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Abstract

Differentially private algorithms allow large-scale data analytics while preserving user privacy. De-
signing such algorithms for graph data is gaining importance with the growth of large networks that
model various (sensitive) relationships between individuals. While there exists a rich history of impor-
tant literature in this space, to the best of our knowledge, no results formalize a relationship between
certain parallel and distributed graph algorithms and differentially private graph analysis. In this paper,
we define locally adjustable graph algorithms and show that algorithms of this type can be transformed
into differentially private algorithms.

Our formalization is motivated by a set of results that we present in the central and local models of
differential privacy for a number of problems, including k-core decomposition, low out-degree ordering,
and densest subgraphs. First, we design an ε-edge differentially private (DP) algorithm that returns
a subset of nodes that induce a subgraph of density at least D∗

1+η
− O (poly(log n)/ε) , where D∗ is the

density of the densest subgraph in the input graph (for any constant η > 0). This algorithm achieves a
two-fold improvement on the multiplicative approximation factor of the previously best-known private
densest subgraph algorithms while maintaining a near-linear runtime.

Then, we present an ε-locally edge differentially private (LEDP) algorithm for k-core decompositions.
Our LEDP algorithm provides approximates the core numbers (for any constant η > 0) with (2 + η)
multiplicative and O (poly (log n) /ε) additive error. This is the first differentially private algorithm that
outputs private k-core decomposition statistics. We also modify our algorithm to return a differentially
private low out-degree ordering of the nodes, where orienting the edges from nodes earlier in the or-
dering to nodes later in the ordering results in out-degree at most O (d+ poly (log n) /ε) (where d is
the degeneracy of the graph). A small modification to the algorithm also yields a ε-LEDP algorithm
for (4 + η,O (poly (log n) /ε))-approximate densest subgraph (which returns both the set of nodes in the
subgraph and its density). Our algorithm uses O(log2 n) rounds of communication between the curator
and individual nodes.

http://arxiv.org/abs/2211.10887v1


Contents

1 Introduction 1

2 Preliminaries 2
2.1 Graph Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Local Edge Differential Privacy (LEDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Differential Privacy Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Our Contributions and Technical Overview 5

4 Local Algorithms for Core Decomposition, Low Out-Degree Ordering, and Densest Sub-
graph 8
4.1 ε-LEDP k-Core Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Detailed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 LEDP Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Approximation Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Reducing the Number of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Low Out-Degree Ordering and Densest Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Complexity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 ε-Edge DP Densest Subgraph 19
5.1 Detailed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 ε-Edge DP Privacy Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Approximation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Differential Privacy from Locally Adjustable Algorithms 32
6.1 Locally Adjustable Graph Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Edge Differential Privacy from Local Adjustability . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 ε-LEDP from Locally Adjustable Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Proof of the Adaptive Composition Theorem 38

B k-Core Decomposition Approximation Proofs 38

C Challenges with Using Previous Techniques 40

D Dual of the Densest Subgraph LP 41



1 Introduction

The k-core decomposition and related objects—densest subgraph and low out-degree ordering—are
among the most important and widely used graph statistics in a variety of communities including
databases [CZL+20, LZZ+19, ESTW19, BGKV14, MMSS20], machine learning [AHDBV05, ELM18,
GLM19], graph analytics [KBST15, KM17, DBS17, DBS18], graph visualization [AHDBV05, CHK+07,
YL15, ZZC+10], theoretical computer science [CSS21, ELM18, GLM19, MPM13, SCS20], and other com-
munities [GBGL20, LYL+19, SGJS+13]. The k-core decomposition assigns a number to each node in a
network which captures how well-connected it is to the rest of the network; it is useful in applications where
one wants to find “influential” nodes, or to partition a network based on each node’s influence. Concrete
applications include diffusion protocols in epidemiological studies (where nodes with large core numbers
tend to be “super-spreaders”) [CGB+20, KGH+10, LTZY15, MRV16], community detection and computing
network centrality measures (where centers tend to have larger core numbers) [DGP09, HJMA06, MPP+15,
WCL+18, ZZQ+17],network visualization and modeling [AHDBV05, CHK+07, YL15, ZZC+10], protein in-
teractions [ASM+06, BH03], and clustering (where k-core decompositions are often used for preprocessing
to achieve faster performance) [GMTV14, LRJA10]. Because of these applications, finding fast and scalable
algorithms for exact and approximate k-core decompositions is an active research area with many results
spanning the past decade (see [MGPV20] for a survey of these results). and a plethora of results published
just in the past year [CSS21, GPC21, GZE+21, LZL+21b, LZL+21a, LZHX21, LYC+21, VAGK21, VKBK21,
WZL+22, ZHH+21].

However, one increasingly important topic that has been overlooked thus far in the community is the
privacy of the individuals whose data are used for computing the core numbers. Privacy measures are
particularly important for statistics such as k-core numbers, since such statistics output a value for each
individual in the data set, allowing for more effective attacks that can decipher individual links and also the
information of one or more individuals in the data set. Such ominous possibilities call for a formal study of
k-core decomposition algorithms that are privacy preserving, which is the focus of this paper.

Given an undirected graph G with n nodes and m edges, the k-core of the graph is the maximal subgraph
H ⊆ G such that the induced degree of every node in H is at least k. The k-core decomposition of the graph
is a partition of the nodes of the graph into layers such that layer k contains all the nodes that belong to
the k-core but not the (k + 1)-core. We illustrate the kind of attack on a (private) input data set that
can occur provided the (anonymized) k-core decomposition of a social network graph. In particular, the
k-core decomposition gives much more information about the structure of the graph than many other graph
statistics. Consider a social network graph consisting of a k-clique and a k-ary tree. Suppose the attacker
does not know the graph but has access to the exact core numbers of individuals in the data set. From the
core numbers, the attacker can determine the individuals in the clique and the edges between them. Such
an attack is not possible, for example, if instead of the core numbers, the attacker has access to the degree
distribution of the graph. In this case, the attacker cannot differentiate between the clique and the non-leaf
nodes of the k-ary tree.

Consider a graphG that, instead of friendships, represent sensitive information such as HIV transmissions
[LPA+14, WWM+15, WPF+17] or cryptocurrency payments [MB19]. Two members of a clique in G, users
A and B, may not want others to know that they share an edge; however, the k-core decomposition of G
reveals that they do indeed share an edge. Such an attack emphasizes the need for k-core decomposition
algorithms that provide privacy for individuals.

With this goal in mind, we present novel differentially private (DP) algorithms for the k-core decom-
position and related objects—densest subgraph and low out-degree ordering—that match the multiplicative
approximation bounds of the known non-private algorithms. Differential privacy [DMNS06] is the gold stan-
dard for privacy in data analysis. We present results in two differential privacy models: central [DMNS06]
and local [KLN+11]. The central model assumes a trusted curator that gathers and processes non-private
data from users. In contrast, the local differential privacy model assumes no trusted third-party. Each
node represents an individual device of a user (e.g., phone) which releases privatized data. A third-party
can act as an untrusted curator for computing statistics on the released data. Such models are particularly
important as individuals become more wary of central authorities; and it is also a liability for companies to
keep such sensitive data. Local differential privacy is a stronger notion of privacy than central differential
privacy because nobody besides the owner touches any private data. Furthermore, privacy in the local model
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implies privacy in the central model. On the other hand, local differential privacy is more restrictive for the
algorithm designer, and, for some problems, locally differentially private algorithms must have larger error
than DP algorithms. In fact, several known error lower bounds exhibit gaps between the central and local
models that could be as large as polynomial in the size of the input (see, e.g., [BNO08, CSS12, DMNS06]).

Outline We provide all definitions and notation for this paper in Section 2. We summarize our contribu-
tions and provide a technical overview in Section 3. In Section 4, we present our locally differentially private
k-core decomposition, low out-degree ordering, and densest subgraph algorithms. In Section 5, we provide
our DP densest subgraph algorithm that achieves a better multiplicative factor approximation than our
densest subgraph algorithm in the local model. Finally, in Section 6, we provide our privacy framework that
allows us to convert a class of algorithms that we call locally adjustable into differentially private algorithms.
It is open whether one can show that, in general, the utility of locally adjustable algorithms does not degrade
significantly during the transformation.

Related Works DP algorithms have been developed for graph statistics such as subgraph counts [KRSY14,
BBDS13, CZ13, IMC22, IMC21, KNRS13, SXK+19, ZCP+15], degree distribution [HLMJ09, DLL16, RS16,
ZNF21], minimum spanning tree and clustering [NRS07, HL18, KS18, NSV16], spectral properties [WWW13,
AU19], cut problems [GLM+10, AU19, EKKL20, KL10, Sea16, Sta21], and parameter estimation [LM14,
YHA+20a, YHA+20b].

DP Densest Subgraph. The currently best DP algorithms for densest subgraphs are due to Nguyen and
Vullikanti [NV21] and Farhadi et al. [FHS22]. We describe them in detail in Section 3.

Non-Private Algorithms for k-Core Decomposition and Related Problems. In the non-DP, fully-dynamic
setting, Bhattacharya et al. [BHNT15], Henzinger et al. [HNW20], and Sawlani and Wang [SW20] provide
sequential algorithms that use poly(logn) update time and obtain a (4 + η)-approximate densest subgraph,
O(1)-approximate low out-degree ordering, and (1 + η)-approximate densest subgraph, respectively, for
any η > 0. Sun et al. [SCS20] provide the first dynamic (4 + η)-approximate k-core decomposition in
the sequential model, using a peeling algorithm. A similar technique is used by Chan et al. [CSS21] in
the distributed setting. Ghaffari et al. [GLM19] give various algorithms for (1 + ε)-approximate k-core
decomposition in the massively parallel computation (MPC) model. Finally, Liu et al. [LSY+22] formulate
a parallel, batch-dynamic (4 + η)-approximate k-core decomposition algorithm which we use in our work1.

2 Preliminaries

We provide both DP and LDP algorithms with a focus on the k-core decomposition, low out-degree ordering,
and the densest subgraph. We define these problems here. All privacy tools presented in this section are
used in both the DP and LDP settings.

2.1 Graph Definitions

We use [n] to denote {1, . . . , n}. We consider undirected graphs G = (V,E) with n = |V | nodes and m = |E|
edges. For ease of indexing, we set V = [n]. The set of neighbors of a node i ∈ [n] is denoted N(i), and the
degree of node i is denoted deg(i). Our algorithms take an input graph G and output an approximate core
number for each node in the graph (Definition 2.1), an approximate densest subgraph (Definition 2.4),
and an approximate low out-degree ordering (Definition 2.3).

Definition 2.1 ((φ, ζ)-Approximate Core Number). The k-core of a graph G = (V,E) is a maximal subgraph
H of G such that the induced degree of every node in H is at least k. A node v ∈ V has core number κ if v
is part of the κ-core but not the (κ+ 1)-core. Let k(v) be the core number of v and k̂(v) be an approximation

of the core number of v, and let φ ≥ 1, ζ ≥ 0. The core estimate k̂(v) is a (φ, ζ)-approximate core number

of v if k(v)− ζ ≤ k̂(v) ≤ φ · k(v) + ζ.

1 We only consider one-sided multiplicative error. Thus, we translate the approximation factors of [SCS20] and [LSY+22],
which give two-sided error, to instead give one-sided error, resulting in an additional factor of 2 in our statement of their
approximation bounds.
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Whereas an algorithm that outputs the exact k-core decomposition does not satisfy the definition of DP
(or LDP), we obtain an LDP algorithm for approximate k-core decomposition which gives (2+η,O(log3 n/ε))-
approximate core numbers for any constant η > 0. We define the related concept of an approximate low
out-degree ordering based on the definition of degeneracy .

Definition 2.2 (Degeneracy). An undirected graph G = (V,E) is d-degenerate if every induced subgraph
of G has a node with degree at most d. The degeneracy of G is the smallest value of d for which G is
d-degenerate.

It is well known that degeneracy d = maxv∈V {k(v)}.

Definition 2.3 ((φ, ζ)-Approximate Low Outdegree Ordering). Let D = [v1, v2, . . . , vn] be a total ordering
of nodes in a graph G = (V,E). The ordering D is an (φ, ζ)-approximate low out-degree ordering if
orienting edges from earlier nodes to later nodes in D produces outdegree at most φ · d+ ζ.

We denote the density of a graph G = (V,E) by ρ(G) := |E|
|V | . The densest subgraph problem is

defined as follows.

Definition 2.4 (Densest Subgraph). The densest subgraph Smax of a graph G = (V,E) is a maximal induced
subgraph with maximum density.

When defining an approximate densest subgraph, we remove the condition on maximality of the subgraph
and require the density to be within the specified approximation factors.

Definition 2.5 ((φ, ζ)-Approximate Densest Subgraph). Let the density of the densest subgraph in G be D∗

and φ ≥ 1, ζ ≥ 0. A (φ, ζ)-approximate densest subgraph S has density ρ (S) at least D∗

φ − ζ.

2.2 Differential Privacy

We consider two models of differential privacy: central [DMNS06] and local [KLN+11]. In the central model,
there is a trusted curator that has direct access to the input, whereas in the local model, the curator is not
trusted and gets access only to outputs of private algorithms, called randomizers. Both notions of privacy
require a definition of neighboring inputs. We focus on edge-neighboring graphs, defined next.

Definition 2.6 (Edge-Neighboring [NRS07]). Graphs G1 = (V1, E1) and G2 = (V2, E2) are edge-neighboring
if they differ in one edge, namely, if V1 = V2 and the size of the symmetric difference of E1 and E2 is 1.

Definition 2.7 (ε-Edge Differential Privacy [NRS07]). Algorithm A(G), that takes as input a graph G and
outputs some value in Range(A)2, is ε-edge differentially private (ε-edge DP) if for all S ⊆ Range(A)
and all edge-neighboring graphs G and G′,

1

eε
≤

Pr[A(G′) ∈ S]

Pr[A(G) ∈ S]
≤ eε.

The primary complexity measure for ε-edge DP algorithms is the running time.

2.3 Local Edge Differential Privacy (LEDP)

The LEDP model is an extension of the local differential privacy (LDP) model originally introduced
by [KLN+11]. Below we use the definitions given in [ELRS22] which are based on definitions in [JMNR19]
for non-graph data. The LEDP was also defined in [IMC22, IMC21] for the special case of one round, and
[IMC22] additionally provides a proposition on the sequential composition of their LEDP algorithms.

Our LEDP algorithms are described in terms of an (untrusted) curator, who does not have access to
the graph’s edges, and individual nodes. During each round, the curator first queries a set of nodes for
information. Individual nodes, which have access only to their own (private) adjacency lists, then release
information via local randomizers, defined next.

2Range(·) denotes the set of all possible outputs of a function.
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Definition 2.8 (Local Randomizer (LR)). An ε-local randomizer R : a→ Y for node v is an ε-edge DP al-
gorithm that takes as input the set of its neighbors N(v), represented by an adjacency list a = (b1, . . . , b|N(v)|).
In other words,

1

eε
≤

Pr [R(a′) ∈ Y ]

Pr [R(a) ∈ Y ]
≤ eε

for all a and a′ where the symmetric difference is 1 and all sets of outputs Y ⊆ Y. The probability is taken
over the random coins of R (but not over the choice of the input).

The information released via local randomizers is public to all nodes and the curator. The curator
performs some computation on the released information and makes the result public. The overall computation
is formalized via the notion of the transcript.

Definition 2.9 (LEDP). A transcript π is a vector consisting of 4-tuples (StU , S
t
R, S

t
ε, S

t
Y ) – encoding

the set of parties chosen, set of randomizers assigned, set of randomizer privacy parameters, and set of
randomized outputs produced – for each round t. Let Sπ be the collection of all transcripts and SR be the
collection of all randomizers. Let ⊥ denote a special character indicating that the computation halts. A

protocol is an algorithm A : Sπ → (2[n] × 2SR × 2R
≥0

× 2R
≥0

) ∪ {⊥} mapping transcripts to sets of parties,
randomizers, and randomizer privacy parameters. The length of the transcript, as indexed by t, is its round
complexity.

Given ε ≥ 0, a randomized protocol A on (distributed) graph G is ε-locally edge differentially private
(ε-LEDP) if the algorithm that outputs the entire transcript generated by A is ε-edge differentially private
on graph G. If t = 1, that is, if there is only one round, then A is called non-interactive. Otherwise, A is
called interactive.

Since LEDP algorithms operate in the distributed setting, the complexity measures that we care about
for our LEDP algorithms is the number of rounds of communication and the node communication
complexity , or the maximum size of each message sent from a user to the curator. We assume each user
can see the public information for each round on a public “bulletin board”.

2.4 Differential Privacy Tools

We define these techniques for DP but the same cited sources also prove they hold under LDP. Also for
simplicity, we give these techniques in graph theoretic terms but they also hold for broader applications
(e.g., for databases, etc.). Our algorithms use the notion of sensitivity, defined as follows.

Definition 2.10 (Global Sensitivity [DMNS06]). For a function f : D → R
d, where D is the domain of

f and d is the dimension of the output, the ℓ1-sensitivity of f is GSf = maxG,G′ ‖f(G)− f(G′)‖1 for all
pairs of (G,G′) of edge-neighboring graphs.

Our algorithms use the symmetric geometric distribution given in previous papers [BV18, CSS11,
DMNS06, DNPR10, FHS22, SCR+11]. One can think of the symmetric geometric distribution as the “dis-
crete Laplace distribution.” The advantage of such a distribution is that we avoid the rounding issues of
continuous distributions and this distribution is sufficient for our needs.

Definition 2.11 (Symmetric Geometric Distribution [BV18, SCR+11]). The symmetric geometric dis-
tribution, denoted Geom(b), with input parameter b ∈ (0, 1), takes integer values i where the probability

mass function at i is eb−1
eb+1

· e−|i|·b.

We denote a random variable drawn from the distribution as X ∼ Geom(b).
With high probability or whp is used in this paper to mean with probability at least 1 − 1

nc for any
constant c ≥ 1. As with all private algorithms, privacy is always guaranteed and the approximation factors
are guaranteed whp. We can upper bound the symmetric geometric noise whp using the following.

Lemma 2.12. With probability at least 1 − 1
nc for any constant c ≥ 1, we can upper bound X ∼ Geom (x)

by |X | ≤ c lnn
x .

Proof. The probability that |X | > c lnn
x is given by 2

∑∞
i= c lnn

x +1
ex−1
ex+1 · e

−|i|·x = 2 ·
exp(−x· c lnn

x )
ex+1 = 2 ·

exp(−c lnn)
ex+1 ≤ 1

nc . Thus, the probability that |X | ≤ c lnn
x is at least 1− 1

nc .
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The geometric mechanism uses the symmetric geometric distribution.

Definition 2.13 (Geometric Mechanism [BV18, CSS11, DMNS06, DNPR10]). Given any function f : D →
Z
d, where D is the domain of f and GSf is the ℓ1-sensitivity of f , the geometric mechanism is defined

as MG(x, f(·), ε) = f(x) + (Y1, . . . , Yd), where Yi ∼ Geom(ε/GSf ) are i.i.d. random variables drawn from
Geom(ε/GSf) and x is a data set.

Lemma 2.14 (Privacy of the Geometric Mechanism [BV18, CSS11, DMNS06, DNPR10]). The geometric
mechanism is ε-edge DP.

The composition theorem guarantees privacy for the composition of multiple algorithms with privacy
guarantees of their own. In particular, this theorem covers the use case where multiple DP algorithms are
used on the same dataset. We also use a theorem for group differential privacy.

Theorem 2.15 (Composition Theorem [DMNS06, DL09, DRV10]). A sequence of DP algorithms,
(A1, . . . ,Ak), with privacy parameters (ε1, . . . , εk) form at worst an (ε1 + · · ·+ εk)-DP algorithm under
adaptive composition (where the adversary can adaptively select algorithms after seeing the output of previ-
ous algorithms).

Lemma 2.16 (Group Privacy [DMNS06]). Let k ∈ N. Every ε-differentially private algorithm A is (kε)-
differentially private for groups of size k. That is, for all data sets X,X ′ such that ‖X −X ′‖0 ≤ k and all
subsets Y ⊆ Y,

1

ekε
≤

Pr[A(X ′) ∈ Y ]

Pr[A(X) ∈ Y ]
≤ ekε.

For completeness, we provide a proof of Theorem 2.15 in Appendix A. Finally, the post-processing theo-
rem states that the result of post-processing on the output of an ε-edge DP algorithm is ε-edge DP.

Theorem 2.17 (Post-Processing [DMNS06, BS16]). Let M be an ε-edge DP mechanism and h be an
arbitrary (randomized) mapping from Range(M) to an arbitrary set. The algorithm h ◦M is ε-edge DP.3

2.5 Notations

All notations used in our paper are included in Table 1; notation used in a specific section are labeled with
that section.

3 Our Contributions and Technical Overview

Our main contributions in this paper are our locally private approximation algorithms for k-core decom-
position, low out-degree ordering, and densest subgraphs that achieve bicriteria approximations where the
multiplicative factors exactly match the multiplicative approximations of the original non-private algorithms,

and they only incur additional small poly(logn)
ε additive error. Our key observation is that the release of noisy

levels in the recent level data structures of [BHNT15, HNW20, LSY+22] used for these problems allows for
privacy at the cost of only a poly(log n) increase in the additive error.

We first give ε-LEDP algorithms using a number of recent non-private algorithms for static and dynamic
orientation and k-core decomposition algorithms [BHNT15, HNW20, CSS21, LSY+22]. Our algorithms are
the first ε-LEDP algorithms for approximate k-core decomposition, low out-degree orientation and densest
subgraph. For the approximate k-core decomposition problem, we must return an approximate core number
for every node in the graph. Even though a single edge addition can cause the exact core number of every

node to change, we are able to give a
(

2 + η,O
(

log3 n
ε

))
-approximate ε-LEDP algorithm.

