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Balanced Allocations: The Heavily Loaded Case with Deletions

Nikhil Bansal* William Kuszmaul†

Abstract

In the 2-choice allocation problem, m balls are placed into n bins, and each ball must choose between

two random bins i, j ∈ [n] that it has been assigned to. It has been known for more than two decades, that

if each ball follows the GREEDY strategy (i.e., always pick the less-full bin), then the maximum load

will be m/n+O(loglogn) with high probability in n (and m/n+O(logm) with high probability in m). It

has remained an open question whether the same bounds hold in the dynamic version of the same game,

where balls are inserted/deleted with no more than m balls present at a time.

We show that, somewhat surprisingly, these bounds do not hold in the dynamic setting: already on 4

bins, there exists a sequence of insertions/deletions that cause the GREEDY strategy to incur a maximum

load of m/4+Ω(
√

m) with probability Ω(1)—this is the same bound that one gets in the single-choice

allocation model where each ball is assigned to a random bin!

This raises the question of whether any 2-choice allocation strategy can offer a strong bound in the

dynamic setting. Our second result answers this question in the affirmative: we present a new strategy,

called MODULATEDGREEDY, that guarantees a maximum load of m/n+O(logm), at any given moment,

with high probability in m. We also show how to generalize MODULATEDGREEDY to obtain dynamic

guarantees for the (1+β)-choice setting, and for the setting of balls-and-bins on a graph.

Finally, we consider an extension of the dynamic setting in which balls can be reinserted after they

are deleted, and where the pair i, j that a given ball uses is consistent across insertions. This seemingly

small modification renders tight load balancing impossible: on 4 bins, any balls-and-bins strategy that

is oblivious to the specific identities of balls being inserted/deleted must allow for a maximum load of

m/4+poly(m) at some point in the first poly(m) insertions/deletions, with high probability in m. This is a

remarkable departure from the m = n case where the maximum load of O(log logn) holds independently

of whether reinsertions are allowed or not.
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1 Introduction

Randomized balls-into-bins processes [MRS01, Wie17] serve as a useful abstraction for studying load-

balancing problems, with applications such as scheduling, distributed systems, and data structures. The

goal is to assign balls (e.g., tasks) to bins (e.g., machines) such that the balls are balanced as evenly as

possible across the bins, where each individual ball may have only a few available random options for bins

that it can be placed in.

It is well known that, if n balls are placed into n bins using the classical SINGLECHOICE rule, where

each ball is placed independently in a uniformly random bin, then the maximum load is Θ(log n/ log logn)
with probability 1−1/poly(n).

The power of 2-choices. In a seminal 1994 paper, Azar, Broder, Karlin and Upfal [ABKU94] showed that

under a seemingly minor modification, where for each ball two bins are chosen independently and uniformly

at random, and the ball is placed greedily in the least loaded of the two bins, the maximum load reduces

to log logn+O(1) with high probability in n. In the decades since, this power of 2-choices paradigm has

been extremely influential, with both theoretical (e.g., [PR04, FNP04, BMP+06, FMMM09, HMZ11]) and

empirical (e.g., [DB13, YYRC08, OWZS13, ORS+11, BM01]) applications, and with a large literature on

generalizations; see e.g., [MRS01, Wie17] for some excellent surveys.

The heavily-loaded case. Azar et al.’s result [ABKU94] prompted researchers to consider the heavily-

loaded case, where m ≫ n balls are inserted into n bins. The early techniques that were developed for the

lightly-loaded setting (i.e., layered induction [ABKU94], witness trees [Vöc99, CFM+98], and differential-

equation approaches [Mit01,Mit99]) struggled to deliver strong bounds in the heavily-loaded setting, and for

several years the best known bound stood at m/n+ log logn+O(m/n) [CFM+98, Vöc99]. If we define the

overload to be the amount by which the maximum load exceeds m/n, then this bound allows for an overload

as large as log logn+O(m/n)—such a bound is useful if m ≈ n, but when m ≫ n log n, the bound becomes

worse even than the standard bound offered by SINGLECHOICE (i.e., an overload of O(
√

(m/n) log n)).

In a breakthrough result, Berenbrink, Czumaj, Steger and Vöcking [BCSV00] showed how to use

Markov-chain techniques to obtain a much stronger bound of log log n+O(1) on the overload, with proba-

bility 1−1/poly(n). Thus, somewhat remarkably, the gap between the maximum and average loads in the

heavily-loaded case is the same as in the lightly-loaded case, with high probability in n.

When m ≫ n, the O(log logn) overload bound does not, in general, extend to hold with probability

1−1/poly(m) (i.e., w.h.p. in the number of balls). However, the known techniques can be used to achieve

a quite strong (and, when n = O(1), optimal) bound of O(logm) on the overload in this case.

The dynamic setting. In typical load-balancing and data-structures applications, however, the items can

be both inserted and deleted dynamically over time. Here two natural models have been studied: (i) the

insertion/deletion model in which each insertion involves a new ball with independent random bin choices,

and (ii) the reinsertion/deletion model in which a ball can be reinserted after being deleted, and has the same

two random bin choices each time it is reinserted. Although these two models may seem quite similar at

first glance, we shall see later that the distinction is significant.

Note that, whereas in the insertion-only setting, m is set to be the total number of insertions, in the

dynamic setting, m is set to be an upper bound on the number of balls that are present at any given moment

(and the sequence of insertions/deletions may be infinite). The objective is to minimize the overload, which
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is now defined as the amount by which the maximum load exceeds m/n at any given moment.1

Azar et al. [ABKU94] considered the insertion/deletion model with m = n and with random deletions:

that is, n balls are inserted initially, and then there is an infinite sequence of alternating insertions/deletions,

where each deletion removes a random ball. They showed that, at any given moment, the GREEDY strategy

achieves a maximum load of log logn+O(1), with high probability in n.

Subsequent work has considered the more general setting where the insertions/deletions are determined

by an oblivious-adversary (i.e., an adversary that does not know the random choices of the algorithm), and

where the only constraint on the adversary is that the number of balls in the system can never exceed m.

Using the witness tree technique, first introduced by [CMadH+98], Cole et al. [CFM+98] analyzed the

reinsertion/deletion model with m = n, and established that the GREEDY strategy guarantees a maximum

load of O(log logn) with high probability in n. Later, Vöcking [Vöc99] improved this to log logn+O(1),
which remarkably, matches the bound in the non-dynamic (insertion-only) case up to an additive O(1) term.

What about the dynamic heavily-loaded case? For more than two decades, it has remained an open

question what the optimal bounds are in the heavily-loaded case if we wish to support both insertions and

deletions performed by an oblivious adversary. Besides obvious theoretical interest, the question also arises

naturally in practice—for example, as a scheduling problem in which jobs arrive and depart over time, the

number of jobs (balls) at any moment is much larger than the number n of machines (bins), and the only

guarantee on the arrivals/departures of jobs is an upperbound m/n on the average load at any moment.

The dynamic heavily-loaded setting was studied by Cole et al. [CFM+98] and Vöcking [Vöc99,Vöc03],

who showed that GREEDY has overload log log n+O(m/n) with high probability in n. But again this bound

is already worse for m ≫ n log n than the O(
√

(m/n) log n) overload bound for SINGLECHOICE (which also

holds in the dynamic setting).

However, it is widely believed that GREEDY should also achieve similar bounds in the dynamic heavily-

loaded case as in the non-dynamic heavily-loaded case (i.e., an overload of O(log log n) and O(logm),
w.h.p. in n and m, respectively). The current limitation would seem to be a technical one: the witness-tree

techniques that allow for us to analyze dynamic games with oblivious adversaries [CFM+98, Vöc03] are

incompatible with the techniques (i.e., Markov-chain [BCSV00] and potential-function [PTW10a, LSS22,

TW14] arguments) that achieve strong bounds in the heavily-loaded case.

In this work we prove new upper and lower bounds for the dynamic heavily-loaded case. We split our

results into two parts, the first of which considers the insertion/deletion model, and the second of which

considers the reinsertion/deletion model.

1.1 Results in the Insertion/Deletion Model

We begin by considering the insertion/deletion model, that is, an oblivious adversary performs an arbitrary

sequence of insertions/deletions subject only to the constraint that no more than m balls are present at a time.

A lower bound for GREEDY. We show that, somewhat surprisingly, the GREEDY strategy actually does

not offer strong bounds in the dynamic heavily-loaded setting. In particular, already for n = 4 bins, there

exists an oblivious sequence of insertions/deletions after which there is a maximum load of

m/n+Ω(
√

m)

1It is tempting to define the overload to be the amount by which the maximum load exceeds m(t)/n, where m(t) is the number

of balls present at time t. However, the following (folklore) example demonstrates the flaw with such a definition: Suppose we

insert m balls (using an arbitrary insertion strategy), and then we delete a random m/2 of those balls. Since the m/2 deletions are

random, even if the system was perfectly balanced after the initial m insertions, the bin loads will typically be m/2n±
√

m/2n, and

the maximum load will be m(t)/n+ Θ̃(
√

m/n), which is no better than the bound trivially achieved by SINGLECHOICE.

2



with probability Ω(1). In other words, the GREEDY strategy is no better than SINGLECHOICE in this setting!

Our result represents a remarkable departure from the lightly-loaded m = n case, where GREEDY

achieves an optimal bound of O(log logn) (even in the reinsertion/deletion model). The result also offers an

explanation for why all previous attempts [CFM+98, Vöc03] to analyze GREEDY for large m have yielded

only relatively weak bounds.

The high-level intuition behind our lower bound is as follows. Using GREEDY, if some bin i contains

far fewer balls than the other bins, then there will be a contiguous time window during which all of the

insertions are maximally biased towards bin i. But this means that, later on, the adversary can perform a

sequence of deletions in which the balls being deleted exhibit a strong bias towards being from bin i. In

other words, the biases that GREEDY exhibits during insertions can be thrown back at it by future deletions.

We present the full construction in Section 3. As a warmup, we first show a simpler (but already non-

trivial) lower bound of m/n+Ω(m1/4) for n = 4 bins in Section 3.1, and then give the full lower bound of

m/n+Ω(m1/2) in Section 3.2. For ease of exposition we mostly focus on the case of n = 4 — however, we

also show how to use our techniques to obtain a lower bound of m/n+m1/4/poly(n) for general n.

The MODULATEDGREEDY algorithm. Of course, the above phenomenon is not isolated to the GREEDY

strategy. Any strategy that exhibits biases between bins is at risk of having those biases thrown back at it via

future deletions. This raises a natural question: is it possible for any 2-choice allocation strategy to beat the

bounds trivially achieved in the single-choice model?

Our second result is a new algorithm called MODULATEDGREEDY, in the insertion/deletion model, that

at any time, with high probability in m, achieves a maximum load of

m/n+O(logm).

This bound is optimal for any strategy that achieves high-probability bounds in m (see Section 2.3).

Given the choice between two bins i and j, the MODULATEDGREEDY algorithm chooses between the

bins probabilistically, based on how their loads compare. In particular, it carefully modulates its biases be-

tween bins so that the adversary is unable to find any non-trivial correlations between how balls are inserted.

Interestingly, the structure of MODULATEDGREEDY also allows for a direct combinatorial analysis, which

proceeds by coupling the behavior of MODULATEDGREEDY to a seemingly different (and much simpler)

randomized process that we call the stone game.

