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Abstract

The min-entropy of a quantum system A conditioned on another quantum system E describes how
much randomness can be extracted from A with respect to an adversary in possession of E. This quantity
plays a crucial role in quantum cryptography: the security proofs of many quantum cryptographic
protocols reduce to showing a lower bound on such a min-entropy. Here, we develop a new tool, called
generalised entropy accumulation, for computing such bounds. Concretely, we consider a sequential
process in which each step outputs a system Ai and updates a side information register E. We prove
that if this process satisfies a natural “non-signalling” condition between past outputs and future side
information, the min-entropy of the outputs A1, . . . ,An conditioned on the side information E at the end
of the process can be bounded from below by a sum of von Neumann entropies associated with the
individual steps. This is a generalisation of the entropy accumulation theorem (EAT) [DFR20], which
deals with a more restrictive model of side information: there, past side information cannot be updated
in subsequent rounds, and newly generated side information has to satisfy a Markov condition.

Due to its more general model of side-information, our generalised EAT can be applied more easily
and to a broader range of cryptographic protocols. In particular, it is the first general tool that is applicable
to mistrustful device-independent cryptography. To demonstrate this, we give the first security proof for
blind randomness expansion [MS17] against general adversaries. Furthermore, our generalised EAT can
be used to give improved security proofs for quantum key distribution [MR22], and also has applications
beyond quantum cryptography.
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1 Introduction

Suppose that Alice and Eve share a quantum state dAnE . From her systems An := A1 . . .An, Alice would like
to extract bits that look uniformly random to Eve, except with some small failure probability ε . The number
of such random bits that Alice can extract is given by the smooth min-entropy Hε

min(A
n|E)d [Ren08]. This

quantity plays a central role in quantum cryptography: for example, the main task in security proofs of
quantum key distribution (QKD) protocols is usually finding a lower bound for the smooth min-entropy.

Unfortunately, for many cryptographic protocols deriving such a bound is challenging. Intuitively, the
reason is the following: the state dAnE is usually created as the output of a multi-round protocol, where each
round produces one of Alice’s systems Ai and allows Eve to execute some attack to gain information about
A1, . . . ,Ai. These attacks can depend on each other, i.e., Eve may use what she learnt in round i−1 to plan
her attack in round i. This non-i.i.d. nature of the attacks makes it hard to find a lower bound on Hε

min(A
n|E)d

that holds for any possible attack that Eve can execute. In contrast, it is typically much easier to compute a
conditional von Neumann entropy associated with a single-round of the protocol, where the non-i.i.d. nature
of Eve’s attack plays no role. Therefore, it is desirable to relate the smooth min-entropy of the output of the
multi-round protocol to the von Neumann entropies associated with the individual rounds.

From an information-theoretic point of view, this question can be phrased as follows: can the smooth
min-entropy Hε

min(A
n|E)d be bounded from below in terms of von Neumann entropies H(Ai|Ei)di

AiEi
for some

(yet to be determined) systems Ei and states di
AiEi

related to d? While for general states dAnE no useful lower
bound can be found, previous works have established such bounds under additional assumptions on the state
dAnE .

The first bound of this form was proven via the asymptotic equipartition property (AEP) [TCR09]. It
assumes that the system E is n-partite (i.e., we replace E by En = E1 . . .En) and that the state dAnEn =
dA1E1⊗ . . .⊗ dAnEn is a product of identical states. Then, the AEP shows that1

Hε
min(A

n|En)d ≥
n

∑
i=1

H(Ai|Ei)d−O(
√

n) .

For applications in cryptography, the assumption that d is an i.i.d. product state is usually too strong: it
corresponds to the (unrealistic) assumption that Eve executes the same independent attack in each round, a
so-called collective attack.

The entropy accumulation theorem (EAT) [DFR20] is a generalisation of the AEP which requires far
weaker assumptions on the state dAnE . Specifically, the EAT considers states that result from a sequential
process that starts with a state d0

R0E ′ and in every step outputs a system Ai and a piece of side information Ii.
The system E ′ is not acted upon during the process. The full side information at the end of this process is
E = I1 . . . InE ′. We can represent such a process by the following diagram, whereMi are quantum channels.

M1 M2 · · · Mn

A1 I1 A2 I2 An In

R0 R1 R2 Rn−1
d0

R0E ′

E ′

1Since d is a product of identical states, all of the terms H(Ai|Ei)d are equal, i.e., ∑
n
i=1 H(Ai|Ei)d = nH(Ai|Ei)d for any i. We

write the sum here explicitly to highlight the analogy with the EAT presented below.
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The EAT requires an additional condition on the side information: the new side information Ii generated
in round i must be independent from the past outputs Ai−1 conditioned on the existing side information
Ii−1E ′. Mathematically, this is captured by the condition that the systems Ai−1↔ Ii−1E ′↔ Ii form a Markov
chain for any initial state d0

R0E ′ . With this Markov condition, the EAT states that2

Hε
min(A

n|InE ′)Mn◦···◦M1(d
0
R0E′ )
≥

n

∑
i=1

inf
l

H(Ai|IiẼ)Mi(l)−O(
√

n) , (1.1)

where Ẽ is a purifying system isomorphic to Ri−1 and the infimum is taken over all states l on systems
Ri−1Ẽ.3

Let us discuss the model of side information used by the EAT in more detail. The EAT considers side
information consisting of two parts: the initial side information E ′ (which is not acted upon during the
process) and the outputs In = I1 . . . In. This splitting of side information into a “static” part E ′ and a part
In which is generated in each step of the process is particularly suited to device-independent cryptography:
there, Eve prepares a device in an initial state d0

R0E ′ , where R0 is the device’s internal memory and E ′ is Eve’s
initial side information from preparing the device. Then, Alice (and Bob, though we only consider Alice’s
system here) executes a multi-round protocol with this device, where each round leaks some additional piece
of information Ii to Eve, so that Eve’s side information at the end of the protocol is InE ′. Indeed, the EAT has
been used to establish tight security proofs in the device-independent setting, see e.g., [AFDF+18, BMP18].

The Markov condition in the EAT captures the following intuition: if we want to find a bound on
Hε

min(A
n|InE ′) in terms of single-round quantities, it is required that side information about Ai is itself output

in step i, as otherwise we cannot hope to estimate the contribution to the total entropy from step i. To
illustrate what could happen without such a condition, consider a case where Ai is classical and no side
information is output in the first n− 1 rounds, but the side information In in the last round contains a
copy of the systems An (which can be passed along during the process in the systems Ri). Then, clearly
Hε

min(A
n|InE ′) = 0, but for the first n− 1 rounds, each single-round entropy bound that only considers the

systems Ai and Ii can be positive.

Main result. In this work, we further relax the assumptions on how the final state dAnE is generated. Spe-
cifically, we consider sequential processes as in the EAT, but with a fully general model of side information,
i.e., the side information can be updated in each step in the process. Diagrammatically, such a process can
be represented as follows:

M1 M2 · · · Mn

A1 A2 An

E0

R0

E1

R1

E2

R2

En−1

Rn−1

En

Rn
d0

R0E0

Our generalised EAT then states the following.

2The EAT from [DFR20] also makes an analogous statement about an upper bound on the max-entropy Hmax. We derive a
generalisation of that statement in Appendix A but only focus on Hmin in the introduction and main text since that is the case that
is typically relevant for applications.

3In fact, the EAT is more general in that it allows taking into account observed statistics to restrict the minimization over lAiBiE ,
but we restrict ourselves to the simpler case without statistics in this introduction.
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Theorem 1.1. Consider quantum channelsMi : Ri−1Ei−1→AiRiEi that satisfy the following “non-signalling”
condition (discussed in detail below): for eachMi, there must exist a quantum channelRi : Ei−1→ Ei such
that

TrAiRi ◦Mi =Ri ◦TrRi−1 . (1.2)

Then, the min-entropy of the outputs An conditioned on the final side information En can be bounded as

Hε
min(A

n|En)Mn◦···◦M1(d
0
R0E0

) ≥
n

∑
i=1

inf
l

H(Ai|EiẼi−1)Mi(l)−O(
√

n) , (1.3)

where Ẽi−1 ≡ Ri−1Ei−1 is a purifying system for the input toMi and the infimum is taken over all states l
on systems Ri−1Ei−1Ẽi−1.4

We give a formal statement and proof in Section 4 and also show that, similarly to the EAT, statistics
collected during the process can be used to restrict the minimization over l (see Theorem 4.3 for the formal
statement). By a simple duality argument, Equation (1.3) also implies an upper bound on the smooth max-
entropy Hmax, which we explain in Appendix A. This generalises a similar result from [DFR20], although
in [DFR20] one could not make use of duality due to the Markov condition and instead had to prove the
statement about Hmax separately, again highlighting that our generalised EAT is easier to work with.

The intuition behind the non-signalling condition in our generalised EAT is similar to the Markov condi-
tion in the original EAT: by the same reasoning as for the Markov condition, since the lower bound is made
up of terms of the form H(Ai|EiẼi−1)Mi(l), it is required that side information about Ai that is present in
the final system En is already present in Ei. This means that side information about Ai should not be passed
on via the R-systems and later be included in the E-systems. The non-signalling condition captures this
requirement: it demands that if one only considers the marginal of the new side information Ei (without the
new output Ai), it must be possible to generate this state from the past side information Ei−1 alone, without
access to the system Ri−1. This means that any side information that Ei contains about the past outputs
A1 . . .Ai−1 must have essentially already been present in Ei−1 and could not have been stored in Ri−1.

The name “non-signalling condition” is due to the fact that Equation (1.2) is a natural generalisation
of the standard non-signalling conditions in non-local games: if we view the systems Ri−1 and RiAi as the
inputs and outputs on “Alice’s side” ofMi, and Ei−1 and Ei as the inputs and outputs on “Eve’s side”, then
Equation (1.2) states that the marginal of the output on Eve’s side cannot depend on the input on Alice’s
side. This is exactly the non-signalling condition in non-local games, except that here the inputs and outputs
are allowed to be fully quantum.

To understand the relation between the Markov and non-signalling conditions, it is instructive to consider
the setting of the original EAT as a special case of our generalised EAT. In the original EAT, the full side
information available after step i is E ′Ii, and past side information is not updated during the process. For
our generalised EAT, we therefore set Ei = E ′Ii and consider mapsMi =M′

i⊗ idEi−1 , whereM′
i : Ri−1→

AiIiRi is the map used in the original EAT. We need to check that with this choice of systems and maps,
the Markov condition of the original EAT implies the non-signalling condition of our generalised EAT.
The Markov condition requires that for any state input li−1

Ai−1Ii−1Ri−1E ′ , the output state li
AiIiRiE ′

=Mi(l
i−1)

4As usual, the channels Mi act as identity on any additional systems that may be part of the input state, i.e. Mi(lRi−1Ei−1Ẽi−1
) =

(Mi⊗ idẼi−1
)(lRi−1Ei−1Ẽi−1

) is a state on AiRiEiẼi−1. In particular, the register Ẽi−1 containing a purification of the input is also
part of the output state.
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satisfies Ai−1↔ Ii−1E ′↔ Ii.5 It is then a standard result on quantum Markov chains [Pet86] that there must
exist a quantum channel Ri : Ii−1E ′ → IiE ′ such that li

IiE ′ =Ri(l
i−1
Ii−1E ′). Remembering that we defined

Ei = E ′Ii (so that Ri : Ei−1→ Ei) and adding the systems Ai−1 (on which bothMi and Ri act as identity),
we find thatMi satisfies the non-signalling condition:

TrAiRi ◦Mi(l
i−1
Ai−1Ri−1Ei−1

) = li
Ai−1Ei

=Ri(l
i−1
Ai−1Ei−1

) =Ri ◦TrRi−1(l
i−1
Ai−1Ri−1Ei−1

) .

Then, noting that all conditioning systems on which Mi acts as the identity map can collectively be re-
placed by a single purifying system isomorphic to the input, we see that we recover the original EAT (Equa-
tion (1.1)) from our generalised EAT (Equation (1.3)).

We emphasise that while the original EAT with the Markov condition can be recovered as a special case,
our model of side information and the non-signalling condition are much more general than the original
EAT; arguably, for a sequential process they are the most natural and general way of expressing the notion
that future side information should not contain new information about past outputs, which appears to be
necessary for an EAT-like result. To demonstrate the greater generality of our result, in Section 5 we use it
to give the first multi-round proof for blind randomness expansion, a task to which the original EAT could
not be applied, and a more direct proof of the E91 QKD protocol than was possible with the original EAT.
Our generalised EAT can also be used to prove security of a much larger class of QKD protocols than the
original EAT. Interestingly, for (device-dependent) QKD protocols, no “hidden system” R is needed and
therefore the non-signalling condition is trivially satisfied, i.e., the advantage of our generalised EAT for
QKD security proofs stems entirely from the more general model of side information, not from replacing
the Markov condition by the non-signalling condition; see Section 5.2 for an informal comparison of how the
original and generalised EAT can be applied to QKD, and [MR22] for a detailed treatment of the application
of our generalised EAT to QKD, including protocols to which the original EAT could not be applied.

Proof sketch. The generalised EAT involves both the min-entropy, which can be viewed as a “worst-case
entropy”, and the von Neumann entropy, which can be viewed as an “average case entropy”. These two
entropies are special cases of a more general family of entropies called Rényi entropies, which are denoted
by HU for a parameter U > 1 (see Section 2.2 for a formal definition).6 The min-entropy can be obtained
from the Rényi entropy by taking U→∞, whereas the von Neumann entropy corresponds to the limit U→ 1.
Hence, the Rényi entropies interpolate between the min-entropy and the von Neumann entropy, and they will
play a crucial role in our proof.

The key technical ingredient for our generalised EAT is a new chain rule for Rényi entropies (Lemma 3.6
in the main text).

