
Almost 3-Approximate Correlation Clustering

in Constant Rounds

Soheil Behnezhad∗ Moses Charikar∗ Weiyun Ma∗ Li-Yang Tan∗

Abstract

We study parallel algorithms for correlation clustering. Each pair among n objects is labeled
as either “similar” or “dissimilar”. The goal is to partition the objects into arbitrarily many
clusters while minimizing the number of disagreements with the labels.

Our main result is an algorithm that for any ε > 0 obtains a (3+ε)-approximation in O(1/ε)
rounds (of models such as massively parallel computation, local, and semi-streaming). This is
a culminating point for the rich literature on parallel correlation clustering. On the one hand,
the approximation (almost) matches a natural barrier of 3 for combinatorial algorithms. On the
other hand, the algorithm’s round-complexity is essentially constant.

To achieve this result, we introduce a simple O(1/ε)-round parallel algorithm. Our main
result is to provide an analysis of this algorithm, showing that it achieves a (3+ε)-approximation.
Our analysis draws on new connections to sublinear-time algorithms. Specifically, it builds on
the work of Yoshida, Yamamoto, and Ito [27] on bounding the “query complexity” of greedy
maximal independent set. To our knowledge, this is the first application of this method in
analyzing the approximation ratio of any algorithm.

∗Department of Computer Science, Stanford University.

ar
X

iv
:2

20
5.

03
71

0v
1

 [
cs

.D
S]

 7
 M

ay
 2

02
2

1 Introduction

We study parallel algorithms for the following correlation clustering problem. The input is a
collection of objects and a complete labeling of the object-pairs as “similar” or “dissimilar”. It
would be convenient to model the labels by a graph G = (V,E) where similar pairs are adjacent
and dissimilar pairs are non-adjacent. The goal is to partition the vertex set V into arbitrarily
many clusters, capturing the labels as closely as possible. Unless G is a collection of vertex-disjoint
cliques, a perfect clustering satisfying all the labels does not exist. A natural objective is thus to
find the clustering that minimizes disagreements1: That is, the number of edges that go across
clusters plus the number of non-adjacent pairs inside the clusters.

In contrast to some other clustering problems such as k-means, k-median, or k-center, correlation
clustering does not require the number of clusters to be pre-specified. This, as well as the fact
that correlation clustering uses information about both similarity and dissimilarity of the pairs in
its output makes it a desirable clustering method for various tasks. Examples of applications of
correlation clustering include image segmentation [22], community detection [26], disambiguation
tasks [21], automated labeling [1, 13], and document clustering [8], among others.

In many of these applications, the input tends to be by orders of magnitude larger than what
a single machine can handle. This has motivated a long and rich body of work studying efficient
parallel algorithms for this problem; see [11, 16, 24, 2, 18, 12, 17, 7] and the references therein.

In this paper, we continue the study of parallel correlation clustering algorithms. Our main
result is that an (almost) 3-approximation can be obtained in constant rounds.

Result 1 (Informal – see Theorem 1.1). For any ε > 0, one can obtain a (3 + ε)-approximation
of correlation clustering in O(1/ε) parallel rounds.

Result 1 is a culminating point for parallel correlation clustering. First, its round complexity is
essentially constant. Second, 3-approximation is a natural target; it remains the best achieved by
any combinatorial correlation clustering algorithm, even sequential ones, that do not solve an LP.

To put our result into perspective, let us first overview the prior work. Throughout this paper,
let n = |V | denote the number of vertices in G, m = |E| denote the number of edges in G, and ∆
denote the maximum degree in G.

1.1 State of Affairs on (Parallel) Correlation Clustering

Sequential algorithms: Correlation clustering was first introduced by Bansal, Blum, and Chawla
[8, 9] who showed that it admits a (large) constant approximation in polynomial time. Several
follow-up works improved the approximation ratio [14, 4, 5, 15]. The current best known is 2.06 by
Chawla, Makarychev, Schramm, and Yaroslavtsev [15], which is obtained by rounding the solution
to a natural LP. It is also known that the problem is APX-hard [14].

Among known combinatorial algorithms the best known approximation is 3. It is achieved by
a surprisingly simple randomized algorithm of Ailon, Charikar, and Newman [4], known as the
Pivot algorithm. It is worth noting that the Pivot algorithm is also useful in LP rounding; for
instance Chawla et al. [15] first modify the input based on the LP solution, then run Pivot on
the resulting graph. The Pivot algorithm iteratively picks a random vertex, clusters it with its

1Another natural objective is to maximize agreements which is “easier” for approximate algorithms [8, 14].

1

Approx Rounds Sublinear
MPC

Semi-
Streaming

Local Reference

3 O(n) X X X Ailon et al. [4, 5]

3 + ε O(log n · log ∆/ε) X X X Chierichetti et al. [16]

3 O(log2 n) X X X Blelloch et al. [11]

3 O(log n) X X X Fischer and Noever [18, 19]

3 O(log ∆ · log logn) X × × Cambus et al. [12]

3 O(log log n) × X × Ahn et al. [2, 3]

701 O(1) X X X Cohen-Addad et al. [17]

105 1 × X × Assadi and Wang [7]

3 + ε O(1/ε) X X X This work.

Table 1: Prior work on low-depth correlation clustering. Here ε > 0 can be made arbitrarily small. See
Section 4 for the formal definition of the models.

remaining neighbors, removes this cluster from the graph, and recurses on the remaining graph. A
slightly paraphrased, but still equivalent, variant of this algorithm reads as follows.

Algorithm Pivot [4]:

• Draw a permutation π of the vertex set V uniformly at random.

• While G has at least one vertex:

– Let v be the vertex in G with the lowest rank in π. Mark v as a pivot.

– Put v and its (remaining) neighbors in a cluster Cv and remove the vertices of Cv from G.

Parallel algorithms: The algorithms noted above are all highly sequential. Even the simple
Pivot algorithm, as stated, may take Ω(n) rounds as it picks only one pivot in each round. This
has led to a rich and beautiful line of work on both parallelizing the Pivot algorithm and also
devising new parallel algorithms from scratch [11, 16, 24, 2, 18, 12, 17, 7]. See Table 1 for an
overview of these results in three models of massively parallel computation (MPC) with sublinear
space, the streaming model with Õ(n) space, and the distributed local model. The formal definition
of these models is not relevant for our discussion in this section, and is thus deferred to Section 4.

Parallelizing Pivot: An early work of [16] was based on the idea of parallelizing Pivot through
picking multiple pivots independently in each round. For the approximation analysis to go through,
it is important for all vertices of each round to have nearly the same chance of getting marked as
pivots. Additionally, since the pivots must be non-adjacent, not too many vertices can be marked
as pivots in parallel, leading to a round-complexity of O(log2 n/ε) for a (3 + ε)-approximation.

Another beautiful line of work [11, 18] on parallelizing Pivot, which is the closest to this
paper in terms of techniques, is based on a parallel implementation of the so-called randomized
greedy maximal independent set algorithm. This algorithm also picks multiple pivots in each round,
but correlates these choices in a way that guarantees exactly the same output as Pivot. In this
algorithm, one first fixes a random permutation π as in Pivot. Then in each round all vertices that
come earlier than their (remaining) neighbors in π are marked as pivots in parallel, and are removed
from the graph along with their neighbors. This repeats over the same permutation π until the
graph becomes empty. It can be shown that the final set of pivots formed this way is exactly equal

2

to the set of pivots found by Pivot over π. But because the decisions across different rounds are
not independent, the parallel round complexity of this algorithm is more complicated to analyze.
Blelloch, Fineman, and Shun [11] were the first to show that this process w.h.p. terminates in
poly log n rounds. Fischer and Noever [18] later improved this to O(log n), which they proved is
the correct bound for this algorithm by providing a matching lower bound of Ω(log n).

Depending on the specific model of computation, the round-complexity of Pivot can be further
improved to sublogarithmic [2, 12], e.g. to O(log log n) in the semi-streaming model [2]. But all
these algorithms still require ω(1) rounds. See Table 1.

Constant Round Parallel Algorithms: An alternative line of work on parallel correlation
clustering focuses on obtaining constant round algorithms [17, 7]. These algorithms do not attempt
to parallelize Pivot. Rather, they are based on the key new insight that for an O(1)-approximation,
it suffices to find clusters that are either singletons or near-cliques. This helps getting around the
intricacies of finding a maximal independent set (as in Pivot) which in turn results in a much faster
round complexity of O(1). The main downside of solutions with only near-cliques and singleton
clusters is that a large approximation is inherent to it (see [17, Remark 3.10] for an example). For
instance, the approximations achieved by [17] and [7] are respectively 701 and 105.

Compared to the two lines of work discussed above on parallel correlation clustering, Result 1
achieves the best of both worlds. Its approximation ratio comes close to the 3-approximation of
the first line of work, and its round-complexity is essentially constant.

1.2 Our Contribution

We introduce a new algorithm r-Pivot which has a parameter r ≥ 1 that adjusts the round-
complexity. It proceeds in the same way as the parallel Pivot discussed above for r rounds, then
we truncate the process and no longer find pivots. As a result, unlike Pivot, not every vertex will
have a pivot among its neighbors. Thus, we have to be careful about how we form the clusters
at the end. For technical reasons, even the vertices that do have pivots among their neighbors
may form singleton clusters in our algorithm. We will discuss the intuition behind this perhaps
counter-intuitive process of forming the clusters later in Section 2.

Algorithm r-Pivot: Our r-round algorithm for correlation clustering.

• Draw a permutation π of the vertex set V uniformly at random.

• Initially every vertex is unsettled.

• For r rounds:

– For any unsettled v ∈ V , mark v as a pivot if π(v) < π(u) for all unsettled u ∈ N(v).

– Mark all pivots and any vertex adjacent to them as settled.

• Every pivot starts a cluster which includes itself. Then for every non-pivot vertex u:

– If there is no pivot in N(u) or if there exists an unsettled vertex w ∈ N(u) whose rank is
smaller than all the pivots in N(u), then u forms a singleton cluster.

– Otherwise u joins the cluster of the minimum rank pivot in N(u).

Notation: Let us denote the cost paid by r-Pivot for parameter r, permutation π, and input
graph G by COSTr-PIV(G, π). We write COSTPIV(G, π) to denote the cost paid by Pivot run on

3

permutation π. Let us also denote by OPT(G) the optimal correlation clustering cost of graph G.

Our main result is that our truncated algorithm r-Pivot achieves almost the same approxima-
tion as the full fledged Pivot algorithm, even if r is a rather small constant:

Theorem 1.1 (Main Technical Result). For any graph G and any r ≥ 1,

Eπ[COSTr-PIV(G, π)] ≤ Eπ[COSTPIV(G, π)] +
8

2r − 1
·OPT(G).

Our proof of Theorem 1.1 is fundamentally different from how the original Pivot algorithm
was analyzed, and is based on a new connection to sublinear time algorithms. We elaborate more
on the key intuitions behind our analysis in Section 2.

Combined with the 3-approximation guarantee of [5] for algorithm Pivot, Theorem 1.1 implies:

Corollary 1.2. For any graph G and any r ≥ 1,

Eπ[COSTr-PIV(G, π)] ≤
(

3 +
8

2r − 1

)
·OPT(G).

Implications: Corollary 1.2 implies that running r-Pivot for r = O(1/ε) suffices for a (3 + ε)-
approximation. This is useful because r-Pivot can be implemented in O(r) rounds of various
models. In particular, we obtain the following results; see Section 4 for models/implementations.