Generalizations. Our analysis of MODULATEDGREEDY extends to support a number of generalizations

and applications. This includes a tight bound of m/n+O(β−1 logm) for the (1+β)-choice version of the

game [PTW10b], where a (1− β)-fraction of the balls are inserted using SINGLECHOICE and only a β-

fraction of the balls get two choices; a bound of m/n+polylog m for the dynamic balls-and-bins game on an

undirected well-connected regular graphs [BF22, KP06]; and a bound of m/n+O(logM) for the setting in

which m is permitted to increase over time, subject only to the constraint that m ≤ M. In all of these settings,

the previous states of the art were restricted to the insertion-only model.

To describe the main ideas as clearly as possible, we describe these results in two parts. In Section

2 we consider a simpler version of MODULATEDGREEDY that guarantees the m/n+O(logm) bound for

insertion/deletion sequences of poly(m) length. Later, in Section 5, we consider the general setting with

unbounded request sequences and where m can increase over time. The extensions to the (1+β)-choice and

the graphical 2-choice processes are described in Section 5.3.

3



1.2 An Impossibility Result for the Reinsertion/Deletion Model

Finally, in Section 4, we turn our attention to the reinsertion/deletion model. That is, the adversary can

perform an arbitrary sequence of insertions, deletions, and reinsertions (as long as the ball being reinserted

is not currently present) subject only to the constraint that no more than m balls are present at a time.

Here we establish an impossibility result. Consider any 2-choice bin-allocation strategy that is oblivious

to the specific identities of balls (i.e., when a ball is inserted, all that the strategy gets to see is the pair i, j

of bins that the ball is assigned to). We show that, against any such strategy, it is possible for an oblivious

adversary to force a maximum load of m/4+poly(m) at some point in the first poly(m) insertions/deletions,

with high probability in m.

This result reveals a fundamental (and perhaps unexpected) gap between the insertion/deletion model

and the reinsertion/deletion model. In particular, in the lightly-loaded setting with deletions where m ≤
n, both models yield the same O(log logn) bounds even for infinite sequences of reinsertions/deletions

[CFM+98, Vöc03]. But, in the heavily-loaded setting, the cyclic dependencies that are introduced by rein-

sertions (i.e., a ball x being reinserted is being placed into a system whose state has already been affected

by x’s bin choices in the past) end up being lethal to any ID-oblivious allocation strategy.

1.3 Other Related Work

Beyond research on the heavily-loaded and dynamic settings, there has been a large body of work on other

ways to extend the 2-choice allocation framework—because the literature on this subject is so extensive,

we give only a brief overview here. These extensions have included work on restricted classes of insertion

strategies (e.g., (1+ β)-choice strategies [PTW10b, PTW10c], thinning strategies [LSS22, FGG21, LS22],

strategies with limited information [LS22], etc.), on balls with nonuniform sizes [TW14,BFHM08,PTW10c,

TW07], on parallel settings in which balls arrive in batches [Ste96, LPY19, BCE+12, BFK+16, BFK+18],

on settings in which bins correspond to vertices on a graph [BF22, KP06], on settings where balls can be

relocated after insertion [AKT21, BFCKK22], etc. Another notable extension is Vöcking’s asymmetric d-

choice paradigm [Vöc03] which, in the lightly-loaded setting, chooses between d bins on each insertion to

achieve a maximum load of O((log log n)/d).

Another line of work, related to the current work on the dynamic setting, is on queuing models [Mit01,

VDK96, MBVLW18, BLP10, LM06, BL12, EG16, LN05], where insertions and deletions are stochastic.

Many of these focus on the so-called supermarket model, introduced by [Mit01, VDK96], in which cus-

tomers (i.e., balls) arrive in a Poisson stream of rate λn, λ < 1, and are processed within each queue (i.e.,

bin) in FIFO order, where each customers requires processing time that is exponentially distributed with

mean 1. In the case where λ is allowed to go to 1 (see, e.g., [BL12, EG16]), the number of balls in the

system can become ω(n) (this is analogous to the heavy case in standard balls and bins). However, because

insertions/deletions are assumed to be stochastic, the analyses (and the flavors of the results) take a very

different form than those in this paper (where deletions are performed by an oblivious adversary, and the

number of balls in the system is deterministically bounded by a parameter m).

In addition to the past work described above, there have also been recent efforts within the succinct-data-

structure literature to obtain stronger bounds for the reinsertion/deletion model in specialized regimes, result-

ing in a 3-choice allocation scheme that achieves a bound of m/n+O(log logn)+O(
√

m/n ·
√

log(m/n))
on the maximum load at any given moment [BCFC+21b, BCFC+21a]. This bound is useful when m ≤
O(n log n), but does not improve significantly on SINGLECHOICE when m ≫ n.

4



1.4 Preliminaries

In the dynamic 2-choice allocation problem, an oblivious adversary performs a sequence of ball insertions

and deletions subject to the constraint that the number of balls in the system can never exceed m. Whenever

a ball x is inserted, a uniformly random pair h(x) = (h1(x),h2(x)) ∈ [n]× [n] of distinct bins is selected, and

the insertion strategy must choose which of the bins h1(x) or h2(x) the ball will be placed in. The pair h(x)
is sometimes referred to as the hash of the ball x.

There are two models that we will consider for insertions and deletions. In the insertion/deletion model,

each insertion INSERT(x) places a new ball x into the system that has never been present before. In the

reinsertion/deletion model, each insertion INSERT(x) places a ball x into the system that is not currently

present, but that may have been present in the past (each time x is inserted, its bin pair h(x) stays the same).

In both models, the DELETE(x) operation selects a ball x that is currently present and removes it.

We are interested in bounding the maximum load (i.e., the number of balls) of any bin. Our algorithms

will offer guarantees with high probability (w.h.p.) in m, meaning that the failure probability is 1/poly(m)
for a polynomial of our choice. Two basic insertion strategies that we will discuss frequently are GREEDY,

which always selects the least full of the bins h1(x),h2(x), and SINGLECHOICE, which always selects bin

h1(x).

In our lower bound for the reinsertion/deletion model (Section 4), we will study the class of ID-oblivious

insertion strategies—such a strategy makes each insertion decision based on the hash h(x) of the ball being

inserted, rather than based on the specific identity x of the ball. Formally, an ID-oblivious strategy is one

that can be implemented with operations INSERT(h1(x),h2(x)) (indicating the pair of bins for the ball being

inserted) and DELETE(r) (indicating a deletion of the r-th-most-recently-inserted ball of those present).

Finally, although h(x) = (h1(x),h2(x)) is a uniformly random pair of distinct bins, any strategy in the

insertion/deletion model can choose to view h(x) as a pair of independent bins by artificially resetting

h2(x) = h1(x) with probability 1/n. The strategies that we design in this paper will assume (without loss of

generality) that they are given a uniformly random pair of (not necessarily distinct) bins for each insertion.

2 MODULATEDGREEDY: Handling poly(m) Insertions/Deletions

In this section, we consider the insertion/deletion model, with n bins and up to m balls present at a time, and

we describe an insertion strategy, called MODULATEDGREEDY, that achieves a strong bound on maximum

load. Here, we describe the simplest possible version of the strategy, which supports any sequence of

poly(m) insertions/deletions while guaranteeing a maximum load of m/n+O(logm) with high probability

in m. Later, in Section 5, we will extend MODULATEDGREEDY in various ways, such as supporting an

infinite sequence of insertions/deletions, allowing m to increase over time, etc.

The main result of the section is the following:

Theorem 1. Let m ≥ n. Consider the insertion/deletion model with n bins and an upper bound of at most

m balls present at a time. Consider a sequence of poly(m) insertions/deletions, where insertions are im-

plemented using MODULATEDGREEDY. With high probability in m, MODULATEDGREEDY does not halt

during any of the insertions/deletions, and no bin ever has load more than m/n+O(logm).

When we describe the lower bound for GREEDY in Section 3, we will see that the main problem with

GREEDY is that it is too aggressive. Given the choice between two bins i, j, as GREEDY always chooses

the less loaded of the two—this creates correlations between balls that can be exploited to construct a

bad sequence of insertions/deletions. In contrast, MODULATEDGREEDY will try to be as unaggressive as

possible, while still guaranteeing an upper gap of O(logm). In particular, it carefully modulates its behavior

5



and only exhibits a strong bias between two bins i and j if (1) the two bins i and j have significantly different

loads; and (2) the system is nearly saturated (i.e., there are nearly m balls present).

As we shall see, this modulated behavior also allows for a simple (but clever) combinatorial analysis,

marking a departure from the (typically quite involved) potential-function and Markov-chain arguments

used in past analyses of the heavily-loaded case.

2.1 The Algorithm

The MODULATEDGREEDY algorithm for allocating a bin to a ball is given below. We assume without loss

of generality that m is a multiple of n.

Algorithm 1 The MODULATEDGREEDY insertion strategy. Here, ℓk is the number of balls in bin k prior to

the insertion, and c is a large positive constant.

procedure MODULATEDGREEDY

Select two bins i, j ∈ [n] independently and uniformly at random.

Set T = m/n+ c logm−∑r ℓr/n.

if (maxk ℓk)− (mink ℓk)≤ T then

Assign the ball to bin i with probability 1/2+
ℓ j−ℓi

2T
, and otherwise assign it to bin j.

else

Halt.

For k ∈ [n], let ℓk denote the load on bin k prior to the insertion, let ℓ= ∑k ℓk/n be the average bin load,

and c be a (sufficiently large) fixed constant. When choosing between two bins i, j, the algorithm exhibits

bias

(ℓ j − ℓi)/2T

towards bin i, where

T = m/n+ c logm− ℓ.

Note that the algorithm is well-defined as long as |ℓ j − ℓi| ≤ T for all i, j ∈ [n]. One should think of T as

representing the average amount of leftover space that each bin would have if each bin had a total capacity

of m/n+ c log m balls. This means that the bias is proportional to the difference ℓ j − ℓi between the loads of

the bins, and is inversely proportional to the average amount T of space left in each bin.

The following lemma gives a closed-form solution for the probability of a given bin k being selected by

MODULATEDGREEDY.

Lemma 2. Suppose that |ℓi − ℓ j| ≤ T for all bins i, j. Consider a bin k, and set Tk = m/n+ c log m− ℓk.

Upon an insertion, a bin k is selected with probability Tk/(nT ) = Tk/(∑i Ti).

Proof. Let i, j denote the random bin choices for the ball being inserted. The probability that a given bin k

is selected is given by

Pr[i, j = k]+ ∑
s 6=k

Pr[i = k, j = s]

(

1

2
+

ℓs − ℓk

2T

)

+∑
s 6=k

Pr[i = s, j = k]

(

1

2
+

ℓs − ℓk

2T

)

=
1

n2
+

2

n2 ∑
s 6=k

(

1

2
+

ℓs − ℓk

2T

)

=
2

n2

n

∑
s=1

(

1

2
+

ℓs − ℓk

2T

)

=
2

n

(

1

2
+

ℓ− ℓk

2T

)

=
T + ℓ− ℓk

nT
=

Tk

nT
.

Finally we note that ∑n
i=1 Ti = ∑n

i=1(m/n+ c log m− ℓi) = m+nc logm−nℓ= nT .
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2.2 Analysis

To analyze MODULATEDGREEDY, we begin by describing a seemingly different process (which we call the

stone game) that, by design, yields to a simple combinatorial analysis. We then show that the MODULAT-

EDGREEDY algorithm and the stone game can be coupled together so that bounds on the behavior of the

stone game directly imply bounds on the behavior of MODULATEDGREEDY.

Stone Game. In the (Q,n)-stone game, parameterized by Q and n, there are Qn stones which are dis-

tributed among two bags; an inactive bag and an active bag. Initially the active bag is empty, and all the

stones are in the inactive bag.

