
Separating MAX 2-AND, MAX DI-CUT and MAX CUT

Joshua Brakensiek∗ Neng Huang† Aaron Potechin‡ Uri Zwick§

Abstract

Assuming the Unique Games Conjecture (UGC), the best approximation ratio that can be
obtained in polynomial time for the MAX CUT problem is αCUT ' 0.87856, obtained by the
celebrated SDP-based approximation algorithm of Goemans and Williamson. The currently
best approximation algorithm for MAX DI-CUT, i.e., the MAX CUT problem in directed graphs,
achieves a ratio of about 0.87401, leaving open the question whether MAX DI-CUT can be ap-
proximated as well as MAX CUT. We obtain a slightly improved algorithm for MAX DI-CUT and a
new UGC-hardness for it, showing that 0.87446 ≤ αDI-CUT ≤ 0.87461, where αDI-CUT is the best
approximation ratio that can be obtained in polynomial time for MAX DI-CUT under UGC. The
new upper bound separates MAX DI-CUT from MAX CUT, i.e., shows that MAX DI-CUT cannot
be approximated as well as MAX CUT, resolving a question raised by Feige and Goemans.

A natural generalization of MAX DI-CUT is the MAX 2-AND problem in which each constraint
is of the form z1 ∧ z2, where z1 and z2 are literals, i.e., variables or their negations. (In
MAX DI-CUT each constraint is of the form x̄1 ∧ x2, where x1 and x2 are variables.) Aus-
trin separated MAX 2-AND from MAX CUT by showing that α2AND ≤ 0.87435 and conjectured
that MAX 2-AND and MAX DI-CUT have the same approximation ratio. Our new lower bound on
MAX DI-CUT refutes this conjecture, completing the separation of the three problems MAX 2-AND,
MAX DI-CUT and MAX CUT. We also obtain a new lower bound for MAX 2-AND showing that
0.87414 ≤ α2AND ≤ 0.87435.

Our upper bound on MAX DI-CUT is achieved via a simple, analytical proof. The new
lower bounds on MAX DI-CUT and MAX 2-AND, i.e., the new approximation algorithms, use
experimentally-discovered distributions of rounding functions which are then verified via
computer-assisted proofs. 1

∗Stanford University, supported in part by an NSF Graduate Research Fellowship and a Microsoft Research PhD
Fellowship. Email: jbrakens@cs.stanford.edu

†University of Chicago, supported in part by NSF grant CCF:2008920. Email: nenghuang@uchicago.edu
‡University of Chicago, supported in part by NSF grant CCF:2008920. Email: potechin@uchicago.edu
§Blavatnik School of Computer Science, Tel Aviv University, Israel. Email: zwick@tau.ac.il
1Code for the project: https://github.com/jbrakensiek/max-dicut

ar
X

iv
:2

21
2.

11
19

1v
2

 [
cs

.C
C

]
 1

2
A

pr
 2

02
3

https://github.com/jbrakensiek/max-dicut

1 Introduction

Goemans and Williamson [GW95], in their seminal paper, introduced the paradigm of obtaining
approximation algorithms for Boolean Constraint Satisfaction Problems (CSPs) by first obtaining a
semidefinite programming (SDP) relaxation of the problem and then rounding an optimal solution
of the relaxation. The first, and perhaps biggest, success of this paradigm is a simple and elegant
αGW-approximation algorithm, where αGW ' 0.87856, for the MAX CUT problem, i.e., the maximum
cut problem in undirected graphs, improving for the first time over the naive 1

2 -approximation al-
gorithm. Goemans and Williamson [GW95] also obtained improved algorithms for the MAX DI-CUT,
MAX 2-SAT and MAX SAT problems.

Feige and Goemans [FG95], Matuura and Matsui [MM03] and Lewin, Livnat and Zwick [LLZ02]
obtained improved approximation algorithms for the MAX 2-SAT and MAX DI-CUT problems. The
best approximation ratios, obtained by [LLZ02], are 0.940 for MAX 2-SAT and 0.874 for MAX DI-CUT.
Karloff and Zwick [KZ97] obtained an optimal (see below) 7

8 -approximation algorithm for MAX

{1,2,3}-SAT and Zwick [Zwi98] obtained approximation algorithms, some of them optimal, for many
other MAX 3-CSP problems, i.e., maximization versions of Boolean CSP problems in which each con-
straint is on at most three variables. Andersson and Engebretsen [AE98], Zwick [Zwi99], Halperin
and Zwick [HZ01], Asano and Williamson [AW02], Zhang, Ye and Han [ZYH04], and Avidor,
Berkovitch and Zwick [ABZ05] obtained approximation algorithms for various versions of the MAX

SAT and MAX NAE-SAT problems. It is a major open problem whether there is a 7
8 -approximation

algorithm for the MAX SAT problem. [BHPZ21] showed that there is no 7
8 -approximation algo-

rithm for the MAX NAE-SAT problem, assuming UGC. [AZBG+22] and [EN19] used “sticky Brownian
motion” to obtain optimal, or close to optimal, algorithms for MAX CUT and related problems. For
a survey of these and related results, see Makarychev and Makarychev [MM17].

H̊astad [H̊as01], in a major breakthrough, extending the celebrated PCP theorem of [ALM+98],
showed, among other things, that, for any ε > 0, it is NP-hard to obtain a (7

8 + ε)-approximation
of MAX 3-SAT and a (1

2 + ε)-approximation of MAX 3-LIN, showing that the trivial algorithms for
these two problems that just choose a random assignment are tight. [TSSW00] showed, using
gadget reductions, that it is NP-hard to obtain a (16

17 + ε)-approximation of MAX CUT and (12
13 + ε)-

approximation of MAX DI-CUT.

Khot [Kho02] introduced the Unique Games Conjecture (UGC). Khot, Kindler, Mossel and
O’Donnell [KKMO07] then showed that UGC implies that, for any ε > 0, obtaining an (αGW + ε)-
approximation for MAX CUT is NP-hard, showing, quite remarkably, that the algorithm of Goemans
and Williamson [GW95] is optimal, i.e., αCUT = αGW, assuming UGC. Austrin [Aus07] then showed
that the MAX 2-SAT algorithm of Lewin, Livnat and Zwick [LLZ02] is essentially optimal, again
modulo UGC. Austrin [Aus10] obtained some upper bounds on the the approximation ratio that
can be achieved for MAX 2-AND in polynomial time. However, they do not match the approximation
ratio obtained by the MAX DI-CUT algorithm of [LLZ02] which is in fact an approximation algorithm
for MAX 2-AND.

Raghavendra [Rag08, Rag09], in another breakthrough, showed that under UGC, the best
approximation ratio that can be obtained for any MAX CSP problem, over a finite domain and
with a finite number of constraint types, can be obtained using a canonical SDP relaxation of the
problem and the rounding of an optimal solution of this relaxation using an appropriate rounding
procedure taken from a specified family of rounding procedures. The approximation ratio obtained
is then exactly the integrality gap of the relaxation. Approximating the integrality gap up to ε
takes doubly exponential time in 1/ε, and a close to optimal algorithm can be obtained by trying
discretized versions of all rounding procedures, up to some resolution. (See Raghavendra and

1

Steurer [RS09] for more on finding almost optimal rounding schemes.)

It might seem that these results resolve all problems related to the approximation of MAX
CSP problems. Unfortunately, this is not the case. These results do give valuable guidance to the
designers of approximation algorithms. In particular, it is clear which semidefinite programming
relaxation should be used and the search for an optimal, or almost optimal, rounding procedure
can be restricted to the family of rounding procedures specified by Raghavendra [Rag08]. However,
these results give almost no concrete information on the integrality gap of the relaxation, which
is also the best approximation ratio that can be obtained. Also, no practical information is given
on how to obtain optimal, or almost optimal rounding procedures, other than the fact that they
belong to a huge class of rounding procedures, as it is wildly impractical to implement and run a
brute force algorithm whose running time is doubly exponential in 1/ε.

In particular, Raghavendra’s results are unable2 to answer questions of the following form: Is
there a 7

8 -approximation algorithm for MAX SAT, with clauses of all sizes allowed? Can MAX DI-CUT

be approximated as well as MAX CUT? Can MAX 2-AND be approximated as well as MAX DI-CUT? In
this paper we study the latter two questions and answer them in the negative, assuming UGC.

1.1 Our results

Our main result is the following theorem.

Theorem 1.1 (Main). Assuming UGC, α2AND < αDI-CUT < αCUT.

To separate MAX 2-AND, MAX DI-CUT and MAX CUT, we obtain an improved upper bound and an
improved lower bound (i.e., an approximation algorithms) for MAX DI-CUT. Our improved upper
bound is:

Theorem 1.2. Assuming UGC, αDI-CUT ≤ 0.87461.

To obtain the new upper bound, we construct a distribution over MAX DI-CUT configurations
that is hard for any rounding procedure from the family T HRESH− defined by Lewin, Livnat
and Zwick [LLZ02]. Such hard distributions can then be converted into dictatorship tests and
then Unique Games hardness by small modifications to the technique used by Austrin [Aus10] for
distributions over MAX 2-AND configurations.

It is more difficult to obtain hard configurations for MAX DI-CUT than for MAX 2-AND, since in
MAX 2-AND the functions used in the rounding scheme can be assumed, without loss of generality,
to be odd. (A function f : [−1, 1] → R is odd if and only if f(−x) = −f(x) for every x ∈ [−1, 1].)
Using an odd rounding function ensures that a variable and its negation are assigned opposite truth
values. In MAX DI-CUT there is no such restriction as, in a sense, there are no negated variables.
The possibility of using non-odd rounding functions gives the rounding scheme more power. (The
improved rounding scheme that we obtain for MAX DI-CUT uses a distribution of rounding functions
some of which are not odd. This is exactly what enables the separation of MAX DI-CUT from
MAX 2-AND, as we discuss below.) We overcome this difficulty using a simple, symmetric construction
for which the best rounding scheme is odd. Another interesting feature of our hard construction
is that it contains a configuration for which all the triangle inequalities, powerful constraints of
the SDP relaxation, are not tight. This is in contrast to previous work on MAX 2-SAT [Aus07] and

2In particular, if the answer to any of these questions is “yes” the Raghavendra-Steurer algorithm cannot certify
these in finite time, and if the answer is “no” the ε needed for separation is so small that the algorithm would need
to run over a galactic time scale.