Corollary 1.3 (MPC). For any ε > 0, there is a randomized O(1/ε)-round MPC algorithm that
obtains a (3 + ε)-approximation of correlation clustering. The algorithm requires O(nδ) space per
machine where constant δ > 0 can be made arbitrarily small and requires O(m) total space.

Corollary 1.4 (Streaming). For any ε > 0, there is a randomized O(1/ε)-pass streaming algorithm
using O(n log n) bits of space that obtains a (3 + ε)-approximation of correlation clustering.

Corollary 1.5 (Local). For any ε > 0, there is a randomized O(1/ε)-round local algorithm that
obtains a (3 + ε)-approximation of correlation clustering using O(log n)-bit messages.

Corollary 1.6 (LCA). For any ε > 0, there is a randomized local computation algorithm (LCA)
that obtains a (3 + ε)-approximation of correlation clustering in ∆O(1/ε) · poly log n time/space.

Instance-wise Guarantee: It is worth emphasizing that our approximation guarantee of r-Pivot
in Theorem 1.1 is instance-wise close to what Pivot achieves. That is, if for some input G the
Pivot algorithm obtains an α-approximation where α < 3, then the 3-factors of all corollaries
above for r-Pivot also improve to α for this instance G. This is appealing for two main reasons:

• Practical purposes: If Pivot performs better than its worst-case guarantee on certain input
distributions, then so does r-Pivot.

• Rounding the natural LP in O(1) rounds: As discussed, [15] obtain a 2.06-approximation
by first (locally) modifying the graph based on the LP solution, and then running Pivot on the
modified graph. Thus if we are given this LP solution in any of the models above, we can first
modify the graph (this step is simple and local, so can be done efficiently in all these models)
and then instead of Pivot run r-Pivot on it. Because of the instance-wise guarantee, this also
leads to an (almost) 2.06-approximation, but now in only O(1) rounds.

Future Work: Our work leaves several interesting questions especially in big data models where
there is no direct notion of rounds. See Section 5 for some of these open problems.

4

2 A High-Level Overview of Our Techniques

In this section, we give some high-level intuitions behind both our algorithm and its analysis.

It would be useful to first compare the outputs of Pivot and r-Pivot when both algorithms
are run on the same permutation π. Figure 1 provides such a comparision over an example for
r = 1. We write Cr-PIV and CPIV to denote the output clusters of r-Pivot and Pivot respectively,
and use PPIV and Pr-PIV to denote their pivots respectively.

810

2
1

611
3

12

4

14

7

9

13

5
810

2
1

611
3

12

4

14

7

9

13

5

Figure 1: Comparison of Pivot (left) with r-Pivot (right) for r = 1 over the same permutation π whose
ranks are shown on the vertices. The red vertices are pivots, the blue areas are the clusters, and the gray
vertices are those marked as unsettled by r-Pivot. The red zigzagged edges are those that r-Pivot makes
a mistake for but Pivot does not.

Some Intuition Behind r-Pivot: The final step of r-Pivot, where we form the clusters, is
specifically designed to ensure that Cr-PIV is a refinement of CPIV. That is, each cluster in Cr-PIV is
completely inside a cluster in CPIV (see Figure 1). To achieve this, if some vertex u joins the cluster
of a pivot v ∈ Pr-PIV in r-Pivot, we make sure that u joins the cluster of v in Pivot too. The
unsettled vertices in r-Pivot are precisely defined to guarantee this property. Intuitively, while
any settled vertex has the same pivot status in both Pivot and r-Pivot, unsettled vertices in
r-Pivot may or may not be pivots in Pivot. Now if a vertex u joins the cluster of a neighboring
pivot v in r-Pivot, we make sure that not only v is the lowest rank pivot neighboring u, but that
v’s rank is smaller than all unsettled neighbors of u too. In Figure 1, e.g., even though vertex
12 has an adjacent pivot 9, it decides not to join 9’s cluster because of its unsettled neighbor 3.
Note that 3 indeed ends up being a pivot in Pivot, so this decision was crucial for Cr-PIV to be
a refinement of CPIV. On the other hand, vertex 14 does not join the cluster of 5 because of its
unsettled neighbor 4, but this time 4 is not a pivot in Pivot which clusters 14 and 5 together. In
our analysis, we have to make sure that our criteria which rather aggressively puts the vertices into
singleton clusters does not hurt the approximation ratio of r-Pivot much, compared to Pivot.

Analysis of r-Pivot: To analyze r-Pivot, we couple it with Pivot (over the same π) and bound
the number of vertex pairs that are mistakenly clustered by r-Pivot but correctly clustered by
Pivot. Let X be the set of such pairs. Our key contribution is to show that E |X| = O(OPT(G)/r)
(stated as Lemma 3.1). This is useful because if we run r-Pivot for only r = O(1/ε) steps, then
we only pay an expected extra cost of E |X| ≤ ε ·OPT(G) compared to what Pivot pays, which
is essentially the guarantee of our main Theorem 1.1. Below, we present the key ideas behind how
we prove this upper bound on E |X|.

5

Our first insight is that no pair in X can be a non-edge. Note that the endpoints of any non-edge
in X, by definition of X, should be clustered together in Cr-PIV but separated in CPIV. However,
this would contradict our earlier discussion that Cr-PIV is a refinement of CPIV. Therefore, X is
essentially the set of edges in E whose endpoints are separated by Cr-PIV, but clustered together in
CPIV. In Figure 1, the set X is illustarted by zigzagged red edges.

To show how we relate X to OPT(G), let us first recall a standard framework of the literature
in charging bad triangles. A bad triangle is a triplet of vertices {u, v, w} such that two of the pairs
{u, v}, {u,w}, {v, w} are edges and one is a non-edge. Observe that no matter how the vertices of a
bad triangle are clustered, at least one pair must be clustered incorrectly. Thus, if one finds β edge
disjoint bad triangles in G, then OPT(G) ≥ β. This implies that to show |X| = O(OPT(G)/r),
it suffices to charge α = Ω(r) bad triangles for every edge in X, and guarantee that these |X| · α
bad triangles are all edge disjoint. Instead of a deterministic charging scheme, it would be more
convenient to pick the charged bad triangles randomly. Doing so and by generalizing the same
argument, one can show that instead of full edge disjointness of bad triangles, it suffices to prove
that each vertex pair belongs, in expectation, to at most one charged bad triangle.

Key Idea I – Charging Triangles Far Away: Our charging scheme differs from those in the
literature in that a mistake and the triangle that we charge it to may be far (at distance Ω(r))
from each other. Previous charging schemes were all highly local, in that they charge any mistake
to a bad triangle involving it. For instance, the 3-approximate analysis [5] of Pivot charges any
mistake {u, v} to the bad triangle {u, v, w} where w is the lowest rank pivot in N(u) ∪N(v). It is
impossible to analyze r-Pivot with a local charging schemes. The reason is that a local charging
scheme can be shown to imply a deterministic upper bound of O(n · OPT(G)) on the clustering
cost which, for instance, holds for Pivot and every π. However, this deterministic upper bound
does not hold for r-Pivot which for some pathological permutation may have cost Ω(n2/r) times
OPT(G). For more details about this, see Appendix B.

Key Idea II – Connections to Sublinear Algorithms: As discussed above, in our analysis
we charge the mistakes {u, v} ∈ X to triangles that are far away from u, v. To pick these triangles,
we build on a query process developed originally for sublinear time algorithms [23, 27]. It is not
hard to see that algorithm Pivot marks a vertex v as a pivot iff there is no vertex u adjacent to
v such that π(u) < π(v) and u is a pivot. Therefore, to determine whether a vertex v is a pivot, it
suffices to recursively query whether any of its lower rank neighbors are pivots. The total number
of vertices that are (recursively) explored to answer such queries is known as the query complexity
of random greedy maximal independent set (RGMIS), which is equivalent to the Pivot algorithm.
In a beautiful result, Yoshida, Yamamoto, and Ito [27] showed that in any n-vertex m-edge graph,
an average vertex v has expected query complexity O(m/n). This has been an influential work
in the area of sublinear-time algorithms, where the goal is to explore a small part of the graph
and estimate various global properties of it. In this work, we apply this method to a completely
different context, and use it to analyze the approximation ratio of r-Pivot.

We first propose a natural analog of the vertex query process for pairs of vertices (Section 3.3).
Then to charge a mistake {u, v} ∈ X to a bad triangle, we run this pair query process on {u, v}.
We use {u, v} ∈ X to show that there will be a moment when the stack of recursive calls by the
query process, which will be a path in the graph, has size Θ(r). We then take the first moment
that the stack gets to this size, and charge its last three vertices, which we prove must form a bad
triangle. We then generalize the analysis of [27] in a non-trivial way (particularly by using several
structural properties of the mistakes in X) to bound the number of times each vertex pair is charged,

6

arriving at our final approximation guarantee of Theorem 1.1. We give a more detailed high-level
comparison between our analysis and [27] later in Section 3.5 after formalizing our charging scheme.

Correlation Clustering vs MIS: We finish this section with a brief comparison of correlation
clustering with maximal independent set (MIS). Recall that the set PPIV of the pivots formed by
the Pivot algorithm is an MIS of G. When we truncate parallel Pivot after r rounds, we still have
an independent set Pr-PIV as our pivot-set but it is not necessarily maximal. In light of Theorem 1.1
which shows the clusters started by Pr-PIV, for some r = O(1/ε), are almost as good as the clusters
started by PPIV, it could be interesting to see how Pr-PIV and PPIV compare in size. It might be
natural to go as far as conjecturing that E |Pr-PIV| ≥ (1 − ε) E |PPIV| for r = O(1/ε). But this is
far from the truth. In fact, there are graphs for which E |Pr-PIV| is nΘ(1/r)/r times smaller than
E |PPIV|; see Appendix A. Therefore, it is perhaps surprising that Pr-PIV, while being significantly
smaller than PPIV, is almost as good for starting clusters and approximating correlation clustering.

3 The Analysis

In this section we prove Theorem 1.1 by analyzing the approximation ratio of r-Pivot.

We use CPIV and Cr-PIV to respectively denote the set of clusters returned by Pivot and
r-Pivot. Let X be the set of pairs of vertices {u, v} such that Cr-PIV disagrees with the label
of {u, v} but CPIV agrees with it. In other words, X is the set of pairs for which Cr-PIV pays an
extra cost for, compared to CPIV. We have

COSTr-PIV(G, π) ≤ COSTPIV(G, π) + |X|. (1)

Our plan for proving Theorem 1.1 is to show that the set X has a small expected size. In
particular, the core of our proof is the following bound on X which immediately proves Theorem 1.1.

Lemma 3.1. For any r ≥ 1, Eπ |X| ≤ 8
2r−1 ·OPT(G).

Proof of Theorem 1.1 via Lemma 3.1. By taking expectation over π on both sides of Eq (1) and
applying Lemma 3.1, we get

Eπ[COSTr-PIV(G, π)] ≤ Eπ[COSTPIV(G, π)] + Eπ |X|

≤ Eπ[COSTPIV(G, π)] +
8

2r − 1
·OPT(G).

We prove Lemma 3.1 in the rest of this section.

3.1 Charging Schemes

We first recall a standard framework of the literature in charging bad triangles (see e.g. [5]). We say
three distinct vertices {a, b, c} in V form a bad triangle if exactly two of the pairs {a, b}, {a, c}, {b, c}
belongs to E.

