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Abstract

We give efficient algorithms for finding power-sum decomposition of an input polynomial

P(x) = ∑i6m pi(x)d with component pis. The case of linear pis is equivalent to the well-studied

tensor decomposition problem while the quadratic case occurs naturally in studying identifia-

bility of non-spherical Gaussian mixtures from low-order moments.

Unlike tensor decomposition, both the unique identifiability and algorithms for this prob-

lem are not well-understood. For the simplest setting of quadratic pis and d = 3, prior work

of [GHK15] yields an algorithm only when m 6 Õ(
√

n). On the other hand, the more general

recent result of [GKS20] builds an algebraic approach to handle any m = nO(1) components but

only when d is large enough (while yielding no bounds for d = 3 or even d = 100) and only

handles an inverse exponential noise.

Our results obtain a substantial quantitative improvement on both the prior works above

even in the base case of d = 3 and quadratic pis. Specifically, our algorithm succeeds in de-

composing a sum of m ∼ Õ(n) generic quadratic pis for d = 3 and more generally the dth

power-sum of m ∼ n2d/15 generic degree-K polynomials for any K > 2. Our algorithm relies

only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up

to numerical precision), and handles an inverse polynomial noise when the pis have random

Gaussian coefficients.

Our main tool is a new method for extracting the linear span of pis by studying the linear

subspace of low-order partial derivatives of the input P. For establishing polynomial stability

of our algorithm in average-case, we prove inverse polynomial bounds on the smallest singular

value of certain correlated random matrices with low-degree polynomial entries that arise in

our analyses. Since previous techniques only yield significantly weaker bounds, we analyze

the smallest singular value of matrices by studying the largest singular value of certain deviation

matrices via graph matrix decomposition and the trace moment method.
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1 Introduction

An n-variate polynomial P(x) admits a power-sum decomposition if it can be written as P(x) =

∑i6m pi(x)d for some low-degree polynomials pis. This work is about the algorithmic problem of

computing such a decomposition when it exists and the related structural question of when such

a decomposition, if it exists, is unique.

When pis are linear forms 〈vi, x〉 for vi ∈ Rn, the task of decomposing P is equivalent to de-

composing the corresponding coefficient tensor ∑i v⊗d
i into rank 1 components. For d = 2, this

corresponds to rank decomposition of matrices, which is unique only in degenerate settings. For

d = 3, while the problem is already NP-hard [Hås90], there is a long line of work on identi-

fying natural sufficient conditions (e.g., Kruskal’s condition [Kru77]) that imply uniqueness of

decomposition in all but degenerate settings. There are known efficient algorithms for decom-

posing tensors satisfying such non-degeneracy conditions and such algorithms form basic primi-

tives in tensor methods [Har70, McC87, LRA93, LCC07, BCMV14, GHK15, AGH+15, GM15, HSS15,

HSSS15, MSS16, MW19, KP20]. An influential line of work has developed efficient learning al-

gorithms for a long list of interesting statistical models (under appropriate assumptions) includ-

ing Mixtures of Spherical Gaussians [HK13, GHK15], Independent Component Analysis [LCC07],

Hidden Markov Models [MR05], Latent Dirichlet Allocations [AFH+12], and Dictionary Learn-

ing [BKS15] via reductions to tensor decomposition. Higher-degree power-sum decomposition is

a natural generalization of the tensor decomposition problem and is equivalent to the well-studied

problem of reconstructing certain classes of arithmetic circuits [KSS14, KS19, GKS20] with connec-

tions (see surveys [SY10, Sap15, CKW11]) to algebraic circuit lower bounds and derandomization.

Tensor Decomposition with Symmetries Higher-degree power-sum decomposition is equiva-

lent to a strict generalization of tensor decomposition where the components are symmetrized

under a natural group action. For example, when pi(x) = x⊤Aix are homogeneous quadratic

polynomials for n × n matrices Ai, the coefficient tensor of P has the form Eσ∼S6 ∑i6m σ(A⊗3
i )

where S6 is the symmetric group on 6 elements and acts1 by permuting the 6 indices involved in

any entry of A⊗3
i . If not for the action of σ, the coefficient tensor would simply be a sum of tensor

powers of vectorized Ais. The group action, however, has a drastic effect on the identifiability

and algorithms for the problem. Specifically, the symmetrization causes the resulting tensor to

have a large rank and thus any decomposition algorithm must strongly exploit the symmetries to

succeed. In fact, in Section A.1, we exhibit a simple example of a sum of cubics of quadratics on

2 variables whose components are not uniquely identifiable even though the corresponding coef-

ficient matrices of the quadratics are linearly independent. This is in contrast to the well-known

result [Har70, LRA93] that 3rd order tensors with linearly independent components are uniquely

identifiable and efficiently decomposable. This is similar to other orbit recovery problems that

also reduce to tensor decomposition with symmetries such as multi-reference alignment and the

cryo-EM [PWB+17, MW19] problem where even establishing information-theoretic identifiability

for generic parameters is significantly more challenging.

1 For e.g., for a symmetric matrix A, Eσ∼S6
[A⊗3((i1, i2, i3), (j1, j2, j3))] = E[A(e1)A(e2)A(e3)] where the expectation

is over the choice of a uniformly random perfect matching (e1, e2, e3) of {i1, i2, i3, j1, j2, j3}.
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The Quadratic Case Despite being the natural next step after linear pis, power-sum decomposi-

tion of quadratic pis is not well understood. In a seminal work, Ge, Huang and Kakade [GHK15]

(GHK from now) proved that the first 6 moments of a mixture of m ∼ √
n non-spherical Gaus-

sians with smoothed parameters exactly identify and (noise-resiliently) recover the m sets of means

and covariances. Their analysis involves giving an algorithm (and uniqueness proof) for decom-

posing sums of cubics of smoothed quadratic positive definite polynomials but naturally general-

izes to arbitrary smoothed quadratics. This is a striking result that exhibits a large gap between

smoothed/generic parameters and arbitrary ones for mixtures of Gaussians as it is known that we

need Ω(m) moments (an nΩ(m)-size object) to uniquely identify the parameters of arbitrary mix-

tures of m Gaussians [MV10]. Their approach uses a conceptually elegant “desymmetrize+tensor-

decompose” strategy by first undoing the effect of the group action and then applying tensor de-

composition. While their approach can potentially be extended to m >
√

n, it seems to encounter

an inherent barrier at m > n2/3 as we explain in Section 2. Nevertheless, GHK conjectured that

it should be possible to handle m ≈ n1−δ generic components for any δ > 0 given O(1)-degree

mixture moments which, in our context, corresponds to decomposing a sum of higher constant

degree powers of quadratics.

The Garg-Kayal-Saha Algorithm In a beautiful work of Garg, Kayal and Saha [GKS20] (GKS

from now), they suggest that there is an inherent barrier to extending the “desymmetrize+tensor-

decompose” based approach of [GHK15]. Instead, they work by exploiting an intriguing connec-

tion to algebraic circuit lower bounds and develop algorithms to recover any polynomial number

of generic components from their power-sums of large enough degree. This algorithm however

has two important deficiencies.

First, their strategy yields a decomposition algorithm for degree-d power-sums only when d

is very large compared to the degree of the component pis. In particular, they do not obtain any

result for the simplest interesting setting of d = 3rd (or even 100th) power of quadratics2. As a

result, their techniques seem unsuitable to answer natural questions such as whether 6th moments

of mixtures of non-spherical Gaussians (with generic parameters) can uniquely identify m > n0.51

components of Gaussian mixture in n dimensions, or, whether a sum of m ≈ n cubics of generic

quadratics can be uniquely decomposed. Second, their algorithm relies on algebraic methods for

finding simultaneous vector-space decomposition. The resulting algorithm is not error-resilient

and does not appear to handle even a small (e.g., exp(−n) in each entry) amount of noise in the

input polynomial. In fact, GKS suggest finding a stable algorithm for power-sum decomposition

as an open question.

This Work In this paper, we give a conceptually simple algorithm that substantially improves

the quantitative results in [GKS20] for decomposing power-sums of low-degree polynomials.

Somewhat surprisingly, our algorithm follows the “desymmetrize+decompose” approach simi-

lar to [GHK15] while circumventing the barriers suggested by [GKS20]. A key component is an

efficient algorithm to extract the linear span of the coefficient tensors of (powers of) pis from the

subspace of “coordinate restrictions” of partial derivatives of P = ∑i6m pd
i for d > 3. As a con-

sequence of our algorithm, we obtain substantially improved guarantees even for the simplest

2 Indeed, while their bounds can likely be somewhat optimized, the smallest power of quadratics that their algorithm
(as currently analyzed) succeeds in decomposing must be larger than 2335.
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non-trivial setting of sum of cubics of quadratics and handle m ∼ n components.

We give an error-tolerant implementation of our algorithm and prove that when each pi has in-

dependent random Gaussian coefficients, the resulting algorithm tolerates an inverse polynomial

amount of adversarial noise in the coefficients of the input polynomial. A key technical step in

such an analysis requires establishing inverse polynomial lower bounds on the singular values of

certain correlated random matrices whose entries are low-degree polynomials in the coefficients

of pis. Standard results (e.g., from [BCMV14]) for analyzing smallest singular values yield signif-

icantly weaker bounds in our setting. Instead, we rely on a new elementary but nimble method

that lower bounds the smallest singular value of correlated random matrices by reducing the task

to upper-bounding the much better understood largest eigenvalue of certain deviation matrices.

Our analyses of the spectral norm of such matrices use the trace moment method combined with

graphical matrix decompositions of random matrices that appear naturally in the analyses of sum-

of-squares lower bound witnesses [HKP15, BHK+19] for average-case refutation problems. In

particular, these sharper bounds are crucial in allowing us to handle m ∼ Õ(n) components for

decomposing sums of cubics of quadratics.

1.1 Our results

Our main result gives a polynomial time algorithm (in the standard bit complexity model with

exact rational arithmetic) for decomposing a sum of d-th powers of generic (e.g., smoothed) poly-

nomials. We note that just as in standard tensor decomposition, sums of squares of low-degree

polynomials are uniquely decomposable only in degenerate settings (see Section A.2), so cubics of

quadratics (i.e., d = 3) is the simplest non-trivial setting in this context.

Theorem 1.1 (Decomposing Power-Sums of Smoothed Polynomials). There is an algorithm that takes

input an n-variate degree-Kd (for d a multiple of 3) polynomial of the form P̂(x) = ∑i6m Âi(x)d where

Âi = Ai + Gi for an arbitrary degree-K polynomial Ai and a degree-K polynomial Gi with independent

N (0, ρ2) coefficients, runs in time polynomial in the size of its input and 1/ρ, and has the following

guarantee: with probability at least 0.99 over the draw of Gis and internal randomness, it outputs the set

{Âi | i 6 m} up to permutation (and signs, if d is even) whenever

• m 6 Õ(n) for d = 3, K = 2,

• m 6 Õ(n2) for d = 6, K = 2,

• m 6 Õ(n2d/9) for any d > 9 and K = 2,

• m 6 Õ(n2Kd/3(5K−4)) for all d > 9 and K > 2.

The theorem above works more generally for any model of smoothing that independently per-

turbs the coefficients of each At with a distribution that allots a probability of at most 1/nO(d) to

any single point. In particular, a fine-enough discretization of any continuous smoothing suffices.

As observed in [GKS20, GHK15], identifying components of non-spherical mixtures of Gaussians

from low-degree moments is equivalent3 to decomposing the power-sum of quadratic polynomi-

als. Thus, as an immediate corollary of the theorem above, we obtain:

3 This follows from the fact that for x ∈ Rn, the 2d-th moment of N (0, Σ) in direction x equals Ey∼N (0,Σ)[〈y, x〉2d] =
(2d)!
2dd!

E[〈y, x〉2]d = (2d)!
2dd!

(x⊤Σx)d. Consequently, Ey∼∑i wiN (0,Σi)[〈x, y〉2d] = (2d)!
2dd! ∑i wi(x

⊤Σix)
d.
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Corollary 1.2 (Moment Identifiability of Smoothed Mixtures of Gaussians). The parameters of a

zero-mean mixture of Gaussians ∑i6m wiN (0, Σi), with arbitrary mixture weights wi and smoothed4 co-

variances Σi, are uniquely identifiable from the first 2d moments for any m 6 Õ(n2d/9). For d = 3 and 6,

the bound improves to m 6 Õ(n) and m 6 Õ(n2) respectively.

Error-Resilience for Random Components When P(x) = ∑i Ai(x)d + E(x) where each Ai has

independent, standard Gaussian coefficients, we prove that the our algorithm above in fact is

error-resilient and tolerates an inverse polynomial error in every coefficient of the input P̂. Indeed,

Theorem 1.1 above is obtained essentially as a corollary (combined with simple algebraic tools) of

this stronger analysis for random components; see Section B.

Theorem 1.3 (Power-sum Decomposition of Random Polynomials, See Theorems 4.1, 5.1). There

is a polynomial time algorithm that takes input an n-variate degree-Kd (for d a multiple of 3) polynomial

of the form P̂(x) = ∑i6m Ai(x)d + E(x) where Ai is a degree-K polynomial with independent N (0, 1)

coefficients, and E(x) is an arbitrary polynomial of degree Kd, and has the following guarantees: with

probability at least 0.99 over the draw of Ais and internal randomness, it outputs the set {Ãi | i 6 m}
that contains an estimate of each Ai up to permutation (and signs, if d is even) with an error of at most

nO(1) ‖E‖1/d
F whenever

• m 6 Õ(n) for d = 3 and K = 2,

• m 6 Õ(n2) for d = 6 and K = 2,

• m 6 Õ(n2d/9) for any d > 9 and K = 2,

• m 6 Õ(n2Kd/3(5K−4)) for all d > 9 and K > 2.

1.2 Discussion and comparison to prior works

Theorem 1.3 shows that our algorithm tolerates an inverse polynomial amount of noise in each

entry when the component Ais are random. Theorem 1.1 is in fact an immediate corollary of our

analysis for the random case combined with standard tools. Our result for generic (as opposed

to random) pis only handles an inverse exponential amount of noise. We believe that the same

algorithm should handle inverse polynomial noise (i.e., is well-conditioned) in any reasonable

smoothed analysis model. However, establishing such a result likely requires new techniques

for analyzing condition numbers of matrices with dependent, low-degree polynomial entries in

independent random variables.

For the simplest setting of sums of cubics of quadratics (i.e., K = 2 and d = 3), our theorem

yields a polynomial time algorithm that succeeds whenever m 6 Õ(n). This improves on the

algorithm implicit in [GHK15] that succeeds5 for m 6 Õ(
√

n). As we discuss in Section 2, natural

extensions of their techniques to higher degree power-sums also appear to break down for m > n.

The work of [GKS20] recently found a more sophisticated algorithm (that works in general on

all large enough fields) that relies on simultaneous decomposition of vector spaces that escapes

4 Any continuous smoothing suffices for this result. For e.g., for an arbitrary Σ̂i � 0, for ρ = n−O(1), add an

independent and uniformly random entry from [−ρ, ρ] to every off-diagonal entry of Σ̂i and a uniformly random entry

from [nρ, 2nρ] to every diagonal entry of Σ̂i to produce Σi. Note that the resulting matrix Σi is positive semidefinite.
5 Their algorithm succeeds more generally for smoothed Ais but in addition, needs access to ∑i Ai(x)

2.
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this barrier. In particular, they showed that for any K, m = nO(1), there is an algorithm that suc-

ceeds in decomposing a sum of m dth powers of generic degree-K polynomials for large enough

d. Their algorithm however requires that d be very large as a function of K and logn m and in

particular, does not work for d = 3 (or even 100) for example. Their algorithm relies on exact algo-

rithms for certain algebraic operations and does not appear to tolerate any more than an inverse

exponential (in n) amount of noise in the input.

The corollary above immediately improves the moment identifiability of mixtures of smoothed

centered Gaussians shown in both the works above. Extending our algorithm to the “asymmetric”

case of sums of products of quadratics (instead of powers) will allow the above corollary to suc-

ceed for Gaussians with arbitrary mean, but we do not pursue this goal in this paper. We also note

that unlike [GHK15], our theorem above does not immediately yield a polynomial time algorithm

for learning mixtures of smoothed Gaussians from samples (similar to [GKS20]). This is because

samples from the mixture only give us access to the corresponding sum of powers of quadratics

with inverse polynomial additive error in each entry while our current analysis for the case of

smoothed components only handles an inverse exponential error.

Open Questions Despite the progress in this work, we are far from understanding identifiability

and algorithms for power-sum decomposition. Our result shows unique identifiability for sums of

∼ n cubics of quadratics. Could this be improved to n2? Conversely, could we produce evidence

of hardness of decomposing sums of ω(n) cubics of quadratics? Analogous questions arise for

higher-degree polynomials and we mention one that eludes the current approach in both our work

and [GKS20]: is it possible to obtain efficient algorithms that succeed in decomposing sums of m

d-th powers of degree-K polynomials where m grows as n f (K)d for some f (K) → ∞ as K → ∞?

In a different direction, a natural question is to generalize our result to obtain a polynomial

time algorithm that decomposes power-sums of smoothed polynomials while tolerating an in-

verse polynomial entrywise error. Our current analysis obtains such a guarantee for power-sums

of random polynomials but can only handle an inverse exponential error in the smoothed setting.

We suspect that this goal requires new tools to analyze the smallest singular values of matrices

whose entries are low-degree polynomials in independent Gaussians with non-zero means.

1.3 Brief overview of our techniques

Given (the special case of) sum of cubics of quadratics P(x) = ∑i6m(x⊤Aix)
3 for n × n symmetric

matrices Ai with coefficient tensor ∑i6m Sym6(A⊗3
i ), the main idea of the algorithm in [GHK15]

is a conceptually simple “desymmetrize + tensor-decompose” approach. Here, desymmetriza-

tion reverses the effect of the polynomial symmetry and yields ∑i A⊗3
i , and one can then apply

standard tensor decomposition. While Sym6 is a linear operator on 6th order tensors with an

Ω(n6)-dimensional kernel, it turns out that it is invertible when restricted to tensors where the

component Ais are restricted to a known generic subspace. The work of [GHK15] shows how to

estimate the span of Ais – i.e. this subspace – for m 6 Õ(
√

n). But their techniques do not seem

to extend to any m ≫ n2/3. Indeed, Garg, Kayal and Saha [GKS20] comment that reduction to

tensor decomposition of the sort above cannot yield algorithms that work for m ≫ n. As a result,

they build a considerably more sophisticated approach that relies on an algebraic algorithm for

simultaneous decomposition of vector spaces.

5



Our main idea comes as a surprise in the light of this discussion: we in fact give a conceptu-

ally simple “desymmetrize+tensor-decompose” based algorithm that substantially improves the

bounds obtained in [GKS20]. Our key idea is a “Span Finding algorithm” that recovers the linear

span of Ais restricted to any O(
√

n) variables by computing the linear span of restrictions of par-

tial derivatives of P and intersecting it with an appropriately constructed random subspace (see

Section 2 for a more detailed overview).

Our algorithm is implemented using error-resilient numerical linear algebraic operations. In

particular, to establish polynomial stability (Theorem 1.3) for random Ai, we need to understand

the smallest singular values (to obtain well-conditionedness) of certain correlated random ma-

trices arising in our analyses. These random matrices are rather complicated with entries com-

puted as low-degree polynomials (much smaller than the ambient dimension) of independent

random variables. Standard techniques for analyzing such bounds (such as the “leave-one-out”

method [TV09, TV10, RV08] employed in prior works on tensor decomposition [BCMV14, MSS16])

are inadequate for our purposes and yield weaker bounds (which, in particular, do not allow us

to handle m ∼ √
n for sum of cubics of quadratics, for example).

Instead, we rely on a new elementary method that establishes singular value lower bounds

by studying spectral norm upper bounds of certain associated deviation matrices. We analyze

and prove strong bounds on the spectral norm of such matrices using the graphical matrix de-

composition technique that was introduced in [HKP15, BHK+19] and recently used and refined

in several works [AMP16, MRX20, GJJ+20, PR20, HK22, JPR+22] on establishing sum-of-squares

lower bounds for average-case problems and reducing the bounds to understanding certain com-

binatorial problems on graphs associated with the matrix. As far as we know, our work is the first

use of this technique to prove singular value lower bounds and condition numbers in algorithms.

We believe that the graphical matrix decomposition toolbox will find further applications in the

analyses of numerical algorithms.

2 Technical Overview

In this section, we give a high-level overview of our algorithm and the key ideas that go into its

design and analysis. Let’s fix P(x) = ∑t6m At(x)d + E(x) where At(x) are homogeneous polyno-

mials of degree K in n indeterminates x1, x2, . . . , xn. Throughout this paper, we will abuse notation

slightly and use At to also denote the K-th order coefficient tensor of the associated polynomial.

We will also use Õ to suppress polylog(n) factors. To begin with, we will focus on the case of

generic Ats – this simply means that Ats do not satisfy any of some appropriate finite collection

of polynomial equations. Eventually, as we explain in Section 2.1, these equations will simply

correspond to full-rankness of certain matrices that arise in our analyses. We will discuss a new

method to prove strong polynomial condition number bounds for random Ats in the following

section. The results for smoothed/generic Ats then follow via standard, simple tools.

Just like the special case of tensor decomposition (i.e., when At are linear forms), the decompo-

sition is not uniquely identifiable from a sum of their quadratics (i.e., d = 2) except in degenerate

cases (see Section A.2). Thus, the simplest non-trivial setting turns out to be d = 3.

In this section, we will focus on the simplest setting of K = 2 (and thus, At are simply n × n

matrices) and d = 3. This, by itself, is an important special case and captures the question of

identifiability of parameters from the 6th moments of a mixture of m n-dimensional Gaussians

6



with zero-mean and smoothed covariance matrices, and our main results (Theorems 1.1 and 1.3)

improve the current best identifiability results (Corollary 1.2).

Structure of the Coefficient Tensor Up to a constant scaling, the coefficient tensor of P equals

∑t6m Sym(A⊗3
t ). Here, Sym = Sym6 acts on A⊗3

t by averaging over entries obtained by permuting

the 6 elements involved. That is, for a uniformly random permutation π : [6] → [6],

Sym(A⊗3
t )(a1, a2, . . . , a6) = Eπ∼S6

[
At(aπ(1), aπ(2))At(aπ(3), aπ(4))At(aπ(5), aπ(6))

]
.

Relationship to Tensor Decomposition It is natural to compare our input to the related, desym-

metrized tensor ∑t A⊗3
t , given which, we can immediately obtain the Ats by applying standard

tensor decomposition algorithms [Har70, LRA93] (see Fact 4.7) whenever Ats are linearly inde-

pendent as vectors in (n+1
2 ) dimensions. Our input, however, is not even close to a low-rank

tensor because of the action of Sym6 that generates essentially maximal rank terms even starting

from a single generic At. Indeed, this effect is visible for just bivariate polynomials. In Section A.1,

we construct two different (and in fact, Ω(1)-far in Frobenius norm) collections of robustly lin-

early independent bivariate quadratic polynomials such that the sums of their cubics have the

same coefficient tensors. Thus, even though such Ats can be uniquely and efficiently recovered

from ∑t A⊗3
t via standard tensor decomposition, it is information theoretically impossible to do so

given ∑t Sym(A⊗3
t ).

The Ge-Huang-Kakade [GHK15] Approach The discussion above presents a conceptually sim-

ple way forward: if we could somehow compute the desymmetrized tensor (i.e., undo the effect

of the group action) from the input, then we have reduced the problem to standard tensor de-

composition. This is a bit tricky as the linear operation Sym6 on 6th order tensors is a contraction

that maps a (n+1
2 )

3 ∼ n6/8-dimensional space into a (n+5
6 ) ∼ n6/720 dimensional subspace and

is clearly not invertible (in fact, has a Ω(n6)-dimensional kernel) on arbitrary 6th order tensors.

The main idea in GHK is to observe that Sym6 can be invertible when restricted to 6th order tensors

in some smaller subspace. In particular, let B1, B2, . . . , Bm be a basis for the span of the matrices

At. Then, the desymmetrized coefficient tensor of P is a linear combination of Bi ⊗ Bj ⊗ Bk – a

subspace of m3 dimension which is ≪ n6/720 if m ≪ n2. Proving such a claim requires analysis

of the rank (and singular values, for polynomial error-stability) of the matrix representing Sym6

on the linear span of Ats and GHK managed to prove it for any m ≪ √
n.

To obtain the span of Ats, GHK rely on access to P4 = ∑t6m Sym4(A⊗2
t ) in addition to the input

tensor above. Plugging in ea, eb in the first two modes of this tensor yields an n × n matrix (i.e., a

2-D slice) of the form: ∑t At[a, b]At + ∑t At[a]⊗ At[b] where At[i] is the i-th column of At. As a, b

vary, the first term generates the subspace of the span of Ats. However, each such 2-D slice has an

additive “error” that lies in the span of the rank 1 forms in the 2nd term above. The GHK idea is to

zero out the rank 1 terms by projecting the 2-D slices to a subspace S⊥, where S contains the span

of the rank 1 terms. To compute S , they choose a subset H ⊆ [n] and plug in a, b, c ∈ H into three

modes of P4. The resulting 1-D slices are linear combinations of the columns At[a] for a ∈ H and

t ∈ [m]. If m|H| ≪ n, then all At[a] are linearly independent generically, while if |H|3 ≫ m|H|,
then there are enough slices to generate the span of At[a] for all a ∈ H and t ∈ [m]. This trade-off is

optimized at m ∼ n2/3 and |H| ∼ n1/3. Given a good estimate of S , we can now plug in a, b ∈ H in
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two modes of P4 and recover the span of At (restricted to columns in H) by projecting the resulting

2-D slices off S . Repeating for disjoint choices of H completes the argument. In order to analyze

the linear independence (and condition numbers) of the vectors arising in this analysis, GHK need

to work with a somewhat smaller m ∼ √
n in their argument.

Key Bottleneck in the GHK Approach In our situation, we only have the sum of cubics P as

input (but not P4). But even given P4, the crucial bottleneck is the need for recovering the span

of a subset of columns of the Ats. With more sophisticated analyses, given the above trade-offs,

it’s plausible that a sum of d-th powers of At allows handling m as large as n1−O(1/d), but there

appears to be an inherent barrier at m ∼ n. The GHK approach also seems to get unwieldy as

it involves plugging in standard basis vectors in several modes of the tensor. This leads to more

“spurious” terms that one must zero-out (instead of just the rank-1 terms for P4).

Thus, even given higher powers, the GHK approach appears to have a natural break-point at

m ∼ n, and even handling m ≫ √
n seems to require somewhat unwieldy analysis. In fact, in their

recent work, Garg, Kayal and Saha [GKS20] commented (see Page 17) ”However, we believe such an

approach cannot be made to handle larger number of summands (say poly(n)) even in the quadratic case as

the lower bounds for sums of powers of quadratics need substantially newer ideas than the linear case...”.

The Garg-Kayal-Saha [GKS20] Approach In their beautiful recent work, GKS managed to find a

different approach that escapes the above obstacles and showed an algorithm (that works on both

finite fields and Q) that for any K and m = nO(1), manages to decompose P(x) = ∑t6m At(x)d

for large enough d (and generic degree-K polynomials At). As discussed before, their approach

requires d to be a large enough constant as a function of K and logn m (though they remarked that

the bounds could likely be improved, already for K = 2, they need d > 2335 and m 6 nd/1100).

Their main idea, however, is relevant to our approach so we briefly describe it here.

We restrict our attention to the quadratic case (K = 2) from here on. The GKS approach relies

on the linear span of partial derivatives of the input polynomial P. In fact, taking rth partial deriva-

tives of P is essentially the same (though, more principled and easier to analyze) as “plugging

in” all possible standard basis vectors in r modes of the input coefficient tensor as in GHK. GKS

observed that for r < d, the nr = (n+r−1
r ) many r-th partial derivatives of P are all of the form

∑t6m At(x)d−rQt(x) for some degree-r polynomials Qt. This linear subspace is strictly contained

within the space of all polynomial multiples of At(x)d−r – the containment is strict because the

latter space is of dimension ∼ mnr ≫ nr for generic Ats. However, if we were to project each of

the nr partial derivatives down to be a function of some small enough ℓ = o(n) variables y, then,

the dimension counting above is no longer an obstruction to the span being all multiples of the

projected At(x)d−r. Indeed, for generic At, the subspace U of the projected partial derivatives does

in fact equal the subspace V of all multiples of Bt(y)d−r, where Bt = M⊤At M (the projection of

At) and Bt(y) = At(My) = y⊤M⊤At My for an n × ℓ projection matrix M.

Key Bottleneck in the GKS Approach If we take r = d − 1, then, it appears that the partial

derivatives give us access to the subspace of span of multiples of Bts (of degree 2d − r = d + 1 for

K = 2). If we could extract the span of quadratics Bt from this subspace, we could implement

desymmetrization and tensor decomposition to obtain at least the Bts (i.e., the projected Ats).
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Unfortunately, this hope did not materialize for GKS who managed only to recover the span

of Bt(y)d−r for r < 2d/3. This is because their analysis of a certain “multi-GCD” requires that the

subspaces Bt(y)d−ryT for |T| = r for each t ∈ [m] only have trivial (i.e., 0) pairwise intersection.

This condition is impossible if r > 2(d − r) or r > 2d/3; for example, if d = 3 and r = 2, then the

degree-4 polynomial Bt(y)Bt′(y) is clearly in the subspaces corresponding to both t and t′, which

is a non-trivial intersection! Thus, the GKS analysis is restricted to work with r < 2d/3 and in

particular, only manages to recover the span of Bt(y)d−r (for d − r > d/3). This route rules out the

desymmetrization + tensor decomposition approach.

As a result, GKS used a more complicated sequence of operations that involves taking projec-

tions of the partial derivatives and algorithms for simultaneous decomposition of vector spaces

into irreducibles which they analyze by studying the associated “adjoint algebra”. The two-step

projection step requires that d be very large as a function of logn m (and degree K of the Ats).

Summary The “desymmetrize + tensor decompose” approach of GHK is elegant and simple but

suffers from an inherent bottleneck for going beyond m ∼ n (or even n2/3) for sums of cubics (or

higher powers) of quadratics and gets unwieldy as d gets large. The GKS approach manages to

handle any m = nO(1) components but only for very large d and relies on a somewhat complicated

algebraic algorithm. While GKS do not do this, finding a polynomially conditioned variant of

their algorithm will likely require significant effort.

2.1 Our approach and outline of our algorithm

Somewhat surprisingly, we manage to find an algorithm that achieves the best of both worlds. Our

algorithm relies on the conceptually simple approach of desymmetrizing the input tensor (as in

GHK) while at the same time managing to not only hit m ∼ n when K = 2 and d = 3 but also get a

substantially improved trade-off compared to GKS for all m, d, K. Further, we find a polynomially

stable implementation of our algorithm when Ats are random by establishing condition number

upper bounds on the structured random matrices that arise in our analysis.

In the following, we explain the main components in our algorithm and analysis: insights that

rescue the simple “desymmetrize + tensor decompose” approach, the resulting algorithm, and a

new method to prove strong condition number upper bounds on structured random matrices. We

will focus on the case when the Ats have independent N (0, 1) entries in the following section.

For this setting, we obtain an algorithm with polynomial error-stability guarantees. Our result for

generic (or smoothed) At is a simple corollary of this result using standard tools.

Recovering the Span of Bts Recall that the GKS observation shows that given a polynomial

P(x) = ∑t6m At(x)d for quadratic Ats, the subspace U spanned by r-th partial derivatives of

P, when projected to a sufficiently small dimension ℓ = o(n) variables y, equals the span V =

span(Bt(y)d−ryT | t ∈ [m], T ∈ [ℓ]r) for Bt(y) = At(My) where M is an n × ℓ projection matrix.