2

MAX 2-AND [Aus10], where hardness results are derived only from configurations in which one of the
triangle inequalities is tight.

Our construction yields an upper bound of αDI-CUT ≤ 0.87461, which together with αCUT ≥
0.87856 exhibits a clear separation between MAX DI-CUT and MAX CUT. (Although the separation is
clear, it is still perplexing that the approximation ratios of MAX CUT and MAX DI-CUT are so close,
and yet not equal.) We believe that our upper bound can be slightly improved using a sequence of
more and more complicated constructions that yield slightly better and better upper bounds.

In addition to our improved upper bound for MAX DI-CUT, we also obtain two new lower bounds
for MAX DI-CUT and MAX 2-AND.

Theorem 1.3. αDI-CUT ≥ 0.87446. (In other words, there is an approximation algorithm for
MAX DI-CUT with an approximation ratio of at least 0.87446.)

Theorem 1.4. α2AND ≥ 0.87414. (In other words, there is an approximation algorithm for
MAX 2-AND with an approximation ratio of at least 0.87414.)

The new lower bounds improve on the previously best, and non-rigorous, bound of 0.87401 ob-
tained by [LLZ02] for both MAX DI-CUT and MAX 2-AND. Despite the relatively small improvements,
the improved approximation algorithms are interesting for at least two reasons. The first is that
the new approximation algorithm for MAX DI-CUT separates MAX DI-CUT from MAX 2-AND, refuting
a conjecture of Austrin [Aus10]. The second is that the new algorithms show that taking a single
rounding scheme from T HRESH−, as done by [LLZ02] and as shown by Austrin [Aus07, Aus10]
to be sufficient for obtaining an optimal approximation algorithm for MAX 2-SAT, is not sufficient for
obtaining optimal approximation algorithms for MAX DI-CUT and MAX 2-AND. Using insights gained
from the upper bounds, we design an improved approximation algorithm for MAX DI-CUT that uses
distributions of T HRESH− rounding procedures, i.e., rounding procedures belonging to the more
general family T HRESH also defined in [LLZ02]. Using a computer search, we find a new round-
ing procedure from this family3 which shows that αDI-CUT ≥ 0.87446. Our rigorous proof of this
inequality is computer assisted.

In [LLZ02], the authors discovered their T HRESH− procedures for MAX DI-CUT and MAX 2-AND

using non-convex optimization. More precisely, they used a local descent procedure from random
starting points to tune a single rounding function that performs well for all possible configurations
simultaneously. However, this approach becomes impractical for finding an optimal probability
distribution of T HRESH− functions (i.e., a “T HRESH scheme”). One potential reason why this
would not work is that there would be a significant local optimum where all the functions in the
distribution identical to the one in [LLZ02].

Instead, we cast the design of the T HRESH scheme for MAX DI-CUT and MAX 2-AND as infinite
zero-sum games played by two players. The first player, Alice, selects a T HRESH− function and
the second player, Bob, selects a configuration of SDP vectors to round. (This configuration may
or may not correspond to an optimal solution of an SDP relaxation of an actual instance.) Alice’s
value is then the approximation ratio achieved by her T HRESH− function on the SDP value of
the configuration. Bob’s value is the negative of Alice’s value. One can then show, that αDI-CUT (or
α2AND) is precisely the value of this game, assuming UGC and the positivity conjecture in [Aus10].
Computationally, we discretize this game and use a min-max optimization procedure to estimate
the value of this game and find an optimal, or almost optimal, strategy for Alice. This proceeds
in a series of phases: Bob challenges Alice with a distribution of instances, and Alice computes a

3Technically, we add in a tiny amount of independent rounding for verification purposes but we believe this can
be removed.

3

nearly-optimal response using methods similar to that of [LLZ02]. Then, with Alice’s functions,
Bob computes a new distribution of instances which Alice does the worst one. This latter step is
done by solving a suitable LP (the dual variables tell us Alice’s optimal T HRESH scheme). As
the “raw” T HRESH scheme produced by this procedure can be somewhat noisy, we subsequently
manually simplified the T HRESH distribution.

As mentioned, the proofs of the bounds αDI-CUT ≥ 0.87446 and α2AND ≥ 0.87414 are computer-
assisted, using the technique of interval arithmetic. This technique has been previously used in
the study of approximation algorithms. For example, Zwick [Zwi02] used it to certify the 7

8 -
approximation ratio for MAX {1,2,3}-SAT claimed by [KZ97]. The use of interval arithmetic in our
setting is much more challenging, however, as the rounding procedures used for MAX DI-CUT are
much more complicated than the simple random hyperplane rounding used for MAX {1,2,3}-SAT.
In particular, we need to use rigorous numerical integration to compute two-dimensional normal
probabilities. A computer-assisted verification is probably necessary in our setting since fairly
complicated distributions seem to be need for obtaining good approximation ratios, and it is hard
to imagine that such distributions can be analyzed manually.

Since Austrin [Aus10] showed that α2AND < 0.87435, assuming UGC, our new MAX DI-CUT

approximation algorithm separates MAX 2-AND and MAX DI-CUT. This refutes Austrin’s conjecture
that MAX 2-AND and MAX DI-CUT have the same approximation ratios. It also gives an interesting,
non-trivial, example where a positive CSP (i.e., CSP that does not allow negated variables) is
strictly easier to approximate than the CSP with the same predicate when negated variables are
allowed.

We believe that the fact that rounding procedures from T HRESH− do not yield optimal
approximation algorithms for MAX DI-CUT is interesting in its own right. We conjecture that dis-
tributions over such procedures, i.e., rounding procedures from T HRESH are enough to obtain
optimal algorithms for MAX DI-CUT and MAX 2-AND. (A continuous distribution is probably needed
to get the optimal algorithms.)

We note that both T HRESH− and T HRESH are tiny subfamilies of the families shown by
Raghavendra [Rag08] to be enough for obtaining optimal approximation algorithms for general
MAX CSP problems. In particular, T HRESH− and T HRESH use only one Gaussian random
vector while, in general, the families of Raghavendra [Rag08] may need an unbounded number of
such random vectors to obtain optimal or close-to-optimal results.

1.2 Organization of paper

The rest of the paper is organized as follows. In Section 2 we introduce the MAX CUT, MAX DI-CUT

and MAX 2-AND problems and their SDP relaxations, we state the Unique Games Conjecture, and
introduce the T HRESH− and T HRESH families of rounding procedures used throughout the
paper. In Section 3 we derive our new upper bound on MAX DI-CUT which separates MAX DI-CUT

from MAX CUT. The proof of this upper bound is completely analytical. In Section 4 we describe the
computation techniques used to discover our improved MAX DI-CUT algorithm and the computation
techniques used to rigorously verify the approximation ratio that it achieves. In Section 5 we
obtain corresponding results for the MAX 2-AND problem. We end in Section 6 with some concluding
remarks and open problems.

4

2 Preliminaries

2.1 MAX CSP and canonical SDP relaxations

For a Boolean variable, we associate −1 with true and 1 with false. A Boolean predicate on k
variables is a function P : {−1, 1}k → {0, 1}. If P outputs 1, then we say P is satisfied.

Definition 2.1 (MAX CSP(P)). Let P be a Boolean predicate on k variables. An instance of
MAX CSP(P) is defined by a set of Boolean variables V = {x1, x2, . . . , xn} and a set of constraints
C = {C1, C2, . . . , Cm}, where each constraint Ci is of the form P (bi,1xji,1 , bi,2xji,2 , . . . , bi,kxji,k)
for some ji,1, . . . , ji,k ∈ [n] and bi,1, bi,2, . . . bi,k ∈ {−1, 1}, and a weight function w : C → [0, 1]
satisfying

∑m
i=1w(Ci) = 1. The goal is to find an assignment to the variables that maximizes∑m

i=1w(i)P (bi,1xji,1 , bi,2xji,2 , . . . , bi,kxji,k), i.e., the sum of the weights of satisfied constraints.

Definition 2.2 (MAX CSP+(P)). MAX CSP+(P) has the same definition as MAX CSP(P), except that
now each constraint Ci is of the form P (xji,1 , xji,2 , . . . , xji,k). In other words, negated variables are
not allowed.

Since the weight function is non-negative and sums up to 1, we can think of it as a probability
distribution over the constraints. Note that we only defined CSPs with a single Boolean predicate,
while in general there can be more than one predicate and they may not be Boolean. We refer to
a CSP with a k-ary predicate as a k-CSP.

We are now ready to define the three MAX 2-CSP problems that we separate.

Definition 2.3. Let CUT : {−1, 1}2 → {0, 1} be the predicate which is satisfied if and only if the two
inputs are not equal. Let DI-CUT : {−1, 1}2 → {0, 1} be the predicate which is satisfied if and only
if x = 1 and y = −1. Then MAX CUT is the problem MAX CSP+(CUT), MAX DI-CUT is the problem
MAX CSP+(DI-CUT) and MAX 2-AND is the problem MAX CSP(DI-CUT).

In graph-theoretic language, we can think of each variable in a MAX DI-CUT instance as a vertex,
and each constraint as a weighted direct edge between two vertices. An assignment of +1 and −1
to the vertices defines a directed cut in the graph. We are asked to assign +1 and −1 to the vertices
so that the sum of the weights of edges that cross the cut, i.e., go from +1 to −1, is maximized.

We can also define AND : {−1, 1}2 → {0, 1} such that AND(x, y) = 1 if and only if x = y = −1.
Note that then DI-CUT(x, y) = AND(x̄, y), and MAX 2-AND is also MAX CSP(AND), hence its name.