We say an algorithm S is a charging scheme for X, if S charges every pair in X to a bad triangle
of the input. We say S has width w if for every pair of distinct vertices a, b ∈ V , the expected
number of charges to bad triangles involving both a and b is upper bounded by w, where the

7

expectation is taken over π and the randomization of S. We note that a triangle can be charged
multiple times for different mistakes, but all of these charges must be counted in analyzing the
width of the charging scheme. The following lemma shows that one can bound the expected size
of X in terms of the width of a charging scheme:

Lemma 3.2. If there exists a charging scheme S for X that has width w, then

Eπ[|X|] ≤ w ·OPT(G).

Lemma 3.2 is a standard result in the framework of charging costs to bad triangles. For com-
pleteness, we provide a proof in Appendix C.

Therefore, to prove Lemma 3.1, our plan is to design a charging scheme for X that has width
8

2r−1 for any r ≥ 1. We define and analyze our charging scheme in Section 3.4. To that end,
we first give a characterization of the pairs in X by comparing the clusterings CPIV and Cr-PIV in
Section 3.2. Then in Section 3.3, we associate bad triangles to the pairs in X to be charged.

3.2 Characterization of Pairs in X

In this subsection, we introduce some notations for the clusterings CPIV and Cr-PIV returned by
Pivot and r-Pivot respectively. We show that Cr-PIV is a certain refinement of CPIV (Claim 3.5),
and that all pairs in X are edges in the graph (Claim 3.6). This leads to our characterization of the
pairs in X (Lemma 3.8), which singles out an unsettled vertex with small rank in the neighborhood
of each pair in X.

Throughout this subsection, we fix a permutation π over V .

Definition 3.3 (Pivot sets). Let PPIV and Pr-PIV to respectively denote the set of pivots marked
by Pivot and r-Pivot both run on the same permutation π.

Clearly, Pr-PIV ⊆ PPIV. Moreover, every cluster in CPIV contains a unique pivot, and every
cluster in Cr-PIV that is not singleton contains a unique pivot.

Definition 3.4 (Pivot of a vertex). For every v ∈ V , let pv ∈ PPIV denote the pivot of the cluster
in CPIV that contains v. We say that pv is the pivot of v in Pivot.

Note that pv = v if and only if v ∈ PPIV. Moreover, π(pv) ≤ π(v) and pv is the vertex in
(N(v)∪ {v})∩PPIV with minimum rank under π. Our next claim shows that the clustering Cr-PIV

refines CPIV in a particular way. See Figure 1.

Claim 3.5. For any cluster C in CPIV, if v is the pivot of C, then C is partitioned by distinct
clusters C ′1, . . . , C

′
k in Cr-PIV, i.e.

C = C ′1 ∪ C ′2 ∪ · · ·C ′k,

such that v ∈ C ′1 and the remaining clusters C ′2, . . . , C
′
k are all singletons. In particular, any cluster

C ′ in Cr-PIV is contained in a cluster in CPIV.

Proof. We first show that any cluster C ′ ∈ Cr-PIV that intersects C but does not contain the pivot
v of C must be singleton. Suppose otherwise that C ′ is not singleton. Then C ′ contains a unique
pivot v′ ∈ Pr-PIV, which must be different from v since v 6∈ C ′. In particular, v′ cannot be contained
in C since otherwise C would contain two different pivots v and v′ in PPIV. Now take a vertex

8

u ∈ C ∩ C ′, which must be different from both v and v′. Note that v, v′ ∈ N(u) and v = pu.
Thus we have π(v) < π(v′). Then, in r-Pivot, either v is identified as a pivot, in which case u
would prefer to join the cluster of v in the last step, or v is unsettled, in which case u would form
a singleton cluster. Either contradicts that u joins the cluster of v′ in Cr-PIV.

It remains to show that the cluster C ′1 ∈ Cr-PIV that contains v is contained in C. Suppose
otherwise that there exists a vertex u ∈ C ′1 \ C. Then u is contained in a cluster C ′′ ∈ CPIV other
than C, and the pivot v′′ of C ′′ is different from v. Since C ′1 already contains the pivot v, we have
v′′ 6∈ C ′1. By the first part of the proof applied to C ′′, we see that C ′1 must be a singleton cluster
that only contains u, which is a contradiction. Therefore, no such u exists and C ′1 ⊆ C.

As a consequence, we show that all pairs in X are edges in the graph:

Claim 3.6. X ⊆ E.

Proof. Suppose otherwise that there exists a pair {u, v} ∈ X \ E. Since Cr-PIV disagrees with the
label of {u, v}, u and v must belong to the same cluster C ′ ∈ Cr-PIV. But by Claim 3.5, C ′ must
be contained in a cluster C ∈ CPIV, which implies that CPIV also disagrees with the minus label of
{u, v}. This is a contradiction.

Therefore, for {u, v} ∈ X, since CPIV agrees with the plus label of {u, v}, we have pu = pv.

Definition 3.7 (Common pivot of a pair in X). For {u, v} ∈ X, let p{u,v} = pu = pv ∈ PPIV

denote the common pivot of u and v in Pivot.

Note that for every {u, v} ∈ X, π(p{u,v}) ≤ min{π(u), π(v)} and p{u,v} is the vertex in (N(u)∪
N(v))∩PPIV with minimum rank under π. Based on the last step of r-Pivot, we can characterize
the pairs in X as follows:

Lemma 3.8. For every {u, v} ∈ X, one of the following holds after r rounds in r-Pivot:

(i) p{u,v} is unsettled.

(ii) p{u,v} is settled. Moreover, at least one of u and v is singleton and has an unsettled, non-pivot
neighbor w{u,v} 6∈ PPIV with π(w{u,v}) < π(p{u,v}).

Proof. It suffices to show that in Case (ii), at least one of u and v is singleton and has an unsettled
neighbor w{u,v} 6∈ PPIV with π(w{u,v}) < π(p{u,v}). Let C ′u (resp. C ′v) be the cluster in Cr-PIV that
contains u (resp. v). Note that C ′u 6= C ′v. By Claim 3.5, both C ′u and C ′v are contained in the cluster
C in CPIV started by the pivot p{u,v}. Then at least one of C ′u, C

′
v cannot contain p{u,v}, which must

thus be singleton again by Claim 3.5. Say C ′v = {v} is singleton. Since p{u,v} is settled, by the last
step of r-Pivot, v must have an unsettled neighbor w{u,v} ∈ N(v) with π(w{u,v}) < π(p{u,v}). In
addition, p{u,v} = pv is the pivot that v joins in r-Pivot, which is the pivot neighbor of v with
minimum rank under π. It follows that w{u,v} 6∈ PPIV.

3.3 Vertex and Pair Oracles

In this subsection, we define the following vertex and pair oracles. The vertex oracle locally deter-
mines whether a given vertex v is part of the greedy MIS over permutation π, or equivalently in
our context, whether v is a pivot in the Pivot algorithm. The vertex oracle was first defined by

9

Nguyen and Onak [23] and was further analyzed by Yoshida, Yamamoto, and Ito [27]. To analyze
the pairs in X, we introduce a counterpart of the vertex oracle for pairs.

Throughout this subsection, we again fix a permutation π over V .

1 Function Vertex(v):
2 Let w1, . . . , wd be vertices in N(v) s.t. π(w1) < . . . < π(wd) < π(v).
3 for i in 1 . . . d do
4 if Vertex(wi) = 1 then return 0

5 return 1

6 Function Pair(u, v):
7 Let w1, . . . , wd be vertices in N(u) ∪N(v) s.t. π(w1) < . . . < π(wd) < min{π(u), π(v)}.
8 for i in 1 . . . d do
9 if Vertex(wi) = 1 then return 0

10 return 1

For a vertex v ∈ V , Vertex(v) returns 1 if and only if v is identified as a pivot by Pivot.
As for a pair {u, v} in X, it is straightforward to see that Pair(u, v) returns 1 if and only if the
common pivot p{u,v} of u and v in Pivot turns out to be one of u, v.

Definition 3.9. We say that a vertex v ∈ V (resp. pair {u, v} ∈ X) directly queries a vertex
z ∈ V if Vertex(v) (resp. Pair(u, v)) directly calls Vertex(z).

We will be interested in the set of vertices directly queried by a vertex or a pair in X:

Observation 3.10. It holds that:

(a) For a pivot v ∈ PPIV, it directly queries all neighbors z ∈ N(v) with rank π(z) < π(v) and no
other vertex. In particular, v does not directly query any pivots in PPIV.

(b) For a non-pivot v 6∈ PPIV, it directly queries all neighbors z ∈ N(v) with rank π(z) ≤ π(pv)
and no other vertex. In particular, pv is the only pivot in PPIV that v directly queries.

(c) For a pair {u, v} ∈ X such that p{u,v} ∈ {u, v}, it directly queries all neighbors z ∈ N(u)∪N(v)
with rank π(z) < π(p{u,v}) and no other vertex. In particular, {u, v} does not directly query
any pivots in PPIV.

(d) For a pair {u, v} ∈ X such that p{u,v} 6∈ {u, v}, it directly queries all neighbors z ∈ N(u)∪N(v)
with rank π(z) ≤ π(p{u,v}) and no other vertex. In particular, p{u,v} is the only pivot in PPIV

that {u, v} directly queries.

In our analysis, we will focus on the stack of recursive calls to function Vertex when we call
Pair(u, v) for a pair {u, v} ∈ X. Our first insight is that, there is a moment when this stack
includes Θ(r) elements.

Claim 3.11. Let {u, v} ∈ X and ` ≤ 2r. When we call Pair(u, v), at some point the stack of
recursive calls to Vertex includes exactly ` elements.

10

To prevent interruptions to the flow of this part, we defer the proof of Claim 3.11 to Section 3.7.

Of particular importance to our analysis, is the first moment that the stack of recursive calls to
Vertex when we call Pair(u, v) for {u, v} ∈ X reaches a certain size.

Definition 3.12. Let {u, v} ∈ X and consider the stack of recursive calls to Vertex when we call
Pair(u, v). For each ` ∈ [2, 2r], we denote by S`(u, v) the ordered list of the elements in the stack
the first time that it includes ` elements.

For example S4(u, v) = (w1, w2, w3, w4) implies that {u, v} directly queries w1, w1 directly
queries w2, w2 directly queries w3, w3 directly queries w4, and the first time after calling Pair(u,
v) that the stack has 4 elements, only w1, w2, w3, and w4 are in it. Claim 3.11 ensures that S`(u, v)
is defined for any {u, v} ∈ X and ` ≤ 2r.

We now construct a path based on S`(u, v) by attaching u and v to the front in a particular
order:

Definition 3.13. Let {u, v} ∈ X, ` ∈ [2, 2r], and S`(u, v) = (w1, . . . , w`). We define P`(u, v) to be
the ordered list of `+ 2 vertices defined as:

P`(u, v) =

(v, u, w1, . . . , w`) if w1 is directly queried by u but not v,

(u, v, w1, . . . , w`) if w1 is directly queried by v but not u,

(v, u, w1, . . . , w`) if w1 is directly queried by both u and v, π(u) < π(v).

In other words, we choose the order of u, v to ensure that w1 is directly queried by the vertex
that precedes it. If both u and v directly query w1, we choose the order in a way that the ranks of
the vertices in P`(u, v) are in descending order. Note that the first vertex w1 in the stack S`(u, v)
is directly queried by {u, v}, and it follows from Observation 3.10 that w1 is directly queried by
either u or v. Thus P`(u, v) is always defined. Moreover, any two consecutive vertices in P`(u, v)
form an edge in E, so it indeed specifies a path in G. The following observation is immediate from
the construction of S`(u, v) and P`(u, v):

Observation 3.14. Let {u, v} ∈ X, ` ∈ [2, 2r], and write

P`(u, v) = (w1, . . . , w`+2).