The game supports two types of operations: the ACTIVATE() operation moves a random stone from the

inactive bag to the active bag; and the DEACTIVATE(r) operation examines the stones in the active bag,

selects the stone that was added the r-th most recently, and moves it back to the inactive bag. (ACTIVATE()

can only be called if the inactive bag is non-empty, and DEACTIVATE(r) can only be called if the active bag

contains r or more balls). The sequence of operations is generated by an oblivious adversary, independent

of the random bits used by the game.

The stones are labeled xk,q for k ∈ [n],q ∈ [Q]. We call k the color of the stone, so that there are Q

stones of each color. However, the labels of the stone should be thought of as hidden, since the behaviors of

ACTIVATE() and DEACTIVATE(r) do not depend on the labels of the stones.

We will now prove some lemmas establishing that the stone game is, by design, very well behaved. Our

first lemma shows that, even though the adversary gets to perform activations/deactivations, it has no control

over which specific stones are in the active bag.

Lemma 3. At any given moment, if the active/inactive bag contains s stones, then these stones are a uni-

formly random subset of size s of the stones {xk,q}k∈[n],q∈[Q] .

Proof. The point is that the activation/deactivation operations do not depend on the labels of the balls.

Formally, fix any sequence of activations/deactivations and the random choices of the ACTIVATE() op-

erations, and let S be set of stones currently in the inactive bag (the argument for the active bag is identical).

Then for any run of the game with a random permutation π applied to the Qn labels {xk,q}k∈[n],q∈[Q] , the set

stones in the active bag will be π(S). Thus, if the inactive bag contains s stones, every s-element subset of

the nQ stones is equally likely.

This implies that as long as the inactive bag contains a reasonably large number of stones (namely,

Ω(n log(nQ))), each color is guaranteed to have roughly equal representation in the bag.

Lemma 4. Suppose at some given moment, the inactive bag contains s ≥ cn log(nQ) stones, for some large

enough constant c. Let sk be the number of these stones with color k. Then sk ∈ [s/2n,3s/2n] for each

k ∈ [n], with probability at least 1−1/(Qn)Ω(c).

Proof. By Lemma 3, the balls S in the inactive bag are a random subset of size s of the Qn balls {xk,q}. Let

Xk = {xk,1, . . . ,xk,Q} be the set of all color-k balls. Then sk = |Xk ∩S|, the number sk of balls of color k in S,

has the hypergeometric distribution H(Qn,Q,s).

As the standard tail bounds on sampling without replacement at least as sharp as those given by Chernoff

bounds for sampling with replacement [FK15] (Section 22.5), and as E[si] = s/n, we get that

Pr[|sk − s/n| ≥ εs/n] ≤ 2exp(−ε2s/3n). (1)

Setting ε = 1/2, and taking a union bound over the n colors, gives that sk ∈ [s/2n,3s/2n] for each k ∈ [n]
with probability 1−2nexp(−Ω(c log Qn)) which is 1−1/(Qn)Ω(c) for large enough c.
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2.2.1 Relating the stone game to the balls-and-bins game

One can think of the stones in the stone game as being similar to balls in the balls-and-bins game—the active

bag represents the set of balls that are present, the color of a stone dictates which “bin” a given ball is in,

and activations/deactivations correspond to insertions/deletions.

However, there are several significant differences between the games. Notably, the whole point of the

balls-and-bins game is to ensure that no single bin contains too many balls, but in the stone game, the active

bag trivially (and deterministically) has at most Q stones of any given color. Nonetheless, we shall now see

how to couple the two games together in such a way that our analysis of the stone game yields a bound for

the balls-and-bins game.

Mapping between instances. We first giving a mapping between the sequence of insertions/deletions for

balls-and-bins game and the input sequence for the stone game. For any sequence S of insertions/deletions

in balls-and-bins game, define φ(S) to be a corresponding sequence of activations/deactivations, where each

INSERT operation is replaced with an ALLOCATE operation, and where each DELETE(x) operation on a ball

x is replaced with a DEACTIVATE(r) operation, where r− 1 is the number of balls in the system that were

inserted after x.

The following key lemma shows that the random choices in the two games can be coupled.

Lemma 5 (Coupling). Let n ≤ m and let ∆ = c logm, where c is the positive constant used by MODULAT-

EDGREEDY. Consider a sequence S of insertions/deletions in a balls-and-bins game on n bins, where there

are never more than m balls present at a time. Let G1 be a balls-and-bins game with operation-sequence S

and let G2 be (Q,n)-stone game with Q = m/n+∆ with operation sequence φ(S).

If G1 is implemented using MODULATEDGREEDY, then there exists a coupling between G1 and G2 with

the following property: Up until MODULATEDGREEDY halts, the number of balls in a given bin k (in the

balls-and-bins game) always equals the number of stones in the active bag with color k (in the stone game).

Proof. Let ℓ1, ℓ2, . . . , ℓn denote the loads of the bins at any given moment. By Lemma 2, we know that, on

any given insertion in which MODULATEDGREEDY does not halt, each bin k is selected with probability

Tk

nT
=

Tk

∑n
i=1 Ti

. (2)

Now suppose that, for each color k there are ℓk stones with color k in the active bag (and hence Q− ℓk

such stones in the inactive bag) of the stone game. Then on any given activation, the probability of a ball

with color k being moved into the active bag is

Q− ℓk

nQ−∑n
i=1 ℓi

=
m/n+∆− ℓk

m+n∆−∑i ℓi

=
Tk

∑n
i=1 Ti

, (3)

where the first equality uses that Q = m/n+∆. The two probabilities (2) and (3) are precisely equal. Thus,

we can couple the games so that the bin selected by the insertion in the balls-and-bins game is the same as

the stone color selected by the activation in the stone game.

If we implement the insertions/activations in this way, then the deletions/deactivations also become

coupled: whenever a ball is deleted from a bin k, a stone with color k is removed from the active bag (in

particular, the ball and stone were assigned to have the same bin/color when they were inserted/activated

previously). Thus the proof of the lemma is complete.
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Proof of Theorem 1. Finally, we can use the coupling in Lemma 5 to bound the probability of MODU-

LATEDGREEDY halting and prove Theorem 1.

Proof. (Theorem 1) Observe that, if MODULATEDGREEDY does not halt, then deterministically there are at

most m/n+O(log m) balls in any given bin. In particular, the condition maxk ℓk −mink ℓk ≤ T implies that

maxk ℓk − ℓ≤ T . Plugging T = m/n+ c logm− ℓ, this gives that maxk ℓk ≤ m/n+ c logm.

Thus, it suffices to analyze the probability of halting.

By Lemma 5, up until MODULATEDGREEDY halts, it can be coupled to a stone game on nQ = m+
nc log m balls, where the number of balls in the active bag never exceeds m. Under this coupling, the number

of balls ℓk in bin k satisfies ℓk = Q− sk, where sk is the number of color-k stones in the inactive bag.

The MODULATEDGREEDY algorithm halts only if

|ℓi − ℓ j|> T = m/n+ c logm− ℓ= Q− ℓ (4)

for some pair i, j of bins. For the stone game, denoting s = ∑k sk = ∑k(Q− ℓk) = n(Q− ℓ), and as |si − s j|=
|ℓi − ℓ j|, condition (4) is equivalent to

|si − s j|> s/n.

But we know by Lemma 4 that, w.h.p. in m, we have |si − s j| ≤ s/n at all times during the stone game

(since the number of balls in the inactive bag is always at least nc log m). Thus, we have w.h.p. in m that

MODULATEDGREEDY never halts.

2.3 Tightness of the Bound

Clearly, the bound of m/n+O(logm) is not optimal for all parameter regimes, since it is known that GREEDY

achieves maximum load O(log logn) in the regime of n = m. We remark, however, that for parameter

regimes where m is much larger than n, or when n is fixed, this bound is essentially optimal.

Proposition 6. Consider m insertions into 4 bins using any sequential 2-choice insertion strategy. With

probability at least 1/poly(m), some bin contains at least m/4+Ω(logm) balls. More generally for n bins,

some bin contains at least m/n+Ω(logn m).

Proof. Let us consider the final logm insertions x1, . . . ,xlog m. Suppose, without loss of generality, that prior

to those insertions being performed, bins 1,2 contain at least as many total balls as bins 3,4. With probability

1/poly(m), all of the insertions x1, . . . ,xlog m are forced to choose between bins 1 and 2. No matter how they

are assigned, this forces at least one of bins 1,2 to have load m/4+Ω(logm) balls at the end of the insertions.

Deleting all the balls, and repeating the instance again poly(m) times, this event will occur for one of

the instances with high probability.

The same argument also implies a m/n+Ω(logn m) lower bound; consider the final k = logn m balls,

and note that with probability Ω(n−2k) = 1/poly(m) the only bin choices for these balls are 1 and 2.

3 A Lower Bound for Greedy with Deletions

This section gives a lower bound for the GREEDY algorithm in the insertion/deletion model against an

oblivious adversary, with up to m balls present at a time. Recall that the trivial SINGLECHOICE strategy

achieves an overload of O(
√

(m/n) log n) (w.h.p. in m) in this setting, so the natural question is whether

GREEDY does any better. We show that, even for n = 4 (meaning that SINGLECHOICE has an overload of

O(
√

n)), it does not.
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Theorem 7. Consider the insertion/deletion model on n = 4 bins, with the restriction that at most m balls

can be present at any time, and suppose that insertions are implemented using GREEDY. There exists an

oblivious sequence of poly(m) insertions/deletions such that, after the sequence is complete, we have with

probability Ω(1) that some bin contains m/4+Ω(
√

m) balls.

For ease of exposition, and to keep the main ideas as clear as possible, we focus our lower bound on

n = 4 bins. We will also see, however, that for general n and m, a similar construction gives an m/n+
Ω(

√
m/poly(n)) lower bound on the maximum load.

3.1 A Simpler Ω(m1/4) Bound

Before proving Theorem 7, we first describe a simpler (but already surprisingly) lower bound of m/4+
Ω(m1/4). Later in Section 3.2 we build on these ideas to prove Theorem 7.

We first describe a construction with the property that if we ever reach a state where one of the bins (say,

bin 1) contains significantly fewer balls (say, k fewer balls) than the other bins, then we can subsequently

reach a state in which (with probability Ω(1)), some bin contains at least m/4+Ω(
√

k) balls. As we shall

see later in the subsection, this can be used to directly obtain the m/4+Ω(m1/4) bound.

Proposition 8 (Gap to overload). Consider the GREEDY algorithm on 4 bins, on instances where at most

m balls can be present at a time. Suppose we begin in a state that contains at most m− k balls, and where

bin 1 contains k+ 1 fewer balls than each of bins 2,3,4. Then there is an oblivious sequence of O(m) in-

sertions/deletions such that, after the sequence is complete, we have the following property with probability

Ω(1): some bin contains m/4+Ω(
√

k) balls.

Proof. Let X0 denote the initial state of the game. Consider the sequence with the following three steps.

1. Insert k balls x1,x2, . . . ,xk to get to a state X1.

2. Then insert m− j balls y1,y2, . . . ,ym− j, where j is the number of balls in state X1—this brings us to a

state X2 with m balls in total.

3. Finally, delete the balls x1,x2, . . . ,xk, and insert new balls z1,z2, . . . ,zk to reach a state X3.

We claim that, for at least one of the two states X2 and X3, we have with probability Ω(1) that some bin

contains m/4+Ω(
√

k) balls.