Lemma 1.2. Let U ∈ (1,2), dARE a quantum state, andM : RE→ A′R′E ′ a quantum channel which satisfies
the non-signalling condition in Equation (1.2), i.e. there exists a channelR : E→ E ′ such that TrA′R′ ◦M=
R◦TrR. Then

HU(AA′|E ′)M(d) ≥ HU(A|E)d+ inf
lREẼ

H 1
2−U

(A′|E ′Ẽ)M(l) (1.4)

for a purifying system Ẽ ≡ RE, where the infinimum is over all quantum states l on systems REẼ.

5Strictly speaking, the EAT as stated in [DFR20] only requires that this Markov property holds for any input state li−1 in the
image of the previous maps Mi−1 ◦· · ·◦M1. The same is true for the non-signalling condition, i.e., one can check that our proof of
the generalised EAT still works if the map Ri only satisfies Equation (1.2) on states in the image of Mi−1 ◦ · · · ◦M1. To simplify
the presentation, we use the stronger condition Equation (1.2) throughout this paper.

6We note that the definition of Rényi entropies can be extended to U < 1, but we will only need the case U > 1.
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We first describe how this chain rule implies our generalised EAT, following the same idea as in [DFR20,
DF19]. For this, recall that our goal is to find a lower bound on Hε

min(A
n|En)Mn◦···◦M1(d

0
R0E0

) for a sequence
of maps satisfying the non-signalling condition TrAiRi ◦Mi =Ri ◦TrRi−1 . As a first step, we use a known
relation between the smooth min-entropy and the Rényi entropy [TCR09], which (up to a small penalty term
depending on ε and U) reduces the problem to lower-bounding

HU(An|En)Mn◦···◦M1(d
0
R0E0

) = HU(AnAn−1|En)Mn◦···◦M1(d
0
R0E0

) .

To this, we can apply Lemma 1.2 by choosing A=An−1, A′=An, E =En−1, E ′=En, R=Rn−1, R′=Rn, and
d =Mn−1 ◦ · · · ◦M1(d

0
R0E0

). Then, since the mapMn satisfies the non-signalling condition, Lemma 1.2
implies that

HU(An
1|En)Mn◦···◦M1(dR0E0 )

≥ HU(An−1
1 |En−1)Mn−1◦···◦M1(dR0E0 )

+ inf
l∈S(Rn−1En−1Ẽn−1)

H 1
2−U

(An|EnẼn−1)Mn(l) .

We can now repeat this argument for the term HU(An−1
1 |En−1)Mn−1◦···◦M1(dR0E0 )

. After n applications of
Lemma 1.2, we find that

HU(An
1|En)Mn◦···◦M1(dR0E0 )

≥
n

∑
i=1

inf
l∈S(Ri−1Ei−1Ẽi−1)

H 1
2−U

(Ai|EiẼi−1)Mi(l) .

To conclude, we use a continuity bound from [DF19] to relate H 1
2−U

(Ai|EiẼi−1)Mi(l) to H(Ai|EiẼi−1)Mi(l).
It can be shown that for a suitable choice of U, the penalty terms we incur by switching from the min-entropy
to the Rényi entropy and then to the von Neumann entropy scale as O(

√
n). Therefore, we obtain Equa-

tion (1.3). We also provide a version that allows for “testing” (which is crucial for application in quantum
cryptography and explained in detail in Section 4.2) and features explicit second-order terms similar to those
in [DF19].

We now turn our attention to the proof of Lemma 1.2. For this, we need to introduce the (sandwiched)
Rényi divergence of order U between two (possibly unnormalised) quantum states d and f, denoted by
DU(d‖f). We refer to Section 2.2 for a formal definition; for this overview, it suffices to know that
DU(d‖f) is a measure of how different d is from f, and that the conditional Rényi entropy is related
to the Rényi divergence by

HU(A|B)d =−DU(dAB ‖1A⊗ dB) .

Our starting point for proving Lemma 1.2 is the following chain rule for the Rényi divergence from [FF21]:

DU(M(d)‖F(f))≤ DU(dARE ‖fARE)+ lim
n→∞

1
n

sup
lRnEnẼn

DU

(
M⊗n(l)

∥∥F⊗n(l)
)
, (1.5)

whereM and F are (not necessarily trace preserving) quantum channels from RE to A′R′E ′, and d and f

are any quantum states on ARE. The optimization is over all quantum states l on n copies of the systems
REẼ (with Ẽ ≡ RE as before).

Making a suitable choice of F (which depends on M) and f (which depends on d), one can turn
Equation (1.5) into the following chain rule for the conditional Rényi entropy:

HU(AA′|E ′)M(d) ≥ HU(A|RE)d+ lim
n→∞

1
n

inf
lRnEnẼn

HU((A′)n|(E ′)nẼn)M⊗n(l) . (1.6)

This chain rule resembles Lemma 1.2, but is significantly weaker and cannot be used to prove a useful
entropy accumulation theorem. The reason for this is twofold:
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(i) Equation (1.6) provides a lower bound in terms of HU(A|RE), not HU(A|E). The additional condition-
ing on the R-system can drastically lower the entropy: for example, in a device-independent scenario,
R would describe the internal memory of the device. Then, Alice’s output A contains no entropy when
conditioned on the internal memory of the device that produced the output, i.e. HU(A|RE) = 0. On
the other hand, Alice’s output conditioned only on Eve’s side information E may be quite large (and
can usually be certified by playing a non-local game), i.e. HU(A|E)> 0.

(ii) Equation (1.6) contains the regularised quantity limn→∞
1
n inflRnEnẼn HU((A′)n|(E ′)nẼn)M⊗n(l). Due

to the limit n→ ∞, this quantity cannot be computed numerically and therefore the bound in Equa-
tion (1.6) cannot be evaluated for concrete examples.

We now describe how we overcome each of these issues in turn.

(i) We prove a new variant of Uhlmann’s theorem [Uhl76], a foundational result in quantum information
theory. The original version of Uhlmann’s theorem deals with the case of U = 1/2; we show that for
U > 1, a similar result holds, but an additional regularisation is required. Concretely, we prove that
for any states dARE and fAE :

lim
k→∞

1
k

inf
f̂AkRkEk

s.t. f̂AkEk=f⊗k
AE

DU

(
d⊗k

ARE

∥∥ f̂AkRkEk

)
= DU(dAE ‖fAE) . (1.7)

The proof of this result relies heavily on the spectral pinching technique [Tom15, Sut18] and we refer
to Lemma 3.3 for details as well as a non-asymptotic statement with explicit error bounds.

We make use of this extended Uhlmann’s theorem as follows: for the case we are interested in, the
map F in Equation (1.5) satisfies a non-signalling condition. We can show that this condition implies
that for any state f̂AkRkEk s.t. f̂AkEk = f⊗k

AE :

DU(M(d)‖F(f)) = 1
k

DU

(
M⊗k(d⊗k

ARE)
∥∥F⊗k(f̂AkRkEk)

)
.

Applying Equation (1.5) to the r.h.s. of this equality results in a bound that contains DU

(
d⊗k

ARE

∥∥ f̂AkRkEk

)
.

We can now minimise over all states f̂AkRkEk s.t. f̂AkEk = f⊗k
AE and take the limit k→ ∞. Then, Equa-

tion (1.7) allows us to drop the R-system. Therefore, under the non-signalling condition on F , we
obtain the following improved chain rule for the sandwiched Rènyi divergence, which might be of
independent interest:

DU(M(d)‖F(f))≤ DU(dAE ‖fAE)+ lim
n→∞

1
n

sup
lRnEnẼn

DU

(
M⊗n(l)

∥∥F⊗n(l)
)
.

Using this chain rule, we can show that Equation (1.6) still holds if HU(A|RE) is replaced by HU(A|E).

(ii) To remove the need for a regularisation in Equation (1.6), we show that due to the permutation-
invariance of M⊗n and F⊗n, for U > 1 and n→ ∞ one can replace the optimization over lRnEnẼn

with a fixed input state, namely the projector onto the symmetric subspace of RnEnẼn. For this
replacement, one incurs a small loss in U, replacing it by 1

2−U (which is only slightly larger than U

in the typical regime where U is close to 1). The projector onto the symmetric subspace has a known
representation as a mixture of tensor product states [CKR09]. Combining these two steps, we show

8



that the optimization over lRnEnẼn can be restricted to tensor product states, which means that the
regularisation in Equation (1.6) can be removed (see Section 3.2 for details):

lim
n→∞

1
n

inf
lRnEnẼn

HU((A′)n|(E ′)nẼn)M⊗n(l) ≥ inf
lREẼ

H 1
2−U

(A′|E ′Ẽ)M(l) .

Combining these results yields Lemma 1.2 and, as a result, our generalised EAT.

Sample application: blind randomness expansion. The main advantage of the generalised EAT over
previous results is its broader applicability. For example, as demonstrated in [MR22], the generalised EAT
can be used to prove the security of prepare-and-measure QKD protocols, which is of immediate prac-
tical relevance, and can also simplify the analysis of entanglement-based QKD protocols as discussed in
Section 5.2. Here, we focus on the application of our generalised EAT to mistrustful device-independent
(DI) cryptography. In mistrustful DI cryptography, multiple parties each use a quantum device to execute
a protocol with one another. Each party trusts neither its quantum device nor the other parties in the pro-
tocol. Hence, from the point of view of one party, say Alice, all the remaining parties in the protocol are
collectively treated as an adversary Eve, who may also have prepared Alice’s untrusted device.

While the original EAT could be used to analyse DI protocols in which the parties trust each other,
e.g. DIQKD [AFRV19], the setting of mistrustful DI cryptography is significantly harder to analyse because
the adversary Eve actively participates in the protocol and may update her side information during the
protocol in arbitrary ways. Analysing such protocols requires the more general model of side information
we deal with in this paper. As a concrete example for mistrustful DI cryptography, we consider blind
randomness expansion, a primitive introduced in [MS17]. Previous work [MS17, FM18] could only analyse
blind randomness expansion under the i.i.d. assumption. Here, we give the first proof that blind randomness
expansion is possible for general adversaries. The proof is a straightforward application of our generalised
EAT and briefly sketched below; we refer to Section 5.1 for a detailed treatment.

In blind randomness expansion, Alice receives an untrusted quantum device from the adversary Eve.
Alice then plays a non-local game, e.g. the CHSH game, with this device and Eve, and wants to extract
certified randomness from her outputs of the non-local game, i.e. we need to show that Alice’s outputs
contain a certain amount of min-entropy conditioned on Eve’s side information. Concretely, in each round of
the protocol Alice samples inputs x and y for the non-local game, inputs x into her device to receive outcome
a, and sends y to Eve to receive outcome b; Alice then checks whether (x,y,a,b) satisfies the winning
condition of the non-local game. For comparison, recall that in standard DI randomness expansion [Col06,
CK11, PAM+10, VV12, MS16], Alice receives two devices from Eve and uses them to play the non-local
game. This means that in standard DI randomness expansion, Eve never learns any of the inputs and outputs
of the game. In contrast, in blind randomness expansion Eve learns one of the inputs, y, and is free to choose
one of the outputs, b, herself. Hence, Eve can choose the output b based on past side information and update
her side information in each round of the protocol using the values of y and b.

To analyse such a protocol, we use the setting of Theorem 1.1, with Ai representing the output of Alice’s
device D from the non-local game in the i-th round, Ri the internal memory of D after the i-th round, and
Ei Eve’s side information after the i-th round, which can be generated arbitrarily from entanglement shared
between Eve and D at the start of the protocol and information Eve gathered during the first i rounds of
the protocol. The mapMi describes one round of the protocol, and because Alice’s device and Eve cannot
communicate during the protocol it is easy to show that the non-signalling condition from Theorem 1.1 is
satisfied. Therefore, we can apply Theorem 1.1 to lower-bound Alice’s conditional min-entropy Hmin(An|En)
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in terms of the single-round quantities infl H(Ai|EiẼi−1)Mi(l).7 This single-round quantity corresponds to
the i.i.d. scenario, i.e. the generalised EAT has reduced the problem of showing blind randomness expansion
against general adversaries to the (much simpler) problem of showing it against i.i.d. adversaries. The
quantity infl H(Ai|EiẼi−1)Mi(l) can be computed using a general numerical technique [BFF21], and for
certain classes of non-local games it may also be possible to find an analytical lower bound using ideas
from [MS17, FM18]. Inserting the single-round bound, we obtain a lower bound on Hmin(An|En) that scales
linearly with n, showing that blind randomness expansion is possible against general adversaries. We also
note that as explained in [MS17], this result immediately implies that unbounded randomness expansion is
possible with only three devices, whereas previous works required four devices [MS16, CSW14, CY14].

Future work. In this work, we have developed a new information-theoretic tool, the generalised EAT.
The generalised EAT deals with a more general model of side information than previous techniques and
is therefore more broadly and easily applicable. In particular, our generalised EAT can be used to analyse
mistrustful DI cryptography. We have demonstrated this by giving the first proof of blind randomness
expansion against general adversaries. We expect that the generalised EAT could similarly be used for other
protocols such as two-party cryptography in the noisy storage model [KW16] or certified deletion [FM18,
BI20, KT20]. In addition to mistrustful DI cryptography, our result can also be used to give new proofs
for device-dependent QKD, as demonstrated in Section 5.2 and [MR22], and is applicable to proving the
security of commercial quantum random number generators, which typically have correlations between
rounds due to experimental imperfections [FRT13].

Beyond cryptography, the generalised EAT is useful whenever one is interested in bounding the min-
entropy of a large system that can be decomposed in a sequential way. Such problems are abundant in
physics. For example, the dynamics of an open quantum system can be described in terms of interactions
that take place sequentially with different parts of the system’s environment [CV21]. In quantum thermody-
namics, such a description is commonly employed to model the thermalisation of a system that is brought
in contact with a thermal bath. For a lack of techniques, the entropy flow during a thermalisation process of
this type is usually quantified in terms of von Neumann entropy rather than the operationally more relevant
smooth min- and max-entropies [dRHRW16]. The generalised EAT may be used to remedy this situation.
A similar situation arises in quantum gravity, where smooth entropies play a role in the study of black holes
[AP21].

