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Abstract

In this work, we study the problem of community detection in the stochastic block model
with adversarial node corruptions. Our main result is an efficient algorithm that can tolerate
an ǫ-fraction of corruptions and achieves error O(ǫ) + e−

C

2
(1±o(1)) where C = (

√
a−
√
b)2 is the

signal-to-noise ratio and a/n and b/n are the inter-community and intra-community connection
probabilities respectively. These bounds essentially match the minimax rates for the SBM
without corruptions. We also give robust algorithms for Z2-synchronization. At the heart of
our algorithm is a new semidefinite program that uses global information to robustly boost the
accuracy of a rough clustering. Moreover, we show that our algorithms are doubly-robust in the
sense that they work in an even more challenging noise model that mixes adversarial corruptions
with unbounded monotone changes, from the semi-random model.
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1 Introduction

The stochastic block model (SBM) was introduced by Holland, Laskey and Leinhardt [HLL83] in
1983. It generates a random graph with a planted community structure. For now, we focus on the
case of two equal-sized communities. The model works as follows: There is an unknown bisection
of the n nodes in the graph and each of the two groups is called a community. Pairs of nodes are
connected by an edge independently according to the following rules: If the nodes belong to the
same community, the connection probability is a/n. And otherwise, if the nodes belong to different
communities, the connection probability is b/n. Here a and b are parameters and the goal is to
understand how well we can approximate the planted bisection for different choices of a and b.

The stochastic block model has been extensively studied over the years. It is known that
the model exhibits various sharp statistical phase transitions. For example, in the weak recovery
problem, the goal is to get nontrivial agreement with the planted bisection. Decelle et al. [DKMZ11]
conjectured that weak recovery is possible iff (a− b)2 > 2(a + b). This threshold is also called the
Kesten-Stigum bound. Their conjecture was based on non-rigorous arguments from statistical
physics. Mossel et al. [MNS18] and Massoulie [Mas14] proved the conjecture. Moreover they
gave efficient algorithms that solve weak recovery down to the Kesten-Stigum bound. In the
exact recovery problem, the goal is to recover the planted bisection exactly with high probability.
Abbe et al. [ABH15] showed that exact recovery is possible iff a = p log n and b = q log n and
(
√
p − √q)2 > 2. Hajek et al. [HWX16] gave an efficient algorithm matching this bound based

on semidefinite programming. Note that for exact recovery we need logarithmic average degree to
preclude having isolated nodes. In contrast, weak recovery is possible with constant average degree.
The results in this paper will work in both regimes.

Recent works have focused on achieving the minimax rates for accuracy. In particular consider
the quantity

inf
π̂

sup
Θ

err(π̂, π)

Here π̂ is an estimator for the planted partition and Θ is a space of parameters for the stochastic
block model. For example, we can consider the worst-case error over all stochastic block models on
n nodes with imbalance at most α and where the inter-community and intra-community connection
probabilities are at least a/n and at most b/n respectively. Finally err(π̂, π) denotes the fraction
of misclassified nodes. It is impossible to determine which is the first community and which is the
second community, so the error is only measured up to a global swap between the two communities.
In particular 0 ≤ err ≤ 1/2. In this notation, weak recovery is possible iff err < 1/2 independently
of n and exact recovery is possible iff err = 0 with high probability. And yet, studying the minimax
rates allows us to ask sharper questions about the behavior of the optimal accuracy as a function
of a and b.

Belief propagation is believed to obtain the optimal accuracy in a wide range of parameters. We
can think about some of the conjectures, which are now theorems, as being pieces of this puzzle.
For example, the trivial fixed points of belief propagation correspond to solutions that achieve
err = 1/2. Decelle et al. [DKMZ11] showed that when (a− b)2 > 2(a+ b) the trivial fixed point is
unstable and thus it is natural to expect belief propagation to converge to another solution, which,
presumably solves the weak recovery problem. Indeed the algorithms of Mossel et al. [MNS18]
and Massoulie [Mas14] can be thought of as low-temperature limits of belief propagation. In a
remarkable work, Mossel, Neeman and Sly [MNS14] gave an algorithm that achieves the optimal
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error when the signal-to-noise ratio, defined as C = (
√
a −
√
b)2 is large enough1 . Again their

algorithm, particularly their method for boosting the overall accuracy of a rough initial estimate,
has important parallels with belief propagation. Zhang and Zhou [ZZ16] gave an approximate
characterization of the minimax rates. They showed that

inf
π̂

sup
Θ

err(π̂, π) = e−
C
2
(1±o(1))

for the two-community, approximately balanced case. Here the o(1) term is a function of C that
goes to zero as C increases. They also prove generalizations to the imbalanced and k-community
case, but their results are only information-theoretic and do not give any efficient algorithms. Fei
and Chen [FC20] showed that the natural semidefinite program achieves this error exponent in
the two community, balanced case. For more than two communities, there is believed to be a
computational vs. statistical tradeoff beneath the Kesten-Stigum bound [Abb17], but nevertheless
the natural conjecture is that belief propagation achieves optimal error among all computationally
efficient estimators.

1.1 Our Results

In this work, we ask an ambitious question: Is it possible to compete with the minimax rates while
being robust to adversarial corruptions? We work in the node corruption model, where an adversary
is allowed to arbitrarily control all the edges incident to an arbitrary ǫ-fraction of the nodes in the
graph (see Definition 2.3). This models realistic settings where nodes represent agents who might
make or break ties in a potentially malicious way so as to affect the outcome of a community
detection/graph partitioning algorithm. Our main result is a positive answer to this question,
along with a computationally efficient estimator for doing so:

Theorem 1.1. [Informal, see Theorem 3.3] There is a polynomial-time algorithm that given an
ǫ-corrupted BM with n vertices, edge probabilities b/n < a/n ≤ 1/2, and two communities of sizes
between αn/2 and n/(2α) for some constant α, outputs a labelling that has expected error at most

O(ǫ) + e−
C
2
(1+o(1)) + o(1/n)

where C = (
√
a−
√
b)2.

Makarychev et al. [MMV16] gave an algorithm for almost exact recovery that works even
when an adversary may corrupt o(n) edges. However, their accuracy and robustness guarantees are
weaker. They require additional constraints on ǫ compared to a, b – as we discuss in Section 4.1, such
constraints are actually necessary in the edge corruption model. Stephan and Massoulie [SM19]
studied node corruptions, but only allowed for O(nδ) nodes to be corrupted for some constant
δ > 0. Banks et al. [BMR21] and Ding et al. [DdNS22] studied weak recovery in the edge
corruption model. In particular Ding et al. [DdNS22] showed that if a and b are above the Kesten-
Stigum bound, there is some ǫ > 0 for which weak recovery is still possible even when as many
as ǫn edges are adversarially added/deleted. Compared to our results, both the goal (competing

1In their paper, they write the signal-to-noise ratio as (a − b)2/(2(a + b)) which is always within a factor of 2
of our definition. They do not actually write their accuracy as an explicit function of C. They only prove that
the accuracy is the same as that achieved in a broadcast tree reconstruction problem as long as C is at least some
universal constant.
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with the minimax error vs. getting nontrivial error) and the corruption model (node corruptions
vs. edge corruptions) are different. Moreover the order of quantifiers is different since in their work
the fraction of corruptions is allowed to be an arbitrary function of a and b. In contrast, our results
give essentially tight bounds on the largest fraction of corruptions that can be tolerated while still
competing with the minimax error in the stochastic model. See Section 4.1 for further discussion
of node vs. edge corruptions and its effect on the minimax rates. Finally Acharya et al. [AJK+21]
studied the related problem of estimating the parameter p in an Erdos-Renyi random graph G(n, p)
with node corruptions.

We also extend our results to the k community case:

Theorem 1.2. [Informal, see Theorem 3.4] There is a polynomial-time algorithm that given an
ǫ-corrupted SBM with n vertices, edge probabilities b/n < a/n ≤ 1/2, and k communities of sizes
between αn/k and n/(kα) for some constants k, α, outputs a labelling that has expected error at
most

O(ǫ) + e−
αC
k

(1+o(1)) + o(1/n)

where C = (
√
a−
√
b)2.

Remark. Note that the exponent of −αC/k is also optimal, even in the non-robust setting, as it
matches the lower bound proven in [ZZ16].

We also study the Z2 synchronization problem: There is an unknown vector ℓ ∈ {±1}n and we
observe a spiked random matrix

λℓℓT

n
+

W√
n

where λ is a parameter and W is a Gaussian Wigner matrix with iid entries that are mean zero,
variance one Gaussians. The goal is to compute an estimate ℓ̂ that minimizes the disagreement
with ℓ. Again we cannot determine the sign of ℓ so we measure disagreement between ℓ̂ and ℓ with
respect to a global sign flip.

The analogues of many of the key results in community detection are known for Z2 synchro-
nization too. For example, in the weak recovery problem the goal is to get an estimate ℓ̂ that
achieves non-trivial error, which is possible iff λ > 1 [OMH13, PWBM18]. There are also sharp
characterizations of the asymptotic mutual information [DAM15] which can be used to pin down
the minimax rates. See also [FC20]. Again we ask: is it possible to compete with the minimax
rates in the presence of adversarial corruptions? In this setting we allow an adversary to arbitrarily
corrupt the entries in an ǫ-fraction of the rows/columns (see Definition 2.6). Again, we show that
this is possible, and give computationally efficient algorithms for doing so:

Theorem 1.3. [Informal, see Theorem 3.6] There is a polynomial-time algorithm that given an ǫ-
corrupted Z2-synchronization instance with parameter λ, outputs a labelling that has expected error
at most

O(ǫ) + e−
λ2

2
(1+o(1)) + o(1/n) .

Remark. Note that the exponent of −λ2/2 is optimal, even in the non-robust setting, as it matches
the lower bound proven in [FC20].

These results come somewhat as a surprise. As we discussed earlier, the minimax rates are
closely related to belief propagation, and belief propagation is inherently brittle, particularly to
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adversarial corruptions. Moreover, the positive results in the non-robust setting essentially all
come from finding a good initial estimate of the planted bisection, and then boosting using some
local procedure like having each node taking the majority vote of its neighbors [MNS14]. Even
approaches based on semi-definite programming do this, within a primal-dual analysis [FC20]. The
main issue is that this approach is doomed in the setting of adversarial node corruptions. In
particular, an adversary can game the algorithm in such a way that performing “boosting” results
in a new partition that only achieves trivial error (see Observation 4.1).

At the heart of our results is a way to perform robust boosting based on using global information
about the entire graph. In particular, we give a semi-definite programming algorithm to discover
and correct large sets of nodes that are unduly affecting the labels of many other nodes. More
broadly, our work raises the exciting possibility that, maybe even beyond the stochastic block
model, it is possible to compete with the sharp error rates achieved by belief propagation all while
being provably robust. See Section 4 for a more detailed technical overview.

1.2 Doubly-Robust Community Detection

Our work fits into the broader agenda of designing algorithms for inference and learning with
strong provable robustness guarantees [DKK+19a, LRV16, DKK+17, KKM18, DKK+19b, BP21,
CKMY20, HL18, LM21b, BDJ+20, LM21a]. Much of the literature operates in a setting where
samples are generated from a “nice” distribution where the moments are regular and well-behaved
and can be used to detect large groups of correlated outliers. So far, this is the case for our
algorithms too, since we can rely on the predictable spectral properties of graphs generated from
the stochastic block model.

Without corruptions, the important work of Feige and Kilian [FK01] considered augmenting the
stochastic block model with a monotone adversary. This is called the semi-random model. After a
graph is sampled from the stochastic block model, but before it is revealed to our algorithm, the
monotone adversary is allowed to arbitrarily add edges between pairs of nodes belonging to the
same community, and delete edges between pairs of nodes belonging to different communities. This
seemingly only makes the problem easier. But in fact designing algorithms that continue to work in
the semi-random model is challenging and subtle. In many ways, the semi-random model prevents
algorithms from being overtuned to the stochastic block model. For exact recovery, algorithms
based on semidefinite programming continue to work in the semi-random model in the same range
of parameters [HWX16, PW17]. For weak recovery, Moitra et al. [MPW16] showed that it is no
longer possible to get algorithms that work down to the Kesten-Stigum bound, and thus there is
a strict information-theoretic separation between the stochastic and semi-random models. Finally
Fei and Chen [FC20] gave an algorithm, also based on semidefinite programming, that competes
with the minimax error in the stochastic setting, even in the presence of a monotone adversary.

Given that being robust is not just about tolerating adversarial corruptions, or any one single
goal, it is natural to ask: Are there doubly-robust algorithms for community detection? In particular
we want algorithms that work with both adversarial node corruptions and also an unbounded
number of monotone changes. Indeed our main algorithms all extend to this challenging setting:

Theorem 1.4 (Informal). There is a polynomial time algorithm that given an ǫ-corrupted semi-
random SBM outputs a labelling that has the same expected error as in Theorems 1.1 and 1.2 subject
to the same assumptions on the parameters.

A major difficulty of working with node corruptions is that an adversary can corrupt much more
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than a linear number of edges, because he has control over all the edges incident to corrupted nodes.
In the stochastic block model, there is a natural limit to how much an adversary would actually
use this power because if some nodes are too high-degree they become easy to identify. But in a
semi-random model, a monotone adversary can create many high-degree nodes that we would not
actually want to delete. Thus the two types of adversaries can compound our difficulties, and create
situations where an overwhelming majority of the edges have been corrupted but nevertheless we
cannot easily remove them by deleting high-degree nodes. Our algorithms for Z2-synchronization
are also doubly-robust as Theorem 1.3 also continues to hold in an ǫ-corrupted and semi-random
model.

1.3 Broader Context

We briefly discuss some previous approaches to community detection and why they fail to obtain
the robustness guarantees that we aim for here. Some methods are based on computing statistics
over non-backtracking walks, e.g. [MNS18] or self-avoiding walks, e.g. [HS17]. When an adversary
can control a constant fraction of the nodes or edges, he can force the expectation of these statistics
to be incorrect so that they no longer are correlated with whether a pair of nodes is on the same
side of the community or not. Other, related methods are based on spectral properties of the
non-backtracking walk operator or a matrix counting all self-avoiding walks of a certain length,
e.g. [Mas14]. The spectral properties of these matrices break down, and look fairly arbitrary, with
corruptions. Moreover these techniques are for weak recovery, and one would need to boost to
achieve optimal accuracy for larger signal-to-noise ratio. There are approaches for boosting based
on belief belief propagation, e.g. [MNS14]. However they are based on approximating the posterior
distribution of the community labeling, and when there are corruptions there is no reason for the
posterior to achieve optimal, or even non-trivial accuracy. There are also approaches for community
detection that are based on semidefinite programming, e.g. [FK01, GV14, ABH15, HWX16, MS15].
However, they are all based on an SDP relaxation for the minimum bisection problem, and when
an adversary can control high-degree nodes, he can alter the minimum bisection so that it becomes
essentially uncorrelated with the planted community structure. While there are modifications such
as in [MMV16, FC20] that can deal with corruptions, these modifications are not able to achieve
the types of strong robustness and accuracy guarantees that we obtain here.

2 Problem Setup

We now formally define the models and problems that we study.

2.1 Community Detection

We begin with a standard definition of a stochastic block model.

Definition 2.1 (Stochastic Block Model (SBM)). An SBM is a graph on n nodes generated as
follows. There is some unknown partition of [n] into k sets S1, . . . , Sk. Given parameters a, b with
a > b, a graph is then generated where nodes in the same community are connected with probability
a/n and nodes in different communities are connected with probability b/n (all edges are sampled
independently).
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Next, we introduce the notion of semi-random noise, where an adversary can make arbitrarily
many “helpful” changes.

Definition 2.2 (Semi-Random SBM). A Semi-random SBM is a graph on n nodes generated as
follows. There is some unknown partition of [n] into k sets S1, . . . , Sk. Given parameters a, b with
a > b, a graph is generated where nodes in the same community are connected with probability
a/n and nodes in different communities are connected with probability b/n (all edges are sampled
independently). An adversary may then arbitrarily add additional edges within communities and
remove edges between different communities.

Finally, we introduce a corruption model where the adversary may completely corrupt an ǫ-
fraction of nodes and make semi-random changes on the rest of the graph. Algorithms that work
in this setting need to be doubly-robust to both the small fraction of corrupted nodes and the
semi-random noise.