The following Fourier expansion of DI-CUT is heavily used throughout the paper.

Proposition 2.4. DI-CUT(x, y) = 1+x−y−xy
4 .

This proposition can be used to extend the domain of DI-CUT to real inputs.

Any MAX CSP(P) has a canonical semi-definite programming relaxation. The canonical SDP
relaxation for MAX DI-CUT, for example, is:

maximize
∑

C=DI-CUT(xi,xj)∈C

wC ·
1 + v0 · vi − v0 · vj − vi · vj

4

subject to ∀i ∈ {0, 1, 2, . . . , n}, vi · vi = 1,

∀C = DI-CUT(xi, xj) ∈ C,

(v0 − vi) · (v0 − vj) ≥ 0,
(v0 + vi) · (v0 − vj) ≥ 0,
(v0 − vi) · (v0 + vj) ≥ 0,
(v0 + vi) · (v0 + vj) ≥ 0.

5

The canonical SDP relaxation is obtained as follows. There is a unit vector vi ∈ Rn+1 for each
variable xi, and a special unit vector v0 corresponding to false. Each linear term xi in the Fourier
expansion of P is replaced by v0 · vi, and each quadratic term xixj is replaced by vi · vj . The
so-called triangle inequalities are then added.

Note that this is the special case of Raghavendra’s basic SDP in the setting of Boolean 2-
CSPs, and the triangle inequalties ensure that there is a local distribution of assignments for each
constraint.

2.2 Unique Games Conjecture

The Unique Games Conjecture (UGC), introduced by Khot [Kho02], plays a crucial role in the
study of hardness of approximation of CSPs. One version of the conjecture is as follows.

Definition 2.5 (Unique Games). In a unique games instance I = (G,L,Π), we are given a weighted
graph G = (V (G), E(G), w), a set of labels [L] = {1, 2, . . . , L} and a set of permutations Π =
{πve : [L] → [L] | e = {v, u} ∈ E(G)} such that for every e = {u, v} ∈ E(G), πve = (πue)−1.
An assignment to this instance is a function A : V (G) → [L]. We say that A satisfies an edge
e = {u, v} if πue (A(u)) = A(v). The value of an assignment A is the weight of satisfied edges, i.e.,
Val(I, A) =

∑
e∈E(G):A satisfies ew(e), and the value of the instance Val(I) is defined to be the value

of the best assignment, i.e., Val(I) = maxA Val(I, A).

Conjecture (Unique Games Conjecture). For any η, γ > 0, there exists a sufficiently large L
such that the problem of determining whether a given unique games instance I with L labels has
Val(I) ≥ 1− η or Val(I) ≤ γ is NP-hard.

We say that a problem is UG-hard, if it is NP-hard assuming the UGC. Raghavendra [Rag08]
showed that any integrality gap instance of the canonical SDP relaxation can be turned into a
UG-hardness result.

2.3 Configurations of biases and pairwise biases

As it turns out, an actual integrality gap instance is not required to derive UG-hardness results.
Instead, it is sufficient to consider configurations of SDP solution vectors that appear in the same
constraint. For 2-CSPs, each such configuration is represented by a triplet θ = (bi, bj , bij), where
bi = v0 ·vi, and bj = v0 ·vj , bij = vi ·vj . bi and bj are called biases and bij is called a pairwise bias.
A valid configuration is required to satisfy the triangle inequalities described in the previous section.
As long as the triangle inequalities are satisfied, it does not matter whether such a configuration
comes from an actual SDP solution. We will use Θ for a set of valid configurations, and Θ̃ for such
a set endowed with a probability distribution.

Definition 2.6 (Completeness). Given a configuration θ = (bi, bj , bij) for MAX DI-CUT, its com-

pleteness is defined as Completeness(θ) =
1+bi−bj−bij

4 . For a distribution of configurations Θ̃, its

completeness is defined as Completeness(Θ̃) = Eθ∼Θ̃[Completeness(θ)].

Note that if Θ̃ actually comes from an SDP solution, then Completeness(Θ̃) is simply the SDP
value of this solution.

Definition 2.7 (Relative pairwise bias). Given a configuration θ = (bi, bj , bij), the relative pairwise

bias is defined as ρ(θ) =
bij−bibj√

(1−b2i)(1−b2j)
, if (1− b2i)(1− b2j) 6= 0, and 0 otherwise.

6

Geometrically, ρ(θ) is the inner product between vi and vj after removing their components
parallel to v0 and renormalizing.

Definition 2.8 (Positive configurations [Aus10]). Given a Boolean predicate P (x1, x2) on two vari-

ables with Fourier expansion
P̂∅+P̂1x1+P̂2x2+P̂1,2x1x2

4 , a configuration θ = (bi, bj , bij) for MAX CSP(P)

(or MAX CSP+(P)) is called positive if P̂1,2 · ρ(θ) ≥ 0.

If P = DI-CUT, then the quadratic coefficient in the Fourier expansion is −1/4, which implies
that a configuration is positive if and only if its relative pairwise bias is not positive. Austrin [Aus10]
presented a general mechanism to deduce UG-hardness results for MAX CSP(P) from hard distri-
butions of positive configurations. With very slight modifications, the same mechanism can also
be used for MAX CSP+(P). Austrin also conjectured that positive configurations are the hardest to
round. This conjecture is still open. Our results do not rely on this conjecture.

In a MAX DI-CUT instance, if we flip the direction of every edge in the graph, then an optimal
solution to this new instance can be obtained by flipping all the signs in an optimal solution to the
original instance. For configurations, this symmetry corresponds to swapping the two biases and
then changing the signs.

Definition 2.9 (Flipping a configuration). Let θ = (bi, bj , bij) be a DI-CUT configuration. We define
its flip to be flip(θ) = (−bj ,−bi, bij).

The following proposition can be easily verified.

Proposition 2.10. Let θ = (bi, bj , bij) be a DI-CUT configuration. We have

1. ρ(θ) = ρ(flip(θ)).

2. Completeness(θ) = Completeness(flip(θ)).

2.4 The T HRESH and T HRESH− families of rounding functions

T HRESH and T HRESH−, first introduced in [LLZ02], are small but powerful families of rounding
functions for SDP relaxations of CSPs. In a T HRESH− rounding scheme, a continuous threshold
function f : [−1, 1] → R is specified. The algorithm chooses a random Gaussian vector r ∈ Rn+1,
and sets each variable xi to true (−1) if and only if r · v⊥i ≥ f(v0 · vi), where

v⊥i =
vi − (vi · v0)v0√

1− (vi · v0)2

is the component of vi orthogonal to v0 renormalized to a unit vector. (If vi = ±v0, we can take v⊥i
to be any unit vector that is orthogonal to every other vector in the SDP solution.) Since v⊥i is a
unit vector, r ·v⊥i is a standard normal random variable. Furthermore, for any i, j ∈ [n], r ·v⊥i and
r · v⊥j are jointly Gaussian with correlation v⊥i · v⊥j .

Let Φ, ϕ be the c.d.f. and p.d.f. of the standard normal distribution, respectively. For t1, t2 ∈ R,
let Φρ(t1, t2) := Pr[X ≤ t1 ∧ Y ≤ t2], where X and Y are two standard normal random variables
that are jointly Gaussian with E[XY] = ρ. Then for a T HRESH− rounding scheme with threshold
function f , a variable xi is rounded to false with probability Φ(f(bi)). For a DI-CUT configuration
θ = (bi, bj , bij), the probability that it is satisfied by T HRESH− with f , which happens when xi
is set to false and xj is set to true, is equal to

Pr
[
r · v⊥i ≤ f(bi) and r · v⊥j ≥ f(bj)

]
= Pr

[
r · v⊥i ≤ f(bi) and − r · v⊥j ≤ −f(bj)

]
= Φ−ρ(θ)(f(bi),−f(bj)) .

7

This naturally leads to the following definition.

Definition 2.11 (Soundness). Let f : [−1, 1] → R be a continuous threshold function and θ =
(bi, bj , bij) a configuration for MAX DI-CUT. We define Soundness(θ, f) = Φ−ρ(θ)(f(bi),−f(bj)). For

a distribution of configurations Θ̃, its soundness Soundness(Θ̃, f) is defined as Eθ∼Θ̃[Soundness(θ, f)].

As in the case for configurations, we can also flip a T HRESH− threshold function.

Definition 2.12. Let f : [−1, 1]→ R be a continuous threshold function. We define flip(f) as the
function x 7→ −f(−x).

Proposition 2.13. Let f : [−1, 1] → R be a continuous threshold function and θ = (bi, bj , bij) a
configuration. Then

Soundness(θ, f) = Soundness(flip(θ),flip(f)) .

Proof. By Proposition 2.10, we have that ρ(θ) = ρ(flip(θ)) = ρ. By definition of soundness,

Soundness(θ, f) = Φ−ρ(f(bi),−f(bj))

= Φ−ρ(−flip(f)(−bi), flip(f)(−bj))
= Φ−ρ(flip(f)(−bj),−flip(f)(−bi))
= Soundness(flip(θ), flip(f)) .

A rounding scheme from T HRESH can be thought of as a distribution over T HRESH− round-
ing schemes. Formally speaking, a T HRESH rounding scheme is specified by a continuous function
T : R × [−1, 1] → R, and a variable xi is set to true if and only if r · v⊥i ≥ T (v0 · r,v0 · vi). This
allows for a continuous distribution over T HRESH− rounding schemes.

The following partial derivatives are helpful for analyzing T HRESH and T HRESH− rounding
schemes.

Proposition 2.14 (Partial derivatives of Φρ(t1, t2)).

∂Φρ(t1, t2)

∂ρ
=

1

2π
√

1− ρ2
exp

(
− t

2
1 − 2ρt1t2 + t22

2(1− ρ2)

)
,

∂Φρ(t1, t2)

∂t1
= ϕ(t1)Φ

(
t2 − ρt1√

1− ρ2

)
,

∂Φρ(t1, t2)

∂t2
= ϕ(t2)Φ

(
t1 − ρt2√

1− ρ2

)
.