One of the challenges in adapting known techniques to obtain LEDP algorithms for the k-core decom-
position is that the vector of k-core numbers has high sensitivity. Specifically, its global sensitivity is n, as
one edge update can cause the k-core number of every node to increase or decrease by 1. E.g., all nodes in
a cycle have core number 2, and the deletion of any edge decreases the core number of every node by 1. 4

3◦ is notation for applying h on the outputs of M.
4More details on these challenges can be found in Appendix C.
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Notation Meaning

G = ([n], E) initial input graph
ε > 0 privacy parameter
η > 0 approximation parameter
i each node i has a unique index i ∈ [n]

N(i) i’s set of neighbors
[x]ba for x, a, b ∈ R, where a < b a if x < a; x if x ∈ [a, b]; and b if x > b

G[V ′] induced subgraph by nodes in V ′

ρ(G[V ′]) density of induced subgraph by nodes in V ′

Geom(b) symmetric geometric distribution (Definition 2.11) with parameter b
[n] integers in {1, . . . , n}

Notation in Section 5

ℓ(e) load on edge e
α̂eu new load added to edge e from node u
T number of phases

Notation in Section 4

λ ∈ (0, 1) constant parameter used in upper bounds on induced degree
ψ ∈ (0, 1) constant parameter used to determine number of levels

Lr array of node levels publicized by curator for round r
C array containing core number estimates of each node

F(r) function that outputs ⌊r/(2 log(1+ψ) n)⌋

level(i) the level of node i

δ(G[V ′]) sum of degrees in induced subgraph of V ′ divided by |V ′|, i.e.

∑

v∈V ′ degG[V ′](v)

|V ′|
.

Ui(r) number of neighbors of node i at level r or higher

Table 1: Notation

The key to our results is to instead consider a function that returns the induced degree of each node in
a special subgraph of the input graph. The sensitivity of this function is 2, since one additional edge can
increase the degree of at most two nodes, each by 1. We bound the number of times the curator queries
the value of this function by O(log2 n) in the worst case, thus eliminating the need for the sparse vector
technique (SVT) used in previous works [FHS22, FHO21].

Our algorithm runs in O(log2 n) rounds where each node sends messages with O(1) bits to the curator.
Our algorithm is based on a level data structure investigated by a number of works [BHNT15, HNW20,
LSY+22]. In these data structures, nodes are partitioned into levels. The key insight that allowed us to
achieve privacy in the local model is that each node in our algorithm only requires knowledge of the levels
their neighbors are on. Thus, nodes can publish a noisy level for each phase. Using the noisy level in multiple
phases directly leads to core number estimates. Our algorithm matches the multiplicative approximation
factor of the best known algorithm for this problem by Chan et al. [CSS21]. We also give a version of our
algorithm that uses only O(log n) rounds (with messages of size O(log n) sent to the curator). We present
this algorithm and its analysis in Section 4.

Theorem 3.1 (ε-LEDP k-Core Decomposition). There exists an O (logn) round ε-LEDP algorithm that,

given a constant η > 0, returns
(

2 + η,O
(

log3 n
ε

))
-approximate core numbers with high probability.

As a consequence of our algorithm, we give an ε-LEDP algorithm for approximate low out-degree ordering.
Edge orientations obtained from such orderings are useful in graph algorithm design and contribute to a
variety of faster algorithms for fundamental problems, such as coloring [MB83], matching [CHS09], triangle
counting [CN85], independent set [OSSW20], dominating set [AG09], and many others. Furthermore, many
real-world graphs have small degeneracy [BS20, ELS13, ST15, DBS18], making such algorithms practically
useful. Note that (perhaps obviously) an algorithm that explicitly outputs an orientation for every edge
cannot be edge DP. Instead, the output of our private algorithm is an ordering on the vertices, and the edge
orientation can be obtained by orienting each edge from the lower to the higher endpoint in the ordering.
Private orderings have been considered in previous works: e.g., Gupta et al. [GLM+10] give an ε-edge DP
ordering for the vertex cover problem (where the earliest endpoint of an edge covers that edge).

Theorem 3.2 (ε-LEDP Low Out-Degree Ordering). There exists an O(log2 n)-round ε-LEDP algorithm
that, given a constant η > 0 and a graph of degeneracy d, returns a total ordering of the nodes such that
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orienting edges from nodes earlier in the ordering to nodes later in the ordering results in out-degree at most

(4 + η)d+O
(

log3 n
ε

)
, with high probability.

With an additional tweak, our algorithm also yields the first result for the densest subgraph problem in
the local model.

Theorem 3.3 (ε-LEDP Densest Subgraph). There exists an O(log n)-round ε-LEDP algorithm that returns

a set of nodes that induce a
(

4 + η,O
(

log3 n
ε

))
-approximate densest subgraph. Our algorithm returns both

the nodes in the densest subgraph as well as the approximate density.

Interestingly, our static LEDP algorithms are inspired by a body of non-private works in the dynamic
setting [BHNT15, HNW20, LSY+22, SCS20]. We show that the locality of these dynamic algorithms and
the bounded sequential dependency paths allow us to provide our LEDP guarantees as well as minimize
the number of rounds of communication. Our techniques may potentially lead to other LEDP algorithms
inspired by non-private dynamic algorithms.

There are currently no known (1+η)-approximate k-core decomposition algorithm (even in the non-private
setting) that use poly(log n) phases. (Non-private (1 + η)-approximate algorithms that use ω(poly(log n))
phases do exist.) This bound on the number of phases is essential for obtaining our additive approximation
guarantees. It is open whether we can obtain a framework without additive error dependence on the number
of phases. Also, independently, it is interesting to see whether non-private (1 + η)-approximate k-core
decomposition algorithms that take poly(logn) phases exist.

Then, we give an ε-edge DP densest subgraph algorithm based on the non-private parallel algorithm
of Bahmani et al. [BGM14] together with the modifications made by Su and Vu [SV20] in their non-

private distributed algorithm. Using this algorithm and our mechanism, we present a
(

1 + η,O
(

log4 n
ε

))
-

approximate ε-edge DP algorithm for the densest subgraph problem with runtime O((n + m) log3 n) when
η > 0 is constant. This improves on the multiplicative approximation factors of the previous (ε, δ)-edge DP

O
(

2 + η, log(n) log(1/δ)ε

)
-approximation results of Nguyen and Vullikanti [NV21] and the more recent ε-edge

DP
(

2, O
(

log2.5(n) log(1/σ)
ε

))
-approximation algorithm of Farhadi et al. [FHS22] that obtains this approxi-

mation guarantee with probability 1 − σ. We achieve this improvement in the approximation factor with
only an O(log3 n) increase in the runtime. Furthermore, when η > 0 is constant, our algorithm matches
the ((n +m) log2 n) runtime up to a O(log n) factor of the best known non-private algorithm of Chekuri et
al. [CQT22], which obtains a (1 + η)-approximate densest subgraph algorithm. We present our algorithm
and its analysis in Section 5.

Theorem 3.4 (ε-Edge DP Densest Subgraph). There exists an
(

1 + η,O
(

log4 n
ε

))
-approximate algorithm

for the densest subgraph problem that is ε-edge DP and runs in O((n+m) log3 n) worst-case time for constant
η > 0 that returns an approximation factor within the stated bounds with high probability.

Finally, we present our general framework. This framework is a formalization of a category of graph
algorithms that we call locally adjustable. We present a simple mechanism for converting locally adjustable
graph algorithms into ε-edge DP and ε-LEDP algorithms. Our framework and privacy proofs are given
in Section 6.

Three crucial observations about locally adjustable algorithms allow us to obtain private algorithms with
small error. First, such algorithms proceed in several phases where the state of each node or edge is updated
via a function that uses only information from its immediate neighbors and incident edges. We are thus
able to bound the sensitivity of such functions by a small constant in edge-neighboring graphs. Second,
these local functions often only require the number of neighbors and incident edges that satisfy a condition
without requiring knowledge of the states of these neighbors. This property allows us to easily add noise
via the geometric mechanism to the count of neighbors/incident edges that satisfy the condition. The noise
can be viewed as either hiding actual edges or representing dummy edges which may additionally satisfy
the condition. In edge-neighboring graphs G and G′, a dummy edge incident to node v can account for the
additional neighbor of v that is present in G′ but not in G. Finally, we see that the additive error of each of
our algorithms depends on its total number of phases (or the number of times the algorithm is run before
returning an output). We show that state-of-the-art parallel and distributed algorithms naturally run in
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poly(logn) phases, thus leading to only a poly(logn) factor in the additive error. It is as an interesting open
question whether general utility guarantees can be obtained for our framework.

4 Local Algorithms for Core Decomposition, Low Out-Degree Or-

dering, and Densest Subgraph

In this section, we give local algorithms for core decomposition, low out-degree ordering, and densest sub-
graph. Our local algorithms are based on extending algorithms for a recently developed non-private batch-
dynamic level data structure to the private setting. We start with our local core decomposition algorithm
and its privacy guarantees and accuracy, and then present our local low out-degree ordering and densest
subgraph algorithms.

4.1 ε-LEDP k-Core Decomposition

We present our algorithm in this section, provide its privacy analysis in Section 4.3, and finally analyze its
approximation factor and round complexity in Section 4.4. Our LEDP algorithm is inspired by the sequential
level data structure algorithms of [BHNT15, HNW20] and the parallel level data structure of [LSY+22] used
to obtain the densest subgraphs and bounded degeneracy orientations of a graph in the dynamic setting. We
crucially use the observation made by [LSY+22] that the longest path of sequential dependencies is O(log2 n)
for any number of updates. We use this, along with our new private procedures for releasing multiple outputs
simultaneously for a phase at once, to prove both our privacy guarantees and our O(log2 n) rounds, O(1)
node communication complexity bound. A simple extension allows us to obtain an LEDP algorithm that
uses O(log n) rounds and O(log n) communication complexity per node.

Finally, we are able to improve the multiplicative approximation factor from (4+η) in [LSY+22] to (2+η)
(see Footnote 1) because [LSY+22] is a dynamic algorithm while ours is a static algorithm. The additional
factor of 2 was useful in reducing the parallel work in the fully batch-dynamic algorithm (when accounting
for both insertions and deletions). In our static setting, we only need to maintain insertions (from inserting
all the edges of the graph as a batch) which allows us to reduce the approximation factor by 2. However,
in order to ensure our privacy guarantees in the LEDP model, we compute a new noise for every node. In
the sequential computation setting, this incurs an additional factor of n in the running time, which also
means that we no longer need the amortized analysis from previous works, since the additional factor of n
dominates the running time. But in the distributed setting, we are still able to show that the worst-case
number of rounds is O(log2 n) (and O(log n) rounds with a modification).

Non-Private Dynamic Algorithms of [BHNT15, HNW20, LSY+22, SCS20] The level data struc-
ture of [BHNT15, HNW20] partitions the nodes of the graph into O(log2 n) levels. The levels are partitioned
into groups of O(log n) levels each. Nodes move up and down the levels according to a set of rules on the
induced degree of a node i with respect to the number of neighbors in the same or higher level than i (some-
times the set of nodes in the level just below the level of i is also considered). Specifically, if the induced
degree is too high, i moves one level up; if the induced degree is too low, i moves one level down. One crucial
aspect of this algorithm is that a node only needs to know the levels of its immediate neighbors.

In addition to the above structure, we use a crucial aspect of the algorithm of [LSY+22] that allows us
to move nodes from the same level simultaneously without causing additional nodes below them to move.
Since we only have O(log2 n) levels, we can process them in a bottom-up fashion while accounting for all
vertices in the current level of the iteration simultaneously, achieving the O(log2 n) round complexity of our
ε-LEDP algorithm. A further modification that accounts for different groups simultaneously allows us to
decrease the round complexity.

4.2 Detailed Algorithm

Our algorithms use the notation shown in Table 1. For the remainder of this section, logn means log(1+ψ) n

for a parameter ψ > 0 that affects our approximation factor. There are 4 log2 n levels in the structure. As in
previous works [BHNT15, HNW20, LSY+22], we call this structure a level data structure. Our descriptions
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Algorithm 1: ε-LEDP Decomposition and Ordering

1 Input: Adjacency lists (a1, . . . , an), constant η ∈ (0, 1), and privacy parameter ε ∈ (0, 1).

2 Output: ε-LEDP
(

2 + η,O
(

log3 n
ε

))
-approximate core numbers and low out-degree ordering of

each node in G.
3 Function LEDPCoreDecomp((a1, . . . , an), ε, η)
4 Set ψ = 0.5 and λ = 2

9 (2η − 5).

5 Curator initializes L0, . . . , L4 log2 n−1 with Lr[i]← 0 for every i ∈ [n], r ∈ [0, . . . , 4 log2 n− 1].

6 for r = 0 to 4 log2 n− 2 do
7 for i = 1 to n do
8 Lr+1[i]← Lr[i].
9 if Lr[i] = r then

10 Let Ui be the number of neighbors j ∈ ai where Lr[j] = r.

11 Sample X ∼ Geom(ε/(8 log2 n)).

12 Compute Ûi ← Ui +X .

13 if Ûi > (1 + ψ)F(r) then
14 i releases 1.
15 Lr+1[i]← Lr[i] + 1. ⊲ Curator moves i up one level.

16 else
17 i releases 0.

18 Curator publishes Lr+1.

19 Curator calls C ← EstimateCoreNumbers(L4 log2 n−1, λ, ψ).
20 Curator orders nodes in D by L4 log2 n−1 (from smaller to larger) breaking ties by node index.
21 Return (C,D).

use terminology from these previous works. However, because we are in the static setting, we are able to
simplify the algorithm of [LSY+22] in some ways by considering the input graph as a single batch of edge
insertions.

Levels in the level data structure are partitioned into 2 logn groups of equal size. Each group gi contains
2 logn consecutive levels. We number the levels starting with 0 as the bottommost level and 4 log2 n− 1 as
the topmost level. Each group gi has an associated index i, and contains levels in [i · 2 logn, (i+ 1) · 2 logn).
Let the group index that a level r belongs to be F(r). In other words, F(r) = f if r ∈ gf , which can be
computed as F(r) = ⌊r/2 logn⌋. We denote the level of a node i as level(i). Finally, a node is unsettled if
it must move to a higher level.

We now describe our algorithm. The pseudocode for our algorithm is given in Algorithm 1. The algorithm
is given a sequence of adjacency lists, (a1, . . . , an), constant parameters λ, ψ > 0 that will determine the

approximation factor, and privacy parameter ε ∈ (0, 1) as input. The algorithm outputs
(

2 + η,O
(

log3 n
ε

))
-

approximate core numbers and a low out-degree ordering with the same guarantee on the out-degree. The
approximation parameter η is determined from λ and ψ. All nodes start in level 0 (Line 5). Throughout the
algorithm, the curator maintains and publishes the current levels of the nodes in a set of 4 log2 n lists, each
of size n where the i-th index of a list contains the level of node i (Line 18).

First, the curator iterates through the levels starting from level 0 to level 4 log2 n − 1 (Line 6). Let r
be the current level. The curator asks each node, i, in level r to compute its noisy number of neighbors in
level r, denoted Ûi (Line 9). To compute its Ûi, node i first computes Ui using the most recently published
levels of its neighbors (Line 10) where Ui is the number of its neighbors in level r. If this is the first

round of the algorithm, then all neighbors of i are on its level, level 0. Then, i computes Ûi ← Ui + X ,
where X ∼ Geom(ε/(8 log2 n)) denotes a noise drawn i.i.d. from the symmetric geometric distribution with
parameter ε/(8 log2 n) (Line 12). The curator moves i up a level (to level r + 1) if and only if the released

bit is 1 (i.e., when Ûi > (1 +ψ)F(r) in Lines 13 to 15). (The curator performs this step for each node in level
r.) Otherwise, i releases 0 (Line 17) and it stays in the same level. Then, the curator publicizes a new list,
Lr+1, that contains the new levels of each node (Line 18). If the node does not move up, then its old level
is included in Lr+1 (Line 8). This repeats in subsequent rounds until we reach the final level 4 log2 n− 1.

9



Algorithm 2: Estimate Core Number [LSY+22]

1 Function EstimateCoreNumbers(L, λ, ψ)
2 for i = 1 to n do

3 k̂(i)← (2 + λ)(1 + ψ)
max

(⌊

L(i)+1
4⌈log1+ψ n⌉

⌋

−1,0
)

.

4 Return {(i, k̂(i)) : i ∈ [n]}.

After processing the final level, 4 log2 n− 1, the curator estimates the core numbers of nodes using their
levels. This computation is shown in Algorithm 2. We use Definition 3.14 of [LSY+22] to calculate this
estimate. Intuitively, the core number estimate for node i is calculated to be (1 + ψ)g, where g is the
maximum group index, where L4 log2 n−1[i] is the topmost level in group g or is higher than the topmost level
in group g.

We provide some brief intuition for the privacy of this algorithm. Each node moves up at most 4 log2 n−1
levels. Thus, there will be at most 4 log2 n− 1 rounds of communication. We show that the sensitivity of Ui
for any 0 ≤ r ≤ 4 log2 n− 1 of any node i is 1; not only that, but the sensitivity of the vector of these values
is 2 for edge-neighboring graphs. Hence, we add sufficient noise each round to maintain LEDP using the geo-
metric (mechanism Definition 2.13). We show that by the adaptive composition theorem (Theorem 2.15)over
O(log2 n) rounds that our algorithm is a ε-LEDP algorithm. This is a simplification of our privacy proofs;
full details can be found in Section 4.3.

Core Number Estimation Our algorithms here use the core number estimation algorithm presented
in Algorithm 2, which takes r as input and computes the estimate of the core number of all nodes according
to r. This estimate is denoted k̂(i) for each node i.

Low Out-Degree Ordering The ordering of the nodes is determined first by sorting its final level (con-
tained in L4 log2 n−1), from smallest level to largest, and then breaking ties using the nodes’ indices.

4.3 LEDP Guarantees

In this section, we prove that our algorithm is ε-LEDP (see Definition 2.9). For clarity, we specifically
prove the ε-edge LEDP of our k-core decomposition and related algorithms here. Later, we show that the
algorithms presented here can be generalized to our locally-adjustable algorithms framework, which may
significantly simplify the privacy analysis of these algorithms and similar algorithms.

Theorem 4.1. Algorithm 1 is ε-LEDP.

Proof. We show that Algorithm 1 can be implemented so that it accesses its input only via local randomizers.
In each round r, each node in level r computes its induced degree (the number of its neighbors that are also
at level r) with added geometric noise in Line 14. We can implement this step with the local randomizer
R which takes as input an adjacency list, a, a level r, and a list of levels of all nodes, Lr and computes
R(a, r, Lr) =

∑
j∈a

[Lr[j] = r] +X where X ∼ Geom(ε/(8 log2 n)). This randomizer is run independently by
each party i on its adjacency list ai and the public information r and Lr. Algorithm R uses the geometric
mechanism to obtain the number of its neighbors on r. For any two edge-neighboring adjacency lists, a and
a′, the corresponding sums

∑
j∈a

[Lr[j] = r] and
∑

j∈a′ [Lr[j] = r] differ by 1. Thus, this sum function has
sensitivity 1 and by the privacy of the geometric mechanism is ε

8 log2 n
-private. Lines 13, 14, 16 and 17 post-

processes the output of the geometric mechanism and so, by Theorem 2.17, R is a ε
8 log2 n

-local randomizer

by Lemma 2.14. Using this released information, the curator then computes a new public set of levels Lr+1.
For each edge {i, j}, we apply two ε

8 log2 n
-local randomizers to each endpoint over 4 log2 n rounds. By the

adaptive composition theorem (Theorem 2.15), group privacy (Lemma 2.16) and because privacy is preserved
after post-processing (Theorem 2.17), Algorithm 1 is ε-LEDP because it satisfies Definition 2.9.

4.4 Approximation Guarantees

In this section, we calculate the approximation factors produced by Algorithm 1. We first note that in
expectation, we return a (2 + η, 0)-approximation (where the additive error is 0) for the core numbers for any

10



constant η > 0.

Lemma 4.2. Algorithm 1 returns a (2 + η, 0)-approximation for the core numbers and low out-degree order-
ing, in expectation.

Proof. First, for any random variable X ∼ Geom(ε/(8 log2 n)), the expectation E[X ] = 0 by definition of the

symmetric geometric distribution. Thus, E[Ûi] = Ui for all i and the lemma follows from a slightly modified
version of the proof of Lemma 5.13 of [LSY+22] given in Appendix B.

In the remainder of this section, we show that we also obtain an additive error of O
(

log3 n
ε

)
where the

error is bounded by O
(

log3 n
ε

)
whp.

First, we show that Algorithm 1 maintains the following two invariants (which we prove in Lemma 4.5).
These invariants are crucial in both our bounds on the approximation factor as well as our message complexity
analysis. For the following two invariants, let Zr be the set of nodes in levels r and above and Vr be the set
of nodes in level r. Recall as before that the bottommost level is level 0 and the topmost level is 4 log2 n− 1.
All node levels are taken from L4 log2 n−1 in the final computation of approximate core numbers.

Invariant 1 (Degree Upper Bound). If node i ∈ Vr and level r < 4 log2 n − 1, then i has at most (1 +

ψ)F(r) + 8c log3 n
ε + 1 neighbors in Zr whp.

Invariant 2 (Degree Lower Bound). If node i ∈ Vr and level r > 0, then i has at least (1 + ψ)F(r−1) −
8c log3 n

ε − 1 neighbors in Zr−1 whp.

Before we prove our algorithm maintains these invariants, we first prove the following lemma for each
node i that moves up a level.

Lemma 4.3. Let Ui be the number of neighbors of node i in level r where the levels of nodes are taken
from Lr. Each node i that moves up one level (from level r to level r + 1) in Algorithm 1 has Ui ≥

(1 + ψ)F(r) − 8c log3 n
ε − 1 whp.

Proof. Suppose for contradiction a node i moves up one level (from level r to level r + 1) and has Ui <

(1+ψ)F(r)− 8c log3 n
ε −1 with probability > 1

nc . This means that it sampled a noise X ∼ Geom(ε/(8 log2 n)),

where X > 8c log3 n
ε with probability > 1

nc . This is because Ui + X must exceed the (1 + ψ)F(r) threshold

in order to move up. The probability that i sampled noise X > 8c log3 n
ε from Geom(ε/(8 log2 n)) is < 1

nc

by Lemma 2.12. This is a contradiction so X > 8c log3 n
ε could not have been sampled with probability

greater than 1
nc .

On the flip side, we can also bound the degree values of nodes that do not move.

Lemma 4.4. Let Ui be as defined in Lemma 4.3. Each node i that does not move up from a level r
in Algorithm 1 after computing Ui (where the levels of nodes used to compute Ui are taken from Lr) has

Ui ≤ (1 + ψ)F(r) + 8c log3 n
ε + 1 whp.