During the insertions of x1,x2, . . . ,xk, we are always in a state where bin 1 contains fewer balls than bins

2,3,4. Thus, each insertion xi will go into bin 1 if and only if 1 ∈ {h1(xi),h2(xi)} (this is where we are

exploiting that the GREEDY algorithm is too aggressive). The number A of balls x1,x2, . . . ,xk that are placed

in bin 1 is therefore given by

A = |{i | 1 ∈ {h1(xi),h2(xi)}}|.
Let µ = E[A]. As A is a binomial random variable with mean µ = Θ(k), with probability Ω(1) we have

A ≥ µ+Ω(
√

k).

Now consider the number B of balls z1,z2, . . . ,zk that are placed into bin 1. We deterministically have that

B ≤ |{i | 1 ∈ {h1(zi),h2(zi)}}|. (5)

Since the right side of (5) is a binomial random variable with mean µ, we have with probability Ω(1) that

B ≤ µ.
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Moreover, since A and B are independent, the above bounds on A and B hold simultaneously with probability

Ω(1).

Finally, let us consider the number of balls in bins 2,3,4 once we reach state X3. Assume that state X2

has maximum load m/4+ o(
√

k), otherwise we are already done. Then, since X2 contains m balls in total,

bins 2,3,4 must contain a total of at least 3m/4− o(
√

k) balls. By step 3 of the input sequence above, it

follows that, in state X3, the total number of balls in bins 2,3,4 is at least

3m/4−o(
√

k)− (k−A)+ (k−B).

Conditioning on the event above, and plugging in our bounds for A and B, we see that (with probability

Ω(1)) this is at least 3m/4+Ω(
√

k). Thus, at least one of bins 2,3,4 must contain m/4+Ω(
√

k) balls, as

desired.

The lower bound. Using Proposition 8, the claimed lower bound follows quite easily. Consider the fol-

lowing input sequence, starting from an empty system. (1) Insert m balls into the system; (2) delete each

ball independently and randomly with probability 1/2; and (3) apply the sequence in Proposition 8 with

k =
√

m.

As the deletions are random in step (2), the precondition for Proposition 8 (i.e., the least loaded bin

contain at least k =
√

m fewer balls than every other bins) holds with probability Ω(1). So by Proposition

8, we can achieve m/4+Ω(
√

k) = m/4+Ω(m1/4) balls in some bin, with probability Ω(1).

General n. For n bins, where n is arbitrary, the same approach gives a lower bound of

m/n+Ω(m1/4/
√

n3 logn). (6)

In particular, Proposition 8 can be directly modified, in this setting, to achieve an overload of Ω(k1/2/n):
instead of using k balls in each of steps 1 and 3, use kn/100 balls; then by the same argument as in the

lemma, we have A−B = Ω(k1/2) with constant probability; this means that bin 1 is under-loaded by at least

Ω(k1/2), and thus that some other bin is over-loaded by at elast Ω(k1/2/n).

To achieve (6) using the modified Proposition 8, we just need to cause the smallest load to be k =
Θ(

√

m/(n log n)) smaller than the other loads—this can again be achieved again by performing m insertions

and then deleting each ball independently with probability 1/2. After the m insertions, every bin will have

essentially the same load (±O(log logn) w.h.p. in n). Conditioning on the loads, the number of balls deleted

from each bin is a Gaussian with standard deviation σ = Θ(
√

m/n) (and the Gaussians are independent

between bins). By standard estimates on order statistics, the difference in loads between the least loaded

and the second least loaded bins is roughly the difference between the 1/n-th and 2/n-th percentile of the

distribution, see e.g., [Roy82], which in expectation is Θ(σ/
√

logn) for the Gaussian N(0,σ2)—hence an

imbalance of k = Θ(m/(n log n)).

3.2 The Stronger Ω(m1/2) Lower Bound

We now show how to achieve the stronger bound of m/4+Ω(
√

m) balls in some bin. Given Proposition

8, to prove Theorem 7 it suffices to show how to achieve a gap of k = Ω(m) between bin 1 and bins 2,3,4.

This is accomplished in the following proposition.

Proposition 9. Consider the GREEDY algorithm on 4 bins, with the restriction that at most m balls can be

present at a time. There exists an oblivious sequence of poly(m) insertions/deletions such that, after the

sequence is complete, we have the following property with probability Ω(1): Bin 1 contains Ω(m) fewer

balls than each of bins 2,3,4.
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The rest of the section is focused on the proof of Proposition 9.

Let 0 < ε1,ε2,ε3 < 1 be constants, where ε2 is sufficiently small as a function of ε1, and let ε3 is suf-

ficiently small as a function of ε2. Sometimes we will write ε1,ε2,ε3 inside the O(·) notation, to make the

dependence on them explicit, while hiding fixed constants that do not depend on ε1,ε2,ε3.

3.2.1 Some basic gadgets

We begin with a basic technical lemma establishing that GREEDY has a tendency of eliminating imbalances

over time. For brevity (and since the proof follows from standard arguments), we defer the proof of Lemma

10 to Appendix A.

Lemma 10. Consider the GREEDY algorithm on 4 bins, and fix an arbitrary initial state in which the bins

have loads within ε2m of each other. If ε1m insertions are performed, then after the sequence is complete,

all of the bins have loads within O(logm) of each other with high probability in m. Furthermore, with high

probability in m, there is a point in time prior to the final insertion at which all of the bins have equal loads.

Using Lemma 10, we now construct a simple strategy for forcing GREEDY to add a ball to a uniformly

random bin.

Lemma 11 (Uniform ball placement gadget). Consider the GREEDY algorithm on 4 bins, and fix an arbi-

trary initial state in which the bins have loads within ε2m of each other. Suppose we insert balls x1, . . . ,xε1m,

and then we delete balls x1, . . . ,xε1m−1 (all except the last insertion). With high probability in m, this is

equivalent to placing the ball xε1m uniformly at random into one of the bins 1,2,3,4.

Proof. We have by Lemma 10 that, with high probability in m, there is some insertion xi, i ∈ [ε1m−1], after

which the bins have equal loads. It follows that, from the perspectives of insertions xi+1, . . . ,xε1m, the four

bins are symmetric. Thus the last insertion xε1m is equally likely to be placed into each of the bins, which

establishes the lemma.

Lemma 11 allows for us to place a ball into a random bin, but we can only do this O(m) times before

there are too many balls (> m) in the system. But for the purposes of Proposition 9, we will need to do this

Ω(m2) times. Our next lemma provides a mechanism for reducing the number of balls that are present while

having only a small effect on the relative loads of the bins.

Lemma 12 (Almost equal load reduction gadget). Consider the GREEDY algorithm on 4 bins, and fix

an arbitrary initial state in which the bins 1,2,3,4 have loads ℓ1, ℓ2, ℓ3, ℓ4 within ε2m of each other. We

can construct an oblivous sequence of O(ε1m) insertions/deletions such that, after this sequence, the total

number of balls in the system is at most ε1m; and such that, with high probability in m, the new bin loads ℓ′i
for i ∈ [4] satisfy

ℓ′i = ℓi − r+Y (i), (7)

where r ∈ N, |Y (i)| ≤ O(log m), and E[Y (i)] = 0.

Proof. Let us begin by describing is a sequence of O(ε1m) insertions/deletions after which (1) the total

number of balls in the system is at most ε1m; and (2) the new loads ℓ′i of the bins satisfy (w.h.p. in m)

ℓ′i = r− ℓi +Y (i), (8)

where r ∈ N, |Y (i)| ≤ O(log m), and E[Y (i)] = 0. (Note that (8) is the same as (7) but with r and ℓi flipped).

The lemma would then follow by applying the above construction twice. That is, first we obtain

ℓ′1, ℓ
′
2, ℓ

′
3, ℓ4 satisfying (8), and then apply it again to obtain ℓ′′1, ℓ

′′
2 , ℓ

′′
3 , ℓ

′′
4 satisfying

ℓi
′′ = r′− ℓ′i +Y ′(i), (9)
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where r′ ∈N, |Y ′(i)| ≤ O(log m), and E[Y ′(i)] = 0. Chaining together (8) and (9), we get relationship between

ℓ1, ℓ2, ℓ3, ℓ3 and ℓ′′1 , ℓ
′′
2 , ℓ

′′
3, ℓ

′′
4 as desired by (7).

Our construction for achieving (8) is very simple: we perform ε1m insertions x1,x2, . . . ,xε1m, and then

we delete all of the other elements besides x1,x2, . . . ,xε1m. Let ℓi be the load of bin i before these inser-

tions/deletions, let qi be the load of bin i after the insertions are completed (but the deletions have not yet

begun), and let ℓ′i be the load of bin i after the deletions have completed.

By Lemma 12, the quantities q1,q2,q3,q4 are within O(logm) of each other (w.h.p. in m). Moreover,

w.h.p. in m, there is some point during the insertions at which all of the bins have equal loads—if we

condition on this, then we have E[q1] = E[q2] = E[q3] = E[q4] by symmetry. Defining Y (i) = qi −E[qi], we

have |Y (i)| ≤ O(logm), and E[Y (i)] = 0.

As ℓ′i = qi − ℓi, we have ℓ′i = E[qi]+Y (i)− ℓi. Setting r = E[qi], it follows that (8) holds w.h.p. in m.

3.2.2 Applying the gadgets

We say that an application of Lemma 11 or of Lemma 12 fails if either: the precondition of ℓ1, ℓ2, ℓ2, ℓ4

being within ε2m of each other fails (this is a precondition failure); or the high-probability guarantee offered

by the lemma fails (this is a probabilistic failure).

We now describe the sequence of insertions/deletions that we use to achieve Proposition 9. We perform

ε3m phases, where phase a ∈ [ε3m] proceeds as follows:

• Apply Lemma 11 m times, one after another. For b ∈ [m], use Zm·(a−1)+b to denote the bin that the b-th

application of the lemma adds a ball to. If the lemma fails, then for the sake of analysis, we redefine

Zm·(a−1)+b to be uniformly random in [4]. This ensures that, regardless of whether the lemma fails,

the Zi’s are independently and uniformly random in [4].

• Apply Lemma 12 once to reduce the loads almost equally. Let Y
(1)
a ,Y

(2)
a ,Y

(3)
a ,Y

(4)
a denote the out-

comes of Y (1),Y (2),Y (3),Y (4) in that application of the lemma. If the lemma fails, then for the sake of

analysis, we redefine Y
(1)
a ,Y

(2)
a ,Y

(3)
a ,Y

(4)
a to be 0.

To analyze the sequence of insertions/deletions, we first argue that the Y
(s)
i s have a negligible effect on

the loads of the bins at any given moment.

Lemma 13. Let s ∈ [4] and k ∈ [ε3m]. Then w.h.p. in m, it holds that for each k, |∑k
a=1Y

(s)
a | ≤ Õ(

√
m),

where Õ(·) hides polylogarithmic factors in m.

Proof. The sequence of partial sums Pr = ∑r
a=1Y

(s)
a for r = 0, . . . ,k forms a martingale satisfying |Pr −

Pr−1|= O(logm) deterministically for each r ∈ [k]. The lemma follows from Azuma’s inequality.

Next we consider the effect of the ε3m2 insertions Zi over the εm phases, and show that with probability

at least 1− ε2, there is no point in time at which the Zi’s cause an imbalance of more ε2m/2.

For k ∈ [ε3m2] and s ∈ [4], let

S(k,s) = |{i ∈ [k] | Zi = s}|
denote the number insertions in bin s during the first k applications of Lemma 11.