A derivation of the formula given for
∂Φρ(t1,t2)

∂ρ can be found in Drezner and Wesolowsky [DW90].

The formulas for
∂Φρ(t1,t2)

∂t1
and

∂Φρ(t1,t2)
∂t2

follow easily from the definition of Φρ(t1, t2).

3 Upper bounds for MAX DI-CUT

3.1 Separating MAX DI-CUT from MAX CUT

In this section, we prove the following theorem, which separates MAX DI-CUT from MAX CUT.

8

Theorem 3.1. Assuming the Unique Games Conjecture, it is NP-hard to approximate MAX DI-CUT

within a factor of 0.87461.

To prove Theorem 3.1 we construct a distribution of positive configurations Θ̃, compute its
completeness, and show that no T HRESH− rounding scheme can achieve a performance ratio of
0.87461 on it. The UG-hardness result then follows from a slight generalization of a reduction of
Austrin [Aus10]. 4 (For completeness, we describe this reduction in Appendix A.)

The distribution Θ̃ used to obtain the upper bound is extremely simple. Let p1, p2, b, c be some
parameters to be chosen later. We will choose them so that b, p1, p2 ∈ (0, 1), c ∈ (−1,−b2), and
2p1 + p2 = 1. Consider the following distribution of configurations Θ̃ = {θ1, θ2, θ3}:

θ1 = (−b,−b,−1 + 2b) with probability p1

θ2 = (b,−b, c) with probability p2

θ3 = (b, b,−1 + 2b) with probability p1

Note that in the θ1 and θ3 one of the triangle inequalities is tight, while in θ2 none of the triangle
inequalities are tight, as was mentioned earlier. Also, this distribution is symmetric with respect
to flip, since flip(θ1) = θ3 and flip(θ2) = θ2.

We first verify that Θ̃ satisfies the positivity condition.

Proposition 3.2. Θ̃ is a distribution of positive configurations.

Proof. In θ1 and θ3, the relative pairwise bias is equal to ρ1 = −1+2b−b2
1−b2 = −1−b

1+b < 0. In θ2, the

relative pairwise bias is equal to ρ2 = c+b2

1−b2 < 0 since we choose c < −b2.

The completeness of this instance can be easily computed.

Proposition 3.3. Completeness(Θ̃) = p1 · (1− b) + p2 ·
1 + 2b− c

4
.

Proof. We have

Completeness(Θ̃)

= p1 ·
1 + (−b)− (−b)− (−1 + 2b)

4
+ p2 ·

1 + b− (−b)− c
4

+ p1 ·
1 + b− b− (−1 + 2b)

4

= p1 ·
2− 2b

4
+ p2 ·

1 + 2b− c
4

+ p1 ·
2− 2b

4

= p1 · (1− b) + p2 ·
1 + 2b− c

4
.

We now give an upper bound on the performance of any T HRESH− rounding scheme on this
distribution. Let t1, t2 be the thresholds for −b, b respectively. Let s(t1, t2) be the soundness of this
rounding scheme on Θ̃. By definition of T HRESH−, we have

s(t1, t2) = p1 · Φ−ρ1(t1,−t1) + p2 · Φ−ρ2(t2,−t1) + p1 · Φ−ρ1(t2,−t2) ,

where ρ1, ρ2 < 0 are computed in Proposition 3.2. We first look at the case where −∞ < t1, t2 <∞.
The case where t1 = ±∞ or t2 = ±∞, which corresponds to always setting one or both variables
to 1 or −1, can be dealt with separately via a simple case analysis.

4Since the distribution is fixed, the optimal T HRESH− rounding scheme for it is also the best T HRESH rounding
scheme.

9

As we discussed in the introduction, a T HRESH− rounding scheme for MAX DI-CUT is not
necessarily odd, but as the following lemma shows, the simple and symmetric structure of our
construction ensures that any finite critical point of s is necessarily symmetric around the origin.

Lemma 3.4. Let x, y ∈ R. If (x, y) is a critical point of s(t1, t2), then y = −x = |x|.

Proof. Recall that by Proposition 2.14 ∂
∂t1

Φρ(t1, t2) = ϕ(t1) · Φ
(
t2−ρt1√

1−ρ2

)
.

The partial derivatives of s(t1, t2) are

∂s

∂t1
= p1

(
ϕ(t1)− 2ϕ(t1) · Φ

(√
1− ρ1

1 + ρ1
t1

))
+ p2

(
−ϕ(t1) · Φ

(
t2 − ρ2t1√

1− ρ2
2

))
,

∂s

∂t2
= p1

(
ϕ(t2)− 2ϕ(t2) · Φ

(√
1− ρ1

1 + ρ1
t2

))
+ p2

(
ϕ(t2)− ϕ(t2) · Φ

(
t1 − ρ2t2√

1− ρ2
2

))
.

In the above computation, we used Proposition 2.14 and the chain rule. Since (x, y) is a critical
point of s and ϕ is strictly positive, we have

p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
x

))
+ p2

(
−Φ

(
y − ρ2x√

1− ρ2
2

))
= 0 ,

p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
y

))
+ p2

(
1− Φ

(
x− ρ2y√

1− ρ2
2

))
= 0 .

The first equation can be rewritten as

p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
x

))
= p2 · Φ

(
y − ρ2x√

1− ρ2
2

)
. (1)

Since Φ is a positive function, the right hand side of (1) is positive and therefore we have 1 −
2Φ
(√

1−ρ1

1+ρ1
x
)
> 0, which implies that x < 0.

Since 1− Φ(t) = Φ(−t), the second equation can be rewritten as

p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
y

))
= −p2 · Φ

(
−x+ ρ2y√

1− ρ2
2

)
. (2)

By similar logic we can deduce that y > 0. We now show that we must have |x| = |y|. Assume for
the sake of contradiction that |x| 6= |y|. We have two cases:

• |x| > |y|. It follows that

p1 ·
∣∣∣∣1− 2Φ

(√
1− ρ1

1 + ρ1
x

)∣∣∣∣ = p1 ·
∣∣∣∣Φ(−√1− ρ1

1 + ρ1
x

)
− Φ

(√
1− ρ1

1 + ρ1
x

)∣∣∣∣
> p1 ·

∣∣∣∣Φ(−√1− ρ1

1 + ρ1
y

)
− Φ

(√
1− ρ1

1 + ρ1
y

)∣∣∣∣
= p1 ·

∣∣∣∣1− 2Φ

(√
1− ρ1

1 + ρ1
y

)∣∣∣∣ .

10

Note that here we again used 1− Φ(t) = Φ(−t), as well as the fact that |Φ(t)− Φ(−t)| is an
increasing function in |t|. On the other hand, by (1) and (2) this implies that∣∣∣∣∣p2 · Φ

(
y − ρ2x√

1− ρ2
2

)∣∣∣∣∣ >
∣∣∣∣∣−p2 · Φ

(
−x+ ρ2y√

1− ρ2
2

)∣∣∣∣∣ .
Since Φ is a positive and monotone function, this implies that

y − ρ2x√
1− ρ2

2

>
−x+ ρ2y√

1− ρ2
2

,

Rearranging the terms, we obtain

(1− ρ2)y > (1− ρ2) · (−x) .

But this would imply that |y| > |x|, which contradicts our assumption.

• |y| > |x|. This can be dealt with in a similar manner.

We conclude that we must have y = −x = |x|.

Lemma 3.5. If p1 > p2, then s(t1, t2) has a unique critical point.

Proof. Assume (x, y) is a critical point. In the previous lemma, we established that x = −y < 0,
so we can now plug y = −x into (1) and get

p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
· x
))

= p2 · Φ

(
−1− ρ2√

1− ρ2
2

· x

)
= p2 · Φ

(
−
√

1 + ρ2

1− ρ2
· x
)
.

We need to show the equation above has only one solution when p1 > p2. To this end, define

g(t) = p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
· t
))
− p2 · Φ

(
−
√

1 + ρ2

1− ρ2
· t
)
, t < 0 .

We have g(0) = −p2 < 0 and limt→−∞ g(t) = p1 − p2 > 0, so g(t) = 0 has at least one solution
in (−∞, 0) by Intermediate Value Theorem. To show that the solution is unique, we compute the
derivative of g:

g′(t) = p1

(
−2

√
1− ρ1

1 + ρ1
· ϕ
(√

1− ρ1

1 + ρ1
· t
))

+ p2 ·
√

1 + ρ2

1− ρ2
· ϕ
(
−
√

1 + ρ2

1− ρ2
· t
)
.

By setting g′(t) = 0, we obtain

2p1

√
1− ρ1

1 + ρ1
· ϕ
(√

1− ρ1

1 + ρ1
· t
)

= p2 ·
√

1 + ρ2

1− ρ2
· ϕ
(
−
√

1 + ρ2

1− ρ2
· t
)

Plugging in the definition of ϕ, we get

2p1

√
1− ρ1

1 + ρ1
· 1√

2π
exp

(
−1− ρ1

1 + ρ1
· t

2

2

)
= p2 ·

√
1 + ρ2

1− ρ2
· 1√

2π
exp

(
−1 + ρ2

1− ρ2
· t

2

2

)
,

11

which is equivalent to

2p1

√
1− ρ1

1 + ρ1
· exp

(
−
(

1− ρ1

1 + ρ1
− 1 + ρ2

1− ρ2

)
· t

2

2

)
= p2 ·

√
1 + ρ2

1− ρ2
.

Since ρ1, ρ2 < 0 and exp is monotone, this equation has exactly one solution t∗ ∈ (−∞, 0). Fur-
thermore, g′(t) > 0 for t ∈ (−∞, t∗) and g′(t) < 0 for t ∈ (t∗, 0). It follows that g has no root in
(−∞, t∗) and has a unique root in (t∗, 0).