Then for each i ∈ [3, `+ 2], we have π(wi) < π(wi−1), and wi−1 directly queries wi.

Our charging scheme for X relies crucially on the following claim:

Claim 3.15. For {u, v} ∈ X and ` ∈ [2, 2r], the last three vertices in P`(u, v) form a bad triangle.

Proof. We write
P`(u, v) = (w1, w2, . . . , w`+2).

To show that {w`, w`+1, w`+2} form a bad triangle, it suffices to show that (w`, w`+2) 6∈ E. We
assume otherwise that (w`, w`+2) ∈ E and argue by contradiction. Note by Observation 3.14 that

π(w`) > π(w`+1) > π(w`+2),

w` directly queries w`+1, and w`+1 directly queries w`+2.

11

Suppose first that w`+2 ∈ PPIV is a pivot. Since w`+2 is also a neighbor of w`, its rank under
π must be at least that of pw`

. But then π(w`+1) > π(w`+2) ≥ π(pw`
), which by Observation 3.10

(b) implies w` does not directly query w`+1. This is a contradiction.

Suppose on the other hand that w`+2 6∈ PPIV. Then by Observation 3.10 (b), w`+2 directly
queries pw`+2

. Moreover, since w` directly queries w`+1 and w`+2 is a neighbor of w` with rank
smaller than w`+1, w` also directly queries w`+2. Therefore, when we call Pair(u, v), at some point
the stack of recursive calls to Vertex consists of the following ` elements:

(w3, . . . , w`, w`+2, pw`+2
),

which happens before the stack consists of S`(u, v) = (w3, . . . , w`, w`+1, w`+2). This contradicts
that S`(u, v) is the list of elements in the stack when it first reaches ` elements.

3.4 Our Charging Scheme

We can now define our charging scheme for X.

The Charging Scheme:

• Pick ` from [2, 2r] uniformly at random.

• For any (u, v) ∈ X charge the bad triangle formed by the last three vertices of P`(u, v).

(Here the existence of P`(u, v) (or S`(u, v)) follows from Claim 3.11 and its last three vertices
form a bad triangle by Claim 3.15.)

Our main result is the following bound on the width of our charging scheme:

Lemma 3.16. Our charging scheme for X has width 8
2r−1 for any r ≥ 1.

Note that by Lemma 3.2, Lemma 3.16 immediately proves Lemma 3.1.

Next, we focus on proving Lemma 3.16.

3.5 The High Level Approach and Relation to [27]

We first give a high-level summary of our plan. To bound the number of charges to bad triangles
involving two fixed vertices a, b ∈ V , we are led to bound the number of pairs of a permutation π
of V and a path P`(u, v), initiated by the pair oracle Pair called on a mistake {u, v} in X under
π, that ends at a bad triangle involving both a and b. To do this, we construct a new permutation
π̃ from π by rotating the ranks of vertices on the path P`(u, v) in a certain way while fixing the
ranks of the other vertices. Let us temporarily denote π̃ = φ(π, P`(u, v)).

In the case {a, b} is an edge in E, the map φ (illustrated as Figure 2) is the same as a construction
by Yoshida, Yamamoto, and Ito [27], which they used to bound the number of times the recursive
query process of the vertex oracle Vertex passes through a fixed edge e ∈ E, and thereby bound the
query complexity of the vertex oracle. The key property of this construction is that the preimage
of any permutation π̃ under the map φ can only have a small constant size. For [27], this implies
that in expectation over π there are only O(1) recursive queries that pass through e. For us, this
implies that in expectation over π there are only O(1) possibilities for P`(u, v). However, in our

12

case, we need to consider the pair oracle in order to charge the pairs in X, and a path P`(u, v) does
not necessarily specify a valid sequence of recursive queries initiated by the vertex oracle. There
in fact may be many more than O(1) such paths ending at a single edge. To get around this, we
rely crucially on two additional properties in our case. First, each path P`(u, v) starts at a extra
mistake {u, v} ∈ X made by r-Pivot as compared to Pivot, which in particular is an edge whose
two endpoints share a common pivot in Pivot. This provides new incidence relations among the
vertices that help us rule out certain possibilities for P`(u, v). Second, each path P`(u, v) is given
by the first moment when the corresponding stack of recursive calls to Vertex reaches a certain
size. This places additional constraints on the preimages of φ.

An additional challenge in our case as compared to [27] is that, we also need to consider pairs
{a, b} that are non-edges. In that case, we propose a modified construction of the rotation map
φ (illustrated as Figure 4), which we show preserves the key property that the preimage of any
permutation has a small constant size. Our argument for this property builds on that for the
case where {a, b} ∈ E but also carefully rules out several new edge cases, again by using the two
additional properties in our case.

3.6 Proof of Lemma 3.16

Now we start the proof. Given distinct vertices a, b ∈ V and a permutation π over V , we introduce
a set Rπ(a, b) that accounts for the charges under π to bad triangles involving both a and b that
come from paths passing through a before b. Formally, we define Rπ(a, b) to be the set of ({u, v}, `),
where {u, v} ∈ X and ` ∈ [2, 2r] is an integer, such that under π:

• the last three vertices in the ordered list P`(u, v) are (a, b, c) or (c, a, b) for some c ∈ V , if
{a, b} ∈ E;

• the last three vertices in the ordered list P`(u, v) are (a, c, b) for some c ∈ V , if {a, b} 6∈ E.

To bound the number of charges to bad triangles involving both a and b and prove Lemma 3.16,
we bound the size of Rπ(a, b) in the following two lemmas:

Lemma 3.17. Let a, b ∈ V be distinct vertices such that {a, b} ∈ E. Then, for any r ≥ 1, we have

Eπ[|Rπ(a, b)|] ≤ 4.

Lemma 3.18. Let a, b ∈ V be distinct vertices such that {a, b} 6∈ E. Then, for any r ≥ 1, we have

Eπ[|Rπ(a, b)|] ≤ 2.

We first show that Lemma 3.17 and Lemma 3.18 together imply Lemma 3.16:

Proof of Lemma 3.16 via Lemma 3.17 and Lemma 3.18. Let a, b ∈ V be distinct vertices. We
show that the expected number of charges to bad triangles involving both a and b is upper bounded
by 8

2r−1 , where the expectation is taken over π and `. In our charging scheme, a charge to a bad
triangle involving both a and b comes from an ordered list P`(u, v) under some permutation π and
for some {u, v} ∈ X and ` ∈ [2, 2r], such that the bad triangle consists of the last three vertices
in P`(u, v). In the case {a, b} ∈ E, a and b are among the last three vertices in P`(u, v) and are

13

adjacent, although they can appear in either order. Since ` is chosen uniformly at random, by
Lemma 3.17, the expected number of charges to bad triangles involving both a and b is at most

1

2r − 1
(Eπ[|Rπ(a, b)|] + Eπ[|Rπ(b, a)|]) ≤ 8

2r − 1
.

In the other case {a, b} 6∈ E, a and b, in either order, are the last and third-to-last vertices in
P`(u, v) respectively. Since ` is chosen uniformly at random, by Lemma 3.18, the expected number
of charges to bad triangles involving both a and b is at most

1

2r − 1
(Eπ[|Rπ(a, b)|] + Eπ[|Rπ(b, a)|]) ≤ 4

2r − 1
<

8

2r − 1
.

3.6.1 Proof of Lemma 3.17

Throughout this subsection, we fix distinct vertices a, b ∈ V such that {a, b} ∈ E. Given a
permutation π over V and i ∈ [n], we denote by πi ∈ V the vertex with rank i under π.

In our analysis, we break down the charges to bad triangles involving both a and b by specifying
the ranks of the pair of vertices in X that initiates the charge. Given i, j ∈ [n] with i < j, we
introduce a set T i,j(a, b) that accounts for the charges that come from paths originating at vertices
with ranks i and j under some permutation π and passing through a before b. Formally, we define
T i,j(a, b) to be the set of pairs (π, `) of a permutation π and an integer ` ∈ [2, 2r] such that under
π, {πi, πj} ∈ X and the last three vertices in the ordered list P`(πi, πj) are (a, b, c) or (c, a, b) for
some c ∈ V . We will prove the following bound on the size of T i,j(a, b):

Claim 3.19. For any i, j ∈ [n] with i < j and any r ≥ 1, we have

|T i,j(a, b)| ≤ 8(n− 2)!.

We first use Claim 3.19 to prove Lemma 3.17:

Proof of Lemma 3.17 via Claim 3.19. Our main observation is that, as we range through all possi-
bilities for the ranks i and j of the pair that initiates the charge, the sets T i,j(a, b) form a partition
of the union of the sets Rπ(a, b) as π ranges through all permutations. To make this precise, we
define

R(a, b) = {(π, {u, v}, `) | ({u, v}, `) ∈ Rπ(a, b)},

T (a, b) = {(i, j, π, `) | i < j, (π, `) ∈ T i,j(a, b)}.

Then, it is straightforward to see that the map

R(a, b)→ T (a, b), (π, {u, v}, `) 7→ (min{π(u), π(v)},max{π(u), π(v)}, π, `).

is a bijection. By Claim 3.19, for any r ≥ 1,∑
π

|Rπ(a, b)| = |R(a, b)| = |T (a, b)| =
∑
i<j

|T i,j(a, b)| ≤
(
n

2

)
8(n− 2)! = 4n!,

which implies that

Eπ[|Rπ(a, b)|] ≤ 4n!

n!
= 4.

14

...

w1 w2 w3 w4 w5 w
...

w 1
w 2w 3

b

=

a

=

w1 w2 w3 w4 w5 ww 1
w 2w 3

b

=

a

=

P

Figure 2: The permutation π̃ = φi,ja,b(π, `) resulting from rotating the ranks of the vertices on the prefix
P of the path P`(πi, πj) under π. The prefix P is highlighted in blue. Dashed green lines connect pairs of
vertices with the same rank. The ranks {i, j} are rotated from vertices {w1, w2} under π to {a, b} under π̃.
The rank of any vertex not on P is kept unchanged.

Proof of Claim 3.19. We define a map

φi,ja,b : T i,j(a, b)→ U i,ja,b,

where U i,ja,b is a set of permutations π̃ over V defined by

U i,ja,b = {π̃ | {π̃i, π̃j} = {a, b}}.

Note that U i,ja,b has size 2(n − 2)!. For (π, `) ∈ T i,j(a, b), the permutation φi,ja,b(π, `) is defined by
rotating the ranks of the vertices along the prefix P of P`(πi, πj) ending at the directed edge (a, b).
Formally, we write

P = (w1, w2, . . . , w¯̀−2, w¯̀−1 = a,w¯̀ = b),

where {w1, w2} = {πi, πj}. If (a, b) is the last edge on P`(πi, πj), then P is the same as P`(πi, πj)
and ¯̀ = ` + 2. Otherwise, (a, b) is the second-to-last edge on P`(πi, πj), in which case P equals

P`(πi, πj) with the last edge removed and ¯̀= `+ 1. Then, we define π̃ = φi,ja,b(π, `) by

π̃(a) = π(w1), π̃(b) = π(w2), π̃(wi) = π(wi+2) for i ∈ [1, ¯̀− 2],

π̃(v) = π(v) for v ∈ V \ {w1, . . . , w¯̀}.