Proof. As in the proof of Lemma 4.3, we prove this lemma via contradiction. First, suppose for contradiction

that i is currently in level r and does not move up, and Ui > (1 +ψ)F(r) + 8c log3 n
ε + 1 with probability > 1

nc .

Node i does not move up when Ui > (1 + ψ)F(r) + 8c log3 n
ε + 1 if it chooses a noise X ∼ Geom(ε/(8 log2 n))

with value X < − 8c log3 n
ε . The same calculation as that performed in the proof of Lemma 4.3 shows that

with probability < 1/nc, node i does not move up if Ui > (1 + ψ)F(r) + 8c log3 n
ε + 1. This contradicts our

assumption that Ui > (1+ψ)F(r) + 8c log3 n
ε +1 and does not move up with probability > 1

nc since we showed
that this occurs with probability at most 1

nc .

We use Lemmas 4.3 and 4.4 to prove the following lemma, which shows that Invariant 1 and Invariant 2
are maintained by our algorithm.

Lemma 4.5. Given an input graph G = ([n], E), Invariant 1 and Invariant 2 are satisfied at the end
of Algorithm 1 whp.
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Proof. For each node i in the graph that is in the current level r, a noise Xi is independently sampled
Xi ∼ Geom(ε/(8 log2 n)) at the beginning of that round. We first make a few observations for when a node i
is in level 0 or 4 log2 n− 1. If i did not move up from level 0, then Invariant 2 is trivially satisfied. If i moves
up to level 4 log2 n− 1, then Invariant 1 is trivially satisfied. By Lemma 4.4, any i which does not move to

a higher level than r ∈ [0, 4 log2 n− 1) has Ui ≤ (1 + ψ)F(Lr[i])) + 8c log3 n
ε + 1 whp in round r. Furthermore,

|ai ∩ ZL4 log2 n−1[i]
| cannot be greater than Ui since only nodes in level r can move to a higher level than

r in round r. Thus, |ai ∩ ZL4 log2 n−1[i]
| ≤ (1 + ψ)F(Lr[i])) + 8c log3 n

ε + 1 and Invariant 1 is satisfied in this

case. To prove that Invariant 2 is also satisfied for any node in level r ∈ (0, 4 log2 n − 1] at the end of the
algorithm, first observe that because nodes only move up in our algorithm, never down, |ai ∩Zr′−1| can also
never decrease for any node that stays in r′ as its neighbors move up for any level r′. Thus, when i moved

up from r− 1 to r, we have Ui ≥ (1 +ψ)F(r−1)− 8c log3 n
ε − 1 with probability ≥ 1− 1

nc by Lemma 4.3. Since
|ai ∩ Zr−1| cannot decrease if i stays in level r and we know that i is in level r at the end of the algorithm,

it is lower bounded by |ai ∩ZL4 log2 n−1[i]
| = |ai ∩Zr−1| = Ui ≥ (1 +ψ)F(r−1)− 8c log3 n

ε − 1 and Invariant 2 is

also satisfied. This proves that both invariants hold for all nodes in all levels with probability at least 1− 1
nd

for any constant d ≥ 1 by the union bound over 4 log2 n levels and n nodes when c ≥ 1 is a sufficiently large
constant.

The theorem below is the main result of this section. The proof method is inspired by the proof of the
approximation factor given in the algorithm of Liu et al. [LSY+22]. However, our proof is more involved
because of the added noise and requires new insights in order to obtain our additive approximation bound.
First, our algorithm is randomized. Since we move each node at most O(log2 n) times, we can show via the
union bound that our guarantees hold with high probability. Second, the additive noise from Invariant 1
and Invariant 2 requires us to re-perform the analysis taking this noise into account.

We are now ready to prove the approximation factor of our LEDP algorithm in this section. The proof
of Theorem 4.7 uses the following folklore lemma, the proof of which follows immediately from the traditional
peeling method which provides the exact core number of each node in a static graph. Note that although some
previous literature use the term peel for the below process, we instead use the phrase prune to distinguish
from the classic peeling algorithm of Matula and Beck [MB83].

Lemma 4.6 (Folklore). Suppose we perform the following peeling procedure. Provided an input graph
G = (V,E), we iteratively remove (prune) nodes with degree ≤ d∗ for some d∗ > 0 until no nodes with degree
≤ d∗ remain. Then, k(i) ≤ d∗ for each removed node v and all remaining nodes w (not pruned) have core
number k(w) > d∗.

Theorem 4.7. Our static LEDP algorithm (Algorithm 1) on input G = ([n], E) gives (2 + η,O(log3 n/ε))-
approximate core numbers whp.

Proof. In this proof, when we refer to the level of a node i, we mean the level of i in L4 log2 n−1. Using

notation from previous work, let k̂(i) be the core number estimate of i and k(i) be the core number of i.
First, we show that

if k̂(i) ≤ (2 + λ)(1 + ψ)g
′

, then k(i) ≤ (1 + ψ)g
′+1 +

8c log3 n

ε
+ 1 (1)

with probability at least 1− 1
nc−1 for any group g′ ≥ 0 and for any constant c ≥ 2. Let T (g′) be the topmost

level of group g′. In order for (2 +λ)(1 +ψ)g
′

to be the estimate of i’s core number, the level of i is bounded
by T (g′) ≤ level(i) ≤ T (g′ + 1)− 1. Let r be i’s level (in L4 log2 n−1). By Invariant 1, if r < T (g′ + 1), then

|ai∩Zr| ≤ (1+ψ)F(r)+ 8c log3 n
ε +1 ≤ (1+ψ)g

′+1+ 8c log3 n
ε +1 with probability at least 1− 1

nc for any constant

c ≥ 1. Furthermore, each node w at the same or lower level r′ ≤ r has |aw ∩Zr′ | ≤ (1 +ψ)g
′+1 + 8c log3 n

ε + 1,
also by Invariant 1.

Suppose we perform the following iterative procedure: starting from level r = 0, remove all nodes in
level r during this turn and set r ← r + 1 for the next turn. Using this procedure, the nodes in level 0 are
removed in the first turn, the nodes in level 1 are removed in the second turn, and so on until the graph is
empty. Let dr(i) be the induced degree of any node i after the removal in the (r− 1)-st turn and prior to the
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removal in the r-th turn. Since we showed above that |ai ∩Zr| ≤ (1 +ψ)g
′+1 + 8c log3 n

ε + 1 for any node i at

level r < T (g′ + 1), node i on level r < T (g′ + 1) during the r-th turn has dr(v) ≤ (1 +ψ)g
′+1 + 8c log3 n

ε + 1.

Thus, when i is removed in the r-th turn, it has degree ≤ (1 +ψ)g
′+1 + 8c log3 n

ε + 1. Since all nodes removed

before i also had degree ≤ (1 + ψ)g
′+1 + 8c log3 n

ε + 1 when they were removed, by Lemma 4.6, node i has

core number k(i) ≤ (1 +ψ)g
′+1 + 8c log3 n

ε + 1 with probability ≥ 1− 1
nc . By the union bound over all nodes,

this proves that k(i) ≤ (1 + ψ)g
′+1 + 8c log3 n

ε + 1 for all i ∈ [n] with k̂(i) ≤ (2 + λ)(1 + ψ)g
′

for all constants
c ≥ 2 with probability at least 1− 1

nc−1 .

Now we prove our lower bound on k̂(i). We prove that for any g′ ≥ 0, either the approximation falls
within our additive bounds or,

if k̂(i) ≥ (1 + ψ)g
′

, then k(i) ≥
(1 + ψ)g

′

− 8c log3 n
ε − 1

(2 + λ)(1 + ψ)
(2)

for all nodes i in the graph with probability at least 1− 1
nc−1 for any constant c ≥ 2. We assume for contradic-

tion that with probability > 1
nc−1 there exists a node i where k̂(i) ≥ (1 +ψ)g

′

and k(i) <
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) .

This, in turn, implies that k(i) ≥
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) for all i ∈ [n] and k̂(i) ≥ (1 + ψ)g
′

with probability

< 1 − 1
nc−1 . To consider this case, we use the pruning process defined in Lemma 4.6. In the below proof,

let dS(i) denote the induced degree of node i in the subgraph induced by nodes in S. For a given subgraph

S, we prune S by repeatedly removing all nodes i ∈ S whose dS(i) <
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) . As in the proof of

Lemma 5.12 of [LSY+22], we consider levels from the same group g′ since levels in groups lower than g′ will
also have smaller upper bound cutoffs, leading to an easier proof. Let j be the number of levels below level
T (g′). We prove via induction that the number of nodes pruned from the subgraph induced by ZT (g′)−j

must be at least

(
(2 + λ)(1 + ψ)

2

)j−1 ((
(1 + ψ)g

′

−
8c log3 n

ε
− 1

)(
1−

1

(2 + λ)(1 + ψ)

))
. (3)

We first prove the base case when j = 1. In this case, we know that for any node i in level T (g′), it

holds that dZT (g′)−1
(i) ≥ (1 +ψ)g

′

− 8c log3 n
ε − 1 with probability ≥ 1− 1

nc by Invariant 2. Taking the union

bound over all nodes in level T (g′) shows that this bound holds for all nodes i ∈ [n] with probability at least
1 − 1

nc−1 . All below expressions hold with probability at least 1 − 1
nc−1 ; for simplicity, we omit this phrase

when giving these expressions. In order to prune i from the graph, we must prune at least

(
(1 + ψ)g

′

−
8c log3 n

ε
− 1

)
−

(1 + ψ)g
′

− 8c log3 n
ε − 1

(2 + λ)(1 + ψ)

=

(
(1 + ψ)g

′

−
8c log3 n

ε
− 1

)
·

(
1−

1

(2 + λ)(1 + ψ)

)
.

neighbors of i from ZT (g′)−1. We must prune at least this many neighbors in order to reduce the degree of

i to below the cutoff for pruning a vertex (as we show more formally below). In the case when (1 + ψ)g
′

≤

4(8c log
3 n

ε − 1), then our original approximation statement in the lemma is trivially satisfied because the
core number is always non-negative and so even if k(i) = 0, this is still within our additive approximation

bounds. Hence, we only need to prove the case when (1 + ψ)g
′

> 4
(

8c log3 n
ε + 1

)
.

Then, if fewer than
(

(1 + ψ)g
′

− 8c log3 n
ε − 1

)(
1− 1

(2+λ)(1+ψ)

)
neighbors of i are pruned from the graph,

then i is not pruned from the graph. If i is not pruned from the graph, then i is part of a

(
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ)

)
-

core (by Lemma 4.6), then by what we showed above using Invariant 2, k(i) ≥
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) for all i ∈ [n]

and k̂(i) ≥ (1 + ψ)g
′

with probability ≥ 1 − 1
nc−1 , a contradiction with our assumption. Thus, it must be
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the case that there exists at least one i where at least
(

(1 + ψ)g
′

− 8c log3 n
ε − 1

)(
1− 1

(2+λ)(1+ψ)

)
neighbors

of i are pruned in ZT (g′)−1. For our induction hypothesis, we assume that at least the number of nodes as
indicated in Eq. (3) is pruned for j and prove this for j + 1.

Each node w in levels T (g′) − j and above has dZT (g′)−j−1
(w) ≥ (1 + ψ)g

′

− 8c log3 n
ε − 1 by Invariant 2

(recall that all j levels below T (g′) are in group g′). For simplicity of expression, we denote J ,(
(1 + ψ)g

′

− 8c log3 n
ε − 1

)(
1− 1

(2+λ)(1+ψ)

)
. Then, in order to prune the

(
(2+λ)(1+ψ)

2

)j−1

J nodes by our

induction hypothesis, we must prune at least

(
(2 + λ)(1 + ψ)

2

)j−1

J ·

(
(1 + ψ)g

′

− 8c log3 n
ε − 1

2

)
(4)

edges where we “charge” the edge to the endpoint that is pruned last. We use the phrase charge to mean
that if an edge (u, v) is charged to endpoint v, then the edge needs to be pruned in order for the endpoint v to

be pruned. (Note that we actually need to prune at least
(

(1 + ψ)g
′

− 8c log3 n
ε − 1

)
·
(

1− 1
(2+λ)(1+ψ)

)
edges

per pruned node as in the base case but

(

(1+ψ)g
′
− 8c log3 n

ε −1
)

2 lower bounds this amount.) Each pruned node

prunes less than
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) edges. Thus, using Eq. (4), the number of nodes that must be pruned

from ZT (g′)−j−1 is

(
(2 + λ)(1 + ψ)

2

)j−1

J ·
(1 + ψ)g

′

− 8c log3 n
ε − 1

2

(
(1+ψ)g′− 8c log3 n

ε −1

(2+λ)(1+ψ)

) =

(
(2 + λ)(1 + ψ)

2

)j
J. (5)

Eq. (5) proves our induction step. Using Eq. (3), the number of nodes that must be pruned from

ZT (g′)−2 log(2+λ)(1+ψ)/2(n)
is greater than n since J ≥ 1 by our assumption that (1 + ψ)g

′

> 4
(

8c log3 n
ε + 1

)
:

(
(2 + λ)(1 + ψ)

2

)2 log(2+λ)(1+ψ)/2(n)

· J ≥ n2. (6)

Thus, at j = 2 log(2+λ)(1+ψ)/2 (n), we run out of nodes to prune. We have reached a contradiction as we

require pruning greater than n nodes with probability at least 1
nc−1 ·

(
1− 1

nc−1

)
> 0 via the union bound

over all nodes where k̂(i) ≥ (1 + ψ)g
′

and using our assumption that with probability > 1
nc−1 there exists

an i ∈ [n] where k(i) <
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) . This contradicts with the fact that more than n nodes can be

pruned with 0 probability.

From Eq. (1), we can first obtain the inequality k(i) ≤ k̂(i) + 8c log3 n
ε + 1 since this bounds the case when

k̂(i) = (2 +λ)(1 +ψ)g
′

; if k̂(i) < (2 +λ)(1 +ψ)g
′

then the largest possible value for k̂(i) is (2 +λ)(1 +ψ)g
′−1

by Algorithm 2 and we can obtain the tighter bound of k(i) ≤ (1 + ψ)g
′

+ 8c log3 n
ε + 1. We can substitute

k̂(i) = (2+λ)(1+ψ)g
′

since (1+ψ)g
′+1 < (2+λ)(1+ψ)g

′

for all ψ ∈ (0, 1) and λ > 0. Second, from Eq. (2),
for any estimate (2 + λ)(1 + ψ)g, the largest g′ for which this estimate has (1 + ψ)g

′

as a lower bound is

g′ = g + ⌊log(1+ψ)(2 + λ)⌋ ≥ g + log(1+ψ)(2 + λ)− 1. Substituting this g′ into
(1+ψ)g

′
− 8c log3 n

ε −1

(2+λ)(1+ψ) results in

(1 + ψ)g+log(1+ψ)(2+λ)−1 − 8c log3 n
ε − 1

(2 + λ)(1 + ψ)
=

(2+λ)(1+ψ)g

1+ψ − 8c log3 n
ε − 1

(2 + λ)(1 + ψ)
=

k̂(i)
1+ψ −

8c log3 n
ε − 1

(2 + λ)(1 + ψ)
.

Thus, we can solve k(i) ≥
k̂(i)
1+ψ− 8c log3 n

ε −1

(2+λ)(1+ψ) and k(i) ≤ k̂(i) + 8c log3 n
ε + 1 to obtain k(i)− 8c log3 n

ε − 1 ≤ k̂(i) ≤

((2 + λ)(1 + ψ)2)k(i) + 8c(1+ψ) log3 n
ε + (1 + ψ). Simplifying, we obtain

k(i)−O(log3(n)/ε) ≤ k̂(i) ≤ (2 + λ)(1 + ψ)2k(i) +O(log3(n)/ε)

which is consistent with the definition of a (2 + η,O(log3(n)/ε))-approximation algorithm for core number
for any constant η > 0 and appropriately chosen constants λ, ψ ∈ (0, 1) that depend on η.
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Algorithm 3: ε-LEDP k-Core Decomposition (Smaller Rounds)

1 Input: Adjacency lists (a1, . . . , an), constant η ∈ (0, 1), and privacy parameter ε ∈ (0, 1).

2 Output: ε-LEDP
(

2 + η,O
(

log3 n
ε

))
-approximate core numbers of each node in G.

3 Function LEDPSmallRoundsCoreDecomposition((a1, . . . , an), ε, η)
4 Set ψ = 0.5 and λ = 2

9 (2η − 5).

5 Curator initializes L0
0, L

0
1, . . . , L

0
2 logn−1, . . . , L

2 logn−1
0 , . . . , L2 log n−1

2 log n−1 with Lgr [i]← 0 for every
i ∈ [n]; r, g ∈ [0, . . . , 2 logn− 1].

6 for r = 0 to 2 logn− 2 do
7 for i = 1 to n do
8 Initialize Ai[g]← 0 for every g ∈ [0, . . . , 2 logn− 1].
9 for g = 0 to 2 logn− 1 do

10 Lgr+1[i]← Lgr [i].
11 if Lgr [i] = r then
12 Let Ui,g be the number of neighbors j ∈ ai where Lgr [j] = r.

13 Sample X ← Geom(ε/(8 log2 n)).

14 Compute Ûi,g ← Ui,g +X .

15 if Ûi,g > (1 + ψ)g then
16 Ai[g]← 1.

17 i releases Ai.
18 Lgr+1[i]← Lgr [i] + 1 for every i, g where Ai[g] = 1. ⊲ Curator moves i up in group g.

19 Curator publishes Lgr+1 for every g ∈ [0, . . . , 2 logn− 1].

20 Curator calls C ← EstimateSmallRoundsCoreNumbers(L0
2 logn−1, . . . , L

2 log n−1
2 log n−1, λ, ψ)

[Algorithm 4].
21 return C.

Algorithm 4: Small Rounds Estimate Core Number

1 Function EstimateSmallRoundsCoreNumbers(L0
2log n−1, . . . , L

2 logn−1
2 logn−1, λ, ψ)

2 for i = 1 to n do

3 Let g′ be the largest group number where Lg
′

2 logn−1[i] = 2 logn− 1 or 0 if no group satisfies
this condition.

4 k̂(i)← (2 + λ)(1 + ψ)g
′

.

5 Return {(i, k̂(i)) : i ∈ [n]}.

4.5 Reducing the Number of Rounds

In this section, we describe how to reduce the number of rounds of our procedure given in Algorithm 1 to
O(log n). Recall that the previous algorithm given in Algorithm 1 consists of O(log n) groups each with a
set of O(log n) levels that are stacked on top of one another. The intuition behind our modified procedure
lies in separating out the groups in our level data structure into separate duplicate copies of the structure,
each with O(log n) levels. Then, the procedure moves each node simultaneously up the levels in all groups.
This increases the node communication complexity by a factor of O(log n). A similar procedure to the
above is given for our densest subgraph algorithm in Algorithm 5. We describe our modified algorithm in
Algorithm 3.

In Algorithm 3, the curator first initializes a list for each level and group (Line 5) which contains the
levels of each node in each of the groups (Line 11) with cutoffs determined by the group number. Then,
we iterate level by level (Line 6) for each of the O(log n) groups simultaneously. For each level r in the
iteration, each node i (Line 7) initializes an array Ai which keeps track of whether i moves up a level in
group g (Line 8). As before, the curator first sets the next levels of each node in each of the groups to equal
the current level of the node (Line 10). If i is in the current level r of the iteration in group g (Line 11),
then i computes its induced degree among its neighbors also in level r using the published levels from the
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previous iteration (Line 12). Then, it samples a noise from the symmetric geometric distribution (Line 13).
If the induced degree plus the sampled noise exceeds the threshold for the group (Line 15), then i adds a
1 for the corresponding group g into Ai, indicating that i moves up a level in group g (Line 16). After
performing this check for all of the groups, i then releases Ai (Line 16). The curator then uses the released
Ai to determine if i moves up one level in each group (Line 18) and publishes the list of new levels for the
next iteration (Line 19). After all the rounds are completed, the curator uses all of the published levels for
the last iteration for each of the groups to compute the core number estimates (Line 20) using Algorithm 4.

In Algorithm 4, each i computes the largest g′ where Lg
′

2 logn−1[i] = 2 logn − 1 (Line 3); in other words,
each i finds the largest g′ where i is on the topmost level of group g′ after finishing all the iterations of the
algorithm. Using g′, node i computes the estimate k̂(i) as before (Line 4). The core estimates for all nodes
are then returned by the procedure (Line 5).

The privacy of Algorithm 3 follows using the same local randomizers as in the proof of Theorem 4.1.
The proof of the approximation factor follows almost identically from the proof of Theorem 4.7 using the
modified invariants below (changes are underline). Since only minor changes to the approximation proofs are
necessary, we do not repeat the proofs again here. Let V gr be the set of nodes i where Lg2 logn−1[i] = 2 logn−1

and Zgr =
⋃
r′≥r V

g
r′ .

Invariant 3 (Degree Upper Bound). For all groups g ∈ {0, . . . , 2 logn− 1}, if node i ∈ V gr and level r <

2 logn− 1, then i has at most (1 + ψ)g + 8c log3 n
ε + 1 neighbors in Zgr whp.

Invariant 4 (Degree Lower Bound). For all groups g ∈ {0, . . . , 2 logn− 1}, if node i ∈ V gr and level r > 0,

then i has at least (1 + ψ)g − 8c log3 n
ε − 1 neighbors in Zgr−1 whp.

4.6 Low Out-Degree Ordering and Densest Subgraph

In this section, using Algorithm 1, we provide results for low out-degree ordering of the nodes in the graph.
The procedure that outputs the low out-degree ordering is provided in Line 20 of Algorithm 1. The ordering
that we study in this paper is a private, approximate degeneracy ordering of the nodes. Recall in Algorithm 1,
we calculate the approximate low out-degree ordering, D, by ordering the nodes starting from level 0 and
going up. For nodes in the same level, we order the nodes according to their index. In other words, node i
is earlier in the ordering than j if and only if L4 log2 n−1(i) < L4 log2 n−1(j) or L4 log2 n−1(i) = L4 log2 n−1(j)
and i < j.

We now prove that our algorithm is also a (2 + η,O(log3(n)/ε))-approximation algorithm for low out-
degree ordering.

Lemma 4.8. Our static LEDP algorithm (Algorithm 1) gives an (2 + η,O(log3(n)/ε))-approximate low
out-degree ordering with probability at least 1− 1

nc for any constants η > 0, c ≥ 1.