Lemma 14. Let s ∈ [4] and ε2 = (2ε3)
1/3. With probability at least 1− ε2, it holds (simultaneously) for all

k ∈ [ε3m2] that

|S(k,s)− k/4| ≤ ε2m/2.
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Proof. As Zi is equal to s independently with probability 1/4, the sequence S(k,s)−k/4 for k= 0,1, . . . ,ε3m2

forms a martingale with increments {−1/4,3/4} (and hence variance at most 1). By the maximal inequality

for martingales, for any λ > 0,

Pr
[

max
k∈[ε3m2]

|S(k,s)| > λ
]

≤ 2
Var[S(ε3m2,s)]

λ2
≤ 2

ε3m2

λ2
.

Setting λ = m(2ε3/ε2)
1/2 so that the right hand side above is ε2, and choosing ε3

2 ≤ 2ε3 so that λ ≥ ε2m

gives the claimed result.

Combining Lemmas 13 and 14, we can bound the probability of any failures occurring during our

construction.

Lemma 15. With probability at least 1− ε2 −1/poly(m), no failures (either precondition failures or prob-

abilistic failures) occur during the construction.

Proof. Probabilistic failures occur with probability only 1/poly(m) per application of Lemma 11 or Lemma

12. Across the O(m2) applications of the lemmas, the probability of a probabilistic failure ever occurring is

at most 1/poly(m). For the rest of the proof, we condition on no probabilistic failures occurring.

We now bound the probability of any precondition failure. Before any particular application of Lemma

11 or Lemma 12 (during the input sequence of insertions/deletions), for bin s ∈ [4], the amount by which its

load differs from the mean can be expressed as

∣

∣

∣

k1

∑
i=1

Y
(s)

i +S(k2,s)− k2/4

∣

∣

∣

for some k1,k2. By Lemmas 13 and 14, the probability that this quantity ever exceeds ε2m (and hence any

precondition failure occurring) is at most ε2 +1/poly(m), which completes the proof.

Finally, we argue that with probability at least ε1, the Zi’s do cause an imbalance of Ω(m) at the end of

the construction. In particular, bin 1 contains Ω(m) fewer balls than bins 2,3,4.

Lemma 16. With probability at least ε1, we have that

|S(ε3m2,1)}| < max
s∈{2,3,4}

|S(ε3m2,s)|−Ω(
√

ε3m).

Proof. Let Xs denote the number of such balls inserted in bin s. Then X1 is a binomial random variable with

mean µ = Θ(ε3m2). Thus, with probability at least 2ε1, we have that, X1 ≤ µ− 10
√

µ. On the other hand,

if we condition on some value ≤ µ− 10
√

µ for X1, then the variables X2,X2,X4 become binomial random

variables with means µ′ > µ. Each Xi has probability at least 0.9 of satisfying Xi > µ′− 5
√

µ′ ≥ µ− 5
√

µ.

Thus, if we condition on X1 ≤ µ− 10
√

µ, then the probability at least 0.7, we have X2,X3,X4 > µ− 5
√

µ.

Putting these together, the probability that max{X2,X3,X4}−X1 > 5
√

µ is at least

Pr[X1 ≤ µ−10
√

µ] ·Pr[X2,X3,X4 > µ−5
√

µ | X1 ≤ µ−10
√

µ]≥ 2ε1 ·0.7 > ε1.

We can now complete the proof of Proposition 9.

Proof of Proposition 9. We prove the proposition using the construction described in this section. Note that,

by design, there are never more than m balls present at a time, as Lemma 12 brings the number of balls back

down to ε1m every O(ε1m) operations.
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By Lemma 15, with probability at least 1− ε2 − 1/poly(n), all of the applications of Lemma 11 and

Lemma 12 succeed. Conditioned on this, at the end of the construction, the gap of each bin s ∈ [4] can be

expressed as
ε3m

∑
i=1

Y
(s)
i +S(ε3m2,s)− ε3m2/4.

By Lemma 13, we have

∣

∣

∣∑
ε3m
i=1 Y

(s)
i

∣

∣

∣
≤ Õ(

√
m) with high probability in m. On the other hand, by Lemma 16,

|S(ε3m2,1)| < max
s∈{2,3,4}

|S(ε3m2,s)|−Ω(
√

ε3m)

with probability at least ε1. It follows that, with probability at least ε1 − ε2 −1/poly(n), the load of bin 1 at

the end of the construction is Ω(
√

ε3m) smaller than the loads of bins 2,3,4.

4 An Impossibility Result For The Deletions with Reinsertions

In this section we prove an impossibility result for the reinsertion/deletion model, namely, that no ID-

oblivious insertion strategy can guarantee sub-polynomial overload.

Theorem 17. Consider the reinsertion/deletion model with 4 bins, and with a limit of up to m balls present

at a time. Against any ID-oblivious insertion strategy, it is possible for an oblivious adversary to force a

maximum load of m/4+mΩ(1) at some point in the first poly(m) operations, with high probability in m.

The section splits the proof of Theorem 17 into two parts. First, in Subsection 4.1, we introduce and

analyze the so-called marble-splitting game; then, in Subsection 4.2 we show how to perform a sequence of

insertions/deletions that simulates an instance of the marble-splitting game and forces some bin to contain

load m/4+mΩ(1) with non-negligible probability.

4.1 The Marble-Splitting Game

In this section we present and analyze a simple game, which we call the marble-splitting game—the game

plays an important role in our lower bound for balls-and-bins games with reinsertions.

In the marble-splitting game, there are two players Alice and Bob. The player Alice has two types of

moves: she can perform an INSERT operation, which adds a new marble into the game, or she can perform a

SPLIT(x,y) operation, which takes two marbles x and y and replaces them with new marbles x′ and y′. Alice

must decide her moves at the beginning of time (so she is an oblivious adversary).

The second player Bob gets to assign a value vx to each marble x, according to the following rule:

whenever Alice performs an INSERT, Bob can assign the new marble an arbitrary real-numbered value in

the range [−1,1]; and whenever Alice performs a SPLIT(x,y) operation, Bob assigns x′ and y′ values vx′ and

vy′ satisfying

vx′ + vy′ = vx + vy±o(R−2), and vx′ − vy′ ≥ 2/R. (10)

Equivalently, vx′ = (vx + vy)/2+∆±o(R−2) and vy′ = (vx + vy)/2−∆±o(R−2) for some ∆ ≥ 1/R.

Alice’s goal is to force some marble (she need not know which one) to have a value greater than 1 at

some point within the first O(R3) steps of the game. Her disadvantage is that she does not know the precise

values of marbles. Intuitively, she would like to perform split operations on marbles x and y that satisfy

|v(x)− v(y)| = o(1/R). But she might, for example, accidentally split two marbles x and y whose values

differ considerably—this would result in x′ and y′ having values that are closer together than x and y had,
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which is intuitively counterproductive for Alice. We shall see that, nonetheless, Alice can deterministically

force a win within O(R3) steps.

In constructing Alice’s strategy, we will find it helpful for accounting purposes to artificially place the

following additional constraints on Alice. We think of there as being bags 0,1,2, . . ., each of which is capable

of holding arbitrarily many marbles. Whenever a marble is inserted, we place it in bag 1. Whenever a split

SPLIT(x,y) operation is performed, we require that the marbles x and y are currently in the same bag i ≥ 1

as each another, and after the split, we place the new marbles x′ and y′ into bags i+1 and i−1, respectively.

This restriction somewhat limits Alice’s possible strategies, but, as we shall see, it also simplifies the task of

analyzing Alice’s “progress” over time.

The key result of this section is the following.

Proposition 18. Alice can deterministically force some marble to have a value greater than 1 at some point

within the first O(R3) steps of the game. Moreover, the strategy performs only O(R2) insertions.

Proof. We begin by describing Alice’s strategy. Let c be a large positive constant. She initially performs

one insertion into bag 1. She then proceeds in cR phases, where at the beginning of phase i ∈ {1,2, . . . ,cR},

the state of the system is as follows: bag 0 contains some arbitrary number of marbles; bags 1,2, . . . , i each

contain one marble; and bags i+1, i+2, . . . are empty.

The i-th phase consists of (i+1) sub-phases, where at the beginning of each subphase j ∈ {1,2, . . . , i+
1}, the state of the system is as follows: bag 0 contains some arbitrary number of marbles; and, with

the exception of bag i− j + 2, which is empty, all of bags 2,3,4, . . . , i+ 1 contain one marble (so bags

1,2,3,4, . . . , i− j + 1 each contain one marble; bag i− j + 2 is empty; and bags i− j + 3, . . . , i+ 1 each

contain one marble).

The (i+1)-th subphase is special in that, all Alice does is perform one more insertion in order to reach

the starting state for phase i+1 (i.e., all of bags 1,2, . . . , i+1 contain 1 marble).

For j < i+1, the j-th subphase of phase i is implemented as follows. Alice inserts one marble into bag

1. She then performs splits, one after another, on bags 1,2,3, . . . , i− j+1. For each t ∈ {1,2, . . . , i− j} (i.e.,

for every split but the final split), after she performs a split on bag t, the state of the system is that: bags

1,2, . . . , t −1 contain one marble each; bag t is empty; bag t +1 contains 2 marbles; and bags t +2, t +3, . . .
are as they were at the beginning of the subphase. The final split that Alice performs (i.e., the split in

i− j+ 1) has the effect of placing a marble into the previously empty bags i− j and i− j+ 2, and leaving

bag i− j+1 as the solitary empty bag out of bags 0,1,2, . . . , i+1. Thus we reach the starting state for the

( j+1)-th subphase.

Analysis of the strategy. The analysis will need only the following basic facts about Alice’s strategy: (1)

it performs a total of O(c2R2) INSERT operations and Ω(c3R3) SPLIT operations; (2) it only places marbles

in bags i ≤ cR+1; and (3) at the end of the game, there is at most 1 marble in each bag i for i > 0.

Let Bi denote the marbles in bag i at any given moment, and define the potential function

φ =
∞

∑
i=0

i · ∑
x∈Bi

vx.

We will prove the proposition by analyzing how φ evolves over time.

Each time that an INSERT is performed, φ may decrease by up to 1, as vx ∈ [−1,1] and the marble is

inserted in bag 1. During the entire game, this leads to a decrease of at most O(c2R2).

Each time that a SPLIT is performed, two marbles x and y in some bag i are replaced by x′ and y′ with

values given by (10). Removing x and y decreases φ by i · (vx + vy) and inserting x′ and y′ increases φ by

(i+1)vx′ +(i−1)vy′ = i · (vx + vy)+ (vx′ − vy′)±o(iR−2)≥ i · (vx + vy)+1/R.
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The net effect of a split is therefore to increase φ by at least 1/R. As there are Ω(c3R3) split operations

across the entire game, this increases φ by Ω(c3R2).

Combining the bounds for INSERT and SPLIT operations, we have that, at the end of the game,

φ ≥ Ω(c3R2)−O(c2R2) = Ω(c3R2).

But this means that some bin i ≤ cR+1 must satisfy i ·∑x∈Bi
vx > Ω(c2R), and thus that ∑x∈Bi

vx > Ω(c). As

|Bi| ≤ 1, this implies that there is a ball x with vx > 1.

Remark. It is worth noting that, in the strategy in Proposition 18, we could have alternatively performed

all of the insertions into bag 1 up front (i.e., at the beginning of the game), and then applied the appropriate

SPLIT operations without performing any further insertions—each marble would simply remain in bag 1

until it was used for the SPLIT operations involving it. This perspective will be convenient in our application

of marble splitting.

4.2 Proof of Theorem 17

We will now derive a sequence of insertions/deletions that can be used to establish Theorem 17.