In a different direction, one can also try to further improve the generalised EAT itself. Compared to the
original EAT [DFR20], our generalised EAT features a more general model of side information and a weaker
condition on the relation between different rounds, replacing the Markov condition of [DFR20] with our
weaker non-signalling condition in Equation (1.2). It is natural to ask whether a further step in this direction
is possible: while the model of side information we consider is fully general, it may be possible to replace
the non-signalling condition with a weaker requirement. We have argued above that our non-signalling
condition appears to be the most general way of stating the requirement that future side information does

7In fact, in order for this single-round quantity to be positive one has to restrict the infimum to input states that allow the non-
local game to be won with a certain probability. This requires using the generalised EAT with testing (Section 4.2), not Theorem 1.1.
We refer to Section 5.1 for details.
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not reveal information about past outputs, which seems necessary for an EAT-like theorem.8 It would
be interesting to formalise this intuition and see whether our theorem is provably “tight” in terms of the
conditions placed on the sequential process. Furthermore, it might be possible to improve the way the
statistical condition in Theorem 4.3 is dealt with in the proof, e.g. using ideas from [ZFK20, KZB20].

Finally, one could attempt to extend entropy accumulation from conditional entropies to relative en-
tropies. Such a relative entropy accumulation theorem (REAT) would be the following statement: for two
sequences of channels {E1, . . . ,En} and {F1, . . . ,Fn} (where Fi need not necessarily be trace-preserving),
and ε > 0,

Dε
max(En ◦ · · · ◦E1 ‖Fn ◦ · · · ◦F1)

?
≤

n

∑
i=1

Dreg(Ei ‖Fi)+O(
√

n) .

Here, Dε
max is the ε-smooth max-relative entropy [Tom15] and we used the (regularised) channel divergences

defined in Definition 2.5. The key technical challenge in proving this result is to show that the regularised
channel divergence Dreg

U (Ei ‖Fi) is continuous in U at U = 1, which is an important technical open question.
If one had such a continuity statement and the maps Fi additionally satisfied a non-signalling condition
(which is not required for the statement above), one could also use our Theorem 3.1 to derive a more general
REAT, which would imply our generalised EAT.
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8In an EAT-like theorem, the entropy contribution from a particular round i has to be calculated conditioned on the side in-
formation revealed in that round because we want to analyse the process round-by-round, not globally. If a future round revealed
additional side information, then the total entropy contributed by round i would decrease, but there is no way of accounting for
that in an EAT-like theorem that simply sums up single-round contributions. As an extreme case, the last round of the process
could reveal all prior outputs as side information, so that the total amount of conditional entropy produced by the process is 0, but
single-round entropy contributions could be positive. This demonstrates the need for some condition that enforces that future side
information does not reveal information about past outputs. We note that this does not mean that there is no way of proving an
entropy lower bound in more general settings: for example, [JK22] do show a bound on the entropy produced by parallel repeated
non-local games, but this requires a global analysis.
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2 Preliminaries

2.1 Notation

The set of positive semidefinite operators on a quantum system A (with associated Hilbert space HA) is
denoted by Pos(A). The set of quantum states is given by S(A) = {d ∈ Pos(A) |Tr[d] = 1}. The set of
completely positive maps from linear operators on A to linear operators on A′ is denoted by CP(A,A′). If
such a map is additionally trace preserving, we call it a quantum channel and denote the set of such maps
by CPTP(A,A′). The identity channel on system A is denoted as idA. The spectral norm is denoted by ‖·‖

∞
.

If A is a quantum system and X is a classical system with alphabet X , we call d ∈ S(XA) a cq-state and
can expand it as

dXA = ∑
x∈X
|x〉〈x|⊗ dA,x

for subnormalised dA,x ∈ Pos(A). For Ω⊂X , we define the conditional state

dXA|Ω =
1

Prd[Ω] ∑
x∈Ω

|x〉〈x|⊗ dA,x , where Prd[Ω] := ∑
x∈Ω

Tr[dA,x] .

If Ω = {x}, we also write dXA|x for dXA|Ω.

2.2 Rényi divergence and entropy

We will make extensive use of the sandwiched Rényi divergence [MLDS+13, WWY14] and quantities
associated with it, namely Rényi entropies and channel divergences. We recall the relevant definitions here.

Definition 2.1 (Rényi divergence). For d ∈ S(A), f ∈ Pos(A), and U ∈ [1/2,1)∪ (1,∞) the (sandwiched)
Rényi divergence is defined as

DU(d‖f) :=
1

U−1
logTr

[(
f

1−U
2U df

1−U
2U

)U]
for supp(d)⊆ supp(f), and +∞ otherwise.

From the Rényi divergence, one can define the conditional Rényi entropies as follows (see [Tom15] for
more details).

Definition 2.2 (Conditional Rényi entropy). For a bipartite state dAB ∈ S(AB) and U ∈ [1/2,1)∪ (1,∞), we
define the following two conditional Rényi entropies:

HU(A|B)d =−DU(dAB‖1A⊗ dB) and H�
U(A|B)d = sup

fB∈S(B)
−DU(dAB‖1A⊗fB) .

From the definition it is clear that HU(A|B) ≤ H�
U(A|B). Importantly, a relation for the other direction

also holds.

Lemma 2.3 ([Tom15, Corollary 5.3]). For dAB ∈ S(AB) and U ∈ (1,2):

HU(A|B)d ≥ H�
1

2−U
(A|B)d .

12



In the limit U→ 1 the sandwiched Rényi divergence converges to the relative entropy:

lim
U→1

DU(d‖f) = D(d‖f) = Tr[d(log d− logf)] .

Accordingly, the conditional Rényi entropy converges to the conditional von Neumann entropy:

lim
U→1

HU(A|B)d = H(A|B)d = H(AB)d−H(B)d =−Tr[dAB log dAB]+Tr[dB log dB] .

Conversely, in the limit U→ ∞, the Rényi entropy H�
U converges to the min-entropy. We will make use

of a smoothed version of the min-entropy, which is defined as follows [Ren08].

Definition 2.4 (Smoothed min-entropy). For dAB ∈ S(AB) and ε ∈ [0,1], the ε-smoothed min-entropy of A
conditioned on B is

Hε
min(A|B)d =− log inf

d̃AB∈Bε (dAB)
inf

fB∈S(B)

∥∥∥∥f− 1
2

B d̃ABf
− 1

2
B

∥∥∥∥
∞

,

where ‖·‖
∞

denotes the spectral norm and Bε(dAB) is the ε-ball around dAB in term of the purified dis-
tance [Tom15].

Finally, we can extend the definition of the Rényi divergence from states to channels. The resulting
quantity, the channel divergence (and its regularised version), will play an important role in the rest of the
manuscript.

Definition 2.5 (Channel divergence). For E ∈ CPTP(A,A′), F ∈ CP(A,A′), and U ∈ [1/2,1)∪ (1,∞), the
(stabilised) channel divergence is defined as

DU(E ‖F) = sup
l∈S(AÃ)

DU(E(l)‖F(l)) , (2.1)

where without loss of generality Ã≡ A. The regularised channel divergence is defined as

Dreg
U (E ‖F) := lim

n→∞

1
n

DU

(
E⊗n

∥∥F⊗n)= sup
n

1
n

DU

(
E⊗n

∥∥F⊗n) .
We note that the channel divergence is in general not additive under the tensor product [FFRS20, Pro-

position 3.1], so the regularised channel divergence can be strictly larger that the non-regularised one, i.e.,
Dreg

U (E ‖F)> DU(E ‖F). The regularised channel divergence, however, does satisfy an additivity property:

Dreg
U

(
E⊗k

∥∥F⊗k
)
= lim

n→∞

1
n

DU

(
E⊗kn

∥∥F⊗kn
)
= k lim

n→∞

1
n′

DU

(
E⊗n′

∥∥∥F⊗n′
)
= k Dreg

U (E ‖F) , (2.2)

where we switched to the index n′ = kn for the second equality.

2.3 Spectral pinching

A key technical tool in our proof will be the use of spectral pinching maps [Hay17], which are defined as
follows (see [Sut18, Chapter 3] for a more detailed introduction).
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Definition 2.6 (Spectral pinching map). Let d ∈ Pos(A) with spectral decomposition d= ∑__P_, where _ ∈
Spec(d)⊂R≥0 are the distinct eigenvalues of d and P_ are mutually orthogonal projectors. The (spectral)
pinching map Pd ∈ CPTP(A,A) associated with d is given by

Pd(l) := ∑
_∈Spec(d)

P_lP_ .

We will need a few basic properties of pinching maps.

Lemma 2.7 (Properties of pinching maps). For any d,f ∈ Pos(A), the following properties hold:

(i) Invariance: Pd(d) = d .

(ii) Commutation of pinched state: [f,Pf(d)] = 0 .

(iii) Pinching inequality: Pf(d)≥ 1
|Spec(f)| d .

(iv) Commutation of pinching maps: if [d,f] = 0, then Pd ◦Pf = Pf ◦Pd .

(v) Partial trace: TrB[PdA⊗1B(lAB)] = PdA(lA) ∀lAB ∈ Pos(AB).

Proof. Properties (i)–(iii) follow from the definition and [TCR09, Chapter 2.6.3] or [Sut18, Lemma 3.5].
For the fourth statement, note that since [d,f] = 0, there exists a joint orthonormal eigenbasis {|xi〉} of

d and f. Let P_ be the projector onto the eigenspace of d with eigenvalue _, and Q` the projector onto the
eigenspace of f with eigenvalue `. We can expand

P_ = ∑
i s.t. d|xi〉=_|xi〉

|xi〉〈xi| and Q` = ∑
j s.t. f|x j〉=`|x j〉

|x j〉〈x j| .

Since {|xi〉} is a family of orthonormal vectors,

P_Q` = ∑
i s.t. d|xi〉=_|xi〉
and f|xi〉=`|xi〉

|xi〉〈xi|= Q`P_ ,

which implies commutation of the pinching maps.
For the fifth statement, note that if we write d = ∑__P_ with eigenprojectors P_, then the set of eigen-

projectors of dA⊗1B is simply {P_⊗1B}. Hence,

TrB[PdA⊗1B(lAB)] = ∑
_

TrB[P_⊗1BlABP_⊗1B] = ∑
_

P_TrB[lAB]P_ = PdA(lA) .

It is often useful to use the pinching map associated with tensor power states, i.e., Pd⊗n . This is be-
cause for d ∈ Pos(A), the factor |Spec(d⊗n)| from the pinching inequality (see Lemma 2.7) only scales
polynomially in n (see e.g. [Sut18, Remark 3.9]):

|Spec(d⊗n)| ≤ (n+1)dim(A)−1 . (2.3)

In fact, we can show a similar property for all permutation-invariant states, not just tensor product states.
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Lemma 2.8. Let d ∈ Pos(A⊗n) be permutation invariant and denote d = dim(A). Then

|Spec(d)| ≤ (n+d)d(d+1)/2 .

Proof. By Schur-Weyl duality, since d is permutation-invariant, we have

d ∼=
⊕

_∈Id,n

d(_)Q_
⊗1P_ ,

where ∼= denotes equality up to unitary conjugation (which leaves the spectrum invariant), Id,n is the set of
Young diagrams with n boxes and at most d rows, Q_ and P_ are systems whose details need not concern
us, and d(_) ∈ Pos(Q_). From this it is clear that

|Spec(d)| ≤ ∑
_∈Id,n

|Spec(d(_))| ≤ ∑
_∈Id,n

dim(Q_) .

It is known that |Id,n| ≤ (n+1)d and dim(Q_)≤ (n+d)d(d−1)/2 (see e.g. [Har05, Section 6.2]). Hence

|Spec(d)| ≤ (n+1)d(n+d)d(d−1)/2 ≤ (n+d)d(d+1)/2 .

Corollary 2.9. Let d,f ∈ Pos(A) and d = dim(A). Then

|Spec
(
Pd⊗n(f⊗n)

)
| ≤ (n+d)d(d+1)/2 .

Proof. Note that Pd⊗n(f⊗n) is itself not a product state because the eigenprojectors of d⊗n do not have a
product form. However, since every eigenspace of d⊗n is permutation-invariant, Pd⊗n(f⊗n) is permutation-
invariant, too, so we can apply Lemma 2.8.

3 Strengthened chain rules

One of the crucial properties of entropies are chain rules, which allow us to relate entropies of large com-
posite systems to sums of entropies of the individual subsystems. In this section, we prove two new such
chain rules, one for the Rényi divergence (Theorem 3.1, which is a generalisation of [FF21, Corollary 5.1])
and one for the conditional entropy (Lemma 3.6). The chain rule from Lemma 3.6 is the key ingredient for
our generalised EAT, to which we will turn our attention in Section 4. Lemma 3.6 plays a similar role for
our generalised EAT as [DFR20, Corollary 3.5] does for the original EAT, but while the latter requires a
Markov condition, the former does not. As a result, our generalised EAT based on Lemma 3.6 also avoids
the Markov condition.

The outline of this section is as follows: we first prove a generalised chain rule for the Rényi divergence
(Theorem 3.1). This chain rule contains a regularised channel divergence. As the next step, we show that
in the special case of conditional entropies, we can drop the regularisation (Section 3.2). This allows us to
derive a chain rule for conditional entropies from the chain rule for channels (Section 3.3).
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3.1 Strengthened chain rule for Rényi divergence

The main result of this section is the following chain rule for the Rényi divergence.