We now deal with the boundary cases. Since our distribution is symmetric with respect to flip,
it is sufficient to look at the case where t1 = ±∞.

Lemma 3.6. We have s(+∞,+∞) = s(−∞,−∞) = s(+∞,−∞) = 0, s(−∞,+∞) = p2. For
t2 ∈ R, we have s(−∞, t2) > s(+∞, t2). Furthermore, if p1 > p2, then s(−∞, t2) is maximized

when t2 = t∗ =
√

1+ρ1

1−ρ1
· Φ−1(p1+p2

2p1
).

Proof. Setting a threshold to +∞ corresponds to always setting a variable to false, and −∞ cor-
responds to always true. When (t1, t2) ∈ {(+∞,+∞), (−∞,−∞), (+∞,−∞)}, none of the con-
figurations are satisfied, giving a soundness of 0. When (t1, t2) = (−∞,+∞), only the second
configuration is satisfied and this gives a soundness of p2. For aim, we have

s(−∞, t2) = p2 · Φ(t2) + p1 · Φ−ρ1(t2,−t2) > p1 · Φ−ρ1(t2,−t2) = s(+∞, t2) ,

and
∂s(−∞, t2)

∂t2
= ϕ(t2)

(
p2 + p1

(
1− 2Φ

(√
1− ρ1

1 + ρ1
t2

)))
.

When p1 > p2, we have ∂s(−∞,t2)
∂t2

> 0 on (−∞, t∗) and ∂s(−∞,t2)
∂t2

< 0 on (t∗,∞).

With Lemma 3.5 and Lemma 3.6, it becomes very easy to determine the maximum of s by
simply computing the unique critical point and comparing it with the boundary cases. It turns
out that when b = 0.1757079776, c = −0.6876930116, p1 = 0.3770580295, the unique critical point
of s(t1, t2) is at (−t0, t0) where t0 ' 0.1887837358, which is also a global maximum whose value
is about 0.8746024732. A plot of s(t1, t2)/Completeness(Θ̃) with these parameters can be found in
Figure 1. It follows that with these parameters, any T HRESH− rounding scheme achieves a ratio
of at most 0.87461. This can then be converted into Unique Games hardness via standard and
well-known techniques, which we include in the appendix for completeness.

3.2 Intuition for the upper bound

While we found this integrality gap instance with a computer search, we now give some intuition
for why this integrality gap instance works well. Previously, the best algorithm for MAX DI-CUT was
the LLZ algorithm [LLZ02] which works equally well for MAX 2-AND.

If we restrict our attention to points (b1, b2,−1 + |b1 + b2|) where the triangle inequality is tight
(so the completeness is as large as possible given b1 and b2), using experimental simulations, the
performance of LLZ in terms of b1 and b2 is as follows:

We observe that there is a strip where b1 + b2 ≈ .35 and a strip where b1 + b2 ≈ −.35 where
the LLZ algorithm does poorly. In order to reduce the degrees of freedom for rounding schemes for
our instance, it makes sense to choose b2 = b1 = ±b. With this choice, there are only two degrees

12

2 1 0 1 2
t1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

t2

Approximation Ratio

0.0000

0.3398

0.5642

0.7123

0.8101

0.8746

0.4 0.2 0.0 0.2 0.4
t1

0.4

0.2

0.0

0.2

0.4

t2

Approximation Ratio

0.5000

0.5794

0.6462

0.7024

0.7496

0.7894

0.8228

0.8509

0.8746

Figure 1: Contour plots of s(t1, t2)/Completeness(Θ̃) with optimal parameters. The black dot
represents the global maximum (−t0, t0) where t0 ' 0.1887837358. All plots in this paper are made
with Matplotlib [Hun07].

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

b2

approx ratio for max dicut

0.872

0.876

0.880

0.884

0.888

0.892

0.896

0.900

0.4 0.2 0.0 0.2
b1

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1
b2

approx ratio for max dicut

0.8740

0.8745

0.8750

0.8755

0.8760

0.8765

0.8770

0.8775

0.8780

Figure 2: Contour plots of the performance of the LLZ function [LLZ02] for MAX 2-AND and
MAX DI-CUT.

of freedom, the threshold for b and the threshold for −b. b ' 0.1757079776 puts us right in the
middle of the hard strips for LLZ.

Once we have these two points, we can also add points of the form (b,−b, c) and (−b, b, c′)
without additional degrees of freedom. While we originally thought that points where the triangle
inequality is tight may be optimal, this turned out to not be the case. Instead, we found experi-
mentally that adding the point (b,−b, c) with c ' −0.6876930116 worked best. The completeness
for (−b, b, c′) is too low, so adding this kind of point does not help.

3.3 Possibly improved upper bounds

We believe that slightly improved upper bounds for MAX DI-CUT can be obtained using more than
one pair of biases. In Appendix B we give more complicated distributions that use up to 4 pairs
of biases that seem to indicate that αDI-CUT ≤ 0.8745794663 (not verified rigorously). It would

13

probably be very hard to prove this inequality analytically. It is probably possible to prove that,
say, αDI-CUT ≤ 0.8745795, using interval arithmetic, but we have not done so yet.

4 A new approximation algorithm for MAX DI-CUT

In this section, we present the techniques used for proving Theorem 1.3. We first briefly give
some intuition for why a rounding scheme for MAX DI-CUT better than those possible for MAX 2-AND

should exist. Then, after describing the rounding scheme, we explain how this rounding scheme
was discovered experimentally. Finally, we discuss how we rigorously verify the approximation
guarantees of this rounding scheme using interval arithmetic.

4.1 Intuition for the separation between MAX 2-AND and MAX DI-CUT

We now try to give some intuition for why there is a gap between MAX 2-AND and MAX DI-CUT.
We first observe that Austrin’s hard distributions of configurations for MAX 2-AND (see Section 6
of [Aus10]) can be easily beaten for MAX DI-CUT. For simplicity, we consider Austrin’s simpler
two-configuration distribution which is as follows

1. (0,−b, b− 1) with probability 0.64612

2. (0, b, b− 1) with probability 0.35388

where b = 0.33633. This gives an inapproximability of 0.87451 for MAX 2-AND.

For MAX 2-AND, since variables can be negated, we can assume without loss of generality that
when b = 0, for each rounding scheme in our distribution the variable has an equal probability of
being rounded to true or false.

For MAX DI-CUT, we only have the symmetry of θ 7→ flip(θ). When we add this symmetry to the
integrality gap instance, we obtain:

1. (0,−b, b− 1) with probability 0.32306

2. (b, 0, b− 1) with probability 0.32306

3. (0, b, b− 1) with probability 0.17694

4. (−b, 0, b− 1) with probability 0.17694

where b = 0.33633.

The following distribution of rounding functions trivially satisfies 1
2 of the configurations of this

MAX DI-CUT instance.

1. With probability 1
2 , round all variables with bias 0 to 1 and round all variables with bias −b

or b to −1.

2. With probability 1
2 , round all variables with bias 0 to −1 and round all variables with bias −b

or b to 1.

Since the completeness of these configurations are all at most 1
2 , we obtain a ratio which is at

least 1.

14

While this is an extreme example, this shows that making the variables with zero or low bias
more likely to be rounded to 1 or more likely to be rounded to −1 can help round other variables
more effectively as the behavior of these variables is more predictable.

This means that configurations where one or more variables has bias 0 are easier for MAX DI-CUT.
Instead, the configurations in our simple distribution (i.e., (b, b,−1 + 2b) where b ' 0.1757079776)
are hard configurations and all rounding schemes in the distribution have essentially the same
behavior at these configurations.

4.2 The rounding scheme

We now describe a T HRESH scheme, that separates MAX DI-CUT from MAX 2-AND. As mentioned,
a T HRESH scheme is a distribution over T HRESH− schemes. We use discrete distributions
over a relatively small number of T HRESH− schemes. For computational convenience, we choose
the T HRESH− functions to be piecewise linear functions. More precisely, we pick a finite set
S ⊂ [−1, 1] of control points with −1, 1 ∈ S. For each of these control points s ∈ R, we assign
a real threshold f(s). Then, for every x ∈ (−1, 1) \ S, we identify x− = max(S ∩ [−1, x)) and
x+ = min(S ∩ (x, 1]), and set

f(x) = f(x−) +
x− x−
x+ − x−

(f(x+)− f(x−)) .

We use the same set of control points for every function in our T HRESH scheme.

For our application to MAX DI-CUT, we picked a set S of 17 control points as follows:

0 ± 0.1 ± 0.164720 ± 0.179515 ± 0.25 ± 0.3 ± 0.45 ± 0.7 ± 1

The choice of most control points is fairly arbitrary. It seemed important, however, to choose the
four control points ±0.164720 and ±0.179515 as they seem to be situated in regions in which very
fine control over the values of the rounding functions are needed. Further small improvement are
probably possible by slightly moving some of the control points or by adding new control points.

Then, using the algorithm presented in Section 4.3, we produced a “raw” T HRESH rounding
scheme which is a probability distribution over 39 piecewise-linear rounding functions. After a
careful ad-hoc analysis, we were able to simplify the distribution to a “clean” T HRESH scheme
with only 7 piecewise rounding functions, which we summarize in Table 1 and Figure 3.

It is interesting to note that the function f1, which is used in about 99.7% of the time, is very
close to the single function used by [LLZ02]. We do not yet a satisfactory explanation of the shape
of the other functions. Some of the values of the functions, especially at control points ±0.45,
±0.7 and ±1 can be changed slightly without affecting the performance ratio obtained. We also
note that the last two functions do not seem to contribute much. We have a scheme with only 5
functions with only a very slightly smaller performance ratio.

4.3 Discovery of the T HRESH scheme

In this section, we discuss the process of experimentally discovering the “raw” T HRESH scheme
described in Section 4.2. For now, we will make a couple of assumptions, which will be fully worked
out in Section 4.3.4.