Proof. By Invariant 1, if we order the nodes as described in Algorithm 1, then each node i has degree at
most (1 + ψ)F(L4 log2 n−1[i]) + O(log3(n)/ε). By Theorem 4.7, the approximation on d = maxi∈[n]{k(i)} is

upper bounded by (2 + λ)(1 + ψ)2d+O
(
log3(n)/ε

)
Then, the highest group that any node j can be in has

index
g = log(1+ψ)((2 + λ)(1 + ψ)2d+O(log3(n)/ε)) + 1,

where the additional 1 at the end comes from the fact that we take the maximum group number g where
the topmost level of g is below or at L4 log2 n−1[j]. Within group g, the out-degree of any node in that group

is upper bounded by (1 + ψ)g +O(log3(n)/ε) with high probability by Invariant 1.
Simplifying by substituting the value for g,

(1 + ψ)log(1+ψ)((2+λ)(1+ψ)2d+O(log3(n)/ε))+1 +O(log3(n)/ε)

= (1 + ψ)
(
(2 + λ)(1 + ψ)2d+O(log3(n)/ε)

)
+O(log3(n)/ε)

= (2 + λ)(1 + ψ)3d+O(log3(n)/ε).

Finally, the last expression gives a (2 + η)d + O(log3(n)/ε) approximation for any constant η > 0 for
appropriately chosen λ and ψ. This gives a (2 + η,O(log3 n/ε))-approximation for the orientation produced
by the low out-degree ordering.
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Densest Subgraph A straightforward extension of Algorithm 1 where nodes move up levels in all groups
simultaneously also leads to a ε-LEDP approximate densest subgraph algorithm which is derived from the
non-private algorithm of [BHNT15] that finds an approximate densest subgraph by peeling the layers of
the level data structure one by one for each group g and taking the subgraph with largest density. The
privacy for the densest subgraph algorithm holds by Theorem 4.1 and because privacy is maintained after
post-processing (Theorem 2.17). Our algorithm is given in Algorithm 5 and the proof of our approximation
bound follows from the proofs of Theorem 2.6 and Corollary 2.7 of Bhattacharya et al. [BHNT15] with minor
modifications.

First, we describe a few key points of Algorithm 5. The algorithm operates over O(log n) rounds (Line 5)
where in each round, each node (Line 6) computes its noisy degrees for each of the O(log n) groups (Line 7).
For each group, each node i computes a noisy degree (if it is in the current level r) and releases this noisy
degree (Line 13); this is in contrast to Algorithm 1, where i releases either 1 or 0. The noisy degree in this
setting is used to compute the approximate density. Finally, Line 17 is performed by the curator who has
all of the released degrees of every node i ∈ [n] in each of the O(log n) levels and O(log n) groups. Thus, the
curator can successively peel levels from the smallest to largest level while computing the sum of the noisy
degrees of all nodes that remain after the most recently peeled level. Using this sum of noisy degrees as well
as the public set of levels of each node, the curator can produce a subset of nodes whose induced subgraph
is an approximate densest subgraph as follows.

The curator finds the group g with the largest index that has a non-empty last level (using Lg2 logn−1 for

every g ∈ {0, . . . , 2 logn−1}). Taking the noisy degrees of all nodes released for group g and using Lg2 logn−1,
the curator peels the levels one by one from the smallest level to the largest level while maintaining the sum
of the degrees divided by the number of nodes that remain after each round of peeling. The curator uses
the released noisy degrees corresponding with Lg2 logn−1[i] for each i ∈ [n] and g ∈ {0, . . . , 2 logn− 1}. The
curator keeps and returns as S the subset of nodes whose ratio of the sum of the noisy degrees over the
number of nodes in the subset is the largest across all iterations of peeling. Line 18 returns the noisy density
of the set S (scaled by an appropriate factor) using the sum of the released noisy degrees.

The privacy of this algorithm follows from Theorem 4.1 and the fact that privacy is maintained after
post-processing (Theorem 2.17). We now prove the approximation guarantees of this algorithm.

Lemma 4.9. There exists an ε-edge LEDP algorithm on input G = (V,E) that gives a set of nodes whose
induced subgraph is a (4 + η,O(log3 n/ε))-approximate densest subgraph in O(log n) rounds.

Proof. First, we show that if (1 +ψ)g > 2(1 +ψ)D∗ + c log3 n
ε , then for all i ∈ [n], it holds that Lg2 logn−1[i] <

2 logn− 1 whp for appropriately large constant c ≥ 1; in other words, the last level of group g is empty whp.
As in the proof of Theorem 2.6 in [BHNT15], we can show that for any level r ∈ {0, . . . , 2 logn− 1} in group
g it holds that (let δ(G[Zr ]) be the sum of the degrees of every node in the induced subgraph of Zr divided
by |Zr|):

δ(G[Zr]) = 2 · ρ(G[Zr]) ≤ 2 ·max
S⊆V

ρ(G[S]) = 2 ·D∗ <
(1 + ψ)g − c log3 n

ε

1 + ψ
. (7)

From this, we know that the number of nodes in Zr with induced degree in Zr at least (1 + ψ)g − c log3 n
ε

is at most |Zr|
1+ψ since otherwise, it violates Eq. (7). Let Cr be the set of nodes in Zr with degree less

than (1 + ψ)g − c log3 n
ε . Then, it follows that |Zr \ Cr| ≤

|Zr |
1+ψ . By Line 13 and Lemma 2.12, we have

Zr+1 ∩ Cr = ∅ since the noise does not exceed c log3 n
ε whp. Thus, |Zr+1| ≤ |Zr \ Cr| ≤

|Zr|
1+ψ . Then, for all

r ∈ {0, . . . , 2 logn − 2}, we have that |Zr+1| ≤
|Zr |
1+ψ . Multiplying these inequalities gives us |Z2 logn−1| ≤

|Z1|
(1+ψ)2 logn−1 . Since |Z1| ≤ n, we get |Z2 logn−1| ≤

n
(1+ψ)2 logn−1 = (1+ψ)n

n2 < 1 which means that Z2 log n−1 = ∅

whp.

Now, suppose that (1+ψ)g < D∗

1+ψ −
c log3 n

ε , and let S∗ ⊆ V be a subset of nodes with highest density, i.e.

ρ(G[S∗]) = D∗. We will show that S∗ ∈ Zr for all r ∈ {0, . . . , 2 logn− 1}. This means that Z2 logn−1 6= ∅.
We prove this via induction. Clearly, in the base case, since S∗ ⊆ V , then S∗ ⊆ Z0. For the induction
hypothesis, we assume that S∗ ⊆ Zr. Then, we prove that S∗ ⊆ Zr+1. By Lemma 2.4 of [BHNT15], for

every node i ∈ S∗, we have that degZr (i) ≥ degS∗(i) ≥ ρ(G[S∗]) = D∗ > (1 + ψ) ·
(

(1 + ψ)g + c log3 n
ε

)
.

17



Algorithm 5: ε-LEDP Densest Subgraph

1 Input: Adjacency lists (a1, . . . , an), constants ψ ∈ (0, 1), and privacy parameter ε ∈ (0, 1).

2 Output: A private set of nodes whose induced subgraph is a
(

4 + η,O
(

log3 n
ε

))
-approximate

densest subgraph in G.
3 Function LEDPDensestSubgraph((a1, . . . , an), ε, ψ)

4 Curator initializes L0
0, L

0
1, . . . , L

0
2 logn−1, . . . , L

2 logn−1
0 , . . . , L2 log n−1

2 log n−1 with Lgr [i]← 0 for every
i ∈ [n]; r, g ∈ [0, . . . , 2 logn− 1].

5 for r = 0 to 2 logn− 2 do
6 for i = 1 to n do
7 for g = 0 to 2 logn− 1 do
8 Lgr+1[i]← Lgr [i].
9 if Lgr [i] = r then

10 Let Ui,g be the number of neighbors j ∈ ai where Lgr [j] = r.

11 Sample X ← Geom(ε/(8 log2 n)).

12 Compute Ûi,g ← Ui,g +X .

13 i releases Ûi,g.

14 if Ûi,g > (1 + ψ)g then
15 Lgr+1[i]← Lgr [i] + 1. ⊲ Curator moves i up one level in group g.

16 Curator publishes Lgr+1 for every g ∈ [0, . . . , 2 logn− 1].

17 Curator uses released noisy degrees of all nodes and Lg2 logn−1 for all g ∈ [0, . . . , 2 logn− 1] to
peel the levels one by one and determine and return the set of nodes S whose induced subgraph
is an approximate densest subgraph.

18 Let Ŵ be the sum of the noisy degrees of S. return (S, Ŵ
2|S| −

c log3 n
ε ) for sufficiently large c ≥ 1.

By Line 13 and Lemma 2.12, the minimum value of the noise variable added to the degree of i is − c log
3 n
ε

whp and (1 + ψ)g+1 exceeds the cutoff of (1 + ψ)g; so i is in level r+ 1. Thus, for all i ∈ S∗, node i ∈ Zr+1.
This shows that the topmost level of group g contains S∗.

Now, we show that if (1 + ψ)g < D∗

1+ψ −
c log3 n

ε , then there is a level r ∈ {0, . . . , 2 logn − 1} where

ρ(G[Zr]) ≥
(1+ψ)g

2(1+ψ) −
c log3 n

ε . For the sake of contradiction, suppose this is not the case. Then, we have

δ(G[Zr]) = 2 · ρ(G[Zr]) <
(1+ψ)g

1+ψ − 2c log3 n
ε for every r ∈ {0, . . . , 2 logn − 1}. Then, applying a similar

argument as for the first case (since this equation follows Eq. (7) except for the constant on the additive

noise), we conclude that |Zr+1| ≤
|Zr |
1+ψ for every r ∈ {0, . . . , 2 logn − 1} which implies that Z2 logn−1 = ∅.

We have arrived at a contradiction.
The rest of the proof follows from a modification of the proof of Corollary 2.7 of [BHNT15]. We consider

all groups g ∈ {0, . . . , 2 logn − 1}. We find the group with the largest index that has a non-empty last
level and perform the peeling procedure. Suppose g is the group. By what we showed above, we know that
D∗

1+ψ −
c log3 n

ε ≤ (1+ψ)g ≤ 2(1+ψ)D∗ + c log3 n
ε . By the above, if the last level is not empty in group g, then,

there exists an induced subgraph Zr where r ∈ {0, . . . , 2 logn − 1}, obtained from peeling the levels, that

has density at least (1+ψ)g

2(1+ψ) −
c log3 n

ε . Finally, the returned noisy degrees for each node is at least its actual

degree minus c log3 n
ε whp. Let r ∈ {0, . . . , 2 logn− 1} be the level where Zr has the highest density in g. Let

Ŵr be the sum of the noisy degrees of nodes in Zr. Then, we can bound Ŵr by the following expression in
terms of δ(G[Zr]) and ρ(G[Zr]),

ρ(G[Zr])−
c log3 n

ε
=
δ(G[Zr])

2
−
c log3 n

ε
≤ Ŵr ≤ δ(G[Zr]) +

c log3 n

ε
= 2 · ρ(G[Zr]) +

c log3 n

ε
.

By the above expression, we are guaranteed to select an r′ whp where

ρ(G[Zr])

2
−
c log3 n

ε
=
δ(G[Zr])

4
−
c log3 n

ε
≤
Ŵr′

2
≤
δ(G[Zr′ ])

2
+

2c log3 n

ε
= ρ(G[Zr′ ]) +

2c log3 n

ε
(8)
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Combining all of the above observations, we get that the returned set of nodes in the approximate densest
subgraph has density at least

ρ(G[Zr′ ]) ≥
ρ(G[Zr])

2
−

3c log3 n

ε

≥
1

2
·

(
(1 + ψ)g

2(1 + ψ)
−
c log3 n

ε

)
−

3c log3 n

ε

≥
D∗

1+ψ −
c log3 n

ε

4(1 + ψ)
−

7c log3 n

2ε
=

D∗

4(1 + ψ)2
−O

(
log3 n

ε

)
.

4.7 Complexity Measures

In this section, we analyze the round and node communication complexity of our ε-edge LEDP algorithm;
the latter is measured in terms of the size of messages sent by the nodes. Each node in Algorithm 1 releases
O(1) bits of information in each round. Then, we show a simple modification to the algorithm that allows
us to obtain O(log n) rounds but with an additional node communication complexity of O(log n) bits.

Theorem 4.10. Algorithm 1 has round complexity O(log2 n). Released messages contain O(1) bits, with
high probability.

Proof. Our algorithm requires O(log2 n) rounds since we move vertices up at most O(log2 n) levels. During
each round, to obtain the communication complexity of O(1) bits, each vertex outputs O(1) bits indicating
whether it is moving up a level or staying in the same level.

Corollary 4.11. There exists a
(

2 + η,O
(

log3 n
ε

))
-approximate LEDP algorithm for k-core decomposition

that takes O(log n) rounds and outputs messages with O(log n) bits, with high probability. There exists

a
(

4 + η,O
(

log3 n
ε

))
-approximate LEDP algorithm for densest subgraph that takes O(log n) rounds and

outputs messages with O(log2 n) bits, with high probability.

Proof. Algorithm 3 modifies Algorithm 1 in the following way. Instead of computing the levels sequen-
tially, we compute multiple groups in parallel. Specifically, each nodes outputs in each round, a message of
2 log(1+ε) n− 1 length where the i-th bit is 1 if node i moves up a level in group i. Thus, since each group
has O(log n) levels, we can compute the movements of all vertices in all groups simultaneously in O(log n)
rounds.

In Algorithm 5, each node releases O(log n) bits for each level in each group for their noisy degree. Thus,
given O(log n) groups, the total node communication complexity is O(log2 n) per level r ∈ {0, . . . , 2 logn−1}.
There are O(log n) rounds since Line 6 uses O(log n) rounds. (Everything inside the for loop can be done
simultaneously.)

5 ε-Edge DP Densest Subgraph

In this section, we present an ε-edge DP densest subgraph algorithm that returns a subset of vertices

V ′ ⊆ V that induces a
(

1 + η,O
(

log4 n
ε

))
-approximate densest subgraph for any constant η > 0 in

O
(
(n+m) log3 n

)
time. Specifically, we prove the following theorem.

Theorem 5.1. There exists an ε-edge DP densest subgraph algorithm that runs in O
(
(n+m) log3 n

)
time

and returns a subset of vertices V ′ ⊆ V that induces a
(

1 + η,O
(

log4 n
ε

))
-approximate densest subgraph for

any constant η > 0.

We build upon the multiplicative weight update algorithm from [BGM14] along with modifications made
by [SV20] in their distributed algorithm. Although a number of private algorithms [BLR13, GLM+10,
GRU12, GZ21, HLM12, HR10, SU17, UV11, Vad17] exist for the multiplicative weight updates (MWU)
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(Primal) Maximum Density Subgraph

maximize
∑

e∈E

xe

subject to
∑

v∈V

yv = 1

xe ≤ yu, xe ≤ yv ∀e = {u, v} ∈ E

yv, xe ≥ 0 ∀e ∈ E, v ∈ V

(Dual) Lowest Out-Degree Orientation

minimize B

subject to αeu + αev ≥ 1 ∀e = {u, v} ∈ E
∑

e∋u

αeu ≤ B ∀u ∈ V where e ∈ E

αeu, αev ≥ 0 ∀e = {u, v} ∈ E

Figure 1: Fig. 1 of [SV20]: Linear programs for densest subgraph (primal) and fractional lowest out-degree
orientation (dual).

method of Arora et al. [AHK12], such private algorithms focus on private multiplicative weights for linear
and non-linear queries into databases and data release. Such techniques in the database query setting do not
immediately transfer to our densest subgraph setting; namely, these algorithms often use the exponential
mechanism to select queries, which is unnecessary in our setting, since all nodes are queried during each
update step and every node provides a value to update the state of the algorithm. Conversely, our ε-edge
DP densest subgraph algorithm also does not have implications for private multiplicative weight update
algorithms for database queries.

In this section, to be consistent with the previous non-private works [BGM14, CQT22, SV20], we give
our multiplicative approximation factors as (1− a · η′) for fixed constant a and η′ ∈ (0, 1/a). Specifically,
they define a (1− η′)-approximate densest subgraph to be one with density at least (1− η′) ·D∗, where D∗

is the density of the densest subgraph. In Section 2, we define our multiplicative approximation factor as
(1 + η) to be consistent with the other private densest subgraph works [FHS22, NV21]. It is easy to convert
between the two approximation factors since a (1 − a · η′) guarantee for any constant η′ ∈ (0, 1/a) implies

a (1 + η) multiplicative guarantee for any η > 0 since (1 − a · η′) ≤ 1
1+η when 0 < η ≤ aη′

1−aη′ , and we can

choose a sufficiently small constant η. For simplicity, from now on we fix a constant η ∈ (0, 1/12) to be the
input parameter for our algorithms.

We present our algorithm in two parts. The main part, given in Algorithm 6, calls the subroutine
given in Algorithm 7 on various values of z. Algorithm 6 iterates through powers of (1 + η)i for every
i ∈ [⌊log(1+η) n⌋]. For each (1+η)i, the algorithm passes the value as the input parameter z into Algorithm 7.

Algorithm 7 goes through O
(

logn
η3

)
phases where loads are added to the edges in each phase. Then, the

algorithm returns a set of nodes whose induced subgraph has density at least (1−12η)z− c log4 n
ε for sufficiently

large constant c ≥ 1 whp. Algorithm 6 then returns the set of nodes returned for the largest power of (1+η)i

or all of the nodes in the input graph if Algorithm 7 did not return a subset of the nodes for any of the
inputs for the parameter z.

The crux of our approximate densest subgraph algorithm lies in Algorithm 7. In order to ensure ε-edge
DP, our algorithm creates dummy edges that take a portion of the load. This technique also naturally
leads to a general privacy framework for a certain class of locally-adjustable algorithms, which we present
in Section 6. Such dummy edges are responsible for both accumulating load and for determining whether
the stopping conditions are satisfied. We describe our algorithm in more detail and prove its privacy,
approximation, and runtime guarantees in the following sections.

The densest subgraph algorithm performs multiplicative weight update on the dual of the densest sub-
graph LP [Cha00] (shown in Fig. 1). Intuitively, this algorithm works by distributing a given load z on a
node (corresponding to the loads given by edges to the nodes in the dual LP) to its adjacent edges. Nodes
with a large number of adjacent edges will be able to spread out its load among its many adjacent edges.
Edges with small cumulative load will be adjacent to two high-degree nodes. Hence, they should be included
in the densest subgraph. We can find such a subgraph by iterating from small to large load and keeping
nodes that are adjacent to many edges with small loads. Bahmani et al. [BGM14] were the first to apply the
MWU framework to densest subgraphs and Su and Vu [SV20] give an explicit analysis for this algorithm.
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Algorithm 6: ε-Edge DP Densest Subgraph

1 Input: Graph G = (V,E) with n = |V | and m = |E|, a constant η ∈ (0, 1/12), and privacy
parameter ǫ ∈ (0, 1).

2 Output: A subset of nodes whose induced subgraph is a
(

1− 12η,O
(

log4 n
ε

))
-approximate densest

subgraph.
3 Function EdgeDPDensestSubgraph(G= (V,E), η, ε)
4 Vmax ← V .
5 for i ∈ [⌊log(1+η) n⌋] do
6 Set z = (1 + η)i.
7 (S, x)← EdgeDPDensestSubgraphZ(G= (V,E), z, η, ǫ) (Algorithm 7).
8 if x 6= 0 then
9 Vmax ← S.

10 return Vmax.

Although the non-private algorithms of [BGM14, SV20] adapt the MWU framework, the analyses of [SV20]
are self-contained. Thus, we present our private algorithm in its entirety without the need to define the MWU
framework. We modify the analysis of [SV20] to show the approximation factor of our ε-DP algorithm.

5.1 Detailed Algorithm

The pseudocode for our algorithm is given in Algorithm 6. Recall from Definition 2.11 that Geom(b) denotes
the symmetric geometric distribution. Specifically, Geom(b) gives an integer output X ∼ Geom(b) with

probability eb−1
eb+1 ·e

−|X|·b. In Algorithm 6, we iterate through i ∈ [⌊log(1+η)(n)⌋] (Line 5) to obtain z = (1+η)i

(Line 6). After obtaining z, we pass the value into Algorithm 7 as the parameter z (Line 7). Algorithm 7

returns a subset of nodes with density at least z− c log4 n
ε (for sufficiently large constant c ≥ 1) whp or all the

nodes in the graph. We then check whether a set of nodes for the current parameter z is returned (Line 8); if
so, then the subgraph S ⊆ V obtained for the largest z parameter that is passed into the algorithm (Lines 4
and 9) is returned. If no set of nodes is returned for any z, then all of the nodes in the graph are returned.
We now explain the crux of our algorithm: Algorithm 6 calls Algorithm 7 in Line 7 with input parameter z
and Algorithm 7 returns a subset of nodes with density bounded by z minus additive poly(logn) error.

Algorithm 7 operates over T ← c0 logn
η3 phases for some sufficiently large constant c0 > 0 (Line 4). Each

phase updates the load of each edge e, where the initial loads ℓ(e) of all edges are set to 0 (Line 5). Then, for
each of the T phases, in parallel, each node v sorts its adjacent edges in non-decreasing order according to
their load (Line 10). The loads of the edges essentially correspond to variable values in the well-known dual
of the densest subgraph LP (shown in Fig. 1). Then, we sample from the symmetric geometric distribution
to create the dummy edges (Line 11). Let Xv be the number of these dummy edges created for a node v.
There are two ways that these dummy edges affect the loads distributed on the real edges. First, if Xv is
negative, then we create dummy edges that we assume have the smallest loads among all adjacent edges to v.
In this case, these dummy edges then take up part of the load given by v and hence, the real edges adjacent
to v altogether receive less total load than z. However, if Xv is positive, then we imagine we create more
open slots for additional real edges to take on load from v. In this case, the sum of the loads received by all
real edges adjacent to v may be greater than z. This intuition translates to the procedure for assigning loads

to edges in Line 13: each of the [⌈z/2⌉ − 1 + Xv]
deg(v)
0 edges with the smallest loads is assigned a load of

2. After assigning new loads to the edges, the algorithm attempts to find an approximate densest subgraph
with sufficient density.