Theorem 3.1. Let U > 1, d ∈ S(AR), f ∈ Pos(AR), E ∈ CPTP(AR,B), and F ∈ CP(AR,B). Suppose that
there existsR∈ CP(A,B) such that F =R◦TrR. Then

DU(E(dAR)‖F(fAR))≤ DU(dA ‖fA)+Dreg
U (E ‖F) . (3.1)

This is a stronger version of an existing chain rule due to [FF21], which we will use in our proof of
Theorem 3.1:

Lemma 3.2 ([FF21, Corollary 5.1]). Let U> 1, d ∈ S(A), f ∈ Pos(A), E ∈ CPTP(A,B), and F ∈ CP(A,B).
Then

DU(E(d)‖F(f))≤ DU(d‖f)+Dreg
U (E ‖F) . (3.2)

The difference between Theorem 3.1 and Lemma 3.2 is that on the r.h.s. of Equation (3.1), we only
have the divergence DU(dA ‖fA) between the two reduced states on system A. In contrast, if we used
Equation (3.2) with systems AR, then we would get the divergence DU(dAR ‖fAR) between the full states.
In particular, the weaker Lemma 3.2 can easily be recovered from Theorem 3.1 by taking the system R to be
trivial, in which case the condition F =R◦TrR becomes trivial, too.

While the difference between Theorem 3.1 and Lemma 3.2 may look minor at first sight, the two
chain rules can give considerably different results: in general, the data processing inequality ensures that
DU(dA ‖fA) ≤ DU(dAR ‖fAR), but the gap between the two quantities can be significant, i.e., there exist
states for which DU(dA ‖fA)� DU(dAR ‖fAR). In such cases, Theorem 3.1 yields a significantly tighter
bound. This turns out to be crucial if we want to apply this chain rule repeatedly to get an EAT.

We also note that the statement of Theorem 3.1 is known to be correct also for U = 1 [FFRS20, The-
orem 3.5]. However, this requires a separate proof and does not follow from Theorem 3.1 as it is currently
not known whether the function U 7→ Dreg

U (E ‖F) is continuous in the limit U↘ 1.9

We now turn to the proof of Theorem 3.1. The key question for the proof is the following: given states
dAR and fA, does there exist an extension fAR of fA such that DU(dA ‖fA) = DU(dAR ‖fAR)? For the
special case of U = 1/2, an affirmative answer is given by Uhlmann’s theorem [Uhl76] (see also [Tom15,
Corollary 3.14]). This also holds for U = ∞, but not in general for U ≥ 1 as discussed in Appendix B. The
following lemma shows that a similar property still holds for U > 1 on a regularised level.

Lemma 3.3. Consider quantum systems A and R with d = dim(A). For n ∈ N, we define An = A1 . . .An,
where Ai are copies of the system A, and likewise Rn = R1 . . .Rn. Then for d ∈ S(AR), f ∈ Pos(A), and U> 1
we have

DU(dA ‖fA)≤ inf
f̂AnRn s.t. f̂An=f⊗n

A

1
n

DU

(
d⊗n

AR

∥∥ f̂AnRn
)
≤ DU(dA ‖fA)+

U

U−1
d(d +1) log(n+d)

n
.

Proof. The inequality

DU(dA ‖fA)≤ inf
f̂AnRn s.t. f̂An=f⊗n

A

1
n

DU

(
d⊗n

AR

∥∥ f̂AnRn
)

9It is well-known [TCR09, Lemma 8] that limU↘1 DU(E ‖F) = D
(
E‖F

)
, but it is unclear whether the same holds for the

regularised quantity.
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follows directly from the data processing inequality for taking the partial trace over Rn, and additivity of DU

under tensor product [Tom15].
For the other direction, we consider n-fold tensor copies of dAR and fA, which we denote by dAnRn =

dA1R1⊗·· ·⊗ dAnRn and fAn = fA1⊗·· ·⊗fAn . We define the following two pinched states

d′AnRn = PfAn⊗1Rn (dAnRn) and d̂AnRn = Pd′An⊗1Rn (d
′
AnRn) . (3.3)

By definition of d̂AnRn and using the pinching inequality (see Lemma 2.7(iii)) twice, we have

dAnRn ≤ |Spec(fAn)||Spec(d′An)| d̂AnRn .

Using the operator monotonicity of the sandwiched Rényi divergence in the first argument [Tom15] we find
for any state f̂AnRn

1
n

DU

(
d⊗n

AR

∥∥ f̂AnRn
)
≤ 1

n
DU(d̂AnRn ‖ f̂AnRn)+

1
n

U

U−1
[(n) , (3.4)

with the error term

[(n) = log |Spec(fAn)|+ log |Spec(d′An)| .

To prove the lemma, we now need to bound the error term [(n) and construct a specific choice for f̂AnRn

for which f̂An = f⊗n
A and 1

n DU(d̂AnRn ‖ f̂AnRn) ≤ DU(dA ‖fA). We first bound [(n). Since fAn = f⊗n
A , we

have from Equation (2.3) that |Spec(fAn)| ≤ (n+1)d−1, where d = dim(A). To bound |Spec(d′An)|, we note
that by Equation (3.3) and Lemma 2.7(v)

d′An = TrRn [PfAn⊗1Rn (dAnRn)] = PfAn (dAn) = Pf⊗n
A
(d⊗n

A ) . (3.5)

We can therefore use Corollary 2.9 to obtain |Spec(d′An)| ≤ (n+d)d(d+1)/2. Hence,

[(n)≤ d(d +1) log(n+d) . (3.6)

It thus remains to construct f̂AnRn satisfying the properties mentioned above. To do so we first establish
a number of commutation statements.

(i) From Lemma 2.7(ii) we have that [d̂AnRn , d′An ⊗1Rn ] = 0. Recalling the definition of d′ from Equa-
tion (3.3), we get

d̂An = TrRn

[
Pd′An⊗1Rn (d

′
AnRn)

]
= Pd′An (d

′
An) = d′An , (3.7)

where the final step uses Lemma 2.7(i). As a result we find

[d̂AnRn , d̂An⊗1Rn ] = 0 . (3.8)

(ii) From Lemma 2.7(ii) we have that [d′AnRn ,fAn⊗1Rn ] = 0. Taking the partial trace over Rn, this implies
[d′An ,fAn ] = 0, so by Lemma 2.7(iv) and Equation (3.3)

d̂AnRn = Pd′An⊗1Rn (PfAn⊗1Rn (dAnRn)) = PfAn⊗1Rn

(
Pd′An⊗1Rn (dAnRn)

)
.

Therefore, by Lemma 2.7(ii),

[d̂AnRn ,fAn⊗1Rn ] = 0 . (3.9)
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(iii) Taking the partial trace over Rn in Equation (3.9), we get

[d̂An ,fAn ] = 0 . (3.10)

Having established these commutation relations, we define T ∈ CPTP(An,AnRn) by10

T (lAn) = d̂
1/2
AnRn d̂

−1/2
An lAn d̂

−1/2
An d̂

1/2
AnRn .

By construction,

T (d̂An) = d̂AnRn . (3.11)

We define

f̂AnRn = T (fAn) . (3.12)

To see that this is a valid choice of f̂, i.e., that f̂An = fAn = f⊗n
A , we use Equation (3.8), Equation (3.9), and

Equation (3.10) to find

f̂An = TrRn

[
d̂

1/2
AnRn d̂

−1/2
An fAn d̂

−1/2
An d̂

1/2
AnRn

]
= TrRn

[
d̂AnRn d̂−1

An fAn
]
= fAn .

Using Equation (3.11) and Equation (3.12) followed by the data processing inequality [Tom15], we
obtain

1
n

DU(d̂AnRn ‖ f̂AnRn) =
1
n

DU(T (d̂An)‖T (fAn))≤ 1
n

DU(d̂An ‖fAn) . (3.13)

By Equation (3.7) and Equation (3.3) we have d̂An = d′An = PfAn (dAn). Therefore, continuing from Equa-
tion (3.13) and using fAn = PfAn (fAn) followed by the data processing inequality gives

1
n

DU(d̂AnRn ‖ f̂AnRn)≤ 1
n

DU(dAn ‖fAn) =
1
n

DU

(
d⊗n

A

∥∥f⊗n
A

)
= DU(dA ‖fA) .

Inserting this and our error bound from Equation (3.6) into Equation (3.4) proves the desired statement.

With this, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Because DU is additive under tensor products, for any n ∈N we have

DU(E(dAR)‖F(fAR)) =
1
n

DU

(
E⊗n(d⊗n

AR)
∥∥F⊗n(f⊗n

AR )
)

= inf
f̂AnRn s.t. f̂An=f⊗n

A

1
n

DU

(
E⊗n(d⊗n

AR)
∥∥F⊗n(f̂AnRn)

)
, (3.14)

where the second equality holds because F = R◦ TrR, so F⊗n(f⊗n
AR ) = F⊗n(f̂AnRn) for any f̂AnRn that

satisfies f̂An = f⊗n
A . From the chain rule in Lemma 3.2 we get that for any f̂AnRn :

1
n

DU

(
E⊗n(d⊗n

AR)
∥∥F⊗n(f̂AnRn)

)
≤ 1

n
DU

(
d⊗n

AR

∥∥ f̂AnRn
)
+

1
n

Dreg
U

(
E⊗n

∥∥F⊗n)
=

1
n

DU

(
d⊗n

AR

∥∥ f̂AnRn
)
+Dreg

U (E ‖F) ,

10In case d̂An does not have full support, we only take the inverse on the support of d̂An .
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where for the second line we used additivity of the regularised channel divergence (see Equation (2.2)).
Combining this with Equation (3.14), we get

DU(E(dAR)‖F(fAR))≤ inf
f̂AnRn s.t. f̂An=f⊗n

A

1
n

DU

(
d⊗n

AR

∥∥ f̂AnRn
)
+Dreg

U (E ‖F) .

Taking n→ ∞, the theorem then follows from Lemma 3.3.

3.2 Removing the regularisation

The chain rule presented in Theorem 3.1 contains a regularised channel divergence term, which cannot be
computed easily and whose behaviour as U↘ 1 is not understood. In this section we show that in the specific
case relevant for entropy accumulation, this regularisation can be removed. From this, we then derive a chain
rule for Rényi entropies in Lemma 3.6.

Definition 3.4 (Replacer map). The replacer map SA ∈CP(A,A) is defined by its action on an arbitrary state
lAR:

SA(lAR) = 1A⊗lR .

Lemma 3.5. Let U ∈ (1,2), E ∈ CPTP(AR,A′R′), and F = SA′ ◦E , where SA′ is the replacer map. Then we
have

Dreg
U (E ‖F)≤ D 1

2−U
(E ‖F) .

Proof. Due to the choice of F , we have that for any state kn ∈ S(AnRnR̃n) (with R̃≡ AR):

DU

(
E⊗n(kn)

∥∥F⊗n(kn)
)
=−HU

(
(A′)n|(R′)nR̃n)

E⊗n(kn)
.

From [LKDW18, Proposition II.4] and [Ren08, Lemma 4.2.2] we know that for every n, there exists a
symmetric pure state |k̂n〉 ∈ Symn(ARR̃) such that

DU

(
E⊗n

∥∥F⊗n)= DU

(
E⊗n(k̂n)

∥∥F⊗n(k̂n)
)
=−HU

(
(A′)n|(R′)nR̃n)

E⊗n(kn)
,

where k̂n = |k̂n〉〈k̂n| and the supremum in the definition of the channel divergence is achieved because the
conditional entropy is continuous in the state. Let d = dim(ARR̃) and gn,d = dim(Symn(ARR̃))≤ (n+1)d2−1.
We define the state

gn
AnRnR̃n =

∫
`(fARR̃)f

⊗n
ARR̃ , (3.15)

where ` is the Haar measure on pure states. We now claim that in the limit n→∞, we can essentially replace
the optimizer k̂n

AnRnR̃n by the state gn
AnRnR̃n in Equation (3.15). More precisely, we claim that

lim
n→∞

1
n

HU((A′)n|(R′)nR̃n)E⊗n(k̂n) ≥ lim
n→∞

1
n

H 1
2−U

((A′)n|(R′)nR̃n)E⊗n(gn) . (3.16)

To show this, we first use Lemma 2.3 to get

HU((A′)n|(R′)nR̃n)E⊗n(k̂n) ≥ H�
1

2−U

(
(A′)n|(R′)nR̃n)

E⊗n(k̂n)
.
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It is know that gn
AnRnR̃n is the maximally mixed state on Symn(ARR̃) (see e.g. [CKR09]). Therefore,

dn
AnRnR̃n :=

gn,dg
n− k̂n

gn,d−1

is a valid quantum state (i.e. positive and normalised). Hence, we can write

gn =

(
1− 1

gn,d

)
dn +

1
gn,d

k̂n .

Using [DFR20, Lemma B.5], it follows that

1
n

H�
1

2−U

(
(A′)n|(R′)nR̃n)

E⊗n(k̂n)
≥ 1

n
H�

1
2−U

(
(A′)n|(R′)nR̃n)

E⊗n(gn)
− U

U−1
log(gn,d)

n
.

Since log(gn,d)
n ≤ (d2− 1) logn

n vanishes as n→ ∞, taking the limit and using H�
1

2−U
(·|·) ≥ H 1

2−U
(·|·) proves

Equation (3.16).
Having established Equation (3.16), we can now conclude the proof of the lemma as follows

Dreg
U (E ‖F) =− lim

n→∞

1
n

HU((A′)n|(R′)nR̃n)E⊗n(k̂n)

≤− lim
n→∞

1
n

H 1
2−U

((A′)n|(R′)nR̃n)E⊗n(gn)

= lim
n→∞

1
n

D 1
2−U

(
E⊗n

(∫
`(fARR̃)f

⊗n
ARR̃

)∥∥∥∥F⊗n
(∫

`(fARR̃)f
⊗n
ARR̃

))
≤ lim

n→∞
sup

fARR̃∈S(ARR̃)

1
n

D 1
2−U

(
E⊗n (f⊗n

ARR̃

)∥∥F⊗n (f⊗n
ARR̃

))
= D 1

2−U
(E ‖F) ,

where we used joint quasi-convexity [Tom15, Proposition 4.17] in the fourth line and additivity under tensor
products in the last line.

3.3 Strengthened chain rule for conditional Rényi entropy

We next combine Theorem 3.1 with Lemma 3.5 to derive a new chain rule for the conditional Rényi entropy
which then allows us to prove the generalised EAT in Section 4.