Definition 2.3. [ǫ-Corrupted Semi-Random SBM] A ǫ-corrupted Semi-Random SBM is a graph
on n nodes generated as follows. There is some unknown partition of [n] into k sets S1, . . . , Sk.
Given parameters a, b with a > b, a graph is generated where nodes in the same community are
connected with probability a/n and nodes in different communities are connected with probability
b/n (all edges are sampled independently). An adversary may then

• Arbitrarily add additional edges within communities and remove edges between different com-
munities

• Pick up to ǫn nodes and modify their incident edges arbitrarily

Remark. In later sections, we will often just say ǫ-corrupted SBM instead of ǫ-Corrupted Semi-
Random SBM but it will always refer to an SBM with both adversarial corruptions and semi-random
noise.

The goal of the learner is to observe a graph generated from an ǫ-Corrupted Semi-random SBM
and output a partition of [n] that is close to the unknown partition. Formally, if the learner outputs

S1, . . . , Sk and the true partition is S̃1, . . . , S̃k then the error is the minimum number of errors over
all permutations of the sets i.e.

err = min
π:[k]→[k]

(
k∑

i=1

|Si\S̃π(i)|
)

.

We will use the term accuracy for 1− err.
We will assume that the learner is given the parameters a, b, k, ǫ and also a parameter α such

that αn/k ≤ |Si| ≤ n/(αk) for all i (so α bounds the imbalance in the community sizes). Note that
even without corruptions (but with semi-randomness), there are known obstacles to recovering the
planted partition without knowledge of the parameters [PW17]. Of course, if the parameters are
unknown, we can simply guess them using a grid and output a list of candidate partitions at least
one of which must have high accuracy.
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2.2 Z2-Synchronization

Next, we define the problem of Z2-Synchronization.

Definition 2.4 (Z2-Synchronization). We are given an n×n matrix A generated as follows. There
is an unknown sign vector ℓ ∈ {−1, 1}n. We then observe λℓℓT /

√
n+E where λ is some parameter

and E has entries drawn i.i.d from N(0, 1).

Similar to before for SBMs, we can define a natural extension of the above model that allows
for semi-random noise.

Definition 2.5 (Semi-random Z2-Synchronization). We are given an n × n matrix A generated
as follows. There is an unknown sign vector ℓ ∈ {−1, 1}n. We then observe λℓℓT/

√
n + E + F

where λ is some parameter, E has entries drawn i.i.d from N(0, 1) and F has the same signs as
ℓℓT (entrywise).

Finally, we define a model that allows for an ǫ-fraction of adversarial corruptions as well as
semi-random noise.

Definition 2.6. [ǫ-Corrupted Semi-random Z2-Synchronization] We are given an n× n matrix A
generated as follows. There is an unknown sign vector ℓ ∈ {−1, 1}n. Let E be an n × n matrix
whose entries are drawn i.i.d from N(0, 1). Let A0 = λℓℓT /

√
n+E. Now an adversary may modify

A0 by

• Adding a matrix F whose entries have the same signs are ℓℓT

• Picking up to ǫn elements of [n] and modifying the corresponding rows and columns arbitrarily

We observe the matrix A after the adversary makes the above modifications to A0.

As usual, the goal of the learner is to observe A generated as above and output a partition
of [n] that is close to the unknown partition given by the signs of ℓ where error is defined as the
minimum disagreement up to flipping the components of the partition.

3 What is the Right Accuracy?

Our goal is to give algorithms that achieve nearly optimal error in the presence of corruptions and
semi-random noise. We first discuss prior work that characterizes the optimal error in a non-robust
setting i.e. without corruptions or semi-random noise.

3.1 Community Detection

In [ZZ16], the authors characterize the optimal accuracy achievable information-theoretically in a
pure SBM (with no semi-random noise or corruptions) as the signal-to-noise ratio goes to infinity.

Theorem 3.1 ([ZZ16]). Consider a (pure) SBM on n nodes with k communities with edge probabil-
ities a/n and b/n. Also assume that all communities have sizes between αn/k and n/(αk). Assume
that a, b = o(n) and define C = (

√
a−
√
b)2. Then as C/(k log k) → ∞ any algorithm must incur

expected error at least {
e−(1+o(1))C

2 if k = 2

e−(1+o(1))αC
k if k ≥ 3

where the o(1) is some quantity that goes to 0 as C/(k log k)→∞.
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Note that the factor of α shows up only when k ≥ 3 because then there can be two small
communities of size αn/k but this cannot happen for k = 2. In [ZZ16], the authors also prove that
the above is tight when α ≥

√
3/5 in the sense that it is indeed possible to achieve the accuracy

specified in Theorem 3.1. However, their proof is only information-theoretic and they do not give
a polynomial time algorithm that achieves this.

In [FC20], the authors give a polynomial time algorithm for matching the accuracy in Theo-
rem 3.1 for k = 2 and balanced communities. Their algorithm is based on the max-cut SDP and
also works in the semi-random model.

Theorem 3.2 (Informal [FC20] ). Consider a (pure or semi-random) SBM on n nodes with two
balanced communities with edge probabilities a/n and b/n. Assume that a, b = o(n) and define

C = (
√
a−
√
b)2. There is an algorithm that achieves error e−C/2+O(

√
C) with 1− o(1) probability.

There are a few additional technical conditions in their theorem such as the fact that the
implicit constant in the O(

√
C) may depend on the ratio a/b (but for say fixed a, b, it is a universal

constant). Nevertheless, as far as we are aware, this is the best known explicit bound on the
classification accuracy in an SBM in terms of the signal-to-noise ratio.

Our main theorems, stated below, essentially match this guarantee but are significantly more
general – they work for imbalanced and more than two communities and in the presence of a
ǫ-fraction of adversarial corruptions.

Theorem 3.3 (Robust Community Detection with k = 2). There is a polynomial-time algorithm
(Algorithm 3) that when run on an ǫ-corrupted semi-random SBM with n vertices, edge probabilities
b/n < a/n ≤ 1/2 and k = 2 communities of sizes between αn/2 and n/(2α), outputs a labelling
that has expected error at most

O(ǫα−3) + e−C/2+O(α−9
√
C logC) +

e−
√
logn

n

where C = (
√
a−
√
b)2.

Theorem 3.4 (Robust Community Detection with k ≥ 3). There is a polynomial-time algorithm
(Algorithm 5) that when run on an ǫ-corrupted semi-random SBM with n vertices , edge probabilities
b/n < a/n ≤ 1/2 and k communities of sizes between αn/k and n/(kα), outputs a labelling that
has expected error at most

O(ǫk/α3) + e−αC/k+poly(k/α)
√
C logC +

e−
√
logn

n

where C = (
√
a−
√
b)2.

In Theorems 3.3 and 3.4, the hidden constants in the O(·) and poly(·) are all universal constants.
We imagine that α, k are fixed constants and that C is sufficiently large as a function of α, k. We
take n → ∞. C may be held constant as n grows or it may grow with n. Our error can be
decomposed as follows. The O(ǫ) term comes from the corruptions. The exponential term comes
from the error that must be incurred, even without any corruptions. Note that the leading terms in
the exponents in our error guarantees – −C/2 for k = 2 and −αC/k for k ≥ 3 – are sharp in that
they exactly match those in Theorem 3.1. The last term is o(1/n) so it contributes no additional
errors with high probability.
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3.2 Z2-Synchronization

The paper [FC20] also gives recovery guarantees for Z2-synchronization based on the max-cut SDP.
They also prove a lower-bound that nearly matches their recovery guarantee.

Theorem 3.5 (Informal [FC20] ). Consider a (pure or semi-random) Z2-synchronization instance
on n variables with parameter λ. Then there is an algorithm that achieves error e−λ2/2+O(λ) with
1− o(1) probability. Furthermore, no algorithm can achieve error better than e−(1+o(1))λ2/2.

Again, for Z2-synchronization, we are able to essentially match this guarantee, but robustly, in
the presence of an ǫ-fraction of adversarial corruptions.

Theorem 3.6 (Robust Z2-Synchronization). There is a polynomial-time algorithm (Algorithm 7)
that when run on an ǫ-corrupted semi-random Z2-synchronization instance with parameter λ, out-
puts a labelling that has expected error at most

O(ǫ) + e−λ2/2+O(λ) +
e−

√
logn

n
.

As before, all of the hidden constants in the O(·) are universal constants. We assume that λ
is at least some sufficiently large universal constant. We imagine taking n → ∞ and λ may be
held constant or it may grow with n. As before, our error guarantee can be decomposed into the
O(ǫ) term for the corruptions and the exponential term for the error that must be incurred even
without any corruptions. The leading term of −λ2/2 in the exponent is sharp as it matches the
lower bound in Theorem 3.5.

4 Technical Overview

For simplicity, consider the case k = 2 and assume that the communities are balanced. Let the inter-
community and intra-community connection probabilities be a/n and b/n respectively and define
C = (

√
a −
√
b)2. A standard approach to achieving strong accuracy guarantees in community

detection is to first obtain a rough labelling and then boost it. In our case, for the rough labelling,
there is some additional work required to achieve robustness to node corruptions (see Section 7).
However the boosting step is the key component and we will focus on that here. A natural first
attempt would be to simply boost the accuracy with majority voting i.e. we set each node’s label
to agree with the majority of its neighbors. Without corruptions, it turns out that if we have a
rough clustering with 1/

√
C error (which our rough clustering algorithm in Section 7 does obtain)

then one step of boosting will already get to e−C/2+O(
√
C) error. However, corruptions make the

problem significantly more difficult. In particular it turns out that the adversary can make it so
that majority voting gets most of the labels wrong, even while keeping the degrees of the nodes
fixed:

Observation 4.1 (Informal). Consider an SBM with edge probabilities a/n, b/n and assume that
we are given the true labelling. An adversary can choose ǫn nodes and corrupt them while preserving
their degrees so that majority voting gets most labels wrong as long as ǫ ≥ 2(a−b)

a+b .

The adversary can accomplish this by picking ǫn nodes and reconnecting all of their edges to
random nodes in the opposite community. Now, on average, nodes have (1−ǫ)a/2 neighbors within
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their community and (1 − ǫ)b/2 + ǫ(a + b)/2 neighbors in the opposite community and the latter
quantity is larger by the definition of ǫ.

This precludes obstacle classes of “local” algorithms that attempt to label each node based solely
on information within its neighborhood. In particular, such algorithms cannot get guarantees that
depend only on the signal-to-noise ratio C because, in the argument above, by increasing the degrees
a, b while holding C fixed, the fraction of corruptions that can be tolerated goes to 0. Thus we will
need to exploit global information in order to get a stronger and more robust boosting algorithm.

At a high-level we will design a suitable “stability” property with respect to a graph (given by
its adjacency matrix A) and a labelling of its vertices given by ℓ ∈ {−1, 1}n. It will have the key
properties that

• The subgraph of uncorrupted nodes with correct labels will satisfy this stability property

• A subgraph with too many mislabeled nodes will violate this stability property

Our algorithm will proceed as follows: we find the largest subgraph for which the stability property
is satisfied. We argue that this must give us essentially only the correctly labeled nodes. We then
flip the labels on all of the nodes outside this subgraph and argue that this must boost the accuracy
because almost all of those nodes must have been mislabeled to begin with.

Stability Now we discuss the stability property that we use in more detail. First, consider an
SBM (i.e. with no corruptions) and let A be its adjacency matrix. Let2

Â = A− a+ b

2
J . (1)

Let the true labelling of the vertices be given by a vector ℓ̃ ∈ {−1, 1}n and define the matrix L̃ = ℓ̃ℓ̃T .
The first key observation is that the entries of Â ⊙ L̃ have positive expectation, where ⊙ denotes
the Hadamard product. It can be shown that for any γn× (1− 10γ)n combinatorial rectangle with

γ ≥ e−C+O(
√
C), the sum of the entries of Â⊙ L̃ is positive with high probability. In particular the

lower bound on γ comes from tail bounds on the binomial distribution i.e. ∼ e−C+O(
√
C) fraction

of the rows may actually have negative sum. This lower bound on γ is also exactly what shows
up in our accuracy guarantee. For the purposes of this overview, we will say that a matrix Â is
γ-stable with respect to a labelling L̃ if the sum of the entries of Â⊙ L̃ over any γn × (1− 10γ)n
combinatorial rectangle is positive.

Now we have a global notion of stability, involving subsets of γn rows, that we know Â must
satisfy. This notion of stability is also robust to a small fraction of corruptions. In particular,
imagine that some matrix Â is stable with respect to the labelling L̃ where some of the nodes in
Â may be corrupted. Because we enforce that the sum over any γn × (1 − 10γ)n combinatorial
rectangle of Â⊙ L̃ is positive, we can consider rectangles whose rows and columns correspond only
to the uncorrupted nodes. Thus, the submatrix of uncorrupted nodes must be stable as well (with a
slightly worse parameter γ). In other words, a small fraction of corruptions cannot hide an unstable
submatrix – this is the key for dealing with adversarial corruptions.

2For technical reasons, in the proof we will use a slightly different adjustment to demean Â but the definition here
suffices for the purposes of the overview
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Boosting Program We can now describe our boosting procedure. We take as inputs an adja-
cency matrix Â and a rough labelling ℓ ∈ {−1, 1}n. Let θ be the error of ℓ with respect to the true
labelling. We may assume that θ is significantly larger than γ and ǫ (the fraction of corruptions),
since otherwise we can just terminate and output ℓ. Consider the following program:

Definition 4.2 (Boosting Program (Informal)). Assume that we have a rough labelling of the
vertices given by a vector ℓ ∈ {−1, 1}n and define the matrix L = ℓℓT . We solve for a weight vector
w ∈ R

n with entries between 0 and 1 such that

• In the matrix Â ⊙ L ⊙ ((1 − w)(1 − w)T ), the sum of the entries over any θn × (1 − 10θ)n
combinatorial rectangle is positive

Our objective is to minimize
∑

i wi .

The above program is nonconvex, and ultimately we will need to work with a convex relaxation.
The key step in the relaxation is to replace (1− w)(1− w)T with a matrix

W = J −
[
w11 . . . wn1

]
−



w11

T

...
wn1

T


+N (2)

with a constraint on trace norm ‖N‖1. We also relax the notion of a combinatorial rectangle,
replacing it with a matrix N and a constraint on ‖N‖1. Note that trace norm constraints make
intuitive sense for these relaxations because combinatorial rectangles are rank-1 and the trace norm
is a useful convex relaxation for rank constraints. There are several additional technical details that
we need to deal with and constraints that we need to enforce but we will not discuss those here. See
Section 8.1 for the precise relaxed constraints and Section 8.2 for the full semidefinite progamming
relaxation.

The intended solution to the boosting program is w = wbase where wbase is the vector with
1s in entries corresponding to corrupted or mislabeled nodes and 0s in entries corresponding to
uncorrupted and correctly labeled nodes. Once we obtain a solution w, we simply flip the labels on
all of the vertices where w has large weight. If w is close to wcorrect, then this procedure will boost
the accuracy because we are correcting essentially all of the mistakes in the original labelling.

Analysis It remains to argue that the solution that we obtain must be close to wbase. We do this
in two steps. We first prove that the intended solution wbase is indeed feasible. Informally (for the
formal version see Lemma 8.5):

Lemma 4.3 (Informal). wbase is a feasible solution to the boosting program

For the non-convex boosting program in Definition 4.2, to argue that wbase is feasible, it suffices
to consider Â, constructed from (1) for an SBM (since (1−wbase)(1−wbase)

T zeros out all corrupted
nodes), and prove that it has nonnegative sums over all θn× (1− 10θ)n combinatorial rectangles.
Arguing about the relaxation requires more work. The high level idea is to combine the trace
constraints (for relaxed combinatorial rectangles) with spectral bounds on A to bound their inner
product. In the constant-degree regime, A does not actually satisfy the necessary spectral bounds
(because nodes may have logarithmic degree). Fortunately, we are able to appeal to results in
[CRV15] showing there is a large submatrix of A, corresponding to all nodes whose degree is not

11



too high, that does satisfy the necessary spectral bounds. This spectral bound on a large submatrix
of A turns out to suffice for our argument.

The second step in the analysis involves characterizing the structure of the optimal solution.
Informally (for the formal version see Lemma 8.6):

Lemma 4.4 (Informal). Any feasible solution to the boosting program with objective value at most
2θ must satisfy that there are at most 0.1θ nodes i ∈ [n] that are mislabeled by ℓ and have wi ≤ 0.9.

The key intuition is that any solution must place essentially no weight on the mislabeled nodes
because otherwise the combinatorial rectangle sum constraints of the program will be violated. In
particular, let S be the set of mislabeled, uncorrupted nodes and R be the set of correctly labeled,
uncorrupted nodes. Then then the matrix Â⊙L has entries with negative mean on the set indexed
by S ×R. Thus, if w is not close to 1 on the mislabeled nodes, then the sum of the entries of

Â⊙ L⊙ ((1− w)(1− w)T )

will be negative, violating the constraint of the program. The full proof requires significantly
more care because we replace (1 − w)(1 − w)T with a matrix W with certain linear and trace
norm constraints (recall (2)). Nevertheless, we use the decomposition of W in (2) and show that,
combined with the spectral properties of A, an analog of the above argument can be pushed through.