We iterate through each possible integer load in [0, 4T ] (Line 14), which are the minimum and maximum
possible load on any edge due to the fact that each endpoint of an edge adds at most a load of 2 during each
of the T phases. For each possible integer load in [0, 4T ], we check whether there exists a densest subgraph

of sufficient density, specifically, density at least z+ Y − c2 log4 n
ε (Line 21). If so, then the algorithm returns

a set of nodes V ′
ℓ , where the density of the induced subgraph consisting of the nodes in V ′

ℓ approximates the
density of the densest subgraph in G (Line 22). To check for whether a sufficiently dense subgraph exists,
first, each node v ∈ V samples a noise Z from the symmetric geometric distribution (Line 17). Then, node
v checks the number of incident edges e to v that have load ℓ(e) ≤ ℓ that is at most the load of the current

21



Algorithm 7: Edge DP Densest Subgraph using Density Parameter z

1 Input: Graph G = (V,E) with n = |V | and m = |E|, density z ≥ 0, constant η ∈ (0, 1/12), privacy
parameter ǫ ∈ (0, 1), and sufficiently large constants c0, c1, c2, c > 0.

2 Output: A pair (V ′, z′) where V ′ is a set of nodes V ′ ⊆ V where G[V ′] has density at least

z′ −O
(

log4 n
ε

)
.

3 Function EdgeDPDensestSubgraphZ(G= (V,E), z, η, ε)

4 Let T ← c0 logn
η3 .

5 Initialize load ℓ(e)← 0 for all e ∈ E.
6 if z = 0 then
7 return (V, 0).
8 for phase t = 1 to T do
9 for each node v ∈ V do

10 Let [e1, e2, . . . , edeg(v)] be an ordered list of edges adjacent to v sorted in non-decreasing
order by ℓ(e1) ≤ ℓ(e2) ≤ · · · ≤ ℓ(edeg(v)) (breaking ties by the ID of the other endpoint).

11 Sample Xv ∼ Geom

(
ε

6T log(1+η) n

)
.

12 Initialize each α̂teiv ← 0.

13 Set α̂teiv ← 2 for i = 1, . . . , [⌈z/2⌉ − 1 +Xv]
deg(v)
0 .

14 for each integer ℓ ∈ [0, 4T ] do
15 Set V ′

ℓ ← ∅.
16 for each node v ∈ V do

17 Sample Z ∼ Geom

(
ε

6T (4T+1) log(1+η) n

)
.

18 if number of incident edges e to v with ℓ(e) ≤ ℓ is at least ⌈z/2⌉+ Z − c1 log4 n
ε then

19 V ′
ℓ ← V ′

ℓ ∪ {v}.

20 Sample Y ∼ Geom

(
ε

3T (4T+1) log(1+η) n

)
.

21 if G[V ′
ℓ ] is a non-empty graph with density ≥ z + Y − c2 log4 n

ε then
22 return (V ′

ℓ , z)

23 for each edge e = (u, v) ∈ E do
24 Set ℓ(e)← ℓ(e) + α̂teu + α̂tev.

25 return (V, 0).

iteration, ℓ. If the number of such incident edges is at least ⌈z/2⌉+ Z − c1 log4 n
ε (Line 18), we add the node

to the set V ′
ℓ . We then check the density of the subgraph induced by all nodes that pass the check (Lines 19

and 21). If the density of this subgraph is sufficiently large, we return the nodes in V ′
ℓ as the approximate

densest subgraph (Line 22). Otherwise, if the density is not sufficiently large, we update the loads of each
of the edges and proceed with the next iteration of the algorithm (Line 24). We show in Section 5.3 that we
return a subgraph of sufficiently large density whp if z is sufficiently small (but not too small) compared to
the optimum density D∗.

We first prove that Algorithm 6 is ε-edge DP in Section 5.2. As the main intermediate step, we prove

that Algorithm 7 is
(

ε
log(1+η) n

)
-edge DP in Lemma 5.2. Then, we prove that we return a set of nodes where

the induced subgraph on this set gives our desired approximation factor in Section 5.3. Finally, we analyze
the runtime of our algorithm in Section 5.4.

5.2 ε-Edge DP Privacy Guarantees

We prove Algorithm 6 is ε-edge DP in this section. We first prove our main lemma that Algorithm 7 is
ε

log(1+η) n
-edge DP in Lemma 5.2. Then, we prove Lemma 5.6 via composition (Theorem 2.15) over log(1+η) n

calls to the algorithm. The key challenge in our analysis is that although we only use symmetric geometric
noise in our algorithm, we sometimes cannot use the proof of the privacy of the geometric mechanism directly.
and additional analysis is necessary. Nevertheless, we show that our analysis is quite intuitive and can also
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be applied to our framework in Section 6. In the following proofs, we denote edge-neighboring graphs by
G = ([n], E) and G′ = ([n], E ∪ {e′}). We also use the terminology ε-indistinguishable distributions to
denote two distributions where the probabilities of any event differs by at most a factor of eε between the
distributions. It follows by definition that two symmetric geometric distributions with the same parameter
and whose means differ by at most 1 are ε-indistinguishable. Furthermore, suppose that we have the pairs
of distributions (A1, B1) and (A2, B2) where each pair is ε-indistinguishable. If all four distributions are
independent, then, the joint distributions for (A1, B1) and (A2, B2) are 2ε-indistinguishable.

Lemma 5.2. Algorithm 7 is ε
log(1+η) n

-edge DP.

Proof. Algorithm 7 iterates through T phases (Line 8) where in each phase, it first assigns loads to edges
(Lines 10 to 13). The assigned loads are added to a cumulative load at the end of the procedure (Line 24).
After assigning loads to edges, it iterates through 4T integer loads (Line 14). For each load, the algorithm
iterates through each node (Line 16) and determines whether to add the node to V ′

ℓ (Lines 17 to 19). After
constructing V ′

ℓ , it determines whether to return V ′
ℓ if the subgraph induced on V ′

ℓ has sufficiently large
density (Lines 21 and 22). Finally, if no node is returned at the end of all phases and all iterations, all nodes
in the graph are returned (Line 25).

We introduce notation for each of the following random variables: the loads assigned to each edge during
each phase, indicator variables for whether each node is added to V ′

ℓ during each of the 4T iterations of
each phase, and indicator variables for whether V ′

ℓ is returned. We prove the privacy of our algorithm by
conditioning on the states of random variables from previous iterations and phases and showing that with
approximately equal probabilities the random variables in the current iteration take the same values in
edge-neighboring graphs.

We now define each of the random variables that we use in our proof. Given a graph G = ([n], E), we
first define the random variables representing the loads assigned to each edge during each phase. In other
words, Let Lt be a set of triples Lt = {(e, α̂tei, α̂

t
ej) | e ∈ E} where each triple (e, α̂tei, α̂

t
ej) contains an edge

e = (i, j) ∈ E and the loads α̂tei, α̂
t
ej assigned to edge e = (i, j) in phase t. Then, let L =

(
L1, . . . , LT

)

be a sequence of load assignments to edges for each of the T phases. The interesting case is when z > 0
as otherwise all nodes of the graph are returned when z = 0. Let F (Lt, E∗) be a function that, given Lt

and a set of edges E∗, returns a set of loads J t where J t = {(e, α̂tei, α̂
t
ej) ∈ L

t | e ∈ E∗} is a set of tuples
(e, α̂tei, α̂

t
ej) from Lt for each edge e ∈ E∗.

Then, let Bℓv,t(G) be the indicator random variable for node v, phase t, and load cutoff ℓ that is 1 if node i

has at least ⌈z/2⌉+Zℓv,t−
c1 log4 n

ε neighbors in G with load at most ℓ (where Zℓv,t ∼ Geom

(
ε

6T (4T+1) log(1+η) n

)
)

and 0 otherwise. Finally, let Cℓt (G) be the indicator random variable for phase t and load cutoff ℓ in G that
is 1 if the density of V ′

ℓ satisfies the cutoff in Line 21 and 0 otherwise. If Cℓt (G) = 1 for some phase t and
load ℓ, then we set the values of all random variables to 0 for all iterations ℓ′ > ℓ in phase t and for all
phases t′ > t.

We introduce several claims (Claims 5.3 to 5.5) and their proofs before proving this lemma. We first show
the following claim about the loads assigned to edges in phase t conditioned on the values of all random
variables for phases less than t. Let J be the set of all possible sets of triples of load assignments to edges
in E and let St ∈ J . Let (b1, . . . , bn)ℓ,t ∈ {0, 1}

n and dℓt ∈ {0, 1} for all t ∈ [T ] and ℓ ∈ {0, . . . , 4T }. To set
up Claim 5.3, let Rt be the sequence of events where for all phases less than a fixed t ∈ [T ],

Rt(G) = (C4T
t−1(G) = d4Tt−1, . . . , C

0
1 (G) = d01,(

B4T
1,t−1(G), . . . , B4T

n,t−1(G)
)

= (b1, . . . , bn)4T,t−1 , . . . ,
(
B0

1,1(G), . . . , B0
n,1(G)

)
= (b1, . . . , bn)0,1 ,

J t−1(G) = St−1, . . . , J1(G) = S1).

Define R̂t the same way as Rt, substituting G′ for G.
Note that since we are in the discrete setting, computing the probability expression in Claim 5.3 is

sufficient for privacy as opposed to the common 1
eε/(4T ) ≤

Pr[Jt(G′)∈S|R̂t(G′)]
Pr[Jt(G)∈S|Rt(G)] ≤ e

ε/(4T ) for any S ⊆ J , which

is necessary for continuous settings.

Claim 5.3. For all edge-neighboring graphs G = ([n], E) and G′ = ([n], E ∪ {e′}) and all St ∈ J ,

1

eε/(3T log(1+η) n)
≤

Pr [J t(G′) = St | Rt(G′)]

Pr [J t(G) = St | Rt(G)]
≤ eε/(3T log(1+η) n).
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Proof. First, note that only Lines 9 to 13 and 24 assign loads to edges in Algorithm 7. Let J t(G) be the
random variable representing the set of loads returned by F (Lt, E) for phase t. Let S = (S1, . . . , St−1) be a
sequence of sets of load values on edges in E. We prove, for all t ∈ [T ], that

1

eε/(3T log(1+η) n)
≤

Pr [J t(G′) = St | Rt(G′)]

Pr [J t(G) = St | Rt(G)]
≤ eε/(3T log(1+η) n). (9)

First, conditioned on the previous sets of loads being the same for edges in J t(G) and J t(G′) for phases in
[t− 1], the load at the beginning of phase t on e ∈ E is given by ℓt(e) = ℓ′t(e) (where ℓt(e) is the load on e

in phase t in G and ℓ′t(e) is the load on e in phase t in G′) since each ℓt(e) =
∑t−1
r=1

(
α̂rei + α̂rej

)
for all e ∈ E.

Then, the distribution on the loads assigned to α̂teiand α̂tej are the same in G and G′ for edges e = (i, j) ∈ E
where neither endpoint is u or v. It remains to consider loads assigned to edges in E where exactly one of
the endpoints is u or v.

Let (e1, . . . , e|N(v)|) denote the order of the edges determined by loads in {L1(G), . . . , Lt−1(G)} and let
(ê1 . . . , ê|N(v)|+1) denote the order of the edges N(v) ∪ {e′} determined by loads in {L1(G′), . . . , Lt−1(G′)}
(Line 10). Let edge e′ = (u, v) be the k-th edge in (ê1 . . . , ê|N(v)|+1). Since we conditioned on J t−1(G′) =
J t−1(G) = St−1, . . . , J1(G′) = J1(G) = S1, it follows that ep = êp for all p ∈ [k − 1] and ep = êp+1

for all p ∈ {k, . . . , |N(v)|}. Since G′ has an additional edge, deg(v) = |N(v)| and deg′(v) = |N(v)| +
1 for all nodes v. For the purposes of this proof, we pad each of the two sequences OrderSeq(G) =
(e1 . . . , e|N(v)|) and OrderSeq(G′) = (ê1 . . . , ê|N(v)|+1) with extra filler edges on the right ends to produce
(e1, . . . , e|N(v)|, f1, f2, f3, . . . , f⌈z/2⌉−1−|N(v)|+1) and (ê1 . . . , ê|N(v)|+1, f1, f2, f3, . . . , f⌈z/2⌉−1−|N(v)|−1). These
filler edges are unique and given in the same order in both sequences. This means that the position ⌈z/2⌉−1
falls on an edge in both sequences. We now define the ideal cutoff for the sequence OrderSeq(G) to be
⌈z/2⌉− 1 and for the sequence OrderSeq(G′) to be the position of the (⌈z/2⌉ − 1)-st edge in OrderSeq(G).
To state in another way, if we let ê be the (⌈z/2⌉ − 1)-st edge in OrderSeq(G′), we find the position of
ê in OrderSeq(G) (if ê = e′, then we take the edge to its right). The position of this edge is either at
position ⌈z/2⌉ − 1 in OrderSeq(G) or at position ⌈z/2⌉ − 2 in OrderSeq(G). Trivially, the ideal cutoff for
the (⌈z/2⌉ − 1)-st edge in OrderSeq(G) is ⌈z/2⌉ − 1. We now define the following variables with respect to
these ideal cutoffs which we denote by IDEALv(G

′) and IDEALv(G). Conditioned on Rt(G) and Rt(G′),
these ideal cutoffs are fixed.

Let CUT tv(G) = IDEALv(G) + Xv be the symmetric geometric variable with mean IDEALv(G) for G
in phase t and CUT tv(G′) = IDEALv(G′) + X̂v be the variable for G′. Then, the conditional distributions
(conditioned on Rt(G) and Rt(G′), respectively) for CUT tv(G) and CUT tv(G′) are symmetric geometric
distributions with parameter given in Line 11 and with means IDEALv(G) and IDEALv(G′), respectively.
These random variables are drawn from symmetric geometric distributions where the mean differs by at
most 1. Hence, these distributions are ε

6T log(1+η) n
-indistinguishable by the parameter given in Line 11. The

same argument above holds for u.
Now, we consider the joint distributions for the variables CUT tv(G) and CUT tu(G) (and respectively,

CUT tv(G′) and CUT tu(G′)). Conditioned on Rt(G) and Rt(G′), the orderings are fixed for u and v which
means that IDEALu(G) and IDEALv(G) are also fixed; thus, the variables CUT tu(G) and CUT tv(G) are
independently drawn, the events for each endpoint are independent and so the joint conditional probability
distributions are ε

3T log(1+η) n
-indistinguishable, proving our claim.

Intuitively, Claim 5.3 shows that for the set of edges E in both G and G′, our algorithm assigns the same
loads to edges in E in G and G′ with roughly equal probability, conditioned on the values of the random
variables from previous iterations and phases.

We show the following claim regarding the values of Bℓv,t(G). Let W be the sequences of events for
iterations less than ℓ in phase t and all phases less than t where

W = (Cℓ−1
t (G) = dℓ−1

t , . . . , C0
1 (G) = d01,(

Bℓ−1
1,t (G), . . . , Bℓ−1

n,t (G)
)

= (b1, . . . , bn)ℓ−1,t , . . . ,
(
B0

1,1(G), . . . , B0
n,1(G)

)
= (b1, . . . , bn)0,1 ,

J t(G) = St, . . . , J1(G) = S1).

Define W ′ the same way as W , substituting G′ instead of G.
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Claim 5.4. Given two edge-neighboring graphs G and G′, let (Bℓ1,t(G), . . . , Bℓn,t(G)) be the sequence of
random variables and (b1, . . . , bn)ℓ,t ∈ {0, 1}n for all nodes i ∈ [n]. Then, for any phase t ∈ [T ] and load
ℓ ∈ {0, . . . , 4T },

1

eε/(3T (4T+1) log(1+η) n)
≤

Pr[(Bℓ1,t(G
′), . . . , Bℓn,t(G

′)) = (b1, . . . , bn)ℓ,t |W ′]

Pr[(Bℓ1,t(G), . . . , Bℓn,t(G)) = (b1, . . . , bn)ℓ,t |W ]
≤ eε/(3T (4T+1) log(1+η) n).

Proof. Let Zℓv,t and Ẑℓv,t be the noise drawn in phase t and iteration ℓ for i in Line 17 of Algorithm 7
for G and G′, respectively. Conditioned on J t(G) = St and J t(G′) = St, edge e′ = (u, v) ∈ E′ \ E
has some arbitrary load from Lt(G′) and all other edges have the same load in phase t in G and G′.
For all nodes i 6= u, v ∈ [n], the conditional distributions of the random variables Bℓi,t(G) and Bℓi,t(G

′)

are the same given W ′ and W . Now we consider the conditional distributions of Bℓv,t(G) and Bℓv,t(G
′).

Let loadℓv,t(G) and loadℓv,t(G
′) be the number of adjacent edges to v in G and G′, respectively, with load

at most ℓ in phase t; conditioned on W and W ′, respectively, loadℓv,t(G) and loadℓv,t(G
′) are fixed and

loadℓv,t(G) ≤ loadℓv,t(G
′) ≤ loadℓv,t(G)+1 since v is adjacent to one additional edge in G′ which can have load

at most ℓ. Then, Bℓv,t(G) = 1 when LOADℓ
v,t(G) = Zℓv,t−load

ℓ
v,t(G)+⌈z/2⌉− c1 log

4 n
ε ≤ 0 (and symmetrically

for Bℓv,t(G) = 0). We define the random variable LOADℓ
v,t(G

′) the same way except substituting Ẑℓv,t and

loadℓv,t(G
′). The random variables LOADℓ

v,t(G) and LOADℓ
v,t(G

′) are symmetric geometric variables drawn
from distributions with the same parameter and where the mean differs by at most 1. Thus, the conditional

distributions for these two random variables are
(

ε
6T (4T+1) log(1+η) n

)
-indistinguishable (using the parameter

from Line 17). Finally, the conditional distributions for LOADℓ
v,t(G) and LOADℓ

u,t(G) are independent

since loadℓv,t(G) + ⌈z/2⌉− c1 log4 n
ε are fixed and Zℓv,t and Ẑℓv,t are drawn independently. (The same holds for

the distributions of the corresponding random variables for G′.) Hence, the conditional joint distributions

for the pairs in G and the pairs in G′ are
(

ε
3(4T+1)T log(1+η) n

)
-indistinguishable.

Finally, we return the set of nodes in V ′
ℓ in Lines 21 and 25 if the density of the induced subgraph G[V ′

ℓ ] is

at least z + Y − c2 log4 n
ε and if no induced density satisfies the cutoff, respectively. Similarly to the previous

claims, we can prove the following claim for Cℓt (G) and Cℓt (G
′) conditioned on the sequence of indicator

random variables (Bℓ1,t(G), . . . , Bℓn,t(G)) and (Bℓ1,t(G
′), . . . , Bℓn,t(G

′)).
Let Q be the sequence of events where

Q = (Cℓ−1
t (G) = dℓ−1

t , . . . , C0
1 (G) = d01,(

Bℓ1,t(G), . . . , Bℓn,t(G)
)

= (b1, . . . , bn)ℓ,t , . . . ,
(
B0

1,1(G), . . . , B0
n,1(G)

)
= (b1, . . . , bn)0,1 ,

J t(G) = St, . . . , J1(G) = S1).

We define Q′ the same way as Q, substituting G′ instead of G.

Claim 5.5. Given two edge-neighboring graphs G and G′, let Q and Q′ be the sequences of events as defined
above. Let Cℓt (G) and Cℓt (G

′) be the indicator random variables for G and G′, respectively, as defined above,
and let dℓt ∈ {0, 1}. Then, for any phase t ∈ [T ] and integer load ℓ ∈ {0, . . . , 4T },

1

eε/(3T (4T+1) log(1+η) n)
≤

Pr[Cℓt (G
′) = dℓt | Q

′]

Pr[Cℓt (G) = dℓt | Q]
≤ eε/(3T (4T+1) log(1+η) n).

Proof. This proof follows the proof of Claim 5.4 almost identically except for the use of different random
variables. Given the conditioning on events Q and Q′, the set of nodes in V ′

ℓ are fixed and the same in phase t
in both G and G′. Then, the sensitivity of a function that returns the density ρ(G[V ′]) of any subset V ′ ⊆ V
of nodes is 1. It follows that ρ(G[V ′

ℓ ]) ≤ ρ(G′[V ′
ℓ ]) ≤ ρ(G[V ′

ℓ ]) + 1. This means that we can again argue that

the random variables DENSEℓt (G) = Y ℓt + z−ρ(G[V ′
ℓ ])− c2 log4 n

ε and DENSEℓt (G
′) (defined the same way

except substituting Ŷ ℓt and ρ(G′[V ′
ℓ ])) are symmetric geometric variables drawn from distributions with the

same parameter and where the mean of the distributions differ by at most 1. Thus, these two distributions

are
(

ε
3T (4T+1) log(1+η) n

)
-indistinguishable and the claim follows.
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We now apply the chain rule on Claims 5.3 to 5.5 to prove our lemma. During each phase t ∈ [T ], we
first compute the new loads assigned to α̂eu for all e ∈ E and u ∈ e. Then, we iterate through all loads
ℓ ∈ {0, . . . , 4T } to obtain the random variables Bℓv,t(G) and Cℓt . We apply the chain rule as follows:

A =
Pr[C4T

T (G′) = d4TT | Q
′]

Pr[C4T
T (G) = d4TT | Q]

×
Pr[(B4T

1,T (G′), . . . , B4T
n,T (G′)) = (b1, . . . , bn)4T,T |W ′]

Pr[(B4T
1,T (G), . . . , B4T

n,T (G)) = (b1, . . . , bn)4T,T |W ]

×
Pr
[
JT (G′) = ST | R′

]

Pr [JT (G) = ST | R]
× · · · ×

Pr[C0
1 (G′) = d01 | (B

0
1,1(G′), . . . , B0

n,1(G′)) = (b1, . . . , bn)0,1, J
1(G′) = S1]

Pr[C0
1 (G) = d01 | (B

0
1,1(G), . . . , B0

n,1(G)) = (b1, . . . , bn)0,1, J1(G) = S1]

×
Pr[(B0

1,1(G′), . . . , B0
n,1(G′)) = (b1, . . . , bn)0,1 | J1(G′) = S1]

Pr[(B0
1,1(G), . . . , B0

n,1(G)) = (b1, . . . , bn)0,1 | J1(G) = S1]
×

Pr
[
J1(G′) = S1

]

Pr [J1(G) = S1]

=
Pr[C4T

T (G′) = d4TT ∩ (B4T
1,T (G′), . . . , B4T

n,T (G′)) = (b1, . . . , bn)4T,T ∩ C0
1 (G′) = d01 ∩ J

T (G′) = ST ∩ · · · ]

Pr[C4T
T (G) = d4TT ∩ (B4T

1,T (G), . . . , B4T
n,T (G)) = (b1, . . . , bn)4T,T ∩ C0

1 (G) = d01 ∩ J
T (G) = ST ∩ · · · ]

By Claims 5.3 to 5.5, we can upper and lower bound A by
(

1

e
ε/(3T log(1+η) n)

)T
·

(
1

e
ε/(3T (4T+1) log(1+η) n)

)T (4T+1)

·
(

1

e
ε/(3T (4T+1) log(1+η) n)

)T (4T+1)

≤ 1

e
ε/ log(1+η) n

≤ A ≤ eε/ log(1+η) n ≤
(
eε/(3T log(1+η) n)

)T
·
(
eε/(3T (4T+1) log(1+η) n)

)T (4T+1)

·
(
eε/(3T (4T+1) log(1+η) n)

)(4T+1)T

, proving

Lemma 5.2.