(1) Instead of optimizing over all valid configurations of MAX DI-CUT, we restrict to optimizing
over a finite set Θ of configurations, where Completeness(θ) > 0 for all θ ∈ Θ.

15

f1 f2 f3 f4 f5 f6 f7

prob 0.996902 0.000956 0.000956 0.000393 0.000393 0.000200 0.000200
−1.000000 −1.601709 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000
−0.700000 −0.853605 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000
−0.450000 −0.517014 −2.000000 −0.629564 −0.440988 −0.896878 −2.000000 2.000000
−0.300000 −0.333109 −1.520523 1.711824 −1.406591 1.643936 −2.070000 1.970000
−0.250000 −0.274589 −0.687582 2.019266 −0.622399 −0.127984 −1.629055 2.070000
−0.179515 −0.192926 −0.195474 −0.229007 −0.268471 −0.339566 −0.544957 −0.103307
−0.164720 −0.175942 −0.381789 −0.649998 −0.116530 −0.073069 −0.361234 −0.575047
−0.100000 −0.105428 −0.026636 −1.175439 0.066139 −0.123693 2.070000 −1.351740

0.000000 0.000000 2.046025 −2.046025 1.728858 −1.728858 2.050000 −2.050000
0.100000 0.105428 1.175439 0.026636 0.123693 −0.066139 1.351740 −2.070000
0.164720 0.175942 0.649998 0.381789 0.073069 0.116530 0.575047 0.361234
0.179515 0.192926 0.229007 0.195474 0.339566 0.268471 0.103307 0.544957
0.250000 0.274589 −2.019266 0.687582 0.127984 0.622399 −2.070000 1.629055
0.300000 0.333109 −1.711824 1.520523 −1.643936 1.406591 −1.970000 2.070000
0.450000 0.517014 0.629564 2.000000 0.896878 0.440988 −2.000000 2.000000
0.700000 0.853605 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000
1.000000 1.601709 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000

Table 1: A T HRESH rounding scheme that gives a rigorously verified approximation ratio of at
least 0.874473 for MAX DI-CUT. (The actual ratio is probably about 0.874502.) The scheme uses 7
piecewise-linear rounding functions f1, f2, . . . , f7 defined on 17 control points. The function f1 is
odd and is very close to the single function used by [LLZ02]. The other six functions come in pairs.
The two functions in each pair are flips of each other.

(2) Let F be a restricted family of T HRESH− schemes (e.g., the piecewise linear functions).
We shall further assume throughout this discussion that we have access to an oracle OF
which, when given a probability distribution Θ̃ ∈ Dist(Θ), identifies a function f ∈ F which
maximizes Soundness(Θ̃, f).

4.3.1 Finite F : a game-theoretic approach

Assume further we have found a finite set F ⊂ F of candidate rounding functions. We would like
to identify the following:

(a) An optimal (worst) distribution Θ̃ over Θ such that

Θ̃ = argmin
Θ̃∈Dist(Θ)

max
f∈F

Soundness(Θ̃, f)

Completeness(Θ̃)
.

(b) An optimal (best) distribution F̃ over F such that

F̃ = argmax
F̃∈Dist(F)

min
θ∈Θ

E
f∼F̃

[
Soundness(Θ̃, f)

Completeness(Θ̃)

]
.

It turns out that both of these objectives can be solved by mutually dual LPs. This is best
seen by casting both questions as a zero-sum game. Fix a real number α, which should be thought
of as an estimate of the approximation ratio of this restricted MAX DI-CUT problem. In our game,
which we call the α-game, there are two players Alice and Bob that play simultaneously: Alice
picks θ ∈ Θ and Bob picks f ∈ F . We then have the following payoffs

Alice: aliceα(θ, f) := αCompleteness(θ)− Soundness(θ, f)

Bob: bobα(θ, f) := Soundness(θ, f)− αCompleteness(θ)

16

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f1 with probabilities 0.996902 f2 and f3 each with probability 0.000956

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f4 and f5 each with probability 0.000393 f6 and f7 each with probability 0.000200

Figure 3: Plots of the seven rounding functions used in the T HRESH rounding scheme given in
Table 1 that achieves a verified approximation ration of at least 0.87446 for MAX DI-CUT.

Note that this game is a finite zero-sum game and thus by standard theory (e.g., Von Neumann’s
minimax theorem [Neu28] and Nash equilibria [Nas51]), there is a single5 Nash-equilibrium (Θ̃α, F̃α)
which is the optimal mixed strategy for both players. Let v(α) be the expected payoff of this optimal
strategy for Alice (i.e., the value of the game). We now make the following simple observation.

Proposition 4.1. The function v(α) is strictly increasing in α.

Proof. Fix α < α′. Assume for the α′-game that Alice plays Θ̃α. Assume Bob plays an arbitrary
mixed strategy F̃ . Then, Alice’s expected payoff is

E
θ∼Θ̃α,f∼F̃

[aliceα′(θ, f)] = E
θ∼Θ̃α,f∼F̃

[aliceα(θ, f) + (α′ − α)Completeness(θ)]

= E
θ∼Θ̃α,f∼F̃

[aliceα(θ, f)] + (α′ − α) E
θ∼Θ̃α

[Completeness(θ)]

> v(α) ,

5Depending on the singular values of the payoff matrices, there may be multiple Nash-equilibrium, but they all
have the same value. In that situation, we pick one of the Nash equilibriums arbitrarily to be representative Nash
equilibrium.

17

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75
b2

Approx Ratio for MAX-DICUT

0.8741
0.8743
0.8745
0.8747
0.8750
0.8760
0.8780
0.8800
0.9000
1.0000

Figure 4: This plot is a contour plot of the performance of the T HRESH scheme with 7 piecewise-
linear rounding functions for various choices of b1 and b2 (with an approximately worst-case choice
of b12) selected.

where we use the fact that Θ̃α is the Nash equilibrium for the α-game and that Completeness(θ) > 0
for all θ ∈ Θ. In other words, Alice can assure for the α′-game a payoff strictly greater than v(α).
Thus, v(α′) > v(α).

It is easy to see that v(0) ≤ 0 (as alice0 ≤ 0). Further aliceα(θ, f) → ∞ as α → ∞. Thus,
by Proposition 4.1, there is a unique αΘ,F for which v(αΘ,F) = 0 with a corresponding Nash
equilibrium of Θ̃F and F̃Θ. Unpacking the definition of Nash equilibrium and using the fact that
Soundness(Θ̃, f) is an affine function in Θ̃, we have that

(a) For all f ∈ F , we have that

Soundness(Θ̃F , f)

Completeness(Θ̃)
≤ α .

(b) For all θ ∈ Θ, we have that

E
f∼F̃Θ

[
Soundness(θ, f)

Completeness(θ)

]
≥ α .

Thus, Θ̃F and F̃Θ are the optimal distributions for problems (a) and (b) from before. We can
efficiently compute these distributions through a suitable linear program. Let wθ be the weights of
the optimal distribution Θ̃F and let pf be the weights of the optimal distribution F̃Θ. By definition

18

of the Nash equilibrium, we have that∑
θ∈Θ

wθ(αΘ,F Completeness(θ)− Soundness(θ, f)) ≥ 0 , ∀f ∈ F (3)∑
f∈F

pf (Soundness(θ, f)− αΘ,F Completeness(θ)) ≥ 0 , ∀θ ∈ Θ (4)

To formulate this as a pair of linear programs, we will have αΘ,F be our objective. Since v(α) ≥ 0 for
all α ≥ αΘ,F we will have a “minimize” objective to compute the wθ’s and a “maximize” objective
to compute the pf ’s.

However, neither set of constraints is currently an LP as αΘ,F is also a variable of our LP (in
fact the objective function). This is easy to fix for (4), as

∑
f∈F pf = 1, so we can rewrite (4) as∑

f∈F
pfSoundness(θ, f) ≥ αΘ,F Completeness(θ) .

For (3), we use a ‘clever’ trick. We renormalize the weights so that
∑

θ ŵθ Completeness(θ) = 1
instead of

∑
θ wθ = 1, and use the ŵθ’s as the variables of the LP. With this normalization, we

then get the linear constraints ∑
θ∈Θ

ŵθ Soundness(θ, f) ≤ αΘ,F .

After solving the LP, We can find the original weights by setting wθ = ŵθ/
∑

θ′∈Θ ŵθ′ . Formally,
the two LPs we solve are as follows.

Primal LP (finding Θ̃F)

minimize: α

subject to:
∑
θ∈Θ

Soundness(θi, f)ŵθ ≤ α , ∀f ∈ F∑
θ∈Θ

Completeness(θi)ŵθ = 1

ŵθ ≥ 0 , ∀θ ∈ Θ

Dual LP (finding F̃Θ)

maximize: α

subject to:
∑
f∈F

Soundness(θ, fj)pf ≥ αCompleteness(θ) , ∀θ ∈ Θ

∑
f∈F

pf = 1

pf ≥ 0 , ∀f ∈ F

It is straightforward to prove that these two LPs are dual to each other and thus will both
achieve the same objective value αΘ,F

19

4.3.2 Extending to infinite F

Since the full family of functions we optimize over is infinite, we cannot hope to find a (near)
optimal distribution over F by just solving a suitable finite linear program. Instead, we work with
a small set of candidate functions F which we iteratively improve. In particular, for a fixed F , we
can compute the hardest distribution Θ̃F for this family of functions and then use the oracle to
find the function f = OF (Θ̃F) which does the best on this hard distribution. (Note that OF (Θ̃F)
needs to solve a non-linear, and probably non-convex, optimization problem.) We add f to F and
continue for some fixed number T of steps. We note that similar minimax algorithms are prevalent
in machine learning, such as in generative adversarial networks [GPAM+20]. See Algorithm 1 for
the formal details.