Finally, it remains to combine Lemma 4.3 and Lemma 4.4 to complete the analysis of our
boosting procedure. The key point is that the two lemmas together imply that the optimal solution
(where recall we are minimizing the total weight) must be close to wbase because

• wbase is feasible and places weight only on mislabeled and corrupted nodes

• Our solution w must place essentially full weight on all of the mislabeled nodes

Thus, almost all of the nodes with low weight in the optimal solution must be mislabeled and so
flipping their labels will actually reduce the error by a constant factor. Ideally, we might hope
that the boosting procedure achieves the optimal error in one shot. However, this is not the case
because there can be a constant fraction (e.g. 0.1) difference between w and wbase. Still, we can
then simply iterate this boosting step, re-solving the program again with the new labelling. We
show that we can keep iterating until we get down to the optimal error of ∼ γ + ǫ.

Semi-Random Noise Working in the semi-random model can foil many natural algorithms. In
particular, it is no longer possible to enforce the same degree constraints or spectral constraints on
the adjacency matrix. For our analysis, however, dealing with semi-random noise follows almost
immediately. The crucial property about the way we formulated the boosting program is that we
know the signs of the entries of all of the matrices that appear, namely ((1 − w)(1 − w)T ) and L.
Thus, we can explicitly reason about locations where the semi-random noise is positive or negative.

More specifically, recall that for Lemma 4.3, we consider w = wbase which is the indicator vector
of the corrupted and mislabeled nodes. Thus, if we let F denote the matrix of semi-random changes
i.e. entries of F are 1 if the corresponding edge was added, −1 if the edge was removed, and 0
otherwise , then

F ⊙ L⊙ ((1− w)(1 − w)T )
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is entry-wise nonnegative. The monotone changes only strengthen the inequalities that our program
enforces. For Lemma 4.4, we restrict to a rectangle S × R where the nodes in S are incorrectly
labeled and the nodes in R are correctly labeled. Thus,

F ⊙ L

is entrywise nonpositive on S×R. Since ((1−w)(1−w)T ) is entrywise nonnegative, if a constraint
involving the rectangle S × R were violated before, the monotone changes only make the violated
constraints worse, and consequently the same argument still works.

4.1 What Happens with Edge Corruptions?

Several other papers [MMV16, SM19, BMR21, DdNS22] have considered a model where instead of
node corruptions, we allow for edge corruptions, where an ǫ-fraction of the edges may be corrupted.
However, there are several information-theoretic barriers to obtaining high accuracy with edge
corruptions and thus the results in these papers necessarily have weaker guarantees. First, note
that

Observation 4.5. For ǫ ≥ 2(a−b)
a+b , an SBM with edge probabilities a/n, b/n where we an adversary

may corrupt an ǫ-fraction of the edges is statistically indistinguishable from G(n, (a+ b)/(2n)).

The above holds simply because the adversary may delete edges within communities and add
edges between different communities so that the effective edge probabilities are both (a+ b)/(2n).
Thus, we run into the same barrier as in Observation 4.1 for local algorithms – it is impossible to
obtain accuracy guarantees that depend only on the signal-to-noise ratio C because the fraction of
corruptions that can be tolerated goes to 0 as a, b increase while holding C fixed.

It is also worth noting that the edge-corruption model does not combine nicely with semi-
random noise. In particular, the fraction of edge corruptions can only scale with the number of
edges in the pure SBM and not the total number of edges. This is because the semi-random noise
may simply add cliques on a small set of vertices. In particular, in the sparse regime where a, b
are constant, the total number of edges is Θ(n). If the semi-random noise adds a clique on O(

√
n)

vertices, then the adversary is now allowed enough corruptions to erase the entire graph on the
remaining vertices.

Observation 4.6. With semi-random noise added to an SBM with edge probabilities a/n, b/n, it
is impossible to achieve accuracy better than 0.5 if an adversary may corrupt an ǫ-fraction of the
total number of edges.

4.2 Paper Organization

In Section 5, we introduce notation and prove a basic concentration inequality. In Section 6,
we study the properties of the distribution of row sums in the adjacency matrix of an SBM.
In particular, we prove a generalized notion of the stability property discussed previously in the
technical overview. In Section 7, we present our initialization algorithm that computes a rough
labelling. Then in Section 8, we show how to robustly boost this rough labelling in the two-
community case, by repeatedly solving an SDP that relaxes the combinatorial rectangle constraints
discussed previously. In Section 9, we show how to generalize our robust boosting algorithm to
the k-community case. Roughly, we show how to enforce the constraints from the two-community
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SDP on all pairs of communities. Finally, in Appendix D, we prove our results for robust Z2-
synchronization. This follows almost exactly the same method and many of the pieces of the proof,
such as the analysis of the boosting algorithm, can be directly re-used just with different parameter
settings.

5 Notation and Preliminaries

Matrix and vector notation For a matrix M , we use ‖M‖
op

to denote its operator norm,

‖M‖F to denote its Frobenius norm and ‖M‖1 to denote its trace norm. We use 1 = (1, . . . , 1)T

to denote the all ones vector and J to denote the all ones matrix. The dimensions will always be
clear from context. Throughout this paper, we will view vectors in R

n as column vectors.

Next, we have a few definitions that will be used repeatedly later on.

Definition 5.1. For matrices A,B of the same size, we use A ⊙ B to denote their Hadamard
product.

Definition 5.2. For an n×n matrix A and subsets S, T ⊂ [n], we use AS×T to denote the |S|×|T |
matrix obtained by taking the submatrix of A indexed by S × T .

Definition 5.3. For 0 < p, q < 1, define

R(p, q) =
p(1− q)

q(1− p)
.

Definition 5.4. For 0 < p, q < 1 with p 6= q, define

D(p, q) =
log 1−q

1−p

log p(1−q)
q(1−p)

.

We have the following useful bound on D(p, q).

Claim 5.5. For any 0 < p, q < 1 with p 6= q, we have q < D(p, q) < p.

Proof. See Appendix A. �

5.1 Concentration Inequalities

Now we need a concentration inequality for samples from a binomial distribution. Intuitively, if
we imagine that we have all of the labels of all but one vertex in an SBM with edge probabilities
a/n, b/n, the inequalities below bound the probability that we can classify this vertex correctly. As
mentioned previously, this type of local boosting does not work in the presence of corruptions, but
the bounds proved here will be used to prove more global properties that are used in our robust
boosting procedure later on.

Claim 5.6. Consider the distributions

D1 = Binom(a/n, αn) − Binom(b/n, (1 − α)n)

D2 = Binom(b/n, αn) − Binom(a/n, (1 − α)n)
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where 0 < α < 1 and b < a. Let C = (
√
a−
√
b)2. Let

K = (1− 2α)nD(a/n, b/n) .

Then for any θ, we have

max

(
Pr

x∼D1

[x+K ≤ θ], Pr
x∼D2

[x+K ≥ −θ]
)
≤ e−

C
2
+ θ

2
logR(a/n,b/n)

Proof. See Appendix A. �

6 Key Properties of the SBM

In this section, we will leverage Claim 5.6 and a few other concentration inequalities to prove more
global properties about the adjacency matrix of an SBM. Roughly, if we let Â be a centering of the
adjacency matrix of a graph generated from an SBM i.e.

Â = A−D(a/n, b/n)J

and ℓ ∈ {−1, 1}n be the true labels, we will prove that most rows of Â⊙ (ℓℓT ) have positive sum.
The way we formulate this is that for a matrix

Z =



x11

T

...
xn1

T




with constant rows and 0 ≤ x1, . . . , xn ≤ 1, we will lower bound 〈Â⊙ (ℓℓT ), Z〉 in terms of the sum
x1 + · · ·+ xn. Formally, we define:

Definition 6.1. We say an n× n matrix X is (d1, d2)-resolvable if for all 0 ≤ x1, . . . , xn ≤ 1 with
x1 + · · ·+ xn ≤ 10−6n, we have

〈
X,



x11

T

...
xn1

T



〉
≥ d1(x1 + · · ·+ xn)− d2n .

The above definition is useful because all of the expressions are linear in x1, . . . , xn and thus
once we prove that a matrix is resolvable, we don’t need to, say, do casework on x1 + · · ·+ xn.

The main result that we will prove in this section is Corollary 6.6. However, we will need several
preliminary results. First, we will need the following concentration inequality about the sums of
the entries in combinatorial rectangles of a matrix with i.i.d. 0-mean entries.

Claim 6.2. Let n, n1, n2 be a parameters with n1, n2 ≤ 10−6n. Let M be an n × n matrix whose
entries are drawn from independent distributions with mean 0, variance at most σ2 for some σ ≥
20/
√
n and always bounded between ±1. Then with probability at least 1− e−8(n1+n2) log(n/n1+n/n2),

the magnitude of the sum of the entries over any n1 × n2 combinatorial subrectangle of M is at
most (n1 + n2)σ

√
n.
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Proof. See Appendix B. �

Now we begin to analyze row sums of the matrix A−D(a/n, b/n)J where A is the adjacency
matrix of an SBM. We first consider sets of rows of a fixed size (i.e. fixed x1 + · · · + xn) and
then afterwards, we will aggregate over different possibilities for the value of x1 + · · · + xn. In the
claim below, κ is a parameter that allows us to trade off how strong our bound is versus the failure
probability.

Claim 6.3. Let A be the adjacency matrix of SBM(a/n, b/n) where b < a and let ℓ ∈ {−1, 1}n be a
vector that labels the two communities. Let C = (

√
a−
√
b)2 and L = ℓℓT . Let 0 < β < 10−6, κ ≥ 1

be some parameters. Define
Q = C/2− log(1/β) − 3κ

Then with probability at least 1− e−κβn− 1/n3, for any 0 ≤ x1, . . . , xn ≤ 1 with x1 + · · ·+xn = βn
we have

〈
(A−D(a/n, b/n)J) ⊙ L,



x11

T

...
xn1

T



〉
≥ 2βn

(
Q

logR(a/n, b/n)
−
√
a+ b

)
.

Proof. See Appendix B. �

Now we can aggregate Claim 6.3 over different choices of β to get an inequality where the RHS is
linear in x1+· · ·+xn. This will allow us to deduce resolvability of the matrix (A−D(a/n, b/n)J)⊙L.

Lemma 6.4. Let A be the adjacency matrix of SBM(a/n, b/n) where b < a and let ℓ ∈ {−1, 1}n
be a vector that labels the two communities. Let C = (

√
a −
√
b)2 and L = ℓℓT . Let κ,K be some

parameters and assume κ ≥ 1,K,C ≥ 104. Define

θ = e−C/2+3κ+K
√
a+b logR(a/n,b/n)

Then with probability at least 1−e−10κ−1/n2, we have for any 0 ≤ x1, . . . , xn ≤ 1 with x1+· · ·+xn ≤
10−6n that

〈
(A−D(a/n, b/n)J) ⊙ L,



x11

T

...
xn1

T



〉
≥ (K(x1 + · · ·+ xn)− θn)

√
a+ b− max(0, 104(κ−

√
C))

logR(a/n, b/n)
.

Remark. Note that the additive term in the expression on the RHS above kicks in only when
κ ≥
√
C i.e. when we want very low failure probability. It is also only necessary in the proof when

x1 + · · · + xn ≤ 100 i.e. when we are only considering a very small number of rows. We think of
K as tunable parameter that will be set later on.

Proof. See Appendix B. �

As an immediate corollary of Lemma 6.4, we have the following statement about the resolvability
of (A−D(a/n, b/n)J) ⊙ L.
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Corollary 6.5. Let A be the adjacency matrix of SBM(a/n, b/n) where b < a and let ℓ ∈ {−1, 1}n
be a vector that labels the two communities. Let C = (

√
a −
√
b)2 and L = ℓℓT . Let κ,K be some

parameters and assume κ ≥ 1,K,C ≥ 104. Define

θ = e−C/2+3κ+K
√
a+b logR(a/n,b/n)

Then with probability at least 1− e−10κ − 1/n2, we have that the matrix (A−D(a/n, b/n)J)⊙L is
resolvable with parameters


K
√
a+ b, θ

√
a+ b+

max
(
0, 104(κ−

√
C)
)

n logR(a/n, b/n)


 .

However, we will actually need a stronger statement, namely that for all sufficiently large subsets
S ⊂ [n], the matrix (A−D(a/n, b/n)J)⊙ L is still resolvable even if we restrict to S × S.

Corollary 6.6. Let A be the adjacency matrix of SBM(a/n, b/n) where b < a and let ℓ ∈ {−1, 1}n
be a vector that labels the two communities. Let C = (

√
a −
√
b)2 and L = ℓℓT . Let κ,K be some

parameters and assume κ ≥ 1,K ≥ 104, C ≥ (10K)2. Then with probability at least 1−e−10κ−2/n2,
for all subsets S ⊂ [n] with |S| ≥ (1−K/(10

√
C))n we have that the matrix ((A−D(a/n, b/n)J)⊙

L)S×S is resolvable with parameters

(
0.5K

√
a+ b, 1.1

((
θ +

n− |S|
n

)√
a+ b+

max(0, 104(κ−
√
C))

n logR(a/n, b/n)

))

where
θ = e−C/2+3κ+K

√
a+b logR(a/n,b/n) .

Proof. See Appendix B. �

6.1 Spectral Bounds

We will also need a few standard spectral bounds later on. Recall that a common issue when
dealing with sparse SBMs is that high-degree nodes can make spectral bounds worse by a log n
factor than what one would ideally hope for. The following result from [CRV15] essentially says
that if we delete the nodes whose degree is too high, then we no longer lose this log n factor. Of
course our algorithm cannot actually prune these nodes (since we need to deal with semi-random
noise) but it suffices in our analysis to know that there exists a large submatrix of the pure SBM
adjacency matrix that satisfies the spectral bounds without the log n factor.

Theorem 6.7 (Spectral Bounds with Degree Pruning [CRV15]). Suppose M is random symmetric
matrix with zero on the diagonal whose entries above the diagonal are independent with the following
distribution

Mij =

{
1− pij w.p. pij

pij w.p. 1− pij

Let σ be a quantity such that pij ≤ σ2 and M1 be the matrix obtained from M by zeroing out all
the rows and columns having more than 20σ2n positive entries. Then with probability 1− 1/n2, we
have ‖M1‖ ≤ χσ

√
n for some universal constant χ.
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As a consequence of the above, we have the following spectral bound for the adjacency matrix
of an SBM after pruning.

Corollary 6.8. Let A be the adjacency matrix of an SBM with communities S1, . . . , Sk ⊂ [n] and
edge probabilities a/n, b/n where b < a. Let L be the matrix that has 1 in entries Lij where i, j are
in the same community and −1 in other entries. Let C = (

√
a −
√
b)2. Then with probability at

least 1− 2/n2, there is a subset S ⊂ [n] of size at least (1− e−2C)n such that

∥∥∥∥
(
A− a+ b

2n
J − a− b

2n
L

)

S×S

∥∥∥∥
op

≤ χ
√
a+ b

where χ is some universal constant.

Proof. We apply Theorem 6.7 with σ =
√

a/n. Note that zeroing out the diagonal affects the
operator norm by at most 1. It now suffices to bound the number of vertices with degree more than
20a. Let m = ⌈e−2Cn⌉. The probability that there are at least m vertices with degree at least 20a
is at most

(
n

m

)(
mn

10am

)(a
n

)10am
≤
(en
m

)m ( en

10a

)10am (a
n

)10am
≤ e−10am+m(log(n/m)+1) ≤ 1

n2

where in the above we simply union bound over possible choices of m vertices and choices of edges
so that each vertex has degree at least 20a. Union bounding the above failure probability with that
in Theorem 6.7, we are done. �

7 Initialization SDP

Now we discuss the initialization step of our algorithm where the goal is to obtain a rough estimate
of the labelling that has accuracy 1 − O(1/

√
C). The high-level idea is as follows. If we consider

the matrix A − (a/n)J where A is the adjacency matrix of a pure SBM, then the on-diagonal
blocks corresponding to each community are spectrally bounded by O(

√
a+ b)I. However, the

whole matrix is not because the off-diagonal blocks corresponding to different communities have
spectral norm ∼ (a − b). We will solve for a weight matrix W with entries between 0 and 1 such
that

W ⊙ (A− (a/n)J)

is spectrally bounded. We argue that W necessarily must place essentially all of its weight on on-
diagonal blocks corresponding to the communities. Thus, we simply solve for the W that maximizes
the sum of its entries and then post-process using k-means clustering to recover the communities.
This formulation already naturally deals with a small fraction of corrupted nodes because W can
simply be 0 on the corresponding rows and columns. To deal with semi-random noise, we introduce
an additional matrix F with nonnegative entries and instead require that

W ⊙ (A− (a/n)J − F )

is spectrally bounded. The main point is that the matrix F can only make off-diagonal blocks
“worse” because those already have too few edges. We now state the SDP formally.
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Definition 7.1 (Initialization SDP). Assume we are given some n × n matrix A and parameters
a, b, χ. Then we solve for n× n matrices W,F such that

0 ≤Wij , Fij ≤ 1 ∀i, j
‖W‖1 ≤ n

− χ
√
a+ bI � (A− (a/n)J − F )⊙W � χ

√
a+ bI

where χ is the same universal constant as in Corollary 6.8. The objective is to maximize
∑

i,j Wij.