See Figure 2.

We make the following claim on the map φi,ja,b, which will imply that for any π̃ ∈ U i,ja,b, the

preimage (φi,ja,b)
−1(π̃) has size at most a small constant:

Claim 3.20. Suppose φi,ja,b(π, `) = φi,ja,b(π
′, `′) for two pairs (π, `), (π′, `′) ∈ T i,j(a, b). Let P (resp.

P ′) be the prefix of the path P`(πi, πj) (resp. P`′(π
′
i, π
′
j)) ending at (a, b). Then one of the following

holds:

• P = P ′ and π = π′.

• One of P, P ′ contains the other as a subpath with one fewer vertex.

15

We defer the proof of Claim 3.20 to the end of this subsection, and first use it to finish proving
Claim 3.19. We show that for any π̃ ∈ U i,ja,b, the preimage (φi,ja,b)

−1(π̃) has size at most 4. This will
imply that

|T i,j(a, b)| ≤ 4|U i,ja,b| = 8(n− 2)!.

We write
(φi,ja,b)

−1(π̃) = {(π1, `1), . . . , (πm, `m)}

and show that m ≤ 4. For each k = 1, . . . ,m, let P k denote the prefix of the path P`k(πki , π
k
j)

ending at (a, b). By Claim 3.20, there are only two possibilities among the prefixes P 1, . . . , Pm. By
permuting the indices, we assume that

P 1 = · · · = Pm
′ 6= Pm

′+1 = · · · = Pm

for some 0 ≤ m′ ≤ m. Next, we show that m′ ≤ 2. For the first m′ pairs in (φi,ja,b)
−1(π̃), we have

by Claim 3.20 that
π1 = · · · = πm

′
.

We denote this common permutation by π. Now by the definition of T i,j(a, b), (a, b) appears as
one of the last two edges on each of P`1(πi, πj), . . . , P`m(πi, πj). This implies that there are only
two possibilities among `1, . . . , `m′ , i.e. m′ ≤ 2. Similarly, we have m−m′ ≤ 2. Thus, m ≤ 4.

Proof of Claim 3.20. Note that if P = P ′, then φi,ja,b(π, `) = φi,ja,b(π
′, `′) would imply that π = π′.

Thus in what follows, we assume that P 6= P ′ and show that one must contain the other as a
subpath with one fewer vertex.

We start by recalling some notations for π and setting up their counterparts for π′. Let PPIV

(resp. P ′PIV) denote the set of pivots found by Pivot under the permutation π (resp. π′) (Defini-
tion 3.3). For each vertex v ∈ V , let pv ∈ PPIV (resp. p′v ∈ P ′PIV) denote the pivot of v in Pivot
under π (resp. π′). (Definition 3.4).

Now, we write

P = (w1, . . . , w¯̀−2, w¯̀−1 = a,w¯̀ = b), P ′ = (w′1, . . . , w
′
¯̀′−2, w

′
¯̀′−1 = a,w′¯̀′ = b).

Note that {π(w1), π(w2)} = {π′(w′1), π′(w′2)} = {i, j}. Let m be the largest integer such that

(w¯̀−m+1, . . . , w¯̀−1 = a,w¯̀ = b) = (w′¯̀′−m+1, . . . , w
′
¯̀′−1 = a,w′¯̀′ = b),

which is the maximal common suffix of P and P ′. Then m ≥ 2. Observe that φi,ja,b(π, `) = φi,ja,b(π
′, `′)

directly implies the following properties:

Observation 3.21. The following properties hold for the permutations π, π′, paths P, P ′, and
integer m:

(a) π(v) = π′(v) for any vertex v ∈ V \ ({w1, . . . , w¯̀} ∪ {w′1, . . . , w′¯̀′}).

(b) π(w1) = π′(w′1), π(w2) = π′(w′2).

(c) π(w¯̀−k) = π′(w¯̀′−k) for any 0 ≤ k ≤ m− 3.

16

Now we show that one of P, P ′ must contain the other as a subpath with one fewer vertex. We
denote

y = w¯̀−m+1 = w′¯̀′−m+1, z = w¯̀−m+2 = w′¯̀′−m+2.

That is, y is the starting vertex of the maximal common suffix of P and P ′, and z is the next
vertex. Then there are only two possibilities for the relation between P and P ′:

(A) Neither of P, P ′ contains the other as a subpath. We assume that π(z) < π′(z).

(B) One of P, P ′ contains the other as a subpath. We assume that P contains P ′. Thenm = ¯̀′ < ¯̀.

See Figure 3. We show that Case (A) is impossible, and that in Case (B), we must have ¯̀− ¯̀′ = 1.

...

...

...

x

b
...

azy
x

b
...

azy

......

......

:

:

:

:

ww 1w m+2
== ba

ww 1

==

z

z

=

ww 1

==

ba

ww 1

===

=

w m+2

y

y

=

w m+1

=

w m+1

w m+2

==

w m+1

=

w m

...

w1

w1

w1

w2

w2

P

P

P

P

x

x
=

w m

=

w2

w1 w2

Figure 3: Cases (A) and (B). In each case, the paths P and P ′ under permutations π and π′ respectively
are highlighted in blue. Dashed green lines connect pairs of vertices with the same rank. In both cases, the
vertex x = w¯̀−m highlighted in red is the pivot of y = w′¯̀′−m+1

in Pivot under π′. In Case (B), where

m = ¯̀′, x is the pivot of both y = w′1 and z = w′2 in Pivot under π′, and z is a pivot in Pivot under π,
also highlighted in red.

We note that π(z) < π′(z) in Case (B) as well, since {y, z} = {π′i, π′j} in this case, which implies
that π′(z) ≥ i > π(z) (recall i < j). As a consequence of Observation 3.21 (a) (c), we have

πk = π′k, for all k < π(z). (2)

This implies that, if v ∈ V is a vertex such that π(v) < π(z) or π′(v) < π(z), then π(v) = π′(v).
Moreover, Vertex(v) makes the same recursive calls to Vertex under π and π′. In particular, v is
a pivot in Pivot under π (i.e. v ∈ PPIV) if and only if v is a pivot under π′ (i.e. v ∈ PPIV

′). The
following observation directly follows:

Observation 3.22. Let v ∈ V be a vertex with pivot pv in Pivot under π and p′v under π′. If
π(pv) < π(z) or π′(p′v) < π(z), then pv = p′v and π(pv) = π′(p′v).

We set x = w¯̀−m in both cases. Then

π′(x) = π(z).

17

Note by Observation 3.14 that y directly queries z under π. Moreover, x directly queries y under
π unless {x, y} = {πi, πj}, in which case {x, y} directly queries z.

We first claim that in both cases, x is a pivot in Pivot under π′, i.e. x ∈ PPIV
′. Otherwise,

x 6= p′x or equivalently π′(p′x) < π′(x) = π(z). Then Observation 3.22 implies that px = p′x
and π(px) = π′(p′x). Thus, π(px) = π′(p′x) < π(z) < π(y). From Observation 3.10 (b) (d), this
contradicts that x directly queries y under π in the case {x, y} 6= {πi, πj}, or {x, y} directly queries
z in the case {x, y} = {πi, πj}.

Next, we claim that in both cases, x is the pivot of y in Pivot under π′, i.e. x = p′y. Otherwise,
we have π′(p′y) < π′(x) = π(z). By Observation 3.22, py = p′y and π(py) = π′(p′y). Thus, π(py) =
π′(p′y) < π(z). From Observation 3.10 (b), this contradicts that y directly queries z under π.

At this point, we can already show that Case (A) is impossible, as follows. In this case, by
Observation 3.14, y directly queries z under π′. However, this contradicts that π′(p′y) = π′(x) =
π(z) < π′(z), again from Observation 3.10 (b).

It remains to complete the proof in Case (B). In this case, since {y, z} = {π′i, π′j} is a pair in X
under the permutation π′ and x = p′y, we also have x = p′z. In particular, {x, z} ∈ E.

We now claim that z is a pivot in Pivot under π, i.e. z ∈ PPIV. Otherwise, z 6= pz or
equivalently π(pz) < π(z). Then Observation 3.22 implies that p′z = pz and π′(p′z) = π(pz). But
now, π′(p′z) = π(pz) < π(z) = π′(x). This contradicts that x is the pivot in Pivot that z joins
under π′.

As a consequence, since y directly queries z under π, we have by Observation 3.10 (b) that
z must be the pivot of y in Pivot under π, i.e. z = py. Moreover, since z is a also a neighbor
of x, we have π(px) ≤ π(z). Thus π(y) > π(z) ≥ π(px). By Observation 3.10 (a) (b), x cannot
directly query y under π. Then we must have {x, y} = {πi, πj}, i.e. {x, y} is the first edge on P
(or P`(πi, πj)). This then implies that ¯̀= ¯̀′ + 1, as desired.

3.6.2 Proof of Lemma 3.18

Throughout this subsection, we fix distinct vertices a, b ∈ V such that {a, b} 6∈ E. As in Sec-
tion 3.6.1, given a permutation π over V and i ∈ [n], we denote by πi ∈ V the vertex with rank i
under π.

Similar to the proof of Lemma 3.17, we break down the charges to bad triangles involving both
a and b by specifying the ranks of the pair of vertices in X that initiates the charge. Given i, j ∈ [n]
with i < j, we define T i,j(a, b) to be the set of pairs (π, `) of a permutation π and an integer
` ∈ [2, 2r] such that under π, {πi, πj} ∈ X and the last three vertices in the ordered list P`(πi, πj)
are (a, c, b) for some c ∈ V . We will prove the following bound on the size of T i,j(a, b), which is
analogous to Claim 3.19:

Claim 3.23. For any i, j ∈ [n] with i < j and any r ≥ 1, we have

|T i,j(a, b)| ≤ 4(n− 2)!.

Claim 3.23 implies Lemma 3.18 in the same way as how Claim 3.19 implies Lemma 3.17 (see
Section 3.6.1), and we omit the proof here.

Proof of Claim 3.23. We define a map

φi,ja,b : T i,j(a, b)→ U i,ja,b,

18

where
U i,ja,b = {π̃ | {π̃i, π̃j} = {a, b}}

as in the proof of Claim 3.19. For (π, `) ∈ T i,j(a, b), the permutation φi,ja,b(π, `) is defined by
rotating the ranks of the vertices along the path P`(πi, πj) while skipping the vertex between a and
b. Formally, we write

P`(πi, πj) = (w1, w2, . . . , w` = a,w`+1, w`+2 = b),

where {w1, w2} = {πi, πj}. Then, we define π̃ = φi,ja,b(π, `) by

π̃(a) = π(w1), π̃(b) = π(w2), π̃(w`+1) = π(w`+1),

π̃(wi) = π(wi+2) for i ∈ [1, `− 2], π̃(w`−1) = π(w`+2),

π̃(v) = π(v) for v ∈ V \ {w1, . . . , w`+2}.

See Figure 4.

a

=

...

w1 w2 w3 w4 w5 w
...

w

+2

+1

w
+1

+2

ww 1

b

=

a

=

w1 w2 w3 w4 w5 www 1

b
=

P

w 2w 3

w 2w 3

Figure 4: The permutation π̃ = φi,ja,b(π, `) resulting from rotating the ranks of the vertices on the path
P`(πi, πj) under π. The path P`(πi, πj) is highlighted in blue. Dashed green lines connect pairs of vertices
with the same rank. The ranks {i, j} are rotated from vertices {w1, w2} under π to {a, b} under π̃. The
rotation skips the vertex w`+1 between a and b and leaves its rank unchanged. The rank of any vertex not
on P`(πi, πj) is kept unchanged as well.