GKS then perform a multi-GCD step that recovers the span of Bt(y)d−r from V and their anal-

ysis requires the subspaces {Bt(y)d−ryT | T ∈ [ℓ]r} for each t ∈ [m] to have only trivial pairwise

intersection (i.e. = {0}) . Our key idea is to observe that this assumption is not crucial! We can

extract the span of powers of Bt as long as these subspaces do not have a large intersection. As
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discussed before, when r > 2d/3, their analysis fails because of some obvious intersections be-

tween the above subspaces. We substantially improve their analysis by observing that for random

polynomials these obvious intersections between the subspaces are the only ones possible!

More precisely, let’s restrict to d = 3 and consider the subspace of projected (we in fact show

that simply restricting the variables suffices) partial derivatives of order r = 2 of P. Then, the

subspace of restricted 2nd order partial derivatives of P contains homogeneous polynomials of

degree 4. For random Ats, we fully characterize the set of quadratic polynomials {qt | t 6 m} that

satisfy the polynomial equality ∑t6m Bt(y)qt(y) = 0. Observe that for any s 6= t ∈ [m], qs = Bt

and qt = −Bs is clearly in the solution space. Such solutions span a subspace of dimension (m
2). In

Lemma 4.11, we prove that these solutions are in fact the only solutions whenever m 6 Õ(n).

This understanding immediately allows us to use a simple subroutine to recover the span of

{Bt(y) | t 6 m}. Specifically, we take a random homogeneous quadratic polynomial p(y) and let

Vp be the subspace of quartic multiples of p, that is, Vp = span(p(y)yS | |S| = 2). Then, any non-

zero f (y) = p(y)q0(y) ∈ V ∩ Vp must be a solution to ∑t6m Bt(y)qt(y) = p(y)q0(y). The above

characterization of the solution subspace allows us to conclude that whenever q0 is non-zero, it

lies in the span of Bt(y). Thus, we have confirmed that V ∩ Vp = span(p(y)Bt(y) | t 6 m), and

dividing this subspace by p immediately yields span(Bt(y) | t 6 m)!

Thus, to summarize, our algorithm for finding the span of Bts is simple:

1. Restrict all 2nd order partial derivatives of P to some ℓ variables (ℓ = O(
√

n) suffices),

2. Find intersection of this subspace with Vp for a random homogeneous quadratic polynomial

p and divide the resulting subspace by p.

The analog of this result for d = 3D powers of quadratics relies on a similar lemma that

characterizes the solution space of ∑t6m Bt(y)Dqt(y) = 0. For sums of powers of degree K > 2

polynomials however, the characterization gets a little more involved as unlike in the case of

quadratic Bts, qt will have a larger degree than BD
t , which makes the solution space larger. We

present this characterization in more detail in Section 5.2.

Noise Resilient Implementation For obtaining a noise-resilient version of the above method,

we first need a noise-robust version of the GKS observation that the subspace U of restricted

partial derivatives equals the subspace V spanned by multiples of Bt(y), and also a robust way of

obtaining a basis for V . This amounts to understanding the smallest nonzero singular value of a

certain matrix that we analyze in Lemma 4.12. Similarly, we bound the nonzero singular values of

the matrix of linear equations ∑t6m Bt(y)qt(y) = 0 (described above) in Lemma 4.11. Finally, we

use a simple method in Lemma 4.27 to robustly compute the intersection of two subspaces given a

basis for each by looking at the largest singular values of the sum of the corresponding projection

matrices, allowing us to obtain a subspace close to the span of Bt.

Desymmetrization The above discussions show how we can estimate the span of Bt(y) for a re-

striction of the quadratic At to some ℓ = O(
√

n) variables. Given this subspace, we apply desym-

metrization directly to the restricted polynomial P(My). To analyze this step, we need to understand

the invertibility (and condition numbers) of the matrix representing the Sym6 linear transform

on the subspace of the linear span of Bt. We establish the condition number upper bound in

Lemma 4.30, thus obtaining the desymmetrized tensor ∑t6m B⊗3
t .

10



Aggregating Restrictions For a given restriction (via an n × ℓ matrix M), the above steps give

us access to the tensor ∑t6m B⊗3
t where Bt = M⊤At M is the ℓ× ℓ matrix of the restricted At. We

would like to piece together such restrictions to obtain ∑t6m A⊗3
t . We show how to do this by

working with a simple n6-size pseudorandom set of restriction matrices M such that the average

over the corresponding restricted 3rd order tensor gives us the unrestricted 3rd order tensor up to

a known scaling. Our construction is a simple modification of the standard construction of 6-wise

independent hash families.

Tensor decomposition and taking sD-th roots Given an estimate of ∑t6m A⊗3
t , we can apply the

standard polynomially-stable tensor decomposition algorithms (Fact 4.7) to recover the Ats. When

we work with higher (d = 3D) powers of quadratics (or degree-K polynomials, more generally),

this step only gives us SymKD(A⊗D
t ). The task of recovering At given SymKD(A⊗D

t ) is a certain

simple “deconvolution” problem. We give a noise-robust algorithm for this task that relies on a

simple semidefinite program analyzed in Lemma 4.9.

2.2 Overview of singular value lower bounds

For establishing polynomial stability of our algorithm for random Ats and proving Theorem 1.3,

we need to understand the condition number and in particular, the smallest singular value of cer-

tain random matrices that arise in our analyses. Analyzing the smallest singular value of random

matrices turns out to be more challenging than the much better understood largest singular value.

For matrices with independent and identically distributed random subgaussian entries, a sharp

bound was only achieved in the breakthrough work of [RV08] via a sophisticated analysis via the

“leave-one-out” distance method. The matrices that arise in our analyses are significantly more

involved. The entries are not independent but are instead computed as low-degree polynomials of

independent random variables that are of polynomially smaller number than the dimension of the

matrix. As a result, the entries exhibit large correlations, and the leave-one-out method appears

hard to implement for such matrices.

Instead, we adopt a different, more elementary but nimble method that obtains estimates of

the smallest singular values via upper bounds on the largest singular values of certain deviation

matrices. To see this method on a simple toy example, consider an n × m matrix (for m ≪ n)

G of independent N (0, 1) entries. Then, we can write G⊤G = n(1 ± O( 1√
n
)) · I + offdiag(G⊤G)

where offdiag(G⊤G) zeros out the diagonal entries of G⊤G. To establish a lower bound on the

mth singular value of G, it is thus enough to observe that
∥∥offdiag(G⊤G)

∥∥
op

6 Õ(
√

mn) with high

probability.

This argument works as long as m 6 n/ polylog(n) and gives a sharp (up to the leading con-

stant) estimate on the smallest singular value. Note that in this argument, we effectively “charge”

the spectral norm of the off-diagonal “deviation” matrix to the smallest entry of the diagonal part.

Such a strategy works so long as all columns of G are of roughly similar length.

It turns out that despite its simplicity, this technique is surprisingly resilient for our purposes

and unlike methods from prior works, it easily applies to the involved matrices that arise in our

analysis, yielding bounds that are essentially sharp so long as we can keep the dimensions of

the matrix somewhat “lopsided” (i.e. m ≪ n in the example above). This turns out to not be a

handicap in our setting.
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In our analysis, the problem now reduces to bounding the spectral norm of certain correlated,

low-degree polynomial-entry random matrices arising from the off-diagonal part of the matrices

we analyze. While this can be quite complicated, we rely on the recent advances in understanding

the spectral norm of such matrices [BHK+19, AMP16, JPR+22] in the context of proving Sum-of-

Squares lower bounds for average-case optimization problems. This technique relies on decom-

posing random matrices into a linear combination of certain structured random matrices called

graph matrices. We rely on the tools from prior works that reduce the task of analyzing the spectral

norm of such matrices to analyzing combinatorial properties of the underlying “graph”.

This technique gets us started but hits a snag as it turns out that some of the deviation matrices

simply do not have small spectral norms. We handle such terms by proving that the large spectral

norm can be “blamed” on having large positive eigenvalues that cannot affect the bounds on the

smallest singular value. Formally, we provide a charging argument, reminiscent of the positivity

analyses in the construction of sum-of-squares lower bounds [BHK+19, GJJ+20, HK22, JPR+22],

to handle such terms and establish the required bounds on the spectral norm.

While somewhat technical, the proofs of singular value lower bounds for all the matrices in

our analyses follow the same blueprint. We give a more detailed exposition of these tools (by

means of an example) in Section 6.1 before applying them to the matrices relevant to us.

3 Preliminaries and Notation

Notations and definitions

1. Multisets and monomials: We denote [n] = {1, 2, . . . , n}. We say that I ∈ [n]k is a multiset

of size k when the order of elements in I does not matter. For a multiset I, we let xI denote

the product of variables in I: ∏i∈I xi. For n, k ∈ N, we define nk := (n+k−1
k ) as the number

of multisets of n of size k which is also equal to the number of degree-k monomials in n

variables.

2. Vectors, matrices, and tensors: Given a vector v ∈ Rn, we denote its ℓp norm by ‖v‖p =

(∑i |vi|p)1/p. Given a matrix M ∈ Rn×n, we let ‖M‖F denote its Frobenius norm, ‖M‖op

denote its spectral norm, and M[i, j] denote the (i, j) entry of M. Given a tensor T ∈ (Rn)⊗d

of order d, ‖T‖F denotes its Frobenius norm, and vec(T) ∈ Rnd
denotes the flattened vector

of T so that ‖ vec(T)‖2 = ‖T‖F . For index I ∈ [n]d, we denote T[I] to be the entry at index I.

For two tensors T, T′, we denote 〈T, T′〉 = 〈vec(T), vec(T′)〉.

3. Polynomial coefficients: Given a degree-d polynomial p(x1, . . . , xn), we use p to denote the

coefficient vector of this polynomial, with entries of the vector indexed by monomials in

lexicographic ordering. For a multiset I, we let p[I] denote the coefficient of p corresponding

to the monomial xI . With slight abuse of notation, when p is homogeneous we also use p to

denote the symmetric coefficient tensor of order d, i.e., p(x) =
〈

p, x⊗d
〉
. We interchangeably

use the vector and tensor views when clear from context. For two polynomials p, q, we

denote 〈p, q〉 as the inner product of their coefficient vectors, and ‖p‖2 = 〈p, p〉 .6

6 The Frobenius norm of the coefficient tensor is different from the norm of the coefficient vector due to necessary
rescalings of tensor entries, but they only differ by constant factors depending on d.
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4. Symmetrization: Given any tensor T ∈ (Rn)⊗d, we let Sym(T) denote the symmetric tensor

such that for any index I ∈ [n]d,

Sym(T)[I] = Eπ∈Sd
T[π(I)]

where Sd denotes the set of permutations. For example, for a degree-d homogeneous poly-

nomial p(x) =
〈

p, x⊗d
〉

and k ∈ N, Sym(p⊗k) is the coefficient tensor of p(x)k, i.e., p(x)k =〈
Sym(p⊗k), x⊗dk

〉
.

5. Random polynomial: A random degree-d homogeneous polynomial is a degree-d homoge-

neous polynomial whose coefficients are picked independently and randomly from N (0, 1).

6. Partial derivatives: Given a polynomial p(x1, . . . , xn) we let ∂i p(x1, . . . , xn) denote the poly-

nomial which is the partial derivative of p with respect to variable xi, and ∂i p denotes the

coefficient vector for the same. For a multiset I ∈ [n]k, ∂I p(x) denotes the polynomial ob-

tained by taking partial derivatives with respect to I.

7. Linear span: For a set of vectors vi ∈ Rn we use span(vi) to denote their linear span. For a set

of degree-d homogeneous polynomials pi(x), we use span(pi(x)) (or span(pi) for simplicity)

to denote the linear span of their coefficient vectors lying in Rnd .

8. Linear subspace and projection: For a k-dimensional subspace U of Rn, let Proj(U) de-

note the n × n matrix that projects a vector in Rn to the subspace U . More specifically, let

U ∈ Rn×k be a matrix with columns consisting of orthonormal basis vectors {ui}k
i=1 of U ,

then Proj(U) = UUT. Further, for two k-dimensional subspaces U ,V of Rn, we define the

difference between them as ‖U − V‖F := ‖Proj(U)− Proj(V)‖F.

Eigenspace Perturbation Bounds We now state some theorems that will be used to analyze the

error resilience of our algorithms. The following theorem gives us a stability result for the singular

values of matrices:

Theorem 3.1 (Weyl’s theorem). Given matrices A, E ∈ Rm×n with m > n, for all k 6 n we have that:

σk(A)− ‖E‖op 6 σk(A + E) 6 σk(A) + ‖E‖op .

The following theorem that can be found in [SS90] analyses the singular vector spaces of ma-

trices under perturbation:

Theorem 3.2 (Wedin). Given matrices A, E ∈ Rm×n with m > n, let A have singular value decomposi-

tion:

[U1 U2 U3]




Σ1 0

0 Σ2

0 0


 [V1 V2]

T.

Let Ã = A + E with analogous singular value decomposition. Suppose that there exists a δ such that:

min
i,j

|[Σ1]i,i − [Σ2]j,j| > δ, and min
i

|[Σ1]i,i| > δ,
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then ∥∥∥Proj(U1)− Proj(Ũ1)
∥∥∥

2

F
+
∥∥∥Proj(V1)− Proj(Ṽ1)

∥∥∥
2

F
6

2‖E‖2
F

δ2
.

We will now state some facts about least-squares minimization and also analyze its error re-

silience.

Definition 3.3 (Moore-Penrose Pseudo-inverse). The pseudo-inverse of a rank n matrix M ∈ Rm×n

for m > n is denoted by M† and equals (MT M)−1 · MT. We have that the singular values of M†

are 1/σ1(M) 6 . . . 6 1/σn(M).

Lemma 3.4. Suppose M ∈ Rm×n with m > n is a rank n matrix and b ∈ Rm. The solution to the

least-squares problem: minx∈Rn ‖Mx − b‖2 is x = M†b.

We will use the following lemma about stability of the pseudo-inverse:

Lemma 3.5. Given matrices A, E ∈ Rm×n with m > n, rank(A) = n and ‖E‖op < σn(A), we have

that:
∥∥∥(A + E)† − A†

∥∥∥
op

6

√
2 ‖E‖op

σn(A)(σn(A)− ‖E‖op)
.

Proof. The following lemma can be found in [SS90]:

∥∥∥(A + E)† − A†
∥∥∥

op
6

√
2 ‖E‖op

∥∥∥A†
∥∥∥

op

∥∥∥(A + E)†
∥∥∥

op
.

We know that
∥∥A†

∥∥
op

= 1/σn(A) and similarly
∥∥(A + E)†

∥∥
op

= 1
σn(A+E)

6 1
σn(A)−‖E‖op

by Weyl’s

theorem. Plugging these into the above the lemma follows.

Using the above we can prove the stability of the solution of least-squares minimization:

Theorem 3.6 (Error-Resilience of Least-squares). For all m× n matrices A, E with m > n, rank(A) =

n and ‖E‖op < σn(A) and vectors b, e ∈ Rm, if y = arg minx∈Rn ‖Ax− b‖2 and ỹ = arg minx∈Rn ‖(A+

E)x − (b + e)‖2, then we have that

‖y − ỹ‖2 6

√
2 ‖E‖op ‖b‖2 + σn(A)‖e‖2

σn(A)(σn(A)− ‖E‖op)
.

Proof. We have that y = A†b and ỹ = (A + E)†(b + e). We have that:

‖ỹ − y‖2 =
∥∥∥(A + E)†(b + e)− A†b

∥∥∥
2

=
∥∥∥((A + E)† − A†)b + (A + E)†e

∥∥∥
2

6
∥∥∥((A + E)† − A†)b

∥∥∥
2
+
∥∥∥(A + E)†e

∥∥∥
2

6
∥∥∥((A + E)† − A†)

∥∥∥
op

‖b‖2 +
∥∥∥(A + E)†

∥∥∥
op

‖e‖2 .
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We can use Lemma 3.5 to bound the first term by:

∥∥∥((A + E)† − A†)
∥∥∥

op
‖b‖2 6

√
2 ‖E‖op ‖b‖2

σn(A)(σn(A)− ‖E‖op)
.

Using Weyl’s theorem we can bound the second term by:

∥∥∥(A + E)†
∥∥∥

op
‖e‖2 6

‖e‖2

σn(A)− ‖E‖op

.

Adding the two bounds completes the proof.

Preliminaries for singular value lower bounds

Fact 3.7 (Deleting rows won’t decrease singular values). Given a matrix A ∈ Rn×m, let B ∈ Rn′×m

be a submatrix obtained by deleting rows of A. Then,

A⊤A � B⊤B .

The following lemma will be used throughout the paper. It is a simple result that follows

directly from standard concentration results on Gaussian variables.

Claim 3.8 (Norm of powers of random polynomial). Fix D, K ∈ N. Let p(x) be a degree-K homoge-

neous polynomial in n variables such that each coefficient of p is sampled i.i.d. from N (0, 1). Then, with

probability at least 1 − n−Ω(DK), ∥∥∥p(x)D
∥∥∥

2
= Θ(nDK) .

Proof. Recall that
∥∥p(x)D

∥∥ is the norm of the coefficient vector of the degree-DK polynomial

p(x)D. Viewing p as an order-K tensor,
∥∥p(x)D

∥∥ is within a constant factor away from
∥∥Sym(p⊗D)

∥∥
F
.

Clearly,
∥∥p(x)D

∥∥2
is a degree-2D polynomial over the coefficients of p, and the expectation is

Ep

∥∥∥p(x)D
∥∥∥

2
= Θ(1) ∑

I∈[n]DK

Ep

[
(Sym(p⊗D)[I])2

]
= Θ(nDK) .

The statement of the lemma follows by standard Gaussian concentration on low-degree polyno-

mials of Gaussians (see e.g. [SS12]).

4 Decomposing Power-Sums of Quadratics

In this section, we describe our efficient algorithm to decompose powers of low-degree polynomi-

als. To keep the exposition simpler, we will analyze the algorithm for the case of quadratic pis in

this section and postpone the analysis for higher-degree pis to the next section.

Specifically, we will prove that there is a polynomially stable and exact algorithm for decom-

posing power-sums of random quadratics. The same algorithm’s recovery guarantees hold more

generally for power-sums of smoothed quadratic polynomials though our current analysis only de-

rives an inverse exponential error tolerance. Our algorithms work in the standard bit complexity

model for exact rational arithmetic.
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Theorem 4.1. There is an algorithm that takes input parameters n, m, D ∈ N, an accuracy parameter

τ > 0, and the coefficient tensor P̂ of a degree-6D polynomial P̂ in n variables with total bit complex-

ity size(P̂), runs in time (size(P̂)n)O(D) polylog(1/τ), and outputs a sequence of symmetric matrices

Ã1, Ã2, . . . , Ãm ∈ Rn×n with the following guarantee.

Suppose P̂(x) = ∑
m
t=1 At(x)3D + E(x) where each At is an n × n symmetric matrix of independent

N (0, 1) entries, ‖E‖F 6 n−O(D) and m 6 ( n
polylog(n)

)D if D 6 2 and m 6 ( n
polylog(n)

)2D/3 if D > 2.

Then, with probability at least 0.99 over the draw of Ais and internal randomness of the algorithm, for odd

D,

min
π∈Sm

max
t∈[m]

∥∥∥Ãt − Aπ(t)

∥∥∥
F
6 poly(n)

(
‖E‖1/D

F + τ1/D
)

,

and for even D,

min
π∈Sm

max
t∈[m]

min
σ∈{±1}

∥∥∥Ãt − σAπ(t)

∥∥∥
F
6 poly(n)

(
‖E‖1/3D

F + τ1/3D
)

.

Observe that for odd D, we are able to recover Ats up to permutation while for even D, we

recover At up to permutation and signings. Such a guarantee is also the best possible given P(x).

The Algorithm: Our proof of Theorem 4.1 uses the following algorithm (that works as stated

for decomposing powers of degree-K Ats more generally, but we will analyze for quadratic Ats in

this section).

Algorithm 4.0.1 (Decomposing Power Sums).

Input: Coefficient Tensor of a n-variate degree-3KD polynomial P̂(x) = P(x) + E(x) where

P(x) = ∑t∈[m] At(x)3D for degree-K polynomials At.

Output: Estimates Ã1, Ã2, . . . , Ãm of the coefficient tensors of A1, A2, . . . , Am.

Operation:

1. Construct Pseudorandom Restrictions: Construct the collection S of 6 3KDℓ-size

subsets of [n], |S| = nO(D) using the algorithm from Lemma 4.6.

2. Desymmetrize Pseudorandom Restrictions of Coefficient Tensor: For each S ∈ S :

(a) Find Subspace of Restricted Partials: Apply Algorithm 4.1.1 to compute the

linear span ṼD of coefficient vectors of MS-restrictions of 2D-th order partial

derivatives of P̂.

(b) Span-finding: Apply Algorithm 4.2.1 to find the span of restricted At(x)D’s.

(c) Desymmetrize: Apply Algorithm 4.3.1 to compute the desymmetrized restricted

coefficient tensor.

3. Aggregate Restricted Tensors: Use restricted desymmetrized tensors from all re-

strictions in the pseudorandom set to construct the desymmetrized tensor.
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4. Decompose Tensor: Apply tensor decomposition to the desymmetrized tensor.

5. Take D-th Root of a Single Polynomial: using Lemma 4.9.

Algorithm Overview In this section, we henceforth restrict our attention to quadratic At’s. Like

in the case of cubics of quadratics discussed in Section 2 our algorithm first desymmetrizes the

input coefficient tensor and then applies tensor decomposition to recover estimates of the indi-

vidual components. Specifically (when E = 0), given the coefficient tensor of P has the form

Sym6D(∑t6m Sym2D(A⊗D
t )⊗3), our goal is to “undo” the effect of the outer application of Sym and

this is accomplished in the first three steps that are direct analogs of the ones discussed in the spe-

cial case analyzed in Section 2. After performing the desymmetrization step, for higher powers of

quadratics we only recover estimates of Sym(A⊗D) at the end of this procedure. The final (and

extra, compared to the cubic case) step in the algorithm takes D-th root of noisy estimates of single

polynomials, i.e. obtains an estimate of A(x) from an estimate of A(x)D.

Specifically, in Step 2a, we compute the ∼ n2D different 2D-th order partial derivatives ∂I P̂(x)

of P̂ as I = {i1, . . . , i2D} ∈ [n]2D ranges over all multisets of size 2D. We then restrict each of these

degree-4D polynomials to some fixed set of ℓ = o(n) variables which, in order to distinguish from

the original set of indeterminates x, we will call y. The effect of this restriction is to transform At

into Bt = M⊤At M for a n × ℓ restriction matrix M defined below.

Definition 4.2 (Restriction matrix). Given a set S ⊆ [n] with |S| = ℓ, we denote MS ∈ Rn×ℓ to be

the matrix whose columns consist of standard unit vectors ej for j ∈ S. We write P ◦ MS for the

polynomial (in indeterminates y) defined by P ◦ MS(y) = P(MSy).

For each MS, we let RS be the linear operator that takes an n × n matrix A ∈ Rn×n, into

RS(A) = (MS M⊤
S )A(MSM⊤

S ) – i.e., zeros out the (i, j) entry of A if i or j is not in S.

For any restriction matrix M, let Bt = M⊤AtM. Let VD be the span of polynomials of the form

Bt(y)DyT :

VD := span
(

Bt(y)
DyT | t ∈ [m], T ∈ [ℓ]2D

)
.

Then, any 2Dth order partial derivative of P, when restricted via M, is in VD. We prove that for

small enough m, ℓ, the linear span of the restricted partials of P is in fact equal to the linear span of

the polynomials Bt(y)DyT (we prove an error-tolerant version in Section 4.1).

Lemma 4.3 (Analysis of the Subspace of Restricted Partials of P̂). Fix D ∈ N. Let m, ℓ, n ∈ N be

parameters such that m 6 ( ℓ

polylog(ℓ))
2D if D 6 2, and m 6 ( ℓ

polylog(ℓ) )
D if D > 2, and that mℓ2D 6

( n
polylog(n)

)2D. Given P̂ = ∑t∈[m] At(x)3D + E(x) where each At is a degree-2 homogeneous polynomial

with i.i.d. N (0, 1) entries, and a restriction matrix M ∈ Rn×ℓ, we have that with probability 1 − n−Ω(D)

over the choice of At’s, Algorithm 4.1.1 outputs a subspace ṼD of Rℓ4D that satisfies:

∥∥∥ṼD −VD

∥∥∥
F
6 O

( ‖E‖F

(nℓ)D

)
,

with Bt(y) = At ◦ M(y).

Consider WD = span(Bt(y)D | t ∈ [m]), for the next step, we show we can extract a subspace

W̃D ≈ WD given a basis for ṼD, by proving for a random degree-2D polynomial p(y) the inter-
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section (computed in Step 2b) of VD with the linear span of polynomials of the form p(y)yT (for

|T| = 2D) equals that of Bt(y)D with high probability over p and Bt’s:

Lemma 4.4 (Extracting Span of Bt(y)D). Let D, m, ℓ be the same parameters as Lemma 4.3. Given

degree-2 homogeneous polynomials Bt for t ∈ [m] in ℓ variables with coefficients drawn i.i.d from N (0, 1),

with probability 1 − ℓ−Ω(D) Algorithm 4.2.1 outputs W̃D that satisfies:

∥∥∥W̃D −WD

∥∥∥
F
6 O

(
mℓ

4D‖VD − ṼD‖F

)
.

Finally, we show that on the subspace of linear span of Bt(y)D, the outer Sym6D operation is

invertible in an error-tolerant way via the least squares algorithm. This gives us a desymmetrized,

M-restricted 3rd order tensor.

Lemma 4.5 (Desymmetrization of Restricted P̂ via Least-Squares). Let D, m, ℓ ∈ N such that m 6

( ℓ

polylog(ℓ)
)2D. For each t ∈ [m], let Bt be a degree-2 homogeneous polynomial in ℓ variables with i.i.d.

N (0, 1) entries. Suppose W̃D is a subspace of Rℓ2D such that
∥∥∥W̃D −WD

∥∥∥
F
6 1/(m3.5ℓO(D)), then with

probability 1 − nΩ(D) over the choice of Bt’s, Algorithm 4.3.1 outputs a tensor T̃ such that:

∥∥∥∥∥T̃ − ∑
t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥
F

6 poly(m)
(
ℓ

O(D)
∥∥∥W̃D −WD

∥∥∥
F
+ ‖E‖F

)
.

We show how to aggregate the desymmetrized estimates above for nO(D) pseudorandom re-

striction matrices to obtain the estimate of the unrestricted tensor we need.

Lemma 4.6 (Aggregating Pseudorandom Restrictions). Let D, n, ℓ, m ∈ N such that 6D 6 ℓ 6 n.

There is an nO(D)-time computable collection S of subsets of [n] such that each S ∈ S satisfies ℓ 6 |S| 6
6Dℓ and that

ES∼S
m

∑
t=1

(
Sym

(
RS(At)

⊗D
))⊗3

= C ◦
m

∑
t=1

(
Sym(A⊗D

t )
)⊗3

where C ∈ (Rn)⊗6D is a fixed tensor whose entries depend only on the entry locations, and each entry of C

has value within ((ℓ/2n)6D , 1).

Given such a partially desymmetrized tensor, an application of off-the-shelf algorithms for 3rd

order tensor decomposition allows us obtain Sym(A⊗D
t ) for t 6 m in Step 4. We will specifically

use:

Fact 4.7 (Stable Tensor Decomposition, symmetric case of Theorem 2.3 in [BCMV14]). There ex-

ists an algorithm that takes input a n × n × n tensor T̃ and an accuracy parameter τ > 0, runs in time

(size(T)n)O(1) polylog(1/τ) and outputs a sequence of vectors ṽ1, ṽ2, . . . , ṽr with the following guaran-

tee. If T̃ = ∑i v⊗3
i + E for an arbitrary n × n × n tensor E and the matrix with vis as rows has a condition

number (ratio of largest to r-th smallest singular value) at most κ < ∞. Then,

min
π∈Sr

max
i6r

∥∥∥ṽi − vπ(i)

∥∥∥
2
6 poly(κ, n) ‖E‖F + τ .

To apply this fact, we will need the following bound on the condition number κ of the matrix

with Sym(A⊗D
t ) as columns:

18



Lemma 4.8 (Condition number). Under the same assumptions as Lemma 4.3, let AD be the n2D × m

matrix whose columns are the coefficient vectors of At(x)D for t ∈ [m]. Then, with probability 1− n−Ω(D),

the condition number κ(AD) 6 O(1).

Recall that for any natural number k, we write nk = (n+k−1
k ) for the number of distinct degree

k monomials in n variables.

Finally, in Step 5, we extract At from Sym(A⊗D
t ) (i.e. desymmetrize a single noisy power).

Note that in this step, we do not need randomness/genericity of the At.

Lemma 4.9 (Stable Computation of D-th Roots). Let D, n ∈ N and δ > 0. Let P ∈ Rn×n be an

unknown symmetric matrix. Suppose P̃D(x) is a homogeneous degree-D polynomial in n variables such

that its coefficient tensor satisfies
∥∥∥P̃D − Sym(P⊗D)

∥∥∥
F
6 δ. There is an algorithm that runs in nO(D) time

and outputs Q̃ ∈ Rn×n such that if D is odd, then

∥∥∥Q̃ − P
∥∥∥

F
6 O(

√
nδ1/D) ,

and if D is even, then

min
σ∈{±1}

∥∥∥Q̃ − σP
∥∥∥

F
6 O(nδ1/3D) · ‖P‖max .

Putting things together We will prove each of the above lemmas and provide details of each

step in the following subsections. Here, we use them to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. For D 6 2, we set ℓ =
√

n and m 6 ( n
polylog(n)

)D such that m 6 ( ℓ

polylog(ℓ)
)2D.

For D > 2, we set ℓ = n2/3 and m 6 ( n
polylog(n)

)2D/3 such that m 6 ( ℓ

polylog(ℓ)
)D. In both cases, we

have mℓ2D 6 ( n
polylog(n)

)2D.

We consider the collection S of subsets of [n] from Lemma 4.6 with parameter ℓ such that

|S| = nO(D) and ℓ 6 |S| 6 6Dℓ for all S ∈ S . Thus for m 6 ( n
polylog(n))

D, the parameters m, n, |S|
satisfy m 6 ( |S|

polylog(n)
)2D and m|S|2D 6 ( n

polylog(n)
)2D.

Consider a set S ∈ S and the corresponding restriction matrix MS, and let Bt = M⊤
S AtMS ∈

R|S|×|S|. By Lemma 4.3, 4.4 and 4.5 (assuming ‖E‖F 6 n−Ω(D)), after Steps 2a, 2b and 2c, we obtain

tensor T̃S ∈ Rℓ6D
such that

∥∥∥∥∥T̃S − ∑
t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥
F

6 nO(D) · ‖E‖F ,

with probability 1 − nΩ(D) over the randomness of the input. By union bound over S , we get the

same guarantees for all S ∈ S with probability 1 − 1
poly(n)

.

Next, observe that ∑t∈[m]

(
Sym(B⊗D

t )
)⊗3 ∈ (Rℓ)⊗6D is simply a sub-tensor obtained by re-

moving zero entries from the tensor ∑
m
t=1

(
Sym(RS(At)⊗D

)⊗3 ∈ (Rn)⊗6D according to S ⊆ [n].

Therefore, for each S ∈ S we have an estimate of ∑
m
t=1

(
Sym(RS(At)⊗D)

)⊗3
, then if we average
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over all S ∈ S , by Lemma 4.6, we get a tensor R̃′
D ∈ Rn6D

such that

∥∥∥∥∥R̃′
D − C ◦ ∑

t∈[m]

(
Sym(A⊗D

t )
)⊗3

∥∥∥∥∥
F

6 nO(D) · ‖E‖F

where the error bound is by triangle inequality, and C is a known tensor with entries within

((ℓ/2n)6D , 1). Thus, by normalizing R̃′
D according to C, we get a tensor R̃D such that

∥∥∥∥∥R̃D − ∑
t∈[m]

(
Sym(A⊗D

t )
)⊗3

∥∥∥∥∥
F

6 nO(D) · ‖E‖F .