Algorithm 1 T HRESH discovery algorithm (fixed Θ)

1: procedure FindThresh(Θ, T)
2: Pick an initial distribution Θ̃0 ∈ Dist(Θ)
3: f1 ← OF (Θ̃0)
4: F1 ← {f1}.
5: for i ∈ {1, 2, . . . , T − 1} do
6: Find the hardest Θ̃i for Fi using the Primal LP with objective value αi
7: fi+1 ← OF (Θ̃i)
8: Fi+1 ← Fi ∪ {fi+1}
9: end for

10: Find the optimal distribution F̃T over FT for Θ using the Dual LP
11: return F̃T
12: end procedure

It is easy to see that the objective value αi of the Primal LP in Algorithm 1 increases at each
step of the loop. Further, it is not hard to prove that αi ≤ 1/minθ∈Θ Completeness(θ). Thus, as
T →∞, the objective value of the Primal LP tends to a limit αlim. Our main correctness guarantee
of our algorithm is that we converge to this limit at an effective rate and that this limit is the best
we can hope for.

Theorem 4.2. Fix ε > 0 and assume C := 1/minθ∈Θ Completeness(θ) is finite. Let αT be the
objective value of the Dual LP computing F̃T . Assume that T > (C/ε)|Θ|, then αT ≥ αlim − ε.
Further, for every finite distribution F̃ over functions in F ,

E
f∼F̃

[
Soundness(Θ̃, f)

Completeness(Θ̃)

]
≤ αlim .

Proof. Observe that for all j > i ≥ 1, we have that

Soundness(Θ̃i, fi+1)

Completeness(Θ̃i)
≥ Soundness(Θ̃j , fj)

Completeness(Θ̃j)
,

because the distribution Θ̃i certifies that no finite distribution of rounding functions over Fj can

do better than Soundness(Θ̃i,OF (Θ̃i))

Completeness(Θ̃i)
. In particular, by taking the limit as j → ∞, this implies that

for all i ≥ 1,

Soundness(Θ̃i, fi+1)

Completeness(Θ̃i)
≥ αlim . (5)

20

Assume for sake of contradiction that αT < αlim−ε. Thus, αi < αlim−ε for all i ∈ {1, . . . , T−1}.
Pick δ = ε/C. Define the function sΘ : F → [0, 1]Θ as

sΘ(f) = (Soundness(θ, f) : θ ∈ Θ) .

Observe that if f and f ′ are such that ‖sΘ(f) − sΘ(f ′)‖∞ ≤ δ, then for any fixed distribution Θ̃,
we have that∣∣∣∣∣ Soundness(Θ̃, f)

Completeness(Θ̃)
− Soundness(Θ̃, f ′)

Completeness(Θ̃)

∣∣∣∣∣ ≤ δ

minθ∈Θ Completeness(θ)
= ε . (6)

Divide [0, 1]Θ in (1/δ)|Θ| hypercubes with `∞-diameter δ. Let H be the this family of hypercubes.
Since T > (C/ε)|Θ|, by the pigeonhole principle there exists i, j ∈ {1, . . . , T} with fi and fj in the
same hypercube but i < j. In particular, we have by the minimax guarantee of Θj−1, (6), and (5),

αT ≥ αj−1 ≥
Soundness(Θ̃j−1, fi)

Completeness(Θ̃j−1)
≥ Soundness(Θ̃j−1, fj)

Completeness(Θ̃j−1)
− ε ≥ αlim − ε , (7)

as desired.

For the claim about F̃ , assume for sake of contradiction that there is a ε′ > 0 such that

E
f∼F̃

[
Soundness(Θ̃, f)

Completeness(Θ̃)

]
≥ αlim + ε′ .

Then, we must have that for all i ≥ 1,

Soundness(Θ̃i, fi+1)

Completeness(Θ̃i)
≥ αlim + ε′ .

However, if we take the limit in (7) as ε → 0 and T ≥ (C/ε)|Θ|, we obtain that α ≥ αlim + ε′, a
contradiction.

Remark 4.3. The second claim of Theorem 4.2 can also be proved for continuous distributions F̃
over F . In that case, we can approximately discretize F̃ by picking representative functions which
cover the space of functions in the `∞ metric with respect to sΘ. We omit further details.

Remark 4.4. Although this proof only gives correctness when T is exponential in the size of Θ, in
practice our simulation only requires T = |Θ|O(1) rounds to converge with ε ≈ 10−6. Perhaps this
suggests that the theoretical analysis can also be improved.

4.3.3 Extension to infinite Θ

We now briefly discuss how to extend Algorithm 1 to allow Θ to grow. Let Θvalid,ε be the space of all
valid configurations of MAX DI-CUT with completeness at least ε. Assume we also have an oracle OΘ

which when given a distribution of rounding functions F̃ outputs the configuration θ ∈ Θvalid,ε on
which F̃ performs the worst. We can then dynamically grow our “working set” of configurations Θ
using the following procedure.

Let αi the performance guarantee of F̃i over Θi−1 and let α̂i be optimal approximation ratio if T
were to tend to ∞. Note that α̂i must monotonically decrease (although non-necessarily strictly).

21

Algorithm 2 T HRESH discovery algorithm (growing Θ)

1: procedure FindThreshFull(T , T ′)
2: Pick Θ0 arbitrarily.
3: for i ∈ {1, 2, . . . , T ′ − 1} do
4: F̃i ← FindThresh(Θi−1, T).
5: θi ← OΘ(F̃i)
6: Θi ← Θi−1 ∪ {θi}.
7: end for
8: return FindThresh(ΘT ′ , T)
9: end procedure

Since each α̂i is nonnegative, they must have a limit α̂lim. Via an argument similar6 to Theorem 4.2,
we can take an δ-net over the configuration space Θvalid,ε and argue that if both θi and θj are in the
same region of the δ-net, then F̃j must perform with a ratio at least α̂lim− ε on all configurations7

in Θvalid,ε. In particular, we can guarantee that when T ′ is sufficiently large, then nearly all F̃i’s
with i ∈ {T ′/2, . . . , T ′} are near-optimal distributions. This proves to be an adequate guarantee
for practical simulation.

4.3.4 Implementation details

We now discuss the implementation details for how the “raw” T HRESH scheme was generated as
well as details of how the “clean” T HRESH scheme was derived from it.

The raw distribution. Overall, the algorithm for discovering the “raw” T HRESH distribution
was implemented in Python (version 3.10).

The oracle OF is computed using the SciPy library’s minimize routine [VGO+20] which finds a
locally maximum rounding function f when given a starting function f̂ : S → (−∞,∞) as input.
For numerical stability, we assume that all thresholds are in the range [−2, 2]. We compute OΘ by
computing Soundness(θ, F̃) for θ’s in a suitably spaced grid and then calling minimize on the worst
grid point to further tune the parameters.

The Soundness routine was computed using Genz’s numerical algorithms for approximate mul-
tivariate normal integration [Gen92, Gen93] which is bundled with SciPy. The linear program-
ming routines were implemented using CVXPY [DB16, AVDB18] as a wrapper around the ECOS
solver [DCB13].

In practice, we found that the convergence was more stable by additionally adding flip(fi) to
Fi in Algorithm 1. Likewise, in Algorithm 2, it was best to add flip(θi) along with θi.

Perhaps the most sensitive part of this algorithm is the choice of the initial Θ0 in Algorithm 2.
We found it best to set Θ0 to be a near-optimal hard distribution. With this choice, it only took
T ′ ≈ 150. In practice, we did not aim for a fixed T in Algorithm 1, but rather a more complicated
stopping criteria based on how fast αi is stabilizing. This roughly translates to T � 100. In
total, it took a few hours of single-core computation on a standard desktop computer to find the

6This further requires that the family of functions F is uniformly continuous: that is small changes in the config-
urations imply that the rounding functions do not change much. This is true for uniformly bounded, piecewise linear
functions.

7In practice, the distribution of functions also does well on instances with completeness less than ε.

22

T HRESH function described in Section 4.2. However, as mentioned in Section 4.3.3, the worst-
case performance of the distribution F̃i is not monotone in i, so it took a few instances of trial and
error (i.e., run for a few more iterations) until the worst-case performance was satisfactory.

We further remark that routines similar to the ones described in this section were used to dis-
cover (approximately) the configurations used to prove the upper bound on MAX DI-CUT in Section 3
(in this case Θ0 was seeded to be a fixed ε-spaced grid).

The clean distribution. Inspecting the 39 functions of the raw distribution revealed that they
naturally divide into 7 families of functions, with the functions in each family being fairly similar
to each other. Taking a weighted average of the functions in each family yielded a scheme with
only 7 functions that did almost as well as the original scheme. Further inspection revealed that
one of these 7 functions was almost odd, and that the other six functions divide into three pairs in
which functions are close to being flips of each other. The first function was made odd by taking
the average of the function and its flip. Similarly, the functions in each pair were made flips of each
other. This slightly improved the performance ratio obtained. Finally, numerical optimization was
used to perform small optimizations. The resulting 7 functions are the ones given in Table 1. The
final performance ratio obtained was slightly better than the one achieved by the raw distribution.
The computations and optimizations were done using MATLAB.

4.4 Verification using interval arithmetic

4.4.1 Sketch of the algorithm

From now on, we use F̃ to refer to the clean distribution of 7 functions from the previous subsection.
To prove that the claimed distribution F̃ of rounding functions achieves an approximation ratio of
at least α for MAX DI-CUT, we need to show that

∀θ,

(
Completeness(θ) 6= 0 =⇒

Ef∼F̃ [Soundness(θ, f)]

Completeness(θ)
≥ α

)
,

or equivalently
∀θ, E

f∼F̃
[Soundness(θ, f)]− α · Completeness(θ) ≥ 0 .

Note that in the above expression, Completeness(θ) only involves simple arithmetic operations,
and E[Soundness(θ, f)] is a weighted sum of two-dimensional Gaussian integrals, while θ takes value
in [−1, 1]3, modulo the triangle inequalities.

