E) in the complete vertex arrival setting, computes the edge connectivity of G with
high probability.
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Proof. Similarly to the case of random vertex arrivals, we run in parallel log(n) independent in-
stances of an algorithm, each of which uses a different estimate d = 2ℓ for the minimum degree
δ(G), with ℓ = 0, 1, 2, . . . , ⌈log(n)⌉ − 1. Each algorithm aborts if it uses more than Õ(n) memory,
and we will show that if ℓ is such that d ≤ δ(G) < 2d then with high probability the corresponding
algorithm will not abort and have correct outcome λ(G). Since we know δ(G) exactly by the end
of the stream (we can keep track of all degrees with Õ(n) memory), we can filter out the correct
outcome at the end of the algorithm.

In the remainder we describe the algorithm for an estimate d on the minimum degree. As
in the case of random vertex arrival, the algorithm attempts uniform star contraction on G with
p = 1200 lnn

d , and in parallel constructs a sparse 2d-edge connectivity certificate on the contracted
graph, so that at the end of the stream we can compute the edge connectivity of this certificate.
We will run r ∈ Θ(log n) parallel repetitions of this. In the ith repetition, we first sample the set Ri

by choosing each vertex with probability p = 1200 lnn
d . Then, we read the vertices from the input

stream. As each vertex v arrives with all of its incident edges, when v /∈ Ri we are able to choose a
uniformly random edge incident on Ri and contract it in G′

i. In parallel, we build a 2d-connectivity
certificate F i

1 ∪ · · · ∪F i
2d of G′

i of G′
i. We summarize the ith parallel repetition in full detail. Recall

that each repetition is aborted as soon as its memory usage exceed Õ(n).

1. Construct Ri by choosing each vertex with probability p = 1200 lnn
d . Initialize F i

1, . . . , F
i
2d as

empty forests and set Ri = ∅. Initialize a mapping ri : V → V to be the identity (through
the stream this will keep track of the contracted vertices).

2. For the jth vertex arrival v with edges e1, ..., eℓ between v to all other vertices, the following
is done:

(a) Uniform star contraction: If v ∈ Ri, do nothing. If v /∈ Ri we consider the set
NRi

(v), i.e., the set of neighbors of v in Ri. If this set is empty, we abort the ith instance.
Otherwise, we pick a uniformly random center w from the center neighborhood NRi

(v)
(if it exists) and set ri(v) = w. This amounts to contracting the edge {v,w}. For each et
among e1, . . . , eℓ, except for the contracted edge which is discarded, change the endpoints
of et = {v, u} to be {ri(v), ri(u)}, discard any self loops. At the end of the stream, the
vertices with the same ri(·) values constitute a vertex in G′

i.

(b) Maintaining of 2d-edge connectivity certificate: For each (relabelled) incident
edge et among e1, . . . , eℓ, add et to F i

k where k is the minimal index for which F i
k ∪ {et}

contains no cycles. If there is no such k, discard the edge.

3. If the repetition did not abort by the end of the stream, we compute the edge connectivity
of the connectivity certificate λi = λ(G′

i) ≥ λ(G).

Finally, we combine the r parallel repetitions by outputting min{δ(G), λ1, . . . , λr}.

Analysis. The analysis is very similar to that of Theorem 4.14, we include it here for completeness.
It is enough to prove the correctness and a Õ(n) memory bound only for the algorithm that has
an estimate d such that d ≤ δ(G) < 2d. To this end, we only need to argue that, with constant
probability, in a single repetition we have |G′| = Õ(n/d) and if λ(G) < δ(G) then λ(G) = λ(G′) (it
is easy to see that we never have λ(G′) < λ(G)).

A single repetition implements uniform star contraction with p = 1200 lnn
d . First, we want to

analyse |G′|. By item 1 of Proposition 4.4, |R| ≤ 2pn except with probability n−400. Next, by
item 2 of Proposition 4.4 and d ≤ d(v), the probability that a vertex in [n] \ R has no neighbor
in R is at most n−6. By a union bound, |G′| = |R| ≤ 2pn = Õ(n/d) except with probability at
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most n−400 + n−5. Second, we want to lower bound the probability that λ(G) = λ(G′), assuming
that λ(G′) < δ(G). Let C be a non-trivial minimum cut of G. By Lemma 4.6, H = (V,

−→
cut(V \R)

is (2/3, 8)-good for contracting with respect to C with probability at least 2/3 over the choice of
R. By Corollary 4.2 performing a random 1-out contraction on H does not contract any edge
of C with probability at least 3−12 by Corollary 4.2. Thus λ(G′) = λ(G) with probability at
least 2/3 · 3−12.

D Reduction from minimum degree to edge connectivity

Here we mention a simple reduction from computing the minimum degree of a simple graph G =
(V,E) to computing the edge connectivity of a graph G′ = (V ′, E′) with |V ′| = 2|V |.

Lemma D.1. Given a simple graph G = (V,E) on n vertices for which we need to find the edge
connectivity, we can construct another simple graph G′ = (V ′, E′) such that:

• The size of the vertex set |V ′| = 2n, and

• the edge connectivity λ(G′) = δ(G) + n.

Proof. The construction of G′ is simple: The vertex set of G′ is V ′ = V ∪K where K is a set of
size n. The edge set E′ = E1 ∪ E2 ∪ E3 constitutes the following three types of edges:

1. Original edges: E1 = E consists of all the original edges of G.

2. Cross edges: E2 = {{u, v} | u ∈ V, v ∈ K} consists of all edges between V and K.

3. Clique edges: E3 = {{u, v} | u 6= v, u, v ∈ K} creates a clique on K.

In simpler words, G′ consists of G and a clique on vertices K with all cross edges present between
V and K.

We can immediately note that, for any v ∈ V , the degree dG′(v) in G′ is dG(V ) + n. For all
vertices v ∈ K, the degree is 2n − 1. Hence a vertex v that has minimum degree in G also has
minimum degree in G′, which is at most 2n − 1.

We now argue that the value of any non-trivial cut in G′ is at least 2n− 1. Let X ⊂ V ′ denote
a side of the cut and let a = |X ∩ V | and b = |X ∩K|. For a non-trivial cut we have a + b > 1 and
we can assume w.l.o.g. that b ≤ n/2 (otherwise consider Xc). Now note that

|cutG′(X)| = |cutG(X ∩ V )|+ |cutK(X ∩K)|+ |E(X ∩ V,K\X)| + |E(V \X,X ∩K)|
≥ |cutK(X ∩K)|+ |E(X ∩ V,K\X)| + |E(V \X,X ∩K)|
= b(n− b) + a(n− b) + (n − a)b.

Now if b = 0 then a > 1 and the right hand side is an > 2n− 1. If b = 1 then a ≥ 1 and the right
hand side is 2n + a(n− 2)− 1 ≥ 2n− 1 assuming n ≥ 2. Finally, if n/2 ≥ b > 1 then we can lower
bound the right hand side by a(n− b) + (n− a)b = nb + a(n− 2b) ≥ nb ≥ 2n.
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