The initialization algorithm is as we alluded to. We simply solve the SDP and then run k-means
clustering on the rows of the resulting solution.

Algorithm 1 Compute Initial Labelling

Input: Adjacency matrix A
Run Initialization SDP with χ set as in Corollary 6.8 to obtain solution W
Cluster rows of W using 10-approximate k-means algorithm (e.g. [KMN+04])
Output: resulting clusters

The key lemma in the analysis of the initialization SDP is stated below. We show that the con-
straints imply that the total weight of W on entries Wij where i and j are in different communities
must be very small. We then construct a feasible solution that has essentially full weight on all
other entries i.e. Wij = 1 for i, j in the same community, and thus the optimal solution must have
this property as well.

Lemma 7.2. Let A be the adjacency matrix of a ǫ-corrupted SBM with edge probabilities a/n, b/n
and communities given by S1, . . . , Sk ⊂ [n] (where S1, . . . , Sk must partition [n]). Let C = (

√
a −√

b)2. Then with probability at least 1 − 2/n2, the solution W to the Initialization SDP has the
following properties:

• The sum of the entries of Wij where i, j are in different communities is at most (5χ/
√
C +

2ǫ)n2

• The sum of the entries of Wij where i, j are in the same community is at least

k∑

i=1

|Si|2 − (6χ/
√
C + 4ǫ)n2 .

Proof. See Appendix C. �

We can now complete the analysis of our initialization algorithm by demonstrating that any
10-approximate k-means clustering must essentially recover the true communities.

Lemma 7.3. Let A be the adjacency matrix of a ǫ-corrupted SBM with edge probabilities a/n, b/n
and communities given by S1, . . . , Sk ⊂ [n]. Assume that αn/k ≤ |Si| ≤ n/(αk) for all i. Let C =
(
√
a−
√
b)2. Then with probability at least 1− 2/n2, the output of Compute Initial Labelling

has error at most
104k

α3

(
χ√
C

+ ǫ

)

where χ is a universal constant.

Proof. See Appendix C. �
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8 The Robust Boosting Procedure

Now we present our robust boosting algorithm.

8.1 Relaxed Constraints

We begin by introducing relaxed notions of combinatorial rectangles – recall the non-convex pro-
gram in Definition 4.2 that we will now replace with a convex one.

Definition 8.1 (Pseudorectangles). For an integer n and parameter 0 < θ < 1, we define the class
of n× n matrices, Rn(θ), which we call θ-pseudorectangles, as follows: M ∈ Rn(θ) if

0 ≤Mij ≤ 1 ∀i, j
∑

ij

|Mij | ≤ θ2n2

‖M‖1 ≤ θn .

The above already gives a convex relaxation for combinatorial rectangles. Note that Rn(θ) is
a relaxed notion of rectangles of area θ2n2. However, the above is not strong enough for very thin
rectangles e.g. of dimensions θn× (1 − θ)n for small θ and it is exactly these thin rectangles that
will be crucial in our boosting program. Note that for such thin rectangles, the trace constraint
above becomes

√
θn which is too weak. However, to get around this, we can instead view such

thin rectangles as a subset of θn rows with a θn× θn rectangle subtracted off. This motivates the
following definition.

Definition 8.2 (Approximate-row-selectors). For an integer n and parameters 0 < θ, δ < 1, we
define a (θ, δ)-approximate-row-selector as a matrix M along with real numbers x1, . . . , xn satisfying
the following properties: there is a matrix N ∈ Rn(

√
θδ) such that

0 ≤Mij ≤ 1 ∀i, j
0 ≤ x1, . . . , xn ≤ 1

x1 + · · ·+ xn ≤ θn

M =



x11

T

...
xn1

T


−N

We will say (M,x1, . . . , xn) ∈ Sn(θ, δ) if the above conditions are satisfied.

The intention is for an approximate-row-selector to select θn rows with up to δn columns
removed. This corresponds to when N is the indicator of a θn × δn rectangle. Observe that for
θ = δ, the trace constraint on N is now just θn as opposed to

√
θn.

8.2 Boosting SDP for 2 Communities

Now we formulate the boosting SDP. We first formulate the SDP for community detection with 2
communities. In the next section, Section 9, we show how to extend the SDP to k communities.
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Definition 8.3. [Boosting SDP For 2 Communities] Let Â be an n × n matrix we are given as
input. Let ℓ ∈ {−1, 1}n be a vector of labels that we are given. Let ζ, d,K be some parameters that
we can set. The boosting SDP for Â, ℓ and parameters ζ, d,K with 0 < ζ < 1,K ≥ 104 is defined as
follows: we have a variable 0 ≤ ρ ≤ ζ, weights w1, . . . , wn ∈ R and matrices W ∈ R

n×n, N ∈ Rn(ρ)
such that

0 ≤ w1, . . . , wn ≤ 1

w1 + · · ·+ wn ≤ ρn

Wij ≥ 0 ∀i, j

W = J −
[
w11 . . . wn1

]
−



w11

T

...
wn1

T


+N

and finally we have the constraint that for all ρ′ with ρ/K ≤ ρ′ ≤ ζ and all (M,x1, . . . , xn) ∈
Sn(ρ′,Kρ′), we have

〈
Â⊙ L⊙W,M

〉
≥ 10dK2

(
K(x1(1− w1) + · · ·+ xn(1− wn))− ρ′n

)

where L = ℓℓT . The objective is to find a feasible solution that minimizes ρ.

Remark. Technically, we should have the last constraint only be over θ that are integer multiples
of 1/n10. It will be obvious that all of our arguments work with this modification. This also makes it
clear that the above program can be optimized to say 1− 1/n10 accuracy in polynomial time because
we can binary search on ρ and we have a separation oracle because we can optimize over the sets
Sn(θ, δ) by solving a SDP.

In the boosting SDP, the matrix Â is supposed to be the (appropriately de-meaned) adjacency
matrix and the vector ℓ corresponds to the rough clustering that we will boost. After solving the
boosting SDP, we improve the accuracy of the labelling as described below. Roughly, we just flip
the labels on all nodes i for which wi is large as these are the nodes that are “down-weighted” by
W . We set ζ, d,K in terms of the parameters of the SBM. For the precise setting see Algorithm 2.

Algorithm 2 Boosting Using SDP

Input: Matrix Â, parameters ζ, d,K
Input: Rough labelling given by ℓinit ∈ {−1, 1}n
Set ℓ← ℓinit
for t = 1, 2, . . . , 10 log n do

Run Boosting SDP with ℓ, Â, ζ, d,K
for i such that wi ≥ 1− 1/

√
K do

Flip the label ℓi of i

Set ℓ to the new labelling (after flips)

Output: ℓ

We will first analyze the algorithm under certain deterministic conditions on the matrix Â (i.e.
we first abstract away the generative model). Recall the definition of a matrix being resolvable
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(Definition 6.1). The main theorem that we prove in this section is that under certain resolvability
conditions on the input matrix, the algorithm Boosting Using SDP will return a labelling with
high accuracy. Then in Section 8.3, we combine this with results in Section 6 and Section 7 to give
a full algorithm for recovering the communities in an ǫ-corrupted SBM.

Theorem 8.4. Assume that we run Boosting Using SDP and that the input satisfies that
K ≥ 104 and there is a subset S ⊂ [n] with |S| ≥ (1− γ)n where γ ≤ 0.1ζ, an n× n matrix F and
a labelling ℓ̃ ∈ {−1, 1}n where we define L̃ = ℓ̃ℓ̃T such that

• ℓinit agrees with ℓ̃ on at least (1− 0.1ζ)n entries

• (F ⊙ L̃)S×S is entrywise nonnegative

• (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j

• For all subsets T ⊂ S with |T | ≥ (1− ζ)n we have that
(
(Ã− F )⊙ L̃

)
T×T

is resolvable with

parameters (
10dK3, 0.5dK

(
γ +

n− |T |
n

))
.

Then the output of Boosting Using SDP agrees with ℓ̃ on at least (1− 8γ)n entries.

To prove Theorem 8.4, we need to analyze the boosting SDP. We prove two key lemmas. The
first, Lemma 8.5 characterizes when there exists a solution with small objective value. The second,
Lemma 8.6 characterizes the structure of any solution with good objective value. We then combine
these lemmas to argue that our algorithm makes progress in boosting the accuracy in each iteration.

8.2.1 Exists Good Solution

First, we specify conditions that guarantee the existence of a good solution to the boosting SDP.
While the results below are stated with no generative model, it will be useful to keep in mind that
when A is generated from an SBM, the intended solution is for the matrix W to be 1 on the square
corresponding all of the correctly labeled, uncorrupted nodes and 0 everywhere else and then ρ will
be equal to the fraction of corrupted and mislabeled nodes.

Lemma 8.5. Consider solving the boosting SDP. Assume that there is an n × n matrix F and a
subset S ⊂ [n] with |S| ≥ (1− θ)n and θ ≤ ζ such that the following properties hold:

• (F ⊙ L)S×S is entrywise nonnegative

• (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j

•

(
(Â− F )⊙ L

)
S×S

is (10dK3, θdK)-resolvable

Then letting W be the n×n matrix that is 1 on the square corresponding to S×S and 0 everywhere
else is a feasible solution that attains objective value ρ = θ.
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Proof. Note that the proposed W satisfies the constraint on W because we can set wi = 1 for
exactly the elements of [n]\S. We then just need to subtract off the matrix with ones in the square
indexed by ([n]\S) × ([n]\S). Now we need to show that the last constraint is satisfied. Fix a ρ′

with θ ≤ ρ′ ≤ ζ. Write

M =



x11

T

...
xn1

T


−N

as guaranteed by the definition of Sn(ρ′,Kρ′). Next, since W and M are entrywise nonnegative,
we have

〈F ⊙ L⊙W,M〉 ≥ 0 .

Now let
X = (Â− F )⊙W .

Note that
〈(

Â− F
)
⊙ L⊙W,N

〉
= 〈X ⊙ L,N〉

= 〈Y ⊙ L,N〉+ 〈Z ⊙ L,N〉
≤ K
√
Kρ′dn+K2dρ′2n/ζ

≤ 2K2ρ′dn

where in the above we first used that the Schatten-1-norm of L⊙N is at most
√
Kρ′n by the trace

constraint on N and for the second term, we used that the sum of the entries of N is at most
Kρ′2n2. Next, we bound

〈(
Â− F

)
⊙ L⊙W,



x11

T

...
xn1

T



〉

=

〈
X ⊙ L,



x11

T

...
xn1

T



〉

≥ 10dK3(x1(1− w1) + · · ·+ xn(1− wn))− θdK|S|
≥ 10dK3(x1(1− w1) + · · ·+ xn(1− wn))−K2ρ′dn

where the relation above follows from the resolvability assumption and the fact that the wi are
constructed so that

n∑

i=1

xi(1− wi) =
∑

i∈S
xi .

Putting the above inequalities together, we conclude

〈(
Â− F

)
⊙ L⊙W,M

〉
≥ 10dK2(K(x1(1− w1) + · · · + xn(1− wn)− ρ′n)

and this completes the verification of feasibility.
�
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8.2.2 Any Feasible Solution Makes Progress

The next lemma will be crucial to showing that our boosting algorithm actually makes progress
after each solve of the SDP i.e. each iteration of the for loop. Again, it is stated with no generative
model but for analyzing SBMs it will be used as follows. We compare the rough labelling ℓ to the
ground truth labelling ℓ̃. Let the error be θ. We show that any solution to the SDP that is close
to optimal (in terms of the value of ρ) must have wi ≥ 1− 1/

√
K on the vast majority of the mis-

labeled vertices in ℓ. However, by Lemma 8.5 there is a solution that essentially only has positive
wi on these mis-labeled vertices, so any near-optimal solution cannot also have too many large wi

on correctly labeled vertices. Thus, if we blindly flip the labels on vertices with wi ≥ 1 − 1/
√
K,

we will actually reduce the error by a constant factor.

Lemma 8.6. Consider solving the boosting SDP. Let ℓ̃ ∈ {−1, 1}n be a sign vector that agrees with
ℓ on (1 − θ)n entries with θ ≤ ζ. Let L̃ = ℓ̃ℓ̃T . Assume that for some γ ≤ ζ, there is a subset
S ⊂ [n] with |S| ≥ (1− γ)n and an n× n matrix F such that the following properties hold:

• (F ⊙ L̃)S×S is entrywise nonnegative

• (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j

•

(
(Â− F )⊙ L̃

)
S×S

is (10dK3, γdK)-resolvable

Then for any feasible solution to the boosting SDP with ρ ≤ θ+γ, there are at most 10(θ+γ)n/
√
K

elements i ∈ S such that wi ≤ 1− 1/
√
K and ℓi 6= ℓ̃i.

Proof. Let T ⊂ S be the set of elements in question. Assume for the sake of contradiction that
|T | ≥ 10(θ + γ)n/

√
K. Note that |T | ≤ θn ≤ ζn. Also |T | ≥ (θ + γ)n/K because K ≥ 104.

Let R ⊂ S be the set of i ∈ S where ℓ and ℓ̃ agree. Now let M be the indicator function of
T ×R. We claim that

M ∈ Sn(|T |/n,K|T |/n) .
This is because we can choose x1, . . . , xn such that xi = 1 if and only if i ∈ T and xi = 0 otherwise.
We are then removing at (θ + γ)n columns corresponding to elements of [n]\R. Thus, we can plug
this setting of M,x1, . . . , xn into the last constraint of the SDP. By construction

x1(1− w1) + · · ·+ xn(1− wn) ≥
|T |√
K

so the constraint enforces that
〈
Â⊙ L⊙W,M

〉
≥ 10dK2 (K(x1(1− w1) + · · ·+ xn(1− wn))− |T |) ≥ 0 . (3)

We will actually prove that if |T | ≥ 10(θ + γ)n/
√
K then the above will be violated and this will

complete the proof by contradiction. First, note that since ℓ and ℓ̃ disagree on all elements of T
and agree on all elements of R, we have

〈F ⊙ L⊙W,M〉 = −〈F ⊙ L̃⊙W,M〉 ≤ 0 .
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Next, consider a feasible solution with ρ ≤ θ + γ and write

W = J −
[
w11 . . . wn1

]
−



w11

T

...
wn1

T


+N .

We must have w1 + · · ·+ wn ≤ (θ + γ)n and N ∈ Rn(θ + γ). We write

〈(
Â− F

)
⊙ L⊙W,M

〉
=

〈(
Â− F

)
⊙ L,


J −



w11

T

...
wn1

T





⊙M

〉

−
〈(

Â− F
)
⊙ L⊙

[
w11 . . . wn1

]
,M
〉

+
〈(

Â− F
)
⊙ L⊙N,M

〉

and bound each of the terms on the RHS individually. Let X be the matrix obtained by taking
Â− F and zeroing out entries outside of S × S. First we bound

〈(
Â− F

)
⊙ L⊙

[
w11 . . . wn1

]
,M
〉
=
〈
X,L⊙

[
w11 . . . wn1

]
⊙M

〉

=
〈
Y,L⊙

[
w11 . . . wn1

]
⊙M

〉

+
〈
Z,L⊙

[
w11 . . . wn1

]
⊙M

〉

≥ −Kd(θ + γ)n−Kd(θ + γ)2n/ζ

≥ −3Kd(θ + γ)n

where we used that by construction, the matrix L⊙
[
w11 . . . wn1

]
⊙M has trace norm at most

(γ + θ)n and the sum of the absolute values of its entries is at most (γ + θ)2n2. Similarly, we get
〈(

Â− F
)
⊙ L⊙N,M

〉
= 〈X,L⊙N ⊙M〉

≤ Kd(θ + γ)n+Kd(θ + γ)2n/ζ

≤ 3Kd(θ + γ)n .