We make the following claim on the map φi,ja,b, which directly implies that for any π̃ ∈ U i,ja,b, the

preimage (φi,ja,b)
−1(π̃) has size at most 2:

Claim 3.24. Suppose φi,ja,b(π, `) = φi,ja,b(π
′, `′) for two distinct pairs (π, `), (π′, `′) ∈ T i,j(a, b). Then

one of P`(πi, πj), P`′(π
′
i, π
′
j) contains the other as a subpath with one fewer vertex.

It follows from Claim 3.24 that

|T i,j(a, b)| ≤ 2|U i,ja,b| = 4(n− 2)!.

We prove Claim 3.24 below.

Proof of Claim 3.24. Note that P`(πi, πj) = P`′(π
′
i, π
′
j) would imply that ` = `′, and additionally

that π = π′ since φi,ja,b(π, `) = φi,ja,b(π
′, `′). Thus we must have P`(πi, πj) 6= P`′(π

′
i, π
′
j).

19

We use the same notations for π and π′ as in the proof of Claim 3.20. We write

P = P`(πi, πj) = (w1, . . . , w` = a,w`+1 = c, w`+2 = b),

P ′ = P`′(π
′
i, π
′
j) = (w′1, . . . , w

′
`′ = a,w′`′+1 = c′, w′`′+2 = b).

Note that {π(w1), π(w2)} = {π′(w′1), π′(w′2)} = {i, j}. We consider three cases separately:

(I) c = c′ and w`−1 = w′`′−1.

(II) c = c′ and w`−1 6= w′`′−1.

(III) c 6= c′.

In Cases (I) or (II), the two paths P and P ′ end at the same three vertices (a, c, b). Let m be
the largest integer such that

(w`−m+3, . . . , w` = a,w`+1 = c, w`+2 = b) = (w′`′−m+3, . . . , w
′
`′ = a,w′`′+1 = c, w′`′+2 = b),

which is the maximal common suffix of P and P ′. Then m ≥ 3, and equality holds if and only if
we are in Case (II).

We first consider Case (I), where m ≥ 4. Then, after setting ¯̀ = ` + 2, ¯̀′ = `′ + 2, we see
that φi,ja,b(π, `) = φi,ja,b(π

′, `′) directly implies that the properties in Observation 3.21 hold for the
permutations π, π′, paths P, P ′, and integer m. Therefore, we may finish Case (I) by the same
paragraphs after Observation 3.21 up to the end of the proof of Claim 3.20.

...

...

...

x

ca
x

ca

:

:

w +1

==

w

w +1

=w 1 =

w

=

w 1

...

w1

w1

w2

w2

P

P

b
w +2

=

b
w +2

=

Figure 5: Case (II) where m = 3. The paths P and P ′ under permutations π and π′ respectively are
highlighted in blue. Dashed green lines connect pairs of vertices with the same rank. The vertex x = w`−1

highlighted in red is the pivot of a in Pivot under π′.

Next, we show that Case (II), wherem = 3, is impossible. See Figure 5. In this case, π(c) = π′(c)
but π(b) 6= π′(b), and we assume without loss of generality that π(b) < π′(b). From φi,ja,b(π, `) =

φi,ja,b(π
′, `′), we directly have

πk = π′k, for all k < π(b),

which is similar to Eq (2). This implies the following observation, similar to Observation 3.22:

20

Observation 3.25. Let v ∈ V be a vertex with pivot pv in Pivot under π and p′v under π′. If
π(pv) < π(b) or π′(p′v) < π(b), then pv = p′v and π(pv) = π′(p′v).

We set x = w`−1. Then
π′(x) = π(b).

Based on Observation 3.25, we can use the same argument as that after Observation 3.22 in the
proof of Claim 3.20 to deduce that under π′, x is the pivot of a in Pivot, i.e. x = p′a ∈ P ′PIV.
However, since π′(c) = π(c) > π(b) = π′(x), a cannot directly query c′ under π′ by Observation 3.10
(b). This is a contradiction to Observation 3.14.

Finally, we show that Case (III) is impossible as well. In this case, π(c) 6= π′(c′), and we assume
without loss of generality that π(c) < π′(c′). We will consider two subcases depending on whether
c is on the path P ′ separately. See Figure 6.

a

w 1

=

=

w b

w +1

w +2=

=

b
w +2

=

c

w +1

=

a
w

=

c

c

a
x

c

c

c

:

:

:

:

=

w=

w 1

...

w1

w1

w2

w2

P
b

w +2
=

b

w +2

=

c

w +1

=

a

w

=

w +1

=

... c

x
P

P...

... P

...

...

Figure 6: The two subcases of Case (III) where c 6= c′. In each subcase, the paths P and P ′ under
permutations π and π′ respectively are highlighted in blue. Dashed green lines connect pairs of vertices with
the same rank. In the subcase where c is on P ′, the vertex x = w`−1 highlighted in red is the pivot of a in
Pivot under π′.

First suppose that c is on P ′. By the definition of φi,ja,b, π̃(c) = π′(v) for some vertex v on P ′.
Now recall that π̃(c) = π(c) < π′(c′), which implies that π′(v) < π′(c′). However, the only vertex
on P ′ with rank less than π′(c′) under π′ is b, which means that v = b. Since π′(b) = π̃(w′`′−1), we
have c = w′`′−1. This implies that

π(b) < π(c) = π̃(c) = π′(b) < π′(c′).

The proof from this point on is similar to Case (II) above. Here, φi,ja,b(π, `) = φi,ja,b(π
′, `′) also implies

that
πk = π′k, for all k < π(b).

Thus Observation 3.25 also holds. We again set x = w`−1. Then

π′(x) = π(b).

In particular, π′(x) = π(b) < π′(c′) implies that x 6= c′. Based on Observation 3.25, we can use the
same argument as that after Observation 3.22 in the proof of Claim 3.20 to deduce that x = p′a ∈

21

P ′PIV. However, since π′(c′) > π′(x), a cannot directly query c′ under π′ by Observation 3.10 (b).
This is a contradiction to Observation 3.14.

It remains to rule out the subcase where c is not on P ′. Here, we have

π′(c) = π̃(c) = π(c) < π′(c′).

By Observation 3.14, under π′, a directly queries c′. Thus by Observation 3.10 (a) (b), a also
directly queries c under π′ since it is a neighbor with rank smaller than c′. Now, if there exists a
vertex d ∈ V that c directly queries under π′, then at some point, the stack of recursive calls to
Vertex when we call Pair(w′1, w

′
2) consists of the following `′ elements

(w′3, . . . , w
′
`′ = a, c, d),

and this happens before when the stack consists of (w′3, . . . , w
′
`′ = a, c′, b). This contradicts the

definition of S`′(w
′
1, w

′
2) and P`′(w

′
1, w

′
2). Otherwise, c does not directly query any vertex under π′,

which means that c is a pivot in Pivot, i.e. c ∈ P ′PIV. But this contradicts that a directly queries
the neighbor c′ whose rank is greater than that of c under π′, by Observation 3.10 (b).

3.7 Deferred Proofs

To show Claim 3.11, we will make use of the following claim on the stack of recursive calls to Vertex

when we call Vertex(w) for a vertex w ∈ V :

Claim 3.26. Let w be a vertex that remains unsettled after t rounds in r-Pivot. Then when we
call Vertex(w), at some point the stack of recursive calls to Vertex includes at least 2t elements
(excluding w).

Proof. We proceed by induction on t. The base case t = 0 clearly holds. Now assume the statement
for t = k, and let w be a vertex that remains unsettled after k + 1 rounds. We consider two cases
depending on whether w is a pivot in PPIV separately:

We first consider the case where w ∈ PPIV is a pivot. By Observation 3.10 (a), the set of vertices
that w directly queries is

Qw = {z ∈ N(w) | π(z) < π(w)},

and that Qw does not contain any pivots in PPIV. Without loss of generality, we may assume that
there does not exist a vertex z ∈ Qw that remains unsettled after k + 1 rounds, since otherwise to
prove the claim for w it suffices to prove it for z.

Next, we claim that there exists a vertex z ∈ Qw that remains unsettled after k rounds. Oth-
erwise, since all neighbors of w with smaller rank under π are settled after k rounds, w would be
marked as a pivot and marked as settled in round k + 1, a contradiction.

As a consequence, pz must also remain unsettled after k rounds. Since z 6∈ PPIV, we have
pz 6= z. Thus by Observation 3.10 (b), z directly queries pz. By the inductive hypothesis applied
to pz, when we call Vertex(pz), at some point the stack of recursive calls to Vertex includes 2k
elements (excluding pz). This implies the claim for w.

Now, we consider the other case where w 6∈ PPIV is non-pivot. By Observation 3.10 (b), w
directly queries pw. We claim that pw also remains unsettled after k + 1 rounds. Otherwise pw
would have been marked as a pivot by the end of round k + 1 and w would have been removed
together with pw, a contradiction. By the previous case, the claim holds for pw, which then implies
the claim for w.

22

Proof of Claim 3.11 via Claim 3.26. It suffices to prove the case ` = 2r. We consider the two cases
for the pair {u, v} given in Lemma 3.8 separately. In Case (i), p{u,v} remains unsettled after r
rounds in r-Pivot. If p{u,v} 6∈ {u, v}, then by Observation 3.10 (d), {u, v} directly queries p{u,v},
and we may thus conclude by Claim 3.26 applied to w = p{u,v}. If p{u,v} ∈ {u, v}, then we may see
from Observation 3.10 (a) (c) that every vertex z directly queried by p{u,v} is also directly queried
by {u, v}. We again conclude by Claim 3.26 applied to w = p{u,v}.

In Case (ii), w{u,v} ∈ N(u) ∪ N(v) is an unsettled vertex after r rounds in r-Pivot with
π(w{u,v}) < π(p{u,v}). Thus {u, v} directly queries w{u,v} by Observation 3.10 (c) (d). We may
then conclude by Claim 3.26 applied to w = w{u,v}.

4 Implementations

In this section, we prove the implications of Theorem 1.1 in the models discussed. In each model,
given ε > 0, we take r = O(1/ε) and provide an implementation of our r-Pivot algorithm. We
introduce the following notation: For each t ∈ [1, r], and each vertex v ∈ V that is unsettled at
the beginning of round t or r-Pivot, let ηt(v) denote the vertex that has the smallest rank under
π among the vertices in {v} ∪N(v) that are unsettled at the beginning of round t. Note that v is
marked as a pivot in round t if and only if ηt(v) = v.

The Massively Parallel Computations (MPC) Model: In the MPC model, the edge set E
of the input graph G is distributed to a collection of machines. Computation then proceeds in
synchronous rounds. In each round, a machine can receive messages from other machines in the
previous round, perform some local computation, and send messages to other machines as input for
the next round. Each message has size O(1) words. Each machine has limited local space, which
restricts the total number of messages it can receive or send in a round. For correlation clustering,
at the end of the computation, each machine is required to know the cluster IDs of the vertices
for which it initially holds edges. We focus on the strictly sublinear regime of MPC where the
computation uses O(nδ) space per machine, where δ > 0 is a constant that can be made arbitrarily
small, and O(m) total space.

We now show that there is a randomized O(r)-round MPC algorithm that obtains an expected(
3 + 8

2r−1 + n−Ω(1)
)
-approximation of correlation clustering and uses O(nδ) space per machine,

where constant δ > 0 can be made arbitrarily small, and O(m) total space.