Lemma 5.6. Algorithm 6 is ε-edge DP.

Proof. Algorithm 6 calls Algorithm 7 a total of log(1+η) n times. By Lemma 5.2 and by the composition
theorem (Theorem 2.15, Algorithm 7 is ε

log(1+η) n
-edge DP and by applying composition log(1+η) n times,

Algorithm 7 is ε-edge DP.

5.3 Approximation Analysis

The proof of our approximation guarantee relies on the LP formulation of the densest subgraph problem
and its dual introduced by Charikar [Cha00]. We modify the proofs of Su and Vu [SV20] to prove the
approximation factor of our algorithm in the ε-edge DP setting; the application of the multiplicative weights
framework to densest subgraph was first given in [BGM14] and the analysis was made explicit for the densest
subgraph problem by [SV20]. Due to the added noise, all of the proofs for the original algorithm must be
modified to account for the additional error. The primal LP solves the densest subgraph problem while its
dual is traditionally used for the (fractional) lowest out-degree orientation problem. The primal (left) and
its dual (right) are shown in Fig. 1. We use the formulation of the LP and its dual that is given in [SV20]
and is also present in [BGM14]. In our analysis, we let D∗ be the density of the densest subgraph in the
input graph.

Charikar [Cha00] showed, via a rounding algorithm, that the optimal value of the LP is exactly the
density of the densest subgraph in the graph. We use the notation from [SV20] when describing solutions to
the primal and dual. Specifically, we say that a solution to the primal satisfies Primal(A) if it is a feasible
solution whose objective value is at least A. A dual solution satisfies Dual(B) if it is a feasible solution with
objective value at most B. Let D∗ be the density of the densest subgraph in the input graph. We reiterate
that the primal is feasible if A ≤ D∗ and the dual is feasible if B ≥ D∗. There are two main aspects of the
analysis. As in Su and Vu [SV20], for each value of z and appropriately large constant c ≥ 1, we show that
at least one of the following conditions is satisfied:

• Algorithm 7 returns a subgraph which satisfies Primal

(
(1 − 12η)z − c2 log4 n

ε

)
with high probability.

• The loads on the edges given by Algorithm 7 form a solution to Dual

(
(1 + 2η)z + c log3 n

εη3

)
with high

probability.

We use the above to show that if z <
D∗− c log3 n

εη3

1+10η , then our algorithm returns a subgraph with density at

least (1 − 12η)z − c2 log4 n
ε whp for sufficiently large constant c ≥ 1 (that is also dependent on the constant
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parameter η ∈ (0, 1/12)). To show this, we show that if z <
D∗− c log3 n

εη3

1+10η , then no feasible solution to

Dual((1 + 2η)z + c log3 n
εη3 ) exists, whp. This means that our algorithm will obtain a (1 − 12η)z − c2 log4 n

ε
approximate densest subgraph since in order for at least one of the two conditions above to be satisfied, the
first condition must be satisfied.

We use the following notation in our proofs. We define wte = (1 − η)ℓ
t(e) to be the weight of edge e in

phase t where ℓt(e) is the load on edge e in the beginning of phase t. Specifically, ℓt(e) is the load on edge
e in phase t before the update in Line 24. Note that ℓ(e) is updated with a value in {0, 2} for all phases
1 ≤ t ≤ T , unlike the original algorithm given by [SV20] which updates the load with a potentially non-
integer value. We, in fact, only need to modify the proofs of Lemma 3.1 and Lemma 3.2 (and not the proof
of Lemma 3.3) from Su and Vu [SV20] since the loads on our edges are guaranteed to be integers throughout
all phases of Algorithm 7. Our additive error allows us to update the loads with only integer values. Thus,
our modification to only update loads using integers actually allows us to simplify our accuracy proof in
some aspects.

We use the bound on the symmetric geometric noise (Lemma 2.12) in our main lemmas. Now, we
present the lemmas that we will use to prove our approximation factors. The structure of this section

is as follows. First, in Lemma 5.7, we show that if z <
D∗− c log3 n

εη3

1+10η , then there must exist a phase t where∑
e∈E (wte (αteu + αtev)) <

∑
e∈E w

t
e. Then, in Lemma 5.8, we show that if

∑
e∈E (ŵte (αteu + αtev)) <

∑
e∈E ŵ

t
e

for a given set of weights ŵte, then there exists a λ where taking all nodes which are incident to at least

⌈z/2⌉ + Z edges with weight at least λ gives a subgraph with density at least z − c2 log4 n
ε , whp, for a

large enough constant c ≥ 1. We show in Lemma 5.9 that because the loads on all edges are integers,
the set of weights w′

e obtained from Algorithm 7 gives a value for λ = (1 − η)ℓ
′

where ℓ′ is an integer in
[0, 4T ] that satisfies the conditions of Lemma 5.8; this directly leads to our final approximation factor given
in Lemma 5.10. Unlike Lemma 3.2 in [SV20], we do not need to prove Lemma 5.8 in terms of a factor
F ∈ (1/2, 1) since our additive error allows us to assign integer loads to edges upfront. The reason that
Lemma 3.2 in [SV20] requires the factor of F ∈ (1/2, 1) is that they allow no additive error; thus, each node
must assign all of its z load to its adjacent edges (if it has degree at least ⌈z/2⌉) and the load assigned to the

⌈z/2⌉-th edge may not be an integer. In our case, because we have an additional additive error of O
(

log4 n
ε

)
,

each node can afford to assign z ± c log4 n
ε load for constant c ≥ 1.

Lemma 5.7. If z <
D∗− c log3 n

εη3

1+10η for a large enough constant c ≥ 1 (depending on constant parameter η > 0),

then whp there exists a phase 1 ≤ t ≤ T where
∑

e∈E (wte (αteu + αtev)) <
∑

e∈E w
t
e.

Proof. We modify the proof of [SV20, Lemma 3.1], which is a standard analysis of the multiplicative weights
update method of [AHK12, You95]. As in [SV20, Lemma 3.1], we prove this theorem via the following
statements. This proof makes use of a feasible solution to the dual (Fig. 1). We make a small modification
to our algorithm to obtain a potential set of variable values αeu for every e ∈ E, u ∈ e for the dual. Namely,

we obtain a value for each αeu by computing αeu = (1 + 10η) ·
∑T
t=1 α

t
eu

T . Note that we do not return
the solution to the dual in any part of our algorithm but only make use of it in the proof of this lemma.
First, as noted before, Dual(B) is feasible if and only if B ≥ D∗. This means that if B = (1 + 2η)z +
c log3 n
εη3 < D∗, then Dual

(
(1 + 2η)z + c log3 n

εη3

)
is not feasible. The quantity satisfies (1+2η)z+ c log3 n

εη3 < D∗

when z <
D∗− c log3 n

εη3

1+2η . If Dual

(
(1 + 2η)z + c log3 n

εη3

)
is not feasible, then naturally our algorithm cannot

return a feasible solution. The final statement that we need to show is then: if our algorithm does not

return a feasible solution to Dual

(
(1 + 2η)z + c log3 n

εη3

)
, then there must exist a phase 1 ≤ t ≤ T where

∑
e∈E w

t
e (αteu + αtev) <

∑
e∈E w

t
e. This set of statements directly proves our desired lemma statement. The

first two statements are trivial to prove. The crux of this proof is then focused on proving the last statement.
To prove the last statement, it suffices to prove the contrapositive of the statement. Specifically, we spend
the remaining part of this proof proving the statement: if

∑
e∈E w

t
e (αteu + αtev) ≥

∑
e∈E w

t
e for all phases

1 ≤ t ≤ T , then our algorithm returns a feasible solution to Dual

(
(1 + 2η)z + c log3 n

εη3

)
. Note that returning

a feasible solution given parameter z necessarily implies that (1 + 2η)z + c log3 n
εη3 ≥ D∗ and z ≥

D∗− c log3 n

εη3

1+2η .
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In order for the returned solution to be a feasible solution to the dual, it must satisfy all constraints in
the dual. We first prove that if

∑
e∈E w

t
e (αteu + αtev) ≥

∑
e∈E w

t
e for all 1 ≤ t ≤ T , then

∑
e∋u αeu is upper

bounded by (1 + 2η)z+ c log3 n
εη3 . This satisfies one of the constraints in the dual. Let Xt

u be the noise chosen

by node u in phase t. We must upper bound the sum of the loads so cases when Xt
u < 0 are upper bounded

by the cases when Xt
u ≥ 0. If Xt

u ≥ 0, then we potentially give weights of 2 to Xt
u additional adjacent edges

to u. This means that the following holds:

∑

e∋u

∑T
t=1 α

t
eu

T
· (1 + 10η) =

(1 + 10η)

T
·
T∑

t=1

∑

e∋u

αteu ≤
(1 + 10η)

T
·
T∑

t=1

(
z +

2d log3 n

εη3

)
(10)

= (1 + 10η) ·

(
z +

2d log3 n

εη3

)
≤ (1 + 10η)z +

c log3 n

εη3
(11)

∑

e∋u

αeu ≤ (1 + 10η)z +
c log3 n

εη3
(12)

for appropriately large constant values c, d ≥ 1. The last expression in Eq. (10) holds because Xt
u is upper

bounded by O
(

log3 n
ε

)
by Lemma 2.12. The first part of Eq. (11) follows by canceling T . Then, the second

expression follows by substituting a large enough constant c ≥ 1 for 2(1 + 10η)d. Finally, Eq. (12) follows

from substituting αeu = (1 + 10η) ·
∑T
t=1

αteu
T .

To prove that the returned solution satisfies the other constraints, we use a similar potential function as
used in the proof of Lemma 3.1 in [SV20].5 The potential function is defined as follows

Φ(t) =
∑

e∈E

(1 − η)ℓ
t(e) ·

(
1− η + 8η2

)T−t

(1− η + 8η2)
(1−η)·T

.

We show that Φ(T ) =
∑
e∈E

(1−η)ℓ
T (e)

(1−η+8η2)(1−η)·T
< 1 which implies for every edge e = {u, v},

(1− η)ℓ
T (e) <

(
1− η + 8η2

)(1−η)·T
(13)

ℓT (e) log(1−η+8η2)(1− η) > (1− η)T (14)

T∑

t=1

(
αteu + αtev

)
>

(1− η)T

log(1−η+8η2)(1− η)
(15)

∑T
t=1 (αteu + αtev)

T
>

(1− η)

log(1−η+8η2)(1− η)
(16)

∑T
t=1 (αteu + αtev)

T
· (1 + 10η) >

(1 − η)(1 + 10η)

log(1−η+8η2)(1− η)
(17)

αeu + αev > 1 when η ∈ (0, 1/12). (18)

The first inequality (Eq. (13)) follows since if
∑
e∈E

(1−η)ℓ
T (e)

(1−η+8η2)(1−η)·T
< 1, this means that (1−η)ℓ

T (e)

(1−η+8η2)(1−η)·T
< 1

for each e ∈ E since (1−η)ℓ
T (e)

(1−η+8η2)(1−η)·T
≥ 0. This in turn implies that (1 − η)ℓ

T (e) < (1 − η + 8η2)(1−η)·T .

Eq. (14) follows by taking log(1−η+8η2) of both sides (where (1 − η + 8η2) ∈ (0, 1)). Then, the load on
edge e is defined to be the sum of the loads assigned to it from each phase t. Thus, the total load on
edge ℓT (e) =

∑T
t=1 (αteu + αtev). Substituting this expression into Eq. (14) results in Eq. (15). We divide

both sides by T in Eq. (16). Then, we multiply both sides by (1 + 10η) in Eq. (17). Finally, by definition,

5We use the version of the proof of Lemma 3.1 in v4 of [SV19] where Appendix B had a typo in the last steps which
necessitated this change in multiplicative factor in the lower bound on the weights and the change in the potential function.

Namely in the last steps, they wrote Φ(0) =
∑
e∈E

(1−η/2)T

(1−η/2)(1−η)T
which is a typo and the denominator should instead be

(1− η)(1−η)T . Thus, our analysis differs somewhat from the original analysis of Lemma 3.1 to correct for this typo.
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αeu = (1 + 10η) ·
∑T

t=1
αteu
T . So, because (1−η)(1+10η)

log(1−η+8η2)(1−η)
> 1 for all η ∈ (0, 1/12), we obtain Eq. (18), and

the solutions satisfy the constraint.
We show that Φ is non-increasing as t increases; then, if initially, Φ(0) < 1, then we directly prove our

desired statement. The rest of the proof follows almost identically (except for the fix for the typo) from the
proof of Lemma 3.1 in [SV20] but we repeat the proof for completeness. For any 0 ≤ t < T , we have the
following:

Φ(t+ 1) =
∑

e∈E

(1− η)ℓ
t+1(e) · (1− η + 8η2)T−t−1

(1− η + 8η2)(1−η)T
(19)

=
∑

e∈E

(1− η)ℓ
t(e)(1− η)α

t
eu+α

t
ev (1 − η + 8η2)T−t−1

(1 − η + 8η2)(1−η)T
(20)

≤
∑

e∈E

(1− η)ℓ
t(e)(1− η(αteu + αtev) + η2(αteu + αtev)2/2)(1− η + 8η2)T−t−1

(1− η + 8η2)(1−η)T
(21)

≤

(
∑

e∈E

(1 − η)ℓ
t(e)(1− η + 8η2)T−t−1

(1− η + 8η2)(1−η)T

)
− (η − 8η2)

(
∑

e∈E

(1− η)ℓ
t(e)(1− η + 8η2)T−t−1

(1− η + 8η2)(1−η)T

)
(22)

= (1− η + 8η2) ·

(
∑

e∈E

(1 − η)ℓ
t(e)(1− η + 8η2)T−t−1

(1− η + 8η2)(1−η)T

)
(23)

=

(
∑

e∈E

(1 − η)ℓ
t(e)(1− η + 8η2)T−t

(1− η + 8η2)(1−η)T

)
= Φ(t). (24)

Eq. (19) is obtained by definition of the potential function Φ(t). Eq. (20) follows because ℓt+1(e) = ℓt(e) +
αteu+αtev. Using the well-known fact that (1−a)b ≤ e−ab ≤ 1−ab+(ab)2/2 for 0 ≤ ab ≤ 1, we let a = η and
b = αteu+αtev; assuming η ≤ 1/4 ensures 0 ≤ η (αteu + αtev) ≤ 1 since 0 ≤ (αteu + αtev) ≤ 4. We obtain Eq. (21)
by using the aforementioned inequalities. Assuming

∑
e∈E w

t
e (αteu + αtev) ≥

∑
e∈E w

t
e, we obtain Eq. (22)

by lower bounding
∑

e∈E(1 − η)ℓ
t(e)(αteu + αtev) =

∑
e∈E w

t
e (αteu + αtev) ≥

∑
e∈E w

t
e =

∑
e∈E(1 − η)ℓ

t(e)

since by definition wte = (1− η)ℓ
t(e) and upper bounding (αteu +αtev)2 ≤ 16. Eq. (23) simplifies the previous

expression. Eq. (24) shows that Φ(t+ 1) ≤ Φ(t) for all 0 ≤ t < T . Hence,

Φ(T ) ≤ Φ(T − 1) ≤ . . . ≤ Φ(0)

=
∑

e∈E

(1− η + 8η2)T

(1− η + 8η2)(1−η)T

≤
∑

e∈E

exp
(
−
(
η2 − 8η3

)
T
)

≤ m · exp(−
(
η2 − 8η3

)
· (c0 lnn)/

(
η2 − 8η3

)
) = O

(
1

poly(n)

)
.

We obtain the last expression since T = c0 lnn
η3 ≥ c0 lnn

η2−8η3 for large enough constant c0 > 0 and η ∈ (0, 1/12).

The above shows that Φ(T ) < 1 and we conclude our proof of the lemma.

Knowing the condition that whp at least one phase t exists where
∑

e∈E w
t
e (αteu + αtev) <

∑
e∈E w

t
e

allows us to prove Lemma 5.8.
Let S(z) be the set of all possible integer assignments of weights to αteu for all e = {u, v} and endpoints

u, v.

Lemma 5.8. Suppose there exists a set of (non-negative) weights {ŵte} obtained by our algorithm in phase
t such that

∑

e∈E

ŵte >
∑

e∈E

ŵte
(
α̂teu + α̂tev

)
, (25)
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where α̂teu, α̂
t
ev ∈ S(z) is determined by our algorithm during phase t. Let V ′′

λ denote the set of nodes,
determined by our algorithm, that are incident to at least ⌈z/2⌉ + Z real edges e with ŵte ≥ λ where Z ∼

Geom

(
ε

6T (4T+1) log(1+η) n

)
. Then, there exists λ such that δ (G[V ′′

λ ]) > z − c2 log4 n
ε whp for sufficiently large

constant c ≥ 1 (which depends on constant parameter η ∈ (0, 1/12)).

Proof. This proof closely follows the proof of Lemma 3.2 in [SV20] (and, hence, also the proof in [BGM14]).
The main difference in our proof is to show that the statement still holds when we lose some part of the
loads due to the dummy edges and the random noise Z; specifically, we care more about the instances when
Z < 0, which is the more difficult setting to prove. First, note that α̂teu ∈ {0, 2} by definition of S(z) and
how we assign load to edges within a phase of the algorithm. Then, let Eλ := {e ∈ E : ŵte ≥ λ} be the set of
edges where ŵte ≥ λ and let degλ(v) be the number of edges in Eλ that are incident to v. To provide some
intuition, ŵte decreases when the load on the edges increases. Thus, edges with higher weights correspond
with edges with lower loads and new loads within a phase are assigned to edges in order from largest weights
(lowest load) to smallest weights (highest load).

Now, we define a variable dλ(v) for each node v which lower bounds the the sum of current loads αteu
assigned to all real edges adjacent to v from the current phase t. Recall from our algorithm that out of
the real edges with smallest accumulated load a noise Xv is picked that can cause more or less of these real
edges to obtain new loads. Edges with weight larger than λ (equivalent to number of edges with load smaller
than log(1−η)(λ)) receive loads starting from the largest weight to smallest weight; however, not all of the
min(⌈z/2⌉− 1, deg(v)) edges with the largest weight may receive loads due to the presence of dummy edges.
This difference due to dummy edges is what we capture below. We lower bound the sum of the loads given
to the highest weight edges adjacent to v whp in terms of min(⌈z/2⌉ − 1, deg(v)). We thus define dλ(v) to
be

dλ(v) =

{
2 degλ(v), if degλ(v) < ⌈z/2⌉ − cT log2 n

ε

max(0, z − 2cT log2 n
ε ), otherwise.

This is the key difference between our procedure and the proof of Lemma 3.3 in [SV20]. We require 2cT logn
ε

to be subtracted from the sum of the loads of adjacent edges since whp, at most cT logn
ε dummy adjacent

edges resulting from Xv for each v are added to each node from Line 11. This means that part of the
total load of z could be spent on these dummy edges, decreasing the total load on the real edges. Thus,
the subtracted value of 2cT logn

ε from degλ(v) reflects the load that is lost to these dummy edges. We first

note that dλ(v) ≤
∑

e∋v:ŵe≥λ
α̂tev with high probability. If degλ(v) + cT logn

ε < ⌈z/2⌉, then a number of

real edges plus at most cT log n
ε dummy edges are each given 2 load. If degλ(v) ≥ ⌈z/2⌉ − cT logn

ε , then

2 degλ(v) ≥ z − 2cT logn
ε . When Xv > 0, additional edges receive loads, maintaining our lower bound. Thus,

∑

v∈V

dλ(v) ≤
∑

v∈V

∑

e∋v:ŵte≥λ

α̂tev =
∑

e∈E:ŵte≥λ

(α̂tev + α̂teu). (26)

Suppose the weights are upper bounded by b: a ≤ ŵte ≤ b for all e ∈ E. Then,

∫ b

a

|Eλ|dλ =
∑

e∈E

ŵte

>
∑

e∈E

ŵte
(
α̂teu + α̂tev

)
by Eq. (25)

=

∫ b

a

∑

e∈E:ŵte≥λ

(α̂teu + α̂tev)dλ

≥

∫ b

a

∑

v∈V

dλ(v)dλ by Eq. (26)
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Thus, there exists a a ≤ λ ≤ b where |Eλ| >
∑

v∈V dλ(v). Recall V ′′
λ is the set of nodes with degλ(v) ≥

⌈z/2⌉+ Z − c1 log4 n
ε where Z ∼ Geom

(
ε

6T (4T+1) log(1+η) n

)
. Let c2 ≥ 1 be an appropriately large constant

such that c1 log4 n
ε ≤ c2T

2 log2 n
ε . Then, whp,

|E(V ′′
λ )| ≥ |Eλ| −

∑

v∈V−V ′′
λ

degλ(v) (27)

>
∑

v∈V

dλ(v)−
∑

v∈V−V ′′
λ

degλ(v) (28)

≥


|V ′′

λ | ·max

(
0, z −

2(c+ c2)T 2 log2 n

ε

)
+

∑

v∈V−V ′′
λ

(2 degλ(v))


−

∑

v∈V−V ′′
λ

degλ(v) (29)

≥ |V ′′
λ | ·max

(
0, z −

2(c+ c2)T 2 log2 n

ε

)
. (30)

Eq. (27) follows since the number of edges in the induced subgraph of E(V ′′
λ ) is lower bounded by the

number of edges in |Eλ| minus the set of those edges that are adjacent to nodes not in V ′′
λ ; this set of edges

can be each be counted at most twice. Eq. (28) follows from substituting |Eλ| >
∑

v∈V dλ(v). Eq. (29)

follows from the definition of dλ(v) and the fact that Z ≤ cT 2 log2 n
ε whp for constant c ≥ 1; thus, every

v ∈ V ′′
λ has degλ(v) ≥ ⌈z/2⌉ − (c+c2)T

2 log2 n
ε whp which means that the load for each of these nodes is at

least 2 degλ(v) ≥ z − 2(c+c2)T
2 log2 n

ε . Furthermore, we can guarantee that each node in v ∈ V − V ′′
λ has

degλ(v) ≤ ⌈z/2⌉− 2c2T
2 log2 n
ε + cT 2 log2 n

ε < ⌈z/2⌉− cT log2 n
ε for appropriately large constants c1, c2 ≥ 1 which

means that the load given to them is 2 degλ(v). Finally, Eq. (30) follows because the last two terms is lower
bounded by 0.