Now to obtain a contradiction, we will prove that the remaining term involving

J −



w11

T

...
wn1

T




is sufficiently negative. Define the variables t1, . . . , tn such that ti = 1 if and only if i ∈ T . Let H
be the matrix that is the indicator function of T × (S\R). We have

〈(
Â− F

)
⊙ L,


J −



w11

T

...
wn1

T





⊙M

〉
=

〈
X ⊙ L,


J −



w11

T

...
wn1

T





⊙M

〉

=

〈
X,


J −



w11

T

...
wn1

T





⊙ (M −H)⊙ L

〉
+

〈
X,


J −



w11

T

...
wn1

T





⊙H ⊙ L

〉
.
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Now note that
((M −H)⊙ L)[n]×S =

(
−(M +H)⊙ L̃

)
[n]×S

.

Also, the second term is at most 3Kd(θ + γ)n by the same argument as previously. Thus we have

〈(
Â− F

)
⊙ L,


J −



w11

T

...
wn1

T





⊙M

〉
≤ −

〈
X,


J −



w11

T

...
wn1

T





⊙ (M +H)⊙ L̃

〉
+ 3Kd(θ + γ)n

= −
〈
X ⊙ L̃,



(1− w1)t11

T

...
(1− wn)tn1

T



〉

+ 3Kd(θ + γ)n

≤ −10dK3

(
∑

i∈S
(1− wi)ti

)
+ γdKn+ 3Kd(θ + γ)n

≤ −10dK2.5|T |+ 4dK(θ + γ)n

≤ −10dK2(θ + γ)n

where in the above we used the resolvability assumption. Putting all of the inequalities together,
we conclude

〈
Â⊙ L⊙W,M

〉
=
〈
(Â− F )⊙ L⊙W,M

〉
+ 〈F ⊙ L⊙W,M〉 < 0

which contradicts (3) and completes the proof. �

8.2.3 Proof of Theorem 8.4

To complete the proof of Theorem 8.4, we will simply prove that after each iteration of the for
loop in Boosting using SDP, if the error is at least 8γ to start with, then the error of the new
labelling is a constant factor smaller. Since we run a sufficient number of iterations, this will imply
that the final error is at most 8γ.

Proof of Theorem 8.4. Let θ be the fraction of entries where ℓinit and ℓ̃ disagree. Let T be the
subset of S where ℓinit agrees with ℓ̃. By the assumptions in the theorem, we can apply Lemma 8.5
on the subset of entries indexed by T ×T to get that the optimal solution to the boosting SDP has
objective value at most

ρ ≤ γ + θ .

Now we argue about the structure of the optimal solution using Lemma 8.6. In particular, any
solution with ρ ≤ θ + γ must place weight wi ≥ 1− 1/

√
K on all but at most

10(θ + γ)n/
√
K ≤ 0.1(θ + γ)n

elements of S\T . Note that this means the total weight wi on indices where ℓinit and ℓ̃ agree is at
most

(θ + γ)n −
(
1− 1√

K

)
(θ − γ − 0.1(θ + γ))n ≤ (0.11θ + 2.2γ)n
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where the second term above comes from the fact that there are θn entries where ℓinit and ℓ̃
disagree, at most γn of these are outside of S and at most 0.1(θ + γ)n of these that are inside S
have wi < 1− 1/

√
K. Thus, after the flipping, the new labelling ℓ has error at most

θn− (θ − γ − 0.1(θ + γ))n +
1

1− 1/
√
K
· (0.11θ + 2.2γ)n ≤ (0.3θ + 4γ)n .

Now we can apply the above argument for each iteration of the for loop in the Boosting using
SDP algorithm. Note that the error is cut by a factor of 0.8 whenever θ ≥ 8γ and also once we have
error θ ≤ 8γ, the error will never go above 8γ. Since we run 10 log n iterations and any nonzero
error is at least 1/n, we get immediately get the desired bound and are done. �

8.3 Complete Analysis for 2 Communities

Combining Theorem 8.4 with the tail bounds in Section 6 (in particular Corollary 6.6 and Corol-
lary!6.8) and our initialization algorithm in Section 7, we can prove our main theorem for robust
community detection with 2 communities. The steps of our algorithm are summarized below.

Algorithm 3 Full Robust Community Detection (k = 2)

Input: Adjacency matrix A ∈ R
n×n, parameters a, b, ǫ, α

Set Â = A−D(a/n, b/n)J
Set C = (

√
a−
√
b)2

Run Compute Initial Labelling to compute labelling ℓinit ∈ {−1, 1}n
if ǫ ≥ 1/

√
C then

Output: ℓinit
else

Run Boosting Using SDP on Â, ℓinit and parameters

d←
√
a+ b

ζ ← 4 · 105
α3

· χ√
C

K ← 106χ

α3

where χ is a (sufficiently large) universal constant
Output: final labelling ℓ

Proof of Theorem 3.3. By Lemma 7.3, with probability 1 − 2/n2, the accuracy of the initial clus-
tering is at least

1− 104k

α3

(
χ√
C

+ ǫ

)
.

Thus, in the case where ǫ ≥ 1/
√
C, we are immediately done. Otherwise, the above accuracy is at

least 1− 0.1ζ. Now it suffices to verify the remaining conditions of Theorem 8.4. Let ℓ̃ denote the
true labelling and let L̃ = ℓ̃ℓ̃T . Let κ be a parameter that will allow us to balance the accuracy
with the failure probability from the generative model. Set

γ = e−C/2+3κ+(10K)3
√
a+b logR(a/n,b/n) + ǫ+

104

n
max

(
0,

κ√
C
− 1

)
.

27



In the generation of the ǫ-corrupted SBM, let A0 be the initial, pure SBM adjacency matrix (before
semi-random noise and corruptions). By Corollary 6.8, with probability at least 1− 2/n2, we can
find a subset S0 of (1− e−2C)n nodes such that

∥∥∥∥∥

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)

S0×S0

∥∥∥∥∥
op

≤ χ
√
a+ b .

Now let S be the subset of S0 of uncorrupted nodes (after the adversary makes the ǫ-corruption).
Note that clearly |S| ≥ (1− γ)n by the earlier definition of γ. By definition, we can write

Â = A−D(a/n, b/n)J = F +

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)
+

(
a+ b

2n
J +

a− b

2n
L̃−D(a/n, b/n)J

)

where F is a matrix such that (F ⊙ L̃)S×S is entry-wise nonnegative. We can now set

Y =

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)

S×S

Z =

(
a+ b

2n
J +

a− b

2n
L̃−D(a/n, b/n)J

)

S×S

.

Note that by Claim 5.5, all entries of Z are in the interval
[
−a−b

n , a−b
n

]
and thus, the above completes

the verification of the second and third properties that we need to apply Theorem 8.4.
Now, it remains to verify the final property in order to apply Theorem 8.4. To do this, we rely

on Corollary 6.6. Recall that

logR(a/n, b/n) ≥ 2(
√
a−
√
b)√

a+ b
=

2
√
C√

a+ b
.

Also note that
(Â− F )S×S = (A0 −D(a/n, b/n)J)S×S .

Using the above and setting

θ = e−C/2+3κ+(10K)3
√
a+b logR(a/n,b/n)

in Corollary 6.6 immediately implies that for any subset T ⊂ S with |T | ≥ (1 − ζ)n, the matrix
((Â− F )⊙ L̃)T×T is resolvable with parameters

(
100K3

√
a+ b, 1.1

((
θ +

n− |T |
n

)√
a+ b+

max(0, 104(κ−
√
C))

n logR(a/n, b/n)

))

with probability at least 1− e−10κ − 2/n2. Substituting in the definitions of d and γ completes the
verification of the last property that we need in order to apply Theorem 8.4.

We conclude that the accuracy of the final labelling ℓ is at least 1− 8γ with probability at least
1 − e−10κ − 4/n2. Finally, to complete the proof and bound the expected accuracy, it suffices to
substitute in the expression for γ and integrate over the failure probability (which is controlled by
κ) and we get that the expected accuracy is at least

1− 8ǫ− e−C/2+(100K)3
√
a+b logR(a/n,b/n) − e−

√
C

n
. (4)
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Finally, note that if a/b ≥ C, then we can imagine replacing b with a/C and pretending that there
is more semi-random noise. Note that

(
√
a−

√
a/C)2 ≥ a

(
1− 2√

C

)
≥ C − 2

√
C .

Thus, replacing C ← C − 2
√
C if necessary, we can ensure a/b ≤ C. If this happens then

logR(a/n, b/n) ≤ 4 log
√

a/b ≤ 2 logC ·
√
a−
√
b√

a+ b
= 2 logC ·

√
C√

a+ b

where the middle inequality above holds because log
√

a/b ≤
√

a/b − 1 = (
√
a −
√
b)/
√
b which

immediately implies the above if a < 3b and if a ≥ 3b then

log
√

a/b ≤ 1

2
logC ≤ 2 logC ·

√
a−
√
b√

a+ b

where we used the assumption that a/b ≤ C. Substituting our bound on logR(a/n, b/n) back into
(4) and noting that K = O(α−3), we conclude that the expected accuracy is at least

1− 8ǫ− e−
√
logn

n
− e−C/2+O(α−9

√
C logC)

and we are done. �

9 The Robust Boosting Procedure for k Communities

Now we consider the case of community detection with k > 2 communities. In this case, we
use a generalization of our boosting SDP for two communities where we consider all pairs of

(k
2

)

communities and essentially enforce the constraints of the two community SDP on each pair of
communities (based on our rough estimate of the communities). We first introduce some notation.

Definition 9.1. Let P = {S1, . . . , Sk} be a partition of [n] into k parts. For distinct j1, j2 ∈ [k],
we define the associated vectors ℓj1j2 of P to be vectors in {−1, 0, 1}n that have 1 in entries indexed
by elements of Sj1, −1 in entries indexed by elements of Sj2 and 0 everywhere else. We define the
associated matrices as L(j1, j2) = ℓj1j2ℓ

T
j1j2

.

Now we formally state the boosting SDP.

Definition 9.2 (Boosting SDP For k Communities). Let Â be an n×n matrix we are given as input.
Let P = {S1, . . . , Sk} be a partition of [n] into k parts that we are given. We let L(j1, j2) for distinct
j1, j2 ∈ [k] be the associated matrices of P. Let α, ζ, d,K be some parameters that we can set. The
boosting SDP for Â, S1, . . . , Sk and parameters α, ζ, d,K with 0 < ζ < 1,K ≥ 104 is defined as
follows: we have a variable 0 ≤ ρ ≤ ζ, weights w1, . . . , wn ∈ R and matrices W ∈ R

n×n, N ∈ Rn(ρ)
such that

0 ≤ w1, . . . , wn ≤ 1

w1 + · · ·+ wn ≤ ρn

Wij ≥ 0 ∀i, j

W = J −
[
w11 . . . wn1

]
−



w11

T

...
wn1

T


+N
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and finally we have the constraint that for all distinct j1, j2 ∈ [k] and all ρ′ with kρ/(αK) ≤ ρ′ ≤ ζ
and all

(M,x1, . . . , xn) ∈ Sn
(
ρ′(|Sj1 |+ |Sj2 |)

n
,
Kρ′(|Sj1 |+ |Sj2 |)

n

)

that

〈
Â⊙ L(j1, j2)⊙W,M

〉
≥ 10dK2


K


 ∑

i∈Sj1
∪Sj2

xi(1− wi)


− ρ′(|Sj1 |+ |Sj2 |)


 .

The objective is to find a feasible solution that minimizes ρ.

The algorithm and analysis are very similar to the k = 2 case. The main intuition is that for
any solution W to the k-community boosting SDP, for any distinct j1, j2 ∈ [k], the restriction of
W to vertices in Sj1 ∪ Sj2 is a solution to the 2-community boosting SDP on Sj1 ∪ Sj2 . Thus, we
can still use Lemmas 8.5 and 8.6 to argue about properties of solutions to the boosting SDP.

Algorithm 4 Boosting Using SDP k-community

Input: Matrix Â, parameters α, ζ, d,K
Input: Rough partition of [n] into k parts given by Pinit
Set P ← Pinit
for t = 1, 2, . . . , 10k log n do

Run Boosting SDP with P, Â, α, ζ, d,K
for i ∈ [n] such that wi ≥ 1− 1/

√
K, do

Flip the label to one of the other k − 1 possibilities uniformly at random

Set P to the new labelling (after flips)

Output: P

The analysis relies on two key lemmas which parallel those in the previous section. Lemma 9.3
parallels Lemma 8.5 and shows the existence of a solution with good objective value. Lemma 9.4
parallels Lemma 8.6 and gives structural properties that must hold for any solution with good
objective value.

Lemma 9.3. Consider solving the k-community boosting SDP with input partition P = {S1, . . . , Sk}.
Assume that |Sj| ≥ αn/k for all j ∈ [k] and there is an n × n matrix F and a subset S ⊂ [n] with
|S| ≥ (1− θ)n and θ ≤ αζ/k such that the following properties hold:

• For all distinct j1, j2 ∈ [k], (F ⊙ L(j1, j2))S×S is entrywise nonnegative

• (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j ∈ [n]

• For all distinct j1, j2 ∈ [k], the matrix

(
(Â− F )⊙ L(j1, j2)

)
(S∩(Sj1

∪Sj2
))×(S∩(Sj1

∪Sj2
))

is (10dK3, θdK)-resolvable
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Then there is a feasible solution to the SDP with ρ = θ where W is the n × n matrix that is 1 on
the square corresponding to S × S and 0 everywhere else.

Proof. As in Lemma 8.5, we can let wi = 1 for all elements i ∈ [n]\S and 0 otherwise. We then
set N to be the indicator of the square indexed by [n]\S × [n]\S. Now we show how to apply
Lemma 8.5 to check feasibility. It suffices to consider fixed indices j1, j2. Let R = Sj1 ∪ Sj2 and let
r = |R|. Note that by the assumptions in the lemma, we must have

|S ∩R| ≥ (1− kθ/α)r ≥ (1− ζ)r .

Now, to check the constraint of the SDP, it suffices to restrict Â,W,M and x1, . . . , xn to those
indexed by elements of R. For any (M,x1, . . . , xn) for which we need to check the constraint, we
have

(MR×R, {xi}i∈R) ∈ Sr(ρ′,Kρ′)

and kθ/(αK) ≤ ρ′ ≤ ζ. Thus, we can apply Lemma 8.5 (with θ ← kθ/α) with the matrices
ÂR×R, FR×R, L(j1, j2)R×R and subset S ∩R to deduce that the desired constraint is satisfied. �

Lemma 9.4. Consider solving the k-community boosting SDP and assume that the input partition
has all communities of size at least αn/k. Let P̃ = {S̃1, . . . , S̃k} be a partition of [n] into k parts
that disagrees with P on at most θn elements where θ ≤ 0.5αζ/k. For distinct j1, j2 ∈ [k], let

ℓ̃j1j2 be the associated vectors (recall Definition 9.1) and ˜L(j1, j2) be the associated matrices of P̃.
Assume that for some γ ≤ 0.5αζ/k, there is a subset S ⊂ [n] with |S| ≥ (1 − γ)n and an n × n
matrix F such that the following properties hold:

• For all distinct j1, j2 ∈ [k], (F ⊙ ˜L(j1, j2))S×S is entrywise nonnegative

• (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j ∈ [n]

• For all distinct j1, j2 ∈ [k], the matrix

(
(Â− F )⊙ ˜L(j1, j2)

)
S(j1,j2)×S(j1,j2)

is (10dK3, (θ + γ)dK)-resolvable where S(j1, j2) = S ∩ (Sj1 ∪ Sj2) ∩ (S̃j1 ∪ S̃j2)

Then for any feasible solution to the boosting SDP with ρ ≤ (θ + γ), there are at most 20(θ +
γ)k3n/(α

√
K) elements i ∈ S such that wi ≤ 1− 1/

√
K and where P and P̃ disagree.

Proof. We will consider each pair of distinct j1, j2 ∈ [k] and apply Lemma 8.6 to each. First, fix
j1, j2. Let R = Sj1 ∪ Sj2 . Note that by definition, WR×R is a feasible solution to the 2-community

boosting SDP for the matrix ÂR×R and the labelling ℓj1j2 with objective value at most kρ/α. Thus,
we can apply Lemma 8.6 on the solution WR×R restricted to the set of entries in R×R. Note that
when we apply Lemma 8.6 we are setting

• S ← S(j1, j2) and ℓ̃← ℓ̃j1j2 (technically ℓ̃j1j2 is not a full labelling but it is a full labelling on
S(j1, j2) so we can still apply the lemma)

• θ ← kθ/α, γ ← k(θ + γ)/α
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where we use that
|S(j1, j2)| ≥ |R| − (θ + γ)n ≥ (1− k(θ + γ)/α)|R| .