Lemma 3.6. Let U∈ (1,2), d ∈S(ARE), andM∈CPTP(RE,A′R′E ′) such that there existsR∈CPTP(E,E ′)
such that TrA′R′ ◦M=R◦TrR. Then

HU(AA′|E ′)M(d) ≥ HU(A|E)d+ inf
l∈S(REẼ)

H 1
2−U

(A′|E ′Ẽ)M(l) (3.17)

for a purifying system Ẽ ≡ RE.

Proof. We define the following maps11

N = SA′ ◦M ∈ CP(RE,A′R′E ′) ,

M̃= idA⊗TrR′ ◦M∈ CPTP(ARE,AA′E ′) ,

Ñ = SA′ ◦M̃ ∈ CP(ARE,AA′E ′) .

11The map M in the theorem statement is also implicitly tensored with an identity map on A, but for the definition of M̃ we make
this explicit to avoid confusion when applying Theorem 3.1.
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Note that in Equation (3.17), we can replaceM by M̃, as the system R′ does not appear in Equation (3.17).
With fARE = 1A⊗ dRE and Ñ = SA′ ◦M̃, we can write

−HU(AA′|E ′)M(d) = DU

(
M̃(dARE)

∥∥Ñ (fARE)
)
.

We now claim that there exists a map R̃ ∈ CP(AE,AA′E) such that Ñ = R̃ ◦TrR. To see this, observe that
by assumption, TrA′ ◦M̃= idA⊗R◦TrR for someR∈ CP(E,E ′). Then, we can define R̃ ∈ CP(AE,AA′E)
by its action on an arbitrary state lAE :

R̃(lAE) := 1A′⊗ (idA⊗R)(lAE) = 1A′⊗TrA′ ◦M̃(lARE) = Ñ (lARE)

for any extension lARE of lAE . Therefore, we can apply Theorem 3.1 to find

DU

(
M̃(dARE)

∥∥Ñ (fARE)
)
≤ DU(dAE ‖fAE)+Dreg

U

(
M̃
∥∥Ñ ) .

By definition of f, we have DU(dAE ‖fAE) = −HU(A|E)d. Since the channel divergence is stabilised,
tensoring with idA has no effect, i.e.,

Dreg
U

(
M̃
∥∥Ñ )= Dreg

U (TrR′ ◦M‖TrR′ ◦N ) = Dreg
U (TrR′ ◦M‖SA′ ◦TrR′ ◦M) .

To this, we can apply Lemma 3.5 and obtain

Dreg
U

(
M̃
∥∥Ñ )≤ D 1

2−U
(TrR′ ◦M‖SA′ ◦TrR′ ◦M) =− inf

l∈S(REẼ)
H 1

2−U
(A′|E ′Ẽ)M(l)

with Ẽ ≡ RE. Combining all the steps yields the desired statement.

4 Generalised entropy accumulation

We are finally ready to state and prove the main result of this work which is a generalisation of the EAT
proven in [DFR20]. We first state a simple version of this theorem, which follows readily from the chain
rule Lemma 3.6 and captures the essential feature of entropy accumulation: the min-entropy of a state
Mn◦· · ·◦M1(d) produced by applying a sequence of n channels can be lower-bounded by a sum of entropy
contributions of each channelMi. However, for practical applications, it is desirable not to consider the state
Mn ◦ · · · ◦M1(d), but rather that state conditioned on some classical event, for example “success” in a key
distribution protocol – a concept called “testing”. Analogously to [DFR20], we present an EAT adapted to
that setting in Section 4.2.

4.1 Generalised EAT

Theorem 4.1 (Generalised EAT). Consider a sequence of channels Mi ∈ CPTP(Ri−1Ei−1,AiRiEi) such
that for all i ∈ {1, . . . ,n}, there existsRi ∈ CPTP(Ei−1,Ei) such that TrAiRi ◦Mi =Ri ◦TrRi−1 . Then for any
ε ∈ (0,1) and any dR0E0 ∈ S(R0E0)

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )
≥

n

∑
i=1

inf
l∈S(Ri−1Ei−1Ẽi−1)

H(Ai|EiẼi−1)Mi(l)−O(
√

n)

for a purifying system Ẽi−1 ≡ Ri−1Ei−1. For a statement with explicit constants, see Equation (4.1) in the
proof.
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Proof. By [DFR20, Lemma B.10], we have for U ∈ (1,2)

Hε
min(A

n
1|En)Mn◦···◦M1(dR0E0 )

≥ HU(An
1|En)Mn◦···◦M1(dR0E0 )

− g(ε)
U−1

with g(ε) = log(1−
√

1− ε2). From Lemma 3.6, we have

HU(An
1|En)Mn◦···◦M1(dR0E0 )

≥ HU(An−1
1 |En−1)Mn−1◦···◦M1(dR0E0 )

+ inf
l∈S(Rn−1En−1Ẽn−1)

H 1
2−U

(An|EnẼn−1)Mn(l) .

Repeating this step n−1 times, we get

HU(An
1|En)Mn◦···◦M1(dR0E0 )

≥ HU(A1|E1)M1(dR0E0 )
+

n

∑
i=2

inf
l∈S(Ri−1Ei−1Ẽi−1)

H 1
2−U

(Ai|EiẼi−1)Mi(l)

≥
n

∑
i=1

inf
l∈S(Ri−1Ei−1Ẽi−1)

H 1
2−U

(Ai|EiẼi−1)Mi(l) ,

where the final step uses the monotonicity of the Rényi divergence in U [Tom15, Corollary 4.3]. From
[DFR20, Lemma B.9] we have for each i ∈ {1, . . . ,n} and U sufficiently close to 1,

inf
l∈S(Ri−1Ei−1Ẽi−1)

H 1
2−U

(Ai|EiẼi−1)Mi(l)

≥ inf
l∈S(Ri−1Ei−1Ẽi−1)

H(Ai|EiẼi−1)Mi(l)−
U−1
2−U

log2 (1+2 dim(Ai)
)
.

Setting dA = maxi dim(Ai) and combining the previous steps, we obtain

Hmin(An
1|En)Mn◦···◦M1(dR0E0 )

≥
n

∑
i=1

inf
li∈S(Ri−1Ei−1Ẽi−1)

H(Ai|EiẼi−1)Mi(li)−n
U−1
2−U

log2(1+2dA)−
g(ε)
U−1

. (4.1)

Using U = 1+O(1/
√

n) yields the result.

4.2 Generalised EAT with testing

In this section, we will extend Theorem 4.1 to include the possibility of “testing”, i.e., of computing the min-
entropy of a cq-state conditioned on some classical event. This analysis is almost identical to that of [DF19];
we give the full proof for completeness, but will appeal to [DF19] for specific tight bounds. The resulting
EAT (Theorem 4.3) has (almost) the same tight bounds as the result in [DF19], but replaces the Markov
condition with the more general non-signalling condition. Hence, relaxing the Markov condition does not
result in a significant loss in parameters (including second-order terms).

Consider a sequence of channelsMi ∈ CPTP(Ri−1Ei−1,CiAiRiEi) for i ∈ {1, . . . ,n}, where Ci are clas-
sical systems with common alphabet C. We require that these channelsMi satisfy the following condition:
defining M′

i = TrCi ◦Mi, there exists a channel T ∈ CPTP(AnEn,CnAnEn) such that Mn ◦ · · · ◦M1 =
T ◦M′

n ◦ · · · ◦M′
1 and T has the form

T (lAnEn) = ∑
y∈Y,z∈Z

(Π
(y)
An ⊗Π

(z)
En
)lAnEn(Π

(y)
An ⊗Π

(z)
En
)⊗|r(y,z)〉〈r(y,z)|Cn , (4.2)
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where {Π(y)
An }y and {Π(z)

En
}z are families of mutually orthogonal projectors on An and En, and r : Y ×Z → C

is a deterministic function. Intuitively, this condition says that the classical statistics can be reconstructed
“in a projective way” from systems An and En at the end of the protocol. In particular, this requirement is
always satisfied if the statistics are computed from classical information contained in An and En, which is
the case for many applications. We note that the statistics are still generated in a round-by-round manner;
Equation (4.2) merely asserts that they could be reconstructed from the final state.

Let P be the set of probability distributions on the alphabet C of Ci, and let Ẽi−1 be a system isomorphic
to Ri−1Ei−1. For any q ∈ P we define the set of states

Σi(q) =
{
aCiAiRiEiẼi−1

=Mi(lRi−1Ei−1Ẽi−1
) |l ∈ S(Ri−1Ei−1Ẽi−1) and aCi = q

}
, (4.3)

where aCi denotes the probability distribution over C with the probabilities given by Pr[c] = 〈c|aCi |c〉. In
other words, Σi(q) is the set of states that can be produced at the output of the channel Mi and whose
reduced state on Ci is equal to the probability distribution q.

Definition 4.2. A function f : P→R is called a min-tradeoff function for {Mi} if it satisfies

f (q)≤ min
a∈Σi(q)

H(Ai|EiẼi−1)a ∀i = 1, . . . ,n .

Note that if Σi(q) = /0, then f (q) can be chosen arbitrarily.

Our result will depend on some simple properties of the tradeoff function, namely the maximum and
minimum of f , the minimum of f over valid distributions, and the maximum variance of f :

Max( f ) := max
q∈P

f (q) ,

Min( f ) := min
q∈P

f (q) ,

MinΣ( f ) := min
q:Σ(q)6= /0

f (q) ,

Var( f ) := max
q:Σ(q)6= /0

∑
x∈C

q(x) f (Xx)
2−

(
∑
x∈C

q(x) f (Xx)

)2

,

where Σ(q) =
⋃

i Σi(q) and Xx is the distribution with all the weight on element x. We write freq(Cn) for the
distribution on C defined by freq(Cn)(c) = |{i∈{1,...,n}:Ci=c}|

n . We also recall that in this context, an event Ω is
defined by a subset of Cn, and for a state dCnAnEnRn we write Prd[Ω] =∑cn∈Ω Tr

[
dAn

1EnRn,cn
]

for the probability
of the event Ω and

dCnAnEnRn|Ω =
1

Prd[Ω] ∑
cn∈Ω

|cn〉〈cn|Cn⊗ dAnEnRn,cn

for the state conditioned on Ω.

Theorem 4.3. Consider a sequence of channelsMi ∈CPTP(Ri−1Ei−1,CiAiRiEi) for i∈ {1, . . . ,n}, where Ci

are classical systems with common alphabet C and the sequence {Mi} satisfies Equation (4.2) and the non-
signalling condition: for eachMi, there exists Ri ∈ CPTP(Ei−1,Ei) such that TrAiRiCi ◦Mi =Ri ◦TrRi−1 .
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Let ε ∈ (0,1), U ∈ (1,3/2), Ω ⊂ Cn, dR0E0 ∈ S(R0E0), and f be an affine12 min-tradeoff function with
h = mincn∈Ω f (freq(cn)). Then,

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )|Ω

≥ nh−n
U−1
2−U

ln(2)
2

V 2−
g(ε)+U log(1/Prdn [Ω])

U−1
−n

(
U−1
2−U

)2

K′(U) , (4.4)

where Pr[Ω] is the probability of observing event Ω, and

g(ε) =− log(1−
√

1− ε2) ,

V = log(2d2
A +1)+

√
2+Var( f ) ,

K′(U) =
(2−U)3

6(3−2U)3 ln2
2

U−1
2−U (2logdA+Max( f )−MinΣ( f )) ln3

(
22logdA+Max( f )−MinΣ( f )+ e2

)
,

with dA = maxi dim(Ai).

Remark 4.4. The parameter in U in Theorem 4.3 can be optimized for specific problems, which leads to
tighter bounds. Alternatively, it is possible to make a generic choice for U to recover a theorem that looks
much more like Theorem 4.1, which is done in Corollary 4.6. We also remark that even tighter second order
terms have been derived in [LLR+21]. To keep our theorem statement and proofs simpler, we do not carry
out this additional optimization explicitly, but note that this can be done in complete analogy to [LLR+21].

To prove Theorem 4.3, we will need the following lemma (which is already implicit in [DFR20, Claim
4.6], but we give a simplified proof here).

Lemma 4.5. Consider a quantum state d ∈ S(CADE) that has the form

dCADE = ∑
c∈Ω

|c〉〈c|⊗ dAE,c⊗ dD|c ,

where Ω ⊂ C is a subset of the alphabet C of the classical system C, and for each c, dAE,c ∈ Pos(AE) is
subnormalised and dD|c ∈ S(D) is a quantum state. Then for U > 1,

H�
U(ACD|E)d ≤ H�

U(AC|E)d+max
c∈Ω

HU(D)dD|c .

Proof. Let fE ∈ S(E) such that

H�
U(ACD|E)d =−DU(dCADE ‖1CAD⊗fE) .

Then (
f

1−U
2U

E dCADEf
1−U
2U

E

)U

= ∑
c∈Ω

|c〉〈c|⊗
(
f

1−U
2U

E dAE,cf
1−U
2U

E

)U

⊗ dU
D|c .

12A function f on the convex set P(C) is called affine if it is linear under convex combinations, i.e., for _ ∈ [0,1] and p1, p2 ∈
P(C), _ f (p1)+(1−_) f (p2) = f (_p1 +(1−_)p2). Such functions are also sometimes called convex-linear.
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Hence,

Tr
[(

f
1−U
2U

E dCADEf
1−U
2U

E

)U]
= ∑

c∈Ω

Tr
[(

f
1−U
2U

E dAE,cf
1−U
2U

E

)U]
Tr
[
dU

D|c

]
≤ sup

f̃E∈S(E)
Tr

[
∑
c∈Ω

|c〉〈c|⊗
(
f̃

1−U
2U

E dAE,cf̃
1−U
2U

E

)U
]

max
c∈Ω

Tr
[
dU

D|c

]
= sup

f̃E∈S(E)
Tr
[(

f̃
1−U
2U

E dCAE f̃
1−U
2U

E

)U]
max
c∈Ω

Tr
[
dU

D|c

]
Recalling the definitions of DU (Definition 2.1) and H�

U (Definition 2.2), we see that the lemma follows by
taking the logarithm and multiplying by 1

U−1 .