Next, by the tensor decomposition algorithm (Fact 4.7) and the condition number upper bound

from Lemma 4.8, Step 4 runs in nO(D) polylog(τ) time and outputs tensors ÃD
1 , . . . , ÃD

m such that

min
π∈Sm

max
t∈[m]

∥∥∥ÃD
t − Sym

(
A⊗D

π(t)

)∥∥∥
F
6 nO(D)‖E‖F + τ .

Finally, by Lemma 4.9 we can extract Ãt ∈ Rn×n from ÃD
t . For odd D, using the fact that x1/D is a

concave function when D > 1, we get that

min
π∈Sm

max
t∈[m]

∥∥∥Ãt − Aπ(t)

∥∥∥
F
6 O(

√
n)
(

nO(D)‖E‖F + τ
)1/D

6 poly(n)
(
‖E‖1/D

F + τ1/D
)

.

For even D, since ‖At‖max 6 polylog n with high probability by standard concentration results,

we get that

min
π∈Sm

max
t∈[m]

min
σ∈{±1}

∥∥∥Ãt − σAπ(t)

∥∥∥
F
6 O(n)

(
nO(D)‖E‖F + τ

)1/3D
‖At‖max

6 poly(n)
(
‖E‖1/3D

F + τ1/3D
)

.

This completes the proof.

4.1 Proof of Lemma 4.3: Estimating span of partial derivatives of P̂

Algorithm 4.1.1 (Estimate Span of 2Dth Order Partial Derivatives of P̂).

Input: A degree 6D homogeneous polynomial P̂(x) = ∑t∈[m] At(x)3D + E(x) and restriction

matrix M ∈ Rn×ℓ.

Output: A basis for ṼD such that:

‖ṼD − VD‖F 6 O

( ‖E‖F

(nℓ)D

)

for VD = span
(

Bt(y)DyT | t ∈ [m], T ∈ [ℓ]2D
)

and Bt(y) = A ◦ M(y).
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Operation:

• For all multisets I ∈ [n]2D of size 2D:

1. Compute partial derivative of P̂(x) with respect to I: ∂I P̂(x).

2. Project each partial derivative with respect to M to get the polynomials: (∂I P̂) ◦
M(y).

• Let Ũ be a matrix in Rℓ4D×n2D whose columns are the vectors (∂I P̂) ◦ M.

• Output the top (mℓ2D − (m
2 )) singular vectors of Ũ.

Our goal in this step is to obtain an estimate of VD = span
(

Bt(y)DyT | t ∈ [m], T ∈ [ℓ]2D
)

given

the input coefficient tensor of the polynomial P̂. Let us first restrict to E = 0.

The main observation that helps us here is the following structure in the partial derivatives of

P. Specifically, for 2D-size multiset I: ∂I P(x) = ∑
m
t=1 At(x)D · pt(x). In particular, if we restrict

P(x) via M, then the resulting 2D-th order partial derivatives are all in the span of multiples of

Bt(y)D = (y⊤Bty)D. Thus, let UD be the subspace of the restricted partial derivatives of P:

UD := span
(
(∂I P) ◦ M(y) | I ∈ [n]2D

)
.

Then, by our discussion above, UD ⊆ VD. We will in fact argue that these subspaces are exactly

the same whenever m and ℓ are small enough. In fact, we’ll prove that any polynomial of the

form ∑
m
t=1 Bt(y)DQt(y), where deg(Qt) = 2D, is a linear combination of the restricted partial

derivatives with coefficients that are not too large (this will be essential for our error analysis).

Lemma 4.10 (UD = VD). Fix D ∈ N. Let ℓ, m, n ∈ N such that mℓ2D 6 ( n
polylog(n)

)2D. Let

A1, . . . , Am ∈ Rn×n be random symmetric matrices with independent Gaussian entries, let M ∈ Rn×ℓ

be a fixed restriction matrix. Then, with probability 1 − n−Ω(D) over the draw of Ats, we have that

UD = VD and further, for any degree-2D homogeneous polynomials Q1, . . . , Qm, there exists coefficients

R = {RI}I∈[n]2D ∈ Rn2D such that

∑
I∈[n]2D

RI ·
m

∑
t=1

(∂I A3D
t ) ◦ M(y) =

m

∑
t=1

Bt(y)
DQt(y) ,

and moreover, ‖R‖2 6 O(n−D)∑
m
t=1 ‖Qt‖F.

Thus, in order to recover an (approximate) basis for VD, it is enough to obtain a basis for (a

noisy estimate of) the subspace UD. Our algorithm for this will simply populate natural elements

of UD and then take the top few singular vectors to get a basis for UD (and thus also for VD).

Dimension Counting In order to analyze this algorithm, let us first calculate the dimension of

VD. Observe that the polynomials Bt(y)DyT for t ∈ [m] and T ∈ [ℓ]2D are not linearly independent:

as |T| = deg(BD
t ) = 2D, we can have Bt(y)DBs(y)D = Bs(y)D Bt(y)D for s 6= t. We will show,

in a sense, that these are the only linear dependencies in the set of polynomials Bt(y)DyT and

thus dim(VD) = mℓ2D − (m
2). In fact, for our error-tolerance, we will show that the matrix that

populates the coefficient vectors of polynomials of the form Bt(y)DyT has dim(VD) polynomially

large singular values:
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Lemma 4.11 (Singular value lower bound for V). Fix D ∈ N. Let m, ℓ ∈ N such that m 6

( ℓ

polylog(ℓ)
)2D if D 6 2, and m 6 ( ℓ

polylog(ℓ)
)D if D > 2. Let B1, . . . , Bm be degree-2 homogeneous poly-

nomials in ℓ variables with i.i.d. standard Gaussian coefficients. Then, with probability 1 − ℓ−Ω(D), the set

of homogeneous degree-2D polynomials {pt}t∈[m] satisfying ∑
m
t=1 Bt(y)D pt(y) = 0 forms a subspace of

dimension (m
2) spanned by the following,

N :=
{
(p1, . . . , pm) | pt1

= BD
t2

, pt2 = −BD
t1

, and ps = 0 for s 6= t1, t2

}
t1<t26m

.

Furthermore, let V ∈ Rℓ4D×mℓ2D such that where each column is the coefficient vector of the degree-4D

polynomial Bt(y)DyT for t ∈ [m] and T ∈ [ℓ]2D . Then,

rank(V) = mℓ2D −
(

m

2

)
, σmℓ2D−(m

2 )
(V) > Ω(ℓD) .

From Lemma 4.10, we know that dim(UD) = mℓ2D − (m
2). Combining Lemma 4.10 and 4.11,

we will prove that the coefficient vectors of 2D-th order partial derivatives form a sufficiently

incoherent spanning set for UD by establishing the following lower bound on the dim(UD)-th

singular value of the matrix that populates them as columns.

Lemma 4.12 (Singular value lower bound of U). Under the same assumptions as Lemma 4.11, let U be

the ℓ4D × n2D matrix where each column is the coefficient vector of the degree-4D polynomial ∂I P ◦ M(y)

for multiset I ∈ [n]2D . Then, with probability 1 − n−Ω(D),

σrank(U)(U) = Ω((nℓ)D)

where rank(U) = mℓ2D − (m
2 ) is our candidate rank.

Finally, we can upgrade the analyses above to handle non-zero error matrices E. Our bounds

above can be used to infer the following distance bounds between our estimate and the truth.

Lemma 4.13. Under the same hypothesis as Lemma 4.12, with probability at least 1− n−Ω(D) on the choice

of the Ats and the internal randomness of the algorithm, ‖Ũ − U‖F 6 O(DD/2)‖E‖F .

Proof. Recall that Ũ is a matrix in Rℓ4D×n2D whose columns are the vectors (∂I P̂) ◦ M. For a multiset

I and polynomial Q(x), recall that Q[I] denotes the coefficient of xI in Q(x). For all multisets

J ∈ [ℓ]4D and I ∈ [n]2D , we have that the (J, I) entry of U and Ũ is ((∂I P) ◦ M)[J] and ((∂I P̂) ◦ M)[J]

respectively. Subtracting the two we get that the (J, I)-entry of U − Ũ equals: ((∂I(P − P̂)) ◦
M)[J] = ((∂I E) ◦ M)[J].

Due to the structure of M (columns are ei’s with no repeated columns) one can check that:

∑
I∈[n]2D, J∈[ℓ]4D

((∂I E) ◦ M)[J]2 6 ∑
I∈[n]2D , J∈[n]4D

(∂I E)[J]
2.

Each summand in the RHS above is at most O(D!)E[I ∪ J], and since I ∪ J ranges over multisets

R ∈ [n]6D of size 6D we get:

‖U − Ũ‖F 6 O(DD/2)‖E‖F .
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Completing the proof of Lemma 4.3

Lemma 4.14 (Lemma 4.3 restated: Correctness of Algorithm 4.1.1). Fix D ∈ N. Let m, ℓ, n ∈ N be

parameters such that m 6 ( ℓ

polylog(ℓ)
)2D if D 6 2, and m 6 ( ℓ

polylog(ℓ)
)D if D > 2, and that mℓ2D 6

( n
polylog(n)

)2D. Given P̂ = ∑t∈[m] At(x)3D + E(x) where each At is a degree-2 homogeneous polynomial

with i.i.d. N (0, 1) entries, and a restriction matrix M ∈ Rn×ℓ, we have that with probability 1 − n−Ω(D)

over the choice of At’s, Algorithm 4.1.1 outputs a subspace ṼD of Rℓ4D that satisfies:

∥∥∥ṼD −VD

∥∥∥
F
6 O

( ‖E‖F

(nℓ)D

)
,

with Bt(y) = At ◦ M(y).

Proof. By our analysis above (when E(x) = 0) we know that the column space of U defined as UD

is equal to VD. We have that dim(VD) = dim(UD) = mℓ2D − (m
2) and moreover σmℓ2D−(m

2 )
(U) >

Ω((nℓ)D). Recall that ṼD is the subspace spanned by the top mℓ2D − (m
2 ) dimensional left singular

vectors of Ũ. Applying Wedin’s theorem to matrix U (with U1 being the top mℓ2D − (m
2) dimen-

sional left singular vector space of U which is equal to VD and the error matrix U − Ũ) we get

that,
∥∥∥ṼD − VD

∥∥∥
F
6 O

(
‖U − Ũ‖F

σmℓ2D−(m
2 )
(U)

)
6 O

(
DD‖E‖F

(nℓ)D

)
.

This completes the proof.

Structure of the subsequent sections In Section 4.1.1 we prove Lemma 4.10. The proof relies on

an application of a lower bound on the singular values of a certain matrix (Lemma 4.19) shown

in Section 6.3.3. Next, we prove Lemma 4.11 in Section 4.1.2 that relies on some singular value

lower bounds deferred to Sections 6.3.1 and 6.3.2. Finally, in Section 4.1.3 we prove Lemma 4.12

by combining Lemmas 4.10 and 4.11.

4.1.1 Proof of Lemma 4.10: UD = VD

First observe that ∂I A3D
t (x) is a sum of products of scalars of the form At[i1, i2] and linear poly-

nomials of the form 〈At[j], x〉. More specifically, the terms in ∂I A3D
t (x) can be categorized by the

number of linear terms γ1 and number of scalar terms γ2 where γ1 + 2γ2 = |I|. To formally write

out each term in ∂I A3D
t (x), we need the following definition.

Definition 4.15 (Bucket profile). Given integers γ1, γ2 > 0 such that γ1 + 2γ2 = 2D, we call

γ = (γ1, γ2) a bucket profile of the 2D partial derivative, and we write γ∗ to denote the special

bucket (2D, 0). Let Γ2D be the set of bucket profiles.

Moreover, we define the bucket partition of {1, 2, . . . , 2D} as follows: κ1(γ) := (1, 2, . . . , γ1) and

κ2(γ) := ((γ1 + 1, γ1 + 2), . . . , (2D − 1, 2D)), a set of γ2/2 pairs.

Remark 4.16 (Interpretation of γ and the terms in partial derivatives of A3D
t ). To better understand

Definition 4.15, we make the following remarks,
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• Imagine A3D
t as being 3D buckets, and taking 2D partial derivatives means dropping 2D

balls in these buckets such that each bucket contains at most 2 balls. Then, γ1 (resp. γ2)

denotes the number of buckets with 1 (resp. 2) balls, hence γ1 + 2γ2 = 2D.

• Let I = (i1, . . . , i2D) ∈ [n]2D be an ordered tuple, and consider ∂I A3D
t and a bucket profile

γ ∈ Γ2D. Note that there are 3D − (γ1 + γ2) = D + γ2 empty buckets. Thus, γ represents

the terms in ∂I A3D
t that are products of A

D+γ2
t and γ1 linear polynomials, which can be

represented as
〈

At[iπ(k)], x
〉

for k ∈ κ1(γ) where |κ1(γ)| = γ1, for some permutation π ∈
S2D. Here note that At[iπ(k)] is a vector of dimension n.

Reduce UD = VD to proving feasibility of a linear system With Definition 4.15, we can formally

write out the partial derivatives in a form that is convenient for our analysis: for a multiset I =

{i1, . . . , i2D} ∈ [n]2D of size 2D,

∂I A3D
t (x) = ∑

γ∈Γ2D

cγ At(x)D+γ2 ∑
π∈S2D

∏
k∈κ1(γ)

〈
At[iπ(k)], x

〉
∏

(k1,k2)∈κ2(γ)

At[iπ(k1), iπ(k2)] (1)

where cγ > 0 is a scalar depending on γ and bounded by O(D)2D. Note that one can view the

summation over π ∈ S2D as a way of symmetrizing over I, as the partial derivative should not

depend on the ordering of I. Thus, we have

∂I P(x) =
m

∑
t=1

At(x)D ∑
γ∈Γ2D

At(x)γ2 pt,I,γ(x)

where pt,I,γ(x) is a homogeneous polynomial of degree γ1 consisting of products of γ1 linear

polynomials of the form 〈At[i], x〉.
We next set x = My where M ∈ Rn×ℓ is a given restriction matrix and y is an ℓ-dimensional

variable. Then, for |I| = 2D,

∂I P ◦ M(y) =
m

∑
t=1

Bt(y)
D ∑

γ∈Γ2D

Bt(y)
γ2 qt,I,γ(y) (2)

where from (1) we see that qt,I,γ is a degree-γ1 polynomial:

qt,I,γ(y) = cγ · ∑
π∈S2D

∏
k∈κ1(γ)

〈
M⊤At[iπ(k)], y

〉
∏

(k1,k2)∈κ2(γ)

At[iπ(k1), iπ(k2)] . (3)

From (2) it is clear that for any I, the projected partial derivative ∂I P ◦ M(y) lies in VD, which

means UD ⊆ VD. To prove Lemma 4.10, we first write out ∑I∈[n]2D RI · (∂I A ◦ M(y)) using (2):

∑
I∈[n]2D

RI · (∂I A ◦ M(y)) =
m

∑
t=1

Bt(y)
D

D

∑
γ∈Γ2D

Bt(y)
γ2 ∑

I∈[n]2D

RI · qt,I,γ(y)

where γ = (γ1, γ2) and qt,I,γ(y) is a homogeneous polynomial of degree γ1.

Our main idea is to focus on the bucket profile γ∗ = (2D, 0) where qt,I,γ∗ is a product of 2D

linear polynomials. We show that the polynomials {qt,I,γ∗}I already give us enough freedom to
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construct any degree-2D polynomials. Specifically, we show that the following linear system in

variables {RI}I is feasible for any Q1, . . . , Qm:

Definition 4.17 (Linear system for proving UD = VD). Given arbitrary degree-2D homogeneous

polynomials Q1, . . . , Qm, we define the following linear system in variables {RI}I∈[n]2D :

∑
I∈[n]2D

RI · qt,I,γ∗(y) = Qt(y), ∀t ∈ [m],

∑
I∈[n]2D

RI · qt,I,γ(y) = 0, ∀γ 6= γ∗, t ∈ [m] .
(4)

Note that the equations in Definition 4.17 are written as polynomial equations.

Writing the linear system in matrix form For a bucket profile γ, let J = {j1, j2, . . . , jγ1
} ∈ [ℓ]γ1

be a multiset. From (3), the coefficient of yJ in qt,I,γ is

q̂t,I,γ(J) = c′γ · ∑
π∈S2D

∏
k∈κ1(γ)

(AtM)[iπ(k), jk] ∏
(k1 ,k2)∈κ2(γ)

At[iπ(k1), iπ(k2)]

= c′γ · ∑
π∈S2D


 ⊗

k∈[γ1]

(AtM)[jk]⊗ A
⊗γ2
t


 [π(I)]

= c′′γ · Sym


 ⊗

k∈[γ1]

(At M)[jk]⊗ A
⊗γ2
t


 [I] .

Here recall that we denote T[I] = T[i1, i2, . . . , i2D] for a 2D-order tensor T. Note also that At M ∈
Rn×ℓ consists of ℓ columns of At (determined by the restriction M), thus (At M)[jk] ∈ Rn is simply

a column of At. Then, the equations in (4) reduces to

〈
RI , Sym


 ⊗

k∈[γ1]

(AtM)[jk]⊗ A
⊗γ2
t



〉

=

{
Qt[J], ∀t ∈ [m], J ∈ [ℓ]2D , for γ = (2D, 0)

0, ∀t ∈ [m], J ∈ [ℓ]γ1 , for γ ∈ Γ2D, γ 6= (2D, 0).

(5)

The above is a linear system in n2D variables {RI}I . Since γ1 + 2γ2 = 2D, γ1 can range from

0, 2, . . . , 2D, and each J is a multiset of size γ1. Thus we have in total m ∑
D
k=0 ℓ2k linear constraints.

The following matrix defines the linear system:

Definition 4.18. For each γ ∈ Γ2D, let Lγ be the mℓγ1
× n2D matrix where each row is indexed by

t ∈ [m] and multiset J ∈ [ℓ]γ1 .

Lγ[(t, J), ·] = vec


Sym


 ⊗

k∈[γ1]

(AtM)[jk]⊗ A
⊗γ2
t






i.e., each row is the flattened vector of a symmetric 2D-th order tensor of dimension n. Moreover,

let rD := m ∑
D
k=0 ℓ2k and define L to be the rD × n2D matrix formed by concatenating the rows of

Lγ for γ ∈ Γ2D.
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It is clear that the linear system (5) can be written as

L(2D,0) · vec(RI) =




vec(Q1)
...

vec(Qm)


 ,




L(2D−2,1)
...

L(0,D)


 · vec(RI) = 0 .

(6)

Next, we prove a singular value lower bound for L.

Lemma 4.19 (Singular value lower bound for L). Fix D ∈ N, let m, ℓ, n ∈ N such that mℓ2D 6

( n
polylog(n)

)2D. Let L ∈ RrD×n2D
be the matrix defined in Definition 4.18 where rD = m ∑

D
k=0 ℓ2k. Then,

with probability 1 − n−Ω(D), σrD
(L) > Ω(nD).

We defer the proof to Section 6.3.3. Lemma 4.19 allows us to complete the proof of Lemma 4.10.

Proof of Lemma 4.10. From the analysis above, we see that to prove that there exists coefficients

R = {RI}I∈[n]2D such that

∑
I∈[n]2D

RI · (∂I A ◦ M(y)) =
m

∑
t=1

Bt(y)
DQt(y) ,

it suffices to prove that the linear constraints in (4) are satisfied. The constraints reduce to the

linear system in (6) with the rD × n2D matrix L defined in Definition 4.18. By Lemma 4.19, σrD
(L) >

Ω(nD) implies that there is a solution R, and further

‖vec(R)‖2
2 6 O(n−2D) ·

m

∑
t=1

‖vec(Qt)‖2
2 .

This completes the proof.

4.1.2 Proof of Lemma 4.11: Analysis for V

Overview of proof of Lemma 4.11. Consider the matrix V⊤V ∈ Rmℓ2D×mℓ2D . We would like to

show that the rank of V⊤V is mℓ2D − (m
2), meaning that it has a (m

2)-dimensional null space. Let

p ∈ Rmℓ2D be a vector in the null space, and we view p = (p1, p2, . . . , pm) where each pi ∈ Rℓ2D is

the coefficient vector of a degree-2D homogeneous polynomial. Then, Vp = 0 is equivalent to

m

∑
t=1

Bt(y)
D pt(y) = 0 . (7)

Observe that the (m
2) tuples (p1, . . . , pm) in N are indeed solutions to (7) simply because

Bt1
(y)DBt2(y)

D − Bt2(y)
DBt1

(y)D .
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Thus, our goal is to show that 1) these (m
2) solutions in N are linearly independent, and 2)

the linear span of N is exactly the set of solutions to (7). We first define the following matrix

N ∈ R(m
2 )×mℓ2D where each row is dimension mℓ2D representing a tuple (p1, . . . , pm) ∈ N :

Definition 4.20 (Null space of V). We define N ∈ R(m
2 )×mℓ2D to be the matrix whose rows are in-

dexed by (t1, t2) for t1 < t2 ∈ [m] and each row represents a collection of m degree-2D polynomials

(p1, . . . , pm) such that

ps(y) =





Bt2(y)
D if s = t1,

−Bt1
(y)D if s = t2,

0 otherwise.

By definition, each row of N is a solution to (7), thus VN⊤ = 0. We first show that N is rank

(m
2), which implies that N is linearly independent.

Lemma 4.21 (Rank of N). Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D. Let N ∈ R(m

2 )×mℓ2D be the

matrix defined in Definition 4.20. Then, with probability 1 − ℓ−Ω(D),

σ(m
2 )
(N) > Ω(ℓD) .

Next, we would like to show that span(N ) are the only solutions to (7). To this end, we prove

the following,

Lemma 4.22. Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D if D 6 2, and m 6 ( ℓ

polylog(ℓ)
)D if D > 2,

and let N ∈ R(m
2 )×mℓ2D be the matrix defined in Definition 4.20. Then with probability 1 − ℓ−Ω(D),

λmin

(
V⊤V + N⊤N

)
> Ω(ℓ2D) .

We defer the proofs of Lemmas 4.21 and 4.22 to Section 6.3.1 and 6.3.2. Lemmas 4.21 and 4.22

immediately allow us to complete the proof of Lemma 4.11.

Proof of Lemma 4.11. By Definition 4.20, we know VN⊤ = 0 since each row of N represents poly-

nomials (p1, . . . , pm) such that each pi is degree 2D and ∑
m
t=1 Bt(y)D pt(y) = 0. This implies that

the matrices V⊤V and N⊤N have orthogonal column span. By Lemma 4.21, rank(N) = (m
2),

and by Lemma 4.22, the row span of N is exactly the null space of V⊤V. This implies that

rank(V) = mℓ2D − (m
2) and that span(N ) is exactly the set of solutions to ∑

m
t=1 Bt(y)D pt(y) = 0.

V⊤V + N⊤N having smallest eigenvalue at least Ω(ℓ2D) further shows that the smallest sin-

gular value of V, σmℓ2D−(m
2 )
(V), being lower bounded by Ω(ℓD). This completes the proof.

4.1.3 Proof of Lemma 4.12: Analysis for U

For starters, we recall the definition for UD as the following,

UD := span {∂I P ◦ M(y)}I∈[n],|I|=2D ,

where P(x) = ∑
m
t=1 At(x)3 and M is the given restriction matrix such that ∂I P ◦ M(y) = ∂I P(My).

We defined U to be the ℓ4D × n2D matrix where each column is the coefficient vector of the

degree-4D polynomial ∂I P ◦ M(y) for multiset I ∈ [n]2D . In this section we prove Lemma 4.12

which states a singular value lower bound for U.
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Proof of Lemma 4.12. Let V be the ℓ4D × mℓ2D matrix defined in Lemma 4.11, and let rV = rank(V)

which equals mℓ2D − (m
2) by Lemma 4.11. Lemma 4.11 also states that with high probability,

σrV
(V) > Ω(ℓD). Moreover, Lemma 4.10 shows that ColSpan(U) = ColSpan(V) and hence we

know that rank(U) = rank(V). Consider the singular value decompositions of U and V:

U =
rV

∑
i=1

σiuiũ
⊤
i , V =

rV

∑
i=1

τiviṽ
⊤
i ,

where the column spans coincide: span{ui}i∈[rV ] = span{vi}i∈[rV ].

Let q ∈ Rmℓ2D be a vector in the row span of V, i.e. span{ṽi}i∈[rV ], such that Vq = urV
,

which is the bottom (left) singular vector of U. Note that we can equivalently view q ∈ Rmℓ2D

as degree-2D polynomials Q1(y), . . . , Qm(y), and that Vq represents the degree-4D polynomial

∑
m
t=1 Bt(y)DQt(y).

Then, by Lemma 4.10, there exists a vector p ∈ Rn2D (a flattened 2D-th order tensor) such

that Up = Vq and ‖p‖2 6 O(n−D)‖q‖2. Moreover, since Up = urV
, p must be orthogonal to

span{u1, . . . , urV−1}, implying that

‖Up‖2 6 σrV
‖p‖2 6 σrV

(U) · O(n−D)‖q‖2 .

We also have that

‖Vq‖2 > τrV
‖q‖2 > Ω(ℓD) · ‖q‖2 .

This proves that σrV
(U) > Ω((nℓ)D), completing the proof.

4.2 Proof of Lemma 4.4: Span finding

Algorithm 4.2.1 (Span-Finding).

Input: A basis for ṼD.

Output: A basis for W̃D such that:
∥∥∥W̃D − span(Bt(y)D | t ∈ [m])

∥∥∥
F
6 O(mℓ2D‖VD − ṼD‖F).

Operation:

1. Choose a random degree-2 homogeneous polynomial p(y) and compute the sub-

space Vp = span(p(y)DyS | S ∈ [ℓ]2D).

2. Let W̃p be the top m-dimensional subspace of Proj(Vp) + Proj(ṼD), spanned by the

orthonormal vectors w̃1
p, . . . , w̃m

p .

3. Let Vp ∈ Rℓ4D×ℓ2D be the matrix whose columns are p(y)DyS for multisets S ∈ [ℓ]2D .

For each i ∈ [m]: compute w̃i = arg minw∈Rℓ2D

∥∥∥Vp · w − w̃i
p

∥∥∥
2
.

4. Output W̃D = span(w̃i).

Notation: We will use the following notation throughout this section.

1. VD := span(Bt(y)D · yS | t ∈ [m], S ∈ [ℓ]2D). This subspace will be associated with the matrix
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V ∈ Rℓ4D×ℓ2D whose columns are the coefficient vectors of the polynomials Bt(y)DyS.

2. Given a polynomial p(y), define Vp := span(p(y)DyS | S ∈ [ℓ]2D). This subspace will be

associated with the matrix Vp ∈ Rℓ4D×ℓ2D whose columns are the coefficient vectors of the

polynomials p(y)DyS.

3. Wp := span(p(y)D · Bt(y)D | t ∈ [m]). This subspace will be associated with the matrix Wp

whose columns wi
p, i ∈ [m] form an orthonormal basis for Wp.

4. WD := span(Bt(y)D | t ∈ [m]).

5. The tilde-versions of these quantities (e.g. ṼD) denote the noisy estimates given as in-

put/estimated by the algorithm unless specified otherwise.

The algorithm for span-finding in the case where E(x) = 0 is very straightforward. Given VD,

we first compute the intersection of VD with the subspace Vp for a random degree 2 homogeneous

polynomial p. It is easy to see that the subspace Wp lies inside the intersection. We show that in

fact the intersection is equal to Wp when Bt’s are also random polynomials. Given the subspace Wp

we can now divide out by the polynomial p(y)D to get the subspace WD spanned by polynomials

Bt(y)D. To make sure that this algorithm is robust to error we need to do each of these steps

carefully: take a robust intersection of subspaces and divide out by p(y)D when the polynomials

might be close to a multiple of p(y)D . Let us now show that the exact algorithm works:

Lemma 4.23. For degree-2 homogeneous polynomials Bt(y), t ∈ [m] and p(y), with coefficients chosen

independently at random from N (0, 1), we have that with probability 1 over the draw of Ats, we have:

VD ∩ Vp = Wp ,

with dim(Wp) = m.

Proof. It is clear that Wp ⊆ VD ∩ Vp. Let us now prove the other inclusion. Every non-zero

polynomial that lies in VD and in Vp must satisfy the equation p(y)Dq0(y) = ∑t∈[m] Bt(y)Dqt(y)

for some degree 2D homogeneous polynomials q0(y), . . . , qm(y) where q0(y) is non-zero. Letting

B0(y) = p(y), Lemma 4.11 shows that with high probability over the choice of Bt’s the solution

space for the above linear system is the (m+1
2 )-dimensional subspace N = N1 +N2, with N1 =

span(q0 = BD
t , qt = pD

0 , qt′ = 0, ∀t′ ∈ [m] \ {t} | t ∈ [m]) and N2 = span(q0 = 0, qt1
= BD

t2
, qt2 =

−BD
t1

, qt = 0, ∀t′ ∈ [m] \ {t1, t2} | t1, t2 ∈ [m]). Combined with the Schwartz-Zippel lemma,

this in fact shows that the same event holds with probability 1 over the draw of the Ats. Since

the second subspace sets q0(y) to 0, we get that the non-zero solutions to q0(y) must be in the

subspace span(Bt(y)D | t ∈ [m]) and therefore every polynomial in the intersection must lie in the

subspace N1 = span(p(y)D Bt(y)D | t ∈ [m]) = Wp. Also note that since N has dimension (m+1
2 )

and is spanned by (m+1
2 ) vectors, Wp = N1 must be m-dimensional, which completes the proof of

the lemma.

Given subspace Wp, it is clear that dividing any basis of Wp by the polynomial p(y)D gives a

basis for WD = span(Bt(y)D | t ∈ [m]). Step 3 of the algorithm can be equivalently thought of as

solving for a degree 2D homogeneous polynomial w(y) that minimizes: ‖p(y)Dw(y) − wi
p(y)‖2

(wi
p is the coefficient vector of a degree 4D homogeneous polynomial). In the case where wi

p is a
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multiple of p(y)D , we find w(y) such that p(y)Dw(y) = wi
p(y), i.e. we have successfully divided

by p(y)D . Thus our algorithm outputs WD in the case when E(x) = 0. Let us now analyse the

error-resilience of the algorithm.

Error Resilience: We will now show that given a subspace ṼD close to VD, it is possible to take a

“robust intersection” of ṼD with Vp to get a subspace W̃p (Step 2 in Algorithm 4.2.1) that is close

to Wp. We then show how to do a “robust division” to obtain subspace WD. Before analysing the

error-resilience of the algorithm though, let us describe a procedure for taking a robust intersection

of subspaces.

4.2.1 Robust intersection of subspaces

Suppose that we are given two subspaces V1,V2 with the promise that they intersect in a m-

dimensional subspace W , consider the problem of finding W . Furthermore we want a robust

algorithm to do so, in the sense that given perturbed subspaces Ṽ1, Ṽ2 we want to find a subspace W̃

that is close to W. We will do so by the following simple algorithm: Output the top m-dimensional

eigenspace of the matrix M̃ = Proj(Ṽ1) + Proj(Ṽ2). We will now show the correctness of this algo-

rithm:

Lemma 4.24. Let V1,V2 be two k1, k2-dimensional subspaces of Rn (respectively) such that V1 ∩ V2 = W
with dim(W) = m. Let M = Proj(V1) + Proj(V2) be such that λk1+k2−m(M) > δ. Let Ṽ1, Ṽ2 be such

that ‖Vi − Ṽi‖ 6 γ. Then we have that the top m-dimensional eigenspace of M̃ = Proj(Ṽ1) + Proj(Ṽ2)

denoted by W̃ is close to W :

‖W − W̃‖ 6 O
(γ

δ

)
.