Proof of Corollary 1.3. Since a random permutation of V cannot be drawn and stored on a single
machine, we implement the following variant of r-Pivot in the MPC model:

Algorithm r-Pivot-Variant : A variant of the algorithm r-Pivot.

• Instead of drawing a random permutation π of the vertex set V , each vertex v ∈ V draws a
rank π(v) from {0, . . . , nc−1} independently and uniformly at random, where c is a sufficiently
large constant.

• Proceed in the same way as in r-Pivot, breaking ties in ranks in favor of the vertex with
smaller ID.

Claim 4.1. For any r ≥ 1, the algorithm r-Pivot-Variant outputs an expected
(
3+ 8

2r−1+n−Ω(1)
)
-

approximation of correlation clustering.

23

Proof. First, observe that any connected component of G that is a clique can be successfully
identified by both r-Pivot and r-Pivot-Variant with probability 1. Thus, if all connected
components of G are cliques, then both r-Pivot and r-Pivot-Variant output the optimal solution
with probability 1.

Now consider the case where at least one connected component of G is not a clique. Then
OPT(G) ≥ 1. With probability at least 1− n2−c, the ranks π(v) drawn in r-Pivot-Variant are
all distinct, in which case π is equivalent to a uniformly drawn permutation of V , and the output of
r-Pivot-Variant is the same as the output of r-Pivot, which has cost at most

(
3+ 8

2r−1

)
·OPT(G)

by Corollary 1.2. In the case there are repeated ranks, which happens with probability at most
n2−c, we simply upper bound the cost by

(
n
2

)
≤ n2 · OPT(G), since OPT(G) ≥ 1. Thus the

expected cost of the above variant is at most(
3 +

8

2r − 1
+ n2−c · n2

)
OPT(G) ≤

(
3 +

8

2r − 1
+ n−Ω(1)

)
OPT(G).

Now we describe the MPC implementation. Take r = O(1/ε) such that 8
2r−1 + n−Ω(1) < ε, and

fix δ > 0. We use a collection of O(n1−δ) machines to draw the rank π(v) of each vertex v ∈ V from
{0, . . . , nc − 1} independently and uniformly at random, where c is a sufficiently large constant.
Let Mv denote the machine that holds the rank π(v) of a vertex v. We will also let Mv keep track
of whether v is settled or a pivot throughout the computation. All vertices are initially marked as
unsettled and non-pivot.

Moreover, the input edges in E are stored in a collection of O(m/nδ) machines. In the imple-
mentation, we will need to perform the following two operations:

• Every machine Mv informs each machine that holds an input edge incident to v whether v is
settled or a pivot.

• Every machine that holds input edges requests to mark some of the vertices it holds edges to
as settled, by communicating with the corresponding machines Mv’s.

We note that each operation can be done in O(1/δ) rounds of MPC with O(nδ) space per machine
and O(m) total space.

For each t ∈ [1, r], we implement round t of r-Pivot by O(1/δ) rounds of MPC as follows:
First, we compute ηt(v) for all unsettled vertices v ∈ V and store them in the respective machines
Mv’s. To do this, we construct a set Lt of at most 2m+ n ordered pairs of vertices as follows:

• For each edge {u, v} ∈ E such that both u, v are unsettled, add both (u, v) and (v, u) to Lt.
This is done by the machine holding the input edge {u, v}, which communicates with Mu and
Mv to check whether u, v are both unsettled.

• For each unsettled vertex v ∈ V , add (v, v) to Lt. This is done by the machine Mv.

Next, we sort the pairs in Lt by the rank of the first vertex, and in case of ties, by the rank of
the second vertex. This can be done in O(1/δ) rounds of MPC with O(nδ) space per machine and
O(m) total space [20]. The sorted list Lt has form

(u1, v1,1), . . . , (u1, v1,degt(u1)+1), (u2, v2,1), . . . , (u2, v2,degt(u2)+1), . . . , (unt , vnt,1), . . . , (unt , vnt,degt(unt)+1),

24

where u1, . . . , unt is a listing of the unsettled vertices in increasing order of their ranks, and for
each i, vi,1, . . . , vi,degt(ui)+1 is a listing of the unsettled vertices in {ui} ∪N(ui) in increasing order
of their ranks. In particular, for each i, vi,1 = ηt(ui). Then, any machine that holds (ui, vi,1) sends
vi,1 = ηt(ui) to Mui .

Now, for any unsettled vertex v, if Mv sees that ηt(v) = v, it marks v as settled and a pivot.
Then, any machine holding an input edge {u, v} ∈ E checks whether u is a newly-identified pivot
and v is unsettled, in which case it asks Mv to mark v as settled. Thereby we have implemented
round t of r-Pivot by O(1/δ) rounds of MPC.

Now that we have implemented all r rounds of r-Pivot by O(r/δ) rounds of MPC, in O(1/δ)
additional rounds, each Mv determines the cluster ID of v, as follows: Every pivot starts a cluster
which includes itself. Then, any non-pivot vertex u can determine the vertex v that has the smallest
rank under π among all pivots in N(u) (if any), as well as the vertex w that has the smallest rank
under π among all unsettled vertices in N(u) (if any). The values v and w can be computed and
sent to Mu in a similar way as how the values ηt(v)’s are computed and sent above. If v doesn’t
exist, or both v, w exist and π(w) < π(v), u forms a singleton cluster. Otherwise, u joins the cluster
of v. In the end, the cluster IDs are broadcast to the machines which initially hold input edges.

The Graph Streaming Model: In the streaming correlation clustering problem, the edges of
graph G arrive one by one in a stream, and in an arbitrary order. The algorithm has to take few
passes over the input, use a small space, and output the clusters at the end. It is not hard to see
that Ω(n) words of space are needed just to store the final output.

We now show that there is a randomized (2r + 1)-pass streaming algorithm using O(n log n)
bits of space that obtains an expected

(
3 + 8

2r−1

)
-approximation of correlation clustering.

Proof of Corollary 1.4. We take r = O(1/ε) such that 8
2r−1 < ε and implement r-Pivot in the

streaming model. We start by drawing a random permutation π of V and marking all vertices as
unsettled and non-pivot. Then, for each t ∈ [1, r], we implement round t of r-Pivot by making two
passes of the stream. In the first pass, we maintain ηt(v) associated to each unsettled vertex v ∈ V ,
which is initialized to v, as follows: whenever an edge {u, v} ∈ E arrives with both u, v unsettled,
if π(u) < π(ηt(v)), we update ηt(v) to be u; similarly, if π(v) < π(ηt(u)), we update ηt(u) to be
v. After this pass, any unsettled vertex v with ηt(v) = v is marked as settled and a pivot. In the
second pass, we mark all neighbors of the newly-identified pivots as settled, as follows: whenever
an edge {u, v} ∈ E arrives with one of u, v marked as a pivot and the other unsettled, we mark the
unsettled vertex as settled.

Now that we have implemented all r rounds of r-Pivot by 2r passes of the stream, we determine
the output clustering by making an additional final pass. Every pivot starts a cluster which includes
itself. During the final pass, for each non-pivot vertex u, we find the vertex v that has the smallest
rank under π among all pivots in N(u) (if any), as well as the vertex w that has the smallest rank
under π among all unsettled vertices in N(u) (if any). If v doesn’t exist, or both v, w exist and
π(w) < π(v), u forms a singleton cluster. Otherwise, u joins the cluster of v.

The Local Model: In the local model, each vertex of the input graph G hosts a computationally
unbounded processor, computation proceeds in rounds, and adjacent vertices can exchange messages
of any size in each round. The main question is the number of rounds it takes to solve a graph
problem where the input is the same as the communication network G.

25

We now show that there is a randomized (2r+1)-round local algorithm that obtains an expected(
3 + 8

2r−1 + n−Ω(1)
)
-approximation of correlation clustering using O(log n)-bit messages.

Proof of Corollary 1.5. Take r = O(1/ε) such that 8
2r−1 + n−Ω(1) < ε. Since we cannot globally

draw a random permutation of V in the local model, we implement r-Pivot-Variant given in the
MPC implementation (see the proof of Corollary 1.3 above). To start, each vertex v ∈ V draws
its rank π(v) from {0, . . . , nc− 1} independently and uniformly at random, where c is a sufficiently
large constant, and gets marked as unsettled and non-pivot. Then, for each t ∈ [1, r], we implement
round t of r-Pivot by two rounds in the local model. In the first round, any unsettled vertex sends
its rank to all of its neighbors. Then, any unsettled vertex v can determine ηt(v) from the ranks of
all of its unsettled neighbors, and if ηt(v) = v, it gets marked as settled and a pivot. In the second
round, any newly-identified pivot informs all of its neighbors. Then, any unsettled vertex that sees
a newly-identified pivot neighbor gets marked as settled.

Now that we have implemented all r rounds of r-Pivot by 2r rounds in the local model, we
determine the output clustering by an additional final round. Every pivot starts a cluster which
includes itself. In the final round, any pivot informs all of its neighbors that it is pivot and sends
over its rank under π. Moreover, any unsettled vertex informs all of its neighbors that it is unsettled
and sends over its rank under π. Then, any non-pivot vertex u can determine the vertex v that
has the smallest rank under π among all pivots in N(u) (if any), as well as the vertex w that has
the smallest rank under π among all unsettled vertices in N(u) (if any). If v doesn’t exist, or both
v, w exist and π(w) < π(v), u forms a singleton cluster. Otherwise, u joins the cluster of v.

Local Computation Algorithms: Centralized Local Computation Algorithms (LCAs) are use-
ful for problems where both the input and output are too large. An LCA is not required to output
the whole solution, but instead should answer queries about parts of the output. For example, for
the correlation clustering problem, the query to an LCA is a vertex v and the answer should return
the cluster ID of v. For graph problems, it is common to assume that the algorithm has query
access to the adjacency lists. That is, for any vertex v, the LCA can query the degree of v in G,
and for any i ∈ [deg(v)], the LCA can request the ID of i-th neighbor of v. The goal is to answer
each query using small time and space.

As it is by now standard and because r-Pivot can be implemented in O(r) rounds in the local
model, we can obtain a ∆O(r) poly log n time/space LCA implementation for r-Pivot by simply
collecting the whole O(r)-hop of any vertex [25, 6]. This shows Corollary 1.6, with a choice of
r = O(1/ε) such that 8

2r−1 + n−Ω(1) < ε.

5 Conclusion & Open Problems

In this work, we showed that a (3 + ε)-approximation of correlation clustering can be obtained
in O(1/ε) rounds in models such as (strictly sublinear) MPC, local, and streaming. This is a
culminating point for low-depth algorithms for correlation clustering as the approximation gets
close to a barrier of 3 for combinatorial algorithms and the round-complexity is essentially constant.

Several interesting questions remain open, especially in big data settings where there is no direct
notion of round complexity. For example, is it possible to obtain an (almost) 3-approximation of
correlation clustering in:

• Sublinear time? See [7] for the formal model for correlation clustering.

26

• O(1) update-time in the fully dynamic model? See [10] for a poly log n update-time algorithm.

• O(∆) time of the LCA model?

• A single pass of the streaming setting using O(n poly log(n)) space?

Finally, recall from the last paragraph of Section 1.2 that our algorithm combined with the
algorithm of [15] gives an efficient O(1/ε)-round algorithm for rounding the natural LP solution
up to a factor of (2.06 + ε). Unfortunately, solving the LP remains the main bottleneck. It would
thus be extremely interesting to study whether a low-round algorithm exists for solving the natural
correlation clustering LP (see [15]).