Proof of Theorem 4.3. As in the proof of Theorem 4.1, we first use [DFR20, Lemma B.10] to get

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )|Ω
≥ H�

U(A
n|En)Mn◦···◦M1(dR0E0 )|Ω

− g(ε)
U−1

(4.5)

for U ∈ (1,2] and g(ε) = log(1−
√

1− ε2). We therefore need to find a lower bound for

H�
U(A

n|En)Mn◦···◦M1(dR0E0 )|Ω
= H�

U(A
nCn|En)Mn◦···◦M1(dR0E0 )|Ω

, (4.6)

where the equality holds because of Equation (4.2) and [DFR20, Lemma B.7].
Before proceeding with the formal proof, let us explain the main difficulty compared to Theorem 4.1.

The state for which we need to compute the entropy in Equation (4.6) is conditioned on the event Ω ⊂ Cn.
This is a global event, in the sense that it depends on the classical outputs C1, . . . ,Cn of all rounds. We essen-
tially seek a lower bound that involves mina∈Σi(freq(cn)) HU(Ai|Ei)a for some cn ∈Ω, i.e., for every round we
only want to minimize over output states of the channelMi whose distribution on Ci matches the frequency
distribution freq(cn) of the n rounds we observed. This means that we must use the global conditioning on
Ω to argue that in each round, we can restrict our attention to states whose outcome distribution matches the
(worst-case) frequency distribution associated with Ω. The chain rule Theorem 3.1 does not directly allow
us to do this as the r.h.s. of Equation (3.17) always minimizes over all possible input states.

To circumvent this, we follow a strategy that was introduced in [DFR20] and optimized in [DF19]. For
every i, we introduce a quantum system Di with dim(Di) = d2Max( f )−Min( f )e and defineDi ∈CPTP(Ci,CiDi)
by

Di(lCi) = ∑
c∈C
〈c|lCi |c〉 · |c〉〈c|⊗ gDi|c .

For every c∈C, the state gDi|c ∈S(D) is defined as the mixture between a uniform distribution on {1, . . . ,b2Max( f )− f (Xc)c}
and a uniform distribution on {1, . . . ,d2Max( f )− f (Xc)e} that satisfies

H(Di)gDi |c
=Max( f )− f (Xc) ,

where Xx stands for the distribution with all the weight on element x. This is clearly possible if dim(Di) =
d2Max( f )−Min( f )e.

We define M̄i =Di ◦Mi and denote

dn
CnAnRnEn

=Mn ◦ · · · ◦M1(dR0E0) and d̄n
CnAnDnRnEn

= M̄n ◦ · · · ◦M̄1(dR0E0) .
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The state d̄n
|Ω has the right form for us to apply Lemma 4.5 and get

H�
U(A

nCn|En)d̄n
|Ω
≥−max

cn∈Ω

HU(Dn)d̄n
Dn |cn +H�

U(A
nCnDn|En)d̄n

|Ω
, (4.7)

where

d̄n
Dn|cn = gD1|c1⊗ . . .⊗ gDn|cn .

We treat each term in Equation (4.7) in turn.

(i) For the term on the l.h.s., it is easy to see that d̄n
CnAnRnEn|Ω = dn

CnAnRnEn|Ω, so

H�
U(A

nCn|En)d̄n
|Ω
= H�

U(A
nCn|En)dn

|Ω
. (4.8)

(ii) For the first term on the r.h.s., we compute

HU(Dn)d̄n
Dn |cn = ∑

i
HU(Di)gDi |ci

≤∑
i

H(Di)gDi |ci
= nMax( f )−∑

i
f (Xci)

= nMax( f )−n f (freq(cn)) , (4.9)

where the last equality holds because f is affine.

(iii) For the second term on the r.h.s., we first use [DFR20, Lemma B.5] to remove the conditioning on the
event Ω, and then use that removing the classical system Cn and switching from H�

U to HU can only
decrease the entropy:

H�
U(A

nCnDn|En)d̄n
|Ω
≥ HU(AnDn|En)d̄n− U

U−1
log(1/Prdn [Ω]) ,

where we used Prdn [Ω] = Prd̄n [Ω]. Now noting that TrDi ◦M̄i =Mi, we see that the non-signalling
condition TrAiRiCi ◦Mi = Ri ◦TrRi−1 on Mi implies the non-signalling condition TrAiRiCiDi ◦ M̄i =
Ri ◦TrRi−1 on M̄i. We can therefore apply the chain rule in Lemma 3.6 to find

HU(AnDn|En)d̄n ≥
n

∑
i=1

min
li−1∈S(Ri−1Ei−1Ẽi−1)

HV(AiDi|EiẼi−1)M̄i(li−1)
,

where we introduced the shorthand V := 1
2−U and the purifying system Ẽi−1 ≡ Ri−1Ei−1. Noting that

for U ∈ (1,3/2) we have V ∈ (1,2), we can now use [DF19, Corollary IV.2] to obtain

HV(AiDi|EiẼi−1)M̄i(li−1)
≥ H(AiDi|EiẼi−1)M̄i(li−1)

− (V−1)
ln(2)

2
V 2− (V−1)2K(V) ,

where V 2 and K(V) are quantities from [DF19, Proposition V.3] that satisfy

K(V)≤ 1
6(2− V)3 ln2

2(V−1)(2logdA+Max( f )−MinΣ( f )) ln3
(

22logdA+Max( f )−MinΣ( f )+ e2
)
,

V 2 =
(

log(2d2
A +1)+

√
2+Var( f )

)2
,
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where dA = maxi dim(Ai). Furthermore, as in the proof of [DF19, Proposition V.3], we have

H(AiDi|EiẼi−1)M̄i(li−1)
≥Max( f ) .

Therefore, the second term on the r.h.s. of Equation (4.7) is bounded by

H�
U(A

nCnDn|En)d̄n
|Ω

≥ nMax( f )−n(V−1)
ln(2)

2
V 2−n(V−1)2K(V)− U

U−1
log(1/Prdn [Ω]) . (4.10)

Combining our results for each of the three terms (i.e. Equation (4.8), Equation (4.9), and Equation (4.10))
and recalling h = minxn∈Ω f (freq(xn)), Equation (4.7) becomes

H�
U(A

nCn|En)dn
|Ω
≥ nh−n(V−1)

ln(2)
2

V 2− U

U−1
log(1/Prdn [Ω])−n(V−1)2K(V) .

Inserting this into Equation (4.5) and Equation (4.6), and defining K′(U) = K(V) = K( 1
2−U ) we obtain

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )|Ω

≥ nh−n(V−1)
ln(2)

2
V 2−

g(ε)+U log(1/Prdn [Ω])

U−1
−n(V−1)2K(V) (4.11)

as desired.

Corollary 4.6. For the setting given in Theorem 4.3 we have

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )|Ω
≥ nh− c1

√
n− c0 ,

where the constants c1 and c0 are given by

c1 =

√
2ln(2)V 2

[

(
g(ε)+(2−[) log(1/Prdn [Ω])

)
,

c0 =
(2−[)[2 log(1/Prdn [Ω])+[2g(ε)

3(ln2)2V 2(2[−1)3 2
1−[
[

(2logdA+Max( f )−MinΣ( f )) ln3
(

22logdA+Max( f )−MinΣ( f )+ e2
)

with

[ =
2ln(2)

1+2ln(2)
, g(ε) = log(1−

√
1− ε2) , V = log(2d2

A +1)+
√

2+Var( f ) .

Proof. We first note that for any Ω with non-zero probability, h ≤ logdA. Therefore, if n ≤
(

c1
2logdA

)2
, it

is easy to check that nh− c1
√

n ≤ −n logdA, so the statement of Corollary 4.6 becomes trivial. We may
therefore assume that n≥ ( c1

2logdA
)2.

As in the proof of Theorem 4.3, we define V = 1
2−U . We will assume that U ∈ (1,2− [) for [ =

2ln(2)
1+2ln(2) ≈ 0.58 and later make a choice of U that satisfies this condition. Then, V−1 = 1

2−U −1≤ U−1
[

and
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V ∈ (1,1/[). Therefore, using K(V) as defined in the proof of Theorem 4.3 and noting that in the interval
V ∈ (1,1/[)⊂ (1,2) this quantity is monotonically increasing in V, we have

K(V)≤ K :=
[3

6(2[−1)3 ln2
2

1−[
[

(2logdA+Max( f )−MinΣ( f )) ln3
(

22logdA+Max( f )−MinΣ( f )+ e2
)
,

Hence, we can simplify the statement of Theorem 4.3 to

Hε
min(A

n|En)Mn◦···◦M1(dR0E0 )|Ω

≥ nh−n(U−1)
ln(2)

2[
V 2−

g(ε)+(2−[) · log(1/Prdn [Ω])

U−1
−n(U−1)2 K

[2 . (4.12)

We now choose U > 1 as a function of n and ε so that the terms proportional to U−1 and 1
U−1 match:

U = 1+

√
2[

n ln(2)V 2

(
g(ε)+(2−[) log(1/Prdn [Ω])

)
.

Inserting this choice of U into Equation (4.12) and combining terms yields the constants in Corollary 4.6.
The final step is to show that this choice of U indeed satisfies U ≤ 2−[ for n≥ ( c1

2logdA
)2. For this, we note

that for n≥ ( c1
2logdA

)2

U = 1+
[

ln(2)V 2
c1√

n
≤ 1+

2[ logdA

ln(2)V 2 .

We can now use that V 2 ≥
(
log(2d2

A)
)2 ≥ 4logdA since dA ≥ 2, so

U ≤ 1+
2[ logdA

ln(2)V 2 ≤ 1+
[

2ln(2)
= 2−[ ,

where the last inequality holds because [ = 2ln(2)
1+2ln(2) .

In many applications, e.g. randomness expansion or QKD, a round can either be a “data generation
round” (e.g. to generate bits of randomness or key) or a “test round” (e.g. to test whether a device used in
the protocol behaves as intended). More formally, in this case the maps Mi ∈ CPTP(Ri−1Ei−1,CiAiRiEi)
can be written as

Mi = WMtest
i,Ri−1Ei−1→CiAiRiEi

+(1−W)Mdata
i,Ri−1Ei−1→AiRiEi

⊗|⊥〉〈⊥|Ci , (4.13)

where the output ofMtest
i on system Ci is from some alphabet C′ that does not include ⊥, so the alphabet of

system Ci is C = C′∪{⊥}. The parameter W is called the testing probability, and for efficient protocols we
usually want W to be as small as possible.

For maps of the form in Equation (4.13), there is a general way of constructing a min-tradeoff function
for the mapMi based only on the statistics generated by the mapMtest

i . This was shown in [DF19] and we
reproduce their result (adapted to our notation) here for the reader’s convenience.

Lemma 4.7 ([DF19, Lemma V.5]). Let Mi ∈ CPTP(Ri−1Ei−1,CiAiRiEi) be channels satisfying the same
conditions as in Theorem 4.3 that can furthermore be decomposed as in Equation (4.13). Suppose that an
affine function g : P(C′)→R satisfies for any q′ ∈ P(C′) and any i = 1, . . . ,n

g(q′)≤ min
l∈S(Ri−1Ei−iẼi−1)

{
H(Ai|EiẼi−1)Mi(l) :

(
Mtest

i (l)
)

Ci
= q′

}
(4.14)
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where Ẽi−1 ≡ Ri−1Ei−1 is a purifying system. Then, the affine function f : P(C)→R defined by

f (Xx) =Max(g)+
1
W
(g(Xx)−Max(g)) ∀x ∈ C′

f (X⊥) =Max(g)

is a min-tradeoff function for {Mi}. Moreover,

Max( f ) =Max(g)

Min( f ) =
(

1− 1
W

)
Max(g)+

1
W
Min(g)

MinΣ( f )≥Min(g)

Var( f )≤ 1
W

(
Max(g)−Min(g)

)2
.

5 Sample applications

To demonstrate the utility of our generalised EAT, we provide two sample applications. Firstly, in Section 5.1
we prove security of blind randomness expansion against general attacks. The notion of blind randomness
was defined in [MS17] and has potential applications in mistrustful cryptography (see [MS17, FM18] for
a detailed motivation). Until now, no security proof against general attacks was known. In particular, the
original EAT is not applicable because its model of side information is too restrictive. With our general-
ised EAT, we can show that security against general attacks follows straightforwardly from a single-round
security statement.

Secondly, in Section 5.2 we give a simplified security proof for the E91 QKD protocol [Eke91], which
was also treated with the original EAT [DFR20]. This example is meant to help those familiar with the
original EAT understand the difference between that result and our generalised EAT. In particular, this
application highlights the utility of our more general model of side information: in our proof, the non-
signalling condition is satisfied trivially and the advantage over the original EAT stems purely from being
able to update the side information register Ei. We point out that while here we focus on the E91 protocol to
allow an easy comparison with the original EAT, our generalised EAT can be used for a large class of QKD
protocols for which the original EAT was not applicable at all. A comprehensive treatment of this is given
in [MR22].

5.1 Blind randomness expansion

We start by recalling the idea of standard (non-blind) device-independent randomness expansion [Col06,
CK11, PAM+10, VV12, MS16]. Alice would like to generate a uniformly random bit string using devices
D1 and D2 prepared by an adversary Eve. To this end, in her local lab (which Eve cannot access) she isolates
the devices from one another and plays multiple round of a non-local game with them, e.g. the CHSH game.
On a subset of the rounds of the game, she checks whether the CHSH condition is satisfied. If this is the
case on a sufficiently high proportion of rounds, she can conclude that the devices’ outputs on the remaining
rounds must contain a certain amount of entropy, conditioned on the input to the devices and any quantum
side information that Eve might have kept from preparing the devices. Using a quantum-proof randomness
extractor, Alice can then produce a uniformly random string.
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Blind randomness expansion [MS17, FM18] is a significant strengthening of the above idea. Here, Alice
only receives one device D1, which she again places in her local lab isolated from the outside world. Now,
Alice plays a non-local game with her device D1 and the adversary Eve: she samples questions for a non-
local game as before, inputs one of the questions to D1, and sends the other question to Eve. D1 and Eve
both provide an output. Alice then proceeds as in standard randomness expansion, checking whether the
winning condition of the non-local game is satisfied on a subset of rounds and concluding that the output of
her device D1 must contain a certain amount of entropy conditioned on the adversary’s side information.