Proof. First note that rank(M) = k1 + k2 − m and every unit vector w in the intersection of V1, V2

will satisfy wT Mw = 2. Furthermore, every vector w /∈ W will satisfy: wT Mw < 2. Hence the top

m-dimensional eigenspace of M will be equal to W and will correspond to eigenvalue 2.

We will now prove that λk1+k2−m(M) > δ implies that λm+1(M) < 2 − δ. Consider the matrix

U = M − 2 Proj(W) = Proj(V1 ∩ W⊥) + Proj(V2 ∩W⊥). Since (V1 ∩ W⊥) ∩ (V2 ∩ W⊥) = φ,

we have that rank(U) = k1 + k2 − 2m and λi(U) = λm+i(M), hence it suffices to prove that,

λ1(U) < 2 − δ. This follows immediately from the following claim:

Claim 4.25. Let U1,U2 be two r1, r2-dimensional subspaces of Rn (resp.) such that U1 ∩ U2 = φ and

U = Proj(U1) + Proj(U2). If λr1+r2(U) > δ then λ1(U) < 2 − δ.

We will now apply Wedin’s theorem to M. We have that ‖M̃ − M‖ 6 2γ and letting U1 = W
be the top m-dimensional eigenspace of M, U2 being the next k − m-dimensional eigenspace, we

can check that, mini,j |[Σ1]i,i − [Σ2]j,j| > δ and mini |[Σ1]i,i| = 2 > δ, from the conditions of the

lemma. Hence applying Wedin’s theorem we get that,

‖Proj(W)− Proj(W̃)‖2
F 6

2γ2

δ2
.

Let us complete the above proof by proving the claim:
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Proof of Claim 4.25. We will prove the contrapositive by considering the case that λ1(U) > 2 − δ

achieved via the unit vector v. Let v be the top eigenvector for U such that

vTUv = vT Proj(U1)v + vT Proj(U2)v > 2 − δ .

Suppose vT Proj(U1)v = 1 − t > 1 − δ, we know there is a unit vector a ∈ Rr1 s.t. ‖v − U1a‖2 6 t;

Similarly, we would have a unit vector b ∈ Rr2 s.t. ‖v − U2b‖2 6 δ − t By a triangle inequality, we

have

‖U1a − U2b‖2 6 δ

which upper bounds the smallest singular value of the matrix [U1,U2] by δ, i.e. λr1+r2(U) 6 δ.

4.2.2 Error resilience of Algorithm 4.2.1

Lemma 4.26. For degree-2 homogeneous polynomials Bt(y), t ∈ [m] and p(y), with coefficients chosen

independently at random from N (0, 1) we have that with probability 1 − ℓ−Ω(D):

λ(m+1)ℓ2D−(m+1
2 )(Proj(VD) + Proj(Vp)) > Ω

(
1

mℓ2D

)
.

Proof. Let M = Proj(VD) +Proj(Vp). Let ApDpBT
p and ADBT be the singular value decomposition

of Vp and V respectively. We have that [Vp V][Vp V]T = VpVT
p + VVT = ApD2

pAT
p + AD2AT and

M = ApAT
p + AAT.

First note that the left singular vector subspace of [Vp V] is the column space of [Vp V]

which is Vp + VD. The latter is a subspace of dimension ℓ2D + (mℓ2D − (m
2))− m = (m + 1)ℓ2D −

(m+1
2 ), since by Lemma 4.23 we have that dim(VD ∩ Vp) = m. Using Lemma 4.11 we have that

σ(m+1)ℓ2D−(m+1
2 )([Vp V]) > Ω(ℓD) which implies that for every vector v in Vp + VD:

vTVpVpvT + vTVVvT = vT [Vp V][Vp V]Tv > Ω(ℓ2D)‖v‖2
2. (8)

We can upper bound the LHS by:

max(σmax(Vp)
2, σmax(V)2)(vT ApAT

p v + vT AATv) 6 max(‖Vp‖2
F, ‖V‖2

F) · vT Mv.

We have that with probability 1 − ℓ−Ω(D),

‖V‖2
F = ∑

t∈[m]
S∈[ℓ]2D

‖Bt(y)
DyS‖2

2 = ∑
t∈[m]

ℓ2D‖Bt(y)
D‖2

2 6 O(mℓ
4D),

where the last inequality follows from Claim 3.8. Similarly we get that σmax(Vp)2 6 O(ℓ4D).

Combining equation 8 with the above we get,

vT Mv > Ω

(
ℓ2D

mℓ4D

)
‖v‖2

2,

for all v ∈ VD + Vp which completes the eigenvalue lower bound for M.
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Lemma 4.27 (Robust Intersection). Given degree 2 homogeneous polynomials Bt(y), t ∈ [m] and p(y)

with coefficients drawn independently at random from N (0, 1), with probability 1 − ℓ−Ω(D) Step 2 of the

algorithm outputs W̃p such that:

‖W̃p −Wp‖F 6 O(mℓ
2D‖ṼD − VD‖F).

Proof. Recall that the output of Step 2 of the algorithm outputs W̃p: the top m dimensional sub-

space of M̃ = Proj(Vp) + Proj(ṼD). Using the fact that Vp ∩ VD = Wp such that dim(Wp) = m

(Lemma 4.23), we can apply Lemma 4.24 for robust subspace intersection, with subspaces ṼD ≈
VD and Vp to get that W̃p is close to the true intersection Vp ∩ VD = Wp:

‖Wp − W̃p‖F 6 O

(
‖ṼD −VD‖F

λ(m+1)ℓ2D−(m+1
2 )(M)

)
6 O(mℓ

2D‖ṼD − VD‖F),

by Lemma 4.26.

We will now show that Step 3 of Algorithm performs a robust division by the polynomial

p(y)D , that is, W̃D is close to the subspace WD.

Lemma 4.28 (Robust Division). Given degree 2 homogeneous polynomials Bt(y), t ∈ [m] and p(y)

with coefficients drawn independently at random from N (0, 1), with probability 1 − ℓ−Ω(D), Step 4 of the

algorithm outputs W̃D such that:

‖WD − W̃D‖F 6 O(ℓ2D‖Wp − W̃p‖F).

Proof. Since p is a random degree 2 homogeneous polynomial we can apply Lemma 4.11 (with

m = 1 and G1 = p) to get that σℓ2D
(Vp) > Ω(ℓD). Recall that W̃p is the matrix whose columns are

w̃1
p, . . . , w̃m

p which are orthonormal vectors that span W̃p. Since Vp has rank ℓ2D (full column rank),

Step 3 of Algorithm 4.2.1 computes the solution to the least-squares program: w̃i = V†
p w̃i

p. Let W̃

be a matrix whose columns are w̃i, i.e. W̃ = V†
p W̃p and analogously let W = V†

p Wp, where Wp is

the matrix with orthonormal columns wi
p that span Wp. We get that:

‖WWT − W̃W̃T‖F = ‖V†
p (W̃pW̃T

p − WWT)(V†
p )

T‖F

6
∥∥∥V†

p

∥∥∥
2

op
· ‖W̃pW̃T

p − WpWT
p ‖F

=
‖Wp − W̃p‖F

σℓ2D
(Vp)2

= O

(
‖Wp − W̃p‖F

ℓ2D

)
.

Now note that WD = span(wi) is the column space of WWT and therefore also the top m

dimensional eigenspace, the same being true for W̃D. Since the matrices WWT and W̃W̃T are

close in Frobenius norm we can apply Wedin’s theorem (Theorem 3.2) to get that their top m

dimensional eigenspaces are close:

‖WD − W̃D‖F 6 O

(
‖WWT − W̃W̃T‖F

λm(WWT)

)
6 O

(
‖Wp − W̃p‖F

ℓ2Dλm(WWT)

)
. (9)
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Let us finish the proof by bounding λm(WWT) = σm(W)2. Since Wp lies in the column space

of Vp (the polynomials wi
p(y) are multiples of p(y)D) we get that, Wp = Vp · W. We know that

σm(Wp) = 1 (Wp has orthonormal columns by construction) therefore we get that for any unit

vector v ∈ Rm:

1 6 ‖Wpv‖2 = ‖VpWv‖2 6 σmax(Vp) · ‖Wv‖2 6 ‖Vp‖F‖Wv‖2,

which implies that σm(W) > 1/‖Vp‖F. Using Claim 3.8 we have that with probability 1 − ℓ−Ω(D):

‖Vp‖2
F = ∑

S∈[ℓ]2D

‖p(y)DyS‖2
2 = ℓ2D‖p(y)‖2

2 6 O(ℓ4D),

which implies that λm(WWT) = σm(W)2 > Ω(1/ℓ4D). Plugging this into the equation 9 we get

that:

‖WD − W̃D‖F 6 O(ℓ2D‖Wp − W̃p‖F) .

Together with Lemma 4.27 and 4.28, we can complete the proof of Lemma 4.4.

Lemma 4.29 (Restatement of Lemma 4.4). Let D, m, ℓ ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D. Given degree

2 homogeneous polynomials Bt, t ∈ [m] in ℓ variables with coefficients drawn i.i.d from N (0, 1), with

probability 1 − ℓ−Ω(D) Algorithm 4.2.1 outputs W̃D that satisfies:

∥∥∥W̃D −WD

∥∥∥
F
6 O

(
mℓ

4D‖VD − ṼD‖F

)
.

Proof. This follows immediately by combining Lemmas 4.27 and 4.28. Lemma 4.27 states that

when the polynomials Bt’s and p are random, with probability 1 − ℓ−Ω(D) Step 2 of the algorithm

outputs W̃p such that:

‖W̃p −Wp‖F 6 O(mℓ
2D‖ṼD − VD‖F).

Lemma 4.28 states that with probability 1 − ℓ−Ω(D) Step 4 of the algorithm outputs W̃D such that:

‖WD − W̃D‖F 6 O(ℓ2D‖Wp − W̃p‖F).

Combining both the inequalities the bound on ‖WD − W̃D‖F easily follows.

4.3 Proof of Lemma 4.5: Desymmetrization

Algorithm 4.3.1 (Desymmetrization).

Input: Basis for subspace W̃D.

Output: T̃ ∈ Rℓ3
2D such that:

∥∥∥∥∥T̃ − ∑
t∈[m]

(Sym(B⊗D
t ))⊗3

∥∥∥∥∥
F

6 poly(m)
(
ℓ

O(D)‖W̃D −WD‖F + ‖E‖F

)
.
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Operation:

1. Let W̃ be the matrix whose columns {w̃1, . . . , w̃m} form an orthonormal basis for

W̃D. Compute the matrix W̃⊗3
uniq whose columns are w̃i ⊗ w̃j ⊗ w̃k indexed by mul-

tisets [i, j, k] ⊆ [m].

2. Solve the following least-squares minimization problem:

min
Y∈Rm3

∥∥∥vec(P̂ ◦ M)− Sym6D ·W̃⊗3
uniq · Y

∥∥∥
F

.

3. Compute Z ∈ Rm3
indexed by i, j, k ∈ [m] with Zi,j,k = Y[i,j,k]/6 if |[i, j, k]| = 3,

Zi,j,k = Y[i,j,k]/3 if |[i, j, k]| = 2 and Zi,j,k = Y[i,j,k] if |[i, j, k]| = 1, where [i, j, k] ⊆ [m]

denotes a multiset of size 3.

4. Output T̃ = W̃⊗3 · Z.

Notations: We will use the following notations throughout this section.

1. WD := span(Bt(y)D | t ∈ [m]). Let W denote the matrix with columns {w1, . . . , wm} that

form an orthonormal basis for WD.

2. Let Ct denote the coefficient vector of Bt(y)D, i.e. Ct = Sym2D(B⊗D
t ),

3. For a matrix W ∈ Rn×m with columns w1, . . . , wm, we use W⊗k to denote the nk × mk ma-

trix whose columns are all possible tensor products of k columns of W: wi1 ⊗ · · · ⊗ wik
for

i1, . . . , ik ∈ [m]. Furthermore, we denote W⊗k
uniq to be the nk × mk matrix whose columns are

wi1 ⊗ · · · ⊗ wik
for i1 6 i2 6 · · · 6 ik ∈ [m].

Let us first describe the algorithm in the case when δ2 = 0, i.e. given WD and Sym6D(∑t C⊗3
t ) =

Sym6D(∑t Sym2D(B⊗D
t )⊗3), we will obtain the unsymmetrized tensor ∑t Sym2D(B⊗D

t )⊗3. From

now on we will drop the subscript of Sym when it is clear from context. therefore we will show

how to recover ∑t C⊗3
t .

A priori we do not have enough information to recover the tensor ∑t C⊗3
t from the tensor

Sym(∑t C⊗3
t ), but we show that given the subspace spanned by the polynomials Ct’s we can

“desymmetrize” to recover it. Since each vector Ct belongs to W , Ct can be written as Wct for some

vector ct ∈ Rm. Therefore C⊗3
t = W⊗3 · c⊗3

t , where W⊗3 ∈ Rℓ3
2D×m3

is the matrix whose columns

are wi ⊗wj ⊗wk ranging over i, j, k ∈ [m]. Summing over t we get that the tensor T = ∑ C⊗3
t equals

W⊗3 · (∑ c⊗3
t ). Let us write the vector ∑ c⊗3

t as the vector of unknown variables Z = [Zijk]i,j,k∈[m].

Let Sym6D ∈ Rℓ6D×ℓ3
2D denote the matrix that symmetrizes a vector in Rℓ3

2D so that it is a valid

coefficient vector of a degree 6D polynomial. We have the following linear system:

Sym6D

(
∑

t

C⊗3
t

)
= Sym6D ·W⊗3 · Z .

The matrix Sym6D ·W⊗3 still does not have full column rank though (hence is not invertible),

because Sym6D ·(wi ⊗ wj ⊗ wk) = Sym6D ·(wj ⊗ wi ⊗ wk) = . . . for any multiset [i, j, k] ⊆ [m].

To fix this, consider the matrix W⊗3
uniq ∈ Rℓ3

2D×m3 with columns that are the “unique” columns

of W⊗3: wi ⊗ wj ⊗ wk for i 6 j 6 k. Let Y ∈ Rm3 be the corresponding vector of unknowns
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indexed naturally using multisets S ⊆ [m] of size 3. Giving a particular setting of a symmetric

vector Z ∈ Rm3
(Zi,j,k = Zπ(i),π(j),π(k), ∀π ∈ S3), let Y[i,j,k] = 6Zi,j,k if |[i, j, k]| = 3, Y[i,j,k] = 3Zi,j,k if

|[i, j, k]| = 2 and Y[i,j,k] = Zi,j,k if |[i, j, k]| = 1 (as in the algorithm), and define this invertible (over

symmetric Z’s) linear transformation as L ∈ Rm×m3:

Z = LY . (10)

One can check that,

Sym6D(∑
t

C⊗3
t ) = Sym6D ·W⊗3 · Z = Sym6D ·W⊗3

uniq · Y.

We will show that the matrix Sym6D ·W⊗3
uniq has full column rank (Lemma 4.30), therefore,

Y = (Sym6D ·W⊗3
uniq)

†(Sym6D(∑
t

C⊗3
t )).

Given Y we can recover Z by multiplying by matrix D, and finally multiplying by W⊗3 we get

the desymmetrized tensor ∑t C⊗3
t :

∑
t

C⊗3
t = W⊗3L(Sym6D ·W⊗3

uniq)
†(Sym6D(∑

t

C⊗3
t )). (11)

Lemma 4.30. Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D. Then, with probability 1 − ℓ−Ω(D),

σm3(Sym6D ·W⊗3
uniq) > Ω

(
1

m1.5

)
.

Let us first decompose the matrix W⊗3
uniq into a random matrix times a basis transformation

matrix. Define C as the matrix whose columns are the vectors Ct and analogously define C⊗3 as

well as C⊗3
uniq. Let V be a basis transformation matrix between C and W: C · V = W. We have the

following easy to prove lemma:

Lemma 4.31. 1. C⊗3
uniq · V⊗3

uniq = W⊗3
uniq.

2. With probability 1 − ℓ−Ω(D) we have that: σm3(V
⊗3
uniq) >

1
m1.5ℓ3D .

Proof. The proof of (1) is straightforward so let us go to the proof of (2). For any unit vector

v ∈ Rm3 we have that:

‖C⊗3
uniqV⊗3

uniqv‖2 = ‖W⊗3
uniqv‖2 > 1,

since W⊗3
uniq is an orthonormal matrix. We can upper bound the LHS by

∥∥∥C⊗3
uniq

∥∥∥
op

‖V⊗3
uniqv‖2 rear-

ranging which gives us that ‖V⊗3
uniqv‖2 > 1∥∥∥C⊗3

uniq

∥∥∥
op

> 1

‖C‖3
op

> 1
‖C‖3

F
which implies that σm3(V

⊗3
uniq) >

1
‖C‖3

F

.

We have that ‖C‖2
F = ∑t∈m ‖Bt(y)D‖2

2 which is less than O(mℓ2D) with probability 1 − ℓ−Ω(D)

(Claim 3.8). So we get that ‖C‖3
F > 1/(m1.5ℓ3D) completing the proof of the lemma.
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The following lemma is crucial to the singular value lower bound. We defer the proof to

Section 6.4.

Lemma 4.32. Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D. Then, with probability 1 − ℓ−Ω(D),

σm3

(
Sym6D ·C⊗3

uniq

)
> Ω(ℓ3D) .

The above two lemmas immediately imply that (Sym6D W⊗3
uniq) is invertible:

Proof of Lemma 4.30. We have that Sym6D ·W⊗3
uniq = Sym6D ·C⊗3

uniq · V⊗3
uniq. Since V⊗3

uniq is a square

matrix, we can multiply the two singular value lower bounds in Lemmas 4.31, 4.32 to get:

σm3(Sym6D ·W⊗3
uniq) > σm3(Sym6D ·C⊗3

uniq) · σm3(V
⊗3
uniq) > Ω

(
1

m1.5

)
.

Error Resilience: We have already proved (equation 11) that when given the subspace WD we

can recover the desymmetrized tensor ∑t C⊗3
t . We will now show that in the case when the input

subspace W̃D is sufficiently close to WD and ‖E‖F is bounded, Algorithm 4.3.1 outputs a solu-

tion close to ∑ C⊗3
t . Roughly we show that instead of solving the linear system in equation 11,

the algorithm solves a least-squares minimization program and since σm3(Sym6D W⊗3
uniq) is at least

1/ poly(m) the algorithm is error resilient.

Before proving the correctness of the algorithm let us prove the following lemma that relates

the bases of two subspaces that are close to each other:

Lemma 4.33. Given d-dimensional subspaces W and W̃ with ‖W − W̃‖F 6 1, there exists orthonormal

matrices W, W̃ ∈ Rn×d with WW⊤ = Proj(W) and W̃W̃⊤ = W̃ such that:

W̃ = W + Γ,

with ‖Γ‖F 6 O(d‖W̃ −W‖F).

Proof. Let E = Proj(W̃) − Proj(W). Let W̃ be an orthonormal basis for W̃ : W̃W̃⊤ = Proj(W̃)

and similarly let W ′ be an orthonormal basis for W : W ′W ′⊤ = Proj(W). Then, we have that

W̃W̃⊤ = W ′W ′⊤ + E. Multiplying both sides on the right by W̃ we get:

W̃ = W ′W ′⊤W̃ + EW̃ = W ′Ṽ + EW̃, (12)

for Ṽ = W ′⊤W̃. We will now show that Ṽ is close to an orthonormal matrix V ∈ Rd×d. We have:

ṼṼ⊤ = W ′⊤(W̃W̃⊤)W ′ = W ′⊤(W ′W ′⊤ + E)W ′ = Id + W ′⊤EW ′,

where,
∥∥W ′⊤EW ′∥∥

op
= ‖E‖op. By Weyl’s theorem (Theorem 3.1) we get that the eigenvalues of

ṼṼ⊤ are in the range [1 − ‖E‖op , 1 + ‖E‖op].

Let Ṽ have the singular value decomposition ADB⊤. Since the diagonal entries of D2 lie in

[1−‖E‖op , 1+ ‖E‖op], we get that the diagonal entries of D are in the range, [1−‖E‖op , 1+ ‖E‖op]

since ‖E‖op 6 1, therefore D = I + E1, where E1 is a diagonal matrix with ‖E1‖op 6 ‖E‖op.
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Therefore we get,

Ṽ = A(I + Γ)B⊤ = AB⊤ + AE1B⊤ = V + E2,

for V equal to the orthonormal matrix AB⊤ and:

‖E2‖F 6 ‖A‖op ‖E1‖F ‖B‖op 6 d ‖E‖op 6 d‖E‖F .

Plugging this back into equation 12 we get:

W̃ = W ′V + W ′E2 + EW̃ = W + Γ,

where W = W ′V is an orthonormal basis for W (WW⊤ = Proj(W)) and ‖Γ‖F 6 d‖E‖F + ‖E‖F =

O(d‖E‖F).

Lemma 4.34 (Correctness of Algorithm 4.3.1, restatement of Lemma 4.5). Let D, m, ℓ ∈ N such that

m 6 ( ℓ

polylog(ℓ)
)2D. For each t ∈ [m], let Bt be a degree-2 homogeneous polynomial in ℓ variables with i.i.d.

N (0, 1) entries. Suppose W̃D is a subspace of Rℓ2D such that
∥∥∥W̃D −WD

∥∥∥
F
6 1/(m3.5ℓO(D)), then with

probability 1 − ℓ−Ω(D) over the choice of Bt’s, Algorithm 4.3.1 outputs a tensor T̃ such that:

∥∥∥∥∥T̃ − ∑
t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥
F

6 poly(m)(ℓO(D)‖WD − W̃D‖F + ‖E‖F) .

Proof. Let W, W̃ ∈ Rℓ2D×m be a basis for the subspaces WD, W̃D which we will henceforth call

W , W̃ , given by Lemma 4.33: W̃ = W + Γ′, with ‖Γ′‖op 6 O(m‖W − W̃‖F). We have that H =

W⊗3
uniq and H̃ = W̃⊗3

uniq are an orthonormal basis for H = W⊗3
uniq and H̃ = W̃⊗3

uniq respectively, with

H̃⊗3 − H⊗3 defined as Γ.

Let B, B̃ be the coefficient vectors of the polynomials P ◦ M(y) and P̂ ◦ M(y) respectively. Recall

the linear transformation L from equation 10. Step 4 of the algorithm outputs T̃ such that,

T̃ = W̃⊗3L(Sym6D ·H̃)†B̃7,

and analogously in the E(x) = 0 case we get:

T = W⊗3L(Sym6D ·H)†B = ∑
t∈[m]

(Sym2D(B⊗D
t ))⊗3,

where the last equality follows since Sym6D H has full column rank (Lemma 4.30) with high prob-

ability and the analysis for equation 11.

Therefore it suffices to bound ‖T − T̃‖2 to prove the lemma. Using W̃⊗3 = W⊗3 + Γ1, we have:

‖T − T̃‖2 = ‖W⊗3L(Sym6D H)†B − W̃⊗3L(Sym6D H̃)†B̃‖2

6 ‖W⊗3L[(Sym6D H)†B − (Sym6D H̃)†B̃]‖2 + ‖Γ1(Sym6D H̃)†B̃‖2

6 ‖L‖op ‖(Sym6D H)†B − (Sym6D H̃)†B̃‖2 + ‖Γ1(Sym6D H̃)†B̃‖2 . (13)

7 Note that this quantity does not depend on the particular choice of basis for W̃ .
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Let E1 = Sym6D H − Sym6D H̃. We can bound the first term in equation 13 by using robustness

of least-squares minimization for the program miny∈Rm3 ‖ Sym6D Hy − B‖2 (with noisy estimates

H̃ and B̃), since Sym6D H is a matrix with full column rank (Lemma 4.30). Applying Lemma 3.6

we get:

∥∥∥(Sym6D H)†B − (Sym6D H̃)†B̃
∥∥∥

2
6

√
2 ‖E1‖op ‖B‖2 + σm3(Sym6D H)‖B − B̃‖2

σm3(Sym6D H)(σm3(Sym6D H)− ‖E1‖op)
.

We will now bound the second term in equation 13:

∥∥∥Γ1(Sym6D H̃)†B̃
∥∥∥

2
6 ‖Γ1‖op

∥∥∥(Sym6D H̃)†
∥∥∥

op
‖B̃‖2

6 ‖Γ1‖op

(
1

σm3(Sym6D H)− ‖E1‖op

)
(‖B‖2 + ‖B̃ − B‖2)

Let us bound all the parameters involved above:

1. ‖Γ‖op 6 ‖Γ1‖op 6 O(m2‖W − W̃‖F): We know that W, W̃ are bases for W , W̃ with W̃ =

W + Γ′ with ‖Γ′‖F 6 O(m‖W −W̃‖F). Let W have columns w1, . . . , wm and Γ′ have columns

γ1, . . . , γm. We have that ‖Γ‖op 6 ‖Γ1‖op 6 ‖W̃⊗3 − W⊗3‖F, so bounding the latter gives:

‖W̃⊗3 − W⊗3‖2
F = ‖(W + Γ′)⊗3 −W⊗3‖2

F

= ∑
i,j,k∈[m]

‖(wi + γi)⊗ (wj + γj)⊗ (wk + γk)− wi ⊗ wj ⊗ wk‖2
2

6 ∑
i,j,k∈[m]

O(‖γi ⊗ wj ⊗ wk‖2
2)

= O(‖Γ′‖2
Fm2) .

where in the first inequality we used Cauchy-Schwarz and absorbed the terms that have

more than 1 γ-term into the terms with only one γ term, since ‖Γ′‖2 ≪ 1. So we get that

‖Γ‖op 6 ‖Γ1‖op 6 O(‖Γ′‖Fm) 6 O(m2‖W − W̃‖F).

2. ‖L‖op 6 ‖L‖F = O(m1.5).

3. ‖E1‖op 6
∥∥Sym6D

∥∥
op

‖Γ‖op 6
√

DO(D)ℓ6D · O(m2‖W − W̃‖F) 6 O(m2ℓO(D)‖W − W̃‖F).

4. ‖B‖2 6 O(mℓ3D): By triangle inequality we get ‖B‖2 6 ∑t∈[m] ‖Bt(y)3D‖2. Each summand is

at most O(ℓ3D) with probability 1 − ℓ−Ω(D) (Claim 3.8), therefore implying that with proba-

bility 1 − ℓ−Ω(D), ‖B‖2 6 O(mℓ3D).

5. ‖B − B̃‖2 = ‖E ◦ M‖F 6 ‖E‖F .

6. σm3(Sym6D H) > Ω
(

1
m1.5

)
using Lemma 4.30.

Assuming ‖W − W̃‖F < 1/(m3.5ℓO(D)) and plugging in all the parameters above gives that:

∥∥∥T − T̃
∥∥∥

2
6 poly(m)(ℓO(D)‖W − W̃‖F + ‖E‖F) .
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4.4 Proof of Lemma 4.6: Analysis of aggregating restrictions

Let us first recall Definition 4.2: for a subset S ⊆ [n] and matrix A ∈ Rn×n, we write RS(A) to be

the matrix obtained by zeroing out the (i, j) entry of A if i or j is not in S.

Lemma 4.35 (Restatement of Lemma 4.6). Let D, n, ℓ, m ∈ N such that 6D 6 ℓ 6 n. There is an

nO(D)-time computable collection S of subsets of [n] such that each S ∈ S satisfies ℓ 6 |S| 6 6Dℓ and that

ES∼S
m

∑
t=1

(
Sym

(
RS(At)

⊗D
))⊗3

= C ◦
m

∑
t=1

(
Sym(A⊗D

t )
)⊗3

where C ∈ (Rn)⊗6D is a fixed tensor whose entries depend only on the entry locations, and each entry of C

has value within ((ℓ/2n)6D , 1).

We prove Lemma 4.6 by constructing a pseudorandom family of hash functions similar to a

k-wise independent hash family. Specifically, given a parameter k ∈ N, we construct a family H
of functions [n] → [n] that satisfies the following:

1. For a subset T ⊆ [n], for any r 6 k and any distinct elements x1, . . . , xr ∈ [n], the probability

Prh∼H[∀i 6 r, h(xi) ∈ T] only depends on r and |T|,

2. For any subset T ⊆ [n] of size ℓ, the cardinality of h−1(T) is Θ(ℓ) for all h ∈ H.

Note that the most standard construction of k-wise independent hash functions consists of all

degree k − 1 univariate polynomials, including constant polynomials, over a field F of size n. This

only satisfies the first requirement but not the second due to the constant polynomials. We make

a simple modification to the standard construction to satisfy both requirements.

We first state the following standard fact.

Fact 4.36 (Vandermonde matrix). Fix a finite field F. Let r, k ∈ N such that r 6 k, and let x1, . . . , xr be

distinct values in F. Then, the following r × k Vandermonde matrix




1 x1 · · · xk−1
1

1 x2 · · · xk−1
2

...
...

. . .
...

1 xr · · · xk−1
r




is rank r.

The troublesome functions in the standard construction of k-wise independent hash family are

the constant polynomials that don’t satisfy the second requirement. Thus, we simply delete those

from our hash family.

Lemma 4.37. Fix a finite field F with |F| = q and let k ∈ N, k > 2. Let H be the following family of

non-constant polynomials of degree 6 k − 1:

H = {a0 + a1x + · · ·+ ak−1xk−1 | a0, . . . , ak−1 ∈ F, a1, . . . , ak−1 not all zero} .
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Fix any T ⊆ F with |T| > 2. For any r 6 k, any distinct x1, . . . , xr ∈ F,

Pr
h∼H

[∀i ∈ [r], h(xi) ∈ T] =
qk−r|T|r − |T|

qk − q
.

Proof. For any distinct x1, . . . , xr ∈ F and any b1, . . . , br ∈ T, we consider the following linear

system with variables (a0, a1, . . . , ak−1),




1 x1 · · · xk−1
1

1 x2 · · · xk−1
2

...
...

. . .
...

1 xr · · · xk−1
r







a0

a1

...

ak−1



=




b1

b2

...

br




. (14)

Each solution to the above corresponds to a polynomial h(x) = a0 + a1x + · · ·+ ak−1xk−1 such

that h(xi) = bi for all i ∈ [r]. Let V ∈ Fr×k be the Vandermonde matrix in (14). By Fact 4.36,

rank(V) = r, thus the solutions to (14) form an affine subspace of dimension k − r which contains

qk−r vectors in Fk. We split into two cases:

• b1 = b2 = · · · = br: note that (a0, a1, . . . , ak−1) = (b1, 0, . . . , 0) is a solution to (14), which

corresponds to the constant polynomial h(x) = 1. This is also the only constant polynomial

that satisfies (14).

• b1, . . . , br not all equal: no constant polynomial satisfies (14).

Thus, there are

|T| · (qk−r − 1) + (|T|r − |T|) · qk−r = qk−r|T|r − |T|
number of non-constant polynomials h that satisfy h(xi) = bi for all i ∈ [r]. Since |H| = qk − q,

this completes the proof.

With Lemma 4.37, we can construct a desired collection S of subsets of [n] where each S ∈ S
has bounded cardinality.

Lemma 4.38. Let n ∈ N be a prime power and given ℓ, k ∈ N such that 2 6 k 6 ℓ 6 n. There exists

a nO(k) time algorithm that outputs a collection S of nk − n subsets of [n] such that each S ∈ S satisfies

ℓ 6 |S| 6 (k − 1)ℓ and for any r 6 k and distinct indices i1, . . . , ir ∈ [n],

Pr
S∼S

[i1, . . . , ir ∈ S] =
nk−rℓr − ℓ

nk − n
.

Proof. Let F be a field of size n with a bijective map to [n]. With a slight abuse of notation, we will

use F and [n] interchangeably. Let H be the set of non-constant polynomials of degree 6 k − 1

defined in Lemma 4.37 such that |H| = nk − n. Pick any fixed subset T ⊆ F of size ℓ. For any

h ∈ H, let h−1(T) := {x ∈ F : h(x) ∈ T}, which we also view as a subset of [n]. Define

S := {h−1(T) | h ∈ H} .