We conclude that among all vertices i ∈ S ∩ (Sj1 ∩ S̃j2) or i ∈ S ∩ (S̃j1 ∩ Sj2), at most 20(θ +
γ)kn/(α

√
K) of them have weight wi ≤ 1− 1/

√
K. Now we can simply sum this over all choices of

j1, j2 to complete the proof of the desired statement. �

Now we can prove the analogue of Theorem 8.4, giving explicit conditions on the input under
which the boosting procedure succeeds. The analysis will need to a bit more precise than the anal-
ysis in Theorem 8.4 since flipping labels does not guarantee that we correctly label the vertex but
only increases the probability that we correctly label them. Fortunately, by choosing K sufficiently
large, we can ensure that almost all of the labels that we flip are originally wrong so this still makes
progress in expectation. We then argue that if we run a sufficient number of iterations, we make
progress with high probability.

Theorem 9.5. Assume that we run Boosting Using SDP k-community and that the input has
all communities of size at least αn/k, the parameters satisfy K ≥ (10k/α)10 , ζ ≥ 1/

√
n and there

is a subset S ⊂ [n] with |S| ≥ (1 − γ)n where γ ≤ 0.1αζ/k, an n × n matrix F and a partition of

[n] given by P̃ = {S̃1, . . . , S̃k} with associated matrices ˜L(j1, j2) such that

1. Pinit agrees with P̃ on at least (1− 0.1αζ/k)n entries

2. For any distinct j1, j2 ∈ [k], (F ⊙ ˜L(j1, j2))S×S is entrywise nonnegative

3. (Â− F )S×S = Y + Z where ‖Y ‖
op
≤ Kd and |Zij | ≤ Kd/(ζn) for all i, j ∈ [n]

4. For any distinct j1, j2 ∈ [k] and all subsets U ⊂ S∩ (S̃j1 ∪ S̃j2) with |U | ≥ (1− ζ)(|S̃j1 |+ |S̃j2 |)
we have that

(
(Â− F )⊙ ˜L(j1, j2)

)
U×U

is resolvable with parameters

(
10dK3, 0.5dK

(
γ +
|S̃j1 |+ |S̃j2 | − |U |

n

))

Then the expected accuracy of the output of Boosting Using SDP k-community (with respect
to P̃) is at least (1− 8kγ − 1/n2).

Proof. Let T0 ⊂ [n] be the set of elements where Pinit and P̃ agree and let |[n]\T0| = θn. Let
T = S ∩ T0. Now, we apply Lemma 9.3 with the subset T . To see that this application is valid,
note that θ ≤ 0.1αζn/k by assumption. The first two conditions that we need to check for the
lemma are trivial because by construction,

L(j1, j2)T×T = ˜L(j1, j2)T×T .

To check the last condition about resolvability, note that for any distinct j1, j2 ∈ [k], the definition
of T implies

T ∩ (Sj1 ∪ Sj2) ⊂ S ∩ (S̃j1 ∪ S̃j2)

|T ∩ (Sj1 ∪ Sj2)| ≥ |S̃j1 |+ |S̃j2 | − (θ + γ)n ≥ (1− ζ)(|S̃j1 |+ |S̃j2 |)
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so we can simply set U = T ∩ (Sj1 ∪ Sj2) in the fourth assumption in the theorem statement. We
conclude that the optimal solution to the boosting SDP has objective value at most

ρ ≤ θ + γ .

Next, we apply Lemma 9.4 to argue about the structure of the optimal solution. When we are
applying Lemma 9.4 we are setting P̃ ← P̃ , S ← S. The first two properties that we need to verify
to apply the lemma follow trivially from our assumptions. To verify the last one about resolvability,
note that

|S ∩ (Sj1 ∪ Sj2) ∩ (S̃j1 ∪ S̃j2)| ≥ |S̃j1 |+ |S̃j2 | − (θ + γ)n ≥ (1− ζ)(|S̃j1 |+ |S̃j2 |)

so we can plug in U = S ∩ (Sj1 ∪ Sj2) ∩ (S̃j1 ∪ S̃j2) into the fourth assumption in the theorem
statement. Thus, we can apply Lemma 9.4 and we conclude that any solution with ρ ≤ θ+γ places
weight wi ≥ 1− 1/

√
K on all but at most

(θ + γ)n

100k2

elements of S\T . Thus, the total weight wi on indices where Pinit and P̃ agree is at most

(θ + γ)n−
(
1− 1√

K

)(
θ − γ − (θ + γ)

100k2

)
n ≤

(
θ

10k2
+ 2.2γ

)
n .

Now, after flipping, the expected error (over the random choices of the flips) of the new labelling
is at most

θ − 1

k

(
θ − γ − (θ + γ)

100k2

)
+ 1.1 ·

(
θ

10k2
+ 2.2γ

)
≤
(
1− 1

2k

)
θ + 3γ .

Of course, we can apply the above argument for each iteration of the for loop in Boosting Using
SDP k-community. Since we run 10k log n iterations, the above recurrence implies that the
expected error at the end is at most 8kγ +1/n2. There is one additional technicality that we must
deal with, which is to ensure that the error never goes above the threshold of 0.5αζ/k since if
this happens then Lemma 9.3 and Lemma 9.4 can no longer be applied. Since we assumed that
ζ ≥ 1/

√
n, a Chernoff bound ensures that the probability of this bad event happening is at most

e−Ω(α
√
n/k) which is negligible. �

9.1 Completing the Analysis

Finally, we can complete the proof of Theorem 3.4. The proof is very similar to that of Theorem 3.3.
We will use the initialization algorithm in Section 7 and then use results in Section 6 to verify that
the conditions necessary to apply Theorem 9.5 for the boosting step hold for a matrix generated from
an ǫ-corrupted SBM. The algorithm is also exactly the same as the algorithm for the 2-community
case except we use Boosting Using SDP k-Community for the boosting step.
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Algorithm 5 Full Robust Community Detection (k > 2)

Input: Adjacency matrix A ∈ R
n×n, parameters a, b, ǫ, k, α

Set Â = A−D(a/n, b/n)J
Set C = (

√
a−
√
b)2

Run Compute Initial Labelling to compute partition Pinit = {S1, . . . , Sk} of [n]
if ǫ ≥ 1/

√
C then

Output: Pinit
else

Run Boosting Using SDP k-Community on Â,Pinit and parameters

α← α

d←
√
a+ b

ζ ← 2 · 105k2
α4

· χ√
C

K ←
(
10k

α

)10

· χ

where χ is a (sufficiently large) universal constant
Output: final labelling P

Proof of Theorem 3.4. By Lemma 7.3, with probability 1 − 2/n2, the accuracy of the initial clus-
tering is at least

1− k · 104
α3

·
(

χ√
C

+ ǫ

)
.

Thus, in the case where ǫ ≥ 1/
√
C, we are immediately done. Otherwise, the above accuracy is

at least 1 − 0.1αζ/k. Also, note that ζ ≥ 1/
√
n since it suffices to consider when C = o(n). Now

we will verify the remaining conditions to apply Theorem 9.5. Let P̃ denote the true labelling and

let ˜L(j1, j2) be its associated matrices. Let L̃ be the matrix that has 1 in entries indexed by two

vertices in the same (true) community and −1 in other entries. Note that the matrices ˜L(j1, j2)

are all obtained by restricting to a submatrix of L̃ indexed by (S̃j1 ∪ S̃j2)× (S̃j1 ∪ S̃j2) and zeroing
out everything else.

Let κ be a parameter that will allow us to balance the accuracy with the failure probability from
the generative model. Set

γ = e−αC/k+3κ+(10K)5
√
a+b logR(a/n,b/n) + ǫ+

104

n
max

(
0,

kκ

α
√
C
− 1

)
.

In the generation of the ǫ-corrupted SBM, let A0 be the initial, pure SBM adjacency matrix (before
semi-random noise and corruptions). By Corollary 6.8, with probability at least 1− 2/n2, we can
find a subset S0 of (1− e−2C)n nodes such that

∥∥∥∥∥

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)

S0×S0

∥∥∥∥∥
op

≤ χ
√
a+ b .
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Now let S be the subset of S0 of uncorrupted nodes (after the adversary makes the ǫ-corruption).
Note that clearly |S| ≥ (1− γ)n and γ ≤ 0.1αζ/k by the earlier definition of γ. We can write

Â = A−D(a/n, b/n)J = F +

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)
+

(
a+ b

2n
J +

a− b

2n
L̃−D(a/n, b/n)J

)

where F is a matrix such that (F ⊙ L̃)S×S is entry-wise nonnegative. We can now set

Y =

(
A0 −

a+ b

2n
J − a− b

2n
L̃

)

S×S

Z =

(
a+ b

2n
J +

a− b

2n
L̃−D(a/n, b/n)J

)

S×S

.

By Claim 5.5, all entries of Z are in the interval
[
−a−b

n , a−b
n

]
and plugging in the parameter settings,

we have Kd/(ζn) ≥ (a− b)/n. Thus, the above completes the verification of the second and third
properties that we need to apply Theorem 9.5.

Now, it remains to verify the final property. We will apply Corollary 6.6 on each pair of
communities S̃j!, S̃j2 . Fix j1, j2 ∈ [k]. Let r = |S̃j1 |+ |S̃j2 |. Recall that

logR(a/n, b/n) ≥ 2(
√
a−
√
b)√

a+ b
=

2
√
C√

a+ b
.

Also note that
(Â− F )S×S = (A0 −D(a/n, b/n)J)S×S .

Setting

θ = e−
rC
2n

+3κ+(10K)4
√

(a+b)r/n logR(a/n,b/n)

and using Corollary 6.6 immediately implies that for any subset U ⊂ S ∩ (S̃j1 ∪ S̃j2) with |U | ≥
(1− ζ)r, the matrix

((Â− F )⊙ L̃)
(S∩(S̃i∪S̃j))×(S∩(S̃i∪S̃j))

is resolvable with parameters

(
5 · 103K4

√
(a+ b)r/n, 1.1

((
θ +

r − |U |
r

))√
(a+ b)r/n+

max(0, 104(κ−
√
rC/n)

r logR(a/n, b/n)

)

with probability at least 1 − e−10κ − 2/r2 (note that we are applying Corollary 6.6 on an r × r
matrix so a, b, C get scaled down by a factor of r/n accordingly). We must have r ≥ 2αn/k. Thus,
using this and the definition of γ, θ and the settings of parameters K, d, ζ, we get that the fourth
condition in Theorem 9.5 is indeed satisfied.

Overall, we can union bound the above over all pairs j1, j2 to get a probability of

1− k2e−10κ − k4/(α2n2)

that the condition holds for all pairs j1, j2 simultaneously. Finally, assuming that this holds,
we can apply Theorem 9.5 to get that the expected accuracy of the final labelling P is at least

35



1 − 8kγ − 1/n2. Finally, to complete the proof and bound the expected accuracy, it suffices to
substitute in the expression for γ and integrate over the failure probability (which is controlled
by κ). Using essentially the same computations as in the proof of Theorem 3.3, we get that the
expected accuracy of the algorithm is at least

1−O(ǫk/α3)− e−αC/k+poly(k/α)
√
C logC − e−

√
logn

n

and this completes the proof. �

References

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent develop-
ments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[ABH15] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Transactions on information theory, 62(1):471–487,
2015.

[AJK+21] Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh,
and Huanyu Zhang. Robust estimation for random graphs. arXiv preprint
arXiv:2111.05320, 2021.

[BDJ+20] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, and
Santosh S. Vempala. Robustly learning mixtures of k arbitrary gaussians, 2020.

[BMR21] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local statistics, semidefi-
nite programming, and community detection. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1298–1316. SIAM, 2021.

[BP21] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in poly-
nomial time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 102–115, 2021.

[CKMY20] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Online and distribution-
free robustness: Regression and contextual bandits with huber contamination. arXiv
preprint arXiv:2010.04157, 2020.

[CRV15] Peter Chin, Anup Rao, and Van Vu. Stochastic block model and community detection
in sparse graphs: A spectral algorithm with optimal rate of recovery. In Conference
on Learning Theory, pages 391–423. PMLR, 2015.

[DAM15] Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual infor-
mation for the two-groups stochastic block model. arXiv preprint arXiv:1507.08685,
2015.

[DdNS22] Jingqiu Ding, Tommaso d’Orsi, Rajai Nasser, and David Steurer. Robust recovery for
stochastic block models. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 387–394. IEEE, 2022.

36



[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Being robust (in high dimensions) can be practical. In International
Conference on Machine Learning, pages 999–1008. PMLR, 2017.

[DKK+19a] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and Alistair
Stewart. Robust estimators in high-dimensions without the computational intractabil-
ity. SIAM Journal on Computing, 48(2):742–864, 2019.

[DKK+19b] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart. Sever: A robust meta-algorithm for stochastic optimization. In
International Conference on Machine Learning, pages 1596–1606, 2019.

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymp-
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A Deferred Proofs from Section 5

Proof of Claim 5.5. Without loss of generality p > q. We have

D(p, q) =
1

1 + log p−log q
log(1−q)−log(1−p)

. (5)

Since log x is concave, we have

p− q

p
≤ log p− log q ≤ p− q

q

and
p− q

1− q
≤ log(1− q)− log(1− p) ≤ p− q

1− p
.

Plugging in the above two inequalities into (5) gives

q ≤ D(p, q) ≤ p

as desired. �

Proof of Claim 5.6. Let t > 0 be some parameter to be set later. Then

E
x∼D1

[e−tx] =
(
a/n · e−t + (1− a/n)

)αn (
b/n · et + (1− b/n)

)(1−α)n

E
x∼D2

[etx] =
(
b/n · et + (1− b/n)

)αn (
a/n · e−t + (1− a/n)

)(1−α)n

and thus

Pr
x∼D1

[x+K ≤ θ] ≤
(
a/n · e−t + (1− a/n)

)αn (
b/n · et + (1− b/n)

)(1−α)n
et(−K+θ)

Pr
x∼D2

[x+K ≥ −θ] ≤
(
b/n · et + (1− b/n)

)αn (
a/n · e−t + (1− a/n)

)(1−α)n
et(K+θ) .

We choose

et =

√
a(1− b/n)

b(1− a/n)
.

Note that K is set precisely such that the RHS of the two expressions above are equal since this
rearranges as

e2tK =

(
a/n · e−t + (1− a/n)

b/n · et + (1− b/n)

)2α−1

=

(
1− a/n

1− b/n

)(2α−1)n

.

Thus, we can instead multiply the two previous inequalities and get

max

(
Pr

x∼D1

[x+K ≤ θ], Pr
x∼D2

[x+K ≥ −θ]
)
≤
((
a/n · e−t + (1 − a/n)

) (
b/n · et + (1− b/n)

))n/2
etθ

=

(√
ab

n2
+

√(
1− a

n

)(
1− b

n

))n(√
a(1− b/n)

b(1− a/n)

)θ

≤
(
1− (

√
a−
√
b)2

n

)n/2

e
θ
2
log

a(1−b/n)
b(1−a/n)

≤ e−C/2 · e θ
2
logR(a/n,b/n)
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and this completes the proof.
�

B Deferred Proofs from Section 6

Proof of Claim 6.2. We first consider a fixed combinatorial subrectangle. This is equivalent to
considering an n1×n2 matrix N with entries drawn from the same distribution. Let Σ be the sum

of the entries of N . We break into two cases. First, if σ ≤ (n1+n2)
√
n

104n1n2
then for each entry of N , we

have for any t ≥ 0

E[etNij ] ≤ E[1 + tNij + t2N2
ij(1 + etNij )] ≤ 1 + σ2t2(1 + et) ≤ 1 + σ2e2t .

Thus using Markov’s inequality and plugging in

t =
1

2
log

(
(n1 + n2)

√
n

4σn1n2

)

we get

Pr[Σ ≥ (n1 + n2)σ
√
n] ≤ exp

(
n1n2σ

2 (n1 + n2)
√
n

4σn1n2
− (n1 + n2)tσ

√
n

)

≤ exp
(
−(n1 + n2)σ

√
n(t− 1)

)

≤ e−10(n1+n2) log(n/n1+n/n2)

where the last step uses that σ ≥ 20/
√
n. Next, if σ ≥ (n1+n2)

√
n

104n1n2
then we have for any 0 ≤ t ≤ 1,

E[etNij ] ≤ E[1 + tNij + t2N2
ij] ≤ 1 + t2σ2 .