For the purpose of applying the EAT, the crucial difference between the two notions of randomness ex-
pansion is the following: in standard randomness expansion, the adversary’s quantum side information is not
acted upon during the protocol, and additional side information (the inputs to the devices, which we also con-
dition on) are generated independently in a round-by-round manner. This allows a relatively straightforward
application of the standard EAT [AFDF+18]. In contrast, in blind randomness expansion, the adversary’s
quantum side information gets updated in every round of the protocol and is not generated independently
in a round-by-round fashion. This does not fit in the framework of the standard EAT, which requires the
side information to be generated round-by-round subject to a Markov condition. As a result, [MS17, FM18]
were not able to prove a general multi-round blind randomness expansion result.

In the rest of this section, we will show that our generalised EAT is capable of treating multi-round blind
randomness expansion, using a protocol similar to [AFRV19, Protocol 3.1]. A formal description of the
protocol is given in Protocol 1.

Protocol 1. General blind randomness expansion protocol

Protocol arguments

G : two-player non-local game, specified by a question set X ×Y , a probability
distribution q on X ×Y , an answer set A×B, and a winning condition l :
X ×Y×A×B→ {0,1}

x∗ ∈ X ,y∗ ∈ Y : inputs used for generation rounds
D : untrusted device capable of playing one side of G repeatedly

n ∈N : number of rounds
W ∈ (0,1] : expected fraction of test rounds

lexp : expected winning probability in G
X : error tolerance

Protocol steps

For rounds i = 1, . . . ,n, Alice performs the following steps:

(1) Alice chooses Ti ∈ {0,1} with Pr[Ti = 1] = W. If Ti = 1, Alice chooses Xi,Yi ∈ X ×Y according
to the question distribution q. If Ti = 0, Alice chooses Xi = x∗,Yi = y∗.

(2) Alice inputs Xi into her device D and sends Yi to Eve. She receives answers Ai and Bi, respect-
ively.

(3) If Ti = 0, Alice sets Ci =⊥. If Ti = 1, Alice sets Ci = l(Xi,Yi,Ai,Bi).

At the end of the protocol, Alice aborts if |{i s.t. Ci = 0}|> (1−lexp + X) ·Wn.
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The following proposition shows a lower bound on on the amount of randomness Alice can extract from
this protocol, as specified by the min-entropy. For this, we assume a lower-bound on the single-round von
Neumann entropy. Such a single-round bound can be found numerically using a generic method as explained
after the proof Proposition 5.1.

Proposition 5.1. Suppose Alice executes Protocol 1 with a device D that cannot communicate with Eve. We
denote by Ri and E ′i the (arbitrary) quantum systems of the device D and the adversary Eve after the i-th
round, respectively. Eve’s full side-information after the i-th round is Ei := T iX iY iBiE ′i . A single round of
the protocol can be described by a quantum channel Ni ∈ CPTP(Ri−1Ei−1,CiAiRiEi). We also define N test

i
to be the same as Ni, except that N test

i always picks Ti = 1. Let dAnCnRnEn be the state at the end of the
protocol and Ω the event that Alice does not abort.

Let g : P({0,1})→R be an affine function satisfying the conditions

g(p)≤ inf
l∈S(Ri−1Ei−1Ẽi−1):N test

i (l)Ci=p
H(Ai|EiẼi−1)Ni(l) , Max(g) = g(X1) , (5.1)

where Ẽi−1 ≡ Ri−1Ei−1 is a purifying system. Then, for any εa,εs ∈ (0,1), either Pr[Ω]≤ εa or

Hεs
min(A

n|En)≥ nh− c1
√

n− c0

for c1,c0 ≥ 0 independent of n and

h = min
p′∈P({0,1}):p′(0)≤1−lexp+X

g(p′) ,

where lexp is the expected winning probability and X the error tolerance from Protocol 1. If we treat
εs,εa,dim(Ai),X,Max(g), and Min(g) as constants, then c1 = O(1/

√
W) and c0 = O(1).

Furthermore, if there exists a quantum strategy that wins the game G with probability lexp, there is an
honest behaviour of D and Eve for which Pr[Ω]≥ 1− exp(− X2

1−lexp+X
Wn).

Remark 5.2. The condition on g(p) in Equation (5.1) is formulated in terms of the entropy

H(Ai|EiẼi−1)Ni(l) = H(Ai|T iX iY iBiE ′i Ẽi−1)Ni(l)

with Ẽi−1 ≡ Ri−1Ei−1. However, the map Ni corresponding to the i-th round does not act on the systems
T i−1X i−1Y i−1Bi−1. Therefore, we can view these systems as part of the purifying system. Since the infimum
in Equation (5.1) already includes a purifying Ẽi−1, we can drop these additional systems and without
loss of generality choose Ẽi−1 to be isomorphic to those input systems on which Ni acts non-trivially,
i.e. Ẽi−1≡Ri−1E ′i−1. This means that we can replace the upper bound on g in Equation (5.1) by the equivalent
condition

g(p)≤ inf
l∈S(Ri−1Ei−1Ẽi−1):N test

i (l)Ci=p
H(Ai|BiXiYiTiE ′i Ẽi−1)Ni(l) (5.2)

with Ẽi−1 ≡ Ri−1E ′i−1. For the proof of Proposition 5.1 we will use Equation (5.1) since it more closely
matches the notation of Theorem 4.3, but intuitively, Equation (5.2) is more natural as it only involves
quantities related to the i-th round of the protocol.
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Proof of Proposition 5.1. To show the min-entropy lower bound, we will make use of Corollary 4.6. For
this, we first check that the maps Ni satisfy the required conditions. Since Ci is a deterministic function of
the (classical) variables Xi,Yi,Ai, and Bi, it is clear that Equation (4.2) is satisfied. For the non-signalling
condition, we define the map Ri ∈ CPTP(Ei−1,Ei) as follows: Ri samples Ti,Xi and Yi as Alice does in
Step (1) of Protocol 1. R then performs Eve’s actions in the protocol (which only act on Yi and E ′i−1, which
is part of Ei−1). It is clear that the distribution on Xi and Yi produced by Ri is the same as for Ni. By the
assumption that D and Eve cannot communicate, the marginal of the output of Ni on Eve’s side must be
independent of the device’s system Ri−1. Hence, TrAiRiCi ◦Ni =Ri ◦TrRi−1 .

To construct a min-tradeoff function, we note that we can split Ni = WN test
i +(1− W)N data

i , with N test
i

always picking Ti = 1 and N data
i always picking Ti = 0. Then, we get from Lemma 4.7 and the condition

Max(g) = g(X1) that the affine function f defined by

f (X0) = g(X1)+
1
W
(g(X0)−g(X1)) , f (X1) = f (X⊥) = g(X1)

is an affine min-tradeoff function for {Ni}.
Viewing the event Ω as a subset of the range {0,1}n of the random variable Cn and comparing with

the abort condition in Protocol 1, we see that cn ∈ Ω implies freq(cn)(0)≤ (1−lexp + X)W. Therefore, for
cn ∈Ω and denoting p = freq(cn),

f (freq(cn)) = p(0) f (X0)+(1− p(0)) f (X1) =
p(0)
W

g(X0)+

(
1− p(0)

W

)
g(X1)≥ h ,

where the last inequality holds because g is affine and the distribution p′(0) = p(0)/W, p′(1) = 1− p(0)/W
satisfies p′(0) ≤ 1−lexp + X. The proposition now follows directly from Corollary 4.6 and the scaling of
c1 and c0 is easily obtained from the expressions in Corollary 4.6.

To show that an honest strategy succeeds in the protocol with high probability, we define a random
variable Fi by Fi = 1 if Ci = 0, and Fi = 0 otherwise. If D and Eve execute the quantum strategy that wins
the game G with probability lexp in each round, then E[Fi] = (1−lexp)W. Using the abort condition in the
protocol, we then find

Pr[abort] = Pr

[
n

∑
i=1

Fi > (1−lexp + X) ·Wn

]

= Pr

[
n

∑
i=1

Fi >

(
1+

X

1−lexp

)
·E
[ n

∑
i=1

Fi

]]

≤ e−
X2

1−lexp+X
Wn
,

where in the last line we used a Chernoff bound.

To make use of Proposition 5.1, we need to construct a function g(p) that satisfies the condition in Equa-
tion (5.1). For this, we will use the equivalent condition Equation (5.2). A general way of obtaining such
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a bound automatically is using the recent numerical method [BFF21].13 Specifically, using the assumption
that Alice’s lab is isolated, the maps Ni describing a single round of the protocol take the form described
in Figure 1.

Ai

Bi

Ri−1

E ′i−1

Ri

E ′i

Xi

Yi

Ai

Bi

Xi

Yi

Ti Ti

Figure 1: Circuit diagram ofN : Ri−1E ′i−1→AiRiTiXiYiBiE ′i . For every round of the protocol, a circuit of this
form is applied, where A and B are the (arbitrary) channels applied by Alice’s device and Eve, respectively.
As in the protocol, Ti is a bit equal to 1 with probability W, and Xi and Yi are generated according to q
whenever Ti = 1, and are fixed to x∗,y∗ otherwise. We did not include the register Ci in the figure as it is a
deterministic function of TiXiYiAiBi.

The method of [BFF21] allows one to obtain lower bounds on the infimum of

H(Ai|BiXiYiTiE ′i Ẽi−1)Ni(lRi−1E′i−1Ẽi−1
)

over all input states lRi−1E ′i−1Ẽi−1
and for any map Ni of the form depicted in Figure 1. Importantly, for

any Ni we may also restrict the infimum to states l that are consistent with the observed statistics, i.e.,
N test(l)Ci = p for some distribution p on Ci, using the notation of Proposition 5.1. Using this numerical
method for the CHSH game, we obtain the values shown in Figure 2. From this, one can also construct an
explicit affine min-tradeoff function g(p) in an automatic way using the same method as in [BRC19]. As
our focus is on illustrating the use of the generalised EAT, not the single-round bound, we do not carry out
these steps in detail here.

Combining this single-round bound and Proposition 5.1, one obtains that for Protocol 1 instantiated
with the CHSH game, lexp sufficiently close to the maximal winning probability of 1

2 +
1

2
√

2
, and W =

Θ( logn
n ), one can extract Ω(n) bits of uniform randomness from A1 . . .An while using only polylog(n) bits of

randomness to run the protocol. In other words, Protocol 1 achieves exponential blind randomness expansion
with the CHSH game.

13The main result of [MS17] (Theorem 14) does not appear to be sufficient for this. The reason is that the statement made
in [MS17] essentially concerns the randomness produced on average over the question distribution q of the game G. However,
choosing a question at random consumes randomness, so to achieve exponential randomness expansion, in Protocol 1 we fix the
inputs x∗,y∗ used for generation rounds. To the best of our knowledge, the results of [MS17] do not give a bound on the randomness
produced in the non-local game for any fixed inputs x∗,y∗. If one could prove an analogous statement to [MS17, Theorem 14]
that also certifies randomness on fixed inputs for a large class of games, our Proposition 5.1 would then imply exponential blind
randomness expansion for any such game. Alternatively, one can also assume that public (non-blind) randomness is a free resource
and use this to choose the inputs for the non-local game. Then, no special inputs x∗,y∗ are needed in Protocol 1 to “save randomness”
and the result of [MS17] combined with our generalised EAT implies that such a conversion from public to blind randomness is
possible for any complete-support game.
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Figure 2: Lower bound on the conditional entropy H(Ai|BiXiYiTiE ′i)d|Ti=0 for any state generated as in Fig-
ure 1 and such that on test rounds the obtained winning probability for the CHSH game is l. This lower
bound was obtained by using the method from [BFF21]. For each input y∈Y , the channel By is modelled as
By(l) = ∑b Π

(b)
y lΠ

(b)
y , where {Π(b)

y }b∈B are orthogonal projectors summing to the identity, and similarly
for the map A. It is simple to see that this is without loss of generality.

5.2 E91 quantum key distribution protocol

The E91 protocol is one of the simplest entanglement-based QKD protocols [Eke91]. This protocol was
already treated using the original EAT in [DFR20]. Here, we do not give a formal security definition and
proof, only an informal comparison of how the original EAT and our generalised EAT can be applied to this
problem; the remainder of the security proof is then exactly as in [DFR20]. For a detailed treatment of the
application of our generalised EAT to QKD, see [MR22]. To facilitate the comparison with [DFR20], in
this section we label systems the same as in [DFR20] even though this differs from the system labels used
earlier in this paper. The protocol we are considering is described explicitly in Protocol 2. It is the same as
in [DFR20] except for minor modifications to simplify the notation.

We consider the systems Bi, B̄i,Ai, Āi,Qi, Q̄i as in Protocol 2 and additionally define the system Xi storing
the statistical information used in the parameter estimation step:

Xi =

{
Ai⊕ Āi if Bi = B̄i = 1,
⊥ otherwise.