References

[1] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis
Tsaparas. Generating labels from clicks. In Proceedings of the Second International Con-
ference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain, February 9-11,
2009, pages 172–181, 2009.

[2] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 2237–2246, 2015.

[3] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. Algorithmica, 83(7):1980–2017, 2021.

[4] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: rank-
ing and clustering. In Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, Baltimore, MD, USA, May 22-24, 2005, pages 684–693. ACM, 2005.

[5] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008.

[6] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132–1139. SIAM, 2012.

[7] Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation cluster-
ing via sparse-dense decompositions. In 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, to appear.

[8] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In 43rd Symposium
on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC,
Canada, Proceedings, page 238, 2002.

[9] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn., 56
(1-3):89–113, 2004.

[10] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Mary-
land, USA, November 9-12, 2019, pages 382–405, 2019.

27

[11] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal inde-
pendent set and matching are parallel on average. In 24th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA, June 25-27, 2012, pages
308–317. ACM, 2012.

[12] Mélanie Cambus, Davin Choo, Havu Miikonen, and Jara Uitto. Massively parallel correlation
clustering in bounded arboricity graphs. In 35th International Symposium on Distributed
Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), pages
15:1–15:18, 2021.

[13] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to web-
page segmentation. In Proceedings of the 17th International Conference on World Wide Web,
WWW 2008, Beijing, China, April 21-25, 2008, pages 377–386, 2008.

[14] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14
October 2003, Cambridge, MA, USA, Proceedings, pages 524–533. IEEE Computer Society,
2003.

[15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. CoRR, abs/1412.0681, 2014.

[16] Flavio Chierichetti, Nilesh N. Dalvi, and Ravi Kumar. Correlation clustering in mapreduce. In
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 641–650. ACM, 2014.

[17] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages
2069–2078. PMLR, 2021.

[18] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2152–2160, 2018.

[19] Manuela Fischer and Andreas Noever. Tight analysis of parallel randomized greedy MIS. ACM
Trans. Algorithms, 16(1):6:1–6:13, 2020.

[20] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Proceedings of the 22nd International Conference on Algorithms
and Computation (ISAAC), pages 374–383, 2011.

[21] Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan. Web people
search via connection analysis. IEEE Trans. Knowl. Data Eng., 20(11):1550–1565, 2008.

[22] Sungwoong Kim, Chang Dong Yoo, Sebastian Nowozin, and Pushmeet Kohli. Image segmen-
tation usinghigher-order correlation clustering. IEEE Trans. Pattern Anal. Mach. Intell., 36
(9):1761–1774, 2014.

28

[23] Huy N. Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local im-
provements. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336. IEEE Computer Society,
2008.

[24] Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchan-
dran, and Michael I. Jordan. Parallel correlation clustering on big graphs. In Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 82–90, 2015.

[25] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
Innovations in Computer Science - ICS 2011, Tsinghua University, Beijing, China, January
7-9, 2011. Proceedings, pages 223–238. Tsinghua University Press, 2011.

[26] Jessica Shi, Laxman Dhulipala, David Eisenstat, Jakub Lacki, and Vahab S. Mirrokni. Scalable
community detection via parallel correlation clustering. Proc. VLDB Endow., 14(11):2305–
2313, 2021.

[27] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approximation
algorithm for maximum matchings. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 225–
234. ACM, 2009.

A Size of Pr-PIV vs PPIV

In this section, we show that even though, by Theorem 1.1, algorithm r-Pivot is almost as good
as Pivot in terms of approximating correlation clustering, the set Pr-PIV of the pivots found by
r-Pivot tends to be significantly smaller than the set PPIV of the pivots found by Pivot.

Lemma A.1. For any r ≥ 1, there is an infinite family of n-vertex graphs for which

E |Pr-PIV| ≤ r · n−Ω(1/r) ·E |PPIV|.

Proof. We first construct a layered graph H, then the graph G of the lemma will be the line-graph
of H. That is, G includes a vertex for each edge of H, and two vertices of G are adjacent if their
corresponding edges in H share an endpoint. Observe that PPIV for G corresponds to a maximal
matching of H, and Pr-PIV for G corresponds to a (not necessarily maximal) matching of H.

Let t := 2r + 2 where r is the parameter we run r-Pivot with. Let N be a sufficiently large
even integer controlling the number of vertices in H and let α = N1/3t ≥ 2. The graph H has
t layers of vertices V1, . . . , Vt where |Vi| = N/αt−i. The graph has a perfect matching among the
vertices in Vt. Additionally, there is a bipartite graph between every two consecutive layers. For
any i ∈ [t] define:

d←i := α2(t−i)+1, d→i := α2(t−i).

For any i ∈ [t − 1], each vertex v ∈ Vi has exactly d→i neighbors in Vi+1, and each vertex in Vi+1

has exactly d←i+1 neighbors in Vi. For this to be doable we need to have |Vi| · d→i = |Vi+1| · d←i+1 and
|V1| ≥ d←2 . The former holds because

|Vi| · d→i =
N

αt−i
· α2(t−i) =

N

αt−(i+1)
· α2(t−(i+1))+1 = |Vi+1| · d←i+1,

29

and the latter holds because

|V1| = N/αt−1 = N/N
t−1
3t = N2/3+1/3t & d←2 = α2(t−2)+1 = N

2(t−2)+1
3t ≤ N2/3.

Since PPIV is a maximal matching of H, it should be at least half the size of its maximum
matching. Our construction has a perfect matching among the vertices of Vt. Thus, in any outcome
of the Pivot algorithm we must have

|PPIV| ≥
1

2
· |Vt|

2
= Ω(N).

Next we show that E |Pr-PIV| = O(tN/α) = rN1−Ω(1/r), which proves the claim.

Let π be a random rank over the edges of H (or equivalently the vertices of G). Given a vertex
vt ∈ Vt, define Q(vt) to be the event of having a path (vt, vt−1, . . . , v1) in H where vi ∈ Vi and
additionally (vi, vi−1) has the lowest rank in π among all edges of vi. Observe that under this event,
all edges of vt remain unsettled by r-Pivot after (t− 2)/2 = r rounds.

Let us lower bound Pr[Q(vt)] for fixed vt ∈ Vt. First, vertex vt has d←t edges in Vt−1 and only
one edge in Vt. So the lowest rank edge of v is to some vertex vt−1 ∈ Vt−1 with probability

d←t
deg(vt)

=
d←t

d←t + 1
=

α

α+ 1
.

Conditioned on this, the lowest rank edge of vt−1 goes to vt−2 ∈ Vt−2 with probability

d←t−1

deg(vt−1) + deg(vt)− 1
=

d←t−1

d←t−1 + d→t−1 + d←t
=

α3

α3 + α2 + α
≥ α

α+ 2
,

(Where here we are using the fact that for disjoint sets of edges A and B, the lowest rank edge

among B has a lower rank than the lowest rank edge of A with probability |B|
|B|+|A| .) Conditioned

on this, the lowest rank edge of vt−2 goes to vt−3 ∈ Vt−3 with probability

d←t−2

deg(vt−2) + deg(vt−1) + deg(vt)− 2
=

α5

α5 + α4 + α3 + α2 + α− 1
≥ α

α+ 2
.

Continuing this argument all the way to V1, we get

Pr[Q(vt)] ≥
(

α

α+ 2

)t−1

=

(
1− 2

α+ 2

)t−1

≥ 1− 2(t− 1)

α+ 2
= 1−Θ(t/α).

B Deterministic Approximation of r-Pivot

In this section, we prove the following:

Lemma B.1. For any r < n/2, there exists a graph G and a choice of π for r-Pivot where

COSTr-PIV(G, π) = Ω

(
n2

r
·OPT(G)

)
.

30

14

8

79

12

13

11

10

6 5 4 3 2 1

Proof. For some parameter N , let G include a clique KN and a path of length 2r attached to the
clique. Let π be such that the vertices on the path have the lowest ranks in the graph and in
a monotone increasing way from the degree one vertex of the path to its vertex attached to the
clique. The ranks of the vertices in the clique can be arbitrary. An example construction for r = 3
and N = 8 is shown below, with the numbers on the vertices corresponding to the ranks in π.

The idea is that within the first r rounds of r-Pivot, only the vertices of the path will be
marked as pivots. Thus, all vertices of the clique will form singleton clusters. As a result, the cost
of this clustering is at least Ω(N2). On the other hand, by simply putting all the vertices of the
clique in a cluster, the optimal solution only pays a cost of O(r). Thus the cost of r-Pivot is
Ω(N2/r) times that of the optimal solution.

C Proof of Lemma 3.2

We provide a proof of Lemma 3.2 based on the following result:

Claim C.1 ([5]). Let BT be the set of all bad triangles in G. Let y : BT → [0, 1] be such that∑
t∈BT :a,b∈t y(t) ≤ 1 for every distinct pair of vertices a, b ∈ V (not necessarily connected in G).

Then OPT(G) ≥
∑

t∈BT y(t).

Proof. Consider the following LP, which clearly lower bounds the optimal solution since at least
one pair of any bad triangle must be clustered incorrectly:

minimize
∑

a6=b∈V
x{a,b}

subject to x{a,b} + x{a,c} + x{b,c} ≥ 1 ∀{a, b, c} ∈ BT
x{a,b} ≥ 0 ∀a 6= b ∈ V

Now consider the dual:

maximize
∑
t∈BT

yt

subject to
∑

t∈BT :a,b∈t
yt ≤ 1 ∀a 6= b ∈ V

yt ≥ 0 ∀t ∈ BT

The lemma then follows because the objective value of any feasible solution to the dual lower
bounds the primal objective.

31

Proof of Lemma 3.2 via Claim C.1. For any bad triangle t ∈ BT , let x(t) be the expected number
of charges of charging scheme S to t where the expectation is taken over π and the randomization
of S. First, note from the definition of charging schemes that

E[|X|] =
∑
t∈BT

E [x(t)] . (3)

Fix a pair a, b ∈ V of distinct vertices. Since S is assumed to have width w, we have∑
t∈BT :a,b∈t

E[x(t)] ≤ w. (4)

Now let us define y(t) := E[x(t)]/w for any t ∈ BT . We have

∑
t∈BT :a,b∈t

y(t) =
1

w

∑
t∈BT :a,b∈t

E[x(t)]
(4)

≤ 1.

Therefore, we can apply Claim C.1 to get

OPT(G) ≥
∑
t∈BT

y(t)
(by definition of y)

=
1

w

∑
t∈BT

E[x(t)]. (5)

Equations (3) and (5) together prove E[|X|] ≤ w ·OPT(G).

32

	1 Introduction
	1.1 State of Affairs on (Parallel) Correlation Clustering
	1.2 Our Contribution

	2 A High-Level Overview of Our Techniques
	3 The Analysis
	3.1 Charging Schemes
	3.2 Characterization of Pairs in X
	3.3 Vertex and Pair Oracles
	3.4 Our Charging Scheme
	3.5 The High Level Approach and Relation to YoshidaYI-STOC09
	3.6 Proof of lem:width
	3.6.1 Proof of lem:querypathplus
	3.6.2 Proof of lem:querypathminus

	3.7 Deferred Proofs

	4 Implementations
	5 Conclusion & Open Problems
	A Size of Pr-PIV vs PPIV
	B Deterministic Approximation of r-Pivot
	C Proof of lem:width-gives-apx