Thus, by Markov’s inequality and plugging in

t =
(n1 + n2)

√
n

104n1n2σ

we get

Pr[Σ ≥ (n1 + n2)σ
√
n] ≤ exp

(
t2σ2n1n2 − t(n1 + n2)σ

√
n
)

≤ exp
(
−10−4n

)

≤ e−10(n1+n2) log(n/n1+n/n2)

where in the last step, we use that n1, n2 ≤ 10−6n. Using the exact same argument, we get the
same inequalities for Pr[Σ ≤ (n1 + n2)σ

√
n]. Now, combining everything and union bounding over

all choices of a n1 × n2 combinatorial rectangle gives a failure probability of at most

2e−10(n1+n2) log(n/n1+n/n2)

(
n

n1

)(
n

n2

)
≤ e−8(n1+n2) log(n/n1+n/n2)

which completes the proof. �
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Proof of Claim 6.3. Imagine sampling the matrix A by independently drawing the entries Aij with
i < j and then filling in the remainder of the matrix symmetrically (with 0 on the diagonal). Note
that Aij is drawn from Bernoulli(a/n) if i and j are in the same community and Bernoulli(b/n)
otherwise. Note that to bound

〈
(A−D(a/n, b/n)J)⊙ L,



x11

T

...
xn1

T



〉

it suffices to consider when x1, . . . , xn are indicators of some subset of size βn since all other
possibilities can be written as a convex combination of such choices. Also, we may assume β ≥ 1/n
(since at that point we are just considering single rows). Finally, note that it suffices to consider
when βn is an integer because when it is not, we can consider subsets of size ⌊βn⌋ and ⌈βn⌉ and the
RHS of the desired inequality is convex in β and any choice of x1, . . . , xn with x1 + · · ·+ xn = βn
can be written as a convex combination of indicator functions of sets of size ⌊βn⌋ and ⌈βn⌉.

We will consider a fixed subset of βn rows, say S and then union bound over all possible
choices. First, imagine that all entries in S × [n] are drawn independently (and diagonal entries
are drawn from Bernoulli(a/n)). We will apply Claim 5.6 to bound the sum of all of the entries of
(A−D(a/n, b/n)J)⊙L indexed by S×n. Note that in Claim 5.6, we are actually setting n← βn2,
a← aβn and b← bβn. We set

θ =
2βn(C/2− log 1/β − 3κ)

logR(a/n, b/n)
.

We get that for the submatrix of (A−D(a/n, b/n)J)⊙L indexed by S ×n, the sum of the entries
is at least θ with probability at least

1− e−
βCn
2

+βn(C/2−log 1/β−3κ) ≥ 1− e−βn(log(1/β)+1)−2κβn . (6)

Of course, the above bound is assuming that all of the entries in S×[n] are drawn independently,
which is not the case. It remains to bound the difference from forcing A to be symmetric and having
0 on the diagonal. It is clear that zeroing out the diagonal changes the desired quantity

〈
(A−D(a/n, b/n)J)⊙ L,



x11

T

...
xn1

T



〉

by at most βn.
Next, we re-examine the entries indexed by S × [n]. All entries in S × n\S are in fact drawn

independently. Now we can consider two possible ways to sample the entries in S × S. First,
we sample the entries in S × S above the diagonal and symmetrically fill in the entries below
the diagonal. This is equivalent to the sampling process for A. Alternatively, we can sample
the entries below the diagonal independently as well, which is equivalent to the fully independent
process considered previously. It remains to upper bound the difference between the two sampling
processes. The difference has mean 0 and is a sum/difference of independent random variables that
take values in {0, 1} and are nonzero with probability at most a/n. Let this difference be ∆. By
Claim 6.2, we have

Pr[|∆| ≥ βn
√
a] ≤ e−8βn log(1/β) ≤ 1

n4
( n
βn

) . (7)
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Finally, we can simply union bound the combination of (6) and (7) over all choices of a subset
S ⊂ n of size βn to get the desired inequality. �

Proof of Lemma 6.4. First we deal with the case where x1 + · · · + xn ≤ 100. We bound the
probability that the sum of the entries in each row of (A−D(a/n, b/n)J) ⊙ L is at least the
quantity

T = K
√
a+ b−

θn
√
a+ b+ 104(κ−

√
C)

logR(a/n,b/n)

100
.

Note that if this happens, then we clearly get the desired inequality for all x1 + · · ·+xn ≤ 100. By
Claim 5.6 and a union bound, all rows of (A−D(a/n, b/n)J) ⊙ L have sum of entries at least T
with probability at least

1− ne(−
C
2
+T

2
logR(a/n,b/n)) . (8)

Now we examine the expression in the exponent. By definition, it is

−C

2
+

T

2
logR(a/n, b/n) = −C

2
+

K
√
a+ b

2
logR(a/n, b/n)− θn

√
a+ b

200
logR(a/n, b/n)− 104(κ−

√
C)

200

≤ log θ − θn
√
a+ b

200
logR(a/n, b/n)− K

√
a+ b

2
logR(a/n, b/n) − 50(κ −

√
C)

≤ − log
n
√
a+ b logR(a/n, b/n)

200
− K

√
a+ b

2
logR(a/n, b/n)− 50(κ −

√
C) .

Note that by definition

logR(a/n, b/n) ≥ log(a/b) = 2 log
√

a/b ≥ 2

√
a−
√
b√

a+ b
=

2
√
C√

a+ b
.

Thus, substituting back into (8) the probability in question is at least

1− ne(−
C
2
+T

2
logR(a/n,b/n)) ≥ 1− e−50κ .

Now it remains to consider when x1 + · · ·+ xn ≥ 100. First apply Claim 6.3 and union bound
over all β such that β is an integer and βn ≥ 100. Since the RHS of the desired inequality is linear
in x1+ · · ·+xn, it suffices to consider when x1, . . . , xn are all 0 or 1 (since all other possibilities can
be written as a suitable linear combination). Now let x1 + · · · + xn = βn. It suffices to compare
the RHS of the last expression in Claim 6.3 to the RHS of the desired inequality above. As before,
define

Q = C/2− log(1/β) − 3κ .

If β ≤ θ/(2K) then

2βn

(
Q

logR(a/n, b/n)
−
√
a+ b

)
= −2βn

√
a+ b+

2n (β(C/2 − 3κ) + β log β)

logR(a/n, b/n)

≥ −2βn
√
a+ b− 2n

logR(a/n, b/n)
e−C/2+3κ

≥ −2βn
√
a+ b− n

√
a+ b√
C

e−C/2+3κ

≥ −2(β + 0.1θ)n
√
a+ b

≥ (Kβ − θ)n
√
a+ b
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and we are done by the guarantees in Claim 6.3. Otherwise, if β ≥ θ/(2K) then we also must have

Q ≥ K
√
a+ b logR(a/n, b/n)− log(2K)

and thus

2βn

(
Q

logR(a/n, b/n)
−
√
a+ b

)
≥ 2βn

√
a+ b (K − (log(2K) + 1)) ≥ Kβn

√
a+ b

and again we are done by the guarantees in Claim 6.3. This completes the proof. �

Proof of Corollary 6.6. By Lemma 6.4 we have that with probability at least 1− e−10κ − 1/n2 the
following inequality holds for all 0 ≤ x1, . . . , xn ≤ 1 with x1 + · · · + xn ≤ 10−6n:

〈
(A−D(a/n, b/n)J) ⊙ L,



x11

T

...
xn1

T



〉
≥ (K(x1+· · ·+xn)−θn)

√
a+ b−max(0, 104(κ−

√
C))

logR(a/n, b/n)
. (9)

Now we need to consider what happens when we replace (A−D(a/n, b/n)J)⊙L in the above with
its restriction to S × S. Since the condition of resolvability is linear in the sum x1 + · · · + xn, it
suffices to consider when all of the xi are 0 or 1. Also, it suffices to consider when the only nonzero
xi correspond to i ∈ S. We can first write

〈
(A−D(a/n, b/n)J) ⊙ L,



x11

T

...
xn1

T



〉

=

〈(
A− a+ b

2n
J − a− b

2n
L

)
⊙ L,



x11

T

...
xn1

T



〉

+

〈(
a+ b

2n
J +

a− b

2n
L−D(a/n, b/n)J

)
⊙ L,



x11

T

...
xn1

T



〉

.

Now, for the second term, note that by Claim 5.5, all entries of the matrix a+b
2n J + a−b

2n L −
D(a/n, b/n)J are in the interval

[
−a−b

n , a−b
n

]
. Thus, when restricting to S × S, the second term

changes by at most

a− b

n
· K

10
√
C
n(x1 + · · ·+ xn) ≤ 0.2K

√
a+ b(x1 + · · · + xn) .

Now, to bound the first term, we can apply Claim 6.2. Note that the entries of the matrix

A− a+ b

2n
J − a− b

2n
L

are drawn from a distribution with mean 0. Also, for sub-rectangles of [n]× [n] indexed by disjoint
sets T1, T2, the entries in that subrectangle are all independent. Thus, we can union bound Claim 6.2
over all such sub-rectangles with |T1|, |T2| ≤ 10−6n resulting in a failure probability of at most

10−6n∑

n1=1

10−6n∑

n2=1

e−8(n1+n2) log(n/n1+n/n2) ≤ 1

n2
.
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Assuming that the result in Claim 6.2 holds for all such sub-rectangles, when restricting to S × S
the term

〈(
A− a+ b

2n
J − a− b

2n
L

)
⊙ L,



x11

T

...
xn1

T



〉

can change by at most
(n− |S|+ x1 + · · ·+ xn)

√
a .

Combining our bounds on the change when restricting to S × S with (9), we get that

〈
((A−D(a/n, b/n)J) ⊙ L)S×S ,



x11

T

...
xn1

T



〉

≥ (K(x1 + · · ·+ xn)− θn)
√
a+ b− max(0, 104(κ−

√
C))

logR(a/n, b/n)

− 0.2K
√
a+ b(x1 + · · ·+ xn)− (n− |S|+ x1 + · · ·+ xn)

√
a

≥ (0.5K(x1 + · · ·+ xn)− θn− (n− |S|))
√
a+ b− max(0, 104(κ−

√
C))

logR(a/n, b/n)
.

This immediately implies the desired property (note that the factor of 1.1 in the second parameter
is because we are now considering an |S|×|S| matrix instead of an n×n matrix but 1.1|S| ≥ n). �

C Deferred Proofs from Section 7

Proof of Lemma 7.2. Let A0 be the pure SBM adjacency matrix i.e. before the semi-random and
adversarial corruptions are added. Let L be the matrix whose entries are Lij = 1 if i, j are in the
same community and Lij = −1 otherwise. By Corollary 6.8 with probability at least 1 − 2/n2,
there is a subset S ⊂ [n] of size at least (1− e−2C)n such that

∥∥∥∥
(
A0 −

a+ b

2n
J − a− b

2n
L

)

S×S

∥∥∥∥
op

≤ χ
√
a+ b . (10)

Let T be the subset of S consisting of the uncorrupted nodes. Note that |T | ≥ (1− e−2C − ǫ)n.
Let v ∈ R

n be the indicator vector of the set T and for i = 1, 2, . . . , k, let vi ∈ R
n be the vector

that has 1 in entries indexed by elements of Si ∩ T and 0 in other entries. Define

N = vvT −
k∑

i=1

viv
T
i .

Note that alternatively, we can obtain N by taking (J −L)/2 and zeroing out all entries except for
those in T × T . Now we can write

(A− (a/n)J − F )T×T =

(
A0 −

a+ b

2n
J − a− b

2n
L− a− b

2n
(J − L) + E − F

)

T×T

=

((
A0 −

a+ b

2n
J − a− b

2n
L

)
− a− b

n
N + E − F

)

T×T
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where E is a matrix that has the same signs as L, corresponding to the semi-random noise. Also,
note that

‖N ⊙W‖1 ≤
∥∥(vvT )⊙W

∥∥
1
+

∥∥∥∥∥

(
k∑

i=1

viv
T
i

)
⊙W

∥∥∥∥∥
1

≤ 2 ‖W‖1 = 2n .

Thus, using (10), we have

〈(A− (a/n)J − F )T×T ⊙W,N〉 ≤ 2χn
√
a+ b− a− b

n
〈N,W 〉

since E must be non-positive on the entries where N is supported. Alternatively, by the spectral
constraint in the SDP, we must have

〈(A− (a/n)J − F )T×T ⊙W,N〉 ≥ −2χn
√
a+ b .

Thus, we conclude

〈N,W 〉 ≤ 4χn2

√
a+ b

a− b
≤ 4χn2

√
C

.

The above is the sum of the entries of W over the support of N . Finally, there are at most 2(e−2C+
ǫ)n2 additional entries Wij where i, j are in different communities that we need to consider. Thus,
overall, the sum of the entries Wij where i, j are in different communities is at most (5χ/

√
C+2ǫ)n2.

Next, to prove the second property, we will construct a feasible solution and argue about its
objective value. Let

W̃ =

k∑

i=1

viv
T
i .

We can choose F such that (E − F )⊙ W̃ = 0 (where E denotes the semi-random noise). We then
have

(A− (a/n)J − F )⊙ W̃ =

(
A0 −

a+ b

2n
J − a− b

2n
L− a− b

2n
(J − L) + E − F

)
⊙ W̃

=

(
A0 −

a+ b

2n
J − a− b

2n
L

)
⊙ W̃

and the feasibility now follows immediately from (10). Finally, note that the objective value of W̃
is at least

∑k
i=1 |Si|2 − 2(e−2C + ǫ)n2. Combining this with the first property and the optimality

of W gives the desired bound. �

Proof of Lemma 7.3. First, we upper bound the k-means error of the true labelling. We can also
set the means to be µ1, . . . , µk where µi is the indicator vector of Si (since moving the means will
only increase the error). Let W ′ be the matrix with W ′

ij = 1 if i and j are in the same community
(in the base SBM) and W ′

ij = 0 otherwise. Note that Lemma 7.2 implies that

∥∥W −W ′∥∥2
F
≤ (11χ/

√
C + 6ǫ)n2 (11)

since all entries are between 0 and 1 and thus the above also bounds the optimal value of the
k-means objective i.e.

k-meansopt(W ) ≤ (11χ/
√
C + 6ǫ)n2 .
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Now consider any alternative clustering into sets S′
1, . . . , S

′
k. Also, first imagine replacing W with

W ′ and evaluating the objective with respect to the rows of W ′. Consider the set S′
1 and let

s1 = |S′
1 ∩ S1|, . . . , sk = |S′

1 ∩ Sk|. Note that the k-means objective on S′
1 is at least

(s1 + · · ·+ sk −max(s1, . . . , sk)) ·
αn

4k
. (12)

Now we will combine the above with the guarantees of the k-means approximation algorithm to
prove that the clustering that is actually computed has small error. Let the computed clustering
be S′

1, . . . , S
′
k. Now define the two quantities

δ =
1

n
min

π:[k]→[k]
π invertible

(
k∑

i=1

|S′
i\Sπ(i)|

)

δ′ =
1

n
min

f :[k]→[k]

(
k∑

i=1

|S′
i\Sf(i)|

)

where in the above the difference is that π must be a permutation but f may be an arbitrary
function. Note that δ is exactly the error of the clustering S′

1, . . . , S
′
k relative to the ground truth

S1, . . . , Sk. Now we relate δ′ to δ. Let f : [k] → [k] be the function that achieves the value of δ′.
Let r be the number of elements in the range of f . Then clearly δ′ ≥ α(k − r)/k. Now consider
modifying f into a permutation by changing its value on exactly k − r inputs. This affects the
value of

k∑

i=1

|S′
i\Sf(i)|

by at most (k − r)n/(αk). Thus, we must have

δ ≤ δ′(1 + 1/α2) .

Next, note that (12) implies

k-meansS′

1,...,S
′

k
(W ′) ≥ δ′αn2

4k
≥ αδn2

4(1 + 1/α2)k
≥ α3δn2

8k

and combining with (11) and using Cauchy-Schwarz gives

k-meansS′

1,...,S
′

k
(W ) ≥

(
1

2

α3δ

8k
− (11χ/

√
C + 6ǫ)

)
n2 .

Thus, by the guarantees of our k-means approximation algorithm, we must have

δ ≤ 11 · (11χ/
√
C + 6ǫ) · 16k

α3
≤ 104k

α3

(
χ√
C

+ ǫ

)

as desired. �
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D Robust Z2 Synchronization

In this section, we prove our results for Z2-synchronization. The proof follows essentially the same
steps as the proof for community detection. We first prove bounds on row sums and resolvability in
Section D.1. We then give our initialization algorithm in Section D.2. Finally, we give our boosting
algorithm in Section D.3 and complete the proof of Theorem 3.6. Many of the tools in Section 8.2
can be re-used directly to analyze our boosting procedure for Z2-synchronization.