We will prove that S is the desired collection of subsets.
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First, fix an h ∈ H. For each b ∈ T, since h is not a constant polynomial and is of degree

6 k − 1, h(x) = b must have at least one solution and at most k − 1 solutions. Thus,

|T| 6
∣∣∣h−1(T)

∣∣∣ 6 (k − 1)|T| ,

meaning each S ∈ S satisfies ℓ 6 |S| 6 (k − 1)ℓ.

Next, for r 6 k and any distinct indices i1, . . . , ir ∈ [n], let x1, . . . , xr ∈ F be their correspond-

ing field elements. The probability that i1, . . . , ir ∈ S over S ∼ S is exactly the probability that

h(x1), . . . , h(xr) ∈ T over h ∼ H, hence by Lemma 4.37,

Pr
S∼S

[i1, . . . , ir ∈ S] =
nk−rℓr − ℓ

nk − n
.

Lemma 4.6 is a simple corollary of Lemma 4.38.

Proof of Lemma 4.6. The construction S from Lemma 4.38 with parameter k = 6D satisfies that all

S ∈ S has ℓ 6 |S| 6 6Dℓ. Next, consider a multiset I = {i1, . . . , i6D} ⊆ [n] of size 6D, which

we view as an index of a 6D-th order symmetric tensor. Let J = {j1, . . . , jr} be the set of r unique

elements in I.

Since RS(At) is just zeroing out entries of At, for any S ⊆ [n],

(
Sym

(
RS(At)

⊗D
))⊗3

[I] = 1(J ⊆ S) · Sym
(

A⊗3D
t

)
[I]

By the guarantee of Lemma 4.38,

ES∼S

[(
Sym

(
RS(At)

⊗D
))⊗3

[I]

]
= Pr

S∼S
[J ⊆ S] · Sym

(
A⊗3D

t

)
[I]

=
n6D−rℓr − ℓ

n6D − n
· Sym

(
A⊗3D

t

)
[I]

Since r can only range from 1 to 6D, n6D−rℓr−ℓ

n6D−n
is between (ℓ/2n)6D and 1. Moreover, this coeffi-

cient only depends on the number of unique elements in I. This implies that when viewed as a

coefficient tensor indexed by I, the entries only depend on the entry locations. This completes the

proof.

4.5 Proof of Lemma 4.9: Dth roots of polynomials

In this section, we give an algorithm to desymmetrize a single noisy Dth power and complete the

proof of Lemma 4.9 that analyzes the last step in the algorithm. We restate it before continuing.

Lemma 4.39 (Stable Computation of D-th Roots, Lemma 4.9 restated). Let D, n ∈ N and δ > 0. Let

P ∈ Rn×n be an unknown symmetric matrix. Suppose P̃D(x) is a homogeneous degree-D polynomial in

n variables such that its coefficient tensor satisfies
∥∥∥P̃D − Sym(P⊗D)

∥∥∥
F
6 δ. There is an algorithm that

runs in nO(D) time and outputs Q̃ ∈ Rn×n such that if D is odd, then

∥∥∥Q̃ − P
∥∥∥

F
6 O(

√
nδ1/D) ,
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and if D is even, then

min
σ∈{±1}

∥∥∥Q̃ − σP
∥∥∥

F
6 O(nδ1/3D) · ‖P‖max .

Our algorithm is based on a sum-of-squares semidefinite relaxation for desymmetrization. We

recall some minimal background needed to describe it below.

4.5.1 Background on Sum-of-Squares

We will use the sum-of-squares semidefinite programming method to design and analyze the algo-

rithm to prove Lemma 4.9. We direct the reader to the monograph [FKP19] and the survey [BS14]

for more details.

A pseudo-distribution on Rn is a finitely supported signed measure µ : Rn → R such that

∑x:µ(x) 6=0 µ(x) = 1. The associated pseudo-expectation is a linear operator that assigns to every

polynomial f : Rn → R, the value Ẽµ f = ∑x:µ(x) 6=0 µ(x) f (x) that we call the pseudo-expectation

of f . We say that a pseudo-distribution µ on Rn has degree d if Ẽµ[ f 2] > 0 for every polynomial f

on Rn of degree 6 d/2.

A pseudo-distribution of degree d is said to satisfy a constraint {q > 0} for any polynomial

q of degree 6 d if for every square polynomial p of degree 6 d − deg(q), Ẽµ[pq] > 0. We say

that µ τ-approximately satisfies a constraint {q > 0} if for any sum-of-squares polynomial p,

Ẽµ[pq] > −τ ‖p‖2 where ‖p‖2 is the ℓ2 norm of the coefficient vector of p.

We will rely on the following basic fact about the pseudo-expectations.

Fact 4.40 (Pseudo-distribution Jensen). For any pseudo-distribution µ of degree d on Rn and any poly-

nomial p such that p2k is of degree at most d, Ẽµ[p2k] > Ẽµ[p2]k.

Of use to us is the following basic connection that forms the basis of the sum-of-squares algo-

rithm.

Fact 4.41 (Sum-of-Squares Algorithm, [Par00, Las01]). Given a system of degree 6 d polynomial con-

straints {qi > 0} in n variables and the promise that there is a degree-d pseudo-distribution satisfying

{qi > 0} as constraints, there is a nO(d) polylog(1/τ) time algorithm to find a pseudo-distribution of

degree d on Rn that τ-approximately satisfies the constraints {qi > 0}.

An (unconstrained) sum-of-squares proof of non-negativity of a polynomial p is an identity

of the form p = ∑i q2
i for polynomials q1, q2, . . .. A sum-of-squares proof of non-negativity of a

polynomial p on the solution set of a system of polynomial inequalities {ri > 0}i6R is an identity

of the form p = ∑i q2
i + ∑S⊆[R] pS ∏i∈S ri. The degree of such a sum-of-squares proof equals the

maximum of the degree of q2
i and deg(pS) + ∏i∈S ri over all S appearing in the sum above. We

write {qi > 0} t {p > 0} where t is the degree of the sum-of-squares proof.

We will rely on the following basic connection between sum-of-squares proofs:

Fact 4.42. Suppose {qi > 0} t {p > 0} for some polynomials qi and p. Let µ be a pseudo-distribution

satisfying {qi > 0} of degree > t. Then, Ẽµ[p] > 0.

We will also use the following sum-of-squares version of the almost triangle inequality.

Fact 4.43 (SoS Almost Triangle Inequality). For indeterminates a, b and any k ∈ N,

2k

{
(a + b)2k 6 22k(a2k + b2k)

}
.
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4.5.2 Algorithm for D = 2: Square root of polynomial

We first look at the case when D = 2. Given a noisy version of a degree-4 polynomial A(x)2 where

A(x) = x⊤Ax for an unknown symmetric matrix A, we hope to construct A. We remark that we

can only recover up to sign.

Lemma 4.44 (Taking square root of polynomials). Let P ∈ Rn×n be an unknown symmetric matrix,

and let δ = o(1) · ‖P‖max. Suppose P̃2(x) be a homogeneous degree-4 polynomial in n variables such that

its coefficient tensor satisfies
∥∥∥P̃2 − Sym(P⊗2)

∥∥∥
max

6 δ. Then, there is an algorithm that runs in O(n2)

time and outputs a symmetric matrix Q̃ ∈ Rn×n such that

min
σ∈{±1}

∥∥∥Q̃ − σP
∥∥∥

max
6 O(δ1/6) · ‖P‖max .

We will need the following simple fact:

Lemma 4.45. Let a > 0 and δ ∈ R such that |δ| 6 a2. Then
(√

a2 + δ − a
)2

6 |δ|.

Proof. If δ > 0, then
√

a2 + δ+ a >
√

a2 + δ− a > 0, and thus δ =
(√

a2 + δ + a
) (√

a2 + δ − a
)
>

(√
a2 + δ − a

)2
. Similarly if δ 6 0, then a +

√
a2 + δ > a −

√
a2 + δ > 0, and similar calculations

show that |δ| =
(

a +
√

a2 + δ
) (

a −
√

a2 + δ
)
>
(

a −
√

a2 + δ
)2

.

Proof of Lemma 4.44. Denote P2 := Sym(P⊗2), which is unknown to us. We will use the following

identities for i 6= j 6= k 6= ℓ:

• P2[i, i, i, i] = P[i, i]2.

• P2[i, i, i, j] = P[i, i]P[i, j].

• P2[i, i, j, j] = 1
3 P[i, i]P[j, j] + 2

3 P[i, j]2.

• P2[i, i, j, k] = 1
3 P[i, i]P[j, k] + 2

3 P[i, j]P[i, k].

• P2[i, j, k, ℓ] = 1
3(P[i, j]P[k, ℓ] + P[i, k]P[j, ℓ] + P[i, ℓ]P[j, k]).

First observe that from P2[i, i, i, i] we have the approximate magnitudes of the diagonal entries of

P. Our algorithm simply constructs the matrix Q̃ entry by entry. We split into two cases depending

on the diagonal.

P has a large diagonal entry. Suppose P̃2[i, i, i, i] > 4‖P‖2
maxδ1/3 for some i ∈ [n]. Then, we do

the following:

1. Set Q̃[i, i] =
√

P̃2[i, i, i, i].

2. For j 6= i, set Q̃[i, j] = P̃2[i,i,i,j]

Q̃[i,i]
.

3. For j, k 6= i, set Q̃[j, k] = 3P̃2[i,i,j,k]−2Q̃[i,j]Q̃[i,k]

Q̃[i,i]
.
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By Fact 4.45,
∣∣∣Q̃[i, i]− |P[i, i]|

∣∣∣ 6
√

δ. We can assume without loss of generality that |P[i, i]| = P[i, i]

because if it’s the opposite, we will simply recover Q̃ ≈ −P.

Next, for j 6= i, since P2[i, i, i, j] = P[i, i]P[i, j] and Q̃[i, i] > 2‖P‖maxδ1/6,

∣∣∣Q̃[i, j]− P[i, j]
∣∣∣ =

∣∣∣∣∣
P̃2[i, i, i, j] − Q̃[i, i]P[i, j]

Q̃[i, i]

∣∣∣∣∣

6

∣∣∣∣∣
(P[i, i]P[i, j] ± δ)− (P[i, i]±

√
δ)P[i, j]

Q̃[i, i]

∣∣∣∣∣

6
‖P‖max

√
δ + δ

Q̃[i, i]
6 δ1/3 .

Here we assume that δ ≪ ‖P‖2
max.

Finally, for i 6= j, k (here j can equal k), similar calculations show that

∣∣∣Q̃[j, k] − P[j, k]
∣∣∣ =

∣∣∣∣∣
3P̃2[i, i, j, k] − 2Q̃[i, j]Q̃[i, k]− Q̃[i, i]P[j, k]

Q̃[i, i]

∣∣∣∣∣ 6
4‖P‖maxδ1/4 +O(δ1/2)

Q̃[i, i]
6 4δ1/6 .

Therefore, we obtain Q̃ such that for all i, j ∈ [n],
∣∣∣Q̃[i, j]− P[i, j]

∣∣∣ 6 4δ1/6.

P has small diagonal entries. Suppose P̃2[i, i, i, i] 6 4‖P‖2
maxδ1/3 for all i ∈ [n]. Since P2[i, i, j, j] =

P[i, i]P[j, j] + P[i, j]2, there must be a pair (i, j) such that P̃2[i, i, j, j] > ‖P‖2
max(1 − O(δ1/3)). Then

we do the following:

1. Set Q̃[i, j] =
√

P̃2[i, i, j, j].

2. Set Q̃[k, k] = 0 for all k ∈ [n].

3. For k 6= i 6= j, set Q̃[i, k] = 3P̃2[i,i,j,k]

2Q̃[i,j]
and Q̃[j, k] = 3P̃2[i,j,j,k]

2Q̃[i,j]
.

4. For k 6= ℓ 6= i 6= j, set Q̃[k, ℓ] = 3P̃2[i,j,k,ℓ]−Q̃[i,k]Q̃[j,ℓ]−Q̃[i,ℓ]Q̃[j,k]

Q̃[i,j]
.

First, for each k ∈ [n], Q̃[k, k] = 0, thus

∣∣∣Q̃[k, k]− P[k, k]
∣∣∣ = |P[k, k]| 6 2‖P‖maxδ1/6 .

And since P[i, j]2 = P̃2[i, i, j, j] − P[i, i]P[j, j] ± δ = P̃2[i, i, j, j] ± 4‖P‖2
maxδ1/3 ± O(δ), by Fact 4.45,

∣∣∣Q̃[i, j]− |P[i, j]|
∣∣∣ 6 2‖P‖maxδ1/6 .

We can again assume without loss of generality that |P[i, j]| = P[i, j].
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Next, for k 6= i, j, since Q̃[i, j] > ‖P‖max(1 − O(δ1/3)) and |P[i, k]| 6 ‖P‖max,

∣∣∣Q̃[i, k]− P[i, k]
∣∣∣ =

∣∣∣∣∣
3P̃2[i, i, j, k] − 2Q̃[i, j]P[i, k]

2Q̃[i, j]

∣∣∣∣∣

=

∣∣∣∣∣
(P[i, i]P[j, k] + 2P[i, j]P[i, k] ± δ)− 2(P[i, j]± 2‖P‖maxδ1/6)P[i, k]

2Q̃[i, j]

∣∣∣∣∣
6 6‖P‖maxδ1/6 .

For k 6= ℓ 6= i 6= j, similar calculations show that

∣∣∣Q̃[k, ℓ] − P[k, ℓ]
∣∣∣ =

∣∣∣∣∣
3P̃2[i, j, k, ℓ] − Q̃[i, k]Q̃[j, ℓ]− Q̃[i, ℓ]Q̃[j, k]− Q̃[i, j]P[k, ℓ]

Q̃[i, j]

∣∣∣∣∣ 6 O(‖P‖maxδ1/6) .

Therefore, we obtain Q̃ such that for all i, j ∈ [n],
∣∣∣Q̃[i, j]− P[i, j]

∣∣∣ 6 O(‖P‖maxδ1/6).

4.5.3 Algorithm for the general case: D-th root of polynomial

We now focus on taking D-th of polynomials for D > 2. We will use the SoS algorithm.

Lemma 4.46. Let a, b be indeterminates, and let k ∈ N be an even integer, k > 2. Then,

k

a,b

{
k

∑
i=0

aibk−i >
1

2
(ak + bk)

}
.

Proof. Observe that for odd i 6 k − 1, aibk−i = (ab) · ai−1bk−i−1 where ai−1bk−i−1 is a squared poly-

nomial of degree k − 2. Further, we know that 2

a,b {
ab > − 1

2(a
2 + b2)

}
. Thus, we split ∑

k
i=0 aibk−i

into even and odd terms:

k

a,b
k

∑
i=0

aibk−i = ∑
i even

aibk−i + ∑
i odd

aibk−i >
k/2

∑
j=0

a2jbk−2j − 1

2
(a2 + b2)

k/2−1

∑
j=0

a2jbk−2−2j ,

using the fact that a2jbk−2−2j is a squared polynomial. Next, observe that

1

2
(a2 + b2)(ak−2 + ak−4b2 + · · ·+ a2bk−4 + bk−2) =

1

2
(ak + bk) + (ak−2b2 + · · ·+ a2bk−2) .

Thus, we have

k

a,b

{
k

∑
i=0

aibk−i >
1

2
(ak + bk)

}
.

Lemma 4.47. Let a, b be indeterminates, and let k ∈ N be an odd integer. Then,

2k

a,b
{
(a − b)2k 6 22(k−1)(ak − bk)2

}
.

Proof. The statement is clearly true for k = 1, so we can assume that k > 3. First note that

(ak − bk)2 = (a − b)2
(

∑
k−1
i=0 aibk−1−i

)2
. Since k − 1 is even, by Lemma 4.46 we have that k−1

a,b
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{
∑

k−1
i=0 aibk−1−i > 1

2(a
k−1 + bk−1)

}
, hence

2k

a,b
{
(ak − bk)2 > (a − b)2 · 1

4
(ak−1 + bk−1)2

}
.

Next, since k − 1 is even, by SoS almost triangle inequality (Fact 4.43),

k−1

a,b
{
(a − b)k−1 6 2k−2(ak−1 + bk−1)

}
.

Thus,
2k

a,b
{
(a − b)2k 6 (a − b)2 · 22(k−2)(ak−1 + bk−1)2

}
, and we have

2k

a,b
{

22(k−1)(ak − bk)2 − (a − b)2k > 0
}

.

This completes the proof.

Lemma 4.48. Let a, b be indeterminates, and let k ∈ N. Then,

4k

a,b
{
(a2 − b2)2k 6 22(k−1)(a2k − b2k)2

}
.

Proof. First note that a2k − b2k = (a2 − b2)∑
k−1
i=0 a2(k−1−i)b2i, thus

22(k−1)(a2k − b2k)2 − (a2 − b2)2k = (a2 − b2)2



(

2k−1
k−1

∑
i=0

a2(k−1−i)b2i

)2

− (a2 − b2)2(k−1)


 .

Next, (a2 − b2)k−1 = ∑
k−1
i=0 (k−1

i )a2(k−1−i)b2i,

2k−1
k−1

∑
i=0

a2(k−1−i)b2i ± (a2 − b2)k−1 =
k−1

∑
i=0

(
2k−1 ± (−1)i

(
k − 1

i

))
a2(k−1−i)b2i ,

which are both sum-of-squares polynomials since (k−1
i ) < 2k−1. By the fact that a2 − b2 = (a −

b)(a + b), we get that 22(k−1)(a2k − b2k)2 − (a2 − b2)2k is a sum-of-squares polynomial, completing

the proof.

Proof of Lemma 4.9. Let Q be an n × n symmetric matrix-valued indeterminate. We solve for a

degree-2D pseudo-distribution µ in Q such that

Ẽµ

∥∥∥Sym(Q⊗D)− P̃D

∥∥∥
2

F
6 δ2 .

Note that
∥∥∥Sym(Q⊗D)− P̃D

∥∥∥
2

F
is a degree-2D polynomial in D. Such a pseudo-distribution is

feasible since the matrix P satisfies the inequality. Then, since 2

a,b
(a + b)2 > 1

2 a2 − b2,

Ẽµ

∥∥∥Sym(Q⊗D)− P̃D

∥∥∥
2

F
>

1

2
Ẽµ

∥∥∥Sym(Q⊗D)− Sym(P⊗D)
∥∥∥

2

F
− Ẽµ

∥∥∥Sym(P⊗D)− P̃D

∥∥∥
2

F
.
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Thus, we can conclude that

Ẽµ

∥∥∥Sym(Q⊗D)− Sym(P⊗D)
∥∥∥

2

F
6 4δ2 . (15)

Consider a fixed z ∈ Rn such that ‖z‖2 = 1. With slight abuse of notation, we denote Q(z) = z⊤Qz

as a linear polynomial in Q. Then, by pseudo-distribution Jensen inequality (Fact 4.40),

Ẽµ

(
Q(z)D − P(z)D

)2
= Ẽµ

[〈
Sym(Q⊗D)− Sym(P⊗D), z⊗2D

〉2
]

6 Ẽµ

∥∥∥Sym(Q⊗D)− Sym(P⊗D)
∥∥∥

2

F
· ‖z‖4D

2

6 4δ2 .

(16)

D is odd. By pseudo-distribution Jensen inequality (Fact 4.40), Lemma 4.47 and (16), we have

that

(
Ẽµ[Q(z)− P(z)]

)2D
6 Ẽµ (Q(z)− P(z))2D 6 22(D−1) · Ẽµ

(
Q(z)D − P(z)D

)2
6 22Dδ2 .

The above holds for any unit vector z ∈ Rn, and since Ẽµ[Q(z)− P(z)] =
〈

Ẽµ[Q]− P, zz⊤
〉

,

∥∥∥Ẽµ[Q]− P
∥∥∥

2
= max

z:‖z‖2=1

∣∣∣
〈

Ẽµ[Q]− P, zz⊤
〉∣∣∣ 6 2δ1/D .

As Frobenius norm and spectral norm is the same up to a factor
√

n, we get that
∥∥∥Ẽµ[Q]− P

∥∥∥
F
6

2
√

nδ1/D. Thus, setting Q̃ = Ẽµ[Q], we get the desired result.

D is even. By pseudo-distribution Jensen inequality (Fact 4.40), Lemma 4.48 (with k = D/2) and

(16), we have that

Ẽµ

[
Q(z)2 − P(z)2

]D
6 Ẽµ

[(
Q(z)2 − P(z)2

)D
]

6 2D−2 · Ẽµ

(
Q(z)D − P(z)D

)2
6 2Dδ2 .

Thus,
∣∣∣Ẽµ

[
Q(z)2

]
− P(z)2

∣∣∣ 6 2δ2/D holds for all unit vectors z. This means that we get a tensor

P̃2 such that ∥∥∥P̃2 − Sym(P⊗2)
∥∥∥

max
6 2δ2/D .

Now we can apply Lemma 4.44 and obtain a symmetric matrix Q̃ ∈ Rn×n such that

min
σ∈{±1}

∥∥∥Q̃ − σP
∥∥∥

max
6 O(δ1/3D) · ‖P‖max .

This implies a Frobenius norm bound minσ∈{±1}
∥∥∥Q̃ − σP

∥∥∥
F
6 O(nδ1/3D) · ‖P‖max.
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5 Decomposing Power-Sums of High-degree Polynomials

In this section, we give a generalization of our algorithm for decomposing power-sums of quadrat-

ics to power-sums of arbitrary degree polynomials. The outline of the algorithm remains the same

with one main difference in the span finding step (Algorithm 4.2.1). For the quadratic case, we

sample a random polynomial p(y) of degree 2 and work with the polynomial p(y)D in span-

finding; for generic degree-K polynomials, we will instead sample a random polynomial of degree

2(K − 1)D.

For the technical analysis, despite following the same outline, there are two major differences

from the quadratic case: 1) the reduction from UD = VD to proving feasibility of a linear system

(described in Section 4.1.1), and 2) the analysis of V and its null space (described in Section 4.1.2).

For (1), the difference arises from the structure of the partial derivatives; we will derive the analo-

gous linear system in Section 5.1. For (2), the major difference arises from the fact that the equation

∑ Bt(y)D pt(y) + G(y)q(y) = 0 (equation 17) for a random degree 2(K − 1)D polynomial G(y) and

random degree K polynomials Bt(y), has a lot more solutions; we will state the analogous V matrix

and identify the correct null space in Section 5.2.

The main result of this section is the following theorem that is analogous to Theorem 4.1.

Theorem 5.1. There is an algorithm that takes input parameters n, m, D, K ∈ N, an accuracy parameter

τ > 0, and the coefficient tensor P̂ of a degree-3KD polynomial P̂ in n variables with total bit complex-

ity size(P̂), runs in time (size(P̂)n)O(KD) polylog(1/τ), and outputs a sequence of symmetric tensors

Ã1, Ã2, . . . , Ãm ∈ (Rn)⊗K with the following guarantee.

Suppose P̂(x) = ∑
m
t=1 At(x)3D + E(x) where each At is a symmetric K-th order tensor of independent

N (0, 1) entries, ‖E‖F 6 n−O(D), and m 6 ( n
polylog(n)

)
2KD

5K−4 . Then, with probability at least 0.99 over the

draw of Ats and internal randomness of the algorithm, for odd D,

min
π∈Sm

max
t∈[m]

∥∥∥Ãt − Aπ(t)

∥∥∥
F
6 poly(n)

(
‖E‖1/D

F + τ1/D
)

,

and for even D,

min
π∈Sm

max
t∈[m]

min
σ∈{±1}

∥∥∥Ãt − σAπ(t)

∥∥∥
F
6 poly(n)

(
‖E‖1/3D

F + τ1/3D
)

.

Remark 5.2. The upper bound on the number of polynomials m 6 Õ(n
2KD
5K−4 ) comes from the

requirement m 6 Õ(ℓKD/2) and mℓ2D(K−1) 6 Õ(n2D) from Lemma 5.4 and Lemma 5.5. The best m

we get is by setting ℓ = n
4

5K−4 (which is o(n) when K > 2), which gives our bound on m. Note that

for K = 2, we get m 6 Õ(n2D/3).

The first step of the algorithm is identical: given a noisy version of the polynomial P(x) =

∑
m
t=1 At(x)3D where At(x) is a degree-K polynomial, we take 2D partial derivatives and restrict to

a fixed subset of ℓ = o(n) variables, resulting in a polynomial of degree (3K − 2)D. We first define

the notion of the relevant restriction operator analogous to Definition 4.2.

Definition 5.3 (Restriction operator). Given a restriction matrix M corresponding to a set S ⊆ [n]

with |S| = ℓ, we associate it with an operator RM defined as follows: for a k-th order tensor

T ∈ (Rn)⊗k, we write RM(T) ∈ (Rn)⊗k which is the symmetric k-th order tensor obtained by

zeroing out the entry of T indexed by I if any index in I is not in S.
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Given a restriction matrix M, let Bt(y) = At ◦ M(y), and

VD := span
(

Bt(y)
DyT | t ∈ [m], T ∈ [ℓ]2(K−1)D

)
.

Same as the analysis of Lemma 4.3, we prove that for small enough m, ℓ, the linear span UD of the

restricted partials of P is equal to VD.

Lemma 5.4 (Analysis of the Subspace of Restricted Partials of P̂). Fix D, K ∈ N and let n, m, ℓ ∈ N

such that m 6 ( ℓ

polylog(ℓ) )
KD/2 and mℓ2(K−1)D 6 ( n

polylog(n) )
2D. Given P̂ = ∑t∈[m] At(x)3D + E(x)

where each At is a degree-K homogeneous polynomial with i.i.d. N (0, 1) entries, and a restriction matrix

M ∈ Rn×ℓ, we have that with probability 1− n−Ω(D) over the choice of At’s, an analogue of Algorithm 4.1.1

outputs a subspace ṼD of Rℓ(3K−2)D that satisfies:

∥∥∥ṼD − VD

∥∥∥
F
6 O

( ‖E‖F

nDℓKD/2

)
,

with Bt(y) = At ◦ M(y).

The proof is almost identical to the proof of Lemma 4.3: we prove UD = VD (Lemma 5.10)

by proving that a different matrix L (Definition 5.14) defining the linear system is full row rank

(Lemma 5.15), hence the linear system is feasible. The only difference is the L matrix since the

structure of the partial derivatives is different.

Span finding step: comparison to the quadratic case. We would like to obtain an estimate of

the subspace WD = span(Bt(y)D | t ∈ [m]) given a basis for ṼD. We reemphasize that this is

the main difference in the algorithm. We choose a random polynomial G of degree 2D(K − 1)

and write VG := span(G(y)yS | S ∈ [m]KD). Note the difference between VD and VG: they are

both subspaces of polynomials of degree (3K − 2)D, but Bt(y)D has degree KD which is smaller

than 2(K − 1)D (for K > 2). Nevertheless, we show that we can still obtain WD by taking the

intersection of VD and VG to obtain span(Bt(y)DG(y)) (Lemma 5.23) and follow the remaining

steps in Algorithm 4.2.1.

Lemma 5.5 (Extracting Span of Bt(y)D). Fix D, K ∈ N, K > 2 and let n, m, ℓ ∈ N such that m 6

( ℓ

polylog(ℓ))
KD/2. Given degree-K homogeneous polynomials Bt for t ∈ [m] in ℓ variables with coefficients

drawn i.i.d from N (0, 1), with probability 1 − ℓ−Ω(D) an analogue of Algorithm 4.2.1 outputs W̃D that

satisfies: ∥∥∥W̃D −WD

∥∥∥
F
6 mℓ

O(KD)‖VD − ṼD‖F.

The remaining steps are identical to the quadratic case.

Lemma 5.6 (Desymmetrization of Restricted P̂ via Least-Squares). Let D, K, m, ℓ ∈ N such that

m 6 ( ℓ

polylog(ℓ) )
KD/2. For each t ∈ [m], let Bt be a degree-K homogeneous polynomial in ℓ variables with

i.i.d. N (0, 1) entries. Suppose W̃D is a subspace of RℓKD such that
∥∥∥W̃D −WD

∥∥∥ 6 1/(poly(m)ℓO(KD)),

then with probability 1 − nΩ(D) over the choice of Bt’s, an analogue of Algorithm 4.3.1 outputs a tensor T̃
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such that:
∥∥∥∥∥T̃ − ∑

t∈[m]

(
Sym(B⊗D

t )
)⊗3

∥∥∥∥∥
F

6 poly(m)
(
ℓ

O(KD)‖WD − W̃D‖F + ‖E‖F

)
.

We show how to aggregate the desymmetrized estimates above for nO(KD) pseudorandom

restriction matrices to obtain the estimate of the unrestricted tensor we need. The following is

identical to Lemma 4.6 except for a small change in the parameters:

Lemma 5.7 (Aggregating Pseudorandom Restrictions). Let D, K, n, ℓ, m ∈ N such that 6DK 6 ℓ 6

n. There is an nO(KD)-time computable collection S of subsets of [n] such that each S ∈ S satisfies ℓ 6

|S| 6 6DKℓ and that

ES∼S
m

∑
t=1

(
Sym

(
RS(At)

⊗D
))⊗3

= C ◦
m

∑
t=1

(
Sym(A⊗D

t )
)⊗3

where C ∈ (Rn)⊗6KD is a fixed tensor whose entries depend only on the entry locations, and each entry of

C has value within ((ℓ/2n)6KD , 1).

Given the partially desymmetrized tensor, we will apply the off-the-shelf algorithm for 3rd

order tensor decomposition (Fact 4.7) to obtain Sym(A⊗D
t ) for t 6 m. To apply tensor decomposi-

tion, we need the following condition number bound:

Lemma 5.8 (Condition number). Under the same assumptions as Lemma 5.4, let AD be the nDK × m

matrix whose columns are the coefficient vectors of At(x)D for t ∈ [m]. Then, with probability 1− n−Ω(D),

the condition number κ(AD) 6 O(1).

Finally, we extract At from Sym(A⊗D
t ) using the same procedure as Lemma 4.9:

Lemma 5.9 (Stable Computation of D-th Roots). Let K, D, n ∈ N and δ > 0. Let P ∈ (Rn)⊗K be an

unknown symmetric tensor. Suppose P̃D(x) is a homogeneous degree-KD polynomial in n variables such

that its coefficient tensor satisfies
∥∥∥P̃D − Sym(P⊗D)

∥∥∥
F
6 δ. There is an algorithm that runs in nO(KD)

time and outputs Q̃ ∈ (Rn)⊗K such that if D is odd, then

∥∥∥Q̃ − P
∥∥∥

F
6 nO(K)δ1/D ,

and if D is even, then

min
σ∈{±1}

∥∥∥Q̃ − σP
∥∥∥

F
6 nO(K)δ1/3D · ‖P‖max .

These sequence of steps and the analyses captured in the above lemmas are enough to imme-

diately complete the proof of Theorem 5.1.

5.1 Analysis of the partial derivative span

It is clear that UD ⊆ VD. We will prove that the two subspaces are in fact equal. The following

lemma is almost identical to Lemma 4.10.
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Lemma 5.10 (UD = VD). Fix K, D ∈ N. Let ℓ, m, n ∈ N such that mℓ2(K−1)D 6 ( n
polylog(n)

)2D. Let

A1, . . . , Am ∈ (Rn)⊗K be random symmetric tensors with independent Gaussian entries, let M ∈ Rn×ℓ be

a fixed restriction matrix. Then, with probability 1 − n−Ω(D) over the draw of Ats, we have that UD = VD

and further, for any degree-2(K − 1)D homogeneous polynomials Q1, . . . , Qm, there exist coefficients R =

{RI}I∈[n]2D such that

∑
I⊆[n], |I|=2D

RI ·
m

∑
t=1

(∂I A3D
t ) ◦ M(y) =

m

∑
t=1

Bt(y)
DQt(y) ,

and moreover, ‖R‖F 6 O(n−D)∑
m
t=1 ‖Qt‖F.