The last step is simple; since the right hand side of Eq. (30) is lower bounded by 0, then |E(V ′′
λ )| >

0, |V ′′
λ | > 0 and so

|E(V ′′
λ )|

|V ′′
λ | = ρ (G[V ′′

λ ]) > z − 2(c+c2)T
2 log2 n

ε .

Lemma 5.9. Given a z <
D∗− c log3 n

εη3

1+10η for appropriately large constant c > 0, then, for η ∈

(0, 1/12), Algorithm 7 will output a subgraph of density at least z −O
(

log4 n
ε

)
, whp.

Proof. Lemma 5.8 proves there exists a λ such that ρ(G[V ′′
λ ]) > z − O

(
log4 n
ε

)
. Since all loads given

by Algorithm 7 are integers, the load on any edge is an integer in [0, 4T ]. This means that the weights on the

edges (1− η)ℓ
t(e) in the proof of Lemma 5.8 are also obtained from these integer loads. Thus, it is sufficient

to look at all possible integer loads ℓ ∈ [0, 4T ] which give the appropriate weight cutoffs λ = (1− η)ℓ and we
prove the lemma by Lemmas 5.7 and 5.8 which ensure such a λ exists.

Finally, to pass the last check just requires setting the constant c3 ≥ 1 to a large enough value since

|Y | = O
(

log4 n
ε

)
whp. By the proof above, for small enough z, we are guaranteed a set of nodes of sufficiently

large density.

Lemma 5.10. Algorithm 6 returns a
(

1− 12η,O
(

log4 n
ε

))
-approximate densest subgraph for any constant

η ∈ (0, 1/12) with high probability.

Proof. First, as long as z ≤
D∗− c log3 n

εη3

1+10η , we obtain our desired approximation. Algorithm 6 searches for the

largest value of z that satisfies this constraint by searching all (1 + η)i for all i ∈ [⌊log(1+η) n⌋]. In the worst

case, (1 + η)i =
D∗− c log3 n

εη3

1+10η + y by some very small y ∈ (0, 1). This means that the closest (1 + η)i−1 is

the largest value of z that is smaller than the cutoff; in other words, z = (1 + η)i−1 ≥
D∗− c log3 n

εη3

(1+η)(1+10η) . Thus,

by Lemma 5.9, we obtain a set of nodes whose induced subgraph has density at least z − c log4 n
ε for an
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appropriately large constant c ≥ 1. Together, the returned set of nodes has density at least z − c log4 n
ε ≥

D∗− c log3 n

εη3

(1+η)(1+10η) −
c log4 n

ε ≥ (1 − 12η)D∗ − O
(

log4 n
ε

)
. In the case when no value of z returns a set of nodes,

all the nodes in the graph are returned. This case occurs when all values of z passed into Algorithm 7 are

too large which means that 1 ≥
D∗− c log3 n

εη3

(1+10η) and D∗ ≤ c log3 n
εη3 + 1 + 10η and returning all the nodes in the

graph will result in an induced subgraph with density ρ(G) ≤ D∗ ≤ c log3 n
εη3 + 1 + 10η = O

(
log4 n
ε

)
which

falls within our additive error bound.

5.4 Efficiency Analysis

We analyze the runtime of our ε-DP densest subgraph algorithm in this section. Specifically, we show that
we obtain the same runtime as the original non-private algorithm. As before, we assume that η ∈ (0, 1/12) is
constant. Throughout our runtime analysis, we use the standard assumption that obtaining a sample from
the symmetric geometric distribution requires O(1) time. Such an assumption is reasonable for the following
reason. One can generate a random variable from the geometric distribution in O(1) time by generating
a uniformly random real number in binary (up to a certain precision) and outputting the position of the
first 1. A recent paper of Balcer and Vadhan [BV18] shows how to generate such random variables on finite
memory machines. Once such a random variable has been generated, we can generate a symmetric geometric
random variable by first deciding whether the random variable is 0, positive, or negative with appropriate
probability determined by the parameter b. If the chosen symmetric random variable is either positive or
negative, then we use the random variable generated by the geometric distribution with the appropriate sign
as the output.

Theorem 5.11. The runtime of Algorithm 6 is O
(
(n+m) log3 n

)
.

Proof. This analysis assumes the input parameter η ∈ (0, 1/12) is constant. First, the search in Line 5
of Algorithm 6 requires O(log n) iterations of Algorithm 7, which means that the runtime of Algorithm 7
is multiplied by O(log n). Next, we determine the runtime of Algorithm 7. For a given z, our algorithm
runs through T = O (logn) phases. Each phase requires O(m) time to sort the loads (using radix sort) and
to determine the new loads to apply to each edge. Then, we run O (logn) trials of finding a subgraph of
sufficient density. Each of these trials requires O(m) time. Altogether, the runtime for a fixed parameter z
of this algorithm is O

(
(m+ n) log2 n

)
. Thus, in total, our running for Algorithm 6 is dominated by O(log n)

iterations of Algorithm 7 which take a total of O
(
(n+m) log3 n

)
time.

6 Differential Privacy from Locally Adjustable Algorithms

The graph algorithms studied in this paper all have a generalizable structure that is conducive to privacy.
Our framework applies to a number of parallel, distributed, and dynamic algorithms [LSY+22, BHNT15,
SV20, HNW20, BGM14, CSS21], described in detail in Sections 4 and 5. In this section, we describe a
general class of algorithms and show that we can transform them to be ε-edge DP (Section 6.2). Some
even become ε-LEDP (Section 6.3). We call the algorithms that have these characteristics locally adjustable
algorithms. Beyond the various algorithms we study in this paper, we believe that our generalization and the
privacy framework can be applied to a broader set of non-private graph algorithms, most naturally, in the
parallel and distributed settings. Furthermore, interestingly, the techniques that we use to obtain our privacy
guarantees result in only a small additive polylogarithmic error while maintaining the same multiplicative
approximation factor of each of the original non-private algorithms given in Sections 4 and 5. However,
we do not have a general statement bounding the utility (or error) of private algorithms obtained via our
framework and leave this as an interesting open question.

6.1 Locally Adjustable Graph Algorithms

We call a graph algorithm A on input graph G = (V,E) locally adjustable if it has the following charac-
teristics. The algorithm proceeds in at most K total phases. Two or more phases may occur in parallel if
the pairs of phases k1, k2 ≤ K do not depend on each other. Each node v maintains an internal state Iv,p

32



parameterized by the phase number p; similarly, each edge e maintains an internal state Ie,p also param-
eterized by p. Initially, in phase 0, all states are set to default identical values. Since the phases may be
processed in parallel, for each phase p, we refer to the previous phase that phase p depends on as p̃, where
p̃ < p, but p̃ is not necessarily equal to p− 1.

During each of the at most K phases, each node v ∈ V computes a function using only the previous states
Iw,p̃, Ie,p̃ of its immediate one-hop neighborhood, where w ∈ N(v) and e = {v, a} for any a ∈ N(v). Notably,
these functions determine for a node v whether its neighbors and/or its incident edges satisfy a condition.
Then, v uses another function with the number of neighbors or incident edges that satisfy the condition as
input to compute a new state. Each edge e ∈ E also computes a function using only information received
from its two endpoints. Formally, these functions are defined in the following paragraphs. Importantly, all
of the functions satisfy a “local” property where any edge insertion or deletion, e′ = (u, v), in the graph
affects the count of the number of neighbors that satisfy the condition of only u or v and no other nodes.
The output of the function is not changed for any other node w 6∈ {u, v} or any other edge e = (i, j) where
neither i or j is u or v. This is the locally adjustable specification of the type of algorithms that we are
considering.

Node functions Let B be a predicate that can be satisfied (or not) by a neighbor w ∈ N(v) of v. Node
v has a deterministic function that is evaluated in each phase p:

adj-neighbv(w) =





1, if w ∈ N(v) and Iw,p̃
satisfies condition B

0, otherwise

that takes as input a neighbor, w ∈ N(v), of v and outputs a 0 or 1 bit for the neighbor indicating whether
the neighbor satisfies B using the previous state of the neighbor Iw,p̃. Whether w satisfies B is determined
by the state Iw,p̃ of node w, parameterized by the last phase p̃ that p depends on.

For clarity, we emphasize a few crucial observations regarding B. Suppose, without loss of generality,
that an edge e = {u, v} is inserted in the beginning of phase p. This means that only the count of the number
of neighbors of u or v that satisfy B is affected compared to the case when e is not inserted. Specifically, this
count can increase by at most 1. Since the previous states Iv,p′ for all p′ < p are fixed prior to the insertion,
the insertion cannot affect the output adj-neighbv(w) for any other w 6= u ∈ N(v). Hence, the count for
the number of neighbors of v that satisfy B increases by 1 (compared to the case when e is not inserted)
when adj-neighbv(u) = 1. Symmetrically, for an edge deletion, the number of neighbors that satisfy B can
decrease by at most 1 compared to the case when e is not deleted. If the update is not incident to a node
w, then whether B is satisfied or not does not change for any neighbor of w. This means that adj-neighbv
is a “local” function where edge updates in the graph can only affect their incident endpoints.

Similarly, let C be a condition that can be satisfied (or not) by an incident edge to v. Again, we specify the
trivial “local” requirement for C that the addition or deletion of any edge e = {u, v} (with an arbitrary state
Ie,p̃) at the beginning of phase p changes whether C is satisfied only for edge e; this is a trivial requirement
since edge e did not exist prior to the insertion of e (and the edge e no longer exists after the deletion of e).
Then, v has another deterministic function that is also evaluated in phase p,

adj-edgev({v, w}) =





1, if {v, w} ∈ E and I{v,w},p̃

satisfies condition C
0, otherwise

that takes as input an incident edge to v and outputs a 0 or 1 bit depending on whether the edge satisfies
C. As before, whether {v, w} satisfies C depends on the previous state I{v,w},p̃ of the edge {v, w}.

Let update-node-statev be a deterministic function that updates the state of v using only the number of
neighbors, nv,p and/or edges, ev,p, that satisfy the conditions B and C, respectively. Notably, the function
does not require knowledge about the state of the neighbors or edges that satisfy the condition. Specifically,
let nv,p = |{w ∈ N(v) : adj-neighbv(w) = 1}| and ev,p = |{{v, w} ∈ E : adj-edgev ({v, w}) = 1}|. In phase
p, the function update-node-statev(Iv,p̃, nv,p, ev,p) → Iv,p outputs the next state of v provided the state
Iv,p̃ of v from the most recent phase p̃ that p depends on and the computed values nv,p and ev,p.

Finally, on the set of incident edges to v that satisfy condition C, {{v, w} ∈ E : adj-edgev({v, w}) = 1},
A uses each edge’s function, update-edge-state{v,w}, to update the state of the edge, the details of which
are given next.
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Edge function Each edge e = {u, v} has a function update-edge-statee that takes its previous edge
state and real-valued inputs from its adjacent nodes and outputs its current state. Namely, in phase p, edge
e computes update-edge-statee(Ie,p̃, iu, iv) → Ie,p to determine its next state Ie,p using its previous state
Ie,p̃ and inputs from its endpoints, iu and iv.

The algorithm proceeds with the next phases until a stopping condition is satisfied for the entire
graph. The stopping function of the algorithm is based on a threshold function, which takes as input the
states of the nodes and edges computed in the current phase p. If the number of nodes/edges that satisfy
the condition exceeds a threshold, then the algorithm terminates. Specifically, these stopping functions are
defined as follows.

Stopping functions The stopping functions determine whether the algorithm stops running or continues
running with the next phase. There are stopping functions for each individual node and also a global stopping
function that determines whether a certain number of nodes and edges that satisfy a condition F is at least
some threshold T . The individual stopping function prevents a particular node from participating in the next
phases while a global stopping function stops the algorithm. The individual stopping function for each node,
stopv, relies on how many neighbors’ states or neighboring adjacent edges’ states satisfy a condition F . We
denote the number of neighbors and adjacent edges that satisfy F by sv,p = |{w ∈ N(v) : Iw,p satisfies F}|
and tv,p =

∣∣{w ∈ N(v) : I{v,w},p satisfies F
}∣∣, respectively. Then, we define stopv as follows, for some fixed

constants c1, c2 ≥ 0 and fixed threshold T ≥ 0:

stopv (sv,p, tv,p) =

{
1, if c1 · sv,p + c2 · tv,p ≥ T ;
0, otherwise.

We define the global stopping function, in each phase p, using sp = |{v ∈ V : Iv,p satisfies F}| and
tp = |{e ∈ E : Ie,p satisfies F}|, for some fixed constants c3, c4 ≥ 0 and fixed threshold T ≥ 0:

global-stop (sp, tp) =

{
1, if c3 · sp + c4 · tp ≥ T ;
0, otherwise.

Output function Once the algorithm terminates, each node outputs an answer to the problem using
output functions outv(Iv,p) → Z, where Z is the set of integers. There may exist a global function
global-out({Ic,p : c ∈ V ∪E})→ Z, which takes the internal states of the nodes and edges and outputs an
integer answer.

A non-trivial number of parallel and distributed graph algorithms are locally adjustable, including
the non-private algorithms from prior sections for k-core decomposition, densest subgraphs, and low
out-degree orderings. In the next section, we discuss how to obtain ε-edge DP graph algorithms from locally
adjustable graph algorithms.

6.2 Edge Differential Privacy from Local Adjustability

We first show how to obtain ε-edge DP locally adjustable algorithms. Then, a slight modification to the
locally adjustable conditions also allows us to obtain ε-LEDP algorithms. We leave as an interesting open
question proving general utility bounds for our framework.

The main idea here is to show that, on edge-neighboring graphs G = (V,E) and G′ = (V,E′), the
probability that the same states are maintained over the at most K phases satisfy Definition 2.7. We prove
this by conditioning on the states from previous phases. Then, we show via the chain rule that this implies
that our algorithm is ε-edge DP. To do this, we make several modifications to the node, edge, stopping, and
output functions. Our privacy framework is given as follows:

Privacy Framework Suppose we are provided a locally adjustable algorithm A. Then we formulate the
following mechanism M(G, Ip̃,A, p) → (Ip,O) performed by the curator which takes as input the graph
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G, the node and edge states of G from phase p̃, the locally adjustable algorithm A, and the phase number
p. Mechanism M outputs the next set of states Ip for phase p if the algorithm is still running or ∅ if the
algorithm has stopped. It also outputs the set of outputs O if the algorithm has stopped or ∅ if the algorithm
is still running. The mechanism modifies A in the following ways:

• For each node v, the node computes n̂v,p and êv,p by first sampling Xv,p, Yv,p ∼ Geom(ε/20K) and
calculates n̂v,p = nv,p +Xv,p and êv,p = ev,p + Yv,p. Node v uses n̂v,p and êv,p instead of nv,p and ev,p
in update-node-statev(Iv,p̃, n̂v,p, êv,p).

• When determining the stopping condition, node v samples Sv,p, Tv,p ∼ Geom(ε/(20K)) and com-
putes ŝv,p = sv,p + Sv,p and t̂v,p = tv,p + Tv,p. Node v uses ŝv,p and t̂v,p instead of sv,p and tv,p in
stopv(ŝv,p, t̂v,p). The curator also samples Sp, Tp ∼ Geom(ε/(5K)) and computes ŝp = sp + Sp and
t̂p = tp + Tp. The curator uses ŝp and t̂p as input into global-stop(ŝp, t̂p).

• Let GSglobal-out and GSoutv be the global sensitivities of global-out and outv, respectively. To com-
pute the output after satisfying the stopping condition, each node v samplesQv,p ∼ Geom(ε/(10·GSoutv ·
K)) and outputs outv(Iv,p) +Qv,p. Then, the curator samples Wp ∼ Geom(ε/(5 ·GSglobal-out ·K)) and
outputs global-out(Ip) +Wp.

The main intuition behind our privacy framework is derived from our ε-edge DP densest subgraph
algorithm (Section 5) regarding the creation of dummy edges that satisfy the conditions of the various
functions. These dummy edges account for the case when the extra edge e′ ∈ E′ \ E where e′ ∈ E′ satisfies
any of the functions. The number of these dummy edges that are added for each node is drawn from
a symmetric geometric distribution using the sensitivities of the appropriate functions in Corollaries 6.2
and 6.4 and Lemmas 6.1 and 6.3.

We now prove some useful lemmas that will help us in proving the privacy of our framework.

Sensitivity We first make a few intuitive observations before proving the privacy of our DP framework.
First, instead of using the global sensitivity of function update-node-statev, for node v, we instead use the
sensitivity of a function F which takes a graph G = (V,E), a phase p, and a set of valid states, IV , for all
nodes v ∈ V and a set of valid states, IV×V , for every pair of two nodes. Function F (G, p, IV , IV×V ) then
outputs

∑
v∈V nv,p +

∑
e∈E ev,p for phase p using the states given in IV and IV×V as the previous states

(assuming p, IV and IV×V are public). By definition of nv,p and ev,p, we can in fact bound the sensitivity
of F (on edge-neighboring inputs G = (V,E) and G′ = (V,E ∪ {u, v})).

Lemma 6.1. The sensitivity of function F (av, p, IV , IV×V ) that computes the sum
∑

v∈V nv,p +
∑

e∈E ev,p
for a given phase p using the states of neighbors in IV and adjacent edges in IV×V is 4.

Proof. The count nv,p for each node v is the number of neighbors w of v for which adj-neighbv(w) outputs
1. Suppose {u, v} ∈ E′ \ E. Then, adj-neighbv(u) may equal 1 (and similarly adj-neighbu(v) may equal
1). The edge would not affect nw,p of any w /∈ {u, v}. Thus, the additional edge in E′ can make at most
two endpoints increase their nv,p, each by 1, and

∑
v∈V nv,p increases by at most 2. By the same argument,∑

e∈E ev,p increases by at most 2.

Suppose, we have another function fn(av, p, IV , IV×V ) that takes as input the adjacency list of a node
av and outputs nv,p using the states of neighbors and adjacent edges in IV and IV×V . (Define the function
fe similarly except it outputs ev,p.) An immediate corollary of the above proof bounds the sensitivity of nv,p
and ev,p.

Corollary 6.2. The sensitivity of fn for phase p is 1. The sensitivity of fe is also 1.

We define similar functions to the above for sv,p, tv,p, sp, tp. Namely, we pass in the states IV and IV×V

into the functions (so they are public information) and compute the sensitivity for edge-neighboring inputs
whose states come from IV and IV×V . For simplicity, we do not define these functions explicitly and instead
give the sensitivity for sv,p, tv,p, sp, tp in lieu of these functions. Our framework also relies on the sensitivity
of sv,p and tv,p, whose proof is identical to Lemma 6.1.

Lemma 6.3. The sensitivity of sv,p for phase p is 1. The same holds for tv,p.

We bound the sensitivity of sp + tp = |{c ∈ (V ∪ E) : Ic,p satisfies F}|.
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Corollary 6.4. The sensitivity of sp = |{v ∈ V : Iv,p satisfies F}| for any phase p is 0. The sensitivity of
tp is 1.

Proof. At most one additional edge, Ie′,p in G′ can satisfy F . Thus, tp increases by at most 1. All nodes
remain the same and hence, sp does not change. Thus, the sensitivity is 1.

We first show the following for M.

Lemma 6.5. For any pair of edge-neighboring graphs G = (V,E) and G′ = (V,E ∪ {e′}), let e′ be the edge
that is present in E′ but not in E. Let R and R′ be the events where given valid state values statev,p̃ and
statee,p̃ (for all v ∈ V, e ∈ E), for all Iv,p̃, Ie,p̃ ∈ Ip̃ and I ′v,p̃, I

′
e,p̃ ∈ I

′
p̃, it holds that Iv,p̃ = I ′v,p̃ = statev,p̃

for all v ∈ V and Ie,p̃ = I ′e,p̃ = statee,p̃ for all e ∈ E. Conditioned on R and R′, the following hold for all

S ∈ Range(M) on inputs A, and p:6

1

exp(ε/K)
≤

Pr
[
M(G′, I ′p̃, A, p) \ {Ie,p} = S | R′

]

Pr [M(G, Ip̃, A, p) = S | R]
≤ exp(ε/K).

Proof. In each phase p, mechanism M uses the states of the edges and nodes from the most recent phase p̃
it depends on and evaluates the node, edge, stopping and output functions. Each function adj-neighbv is
deterministic. By Corollary 6.2, nv,p increases by at most 1 in G′ compared to G conditioned on the events R
and R′. In the below proofs, we remove the conditioning on the previous states for simplicity in notation, but
all probabilities are conditioned on the events R and R′. Similarly, adj-edgev is also deterministic and ev,p
increases by at most 1, by Corollary 6.2, in G′ compared to G. Since update-node-statev is a deterministic
function on Iv,p̃, n̂v,p, and êv,p, the outputs of the functions are equal in G and G′ if n̂v,p and êv,p are equal
in G and G′. What remains here is to bound the probabilities that n̂v,p and êv,p equal particular values in Z

for both G and G′. Let n̂v,p and êv,p represent the values in G and n̂′
v,p and ê′v,p represent the values in G′.