As notation, let Q = {(i, j) | i, j ∈ [4], i 6= j}, and let h be a fully independent hash function mapping

each ball x to a uniformly random pair h(x) = (h1(x),h2(x)) ∈ Q. Notice that |Q|= 12.

insertion

|{x ∈ A | h(x) = (1,2)}| = k/12+ t ±O(
√

k) (11)

and |{x ∈ A | h(x) = (3,4)}| = k/12− t ±O(
√

k). (12)

Note that E only depends on the hash values for balls in A.

We will show that, if we condition on E occurring, and if t is moderately large (i.e., c
√

k for some

sufficiently large positive constant c), then we can perform a sequence of insertions/deletions that make use

of the sets A and B in order to defeat any ID-oblivious insertion strategy. While E only has a small constant

probability of occurring, this can be amplified by repeating the strategy multiple times.

As a final but crucial piece of notation, for any set S of balls present in the system, define the value v(S)
to be the number of balls x ∈ S that reside in bins 1,2. The ultimate structure of our analysis will be to show

that, if an ID-oblivious algorithm guarantees a maximum load of m/4+mo(1) (with high probability), then

we can construct a set S for which we can derive the clearly false assertion that E[v(S)]> |S|.

4.2.1 Some basic gadgets

We will now prove a series of lemmas showing how to construct a malicious sequence of insertions/deletions

using the sets A and B (and conditioned on E). We begin by observing what happens if we simply insert the

elements A∪B in a random order.

Lemma 19. Consider a balls-and-bins game with 4 bins, starting from an arbitrary state. Suppose balls are

allocated to bins using an arbitrary ID-oblivious insertion strategy that has already been shown the sets A,B
(i.e., the algorithm can depend on the multisets {h(x) | x ∈ A} and {h(x) | x ∈ B}). Condition on event E ,

and suppose that we insert the balls A∪B in a random order. Then, after the insertions are completed, we

have

E[v(A)− v(B)]≥ t −O(
√

k).
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The intuition behind Lemma 19 is quite simple. For (i, j)∈ Q, define Ai, j (resp. Bi, j) to be the set of balls

in A (resp. B) that hash to the bin pair (i, j). Due to event E , we have that E[|A1,2|− |B1,2|] ≥ t −O(
√

k),
so this immediately gives A an extra t −O(

√
k) balls (in expectation) in bins 1,2 that B doesn’t get. On the

other hand, for each (i, j) ∈ Q\{(1,2),(3,4)}, we expect the number of balls from Ai, j that are in bins 1,2
to be roughly the same as the number of balls from Bi, j that are in bins 1,2, hence the conclusion of the

lemma. Formalizing this argument requires some care as the algorithm can try to distinguish the balls in A

from those in B based on the differences between |Ai, j| and |Bi, j|, for (i, j) ∈ Q. Thus we defer the full proof

of the lemma to Appendix B.

Our next lemma makes a simple observation about what happens when we remove a set X of balls and

replace it with a set X ′ of balls, in a balls-and-bins game that is at capacity (i.e., contains m balls).

Lemma 20. Consider a balls-and-bins game with 4 bins, starting with m balls in the system. Let X be a set

of r balls that are present. Suppose that we delete the balls X , and then insert new balls X ′, where |X ′|= r.

Then one of the following events must occur:

• there is some point in time at which some bin contains m/4+ω(
√

k) balls;

• or, |v(X)− v(X ′)|= O(
√

k).

Proof. Suppose that they are never more than m/4+Ω(
√

k) balls in any given bin. This means that, when-

ever there are m balls in the system, the number of balls in bins 1,2 must be within O(
√

k) of m/2.

When we remove balls X , we decrease the number of balls in bins 1,2 by v(X). When we insert balls

X ′, we increase the number of balls and bins 1,2 by v(X ′). In total, we must change the load of bins 1,2 by

O(
√

k), meaning that |v(X)− v(X ′)|= O(
√

k).

Gadget for splitting. By combining the previous two lemmas in the right way, we can construct a sequence

for splitting a set X of size poly(k) into two sets Y and Z such that v(Y )+ v(Z) = (1± o(k−1))v(X) and

E[v(Y )− v(Z)]≥ Ω(|X |/
√

k).

Lemma 21 (Splitting gadget). Consider a balls-and-bins game with 4 bins, starting from an arbitrary state

with m balls, and where balls are allocated to bins using an ID-oblivious insertion strategy that, as in Lemma

19, has already been shown the sets A,B, and that keeps the load of each bin below m/4+O(
√

k) w.h.p. in

m. Finally, condition on event E with t = c
√

k for some sufficiently large constant c > 0.

Let X be a set of q = k1.5 logk balls that are currently present in the system. There exists a sequence of

poly(k) insertions/deletions that (without ever placing more than m balls in the system at a time) replaces X

with q/2-element sets Y,Z satisfying

E[v(Y )− v(Z)]≥ k log k, (13)

and satisfying

E[v(Y )+ v(Z)] = v(X)±O(
√

k). (14)

Proof. Roughly speaking, the goal is to transfer the imbalance between the sets A and B (in how they allocate

balls to bins 1,2 vs. 3,4) to the set X , so that the resulting sets Y and Z have similar relative imbalance to

what A and B have. Of course, A and B have size k each, while X has size q = k1.5 log k, so the imbalance

between A and B needs to be amplified in order to get the same relative imbalance between Y and Z. As we

shall see, this is where we crucially make use of the ability to delete and reinsert A∪B multiple times.2

Let us partition X into sets X1,X2, . . . ,Xq/k of size k each. For each i ∈ [q/2k], we will replace X2i−1 by

a new set Yi and X2i by a new set Zi, in such a way that the relative imbalance between Yi and Zi is similar

2The other place where we make use of reinsertions is that, ultimately, we will apply Lemma 21 multiple times, and we will

continue to reuse A and B across those multiple applications.
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to that between A and B. This is accomplished by performing the following sequence of insertions and

deletions:

1. Delete the balls X2i−1 ∪X2i.

2. Insert the balls A∪B in a random order.

3. Delete the balls of A, and replace them with a set Yi of k elements.

4. Delete the balls of B, and replace them with a set Zi of k elements.

By Lemma 19, we have after Step (2) that

E[v(A)− v(B)]≥ t −O(
√

k).

By Lemma 20 (and since the insertion strategy keeps bin loads of m/4+O(
√

k) with high probability in m),

we then have that E[v(Yi)] and E[v(Zi)] are within O(
√

k) of E[v(A)] and E[v(B)], respectively. Thus

E[v(Yi)− v(Zi)]≥ t −O(
√

k)≥ 2
√

k,

where the final inequality uses the fact that t = c
√

k for a sufficiently large positive constant c.

Summing over i ∈ {1,2, . . . ,q/(2k)}, and denoting Y = ∪iYi and Z = ∪iZi, we get the claimed bound

E[v(Y )− v(Z)] = ∑
i

E[v(Yi)− v(Zi)]≥ k logk.

Next, applying Lemma 20 with X ′ = Y ∪Z, we have that either

v(Y )+ v(Z) = v(X)±O(
√

k),

or that there is some point in time at which a bin has load m/4+ω(
√

k). Since the latter event is assumed

to occur with probability at most 1/poly(m), this completes the proof of the lemma.

4.2.2 Connection to marble-splitting

We are now ready to prove Theorem 17. We begin by proving a slightly weaker version of the theorem,

namely that no ID-oblivious insertion strategy can offer a high-probability guarantee of achieving overload

mo(1).

Proposition 22. Consider the reinsertion/deletion model with 4 bins, and with a limit of up to m balls

present at a time. Suppose there is an ID-oblivious bin-allocation algorithm that, for the first poly(m) steps,

bounds the load of each bin by m/4+ f (m) with high probability in m. Then f (m) = mΩ(1).

Proof. Set k = mε for a positive constant ε to be selected later in the proof, and suppose for contradiction

that f (m) = O(
√

k).

Let A and B be disjoint sets of k balls each. Let c be a sufficiently large positive constant, and set

t = c
√

k. Finally, let E be the event that (11) and (12) hold. Note that E occurs with probability Ω(1); for

the rest of the proof, condition on E .

Let X1,X2, . . . ,Xck be disjoint sets of (k1.5 logk)/2 balls each. To begin, insert m balls into the system,

where those balls include X1,X2, . . . ,Xck. The sets X1,X2, . . . ,Xck will act as marbles in a marble-splitting

game. There are two types of operations that we will perform in this game: an INSERT operation, which

adds one of the sets X1,X2, . . . ,Xck as a new marble in the game; and a SPLIT(X ,Y ) operation, which takes
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two sets X and Y of size (k1.5 logk)/2 balls each, and applies Lemma 21 to replace them with sets X ′,Y ′

(also of (k1.5 logk)/2 balls each) satisfying

E[v(X ′)]
|X ′| − E[v(Y ′)]

|Y ′| ≥ 2/
√

k, (by (13))

E[v(X)]

|X | +
E[v(Y )]

|Y | =
E[v(X ′)]
|X ′| +

E[v(Y ′)]
|Y ′| ±o(1/k). (by (14))

If we define vX := E[v(X)]
|X | for each set X of k1.5/2 balls, it follows that we are playing a marble-splitting

game with R =
√

k, and where marbles correspond to sets of (k1.5 logk)/2 balls. By Proposition 18, there is

an O(R3) = O(k1.5)-step strategy that results in some marble X satisfying vX > 1. This is a contradiction,

since vX must deterministically be in the range [0,1].

Note that the marble-splitting game requires O(R2) = O(k) marbles at a time, each of which consists of

O(k1.5 logk) balls. Thus, the entire game uses O(k2.5 logk) balls, meaning that we can set k = m1/2.5−o(1).

We can therefore conclude that f (m) must be at least m1/5−o(1).

Finally, we prove Theorem 17 by applying a basic amplification argument to Proposition 22.

Proof of Theorem 17. By Proposition 22, there exists a parameter s ∈ poly(m) such that, within poly(m)
operations, an oblivious adversary can achieve maximum load m/4+mΩ(1) with probability 1/s. By in-

dependently repeating this construction Θ(s log n) = poly(m) times, the probability of achieving a load of

m/4+mΩ(1) at some point during the sequence becomes

1− (1−1/s)Θ(s log n) = 1−1/poly(n),

as desired.

5 Generalizations of MODULATEDGREEDY

We now generalize the MODULATEDGREEDY algorithm from Section 2 in several interesting ways:

1. We give guarantees over an infinite time horizon, instead of poly(m) steps.

2. We allow m (the maximum number of balls present in the system) to increase with time, and only

require an a-priori bound M on m.

3. We consider the more general (1+β)-choice and the graphical 2-choice settings (defined in Section

5.3) and extend the previous results for these settings (which were insertion-only) to also handle

deletions.

These generalizations require extending both the algorithm and the analysis techniques. We begin in

Subsection 5.1 by describing the algorithm and giving an overview of the key ideas; we then present the

analysis and applications in Subsections 5.2 and 5.3.

5.1 The Algorithm and Overview

The algorithm, which we call GENERALIZEDMODULATEDGREEDY, is described as Algorithm 2 below. Its

key properties are summarized in the following theorem.

Theorem 23. Consider the insertion/deletion model with n bins, and an arbitrarily long sequence of inser-

tions/deletions, with no more than M balls present at a time. Suppose the parameters n,M,ε are known to

the algorithm. Then the GENERALIZEDMODULATEDGREEDY algorithm satisfies the following guarantees:
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• Bounded Load: At any given moment, every bin has load at most m/n+O(ε−1 logM) with high

probability in M, where m is the largest number of balls that were ever present so far.