In this section, we proceed to prove the main lemma for estimating the restricted partial span

of powers of high-degree polynomials. Recall that in Section 4.1.1, we reduce the task of proving

UD = VD to proving the feasibility of a linear system characterized by the matrix L in Defini-

tion 4.18. We will follow the same steps and get an analogous linear system.

Recall that in the case of powers of quadratic polynomials, the partial derivatives are nicely

characterized as a sum of products of linear polynomial of 〈At[i], x〉 and scalars of the form of

At[i1, i2]. This, not surprisingly, is no longer true when we go to higher degree polynomials; that

being said, we can still get a somewhat “nice” characterization of the coefficient vectors that arise

in the partial derivatives. Towards this end, we first need to generalize our definition of bucket

profile from Definition 4.15:

Definition 5.11 (Generalized bucket profile). For any given K > 2, We call γ = [γ1, . . . , γK] a

generalized bucket profile of the 2D partial derivative such that

K

∑
i=1

γi · i = 2D .

Let Γ2D be the set of bucket profiles, and let γ∗ = (2D, 0, . . . , 0) be the dominant bucket profile.

Furthermore, we define deg(γ) := ∑
K
i=1(K − i)γi = K(∑K

i=1 γi)− 2D.

For each bucket profile, we associate with a bucket partition (κ1(γ), . . . , κK(γ)) of {1, 2, . . . , 2D}
such that there are γi partitions (ordered tuples) of size i, sorted in increasing order of the partition

sizes, and κi(γ) is the collection of the γi partitions of size i:

κ1(γ) =
(
(1), (2), . . . , (γ1)

)
, κ2(γ) =

(
(γ1 + 1, γ1 + 2), . . . , (γ1 + 2γ2 − 1, γ1 + 2γ2)

)
,

and so on. Furthermore, we define (κ̃1(γ), . . . , κ̃K(γ)) to be a partition of {1, 2, . . . , deg(γ)} such

that there are γi partitions (ordered tuples) of size K − i, sorted in decreasing order of the partition

sizes, and κ̃i(γ) is the collection of the γi partitions of size K − i:

κ̃1(γ) =
(
(1, 2, . . . , K − 1), . . . , ((γ1 − 1)(K − 1) + 1, . . . , γ1(K − 1))

)

κ̃2(γ) =
(
(γ1(K − 1) + 1, . . . , γ1(K − 1) + (K − 2)), . . . ,

(γ1(K − 1) + (γ2 − 1)(K − 2) + 1, . . . , γ1(K − 1) + γ2(K − 2))
)

and so on. Let κi(γ) = (S1, . . . , Sγi
) and κ̃i(γ) = (T1, . . . , Tγi

) where |Sj|+ |Tj| = K for all j ∈ [γi],
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and we define κi‖κ̃i(γ) to be the collection of tuples ((S1, T1), . . . , (Sγi
, Tγi

)).

Remark 5.12 (Interpretation of γ and the terms in partial derivatives of A3D
t ). To better understand

Definition 5.11, we make the following remarks,

• Imagine A3D
t as being 3D buckets, and taking 2D partial derivatives means dropping 2D

balls in these buckets such that each bucket contains at most K balls. Then, for i ∈ [K], γi de-

notes the number of buckets with i balls, hence ∑
K
i=1 γi · i = 2D. Having i balls corresponds

to i-th derivatives of At, which is degree-(K − i) polynomials.

• Let I = (i1, . . . , i2D) ∈ [n]2D be an ordered tuple, and consider ∂I A3D
t and a bucket profile

γ ∈ Γ2D. Note that there are 3D − ∑
K
j=1 γj empty buckets. Thus, γ represents the terms in

∂I A3D
t that are products of A

3D−∑j γj

t and γj polynomials of degree K − j. These γj degree-

(K − j) polynomials can be represented as
〈

At[Iπ(S)], x⊗K−j
〉

for S ∈ κj(γ) where |S| = j

and for some permutation π ∈ S2D. Since |Iπ(S)| = |S| = j, At[Iπ(S)] is an order-(K − j) slice

of the tensor At ∈ (Rn)⊗K, i.e. At[Iπ(S)] ∈ (Rn)⊗K−j.

• The product over j ∈ [K] and S ∈ κj(γ) (where |κj(γ)| = γj) can further be written as the

product between the tensor
⊗

j∈[K]
⊗

S∈κj(γ)
At[Iπ(S)], which is a tensor of order ∑

K
j=1(K −

j)γj = deg(γ), and the tensor x⊗deg(γ). Therefore, the term in ∂I A3D
t corresponding to γ can

be written as A
3D−∑

K
j=1 γj

t · pt,I,γ(x) for some polynomial pt,I,γ of degree deg(γ).

With Definition 5.11 and the discussion in Remark 5.12 in mind, we now write out the partial

derivatives for I = {i1, . . . , i2D} ∈ [n]2D as follows,

∂I A3D
t (x) = ∑

γ∈Γ2D

∑
π∈S2D

c(γ, K)At(x)3D−∑
K
j=1 γj ∏

j∈[K]
∏

S∈κj(γ)

〈At[Iπ(S)], x⊗K−j〉

= ∑
γ∈Γ2D

c(γ, K)At(x)3D−∑
K
j=1 γj ∑

π∈S2D

〈
⊗

j∈[K]

⊗

S∈κj(γ)

At[Iπ(S)], x⊗ ∑
K
j=1(K−j)γj

〉

= ∑
γ∈Γ2D

At(x)3D−∑
K
j=1 γj · pt,I,γ(x)

where c(γ, K) is a constant and deg(pt,I,γ) = ∑
K
j=1(K − j)γj = deg(γ).

We remark that the exponent 3D − ∑
K
j=1 γj of At(x) is minimized at D when γ = γ∗ =

(2D, 0, . . . , 0) and we have deg(pt,I,γ∗) = 2D · (K − 1). Note also that the total degree of A3D
t

is 3KD, hence after taking 2D derivatives, the degree of ∂I A3D
t is (3K − 2)D.

Next, we set x = My where M is the given restriction matrix, and let qt,I,γ(y) = pt,I,γ(My).

For a given bucket profile γ, the polynomial qt,I,γ(y) is a degree deg(γ) polynomial in variables y.

Similar to the strategy in Section 4.1.1, we define the linear system with the focus on γ = γ∗:

Definition 5.13 (Linear system for UD = VD for degree-K polynomials). Given arbitrary degree-

(K − 1)D polynomials Q1, . . . , Qm, we define the following linear system in variables {RI}I∈[n]2D :

Given arbitrary degree-2(K− 1)D homogeneous polynomials Q1, . . . , Qm, we define the following
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linear system in variables {RI}I∈[n]2D :

∑
I∈[n]2D

RI · qt,I,γ∗(y) = Qt(y), ∀t ∈ [m],

∑
I∈[n]2D

RI · qt,I,γ(y) = 0, ∀γ 6= γ∗, t ∈ [m] .

Note that qt,I,γ is of degree deg(γ), so each γ ∈ Γ2D and each multiset J ∈ [ℓ]deg(γ) gives a

linear constraint in the linear system above. Thus, for a J ∈ [ℓ]deg(γ), we would like to determine

the coefficient of yJ in qt,I,γ(y). For convenience, we let J′ ∈ [n]deg(γ) be the multiset in [n] if we

map J back to [n].

q̂t,I,γ(J) = c′(γ, K) · ∑
π∈S2D

∑
π′∈Sdeg(γ)

∏
i∈[K]

∏
S,T∈κi‖κ̃i(γ)

At[Iπ(S), J′π′(T)]

= c′(γ, K) · ∑
π∈S2D

∑
π′∈Sdeg(γ)


⊗

i∈[K]

⊗

T∈κ̃i(γ)

At[J
′
π′(T)]


 [π(I)]

= c′′(γ, K) · Sym


 ∑

π′∈Sdeg(γ)

⊗

i∈[K]

⊗

T∈κ̃i(γ)

At[J
′
π′(T)]


 [I] .

Let us parse through the expression above. First, |I| = 2D by definition and |J| = deg(γ)

since this is the degree of qt,I,γ(y). We recall Definition 5.11: for an i ∈ [K], κi‖κ̃i(γ) denotes

((S1, T1), . . . , (Sγi
, Tγi

)) where each S, T ∈ κi‖κ̃i(γ) satisfy |S| = i and |T| = K − i. Thus, |Iπ(S)| = i

and |J′π(T)| = K − i, and together they index a single entry At[Iπ(S), J′π′(T)] of the order-K tensor At.

Furthermore, At[J′π′(T)] is an order-i slice of the tensor At, and thus taking tensor products over

i ∈ [K] and T ∈ κ̃i(γ), we get a tensor of order ∑
K
i=1 γi · i = 2D as desired.

At a high level, we have written q̂t,I,γ(J), which is the coefficient of monomial yJ in qt,I,γ(y),

as an entry of an order-2D symmetric tensor indexed by I ∈ [n]2D . Now, we can rewrite ∑I RI ·
q̂t,I,γ(J) as an inner product between the tensor R and an order-2D symmetric tensor determined

by t, γ and J. This leads us to the following matrix,

Definition 5.14. For a fixed K > 2, for each γ in Γ2D, let Lγ be the mℓdeg(γ) × n2D matrix whose

each row is indexed by t ∈ [m] and a multiset J ∈ [ℓ]deg(γ):

Lγ[(t, J), ·] = vec


Sym


 ∑

π∈Sdeg(γ)

⊗

i∈[K]

⊗

T∈κ̃i(γ)

At[J
′
π(T)]






i.e. each row is a flattened vector of a symmetric order 2D tensor of dimension n. Moreover, let

rD = m ∑γ∈Γ2D
ℓdeg(γ), and define L to be the rD × n2D matrix formed by concatenating the rows

of Lγ for γ ∈ Γ2D.

Now, we prove a singular value lower bound for L. We defer the proof to Section 6.3.3.

Lemma 5.15 (Singular value lower bound for L for degree-K polynomials). For a fixed K, D ∈
N, let m, ℓ, n ∈ N such that mℓ2(K−1)D 6 ( n

polylog(n)
)2D. Let L ∈ RrD×n2D

be the matrix defined in

Definition 5.14. Then, with probability 1 − n−Ω(D), σrD
(L) > Ω(nD).
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The proof of Lemma 5.10 follows immediately from Lemma 5.15.

5.2 Analysis for VD and the span finding step

Recall that we define

VD = {Bt(y)
DyT | t ∈ [m], T ∈ [ℓ]2(K−1)D} .

In the span finding step, we will sample a random polynomial G(y) of degree 2(K − 1)D. We

need to analyze what sets of polynomials (p1, . . . , pm, q) satisfy

m

∑
t=1

Bt(y)
D pt(y) + G(y)q(y) = 0 , (17)

where deg(pt) = 2(K − 1)D and deg(q) = KD. Thus, we define the following, which is the

original V matrix with an extra block.

Definition 5.16 (Matrix V). Let G ∈ (Rℓ)⊗2(K−1)D be a tensor with i.i.d. Gaussian entries. We

define V to be the ℓ(3K−2)D × (mℓ2(K−1)D + ℓKD) matrix of the form

V =
[
V | VG

]

where VG is a ℓ(3K−2)D × ℓKD matrix whose columns are coefficient vectors of the polynomials

ℓ−
(K−2)D

2 G(y)yS for S ∈ [ℓ]KD . Note that the scaling of ℓ−
(K−2)D

2 G(y)yS is to ensure that the columns

of V and VG have roughly the same norms.

Observe that in (17), the degree of Bt(y)D is KD but the degree of pt(y) is 2(K − 1)D which is

larger than KD for K > 2. Therefore, clearly the dimension of the null space of V is much larger

than (m
2 ) (which is the case for K = 2). Furthermore, we have the extra block VG which gives

additional null space. We define the following sets of (p1, . . . , pm, q) which are the “obvious”

solutions to (17).

Definition 5.17 (Null space of V). Given degree-K homogeneous polynomials B1, . . . , Bm and a

degree-2(K − 1)D polynomial G, we define N1 to be the following set of (m
2)ℓ(K−2)D tuples of

polynomials (p1, . . . , pm, q):

N1 =
{
(p1, . . . , pm, q) | pt1

= Bt2(y)
DyT , pt2 = −Bt1

(y)DyT, ps = 0, q = 0 for s 6= t1, t2

}
t1<t26m,

T∈[ℓ](K−2)D

and N2 to be the following set of m tuples:

N2 =
{
(p1, . . . , pm, q) | pt = G(y), ps = 0, and q = Bt(y)

D for s 6= t
}

t∈[m]
.

Here each pt is degree 2(K − 1)D and q is degree KD.

We next show that N1,N2 are in fact the only solutions to (17).

Lemma 5.18 (Singular value lower bound for V). Fix K, D ∈ N and K > 3. Let m, ℓ ∈ N such that

m 6 ( ℓ

polylog(ℓ))
KD/2. Let B1, . . . , Bm be degree-K homogeneous polynomials and let G be a degree-2(K −
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1)D homogeneous polynomial, all in ℓ variables and have i.i.d. standard Gaussian coefficients. Then, with

probability 1 − ℓ−Ω(D), the set of polynomials (p1, . . . , pm, q) with deg(pt) = 2(K − 1)D and deg(q) =

KD satisfying
m

∑
t=1

Bt(y)
D pt(y) + G(y)q(y) = 0

forms a subspace of dimension (m
2)ℓ(K−2)D + m spanned by N1 ∪N2.

Furthermore, the matrix V defined in Definition 5.16 satisfies rank(V) = mℓ2(K−1)D − |N1| − |N2|
and σrank(V)(V) > Ω(ℓKD/2).

To prove Lemma 5.18, we first define the following matrices analogous to Definition 4.20 which

represent N1 and N2:

Definition 5.19 (Matrix N). We define N to be the (m
2)ℓ(K−2)D × mℓ2(K−1)D matrix whose rows are

indexed by (t1, t2, T) for t1 < t2 ∈ [m] and T ∈ [ℓ](K−2)D, and each row represents a collection of

m degree-2(K − 1)D polynomials (p1, . . . , pm) such that

ps(y) =





Bt2(y)
DyT if s = t1

−Bt1
(y)DyT if s = t2

0 otherwise.

Definition 5.20 (Matrix N). Let G ∈ (Rℓ)⊗2(K−1)D be a tensor with i.i.d. Gaussian entries. We

define N to be the ((m
2 )ℓ(K−2)D + m)× (mℓ2(K−1)D + ℓKD) of the form

N =

[
N 0

NG NB

]

where N is (m
2 )ℓ(K−2)D × mℓ2(K−1)D defined in Definition 5.20, NG is m × mℓ2(K−1)D such that for

s ∈ [m], t ∈ [m] and I ∈ [ℓ]2(K−1)D,

NG[s, (t, I)] =

{
ℓ−

(K−2)D
2 G[I] if s = t,

0 otherwise,

and NB is an m × ℓKD matrix such that for s ∈ [m], J ∈ [ℓ]KD ,

NB[s, J] = −(Bs(y)
D)[J] .

Observe that the rows of [N | 0] exactly represent N1 and the rows of [NG | NB] represent N2.

Next, we prove the following lemma analogous to Lemma 4.21:

Lemma 5.21 (Rank of N). Let K, D, m, ℓ ∈ N be the same parameters as Lemma 5.18. Let N be the

((m
2)ℓ(K−2)D + m) × (mℓ2(K−1)D + ℓKD) matrix defined in Definition 5.20. Then, with probability 1 −

ℓ−Ω(D),

rank(N) =

(
m

2

)
ℓ(K−2)D + m, σrank(N)(N) > Ω(ℓKD/2) .

Finally, we show that the row span of N equals the null space of V. Specifically, we prove the

following lemma analogous to Lemma 4.22:
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Lemma 5.22. Let K, D, m, ℓ ∈ N be the same parameters as Lemma 5.18. Let V, N be the matrices defined

in Definition 5.16 and 5.20. Then with probability 1 − ℓ−Ω(D),

λmin

(
V

⊤
V + N

⊤
N
)
> Ω(ℓKD) .

We defer the proofs to Section 6.5. Combining the above lemmas, we can complete the proof

of Lemma 5.18, which is almost identical to the proof of Lemma 4.11.

Proof of Lemma 5.18. By the definition of V and N, V · N
⊤
= 0 because each row of N represents a

solution to
m

∑
t=1

Bt(y)
D pt(y) + G(y)q(y) = 0 .

This implies that the matrices V
⊤

V and N
⊤

N have orthogonal column span. By Lemma 5.21,

rank(N) = (m
2)ℓ(K−2)D + m, which is exactly |N1|+ |N2|, and by Lemma 5.22, the row span of N

is exactly the null space of V
⊤

V. This implies that rank(V) = mℓ2(K−1)D − |N1| − |N2| and that

span(N1 ∪N2) is exactly the set of solutions to ∑
m
t=1 Bt(y)D pt(y) + G(y)q(y) = 0.

V
⊤

V + N
⊤

N having smallest eigenvalue at least Ω(ℓKD) further shows that the smallest sin-

gular value of V is lower bounded by Ω(ℓKD/2). This completes the proof.

Span finding step. With Lemma 5.18, we can now analyze our span finding step. For the random

polynomial G, let

VG := span
(

G(y)yS | S ∈ [ℓ]KD
)

,

WG := span
(

G(y)Bt(y)
D | t ∈ [m]

)
.

It is easy to see that the subspace WG lies inside the intersection of VD and VG. Same as the

proof of Lemma 4.4, we will show that in fact the intersection is equal to WG. The following lemma

is analogous to Lemma 4.23

Lemma 5.23. For degree-K homogeneous polynomials Bt(y), t ∈ [m] and degree-2(K − 1)D polynomial

G(y) whose coefficients are chosen independently at random from N (0, 1), we have that with probability 1

over the draw of Ats and G, we have:

VD ∩ VG = WG ,

with dim(Wp) = m.

The proof of Lemma 5.23 via Lemma 5.18 is identical to the proof of Lemma 4.23. Given WG,

we can then divide out the polynomial G(y) and get the subspace span(Bt(y)D | t ∈ [m]). Analo-

gous to Section 4.2 we can make the above algorithm error resilient by taking a robust intersection

of the subspaces and then performing robust division.
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6 Singular Value Lower Bounds for Structured Random Matrices

6.1 Detailed overview

A two-line strategy Before we delve into the “real” challenge of what might come up in our

analysis, for the sake of exposition, let’s recall our G.O.E. toy example A ∈ Rm×n for m ≪ n. To

obtain a singular value lower bound for A when m ≪ n, we notice it can be reduced to showing

A⊤A ≈ (1 + o(1))n · I ,

which amounts to checking

• Large diagonal: diag(A⊤A) = (1 + o(1))n;

• Small off-diagonal:
∥∥off-diagonal(A⊤A)

∥∥
op

6 o(n).

For the above example, one may find both components rather immediate as the large diagonal

follows via standard Gaussian concentration. While establishing a small spectral norm bound for

the off-diagonal block might require slightly more work, there are several techniques to establish

the nearly optimal bound of O(
√

m
√

n) on its spectral norm. That said, we may hope to carry

out the above strategy on potentially more complicated matrices (with correlated entries), and

let’s dig into one example that arises in our analysis for the simplest setting in our main result for

decomposing cubics of quadratic.

Example of structured random matrices To describe the matrix, let A1, . . . , Am be random ma-

trices of size n × n with each entry i.i.d. N (0, 1). We will describe a new matrix whose entries are

functions of Ais. Let At[i] ∈ Rn denote the i-th column of matrix At, and let S ⊆ [n] be a subset of

size ℓ ≈ √
n. Finally, let G be the matrix defined by:

G :=




. . .

At[i]⊗ At[j]

. . .


 ∈ Rm(ℓ2)×n2

.

In other words, each row of G is indexed by (t, i, j) for t ∈ [m] and i 6= j ∈ [ℓ] with the correspond-

ing row vector be At[i]⊗ At[j]. And a question we would like to answer is the following,

Question 6.1. What is the largest m for which G is full (row) rank with inverse-polynomially bounded

smallest singular value?

For starters, m ∼ n is a natural upper bound as G becomes a roughly square matrix when

we have mℓ2 ≈ n2. Let’s now implement the above strategy. The diagonal entry (t, i, j) of GG⊤

is given by ‖At[i] ⊗ At[j]‖2 ≈ n2 by standard Gaussian concentration, and the two-step strategy

now prompts us to bound the spectral norm of the off-diagonal part of GG⊤, i.e. the spectral norm

of GG⊤ − n2 · I
m(ℓ2)

, by o(n2).

Observe that easy estimates such as the maximum ℓ1 norm of any row do not give a useful

bound: we expect the off-diagonal entries to have typical magnitude n and that can be “charged”

to the diagonal entries only if m(ℓ2) · n . n2 or m 6 O(1). However, in this very case, one may

notice that we are ignoring the potential cancellation from the signs of the entries (as each entry
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is a mean 0 random variable) and we can hope to obtain a tighter bound by exploiting this kind

of cancellation. Towards this end, we appeal to the trace moment method to obtain tight bounds for

these structured random matrices, and on a high level, for ease of our spectral analysis, we adopt

graph matrix decomposition to systematically represent such random matrices of correlated entries.

Graphical matrix decomposition and norm bounds The theory of graphical matrices generally

applies to a matrix whose entry is a polynomial of some underlying input. In our case, the off-

digonal part of GG⊤ is described as:

GG⊤[(s, a, b), (t, c, d)] = 〈As[a], At[c]〉 · 〈As[b], At[d]〉 = ∑
i,j∈[n]

As[i, a]At [i, c]As[j, b]At[j, d]

for (s, a, b) 6= (t, c, d). For illustration, we restrict to the case for s 6= t ∈ [m] and a, b, c, d distinct

elements in [ℓ], and we remark that in general these cases warrant a careful analysis. Notice we

can further decompose the above polynomial entry as

GG⊤[(s, a, b), (t, c, d)] = ∑
i 6=j∈[n]

As[i, a]At [i, c]As[j, b]At[j, d]

+ ∑
i=j∈[n]

As[i, a]At [i, c]As[j, b]At[j, d]

depending on whether i, j “collide” with each other. Pictorially, each term in the above matrix

corresponds to one of the following diagrams using graph matrix language:

each vertex in the left/right orange oval corresponds to a variable in the row/column index for the matrix;

and each vertex in the middle (outside the orange ovals) corresponds to an indeterminate in the summation

with each hyperedge corresponding to a random variable in the polynomial.

s

a

b

t
iAs[i, a] At[i, c]

c

dAs[j, b]
At[j, d]

j

s

a

b

t
iAs[i, a] At[i, c]

c

dAs[i, b]
At[i, d]

Figure 1: Diagram for GG⊤[(s, a, b), (t, c, d)] = ∑i 6=j∈[n] As[i, a]At [i, c]As[j, b]At[j, d].

Figure 2: Diagram for GG⊤[(s, a, b), (t, c, d)] = ∑i=j∈[n] As[i, a]At [i, c]As[i, b]At [i, d].

Once these diagrams are drawn out, we can apply off-the-shelf matrix norm bounds for graph

matrices. The key technical idea is that the spectral norm of these random matrices is characterized

(up to Õ(1) factors) by a simple, combinatorial quantity of the diagram (see Proposition 6.12 and

Remark 6.13). Therefore, our job for spectral analysis is essentially estimating the combinatorial

quantity for each of the diagrams that may arise in the decomposition. In the setting above, a direct

application of this idea in a black-box manner gives us a spectral norm bound
∥∥offdiag(GG⊤)

∥∥
op

6

Õ(
√

mℓ2n2) = o(n2) assuming mℓ2 ≪ n2 and ℓ ≈ √
n (see Example 6.14), giving us the m ≈ n

bound as we anticipate in the beginning.
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6.2 Preliminaries for graph matrices

We give a lightweight introduction to the theory of graph matrices specialized to our setting in

this section, while we defer the interested reader who seeks a thorough introduction or a more

formal treatment to its origin in a sequence of works in Sum-of-Squares lower bounds [HKP15,

BHK+19, AMP16]. Throughout this section, we assume that there is an underlying input matrix

G.

Definition 6.2 (Shape). A shape α is a tuple (V(α), Uα, Vα, E(α)) associated with a (multi-hyper)

graph (V(α), E(α)) where each vertex in V(α) is associated with a vertex type that indicates the

range of the labels for the particular vertex, and each edge in E(α) is associated with an edge type

specifies a variable of the underlying input matrix G from the information of incidental endpoints

of the edge. Moreover, we have Uα, Vα ⊆ V(α) and they may intersect.

Remark 6.3. For intuition, Uα, Vα are simply the row/column indices of the corresponding random

matrix, and we remind the reader that Vα should be distinguished from V(α) where Vα is simply

a column/row boundary index, while V(α) is the set of vertices in the graph.

Definition 6.4 (Edges). Each edge e ∈ E(α) is associated with a tuple (s(e), E(e)) such that s(e)

specifies its edge type and E(e) specifies its incidental endpoints (including their corresponding

vertex type), and we write the corresponding edge variable as χs(e),E(e)(G).

Definition 6.5 (Mapping of a shape). Given a shape α, we call a function σ a mapping of the shape

if

1. σ assigns a label for each vertex according to its specified vertex type;

2. σ is an injective mapping.

Definition 6.6 (Boundary consistency for shape). Given a shape α, and given boundaries S, T each

being a collection of sets of labels, we call σ a valid labeling for α with boundary S, T if

1. For each vertex type, I(S) and I(T) are subsets of labels of type I;

2. σ(Uα ∩Vα) is consistent with the labels in S ∩ T within each collection of vertex type as a set,

i.e., for each vertex type I, we have σ(I(Uα ∩ Vα)) = I(S ∩ T);

3. And for each vertex type I, the vertices in Uα \ Vα take label in I(S \ T) as a set, i.e., σ(I(Uα \
Vα)) = I(S \ T);

4. and similarly, the vertices in Vα \ Uα take label in I(T \ S) as a set, i.e., σ(I(Vα \ Uα)) =

I(T \ S).

Remark 6.7 (Set-indexed graph matrix). Note that we adopt the convention where labeled vertices

of a shape appear as a set, i.e., Uα \Vα, Vα \Uα and Uα ∩Vα are set-indices, unless otherwise stated.

Definition 6.8 (Graphical matrix for shape). Given a shape α, we define its graphical matrix to be

the matrix indexed by all possible boundary labelings S, T, and for each of its entry, we define

Mα[S, T] = ∑
σ:a mapping of V(α)

consistent with the boundaries

∏
e=∈E(α)

χs(e),σ(E(e))(G) .
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Remark 6.9. To unpack the above definition of boundary consistency, notice for each vertex type,

the vertices in Uα and Vα receive labels from σ as a set, and we additionally require vertices in

Uα ∩ Vα of each type to receive the same labels under a consistent σ.

We will encounter shapes that have multi-edges, i.e. the same edge appearing more than once.

Thus, we introduce the following definition.

Definition 6.10 (Phantom edge and isolated vertex). When the underlying input comes from

N(0, 1) random variables, each edge that appears at least twice (as a multi-edge) is considered

a “phantom” edge, and a vertex v ∈ V(α) \ (Uα ∪ Vα) is considered “isolated” if it is not incident

to any non-phantom edge in a shape.

With this set-up, we are now ready to introduce the probabilistic norm bounds for graphical

matrices, and prior works have shown that the norm bounds in this regime are governed by a

combinatorial object of the underlying shape called vertex separator.

Definition 6.11 (Vertex separator). For a shape α, a set of vertices S ⊆ V(α) is a vertex separator if

all non-phantom paths from Uα to Vα pass through S. Each vertex in Uα ∩ Vα is by definition in any

vertex separator for α.

Proposition 6.12 (Graph matrix norm bound). Let wt be a weight function that assigns weight based

on the type of vertices s.t.

1. for a square vertex i , wt( i ) = m;

2. for a circle vertex i , wt( i ) = ℓ;

3. for a hexagon vertex i , wt( i ) = n.

With probability at least 1 − O(n−100 log n), for any shape α we have

‖Mα‖op 6 Õ


 max

S⊆V(α)
S a separator

∏
i/∈S

√
wt(i) · ∏

i/∈S
isolated

√
wt(i)


 .

Proof. This is an application of [AMP16] and Corollary 6.64 from [JPR+22] in our setting. The

main result from [AMP16] alone is sufficient, while we point out it is easier to use Corollary 6.64

to handle set-symmetry of our indices within the trace power method directly, which incurs a cost

of
√
|Uα|!|Vα|! which is subsumed by the polylog factor as we have |Uα|, |Vα| = O(1) throughout

our work.

Remark 6.13 (Analyzing minimum vertex separator). With Proposition 6.12, we can now bound

the spectral norm of graph matrices by analyzing their minimum weight vertex separator Smin. Fur-

thermore, notice that the vertex separator only needs to block paths using non-phantom edges.

Thus, when using Proposition 6.12, we can essentially remove the phantom edges; this may re-

duce the minimum vertex separator, hence increasing the norm bound.

Example 6.14 (Norm bound of the shape in Figure 1). Two potential vertex separators are S1 =

{ i , j } and S2 = { s , a , b } = Uα. We can see that S2 has smaller weight when mℓ2 ≪ n2

since wt( i ) · wt( j ) = n2 but wt( s ) · wt( a ) · wt( b ) = mℓ2. With some case analysis, one

can verify that S2 is indeed the minimum vertex separator of the shape. By Proposition 6.12, each

vertex outside S2 contributes the square root of its weight, thus we have a bound of Õ(
√

mℓ2n2).
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6.3 Singular value lower bounds for analysis of V

Recall that given B1, . . . , Bm which are degree-2 homogeneous polynomials in ℓ variables with i.i.d.

standard Gaussian coefficients, the matrix V ∈ Rℓ4D×mℓ2D is the matrix whose columns represent

the polynomials Bt(y)Dyj1 · · · yj2D
for t ∈ [m] and j1, . . . , j2D ∈ [ℓ]. Furthermore, recall the matrix

N ∈ R(m
2 )×mℓ2D defined in Definition 4.20 that satisfies VN⊤ = 0, i.e. each row of N represents a

collection of m degree-2D polynomials (p1, . . . , pm) such that

m

∑
t=1

Bt(y)
D pt(y) = 0 ,

and for row index (s1, s2) of N, pt(y) = Bs2(y)
D if t = s1, −Bs1

(y)D if t = s2, and 0 otherwise.

6.3.1 Proof of Lemma 4.21: rank of N

Lemma 6.15 (Restatement of Lemma 4.21: Rank of N). Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D.

Let N ∈ R(m
2 )×mℓ2D be the matrix defined in Definition 4.20. Then, with probability 1 − ℓ−Ω(D),

σ(m
2 )
(N) > Ω(ℓD) .

Proof. We will show that NN⊤ ∈ R(m
2 )×(m

2 ) is full rank and that λmin(NN⊤) > Ω(ℓ2D). Notice that

the columns of N are indexed by (t, I) where t ∈ [m] and I ∈ [ℓ]2D is a multiset. By Fact 3.7, we can

delete some columns of N and prove that the resulting matrix N′ satisfies λmin(N′N′⊤) > Ω(ℓ2D),

which implies λmin(NN⊤) > Ω(ℓ2D). Thus, we will assume that the matrix N only consists

of columns (t, I) where I is a set (no repeated elements), i.e., each row consists of multilinear

polynomials.

We decompose NN⊤ into diagonal and off-diagonal components.

Diagonal entries. The diagonal entry at s1 < s2 can be written as

NN⊤[(s1, s2), (s1, s2)] =
∥∥∥multilinear(BD

s1
)
∥∥∥

2
+
∥∥∥multilinear(BD

s2
)
∥∥∥

2
,

where we take the multilinear parts of BD
s1

and BD
s2

because we deleted the columns corresponding

to non-multilinear monomials. This however does not change the norms up to constant factors,

hence by Claim 3.8, the diagonal entries are Ω(ℓ2D).