Denoting by E the side information gathered by Eve during the distribution step, we can follow the same
steps as for [DFR20, Equation (57)] to show that the security of Protocol 2 follows from a lower bound on

Hε
min(A

n|BnB̄nE)d|Ω . (5.3)

Here, d|Ω is the state at the end of the protocol conditioned on acceptance.
We first sketch how the original EAT (whose setup was described in Section 1) is applied to this problem

in [DFR20]. One cannot bound Hε
min(A

n|BnB̄nE)d|Ω directly using the EAT because a condition similar
to Equation (4.2) has to be satisfied. Therefore, one modifies the systems Āi from Protocol 2 by setting
Āi =⊥ if Bi = B̄i = 0 and then applies the EAT to find a lower bound on

Hε
min(A

nĀn|BnB̄nE)d|Ω . (5.4)
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Protocol 2. E91 quantum key distribution protocol

Protocol arguments

n ∈N : number of uses of qubit channel
` ∈ (0,1) : probability for measurements in diagonal basis
e ∈ (0, 1

2) : maximum tolerated phase error ratio
oEC ∈ [0,1] : relative communication cost of error correction scheme EC

r ∈ [0,1] : key rate

Protocol steps

(1) Distribution: For i ∈ {1, . . . ,n}, Alice prepares a pair (Qi, Q̄i) of entangled qubits and sends Q̄i

to Bob. Alice generates a random bit Bi such that PBi(1) = ` and, depending on whether Bi = 0
or Bi = 1, measures Qi in either the computational or the diagonal basis, storing the outcome
as Ai. In the same way, Bob measures Q̄i in a basis determined by a random bit B̄i, storing the
outcome as Āi.

(2) Sifting and information reconciliation: Alice and Bob announce Bi and B̄i. On indices i where
Bi 6= B̄i, they set Ai = Āi =⊥. They invoke a reliable14 error correction scheme EC, allowing
Bob to compute a guess Ân for Alice’s string An. If EC does not output a guess then the protocol
is aborted.

(3) Parameter estimation: Bob counts the number of indices i ∈ S for which B̄i = 1 and Āi 6= Âi. If
this number is larger than e`2n then the protocol is aborted.

(4) Privacy amplification: see [DFR20] for details.

For this, a round of Protocol 2 is viewed as a mapMi : Qn
i Q̄n

i → Qn
i+1Q̄n

i+1AiĀiBiB̄iXi, which chooses BiB̄i

as in Protocol 2, applies Alice and Bob’s (trusted) measurements on systems QiQ̄i to generate AiĀi, and
generates Xi as described before. To apply the EAT, Ri−1 := Qn

i Q̄n
i takes the role of the “hidden sytem”,

and AiĀi and BiB̄i are the output and side information of the i-th round, respectively. It is easy to see that
with this choice of systems, the Markov condition of the EAT is satisfied, so, using a min-tradeoff function
derived from an entropic uncertainty relation [BCC+10], one can find a lower bound on Equation (5.4).

However, adding the system Āi in this manner has the following disadvantage: to relate the lower bound
on Hε

min(A
nĀn|BnB̄nE)d|Ω to the desired lower bound on Hε

min(A
n|BnB̄nE)d|Ω one needs to use a chain rule for

min-entropies, incurring a penalty term of the form Hε
max(Ā

n|AnBnB̄nE)d|Ω . This penalty term is relatively
easy to bound for the case of the E91 protocol, but can cause problems in general.

We now turn our attention to proving Equation (5.3) using our generalised EAT. For this, we first observe
that

Hε
min(A

n|BnB̄nE)d|Ω ≥ Hε
min(A

n|BnB̄nXnE)d|Ω ,

so it suffices to find a lower bound on the r.h.s. This step is similar to adding the Āi systems in Equation (5.4)

14An error correction scheme is reliable if, except with negligible probability, either Bob’s guess of Alice’s string is correct or
the protocol aborts.

35



in that its purpose is to satisfy Equation (4.2). However, it has the advantage that here, Xn can be added
to the conditioning system and therefore lowers the entropy, not raises it like going from Equation (5.3)
to Equation (5.4). The same step is not possible in the original EAT due to the restrictive Markov condition.

Using the same system names as before, we define Ei := Qn
i+1Q̄n

i+1BiB̄iX iE.15 Then, analogously to the
original EAT, we can describe a single round of Protocol 2 by a map Mi : Ei−1 → AiEiXi. (Compared to
the mapMi we described above for the original EAT, we have traced out Āi, added a copy of Xi, and added
identity maps on the other additional systems in Ei−1.) Denoting by d0

QnQ̄nE the joint state of Alice and Bob’s
systems QnQ̄n before measurement and the information E that Eve gathered during the distribution step, the
state at the end of the protocol is d =Mn ◦ · · · ◦M1(d

0). To apply Corollary 4.6 to find a lower bound on

Hε
min(A

n|En)Mn◦···◦M1(d0)|Ω
,

we first observe that the condition in Equation (4.2) is satisfied because the system Xn is part of En, and the
non-signalling condition is trivially satisfied because there is no Ri-system. A min-tradeoff function can be
constructed in exactly the same way as in [DFR20, Claim 5.2] by noting that all systems in Ei on whichMi

does not act can be viewed as part of the purifying system.
This comparison highlights the advantage of the more general model of side information in our gener-

alised EAT: for the original EAT, one has to add the systems Āi to the “non-conditioning side” of the min-
entropy in order to be able to satisfy the Markov condition. In our case, the non-signalling condition, the
analogue of the Markov condition, is trivially satisfied because we need no Ri-system. This is because we
can add the quantum systems QnQ̄n to the side information register E0 at the start and then, since we allow
side information to be updated and Alice and Bob act on QiQ̄i using trusted measurement devices, we can
remove the systems QiQ̄i one by one during the rounds of the protocol.
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A Dual statement for smooth max-entropy

In the main text we have focused on deriving a lower bound on the smooth min-entropy. Here, we show
that this also implies an upper bound on the smooth max-entropy by applying a simple duality relation
between min- and max-entropy. A similar upper bound was also derived in [DFR20]. However, that bound
is subject to a Markov condition and cannot be derived by a simple duality argument since the “dual version”
of the Markov condition is unwieldy. We show that the bound from [DFR20] follows as a special case
of our more general bound even without any Markov conditions or other non-signalling constraints. For
simplicity, we restrict ourselves to an asymptotic statement without “testing”, i.e. we derive an Hε

max-version
of Theorem 4.1. By applying the same duality relation to the more involved statement in Theorem 4.3, one
can also obtain an Hε

max-bound with explicit constants and testing.
Recall that for dAB ∈ S(AB) and ε ∈ [0,1], the ε-smoothed max-entropy of A conditioned on B is defined

as

Hε
max(A|B)d = log inf

d̃AB∈Bε (dAB)
sup

fB∈S(B)

∥∥∥∥d̃ 1
2
ABf

1
2

B

∥∥∥∥2

1
,
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where ‖·‖1 denotes the trace norm and Bε(dAB) is the ε-ball around dAB in terms of the purified dis-
tance [Tom15]. The smooth min- and max-entropy satisfy the following duality relation [Tom15, Proposition
6.2]: for a pure quantum state kABC,

Hε
min(A|B)k =−Hε

max(A|C)k .

For the setting of Theorem 4.1, let Vi : Ri−1Ei−1 → AiRiEiFi be the Stinespring dilation of the map
Mi, and let |d0〉R0E0F0 be a purification of the input state d0

R0E0
. Then, Vn · · ·V1|d0〉 is a purification of

Mn ◦ · · · ◦M1(d
0), so by the duality of the smooth min- and max-entropy,

Hε
min(A

n|En)Mn◦···◦M1(d0) =−Hε
max(A

n|FnRn)Vn···V1|d0〉 .

Furthermore, by concavity of the conditional entropy the infimum in Theorem 4.1 can be restricted to pure
states |l〉Ri−1Ei−1Ẽi−1

, so Vi|l〉 is a purification of Mi(l). Then, by the duality relation for von Neumann
entropies,

H(Ai|EiẼi−1)Mi(l) =−H(Ai|RiFi)Vi|l〉 .

Therefore, we obtain the following dual statement to Theorem 4.1:

Hε
max(A

n|FnRn)Vn···V1|d0〉 ≤
n

∑
i=1

max
|l〉

H(Ai|RiFi)Vi|l〉+O(
√

n) , (A.1)

where the maximisation is over pure states on Ri−1Ei−1Ẽi−1. This holds for any sequence of isometries Vi

for which the maps MVi : Ri−1Ei−1 → AiRiEi given by MVi(d) = TrFi

[
VidV †

i

]
satisfy the non-signalling

condition of Theorem 4.1: for each i, there must exist a map Ri ∈ CPTP(Ei−1,Ei) such that TrAiRi ◦MVi =
Ri ◦TrRi−1 .

To gain some intuition for the above statement, consider a setting where an information source generates
systems A1, . . . ,An and F1, . . . ,Fn by applying isometries Vi : Si−1→ AiFiSi to some pure intial state |d0〉S0 .
We might be interested in compressing the information in An in such a way that given Fn, one can reconstruct
An except with some small failure probability ε . Then, the amount of storage needed for the compressed
information is given by Hε

max(A
n|Fn). To apply Equation (A.1), for i < n we split the systems Si into RiEi

in such a way that the channel MVi defined above satisfies the non-signalling condition, and set En = Sn

(so that Rn is trivial). Then Equation (A.1) gives an upper bound on Hε
max(A

n|Fn). Note that this bound
depends on how we split the systems Si = RiEi: the non-signalling condition can always be trivially satisfied
by choosing Ri to be trivial, but Equation (A.1) tells us that if we can describe the source in such a way that
Ei is relatively small and Ri is relatively large while still satisfying the non-signalling condition, we obtain a
tighter bound on the amount of required storage.

From Equation (A.1) we can also recover the max-entropy version of the original EAT, but without
requiring a Markov condition. To facilitate the comparison with [DFR20], we first re-state their theorem
with their choice of system labels, but add a bar to every system label to avoid confusion with our notation
from before. The max-entropy statement in [DFR20] considers a sequence of channels M̄i : R̄i−1→ ĀiB̄iR̄i

and asserts that under a Markov condition, for any initial state dR̄0Ē with a purifying system Ē ≡ R̄0:

Hε
max(Ā

n|B̄nĒ)M̄n◦···◦M̄1(dR̄0Ē )
≤

n

∑
i=1

max
l∈S(R̄i−1R̄)

H(Āi|B̄iR̄)M̄i(l)+O(
√

n) , (A.2)
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where R̄ ≡ R̄i−1. We want to recover this statement from Equation (A.1) without any Markov condition.
For this, we consider the Stinepring dilations V̄i : R̄i−1→ R̄iĀiB̄iF̄i of M̄i. We make the following choice of
systems:

Ri = B̄iĒ , Ai = Āi , Ei = R̄iF̄i ,

and choose Fi to be trivial. By tensoring with the identity, we can then extend V̄i to an isometry Vi :
Ri−1Ei−1 → AiRiEi. Then, the maps MVi satisfy the non-signalling condition since Vi acts as identity on
Ri−1. Therefore, remembering that Rn = B̄nĒ and Fn is trivial, we see that Equation (A.1) implies Equa-
tion (A.2). Note that our derivation did not require any conditions on the channels M̄i we started with,
i.e. we have shown Equation (A.2) holds for any sequence of channels M̄i, not just channels satisfying a
Markov or non-signalling condition.

B Uhlmann property for the Rényi divergence

We establish that for the max-divergence (where U→ ∞), Uhlmann’s theorem holds.

Proposition B.1. Let fA ∈ S(A) and dAE ∈ S(AE). Then we have

Dmax(dA‖fA) = inf
f̂AR : f̂A=fA

Dmax(dAR‖f̂AR) . (B.1)

In addition, if dAR, dA⊗ idR and fA⊗ idR all commute, then for any U ∈ [1
2 ,∞), we have

DU(dA‖fA) = inf
f̂AR : f̂A=fA

DU(dAR‖f̂AR) . (B.2)

Proof. We start with Equation (B.1). The inequality ≤ is a direct consequence of the data-processing in-
equality for Dmax. For the inequality ≥, we use semidefinite programming duality, see e.g., [Wat18]. Ob-
serve that we can write 2Dmax(dA‖fA) as the following semidefinite program

min
gA∈Pos(A),_∈R

{Tr[gA] : dA ≤ gA,gA = _fA} .

Using semidefinite programming duality, this is also equal to

max
XA∈Pos(A),YA∈Herm(A)

{Tr[XAdA] : idA +YA = XA,Tr[YAfA] = 0} . (B.3)

We can also write a semidefinite program for inff̂AR : f̂A=fA 2Dmax(dAR‖f̂AR). We introduce the variable \AR =
_f̂AR and get

min
g∈Pos(A⊗R),_∈R

{Tr[gAR] : dAR ≤ gAR,\A = _fA} .

Again, by semidefinite programming duality, we get that it is equal to

max
XAR∈Pos(A⊗R),YA∈Herm(A)

{Tr[XARdAR] : (idA +YA)⊗ idR = XAR,Tr[YAfA] = 0} . (B.4)

Eliminating the variable XAR, we can write this last program as

max
YA∈Herm(A)

{Tr[(idA +YA)dA] : idA +YA ∈ Pos(A),Tr[YAfA] = 0} ,

which is the same as Equation (B.3). This proves Equation (B.1). Equation (B.2) follows immediately by
choosing f̂AR = fAd

−1
A dAR and using the commutation conditions.
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However, for U ≥ 1 and arbitrary fA ∈ S(A), dAE ∈ S(AE), the Uhlmann property given by Equa-
tion (B.2) does not hold. A concrete example is dAR = |k〉〈k|AR with

|k〉AR =

√
1
4
|00〉AR +

√
3
4
|11〉AR

and fA = 1
3 |+〉〈+|+

2
3 |−〉〈−|. In this case, D2(dA‖fA)< 0.476 whereas

inf
f̂AR : f̂A=fA

D2(dAR‖f̂AR)≥ inf
f̂AR : f̂A=fA

D(dAR‖f̂AR)> 0.48 .

This computation was performed by numerically solving the semidefinite programs via CVXQUAD [FF18].
Putting everything together shows that Equation (B.2) does not hold for U ∈ {1,2}:

D(dA‖fA)≤ D2(dA‖fA)< inf
f̂AR : f̂A=fA

D(dAR‖f̂AR)≤ inf
f̂AR : f̂A=fA

D2(dAR‖f̂AR) .
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