• Bounded Bias: For any given insertion, if i and j are the two bins being chosen between, then each

bin is selected with a probability in the range [1/2− ε,1/2+ ε].

Algorithm 2 The GENERALIZEDMODULATEDGREEDY algorithm. The algorithm has parameters M (an

upperbound on the number of balls that will ever be present) and ε, and makes use of a sufficiently large

constant c > 0. The algorithm outputs a bin and a color for the ball being inserted.

procedure GENERALIZEDMODULATEDGREEDY

For k ∈ [n], let ℓk denote # balls with color k. Let ℓ= 1
n ∑k ℓk.

Let m be the largest number of balls that have been present in the system at once thus far.

Let ∆ = cε−2 logM.

Set T = ⌈m/n⌉+∆− ℓ.
Select two bins i, j ∈ [n] independently and uniformly at random.

if (maxk ℓk)− (mink ℓk)≤ εT then

With probability 1/2+
ℓ j−ℓi

2T
, assign the ball to bin i and assign it color i.

Otherwise, assign the ball to bin j and assign it color j.

else

Declare the ball to be corrupted.

Select ρ ∈ [n] such that, for each k ∈ [n],

Pr[ρ = k] =
⌈m/n⌉+∆− ℓk

n ·T .

Assign the ball uniformly at random in {i, j} and assign it color ρ.

Notice that the algorithm assigns a ball both a bin and a color. Typically, the color is the same as the bin

to which the ball is assigned, but occasionally a ball will get corrupted, in which case the bin and color may

differ.Moreover, at any time, the maximum load is bounded with respect to m/n (instead of M/n).

Before giving the detailed analysis, we briefly describe the new ideas we need over those in Section 2.

Infinite time horizon. A key feature of the algorithm is that it offers guarantees on an infinite time horizon.

To achieve this we explicitly incorporate the coupling with the stone game into the design of the algorithm.

In particular, whenever there is an insertion that MODULATEDGREEDY would have been at risk of halting

on, GENERALIZEDMODULATEDGREEDY instead declares that ball to be corrupted. The algorithm then

“fudges” its bookkeeping: it treats the corrupted ball as being placed into whichever bin is necessary to

maintain the coupling with the stone game.

More concretely, we assign each ball both to a bin (where it truly resides) and to a color (which, if the

ball is corrupted, may differ from the ball’s bin). The algorithm makes all of its decisions based on ball

colors (and ignores the actual bins that balls reside in). This allows for the algorithm to maintain a coupling

forever between the colors of its balls and the colors of the balls in the stone game.

Increasing m. Another interesting feature is that the algorithm allows for m to grow over time, subject only

to the constraint m≤M. To handle this, GENERALIZEDMODULATEDGREEDY bases its allocation decisions

on the largest value of m that it has witnessed so far. At first glance, this seems to significantly break the

relationship between the balls-and-bins game and the stone game, and indeed Lemma 3 no longer holds—

however, as we shall see, the stone game and its analysis can be modified to also handle the incremental

growth in m over time.
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Bias, (1+β)-choice and graphical process. Finally, a third feature of the algorithm is that it introduces

a new variable ε that constrains the amount of bias that the algorithm is permitted to exhibit. We will

see at the end of the section that this seemingly minor modification allows us to extend the algorithm to

the (1+ β)-choice and the graphical 2-choice process, both of which are generalizations of the classical

2-choice process. Moreover, the guarantees of the resulting algorithms matches the previous known results

for the insertion-only case for these settings.

5.2 Algorithm Analysis

We now turn to proving Theorem 23. We begin by defining the generalized stone game, which extends the

stone game in Section 2. Then we show how this game is closely related to the balls and bins game and use

this relationship to analyze GENERALIZEDMODULATEDGREEDY.

5.2.1 The generalized stone game

The ∆-GENERALIZED STONE GAME has an inactive bag and an active bag. The inactive bag is initialized to

contain ∆ ·n stones xk, j for k ∈ [n] and q ∈ [∆], and the active bag is initialized to be empty. We say that the

ball xk,q has color k ∈ [n]. The game supports two operations that are performed by an oblivious adversary:

ACTIVATE() and DEACTIVATE(r).

The ACTIVATE() operation (described formally in Algorithm 3) takes two steps: First, the operation

moves a random stone from the inactive bag to the active bag. Second, if there are fewer than ∆ · n stones

in the inactive bag, then it computes the number Q ·n of stones currently in the system (active and inactive

bags), and it adds n new stones {xk,Q+1}k∈[n], one of each color, to the inactive bag. This second step is

different from the standard stone game in Section 2, and in particular, the total number of stones now can

increase over time (in increments of n).

The DEACTIVATE(r) operation works exactly as before—it takes whichever stone was added to the

active bag r-th most recently, and moves that stone back to the inactive bag.

Algorithm 3 The ACTIVATE method for the generalized stone game. The algorithm has parameter ∆. The

moves a random stone from the inactive bag to the active bag, and then (possibly) adds additional stones to

the inactive bag.

procedure ACTIVATE

Move a random stone from the inactive bag to the active bag.

if Inactive bag contains fewer than ∆ ·n balls then

Let Q ·n be # stones currently in the system

Add a batch BQ+1 = {xk,Q+1}k∈[n] of n new balls to the inactive bag.

We begin by proving a basic fact about the generalized stone game.

Lemma 24. Let c > 0 be a sufficiently large constant, and let ε,M be parameters. Fix any time in the

(cε−2 logM)-generalized stone game, and for k ∈ [n], let sk denote the number of stones with color k in the

inactive bag. With probability M−Ω(c), for each k ∈ [n], we have that

(1− ε/2)E[sk]≤ sk ≤ (1+ ε/2)E[sk].

Proof. Let Q · n be the number of stones currently in the system. For each q ∈ {1,2, . . . ,Q}, define Bq =
{xk,q}k∈[n]. The n stones in Bq are all inserted into the system in the same instant and are indistinguishable

from one another in terms of how they interact with the sequence of operations being performed. If there

are ak balls from Bk in the inactive set, then the probability that any of them have color i is simply ak/n.
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Thus, if we fix some outcome for the values of the ak’s, then we can write sk = ∑
Q
q=1 Ak, where Ak are

independent indicator random variables with Pr[Aq = 1] = aq/n. Using I to denote the set of balls in the

inactive set, the expected value of sk evaluates to

E[sk] =
Q

∑
q=1

aq/n = |I|/n.

By design, however, the inactive set always at least |I| ≥ ∆ · n = cε−2n log M balls, so that E[sk] ≥
Ω(cε−2 log M). Applying a Chernoff bound (and as c is a large constant), for each k ∈ [n], sk lies between

(1− ε/2)E[sk] and (1+ ε/2)E[sk] with probability M−Ω(c).

5.2.2 Coupling with GENERALIZEDMODULATEDGREEDY

Next we establish the connection between the generalized stone game and the GENERALIZEDMODULAT-

EDGREEDY algorithm.

First, as in Section 2, the oblivious sequences of insertion/deletions for the balls-and-bins game maps

to an input sequence of the ∆-generalized stone game as follows: each insertion in the balls-and-bins game

causes an activation in the stone game, and each deletion DELETE(x) in the balls-and-bins game causes a

deactivation DEACTIVATE(r), where r − 1 is the number of balls present in the balls-and-bins game that

were inserted after x.

The following key lemma shows that the random choices in the two games can be coupled.

Lemma 25 (Coupling). Consider a sequence S of insertions/deletions in a balls-and-bins game on n bins,

with no more than M balls present at a time. Let G1 be a balls-and-bins game with operation-sequence S ,

let ∆ = cε−2 logM, and let G2 be ∆-generalized stone game with operation sequence φ(S).

If G1 is implemented using the GENERALIZEDMODULATEDGREEDY algorithm with parameters M,c
and ε, then there exists a coupling between G1 and G2 such that: (1) the number of balls with a given color

k ∈ [n] in G1 always equals the number of active-bag stones with color k in G2; and (2) the total number n ·Q
of stones in G2 always satisfies Q = ⌈m/n⌉+∆, where m is the largest number of balls ever present at once

so far in the balls-and-bins game.

Proof. Let ℓk denote the number of balls with color k at any given moment and let ℓ= ∑k ℓk/n. By Lemma

2 (modified so that T = ⌈m/n⌉+∆− ℓ and Tk = ⌈m
n
⌉+∆− ℓk), we know that, on any given insertion in

which GENERALIZEDMODULATEDGREEDY does not create a corrupted ball, each color k is selected with

probability
Tk

n ·T =
⌈m

n
⌉+∆− ℓk

n ·T . (15)

On the other hand, on insertions that do create corrupted balls, we have by design that (15) is still the

probability of color k being selected. Thus, (15) is always the probability of any given color k being selected

on any given insertion.

Next we turn our attention to the generalized stone game. By design, the number n ·Q of stones in the

generalized stone game at any given moment satisfies Q = ⌈m/n⌉+∆, where m is the largest number of

balls that have ever been present at once in the balls-and-bins game. Suppose that, for each color k there are

ℓk stones with color k in the active set of the stone game. Then on any given activation, the probability of a

ball with color k being moved into the active set is

Q− ℓk

n ·Q−∑i ℓi

=
⌈m

n
⌉+∆− ℓk

n · (⌈m
n
⌉+∆− ℓ)

=
⌈m

n
⌉+∆− ℓk

n ·T . (16)
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The two probabilities (15) and (16) are precisely equal. Thus, we can couple the games so that the color

selected by the insertion in the balls-and-bins game is the same as the stone color selected by the activation

in the stone game.

If we implement the insertions/activations in this way, then the deletions/deactivations also become

coupled: whenever a ball is deleted with a color k, a stone with color k is removed from the active bag

(in particular, the ball and stone were assigned to have the same color when they were inserted/activated

previously). Thus the proof of the lemma is complete.

Combining Lemmas 25 and 29, we can bound the probability that a given ball is corrupted.

Lemma 26 (Corruption probability). Consider a sequence of insertions/deletions in a balls-and-bins game

on n bins with no more than M balls ever present at a time, and suppose that insertions are implemented using

the GENERALIZEDMODULATEDGREEDY algorithm with parameters M and ε. For any given insertion, the

probability that the ball being inserted is corrupted is at most 1/poly(M).

Proof. For k ∈ [n], let ℓk denote the number of balls with color k. Let ℓ = ∑k ℓk/n and let ∆ = cε−2 logM,

where c is the constant used by GENERALIZEDMODULATEDGREEDY. In order for the inserted ball to be

corrupted, we would need

(

max
k

ℓk

)

−
(

min
k

ℓk

)

> εT = ε(⌈m/n⌉+∆− ℓ). (17)

If we couple the process to a ∆-generalized stone game as in Lemma 25, then we have (1) that the number

of balls with each color k in the active bag of the generalized stone game is ℓk; and (2) that the total number

of stones in the generalized stone game is n(⌈m/n⌉+∆). It follows by Lemma 29 that, w.h.p. in M,

(1− ε/2)E[sk]≤ sk ≤ (1+ ε/2)E[sk],

where sk = ⌈m/n⌉+∆−ℓk and E[sk] = ⌈m/n⌉+∆−ℓ. That is, each sk deviates by at most 1
2
ε(⌈m/n⌉+∆−ℓ)

from its mean. The same holds for each ℓk (as ℓk + sk is fixed), which implies that (17) does not occur.

Finally, we can prove Theorem 23.