Off-diagonal part. NN⊤[(s1, s2), (t1, t2)] is zero when s1, s2, t1, t2 are all different, and if s1 6=
t1 but s2 = t2 (for e.g.), then

NN⊤[(s1, s2), (t1, t2)] =
〈

multilinear(BD
s1
), multilinear(BD

t1
)
〉

= Θ(1) ∑
I∈[ℓ]2D

Sym(B⊗D
s1

)[I] · Sym(B⊗D
t1

)[I]

= Θ(1) ∑
π∈S2D

∑
I∈[ℓ]2D

all distinct

B⊗D
s1

[I] · B⊗D
t1

[π(I)] .

61



We view the above as a summation of graphical matrices, each corresponding to a permutation π.

We then apply graphical matrix norm bounds (Proposition 6.12) introduced in Section 6.2 to bound

the spectral norms of them. Given π, the shape that arises can be described as the following,

1. A tripartite graph with exactly 2D circle vertices i1 , . . . , i2D in the middle (that take labels in

[ℓ]) , i.e., V(α) \ (Uα ∪ Vα);

2. Uα, Vα both have two square vertices (that take labels in [m]): Uα = { s , u } and Vα =

{ t , u }, where u is in the intersection Uα ∩ Vα;

3. On the left, we add hyperedges in order: ( s , i1 , i2 ), ( s , i3 , i4 ), and so on; on the right, we

add ( t , iπ(1) , iπ(2) ), ( t , iπ(3) , iπ(4) ), and so on.

Now we analyze the minimum vertex separator. Observe that for every i in the middle, there

is a path s → i → t . Thus, any vertex separator of such shape must contain either s , t , or

all of the circle vertices. Clearly, when m ≪ ℓ2D , the minimum weight vertex separator is { s } or

{ t }. Thus, by Proposition 6.12, we get a norm bound of Õ
(√

mℓ2D
)

.

Therefore, we can write

NN⊤ � Ω(ℓ2D) · I + offdiag(NN⊤) ,

where
∥∥offdiag(NN⊤)

∥∥
op

6 Õ(
√

mℓD) = o(ℓ2D) given that m 6 ( ℓ

polylog(ℓ)
)2D. Thus, the diagonal

dominates, and we have λmin(NN⊤) > Ω(ℓ2D), hence σ(m
2 )
(N) > Ω(ℓD).

6.3.2 Proof of Lemma 4.22: singular value of V⊤V + N⊤N

Lemma 4.22 is a special case (K = 2) of the following lemma, thus the reader can focus on this case

for simplicity.

Lemma 6.16 (Generalization of Lemma 4.22). Fix D, K ∈ N with K > 2. Let m, ℓ ∈ N such that m 6

( ℓ

polylog(ℓ)
)KD if D 6 2, and m 6 ( ℓ

polylog(ℓ)
)KD/2 if D > 2, and let N be the (m

2)ℓ(K−2)D × mℓ2(K−1)D

matrix defined in Definition 5.19. Then with probability 1 − ℓ−Ω(D),

λmin

(
V⊤V + N⊤N

)
> Ω(ℓKD) .

Recall that the matrix V has dimension ℓ(3K−2)D × mℓ2(K−1)D, each column representing a

degree-((3K − 2)D) polynomial Bs(y)DyI where I ∈ [ℓ]2(K−1)D is a multiset. Specifically, the rows

of V are indexed by multisets H ∈ [ℓ](3K−2)D, and for s ∈ [m], I ∈ [ℓ]2(K−1)D, the entry V[H, (s, I)]

is the coefficient of the monomial yH in the polynomial Bs(y)DyI . Thus, V[H, (s, I)] = 0 if I 6⊂ H.

The entries of V⊤V are indexed by (s, I), (t, J) where s, t ∈ [m] and I, J ∈ [ℓ]2(K−1)D. Specifi-

cally,

V⊤V[(s, I), (t, J)] =
〈

Bs(y)
DyI , Bt(y)

DyJ

〉

where we recall (from Section 3) this is the inner product between the coefficient vectors of the

two polynomials.
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Remark 6.17 (Intersection of I, J). Remark that Bs(y)DyI , Bt(y)DyJ are polynomials of degree (3K−
2)D while |I| = |J| = 2(K− 1)D, thus if |I ∩ J| < (K− 2)D, then the polynomials have no common

monomial and V⊤V[(s, I), (t, J)] must be zero (note that I and J can be disjoint when K = 2).

Proof outline First observe that both V⊤V and N⊤N cannot be full rank: V⊤V has a null space

(namely row span of N by definition) and N⊤N is not full rank simply because (m
2 )ℓ(K−2)D <

mℓ2(K−1)D (since m ≪ ℓKD). Thus, even though V⊤V and N⊤N have large diagonal entries, we

cannot hope to bound the spectral norm of their off-diagonal parts separately and charge them to

the diagonals (this would contradict that they are not full rank). In fact, we will see that there are

off-diagonal components with large spectral norm.

Nevertheless, we can still proceed to analyze V⊤V and see what graph matrices arise. Observe

that V⊤V has a natural block structure indexed by (s, t), and each block has dimension ℓ2(K−1)D ×
ℓ2(K−1)D. We will analyze the diagonal blocks (s = t) and off-diagonal blocks (s 6= t) separately.

First, we show the following,

Lemma 6.18 (Diagonal blocks of V⊤V). Let m, ℓ, D ∈ N be the same parameters as Lemma 6.16, then

diag-blocks(V⊤V) = Ω(ℓKD) · I + P1 + E1

where P1 � 0 and ‖E1‖op 6 o(ℓKD).

For the off-diagonal blocks of V⊤V, it turns out that most graph matrices that arise have small

spectral norm, except for one specific matrix defined as follows,

Definition 6.19 (W matrix). Let W be the matrix with the same dimensions and indices as V⊤V

such that W[(s, I), (t, J)] = V⊤V[(s, I), (t, J)] if s 6= t and |I ∩ J| = (K − 2)D (the minimum inter-

section; see Remark 6.17), and 0 otherwise.

Lemma 6.20 (Off-diagonal blocks of V⊤V). Let m, ℓ, D ∈ N be the same parameters as Lemma 6.16,

then

off-diag-blocks(V⊤V) = W + E2

where ‖E2‖op 6 o(ℓKD).

Finally, we turn to N⊤N. Interestingly, we show that N⊤N has a −W component that cancels

out the one from off-diag-blocks(V⊤V).

Lemma 6.21 (Analysis of N⊤N). Let m, ℓ, D ∈ N be the same parameters as Lemma 6.16, then

N⊤N = P2 − W + E3

where P2 � 0 and ‖E3‖op 6 o(ℓKD).

The combination of Lemmas 6.18, 6.20 and 6.21 immediately imply Lemma 6.16.

Proof of Lemma 6.16. Combining Lemmas 6.18, 6.20 and 6.21, we have

V⊤V + N⊤N � Ω(ℓKD) · I + P1 + P2 + E1 + E2

where P1, P2 � 0 and ‖E1‖op , ‖E2‖op 6 o(ℓKD). This completes the proof.
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Graph matrices that arise from V⊤V We write out the entries of V⊤V explicitly. For entry

V⊤V[(s, I), (t, J)] where s, t ∈ [m] and I, J ∈ [ℓ]2(K−1)D,

V⊤V[(s, I), (t, J)] =
〈

Bs(y)
DyI , Bt(y)

DyJ

〉

= ∑
H∈[ℓ](3K−2)D

I∪J⊂H

Θ(1) · (Bs(y)
DyI)[H] · (Bt(y)

DyJ)[H]

= ∑
H∈[ℓ](3K−2)D

I∪J⊂H

∑
π,π′∈SKD

Θ(1) · B⊗D
s [π(H \ I)] · B⊗D

t [π′(H \ J)] .

(18)

Here, the summation is over ordered tuples H of size (3K − 2)D containing both I and J.

Let us parse Equation (18). Let r = |I ∩ J|, L = I ∩ J, and let I ′ = I \ L, J′ = J \ L and H′ =
H \ (I ∪ J) (recall that these are multiset operations). First observe that |I ′| = |J′ | = 2(K − 1)D − r

and |I ∪ J| = 4(K − 1)D − r, hence |H′| = r − (K − 2)D. Thus, r can range from (K − 2)D to

2(K − 1)D (note that r cannot be 0 if K > 2). We can think of H′ as the “free indices” in the

summation over H since H must contain I ∪ J. In particular, if r = (K − 2)D (the minimum

intersection), then there is only a single H, namely I ∪ J. We can now define the graph matrices

that arise from (18).

Definition 6.22 (Graph matrices from V⊤V). First assume that I ′, J′, H′ and L all have distinct

elements. For a fixed r ∈ {(K − 2)D, . . . , 2(K − 1)D} and permutations π, π′ ∈ SKD, the graph

matrix is described as follows,

1. A graph with exactly (3K − 2)D circle vertices (that take labels in [ℓ]), denoted as follows

(slightly abusing notation by writing I ′, J′, H′ as ordered tuples of circle vertices):

• I ′ = ( a1 , . . . , a|I ′| ) where |I ′| = 2(K − 1)D − r;

• J′ = ( b1 , . . . , b|J ′| ) where |J′ | = 2(K − 1)D − r;

• H′ = ( a|I ′|+1 = b|J ′|+1 , a|I ′|+2 = b|J ′|+2 , . . . , aKD = bKD );

• L = ( c1 , . . . , cr ), which corresponds to I ∩ J.

2. Two square vertices s and t (that take labels in [m]).

3. Uα = { s } ∪ I ′ ∪ L and Vα = { t } ∪ J′ ∪ L; they are treated as sets.

4. On the left, we add D hyperedges: ( s , bπ((i−1)K+1) , . . . , bπ(iK) ) for i = 1, . . . , D; on the right, we

add ( s , bπ′((i−1)K+1) , . . . , bπ′(iK) ) for i = 1, . . . , D. Each hyperedge touches a square vertex ( s

or t ) and K circle vertices, representing an element in Bs or Bt.

When there are repeated elements, all such components can be viewed as collapses of the graph

matrices described above. For example, we allow the circle vertices to collapse, with the exception
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that I ′ and J′ remain disjoint (by definition). We also allow s and t to collapse, representing the

diagonal blocks where s = t.

Let’s make some crucial observations: (1) Uα ∩ Vα = L = { c1 , . . . , cr } and they are not con-

nected to any edge, (2) I ′ ⊂ Uα but have edges connected to t , and similarly J′ ⊂ Vα but have

edges connected to s , (3) H′ are outside of Uα ∪ Vα and have edges connected to both s and t ,

and finally (4) there are D hyperedges on the left (resp. right) connected to s (resp. t ).

Furthermore, we note that Uα and Vα are both treated as sets since I and J in (18) are both

(multi)sets (recall Remark 6.7).

Diagonal blocks of V⊤V: Proof of Lemma 6.18

Proof of Lemma 6.18. The diagonal blocks of V⊤V consist of all graph matrices in Definition 6.22

with s = t. For the diagonal entries, for index (s, I) we have

V⊤V[(s, I), (s, I)] =
∥∥∥Bs(y)

DyI

∥∥∥
2
=
∥∥∥Bs(y)

D
∥∥∥

2
= Ω(ℓKD) (19)

by Claim 3.8.

We next analyze the off-diagonal entries (of the diagonal blocks). Fix r = |I ∩ J|. When r =

2(K − 1)D, i.e. I = J, this is simply the diagonal entries, so we focus on the components with

r ∈ {(K − 2)D, . . . , 2(K − 1)D − 1} (recall that r > (K − 2)D from Remark 6.17).

First, we note that there are “troublesome” components with large spectral norm which cannot

be charged to the diagonal. For example when r = (K − 2)D, |I ′|+ |J′ | = 2KD and |H′| = 0, hence

the minimum vertex separator S consists of only s and there can be 2KD circle vertices outside

of S, giving a bound of Õ(ℓKD), while the diagonal is only Ω(ℓKD). Figure 3 is an example of such

a shape.

s = t

i

j

a

b

Bt[a, b]

Bs[i, j]

Figure 3: Mα[(s, i, j), (t, a, b)] = Bs[i.j] · Bt[a, b].

The crucial observation is that these components are “roughly” PSD. To see this, we first need

to define the following,

Definition 6.23 (Half-gram shape). For a fixed r ∈ {(K − 2)D, . . . , 2(K − 1)D − 1} and π ∈ SKD,

we define a half-gram shape βπ as follows,

1. A bipartite graph with one square vertex s and exactly 2D + k circle vertices:

• I ′ = { a1 , . . . , a|I ′| } where |I ′| = 2(K − 1)D − r;

• H′ = { a|I ′|+1 , . . . , aKD };
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• L = { c1 , . . . , cr }.

2. Uβπ
= { s } ∪ I ′ ∪ L and Vβπ

= ( s , H′, L). Here, Uβπ
is treated as sets but Vβπ

is treated as

ordered tuples.

3. We add D hyperedges: ( s , aπ((i−1)K+1) , . . . , aπ(iK) ) for i = 1, . . . , D.

Furthermore, we define

Mβ := ∑
π∈SKD

Mβπ
.

With the definitions in hand, we can now observe that for each r and permutations π, π′ ∈ SKD,

any “troublesome” shape απ,π′ from Definition 6.22 has two unique half-gram shapes βπ and

βπ′ such that Mαπ,π′ ≈ Mβπ′ M
⊤
βπ

(note the order of π′ and π). Summing over all permutations

π, π′ ∈ SKD (as in (18)), we get that

∑
π,π′∈SKD

Mαπ,π′ ≈ MβM⊤
β .

However, this is only approximately true! This subtlety arises because βπ′ ◦ β⊤
π may form ex-

tra intersection terms. That being said, intersections, as anticipated in many situations, can be

bounded in spectral norm and charged to our diagonal (19). For starters, we first observe that

for shape α := απ,π′, the shapes that arise in the intersection terms of βπ′ ◦ β⊤
π can be described

by merging vertices in I ′ with vertices in J′ (recall from Definition 6.22 that I ′ = Uα \ Vα and

J′ = Vα \ Uα). We now prove that all such intersection terms have small spectral norm compared

to the diagonal Ω(ℓKD).

Claim 6.24 (Bounding intersection shapes). Let βπ and βπ′ be the half-gram shapes of shape α with

r = |I ∩ J| ∈ {(K − 2)D, . . . , 2(K − 1)D − 1}. Let τ be an intersection shape that arises from the

intersection terms of βπ′ ◦ β⊤
π . Then, we have

‖Mτ‖op 6 Õ
(
ℓ

KD−1
)

.

Proof. The intersection terms of βπ′ ◦ β⊤
π can be described by merging vertices in I ′ with vertices

in J′ of the graph matrices from Definition 6.22. We will first show that without merging any

vertex, we have ‖Mα‖op 6 Õ(ℓKD), and then show that intersection strictly decreases the norm

from there, giving us the desired bound.

• When r = (K − 2)D, we have H′ = ∅. The minimum vertex separator S consists of only s

and there can be |I ′ ∪ J′ | = 2KD circle vertices outside of S, which gives a bound of Õ(ℓ2D).

• When r > (K − 2)D, we have |H′| = r − (K − 2)D. Observe that each vertex in H′ has

two incident edges, hence depending on π, π′, there can be phantom edges which make

some vertices isolated (recall Definition 6.10). In the worst case, all edges incident to H′

are phantom edges and all vertices in H′ are isolated. Since |I ′ ∪ J′| = 4(K − 1)D − 2r,

Proposition 6.12 gives a bound of Õ(ℓ2(K−1)D−r · ℓr−(K−2)D) = Õ(ℓKD).
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The intersection terms can be obtained by merging vertices in Uα \ Vα and Vα \ Uα. Notice that

each merge transforms 2 vertices that originally contribute
√
ℓ factor from the previous bound

to be inside Uτ ∩ Vτ, the mandatory separator. This causes a drop by a factor of ℓ, yielding our

desired bound.

Thus, Claim 6.24 states that

∑
π,π′∈SKD

Mαπ,π′ = MβM⊤
β + E

where the error E consists of all (constant number of) intersection terms and ‖E‖op 6 Õ(ℓKD−1) =

o(ℓKD). From (19), the diagonal of V⊤V contributes Ω(ℓKD) · I. This completes the proof.

Off-diagonal blocks of V⊤V: Proof of Lemma 6.20

Proof of Lemma 6.20. The off-diagonal blocks of V⊤V consist of shapes and collapsed shapes from

Definition 6.22 where s 6= t. We first look at the case when D 6 2 and r = |I ∩ J| > (K − 2)D

(recall Remark 6.17 that |I ∩ J| > (K − 2)D).

When D 6 2 and r > (K − 2)D. We analyze the minimum vertex separator S depending

on r = |I ∩ J|. Recall the definitions of I ′, J′, H′ and L from Definition 6.22 where |I ′|, |J′ | 6

2(K − 1)D − r and |H′| 6 r − (K − 2)D. First, L ⊆ Uα ∩ Vα must always be in S. Next, if s is not

in the vertex separator, then since J′ ⊂ Vα and is connected to s , all of J′ must be in the vertex

separator. Similarly, if t is not in the vertex separator, then I ′ ⊂ S. We consider the following

types of vertex separators,

1. s , t ∈ S: there can be |I ′ ∪ J′ ∪ H′| 6 (3K − 2)D − r < 2KD circle vertices outside the

vertex separator, hence this gives a bound of Õ((
√
ℓ)(3K−2)D−r) = o(ℓKD).

2. One of s or t is in S (w.l.o.g. assume s ∈ S and t /∈ S): in this case I ′ ⊂ S, thus

{ t } ∪ J′ ∪ H′ can be outside S and |J′ ∪ H′| 6 KD, giving a bound of Õ(
√

m(
√
ℓ)KD) =

Õ(
√

mℓKD/2).

3. s , t /∈ S: I ′, J′, H′ must all be in S, giving a bound of Õ(m).

When m 6 ( ℓ

polylog(ℓ))
KD and r > (K − 2)D, the bounds above are all o(ℓKD).

When D > 2 and r > (K − 2)D. The subtlety here is that since |I ′|, |J′ | can each have 2(K −
1)D − r > 2K circle vertices (this won’t happen when D 6 2 because |I ′| < KD). Observe that 2K

vertices in I ′ (2 hyperedges) can collapse into K vertices and create a phantom edge, essentially

removing the 2 edges (recall Definition 6.10 and Remark 6.13). In this case, even if we don’t pick

t in the vertex separator, these circle vertices aren’t connected to t hence are not required to be

in the vertex separator.

Thus, we need to look at Case 2 and 3 of the analysis of D 6 2, i.e. when s and t are not both

in S. Let I ′ph be the set of circle vertices in I ′ incident to phantom edges (hence not connected to
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t ), and define J′ph, H′
ph similarly. There can be at most 2(K − 1)D − r circle vertices in I ′ or J′ and

r − (K − 2)D in H′ before the collapse, so

|I ′ph|, |J′ph| 6
⌊

1

2
(2(K − 1)D − r)

⌋
6

⌊
kD − 1

2

⌋
<

KD

2
,

|H′
ph| 6

⌊
1

2
(r − (K − 2)D)

⌋
.

We again study the vertex separator S:

1. One of s or t is in S (w.l.o.g. assume s ∈ S and t /∈ S): in this case I ′ \ I ′ph ⊂ Uα is

connected to t ∈ Vα, thus I ′ \ I ′ph must be in the vertex separator. Thus, { t } ∪ J′ ∪ H′ ∪ I ′ph

can be outside of S and |J′ ∪ H′ ∪ I ′ph| < KD + KD/2. Here it doesn’t matter whether H′ has

phantom edges, as they contribute the same to the norm bound. Thus, we have a bound of

Õ(
√

m(
√
ℓ)3KD/2) = Õ(

√
mℓ3KD/4).

2. s , t /∈ S: I ′ \ I ′ph, J′ \ J′ph and H′ \ H′
ph must be in S, so { s , t } ∪ I ′ph ∪ J′ph ∪ H′

ph can be out-

side of S, and H′
ph are considered isolated in Proposition 6.12 (recall from Definition 6.10 that

I ′ph, J′ph ⊂ Uα ∪ Vα hence they are not isolated). This gives a bound of Õ(m(
√
ℓ)⌊2(K−1)D−r⌋ ·

ℓ⌊
1
2 (r−(K−2)D)⌋) 6 Õ(mℓKD/2).

When m 6 ( ℓ

polylog(ℓ)
)KD/2, the bounds above are all o(ℓKD).

When r = (K − 2)D. In this case this component corresponds to the entries V⊤V[(s, I), (t, J)]

with s 6= t and |I ∩ J| = (K − 2)D. But this is exactly the W matrix defined in Definition 6.19.

Completing the proof. Combining the above, we see that for r > (K− 2)D, when D 6 2, m 6

( ℓ

polylog(ℓ))
KD and when D > 2, m 6 ( ℓ

polylog(ℓ))
KD/2, all such graph matrices have spectral norm

bounded by o(ℓKD). For r = (K− 2)D this component is exactly W. Thus, off-diag-blocks(V⊤V) =

W + E with ‖E‖op = o(ℓKD), completing the proof.

Graph matrices that arise from N⊤N Recall that the (m
2)ℓ(K−2)D × mℓ2(K−1)D matrix N defined

in Definition 5.19 has rows indexed by (t1, t2, L) for t1 < t2 ∈ [m], multiset L ∈ [ℓ](K−2)D, and

columns indexed by (s, I) for s ∈ [m] and multiset I ∈ [ℓ]2(K−1)D, and the entry is nonzero only if

s ∈ {t1, t2} and L ⊂ I.

Consider the entry N⊤N[(s, I), (t, J)] for s < t ∈ [m] and multisets I, J ∈ [ℓ]2(K−1)D,

N⊤N[(s, I), (t, J)] = ∑
t1<t2,L∈[ℓ](K−2)D

N[(t1, t2, L), (s, I)] · N[(t1, t2, L), (t, J)]

= ∑
L∈[ℓ](K−2)D

N[(s, t, L), (s, I)] · N[(s, t, L), (t, J)]

= − ∑
L∈[ℓ](K−2)D,L⊂I,J

(Bt(y)
DyL)[I] · (Bs(y)

DyL)[J] .

(20)

Note that there is only one pair (t1, t2) in the summation that’s nonzero, which is (t1, t2) = (s, t).

Moreover, since L ⊂ I, J, if |I ∩ J| < (K − 2)D then the entry is zero. We emphasize that the
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negative sign in (20) is crucial; as we will see later, it allows us to cancel out the W matrix from

Lemma 6.20. We can now define the (unsigned) graph matrices that arise from (20).

Definition 6.25 (Graph matrices from N⊤N). Fix r ∈ {(K− 2)D, . . . , 2(K− 1)D} and permutations

π, π′ ∈ SKD, the graph matrix is described as follows,

1. A graph with exactly 4(K − 1)D− r circle vertices (that take labels in [ℓ]), denoted as follows,

• I ′ = ( a1 , . . . , a|I ′| ) where |I ′| = 2(K − 1)D − r;

• J′ = ( b1 , . . . , b|J ′| ) where |J′ | = 2(K − 1)D − r;

• H′ = ( a|I ′|+1 = b|J ′|+1 , . . . , aKD = bKD ); |H′| = r − (K − 2)D;

• L = ( c1 , . . . , c|L| ) where |L| = (K − 2)D.

2. Two square vertices s and t (that take labels in [m]).

3. Uα = { s } ∪ I ′ ∪ H′ ∪ L and Vα = { t } ∪ J′ ∪ H′ ∪ L; they are treated as sets.

4. On the left, we add D hyperedges: ( s , bπ((i−1)K+1) , . . . , bπ(iK) ) for i = 1, . . . , D; on the right, we

add ( s , bπ′((i−1)K+1) , . . . , bπ′(iK) ) for i = 1, . . . , D. Each hyperedge touches a square vertex ( s

or t ) and K circle vertices, representing an element in Bs or Bt.

When I and J have repeated elements, all such components can be viewed as collapses of the graph

matrices described above.

Remark 6.26. The graph matrices are defined without signs, whereas there is a crucial negative

sign in (20). However, for spectral norm bounds the sign does not matter. Note also the similarities

between Definitions 6.22 and 6.25.

Analysis of N⊤N: Proof of Lemma 6.21

Proof of Lemma 6.21. Like V⊤V, N⊤N also has the same m × m block structure indexed by s, t ∈
[m]. First, the diagonal blocks (s = t) are clearly positive semidefinite (here we do not need to

show that they are full rank).

Now we analyze the off-diagonal blocks (s 6= t). Observe from (20) that when |I ∩ J| = (K −
2)D, L must be I ∩ J, i.e. there is only one nonzero term in the summation, and we have

N⊤N[(s, I), (t, J)] = −BD
t [I \ J] · BD

s [J \ I] = −
〈

Bs(y)
DyI , Bt(y)

DyJ

〉
= −V⊤V[(s, I), (t, J)] ,

but this is exactly the −W matrix from Definition 6.19! Notice the crucial negative sign here.

When r = |I ∩ J| > (K − 2)D, we bound the spectral norm of the graph matrices from Defini-

tion 6.25. The analysis is almost identical to the analysis of the off-diagonal blocks of V⊤V (proof

of Lemma 6.20).
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Fix k ∈ {(K − 2)D + 1, . . . , 2(K − 1)D} and π, π′ ∈ SKD. When D 6 2 and m 6 ( ℓ

polylog(ℓ)
)KD, it

is easy to see that ‖Mα‖op 6 Õ(m) 6 o(ℓKD) by including all circle vertices in the vertex separator.

When D > 2 and m 6 ( ℓ

polylog(ℓ)
)KD/2, we again define I ′ph, J′ph and H′

ph to be the circle ver-

tices in I ′, J′, H′ disconnected from t and s due to phantom edges after collapsing, same as

the proof of Lemma 6.20. We know that |I ′ph|, |J′ph| 6
⌊

1
2 (2(K − 1)D − r)

⌋
<

KD
2 and |H′

ph| 6⌊
1
2(r − (K − 2)D)

⌋
. We now study the minimum vertex separator S:

1. One of s or t is in S (w.l.o.g. assume s ∈ S and t /∈ S): in this case { t } ∪ J′ ∪ H′ ∪ I ′ph

can be outside of S and |J′ ∪ H′ ∪ I ′ph| < KD + KD/2. Here it doesn’t matter whether H′ has

phantom edges, as they contribute the same to the norm bound. Thus, we have a bound of

Õ(
√

m(
√
ℓ)3KD/2) = Õ(

√
mℓ3KD/4).

2. s , t /∈ S: I ′ \ I ′ph, J′ \ J′ph and H′ \ H′
ph must be in S, so { s , t } ∪ I ′ph ∪ J′ph ∪ H′

ph can

be outside of S, and H′
ph is considered isolated in Proposition 6.12. This gives a bound of

Õ(m(
√
ℓ)⌊2(K−1)D−r⌋ · ℓ⌊ 1

2 (r−(K−2)D)⌋) 6 Õ(mℓKD/2).

When m 6 ( ℓ

polylog(ℓ))
KD/2, the bounds above are all o(ℓKD).

Therefore, we can write N⊤N = P−W + E where P � 0, W is the matrix from Definitiom 6.19

and ‖E‖op = o(ℓKD). This completes the proof.

6.3.3 Proof of Lemma 4.19 and 5.15: singular value of L

Lemma 4.19 is a special case (K = 2) of Lemma 5.15, which we restate below. The reader is

encouraged to focus on the K = 2 case for simplicity.

Lemma 6.27 (Restatement of Lemma 5.15). Fix K, D ∈ N, and let m, ℓ, n ∈ N such that mℓ2(K−1)D 6

( n
polylog(n)

)2D. Let L be the rD × n2D matrix defined in Definition 5.14. Then, with probability 1− n−Ω(D),

σrD
(L) > Ω(nD).

We first recall some definitions. In Definition 5.11, we defined a bucket profile to be γ =

(γ1, γ2, . . . , γK) such that ∑
K
i=1 iγi = 2D and deg(γ) = ∑

K
i=1(K − i)γi = K(∑K

i=1 γi) − 2D, and

defined Γ2D to be the set of bucket profiles. Note that deg(γ) 6 2(K − 1)D and is achieved when

γ = γ∗ = (2D, 0, . . . , 0). For each γ ∈ Γ2D, Lγ is a mℓdeg(γ) × n2D matrix where the rows are

indexed by t ∈ [m] and multiset J ∈ [ℓ]deg(γ), and each row is the flattened vector of a 2D-th order

tensor of dimension n (Definition 5.14). Let rD = m ∑γ∈Γ2D
ℓdeg(γ); the L matrix is the rD × n2D

matrix formed by concatenating the rows of Lγ for all γ ∈ Γ2D.

Furthermore, recall that M ∈ Rn×ℓ is a restriction matrix (Definition 4.2) whose columns con-

sist of standard unit vectors. In this section, we can assume without loss of generality that M’s

columns are e1, . . . , eℓ. Then, the ((s, I), H) entry of Lγ, where t ∈ [m], I ∈ [ℓ]deg(γ) is a multiset

and H ∈ [n]2D is an ordered tuple, is

Lγ[(s, I), H] = ∑
π1∈S2D

∑
π2∈Sdeg(γ)

∏
i∈[K]

∏
S,T∈κi‖κ̃i(γ)

At[Hπ1(S), Iπ2(T)] ,

where we recall that κi‖κ̃i(γ) = ((S1, T1), . . . , (Sγi
, Tγi

)) such that (S, T) ∈ κi‖κ̃i(γ) satisfy |S| =
i and |T| = K − i. Note also that {S ∈ κi(γ)}i∈[K] forms a partition of {1, 2, . . . , 2D} since
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∑
K
i=1 ∑S∈κi(γ)

|S| = ∑
K
i=1 iγi = 2D. Similarly, {T ∈ κ̃i}i∈[K] forms a partition of {1, 2, . . . , deg(γ)}

since ∑
K
i=1 ∑T∈κ̃i(γ)

|T| = ∑
K
i=1(K − i)γi = deg(γ). These parameters are consistent with |H| = 2D

and |I| = deg(γ).

Graph matrices that arise from LL⊤ LL⊤ has a block structure indexed by bucket profiles γ, γ′ ∈
Γ2D where the (γ, γ′) block is LγL⊤

γ′ . For s, t ∈ [m] and I ∈ [ℓ]deg(γ), J ∈ [ℓ]deg(γ′), the entry

LγLγ′ [(s, I), (t, J)] = ∑H∈[n]2D Lγ[(s, I), H]Lγ′ [(t, J), H]. We now describe the graph matrices that

arise here.

Definition 6.28 (Graph matrices from LL⊤). Fix bucket profiles γ, γ′ ∈ Γ2D, permutations π1, π′
1 ∈

S2D, π2 ∈ Sdeg(γ) and π′
2 ∈ Sdeg(γ′), the graph matrix is a tripartite graph described as follows,

1. On the left, Uα contains a square vertex s (that takes a label in [m]) and deg(γ) circle vertices

I = { a1 , . . . , adeg(γ)} (that take labels in [ℓ]).

2. On the right, Vα contains a square vertex t and deg(γ′) circle vertices J = { b1 , . . . , bdeg(γ′) }.

3. In the middle, there are 2D hexagon vertices: H = ( c1 , . . . , c2D ) (that take labels in [n]).

4. There are K types of hyperedges: for i ∈ [K], a type-i edge connects a square vertex, K − i

circle vertices and i hexagon vertices:

• on the left, for each i ∈ [K] there are γi type-i hyperedges: for each (S, T) ∈ κi‖κ̃i(γ) we

add an edge { s } ∪ { aj }j∈π2(T) ∪ { ck }k∈π1(S) (recall that |S| = i and |T| = K − i);

• on the right, for each i ∈ [K] there are γ′
i type-i hyperedges: for each (S, T) ∈ κi‖κ̃i(γ

′)
we add an edge { t } ∪ { aj }j∈π2(T) ∪ { ck }k∈π1(S).

In total, there are ∑
K
i=1(γi + γ′

i) hyperedges.