Conditioned on R and R′, n̂v,p is drawn from a conditional symmetric geometric distribution (SGD) with
mean nv,p and êv,p is drawn from a conditional SGD with mean ev,p. By Corollary 6.2, n̂′

v,p is drawn from
a conditional SGD with mean nv,p ≤ n′

v,p ≤ nv,p + 1 (and similarly for ê′v,p). All the distributions have the
same parameter, ε/20K, by definition of our mechanism. Thus, the conditional distributions from which
n̂v,p and n̂′

v,p are drawn are ε-indistinguishable (see the beginning of Section 5.2 for the definition). The
same holds for all other pairs of random variables for nodes v and u in G and G′. There are four pairs of
ε/(20K)-indistinguishable conditional distributions. We now show that they are independent. Conditioned
on R and R′, the values nv,p, ev,p, nu,p and eu,p are fixed and the noises drawn for each of these values are
independent. Thus, the distributions are independent and the joint distributions for (n̂v,p, êv,p, n̂u,p, êu,p)
and (n̂′

v,p, ê
′
v,p, n̂

′
u,p, ê

′
u,p) are 4 · ε/(20K) = ε/(5K)-indistinguishable.

We just showed that the new states of the nodes are the same for G and G′ with similar probabilities.
Now, we condition on the outputs of update-node-statev being identical in G and G′ for every v ∈ V . This
means that the inputs sent to the adjacent edges will be identical. Since the function update-edge-statee
for each e ∈ E ∩E′ is deterministic, all Ie,p = I ′e,p for e ∈ E ∩ E′.

Finally, we must determine the outputs of the stopping functions and the final outputs of the mechanism
are identical in G and G′. Since each stopv is a deterministic function, it will output the same output in G
and G′ as long as ŝv,p = ŝ′v,p and t̂v,p = t̂′v,p. By Lemma 6.3, the sensitivity of sv,p is 1 (same for tv,p). We now
condition on the events W and W ′ where Iv,p = I ′v,p = statev,p, Ie,p = I ′e,p = statee,p. Hence, by the same
argument as above using Lemma 6.3, the fact that sv,p, tv,p, s

′
v,p, t

′
v,p are fixed conditioned on W and W ′, and

the independence of the noises, ŝv,p and ŝ′v,p (resp. t̂v,p and t̂′v,p) are drawn from ε/(20K)-indistinguishable
conditional distributions.

The same argument holds for the global stopping function. Given that the stopping functions are met,
the (ε/5K)-edge DP of the outputs hold by Lemma 6.5 provided the sensitivities of outv and global-out
are GSoutv and GSglobal-out, respectively.

Altogether, by the chain rule over the probabilities that the outputs of all functions, update-node-statev,
update-edge-statee, stopv, global-stop, outv, and global-out are identical, we obtain the conditions of
the lemma.

6We abuse notation slightly to indicate (Ip̃ \ {Ie,p},O) by M(G, Ip̃,A, p) \ {Ie,p}.
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Let Â be the algorithm obtained from locally adjustable algorithm A that runsM during each phase of
the algorithm. Â outputs O obtained from M (G, Ip̃,A, p) We now show our main theorem.

Theorem 6.6. Â is ε-edge DP provided locally adjustable algorithm A.

Proof. Given K as the upper bound on the number of phases used by the algorithm, we show this theorem
via induction on the phase number 1 ≤ p ≤ K using Lemma 6.5. We show that in the p-th phase, the ratio
of the probabilities that the outputs in G and G′ for phase p equals Zp ∈ Range(M) is upper bounded by
exp(ε · p/K), conditioned on the outputs of the previous phases being equal to Z1, . . . , Zp−1. Our base case
consists of the first phase of the algorithm when the states of nodes and edges are identical as they are set
to default identical values. By Lemma 6.5, since I0 = I ′0, the ratio of the probabilities that the outputs are
both equal to Z1 is upper bounded by exp(ε/K).

We assume for our induction step that in the p-th phase, the ratio of the probabilities is upper bounded
by exp(ε · p/K), conditioned on the outputs of the previous phases, and prove this for phase p+ 1. Let the
previous phase that phase p+ 1 depends on be p̃. By our induction hypothesis, we have that the probability
ratio is upper bounded by exp(ε · p/K) and that Ip = I ′p \ {I

′
e,p} where e ∈ E′ \E. Let W be the event that

the outputs of the previous phases equal Z1, . . . , Zp−1.

Then, since G, A, and p + 1 are fixed, by Lemma 6.5,
Pr[M(G,Ip̃,A,p+1)=Zp+1|W ]

Pr[M(G′,I′
p̃,A,p+1)\{Ie,p+1}=Zp+1|W ]

≤ exp(ε/K)

and
Pr[M(G′,I′

p̃,A,p+1)\{Ie,p+1}=Zp+1|W ]
Pr[M(G,Ip̃,A,p+1)=Zp+1|W ] ≤ exp(ε/K). Then, by the chain rule over all the conditional

probabilities, the ratio of the probabilities that the outputs equal Z1, . . . , Zp+1 is upper bounded by
exp(ε · p/K) · exp(ε/K) = exp(ε · (p+ 1)/K).

Since K is an upper bound on the total number of phases, the ratio of the probabilities for all phases
up to when the algorithm terminates is upper bounded by exp(ε ·K/K) = exp(ε). After the algorithm Â
terminates, the internal states IK = I ′K = ∅ (i.e., the curator outputs empty sets for the states of the nodes
and edges).

Finally, it is sufficient to show that Pr[Â(G)=Z]

Pr[Â(G′)=Z]
≤ exp(ε) and Pr[Â(G′)=Z]

Pr[Â(G)=Z]
≤ exp(ε) for all Z ∈

Range(Â) for discrete probability distributions because for any S ⊆ Range(Â), Pr[Â(G)∈S]

Pr[Â(G′)∈S]
is given by

Pr[Â(G)=S1]+···+Pr[Â(G)=Sj ]

Pr[Â(G′)=S1]+···+Pr[Â(G′)=Sj ]
(for all S1, . . . , Sj ∈ S). This expression can be simplified to

Pr[Â(G) = S1] + · · ·+ Pr[Â(G) = Sj ]

Pr[Â(G′) = S1] + · · ·+ Pr[Â(G′) = Sj ]
≤

exp(ε) · Pr[Â(G′) = S1] + · · ·+ exp(ε) · Pr[Â(G′) = Sj ]

Pr[Â(G′) = S1] + · · ·+ Pr[Â(G′) = Sj ]
= exp(ε).

Hence, Â is ε-edge DP since the algorithm outputs identical outputs when it terminates, with probability
ratio bounded by exp(ε).

6.3 ε-LEDP from Locally Adjustable Algorithms

Our framework can also be extended to the ε-LEDP setting. In fact, our ε-LEDP k-core decomposition result
is based on this framework. Our modified LEDP framework modifies our DP framework in the following
ways. We remove the adj-edgev({v, w}) and update-edge-state{v,w} functions for edges. We also remove
all global functions global-stop and global-out since the curator no longer has access to the private graph.
We modify all update-node-statev so they no longer have ev,p as input. Then, we modify all stopv (sv,p)
functions so they only take as input sv,p for each v ∈ V and no longer take the states of adjacent edges. We
prove that the modified functions give a ε-LEDP algorithm for any locally adjustable algorithm A using the
modified framework we give below.

Modified Privacy Framework Suppose we are provided a locally adjustable algorithmA by our modified
definition above. Then, we formulate the following distributed mechanism M(ai, Ip̃,A, p) → (Ii,p,Oi)
performed by the nodes in the input the graph G; the mechanism takes as input adjacency list ai for node
i, a set of public (previous) node states Ip̃ of G, the locally adjustable algorithm A, and the phase number
p. MechanismM outputs the next state Ii,p of node i for phase p if the algorithm is still running or ∅ if the
algorithm has stopped. It also outputs the set of outputs Oi for node i if the algorithm has stopped or ∅ if
the algorithm is still running. The mechanism modifies A in the following ways:
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• For each node i, the node computes n̂i,p by using the public node states, sampling Xi,p ∼ Geom(ε/6K)
and calculating n̂i,p = ni,p + Xi,p. Node i uses n̂i,p instead of ni,p in update-node-statev(Ii,p̃, n̂i,p)
where Ii,p̃ is from Ip̃.

• When determining the stopping condition, node i samples Si,p ∼ Geom(ε/(6K)) and computes ŝi,p =
si,p + Si,p. Node i uses ŝi,p instead of si,p in stopi(ŝi,p).

• Let GSouti be the global sensitivity of outi. To compute the output after satisfying the stopping
condition, each node i samples Qi,p ∼ Geom(ε/(6 ·GSouti ·K)) and outputs outi(Ii,p) +Qi,p.

Theorem 6.7. Â is ε-LEDP provided locally adjustable algorithm A.

Proof. We implement our LEDP algorithm using the following local randomizers. First, by a modified
version of Lemma 6.1 and Lemma 2.14, our mechanism implements an (ε/6)-LR for computing the output
of update-node-statev. Similarly, by Lemma 6.3 and Lemma 2.14, our mechanism implements a (ε/6)-LR
for obtaining the output of stopi. Finally, by Lemma 2.14 and because the global sensitivity of outi is GSouti ,
our mechanism implements a (ε/3)-LR for producing the output of each node. Finally, by Theorem 2.15
and Lemma 2.16 over all calls to LRs over the K phases, our algorithm is ε-LEDP.
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A Proof of the Adaptive Composition Theorem

Here we present the proof of Theorem 2.15 ([DMNS06, DL09, DNPR10]) for completeness.

Proof of Theorem 2.15. Let M be an ε-LDP mechanism and yyy = (y1, . . . , yp−1) be a set of p outputs for
adaptively chosen adjacent inputs xxx = (x0, x1, . . . , xp−1) and xxx′ = (x′0, x

′
1, . . . , x

′
p−1) to the mechanism where

yi ∈ Range(M) for every i ∈ [p − 1]. Let the randomness over M be a discrete probability distribution.
Below, we abuse notation and letM(xxx) denote the set of outputs obtained by runningM on adaptive inputs
xxx. We then have:

Pr[M(xxx) = yyy]

Pr[M(x′x′x′) = yyy]
=

(
Pr[M(x0) = y1]

Pr[M(x′0) = y1]

)
·

p−1∏

i=1

Pr[M(xi) = yi|y1, . . . , yi−1]

Pr[M(x′i) = yi|y1, . . . , yi−1]

≤

p∏

i=1

exp(ε) = exp(pε).

The second inequality follows since M is ε-LDP, each pair of inputs are adjacent, and previous outputs
are public information.

B k-Core Decomposition Approximation Proofs

Proof of Lemma 4.2. This proof is a simple modification of the proof of Lemma 5.12 of [LSY+22]. In this
proof, when we refer to the level of a node i, we mean the level of i in L4 log2 n−1. Furthermore, all expressions
are given in expectation. For simplicity, we omit the phrase in expectation from now on in this proof. Using
notation from previous work, let k̂(i) be the core number estimate of i and k(i) be the core number of i.
First, we show that

if k̂(i) ≤ (2 + λ)(1 + ψ)g
′

, then k(i) ≤ (1 + ψ)g
′+1 (31)
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for any group g′. Let T (g′) be the topmost level of group g′ and let Zr be the set of nodes at level r and
above. In order for (2 + λ)(1 + ψ)g

′

to be the estimate of node i’s core number, the level of i is bounded by
T (g′) ≤ level(i) ≤ T (g′ + 1)− 1. Let r be i’s level. By a modified Invariant 1 for the expectation setting, if
r < T (g′ + 1), then |ai ∩ Zr| ≤ (1 + ψ)F(r) ≤ (1 + ψ)g

′+1. Furthermore, each node w at the same or lower
level r′ ≤ r has |aw ∩ Zr′ | ≤ (1 + ψ)g

′+1.
Suppose we perform the following iterative procedure: starting from level r = 0, remove all nodes in

level r during this turn and set r ← r + 1 for the next turn and perform the removal again; we perform
this iterative procedure until all nodes are removed. Using this procedure, the nodes in level 0 are removed
in the first turn, the nodes in level 1 are removed in the second turn, and so on. Let dr(i) be the induced
degree of any node i that is in the graph before the removal in the r-th turn. Since we showed above that
|ai ∩Zr| ≤ (1 +ψ)g

′+1 for any node i at level r ≤ T (g′ + 1), node i on level r ≤ T (g′ + 1) after the r-th turn
has dr(v) ≤ (1 + ψ)g

′+1. Thus, when i is removed on the (r + 1)-st turn, it has degree ≤ (1 + ψ)g
′+1. Since

all nodes removed before i also had degree ≤ (1 + ψ)g
′+1 when it was removed, by Lemma 4.6, node i has

core number k(i) ≤ (1 + ψ)g
′+1.

Now we prove our lower bound on k̂(i). For the below proof, let dS(i) be the induced degree of node i in
the induced subgraph consisting of nodes in S. We prove that for any g′ ≥ 0,

if k̂(i) ≥ (1 + ψ)g
′

, then k(i) ≥
(1 + ψ)g

′

(2 + λ)(1 + ψ)
(32)

for all nodes i ∈ [n] in the graph. We assume for contradiction that there exists a node i where k̂(i) ≥ (1+ψ)g
′

and k(i) < (1+ψ)g
′

(2+λ)(1+ψ) . To consider this case, we use the pruning process defined in Lemma 4.6. For a given

subgraph S, we prune S by repeatedly removing all nodes i ∈ S whose dS(i) < (1+ψ)g
′

(2+λ)(1+ψ) . As in the proof

of Lemma 5.12 of [LSY+22], we only consider levels from the same group g′. Let j be the number of levels
below level T (g′). We prove via induction that the number of nodes pruned from the subgraph induced by
ZT (g′)−j must be at least

(
(2 + λ)(1 + ψ)

2

)j−1 (
(1 + ψ)g

′

(
1−

1

(2 + λ)(1 + ψ)

))
. (33)

We first prove the base case when j = 1. In this case, we know that dZT (g′)−1
(i) ≥ (1+ψ)g

′

by a modified
version of Invariant 2 that holds in expectation. In order to prune i from the graph, we must prune at least

(1 + ψ)g
′

−
(1 + ψ)g

′

(2 + λ)(1 + ψ)
= (1 + ψ)g

′

·

(
1−

1

(2 + λ)(1 + ψ)

)

neighbors of i from ZT (g′)−1. We must prune at least this many neighbors in order to reduce the degree of i
to below the cutoff for pruning a node (as we show more formally below).

Then, if fewer than (1 + ψ)g
′
(

1− 1
(2+λ)(1+ψ)

)
neighbors of i are pruned from the graph, then i is

not pruned from the graph. If i is not pruned from the graph, then i is part of a

(
(1+ψ)g

′

(2+λ)(1+ψ)

)
-core

(by Lemma 4.6) and k(i) ≥ (1+ψ)g
′

(2+λ)(1+ψ) , a contradiction. Thus, it must be the case that at least (1 +

ψ)g
′
(

1− 1
(2+λ)(1+ψ)

)
neighbors of v are pruned in ZT (g′)−1. For our induction hypothesis, we assume that

at least the number of nodes as indicated in Eq. (33) is pruned for j and prove this for j + 1.
Each node w in levels T (g′)− j and above has dZT (g′)−j−1

(w) ≥ (1 +ψ)g
′

by Invariant 2 (recall that all j

levels below T (g′) are in group g′). For simplicity of expression, we denote J , (1 + ψ)g
′
(

1− 1
(2+λ)(1+ψ)

)
.

Then, in order to prune the
(

(2+λ)(1+ψ)
2

)j−1

J nodes by our induction hypothesis, we must prune at least

(
(2 + λ)(1 + ψ)

2

)j−1

J ·

(
(1 + ψ)g

′

2

)
(34)
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edges where each such edge is “charged” to the endpoint that gets pruned last. (Note that we actually

need to prune at least (1 + ψ)g
′

·
(

1− 1
(2+λ)(1+ψ)

)
edges per pruned node as in the base case but (1+ψ)g

′

2

lower bounds this amount.) Each pruned node prunes less than (1+ψ)g
′

(2+λ)(1+ψ) edges. Thus, using Eq. (34), the

number of nodes that must be pruned from ZT (g′)−j−1 is at least

(
(2 + λ)(1 + ψ)

2

)j−1

J ·
(1 + ψ)g

′

2
(

(1+ψ)g′

(2+λ)(1+ψ)

) =

(
(2 + λ)(1 + ψ)

2

)j
J. (35)

Eq. (35) proves our induction step. Using Eq. (33), the number of nodes that must be pruned from
ZT (g′)−2 log(2+λ)(1+ψ)/2(n)

is greater than n (when n > 2) since J ≥ 1/2:

(
(2 + λ)(1 + ψ)

2

)2 log(2+λ)(1+ψ)/2(n)

· J ≥
n2

2
. (36)

Thus, at j = 2 log(2+λ)(1+ψ)/2 (n), we run out of nodes to prune. We have reached a contradiction as we

require pruning greater than n nodes in expectation assuming k(i) < (1+ψ)g
′

(2+λ)(1+ψ) . This contradicts the fact

that more than n nodes is pruned with 0 probability.
From the above, we can first obtain the inequality k(i) ≤ k̂(i) from Eq. (31) since this bounds the

case when k̂(i) = (2 + λ)(1 + ψ)g
′

; if k̂(i) < (2 + λ)(1 + ψ)g
′

then the largest possible value for k̂(i) is
(2 + λ)(1 + ψ)g

′−1 by Algorithm 2 and we can obtain the tighter bound of k(i) ≤ (1 + ψ)g
′

. We can

substitute k̂(i) = (2 + λ)(1 + ψ)g
′

since (1 + ψ)g
′+1 < (2 + λ)(1 + ψ)g

′

for all ψ ∈ (0, 1) and λ > 0.
Second, by Eq. (32), for any estimate (2 +λ)(1 +ψ)g, the largest g′ for which this estimate has (1 +ψ)g

′

as a lower bound is g′ = g+ ⌊log(1+ψ)(2 +λ)⌋ ≥ g+ log(1+ψ)(2 +λ)− 1. Substituting this g′ into (1+ψ)g
′

(2+λ)(1+ψ)

results in

(1 + ψ)g+log(1+ψ)(2+λ)−1

(2 + λ)(1 + ψ)
=

(2+λ)(1+ψ)g

1+ψ

(2 + λ)(1 + ψ)
=

k̂(v)
1+ψ

(2 + λ)(1 + ψ)
.

Thus, we can solve k(v) ≥
k̂(v)
1+ψ

(2+λ)(1+ψ) and k(v) ≤ k̂(v) to obtain

k(v) ≤ k̂(v) ≤ (2 + λ)(1 + ψ)2k(v)

which is consistent with the definition of a (2 + η, 0)-factor approximation algorithm (in expectation) for
core number for any constant η > 0 and appropriately chosen constants λ, ψ ∈ (0, 1) that depend on η.

C Challenges with Using Previous Techniques

Let us consider a simple algorithm for obtaining the k-core decomposition. The classic algorithm of Matula
and Beck [MB83] for static, centralized, sequential k-core decomposition repeatedly peels the node with
smallest degree; once a node is peeled, all adjacent edges to the node are removed and the process repeats
until the graph is empty. The core number of each node is the degree of the node when it is removed from
the graph. In fact, many current non-DP algorithms for k-core decompositions use some variant of peeling.

Suppose we attempt to turn this algorithm into a DP algorithm. Let f(vi) be a function that takes a
node and returns the core number of vi. On edge-adjacent graphs G and G′, the sensitivity of f is one,
GSf = 1. Furthermore, suppose F (V ) =

∑
v∈V f(v) is the function that returns the sum of all outputs of f

on input v ∈ V . Then, GSF = n = |V | since every node’s core number can increase or decrease by 1 as a
result of the deletion or addition of a single edge. (Consider a cycle; all nodes in the cycle have core number
2 but removing one edge reduces the core numbers to 1.)

From the above sensitivity analysis, in order to transform the Matula and Beck algorithm into an ε-edge
DP algorithm, we must add Geom(ε/GS1) = Geom(ε) noise to the core numbers of every node. By the
composition theorem, this results in a nε-edge DP algorithm. Thus, instead of adding Geom(ε) noise, we
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must instead add Geom(ε/GSF ) = Geom(ε/n) noise. However, adding this much noise results in an additive

error of Õ(n/ε) (hiding poly(log n) factors). This is no better than simply guessing the core number! Thus,
this simple algorithm fails to provide us with good approximation factors.

One can instead consider other approximate non-DP algorithms (instead of exact algorithms) but it is
difficult to bound the GSF of these algorithms directly. Thus, we must find a function that simultaneously
has small sensitivity and for which it is easy to bound the GS of the function. Then, we need to show that
the function is not queried too many times. (We do precisely this in our result.)

D Dual of the Densest Subgraph LP

The classic densest subgraph ILP introduced by Charikar [Cha00] associates each node v with a variable
xv ∈ {0, 1} where xv = 1 indicates that node v is in the densest subgraph (and xv = 0 otherwise). Each edge
is associated with a variable ye ∈ {0, 1} that indicates whether it is part of the densest subgraph. Relaxing
the variables to take real values in 0 ≤ xv ≤ 1 and 0 ≤ ye ≤ 1 allows us to obtain an LP whose optimal has
been shown to equal the density of the densest subgraph. This LP is shown below in Eq. (37).

max
∑

e∈E

ye

such that ye ≤ xu, xv, ∀e = {u, v} ∈ E∑
v∈V xv ≤ 1,

ye ≥ 0, xv ≥ 0 ∀e ∈ E, ∀v ∈ V

(37)

One can show that the dual of the densest subgraph LP naturally corresponds to the minimum outdegree
orientation problem where edges are provided an orientation and the goal is to minimize the maximum
outdegree of any node. The LP itself corresponds to this problem in the following way. Each edge e = {u, v}
has a load of 1 which it wants to assign to its endpoints. The variables fe(u) and fe(v) represent these loads.
The objective is to minimize the maximum load assigned to any node for any feasible load assignment. The
dual of the densest subgraph LP is given below in Eq. (38).

minD
such that fe(u) + fe(v) ≥ 1, ∀e = {u, v} ∈ E∑

e∋v fe(v) ≤ D,
fe(u), fe(v) ≥ 0 ∀e = {u, v} ∈ E

(38)

The dual is used in the proof of Lemma 5.7.
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