Proof of Theorem 23. It suffices to prove the Bounded Load guarantee, since the Bounded Bias guarantee

is hardcoded into the GENERALIZEDMODULATEDGREEDY algorithm by design. In particular, given the

bin choices i, j, if the ball is not corrupted then |ℓi − ℓ j| ≤ εT and it is assigned to bin i with probability

1/2+(ℓ j − ℓi)/2T ≤ 1/2+ ε/2. On the other hand if it is corrupted, then it is assigned uniformly.

Let ∆ = cε−2 logM. Couple the balls-and-bins game to the ∆-generalized stone game as in Lemma 25,

and consider the state of both systems at some fixed point in time.

By Lemma 26, we have with high probability in M that there are no corrupted balls in the balls-and-bins

game. Thus the number of balls in any given bin k (in the balls-and-bins game) is equal to the number of

active-bag stones with color k (in the generalized stone game). Moreover, if m is the most balls that were

ever present in the balls-and-bins game, the number of stones in the generalized stone game is ⌈m/n⌉+∆.

Using ℓk to be the number of active-bag stones with color k, and sk to be the number of inactive-bag

stones with color k, by Lemma 29 we have that sk > (1− ε)E[sk]≥ (1− ε)∆, which gives the desired bound

ℓk = ⌈m/n⌉+∆− sk ≤ ⌈m/n⌉+ ε∆ = m/n+O(ε−1 logM).

5.3 Extensions

We conclude the section with applications of GENERALIZEDMODULATEDGREEDY to several more general

settings.
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(1+β)-choice process. The (1+β)-choice setting was proposed by Peres, Talwar, and Wieder [PTW10b]

as a useful generalization of the 2-choice process, where each insertion selects a random bin with probability

(1−β), and gets to choose between two random bins i, j with probability β. For any fixed β< 1, they showed

that in the insertion-only case, the GREEDY algorithm achieves maximum load m/n+Θ(β−1 log n) with high

probability in n; this load becomes m/n+Θ(β−1 logm) if one wishes for a high-probability guarantee in m.

They further proved that these bounds are optimal for any (1+β)-choice insertion strategy.

We can directly use GENERALIZEDMODULATEDGREEDY to construct an optimal (1+β)-choice inser-

tion strategy for the insertion/deletion model.

Theorem 27. Consider a balls-and-bins game with n bins and with no more than m balls present at a time.

In the insertion/deletion model, there exists a (1 + β)-choice algorithm that at any given moment, with

probability in m, has maximum load

m/n+O(β−1 logm).

Proof. If we set ε = β/2, then GENERALIZEDMODULATEDGREEDY selects between bins i, j with a prob-

abilities in the range 1/2± ε; this is equivalent to selecting a random bin (i.e., a random one of i, j) with

probability 1−2ε = 1−β, and then selecting between bins i, j with a probabilities in the range [0,1].

Graphical-Allocation. Graphical allocation is another generalization of the 2-choice model, introduced

by Kenthapadi and Panigrahy [KP06]. Here we are given an arbitrary fixed d-regular graph G on n vertices

(i.e., bins). To assign a ball to a bin, we select a uniformly random edge e = (v1,v2) choose one of bins

v1,v2. The classic 2-choice process corresponds to the complete graph G = Kn.

Bansal and Feldheim [BF22] showed that, in the insertion-only case, it is possible to guarantee a maxi-

mum load of m/n+O((d/k) log4 n log logn) w.h.p. in n, where k is the edge-connectivity of G. The linear

dependence on (d/k) is necessary and the bound becomes m/nO((d/k) log m log3 n log log n) if one requires

the bound to be w.h.p. in m.

Their algorithm reduces the problem, in a black-box manner, to that of constructing a (1+ β)-choice

strategy on two bins (in particular, where the two “bins” represent sibling sets in a binary hierarchical

decomposition of the vertices of G, and the different sibling pairs use different choices for β, see [BF22]).

In the insertion-only case [BF22], they use the GREEDY (1+β)-choice strategy—to extend this to handle

deletions, we can simply use GENERALIZEDMODULATEDGREEDY instead (as in Theorem 27). Together

with the framework developed in [BF22], this gives the following result.

Theorem 28. Consider a graphical process where, given a k-edge-connected d-regular graph G on n vertices

(i.e., bins), the two bin choices for each ball ball are given by the endpoints of a uniformly random edge

e = (v1,v2) of G. Consider any sequence of insertions/deletions where the number of balls in the system

never exceeds m. Then it is possible to guarantee a maximum load of m/n+O((d/k) log m log3 n log logn)
w.h.p. in m, at any given moment.

A Proof of Lemma 10

We prove Lemma 10, reformulated here to use a constant c in place of constants ε1,ε2, and to use a variable

k in place of ε2m:

Lemma 29 (Lemma 10 reformulated). Let c > 0 be a sufficiently large constant. Consider the GREEDY

algorithm on 4 bins, and fix an arbitrary initial state in which the bins have loads within k of each other. If

ck insertions are performed, then after the sequence is complete, all of the bins have loads within O(logk)
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of each other with high probability in k. Furthermore, with high probability in k, there is some intermediate

point in time during which all of the bins have equal loads.

We break the proof of this lemma into a few simple claims.

Claim 30. Given an arbitrary initial state with bin loads within k of each other, if j ≥ ck insertions are

performed, then at end of the sequence, the bin loads will be within O(logk) of each other, w.h.p. in k.

Proof. Let Di, j be the difference between the loads of the i-th and j-th bins (where i 6= j). It suffices to show

that, after the insertions are complete, Di, j ≤ O(log k) with high probability in k.

Notice that whenever Di, j 6= 0 and we insert a ball, Di, j has a random increment with Ω(1) bias towards

0 (it surely decreases by 1 when i, j are the two choices, which has Ω(1) probability as n = 4, and has zero

bias otherwise). So starting at |Di, j| ≤ k, w.h.p. in k that the random walk thus reaches 0 within O(k) ≤ ck

steps. Moreover, each time that the random walk hits 0, w.h.p. in k it will hit 0 again within O(log k) steps.

Thus, after the ck insertions are performed, we have |Di, j|= O(logk) w.h.p. in k.

Next we show that, during the insertions, the loads become equal at some point with probability Ω(1).

Claim 31. Given any arbitrary initial state the bin loads within k of each other, if 2ck insertions are per-

formed, then with probability at least Ω(1) there is some time at which all the 4 bins have equal loads.

Proof. This follows by iterated applications of Claim 30. After ck insertions, all the 4 the bins have loads

within T1 = O(logk) of each other, w.h.p. in k. After cT1 further insertions, the bins have loads within T2 =
O(logT1) of each other, w.h.p. in T1. After cT2 further insertions, the bins have loads within T3 = O(log T2)
of each other, w.h.p. in T2. Continuing like this, after c(k+T1+T2+ · · ·+TO(log∗ n)) = (c+o(1))k insertions,

we reach a state where all bin loads are within O(1) of each other with probability Ω(1). Once this occurs,

we have with probability Ω(1) that during the next O(1) insertions after that, there is a point at which the 4

bins have equal loads.

Finally, we amplify Claim 31 in order to achieve a high-probability bound.

Claim 32. Given an arbitrary initial state with bin loads within k of each other, if ck insertions are performed,

then w.hp. in k there is some time when all the bins have equal loads.

Proof. By Claim 30, w.h.p. in k) the loads are within T = O(logk) of each other during each of the final

ck/2 insertions. Break these insertions into Ω(k/ log k) chunks of size 2cT . Within each chunk, we have by

Claim 31 that the loads equalize (at some point) with probability at least Ω(1). Thus, the probability that

the loads stay unequal during all Ω(k/ log k) chunks is exp(−Ω(k/ log k)).

Combined, Claims 30 and 32 imply Lemma 29.

B Proof of Lemma 19

For (i, j) ∈ Q, define Ai, j (resp. Bi, j) to be the set of balls in A (resp. B) that hash to the bin pair (i, j). Let

ai, j = |Ai, j| and bi, j = |Bi, j|. Let

pi, j =
v(Ai, j ∪Bi, j)

|Ai, j ∪Bi, j|
denote the (random) fraction of balls in Ai, j ∪Bi, j that are placed into bins 1,2.

We remark that there are two sources of randomness in this lemma: the first, which we denote by R1, is

the outcome of the hashes of the balls in A and B (i.e., the random bits that determine {ai, j} and {bi, j}); the

second, which we denote by R2, is the random order in which the balls A∪B are inserted into the system.
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Note that, from the perspective of the ID-oblivious insertion strategy, the balls Ai, j are indistinguishable

from the balls Bi, j (this is due to the randomness from R2). Thus we have that, for any fixed outcome of R1,

E [v(Ai, j)− v(Bi, j) | R1] = E[pi, j(ai, j −bi, j) | R1].

Summing over (i, j) ∈ Q, we have that (again for any fixed outcome of R1)

E[v(A)− v(B) | R1] = ∑
(i, j)∈Q

E [v(Ai, j)− v(Bi, j) | R1] = ∑
(i, j)∈Q

E[pi, j(ai, j −bi, j) | R1].

Considering all outcomes for R1 that satisfy E , it follows that

E[v(A)− v(B) | E ] = ∑
(i, j)∈Q

E[pi, j(ai, j −bi, j) | E ].

Thus, to prove the lemma, it suffices to show that

E

[

∑
(i, j)∈Q

pi, j(ai, j −bi, j) | E

]

≥ t −O(
√

k).

Note that p(1,2) = 1 and p(3,4) = 0 deterministically. Moreover,

E[a1,2 −b1,2 | E ]≥ E[k/12+ t −O(
√

k)−b1,2] = t −O(
√

k)−E[b1,2 − k/12] = t −O(
√

k).

Thus

E

[

∑
(i, j)∈Q

pi, j(ai, j −bi, j) | E

]

= E[a1,2 −b1,2 | E ]+E

[

∑
(i, j)∈Q\{(1,2),(3,4)}

pi, j(ai, j −bi, j) | E

]

= t −O(
√

k)+E

[

∑
(i, j)∈Q\{(1,2),(3,4)}

pi, j(ai, j −bi, j) | E

]

≥ t −O(
√

k)− ∑
(i, j)∈Q\{(1,2),(3,4)}

E[|ai, j −bi, j| | E ].

To complete the proof, it suffices to show that for each (i, j) ∈ Q\{(1,2),(3,4)}, we have

E[|ai, j −bi, j| | E ]≤ O(
√

k).

Let αi, j = E[ai, j | E ] and βi, j = E[bi, j | E ]. By Chernoff bounds, we know that E[|ai, j −αi, j| | E ] ≤ O(
√

k)
and E[|bi, j −βi, j| | E ]≤ O(

√
k). Thus, it suffices to show that

|αi, j −βi, j|= O(
√

k).

For each ball x ∈ A with h(x) /∈ {(1,2),(3,4)}, we have that h(x) is random among the |Q|− 2 = 10 pairs

in Q \{(1,2),(3,4)}; and for each ball x ∈ B, we have that h(x) is random among the |Q|= 12 pairs in Q.

Thus αi, j = E[ 1
10
(k−a1,2 −a3,4) | E] and βi, j = k/12. Finally, as a1,2 +a3,4 = k/6±O(

√
k) (conditioned on

event E occurring), we get

αi, j −βi, j = E

[

1

10
(k−a1,2 −a3,4) | E

]

− k/12 =
1

10
(k− k/6)− k/12±O(

√
k) =±O(

√
k),

which completes the proof.
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congestion circuit routing in multistage interconnection networks. In Symposium on Theory of Com-

puting (STOC), pages 378–388. ACM, 1998.
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