5. There may be “surprise” collapses which we define as follows: hexagon vertices in H may

collide with circle vertices in Uα or Vα as both the circle and hexagon vertices index the same

matrices A1, . . . , Am; we call each such shape a surprise collapsed shape.

For intuition, the following diagram illustrates an example shape that shows up in the case of

D = 1 and K = 2. This particular shape comes from bucket profiles γ = (2, 0) and γ′ = (0, 1)

(recall that ∑
K
i=1 iγi = 2D), and it has two type-1 edges corresponding to the random variables

As[i, c1]As[j, c2] and a type-2 edge corresponding to the term At[c1, c2].

s

i

j

t
a

b

As[a, i]

As[b, j]

At[a, b]

Figure 4: LL⊤[(s, i, j), (t)] = ∑a 6=b∈[n] As[a, i]As [b, j]At[a, b] for i 6= j ∈ [ℓ], and s 6= t ∈ [m].
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Proof of Lemma 5.15

Proof of Lemma 5.15. We would like to prove that λmin(LL⊤) > Ω(n2D), hence by Fact 3.7 it suffices

for us to prove a singular value lower bound of L with some columns removed. In particular, since

the columns of L are indexed by ordered tuples H ∈ [n]2D, we will restrict to our attention to the

columns where H has distinct elements. This means that we do not have any collapses among the

2D hexagon vertices in the graph matrices from Definition 6.28.

It suffices for us to prove that LL⊤ has large diagonal entries, and then complete the proof by

upper bounding the spectral norm of the off-diagonal components. Note that there are two types

of shapes in the off-diagonal: s = t and s 6= t . We will analyze them separately.

Diagonal entries. For any bucket profile γ, the diagonal entries of LγL⊤
γ correspond to the

shapes from Definition 6.28 where Uα = Vα. The dominating term is when all edges are phantom

edges (double-edges; recall Definition 6.10), leaving all 2D hexagon vertices isolated. All such

phantom edges are in fact square terms As[i, c]2, hence by Gaussian concentration we have

LγL⊤
γ [(s, I), (s, I)] > Ω(n2D)

for any of its indices (s, I) where s ∈ [m] and I ∈ [ℓ]deg(γ).

Off-diagonal entries, s 6= t. Fix bucket profiles γ, γ′ ∈ Γ2D, we analyze the graph matrices

from Definition 6.28 with s 6= t. In this case, there is no isolated vertex, and since the hexagon

vertices don’t collapse, there is no phantom edge even if any circle vertices collapse. Recall that

for each i ∈ [K] there are γi, γ′
i type-i edges on the left and right side, respectively. Furthermore,

note that all c ∈ H are connected to both s and t .

We now analyze the minimum vertex separator S. First, for c ∈ H, we define NL( c ) ⊆ I

and NR( c ) ⊆ J to be the set of circle vertices incident to c in I and J, respectively (they can

be empty). Observe that there are paths a → c → b for all a ∈ NL( c ) and b ∈ NR( c ),

First, unless s , t /∈ S (in which case H is forced to be in S; we will see this case later), since

ℓK−1 ≪ n, it is always lower weight to pick the circle vertices instead of c . Thus, we will never

include hexagon vertices in S. Moreover, observe that we must either include all of NL( c ) or all

of NR( c ) in the minimum vertex separator, as excluding part of NL( c ) will force all of NR( c )

to be in S and vice versa.

Recall that by removing certain columns of L, we can assume that no hexagon vertices collapse.

Let us first assume that no circle vertices between I and J collapse and there is no surprise collapse.

We consider the following cases,

1. s , t /∈ S: for every c ∈ H, there is a path s → c → t . Thus, since s , t /∈ S, all

hexagon vertices in H must be in the vertex separator, and { s , t } ∪ I ∪ J can be outside

of S. |I ∪ J| 6 deg(γ) + deg(γ′) 6 4(K − 1)D, giving a bound of Õ(m(
√
ℓ)4(K−1)D) =

Õ(mℓ2(K−1)D).

2. One of s or t is in S (w.l.o.g. assume s ∈ S and t /∈ S): for each c ∈ H incident to

a non-type-K edge on the left, there is a path a → c → t where a ∈ Uα. For such

a path, we must include a in S. Thus, we have that I must be in S, and { t } ∪ J ∪ H
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can be outside of S, giving a bound of Õ(
√

m(
√
ℓ)deg(γ′)(

√
n)2D) 6 Õ(

√
mℓ(K−1)DnD) since

deg(γ′) 6 2(K − 1)D.

3. s , t ∈ S: in this case, as discussed earlier we will never include any hexagon vertex in S.

For each c ∈ H, we have |NL( c )| and |NR( c )| 6 K − 1. From the earlier discussion, we

must include either all of NL( c ) or all of NR( c ) in S. Thus, each c ∈ H may introduce

at most K − 1 circle vertices outside of S, in total at most (K − 1) · |H| = 2(K − 1)D. This

gives a norm bound of Õ((
√
ℓ)2(K−1)D(

√
n)2D) = Õ(ℓ(K−1)DnD).

When mℓ2(K−1)D 6 ( n
polylog(n)

)2D, the bounds above are all o(n2D), negligible compared to the

diagonal.

Now, we consider shapes with collapsed circle vertices between I and J. When such collapses

occur, then each collapsed circle vertex becomes a vertex in Uα ∩ Vα, the mandatory vertex separa-

tor. Since the hexagon vertices don’t collapse, such collapses won’t introduce any phantom edges,

hence they only decrease the spectral norm.

Off-diagonal entries, s = t. In this case, we may have phantom edges which result in iso-

lated hexagon vertices in H (recall Definition 6.10). Let Hiso be the set of isolated vertices in H.

Let’s assume that there is no surprise collapse.

Since s = t ∈ Uα ∩ Vα, it must be in the vertex separator S, thus our analysis is similar to

Case 3 of the previous analysis. We define NL( c ) and NR( c ) as before. For each c ∈ Hiso, by

definition of phantom edges it must be that NL( c ) = NR( c ), i.e. they collapse and are thus in

Uα ∩ Vα, the mandatory separator. For each c ∈ H \ Hiso, since |NR( c )|, |NR( c )| 6 K − 1, by

the same analysis c can introduce at most K − 1 circle vertices outside of S. This gives a norm

bound of Õ(n|Hiso| · (√n)2D−|Hiso| · (
√
ℓ)(K−1)(2D−|Hiso|)) = Õ(nD(nℓ−K+1)

1
2 |Hiso|ℓ(K−1)D).

Fortunately, Hiso ( H (otherwise Uα = Vα which is the diagonal) hence |Hiso| 6 2D − 1. Since

ℓK−1 6 o(n), the bound is maximized when |Hiso| = 2D − 1, giving a bound of Õ(n2D− 1
2 ℓ

K−1
2 ),

which is o(n2D) since ℓK−1 6 o(n).

Handling surprise collapses. We first remind the reader where surprise collapses may arise

(i.e., within the left/right shape). This happens when a hexagon vertex (which takes labels in [n])

takes a label in [ℓ] hence merge with a circle vertex.

We now give a charging argument for surprise collapsed shape to bound their norm by the

shape with 1 fewer surprise collapse, and then combining with our bounds for uncollapsed shapes

completes the proof. Observe that in our case, each collapse may only decrease the norm bound,

as it essentially reduces a factor from n to ℓ in the norm bound (in some cases it removes the n

factor entirely due to the collapsed vertex being in the separator). Moreover, since there are always

2D distinct vertices in H, the collapse does not introduce (new) phantom edges that may produce

extra isolated vertices. Hence, each surprise collapse may only decrease the norm.

Completing the proof. We have shown that the diagonal entries of LL⊤ is Ω(n2D), while all

other shapes in the off-diagonal has spectral norm o(n2D) when mℓ2(K−1)D 6 ( n
polylog(n)

)2D. Thus,

we can write

LL⊤ = Ω(n2D) · I + E
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where ‖E‖op = o(n2D). This completes the proof.

6.4 Singular value lower bounds for desymmetrization

Lemma 6.29 (Restatement of Lemma 4.32). Let m, ℓ, D ∈ N such that m 6 ( ℓ

polylog(ℓ)
)2D. Then, with

probability 1 − ℓ−Ω(D),

σm3

(
Sym6D ·C⊗3

uniq

)
> Ω(ℓ3D) .

We first recall from Section 4.3 that C is the ℓ2D × m matrix whose columns are the coefficient

vectors of BD
1 , . . . , BD

m , and C⊗3
uniq is the (ℓ2D)

3 ×m3 matrix with columns Ci ⊗Cj ⊗Ck for i 6 j 6 k ∈
[m], the “unique” columns of C⊗3. Then, Sym6D ·C⊗3

uniq is an ℓ6D ×m3 matrix where we symmetrize

each column of C⊗3
uniq.

We let H := Sym6D ·C⊗3
uniq for convenience. Fix multiset I ∈ [ℓ]6D and let I1, I2, I3 be the ordered

partition of I, each of size 2D. Fix t1 6 t2 6 t3 ∈ [m], we have

H[I, (t1, t2, t3)] = Θ(1) ∑
π∈S6D

Sym(B⊗D
t1

)[π(I1)] · Sym(B⊗D
t2

)[π(I2)] · Sym(B⊗D
t3

)[π(I3)]

= Θ(1) ∑
π∈S6D

(B⊗D
t1

)[π(I1)] · (B⊗D
t2

)[π(I2)] · (B⊗D
t3

)[π(I3)] .

We can thus define the graph matrices that arise from H⊤H.

Definition 6.30 (Graph matrices from H⊤H). Fix permutations π, π′ ∈ S6D, the graph matrix can

be described as follows,

1. A tripartite graph with the following 6 square vertices (that take labels in [m]), 6D circle

vertices (that take labels in [ℓ]) and 6D edges:

• Uα = { s1 , s2 , s3 };

• Vα = { t1 , t2 , t3 };

• W = ( i1 , i2 , . . . , i6D ).

2. On the left, for each j ∈ {1, 2, 3}, we add D edges: ( sj , iπ(2k−1) , iπ(2k) ) for k = (j − 1)D +

1, . . . , jD. Similarly on the right, for each j ∈ {1, 2, 3}, we add D edges: ( tj , iπ′(2k−1) , iπ′(2k) ) for

k = (j − 1)D + 1, . . . , jD. In total 6D edges.

All other components of H⊤H can be viewed as collapses of the graph matrices defined above.

Diagonal entries of H⊤H. We show that the diagonal entries are Ω(ℓ6D) in the following

lemma, whose proof is almost identical to Claim 3.8 and follows from standard Gaussian concen-

tration results.

Lemma 6.31. Fix D, K ∈ N. Let B1(y), B2(y), B3(y) be degree-K homogeneous polynomials in ℓ variables

such that the coefficients of the Bis are sampled i.i.d. from N (0, 1). Then, with probability at least 1 −
ℓ−Ω(DK), ∥∥∥B1(y)

D B2(y)
D B3(y)

D
∥∥∥

2
= Θ(ℓ3DK) .
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Proof. Similar to the proof of Claim 3.8, in expectation over the coefficients of B1, B2, B3,

EB

∥∥∥BD
1 BD

2 BD
3

∥∥∥
2
= Θ(1) ∑

I∈[ℓ]3DK

EB

(
BD

1 BD
2 BD

3 [I]
)2

= Θ(ℓ3DK) .

The statement of the lemma follows by standard Gaussian concentration on low-degree polyno-

mials of Gaussians [SS12].

Completing the proof of Lemma 4.32. Lemma 6.31 shows that the diagonal entries of H⊤H

are Ω(ℓ6D). We now complete the proof by bounding the norm of the off-diagonal components.

Proof of Lemma 4.32. It suffices to prove that λmin(H⊤H) > Ω(ℓ6D). By Fact 3.7, it suffices for us

to prove a singular value lower bound of H with some rows removed. Recall that the rows of H

are indexed by multisets I ∈ [ℓ]6D . We will restrict to the rows of H whose indices have distinct

elements. This means that the 6D circle vertices in the graph matrices from Definition 6.30 do not

collapse.

We split the matrix into diagonal and off-diagonal components. For the diagonal entries, by

Lemma 6.31, the diagonal contributes Ω(ℓ6D) · I. For the off-diagonal components, we will bound

the spectral norm of the graph matrices from Definition 6.30.

Let’s start by considering the case Uα ∩ Vα = ∅, in which case either Uα or Vα must be the

minimum vertex separator given m ≪ ℓ2D , thus giving a bound of Õ(
√
ℓ6Dm3).

We now consider the shapes where Uα and Vα collapse. Since each square vertex is connected

to 2D circle vertices, merging two square vertices might produce phantom edges, making 2D

circle verties isolated in the worst case. On the other hand, for such a collapse, two square vertices

merge into Uα ∩ Vα, the mandatory vertex separator. Thus, such a collapse increases the spectral

norm by a factor of
√
ℓ2D/m.

There can only be two collapses between Uα and Vα, otherwise Uα = Vα which becomes the

diagonal. Thus, we can bound the spectral norm by Õ(
√
ℓ6Dm3 · ℓ2D/m) = Õ(ℓ5D

√
m) = o(ℓ6D)

when m 6 ( ℓ

polylog(ℓ)
)2D.

Wrapping up, the above shows that

H⊤H = Ω(ℓ6D) · I + E

with ‖E‖2 6 o(ℓ6D). This completes the proof.

6.5 Singular value lower bounds for V of higher degree polynomials

Lemma 6.32 (Restatement of Lemma 5.22). Fix K, D ∈ N and K > 3. Let m, ℓ ∈ N such that

m 6 ( ℓ

polylog(ℓ)
)KD/2. Let V, N be the matrices defined in Definition 5.16 and 5.20. Then with probability

1 − ℓ−Ω(D),

λmin

(
V

⊤
V + N

⊤
N
)
> Ω(ℓKD) .

Recall that V and N are generalizations of the V and N matrices for the case of cubics of

quadratics, with additional matrices padded to V and N: V = [V | VG] and N =

[
N 0

NG NB

]
.

75



Thus,

V
⊤

V =

[
V⊤V V⊤VG

V⊤
G V V⊤

G VG

]
, N

⊤
N =

[
N⊤N + N⊤

G NG N⊤
G NB

N⊤
B NG N⊤

B NB

]
. (21)

Proof outline We will follow our usual strategy of pulling out the diagonal matrix and bound

the norm of the off-diagonal blocks.

In Section 6.3.2, we have already shown in Lemma 6.16 that V⊤V + N⊤N � Ω(ℓKD) · I. Thus,

we proceed to analyze the rest of the matrix blocks.

For V⊤VG and V⊤
G VG, it turns out that all graph matrices have negligible spectral norms com-

pared to the diagonal, except for one specific matrix defined as follows.

Definition 6.33 (W matrix). Let W be the matrix with the same dimension as V⊤VG such that

W[(s, I), J] = V⊤VG[(s, I), J] = ℓ−
(K−2)D

2 G[I]BD
s [J] if I ∩ J = ∅, and 0 otherwise.

Lemma 6.34. Let K, D, m, ℓ ∈ N be the same parameters as Lemma 6.32, then

V⊤
G VG = Ω(ℓKD) · I + E1 , V⊤VG = W + E2

where ‖E1‖op , ‖E2‖op 6 o(ℓKD).

Recall that in the analysis of V⊤V + N⊤N in Section 6.3.2, we saw that there is a large norm

matrix W in V⊤V that is canceled by N⊤N. Here, the same phenomenon occurs: the block N⊤
G NB

has a −W component that cancels out the W in V⊤VG.

Lemma 6.35. Let K, D, m, ℓ ∈ N be the same parameters as Lemma 6.32, then

N⊤
G NB = −W + E3

where ‖E3‖op 6 o(ℓKD).

We can now complete the proof.

Proof of Lemma 6.32. By Lemma 6.16, we have V⊤V + N⊤N � Ω(ℓKD) · I, and by Lemma 6.34, we

have V⊤
G VG � Ω(ℓKD) · I. Moreover, combining Lemmas 6.34, 6.35 and (21), we have

V
⊤

V + N
⊤

N �
[

Ω(ℓKD) · I E2 + E3

E⊤
2 + E⊤

3 Ω(ℓKD) · I

]

where ‖E2‖op , ‖E3‖op = o(ℓKD). This completes the proof.

Graph matrices that arise from V⊤VG The following definition describes the graph matrices

from V⊤VG. We will see later that the graph matrices arising from V⊤
G VG and N⊤

G NB are all slight

modifications of these shapes.

Definition 6.36 (Graph matrices from V⊤VG). Fix r = |I ∩ J| ∈ {0, 1, . . . , KD} and a permutation

π ∈ SKD, the graph matrices are described as follows,

1. A graph with a square vertex s (that take labels in [m]) and (3K − 2)D circle vertices (that

take labels in [ℓ]):
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• I ′ = ( a1 , . . . , a|I ′| ) where |I ′| = 2(K − 1)D − r;

• J′ = ( b1 , . . . , b|J ′| ) where |J′ | = KD − r;

• H = ( b|J ′|+1 , . . . , bKD ), and |H| = r;

• L = ( c1 , . . . , cr ).

2. Uα = { s } ∪ I ′ ∪ L and Vα = J′ ∪ L.

3. There are D hyperedges: ( s , bπ((i−1)K+1) , . . . , bπ(iK) ) for i = 1, . . . , D, each touching s and K

circle vertices; we add another hyperedge I ′ ∪ H, touching 2(K − 1)D circle vertices.

Analysis of V⊤
G VG and V⊤VG: Proof of Lemma 6.34

Proof of Lemma 6.34. We first start with V⊤VG, the upper right submatrix of V
⊤

V. Recall from Def-

inition 5.16 that the columns of V, indexed by s ∈ [m] and multisets I ∈ [ℓ]2(K−1)D, are coefficient

vectors of the degree-(3K − 2)D polynomials Bs(y)DyI . Moreover, the columns of VG, indexed by

J ∈ [ℓ]KD , are coefficient vectors of ℓ−
(K−2)D

2 G(y)yJ , where G(y) is a degree-2(K − 1)D polynomial

with i.i.d. Gaussian coefficients (note the scaling factor here). The entry of V⊤VG is

V⊤VG[(s, I), J] = ℓ
− (K−2)D

2

〈
Bs(y)

DyI , G(y)yJ

〉
.

When I ∩ J = ∅, the above is simply V⊤VG[(s, I), J] = ℓ−
(K−2)D

2 · G[I]BD
s [J], which is exactly the W

matrix from Definition 6.33.

We now analyze the minimum vertex separator S. If s ∈ S, then I ′ ∪ J′ ∪ H can be outside S,

giving a bound of Õ((
√
ℓ)(3K−2)D−r) (here possible phantom edges from collapses within J′ don’t

matter as they contribute the same factors). Multiplied by the ℓ−
(K−2)D

2 factor, we have a bound of

Õ(ℓKD−r/2) = o(ℓKD) since r > 0.

If s /∈ S, same as the proof of Lemma 6.20, we define J′ph to be the vertices in J′ that are discon-

nected from s due to phantom edges. We know that |J′ph| 6
⌊

1
2(KD − r)

⌋
< KD/2. Then, J \ J′ph

must be in S, and { s } ∪ I ′ ∪ J′ph ∪ H can be outside of S, giving a bound of Õ(
√

m(
√
ℓ)(

5
2 K−2)D).

Multiplied by the ℓ−
(K−2)D

2 factor, we have a bound of Õ(
√

mℓ3KD/4), which is o(ℓKD) when m 6

( ℓ

polylog(ℓ))
KD/2. This proves that V⊤VG = W + E where ‖E‖op 6 o(ℓKD).

Analysis of V⊤
G VG. We write out the entries of V⊤

G VG: for multisets I, J ∈ [ℓ]KD ,

V⊤
G VG[I, J] = ℓ

−(K−2)D 〈G(y)yI , G(y)yJ〉 .

The diagonal entries V⊤
G VG[I, I] = ℓ−(K−2)D ‖G‖2 = Ω(ℓKD) by Claim 3.8. For the off-diagonal

entries of V⊤
G VG, fix r = |I ∩ J| ∈ {0, 1, . . . , KD − 1}, the graph matrices that arise are very similar

to the ones from V⊤VG in Definition 6.36; we note the small differences below:
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1. There is no square vertex, and there are also (3K − 2)D circle vertices but with |I ′| = |J′ | =
KD − r and |H| = (K − 2)D − r.

2. Uα = I ′ ∪ L and Vα = J′ ∪ L.

3. There are only 2 hyperedges: I ′ ∪ H and J′ ∪ H, each touching 2(K − 1)D circle vertices.

It is clear that when r < KD, the minimum vertex separator is just Uα ∩ Vα = L and there is no

phantom edge, giving a bound of Õ((
√
ℓ)(3K−2)D−r). Multiplied by the factor ℓ−(K−2)D, we have a

bound of Õ(ℓKD/2+D) = o(ℓKD) when K > 3. This completes the proof.

Analysis of N⊤
G NB: Proof of Lemma 6.35

Proof of Lemma 6.35. Recall from Definition 5.20 that for s, t ∈ [m] and I ∈ [ℓ]2(K−1)D, NG[s, (t, I)] =

ℓ−
(K−2)D

2 G[I] if s = t and 0 otherwise. Moreover, for s ∈ [m] and J ∈ [ℓ]KD , NB[s, J] = −(Bs(y)D)[J].

Note the crucial negative sign here. Thus,

N⊤
G NB[(t, I), J] = ∑

s∈[m]

NG[s, (t, I)] · NB[s, J] = −ℓ
− (K−2)D

2 G[I] · BD
t [J] .

When I ∩ J = ∅, this is exactly −W from Definition 6.33. When r = |I ∩ J| > 0, the graph ma-

trices that arise are almost identical to those from V⊤VG in Definition 6.36; we note the differences

below:

1. There are only (3K − 2)D − r circle vertices: I ′, J′, H are the same, but L = ∅.

2. Uα = { s } ∪ I ′ ∪ H and Vα = J′ ∪ H.

3. The hyperedges are exactly the same.

The analysis of the minimum vertex separator is almost identical to V⊤VG as well. Observe that

the graph matrices here are the same as in Definition 6.36 except that there are no circle vertices

outside of Uα ∪ Vα (here H ⊆ Uα ∩ Vα and L = ∅). This only decreases the spectral norm as there

are strictly fewer vertices outside of the vertex separator when r > 0. Thus, all such shapes have

norm o(ℓKD), and this completes the proof.
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A Non-Identifiability for Power-Sum Decomposition

A.1 Non-identifiability of sum of cubics of linearly independent quadratics

Lemma A.1. Let a =
√

6 and consider the following distinct sets of bivariate quadratic polynomials in

variables x, y:

S1 = {x2 + axy, x2 + y2, y2 + axy} ,

S2 = {x2, x2 + axy + y2, y2} .

Then, the polynomials in each set have linearly independent coefficient matrices but the sum of cubics of

polynomials in either sets is equal.

Proof. It is easy to verify that in both sets, the coefficient matrices of the polynomials are linearly

independent. The sum of cubics of S1 is

∑
p∈S1

p(x, y)3 = 2x6 + 3ax5y + 3(a2 + 1)x4y2 + 2a3x3y3 + 3(a2 + 1)x2y4 + 3axy5 + 2y6

whereas

∑
p∈S2

p(x, y)3 = 2x6 + 3ax5y + 3(a2 + 1)x4y2 + (6a + a3)x3y3 + 3(a2 + 1)x2y4 + 3axy5 + 2y6

Thus by setting a =
√

6, we have 2a3 = 6a + a3, meaning ∑p∈S1
p(x, y)3 = ∑p∈S2

p(x, y)3.

A.2 Non-identifiability of sum of squares of quadratics

We observe that sum-of-squares of even two random homogeneous quadratics cannot be uniquely

decomposed.
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Lemma A.2 (Non-Indentifiability of Generic Sum of Quadratics of Quadratics). Let A1, A2 be n ×
n matrices of independent N (0, 1) entries up to symmetry. Then, with probability 1 over the draw of

A1, A2, there exist symmetric A′
1, A′

2 such that
∥∥A′

i − Aj

∥∥
2
> 1/nO(1) for every i, j such that (x⊤A1x)2 +

(x⊤A2x)2 = (x⊤A′
1x)2 + (x⊤A′

2x)2 for every x.

Proof. Let V1, V2 be the vectorization of upper-triangular entries of A1, A2 respectively. Since the

coefficient tensor of (x⊤A1x)2 + (x⊤A2x)2 is a linear transformation (scaling of Sym operation)

applied to A⊗2
1 + A⊗2

2 , it is enough to find V ′
1, V ′

2 distinct form V1, V2 such that V⊗2
1 +V⊗2

2 = V ′
1
⊗2 +

V ′
2
⊗2

. The (since V1, V2 are random Gaussian, the rank decomposition is unique w.p. 1) orthogonal

decomposition of the matrix V1V⊤
1 + V2V⊤

2 uses orthogonal vectors V ′
1, V ′

2 that are different from

V1, V2 (in fact must have a distance of at least 1/n ‖V1‖2). Taking A′
i to be the matrix whose upper

triangular entries are given by V ′
i for i = 1, 2 completes the proof.

B Analysis of our Algorithm for Generic Ats

In this section, we derive Theorem 1.1 as a corollary of our proof of Theorem 1.3 combined with

some elementary algebraic considerations.

We will rely on the following lemma that shows that whenever a matrix with low-degree poly-

nomial entries in some variable A has full column rank for some real assignment to variables A,

it must in fact have non-trivially lower bounded singular value for any A′ after a small random

perturbation in each entry. Specifically, we prove:

Lemma B.1. Let G be a product distribution on N dimensional vectors such that the marginal of any

coordinate of G is distributed so that no single point has probability > 2−NO(1)
(for e.g., uniform distribution

on NO(1) bit rational numbers in any constant length interval suffices). Let M(A) be a R × S matrix such

that each entry of M(A) is a degree-d polynomial in the N-dimensional vector A with each entry upper

bounded by 2NO(1)
. Suppose there is a point A′ ∈ RN such that M(A′) has full rank R. Then, for any

vector B ∈ RN with rational entries of bit complexity at most NO(1),

Pr
G∼G

[M(B + G) has R-th singular value > 2−(SN)O(1)
] > 1 − 2−NO(1)

.

Our proof relies on the following variant of the classical Schwartz-Zippel lemma and a simple

observation about eigenvalues of matrices with polynomial bit complexity entries.

Fact B.2 (Corollary of Generalized DeMillo–Lipton–Zippel Lemma, Theorem 4.6 in [BCPS18]). Let

p(x1, x2, . . . , xn) be an n-variate degree-d polynomial over any field F. Suppose p is not identically equal to

0. Let S1, S2, . . . , Sn be finite subsets of F of size s > dn2. Then, if xi ∼ Si is chosen uniformly at random

and independently for every i, then,

Pr[p(x) = 0] 6 dn/s .

Lemma B.3 (Gapped Eigenvalues from Polynomial Bit Complexity). Let A be a n× r matrix of N-bit

rational entries. Suppose A has rank r. Then, the r-th smallest singular value of A is at least 2−O(Nn3).

Proof. Let B = A⊤A and let B′ be the matrix of integers obtained by clearing the denominators of

the rational numbers appearing in the entries of B. The bit complexity by B′ is then larger than

that of B by at most an additive Nn2 and is thus at most 4Nn2. Further, by the Gershgorin circle

theorem, the largest eigenvalue of B′ is at most n24Nn2
.
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Since B′ is a symmetric matrix with integer entries and has full rank, the determinant of B′,
det(B′) is a non-zero integer and thus at least 1 in magnitude. Since det(B′) is the product of

all r eigenvalues of B′ each of which is at most n24Nn2
, the smallest eigenvalue must be at least

n−n2−4Nn3
6 2−5Nn3

and large enough n. This completes the proof.

Proof of Lemma B.1. For any fixed B ∈ RN, consider the determinant det(Q) of the R × R matrix

Q = M(A + B)M(A + B)⊤. This is a polynomial of degree 2Rd in A. For A∗ = A′ − B, from the

hypothesis, M(A∗ + B)M(A∗ + B)⊤ has full rank R. Thus, det(Q) is not identically equal to 0 as a

polynomial of A.

Let G ∈ RN be sampled from G. For each entry i of G, let Si be the support of the distribution

that Gi is drawn from. Then, we know that this support is of size at least 2NO(1)
. Thus, by the

generalized De-Millo-Lipton-Zippel lemma (Fact B.2), the probability that M(B + G)M(B + G)⊤

is singular is at most 2−NO(1)
.

Further, the entries of M(B + G)M(B + G)⊤ have bit complexity at most NO(1). Thus, by

Lemma B.3, whenever the matrix M(B + G)M(B+ G)⊤ is non-singular, it’s smallest eigenvalue is

lower bounded by 2−(SN)O(1)
.

We can now finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We first note that the randomness of At in the analysis of our algorithm (Algo-

rithm 4.0.1) is only used to infer inverse polynomial singular value lower bounds on the matrices

arising in various steps of our algorithm. For sum of d = 3Dth power of degree-K polynomial At,

every matrix that arises in our analysis has entries that are at most degree-O(KD) polynomials in

Ats and have dimension nO(KD) × nO(KD). Thus, each such matrix is a degree O(KD) function of

Ats that is full-rank for random At. Thus, applying Lemma B.1 yields that the resulting matrix

in fact has condition number upper bounded by at most 2nO(KD)
with probability 1 − 2−nO(KD)

over

the choice of nO(KD)-bit smoothing of Ats. In particular nO(KD) bit truncation of all real numbers

occurring in our analysis is enough. As a result, our analysis of Algorithm 4.0.1 succeeds with a

worse estimation error of 2nO(KD) ‖E‖1/d
F + poly(n)τ1/d (where τ is the numerical accuracy param-

eter). In particular, when E = 0, which is the assumption in Theorem 1.1, we obtain polynomial

time (in input size and log 1/τ) algorithm for computing τ-approximate estimates of Ats up to

permutations (and signs for even D).

84


	1 Introduction
	1.1 Our results
	1.2 Discussion and comparison to prior works
	1.3 Brief overview of our techniques

	2 Technical Overview
	2.1 Our approach and outline of our algorithm
	2.2 Overview of singular value lower bounds

	3 Preliminaries and Notation
	4 Decomposing Power-Sums of Quadratics
	4.1 Proof of Lemma 4.3: Estimating span of partial derivatives of P
	4.1.1 Proof of Lemma 4.10: U=V
	4.1.2 Proof of Lemma 4.11: Analysis for V
	4.1.3 Proof of Lemma 4.12: Analysis for U

	4.2 Proof of Lemma 4.4: Span finding
	4.2.1 Robust intersection of subspaces
	4.2.2 Error resilience of Algorithm 4.2.1

	4.3 Proof of Lemma 4.5: Desymmetrization
	4.4 Proof of Lemma 4.6: Analysis of aggregating restrictions
	4.5 Proof of Lemma 4.9: Dth roots of polynomials
	4.5.1 Background on Sum-of-Squares
	4.5.2 Algorithm for D=2: Square root of polynomial
	4.5.3 Algorithm for the general case: D-th root of polynomial


	5 Decomposing Power-Sums of High-degree Polynomials
	5.1 Analysis of the partial derivative span
	5.2 Analysis for V_D and the span finding step

	6 Singular Value Lower Bounds for Structured Random Matrices
	6.1 Detailed overview
	6.2 Preliminaries for graph matrices
	6.3 Singular value lower bounds for analysis of V
	6.3.1 Proof of Lemma 4.21: rank of N
	6.3.2 Proof of Lemma 4.22: singular value of VV+NN
	6.3.3 Proof of Lemma 4.19 and 5.15: singular value of L

	6.4 Singular value lower bounds for desymmetrization
	6.5 Singular value lower bounds for V of higher degree polynomials

	A Non-Identifiability for Power-Sum Decomposition
	A.1 Non-identifiability of sum of cubics of linearly independent quadratics
	A.2 Non-identifiability of sum of squares of quadratics

	B Analysis of our Algorithm for Generic Ats