D.1 Key Properties of Spiked Random Matrix Models

Lemma D.1. Let ℓ ∈ {−1, 1}n be a sign vector and let L = ℓℓT . Let A be matrix generated as

A = λℓℓT /
√
n+ E

where E has i.i.d. entries drawn from N(0, 1). Let κ,K be some parameters and assume λ,K ≥ 102.
Let

θ = e−λ2/2+2Kλ+3κ .

Then with probability at least 1−e−10κ, we have for any 0 ≤ x1, . . . , xn ≤ 1 with x1+· · ·+xn ≤ 0.1n
that 〈

A⊙ L,



x11

T

...
xn1

T



〉
≥ (K(x1 + · · · + xn)− θn) ·

√
n− 104

√
nmax(0, κ − λ)

Proof. Note that the RHS is linear in the xi so it suffices to consider when the xi are the indicators
of some set S. Let |S| = βn and now fix this set S. First, we deal with the case where |S| ≤ 10. For
this case, we will simply lower bound all row-sums of A⊙L. Each row sum of A⊙L is distributed
as N(λ

√
n, n). We now bound the probability that all row sums are at least

K
√
n− θn

√
n

10
− 103

√
nmax(0, κ − λ)

and this will then finish the case where |S| ≤ 10. By a naive union bound, this probability is at
least

1− n exp

(
−(λ−K)2n+ 0.01θ2n3 + 106nmax(0, κ− λ)2

2n

)
. (13)

The expression in the exponent above is

(λ−K)2n+ 0.01θ2n3 + 106nmax(0, κ − λ)2

2n
≥ − log(θ2)

2
+

θ2n2

200
+Kλ+ 105 max(0, κ− λ)2

≥ log n+ 50κ

and thus the expression in (13) is at least 1− e−50κ, which finishes this case.
Now, we consider the case where |S| > 10. The distribution of the inner product on the LHS

in the statement of the claim is
N
(
βλn3/2, βn2

)
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and thus, the probability that the desired inequality fails is at most

exp

(
−((λ−K)β + θ)2n3

2βn2

)
≤ exp

(
−(λ−K)2βn

2
− θ2n

2β

)
≤ exp

(
(log θ2 − 6κ)βn

2
− θ2n

2β

)

≤ exp

(
−βn(2 log(1/β) + 1)

2
− 3κβn

)
≤ exp (−βn(log(1/β) + 1)− 30κβn) .

Simply union bounding the above over all β such that βn is an integer completes the proof. �

We need a few additional tail bounds that follow from standard concentration inequalities.

Claim D.2. Let n, n1, n2 be parameters with n1, n2 ≤ 0.1n. Let E be an n×n matrix whose entries
are drawn i.i.d. from N(0, 1). Then with probability at least 1− 1/n5, the magnitude of the sum of
the entries over any n1 × n2 combinatorial subrectangle of E is at most (n1 + n2)

√
n.

Proof. Note that for a fixed rectangle, the distribution of the sum is N(0,
√
n1n2). There are

(
n

n1

)(
n

n2

)
≤ en1(log(n/n1)+1)+n2(log(n/n2)+1)

distinct rectangles, so using standard Gaussian tail bounds and union bounding, we get the desired
result. �

We also have a standard spectral bound from random matrix theory.

Claim D.3 (See [Erd11] ). Let E be a matrix with i.i.d. entries drawn from N(0, 1). Then with
probability 1− 1/n2, we have

‖E‖
op
≤ 3
√
n .

We can now prove resolvability for the matrix A ⊙ L generated in Z2-synchronization and all
of its submatrices. This is the analog of Corollary 6.6.

Corollary D.4. Let ℓ ∈ {−1, 1}n be a sign vector and let L = ℓℓT . Let A be matrix generated as

A = λℓℓT /
√
n+ E

where E has i.i.d. entries drawn from N(0, 1). Let κ,K be parameters and assume K ≥ 102, λ ≥
102K. Then with probability 1 − e−10κ − 2/n2, we have that for all subsets S ⊂ [n] with |S| ≥
(1−K/(3λ))n that (A⊙ L)S×S is resolvable with parameters

(
0.5K

√
n, 1.1

√
n

(
θ +

n− |S|
n

+
104 max(0, κ − λ)

n

))

where
θ = e−λ2/2+3κ+2Kλ .

Proof. By Lemma D.1 we have that with probability at least 1 − e−10κ the following inequality
holds for all 0 ≤ x1, . . . , xn ≤ 1 with x1 + · · ·+ xn ≤ 0.1n:

〈
A⊙ L,



x11

T

...
xn1

T



〉
≥ (K(x1 + · · ·+ xn)− θn)

√
n− 104

√
nmax(0, κ − λ) .
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Now we need to consider what happens when we replace A⊙L in the above with its restriction to
S × S. Since the condition of resolvability is linear in the sum x1 + · · ·+ xn, it suffices to consider
when all of the xi are 0 or 1. Also, it suffices to consider when the only nonzero xi correspond to
i ∈ S. We can first write

〈
A⊙ L,



x11

T

...
xn1

T



〉

=

〈
E ⊙ L,



x11

T

...
xn1

T



〉

+

〈
λL√
n
⊙ L,



x11

T

...
xn1

T



〉

.

Now, by Claim D.2, the first term changes by at most (n− |S|+x1 + · · ·+ xn)
√
n when restricting

to S × S. The second term changes by at most

(n− |S|)(x1 + · · ·+ xn)λ/
√
n ≤ K

√
n(x1 + · · · + xn)/3

when restricting to S × S. Thus,

〈
(A⊙ L)S×S ,



x11

T

...
xn1

T



〉
≥ (K(x1 + · · · + xn)− θn)

√
n− 104

√
nmax(0, κ − λ)

−(n− |S|+ x1 + · · · + xn)
√
n−K

√
n(x1 + · · ·+ xn)/3

≥ 0.5K(x1 + · · ·+ xn)
√
n−

(
θn+ (n− |S|) + 104 max(0, κ − λ)

)√
n

This immediately implies the desired property (note that the factor of 1.1 in the second parameter
is because we are now considering an |S|×|S| matrix instead of an n×n matrix but 1.1|S| ≥ n). �

D.2 Initialization

The initialization step involves solving a very similar SDP to that in Section 7. We formulate the
variant for Z2-synchronization below.

Definition D.5 (Initialization SDP (Z2-Synchronization)). Assume that we are given some n× n
matrix A and parameter λ. We solve for matrices W,D such that

0 ≤Wij ,Dij ≤ 1 ∀i, j
‖W‖1 ≤ n

− 3
√
nI � (A− λJ/

√
n−D)⊙W � 3

√
nI

Since there are only two communities, we can use a simpler post-processing algorithm after we
get our solution W to the initialization SDP. Instead of using k-means, we simply label according
to the signs of the top right singular vector of W − J/2.

Algorithm 6 Compute Initial Labelling (Z2-Synchronization)

Input: Adjacency matrix A, parameter λ
Run Initialization SDP to obtain solution W
Let v be the top right singular vector of W − J/2
Let ℓinit ∈ {−1, 1}n be the signs of the vector v
Output: ℓinit
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The analysis of the initialization SDP is essentially the same as before. We first show that the
optimal solution W is close to the intended solution which has entries Wij = 1 for i and j with the
same label and Wij = 0 otherwise.

Lemma D.6. Let A be a matrix from an ǫ-corrupted Z2-synchronization instance with parameter
λ. Let the sizes of the two groups (in generating A) be m,n − m. Then with probability at least
1− 2/n2, the solution W to the Initialization SDP has the following properties:

• The sum of the entries of Wij where i, j have different labels is at most (6/λ+ 2ǫ)n2

• The sum of the entries of Wij where i, j have the same labels is at least

m2 + (n−m)2 − (6/λ+ 4ǫ)n2 .

Proof. Let A0 be the pure Z2-synchronization matrix i.e. before the semi-random and adversarial
corruptions are added. Let ℓ be the true labelling and let L = ℓℓT . Let S be the subset of
uncorrupted nodes. Note that |S| ≥ (1− ǫ)n. Let N be the matrix obtained by taking (J − L)/2
and zeroing out all entries except for those in S × S. Now we can write

(A− λJ/
√
n−D)S×S =

(
A0 − λL/

√
n− λ(J − L)/

√
n+ F −D

)
S×S

=

(
E − 2λ√

n
N + F −D

)

S×S

where E has i.i.d. standard Gaussian entries and F is a matrix that has the same signs as L,
corresponding to the semi-random noise. Also, note that

‖N ⊙W‖1 ≤ 2 ‖W‖1 ≤ 2n .

Thus, using Claim D.3 for a spectral bound on E, we have

〈(A − λJ/
√
n−D)S×S ⊙W,N〉 ≤ 6n

√
n− 2λ√

n
〈N,W 〉

since F must be non-positive on the entries where N is supported. Alternatively, by the spectral
constraint in the SDP, we must have

〈(A− λJ/
√
n−D)S×S ⊙W,N〉 ≥ −6n

√
n .

Thus, we conclude

〈N,W 〉 ≤ 6n2

λ
.

The above is the sum of the entries of W over the support of N . Finally, there are at most 2ǫn2

additional entries Wij where i, j have different labels that we need to consider. Thus, overall, the
sum of the entries Wij where i, j have different labels is at most (6/λ + 2ǫ)n2.

Next, to prove the second property, we will construct a feasible solution and argue about its
objective value. Let W̃ be the matrix obtained by taking (J + L)/2 and zeroing out all entries
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outside S × S. We can choose D such that (F −D) ⊙ W̃ = 0 (where F denotes the semi-random
noise). We then have

(A− λJ/
√
n−D)⊙ W̃ =

(
A0 − λL/

√
n− λ(J − L)/

√
n+ F −D

)
⊙ W̃

=
(
A0 − λL/

√
n
)
⊙ W̃

and the feasibility now follows immediately from the spectral bound in Claim D.3. Finally, note
that the objective value of W̃ is at least m2 + (n − m)2 − 2ǫn2. Combining this with the first
property and the optimality of W gives the desired bound. �

Now we can prove that the initialization algorithm indeed computes a good initial labelling.

Lemma D.7. Let A be a matrix from an ǫ-corrupted Z2-synchronization instance with parameter
λ. Then with probability at least 1 − 2/n2, the output of Compute Initial Labelling (Z2-
synchronization) has error at most

103(1/λ+ ǫ) .

Proof. Let the true labelling of the nodes be given by ℓ ∈ {−1, 1}n and let L = ℓℓT . Define the
matrix

W ′ = (J + L)/2 .

Note that Lemma D.6 implies that

∥∥W −W ′∥∥2
F
≤ (12/λ + 6ǫ)n2 .

Note that the matrix W ′ − J/2 = ℓℓT /2 is rank-1 and has top eigenvalue n/2. Now consider the
top left and right singular vector of W − J/2, say u, v respectively, and let the top singluar value
be ρ. Then we must have ∥∥W − J/2− ρuvT

∥∥
F
≤
∥∥W −W ′∥∥

F
.

Thus, we must have

∥∥ℓℓT /2− ρuvT
∥∥
F
≤ 2

∥∥W −W ′∥∥
F
≤ 2
√

12/λ + 6ǫn .

Now let c be the length of the projection of the unit vector ℓ/
√
n onto the orthogonal complement

of v. Then ∥∥ℓℓT/2− ρuvT
∥∥
F
≥ cn/2

so c ≤ 4
√

12/λ+ 6ǫ. Now WLOG 〈ℓ, v〉 > 0 (since otherwise, we can simply negate ℓ). Then we
must have ‖ℓ/√n− v‖ ≤ 8

√
12/λ+ 6ǫ. This immediately implies that v and ℓ have opposite signs

on at most 103(1/λ + ǫ)n entries and we are done. �

D.3 Boosting

Finally, we complete the proof of Theorem 3.6. For the boosting step, we can actually solve the
same boosting SDP as community detection (for two communities) except with a different setting
of parameters. We can also use Theorem 8.4 as a black-box for analyzing the accuracy. The full
algorithm is summarized below.

51



Algorithm 7 Full Robust Z2-Synchronization

Input: Matrix A ∈ R
n×n, parameters λ, ǫ

Run Compute Initial Labelling (Z2-Synchronization) to compute labelling ℓinit ∈
{−1, 1}n
if ǫ ≥ 1/λ then

Output: ℓinit
else

Run Boosting Using SDP on A, ℓinit and parameters

d←
√
n

ζ ← 105

λ

K ← 106

Output: final labelling ℓ

Proof of Theorem 3.6. By Lemma D.7, with probability 1−2/n2, the accuracy of the initial labelling
is at least

1− 103(1/λ+ ǫ) .

Thus, in the case where ǫ ≥ 1/λ, we are immediately done. Otherwise, the above accuracy is at
least 1− 0.1ζ. Now it suffices to verify the remaining conditions of Theorem 8.4. Let ℓ̃ denote the
true labelling and let L̃ = ℓ̃ℓ̃T . Let κ be a parameter that will allow us to balance the accuracy
with the failure probability from the generative model. Set

γ = e−λ2/2+3κ+(10K)4λ + ǫ+
104

n
max (0, κ− λ) .

In the generation of the matrix A, let A0 be matrix with only the Gaussian noise (before the
semi-random noise or adversarial corruptions). By Claim D.3, with probability at least 1− 1/n5,

∥∥∥
(
A0 − λL̃/

√
n
)∥∥∥

op
≤ 3
√
n .

Now let S be the subset of uncorrupted nodes (after the adversary makes the ǫ-corruption). Note
that clearly |S| ≥ (1− γ)n by the earlier definition of γ. By definition, we can write

A = A0 + F = F + (A0 − λL̃/
√
n) + λL̃/

√
n

where F is a matrix such that (F ⊙ L̃)S×S is entry-wise nonnegative. We can now set

Y =
(
A0 − λL̃/

√
n
)
S×S

Z =
(
λL̃/
√
n
)
S×S

.

This completes the verification of the second and third properties that we need to apply Theo-
rem 8.4.
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Now, it remains to verify the final property in order to apply Theorem 8.4. To do this, we rely
on Corollary D.4. Setting

θ = e−λ2/2+3κ+(10K)3λ

in Corollary D.4 immediately implies that for any subset T ⊂ S with |T | ≥ (1 − ζ)n, the matrix
((A− F )⊙ L̃)T×T is resolvable with parameters

(
100K3√n, 1.1

√
n

(
θ +

n− |T |
n

+
104

n
max(0, κ − λ)

))

with probability at least 1− e−10κ − 2/n2. Substituting in the definitions of d and γ completes the
verification of the last property that we need in order to apply Theorem 8.4.

We conclude that the accuracy of the final labelling ℓ is at least 1− 8γ with probability at least
1 − e−10κ − 4/n2. Finally, to complete the proof and bound the expected accuracy, it suffices to
substitute in the expression for γ and integrate over the failure probability (which is controlled by
κ) and we get that the expected accuracy is at least

1− 8ǫ− e−λ2/2+(20K)3λ − e−λ

n
≥ 1− 8ǫ− e−λ2/2+O(λ) − e−

√
logn

n
.

This completes the proof. �

53


	1 Introduction
	1.1 Our Results
	1.2 Doubly-Robust Community Detection
	1.3 Broader Context

	2 Problem Setup
	2.1 Community Detection
	2.2 Z2-Synchronization

	3 What is the Right Accuracy?
	3.1 Community Detection
	3.2 Z2-Synchronization

	4 Technical Overview
	4.1 What Happens with Edge Corruptions?
	4.2 Paper Organization

	5 Notation and Preliminaries
	5.1 Concentration Inequalities

	6 Key Properties of the SBM
	6.1 Spectral Bounds

	7 Initialization SDP
	8 The Robust Boosting Procedure
	8.1 Relaxed Constraints
	8.2 Boosting SDP for 2 Communities
	8.2.1 Exists Good Solution
	8.2.2 Any Feasible Solution Makes Progress
	8.2.3 Proof of Theorem 8.4

	8.3 Complete Analysis for 2 Communities

	9 The Robust Boosting Procedure for k Communities
	9.1 Completing the Analysis

	A Deferred Proofs from Section 5
	B Deferred Proofs from Section 6
	C Deferred Proofs from Section 7
	D Robust Z2 Synchronization
	D.1 Key Properties of Spiked Random Matrix Models
	D.2 Initialization
	D.3 Boosting