To rigorously verify the inequality for all configurations, we deploy the technique of interval
arithmetic. In interval arithmetic, instead of doing arithmetics with numbers, we apply arithmetic
operations to intervals. Let op be a k-ary operation and I1, I2, . . . , Ik be k intervals, then the interval
arithmetic on op(I1, I2, . . . , Ik) will produce an interval Iop with the following rigorous guarantee:
op(x1, x2, . . . , xk) ∈ Iop for every (x1, x2, . . . , xk) ∈ I1×I2×· · ·×Ik. By transitivity of set inclusion,
if we implement a function g as a composition of such operations in interval arithmetic, then it is
guaranteed that the range of g is included in the output interval Ig.

This property is useful when it comes to certifying the nonnegativity of g. Indeed, if the output
interval Ig lies entirely in [0,∞), then we can establish that g is a nonnegative function on the given
input intervals. However, since the computation is usually not exact, to maintain correctness, Ig
will also contain elements that are not in the range of g. In particular, if g attains 0, then we cannot

23

hope to certify the nonnegativity of g with interval arithmetic unless some very special conditions
on g allow for exact evaluation.

Even in the case where inf(g) > 0, Ig may still contain negative elements. For example, if
g = g1 + g2, then Ig might be obtained by adding Ig1 and Ig2 . This will imply that sup(Ig1) +
sup(Ig2) ∈ Ig, while in reality g1 and g2 may attain maximum/supremum on very different inputs.
This issue can be resolved via a simple divide-and-conquer algorithm. Whenever the check on Ig
is inconclusive, i.e., it contains both positive and negative numbers, then we split one of the input
intervals into halves, and recursively apply the same computation to each half. This is like using a
microscope: if we cannot see a region clearly, we zoom in to get a better view.

Algorithm 3 Interval arithmetic verification algorithm

1: procedure CheckRatio(I1, I2, I1,2)
2: if CheckValidity(I1, I2, I1,2) = FALSE then
3: return TRUE
4: end if
5: I ← IntervalArithmeticEvaluate(I1, I2, I1,2).
6: if I ⊆ [0,∞) then
7: return TRUE
8: else if I ⊆ (∞, 0) then
9: return FALSE

10: else
11: if |I1| = max(|I1|, |I2|, |I1,2|) then
12: Split I1 into two equal-length sub-intervals I1 = I l1 ∪ Ir1 .
13: return CheckRatio(I l1, I2, I1,2) ∧CheckRatio(Ir1 , I2, I1,2)
14: else if |I2| = max(|I1|, |I2|, |I1,2|) then
15: Split I2 into two equal-length sub-intervals I2 = I l2 ∪ Ir2 .
16: return CheckRatio(I1, I

l
2, I1,2) ∧CheckRatio(I1, I

r
2 , I1,2)

17: else
18: Split I1,2 into two equal-length sub-intervals I1,2 = I l1,2 ∪ Ir1,2.

19: return CheckRatio(I1, I2, I
l
1,2) ∧CheckRatio(I1, I2, I

r
1,2)

20: end if
21: end if
22: end procedure

The pseudocode of the algorithm is presented in Algorithm 3. The CheckValidity function
checks if there exists a valid configuration in I1 × I2 × I1,2, i.e., a configuration that satisfies
all triangle inequalities, and returns true if it does. If CheckValidity returns false, then the
algorithm returns true, since in this case the region consists entirely of invalid configurations and
there is nothing to check. Otherwise, the algorithm continues to compute an interval I, using the
IntervalArithmeticEvaluate subroutine, such that

∀θ ∈ I1 × I2 × I1,2, E
f∼F̃

[Soundness(θ, f)]− α · Completeness(θ) ∈ I.

The algorithm then checks if I is entirely non-negative or entirely negative, in which cases we can
decide that either the ratio is achieved over the entire region, or there exists a valid configuration
that violates the ratio, and exit the algorithm accordingly. Otherwise, I consists of both positive
and negative values, but the negative values may come from evaluation of invalid configurations,

24

or more intrinsically the error produced by interval arithmetic itself. In this case, we subdivide
the longest interval into two equal-length sub-intervals and recursively apply the algorithm, as
explained earlier.

We implemented this verification algorithm in C using the interval arithmetic library Arb [Joh17].
Specific advantages of this library is that it has rigorous implementations of the error function [Joh19]
as well as a routine for rigorous numerical integration [Joh18]. To speed up the computation, we
split the various tasks between cores using GNU Parallel [Tan11]. We obtain the following lemma.

Lemma 4.5. F̃ achieves an approximation ratio of 0.87447 on all MAX DI-CUT configurations with
completeness at least 10−6.

We address the requirement on completeness in the next subsection.

4.4.2 Removing the completeness requirement and a proof of Theorem 1.3

As we discussed, interval arithmetic in general cannot certify nonnegativity of a function which at-
tains 0. Unfortunately, the function that we care about, Ef∼F̃ [Soundness(θ, f)]−α·Completeness(θ),
does attain 0, regardless of the choice of r, as the following proposition shows.

Proposition 4.6. Let θ = (bi, bj , bij) be a configuration with bi = bj = b and ρ(θ) = 1. Then for
any f ,

Soundness(θ, f) = Completeness(θ) = 0 .

Proof. Since ρ(θ) = 1, we have bij = bibj + ρ
√

1− b2i
√

1− b2j = b2 + (1− b2) = 1 and

Completeness(θ) =
1 + bi − bj − bij

4
=

1 + b− b− 1

4
= 0 .

For soundness, we have Soundness(θ, f) = Φ−ρ(f(bi),−f(bj)) = Φ−ρ(f(b),−f(b)). Since ρ = 1, this
is equal to PrX∼N(0,1)[X ≤ f(b) ∧ −X ≤ −f(b)] = PrX∼N(0,1)[X = f(b)] = 0.

Luckily, on configurations with small completeness, it is known that independent rounding,
which assigns true to each variable independently with probability 1/2, does very well. Indeed, this
rounding scheme satisfies each MAX DI-CUT constraint with probability 1/4 on every configuration.
This implies that F̃ combined with the independent rounding will achieve a good approximation
ratio over all DI-CUT configurations.

Proof of Theorem 1.3. Consider the rounding algorithm where we use the T HRESH rounding
scheme F̃ with probability (1− 10−5) and independent rounding with probability 10−5. We show
that this algorithm achieves a ratio of 0.87446 on all configurations of MAX DI-CUT.

Let θ be a DI-CUT configuration. If Completeness(θ) ≥ 10−6, then by Theorem 4.5, we achieve
a ratio of at least 0.87447 × (1 − 10−5) > 0.87446. If Completeness(θ) < 10−6, then independent
rounding contributes a soundness of 0.25× 10−5 = 2.5× 10−6 > 0.87446 · Completeness(θ).

25

4.4.3 Further optimizations

To further speed up the computation, we compute partial derivatives of Ef∼F̃ [Soundness(θ, f)]−α ·
Completeness(θ), and reduce an interval to its boundary point if the corresponding partial derivative
is nonnegative or nonpositive.

For example, if we have

∀θ ∈ I1 × I2 × I1,2,
∂

∂b1

(
E
f∼F̃

[Soundness(θ, f)]− α · Completeness(θ)

)
≥ 0 ,

and I1 = [l, r], then to certify the nonnegativity of Ef∼F̃ [Soundness(θ, f)]− α · Completeness(θ), it
is sufficient to check

∀θ ∈ {l} × I2 × I1,2, E
f∼F̃

[Soundness(θ, f)]− α · Completeness(θ) ≥ 0 .

We remark that we only perform this optimization in regions that are entirely valid, i.e., consisting
only of valid configurations. This is because otherwise we may reduce the region to an invalid
subregion, on which the program returns true without checking the ratio.

4.4.4 Implementation details

To compute the soundness, we need to evaluate bivariate Gaussian distributions of the form
Φρ(t1, t2). However, Arb only has implementation of one-dimensional integration. To overcome
this, we use the following formula from [DW90], which transforms Φρ(t1, t2) into a one-dimensional
integral:

Φρ(t1, t2) =
1

2π

∫ ρ

0

1√
1− r2

exp

(
− t

2
1 − 2rt1t2 + t22

2(1− r2)

)
dr + Φ(t1)Φ(t2) .

Another potential issue is numerical stability. Computing ρ from (bi, bj , bij) involves division by√
(1− b2i)(1− b2j), which can be unstable when bi or bj is close to ±1. In the actual implementation,

we overcome this by representing a configuration using (bi, bj , ρ).

5 A new approximation algorithm for MAX 2-AND

Recall that T HRESH rounding schemes for MAX 2-AND are nearly identical to those for MAX DI-CUT,
except that the rounding schemes for MAX 2-AND are required to be odd functions. It is easy to
enforce in the discovery algorithm that the family of piecewise-linear functions we consider are odd
(in fact, the oracle runs quicker as the number of free parameters is cut in half). Empirically, we
found a “raw” distribution of 15 rounding functions which attains a ratio of approximately 0.8741.
Using a clean-up procedure similar to that for MAX DI-CUT, we were able to simplify it to another
distribution F̃ ′ with only 3 functions. See Table 2 for details.

Using the same interval arithmetic algorithm used for MAX DI-CUT, we obtain the following
result.

Lemma 5.1. F̃ ′ achieves an approximation ratio of 0.87415 on all MAX 2-AND configurations with
completeness at least 10−6.

We can then use the same proof idea as that in Section 4.4.2 to get rid of the completeness
requirement and obtain the lower bound of 0.87414 for MAX 2-AND, as claimed in Theorem 1.4.

26

f1 f2 f3

prob 0.998105 0.001126 0.000769
−1.000000 −1.585394 0.934459 0.163540
−0.700000 −0.870350 0.443616 −0.212976
−0.450000 −0.512239 0.675617 −1.435794
−0.300000 −0.332896 −1.446206 0.289432
−0.250000 −0.274526 −1.495506 2.000000
−0.179515 −0.193131 −0.382870 −0.492446
−0.164720 −0.176869 0.015196 −0.933550
−0.100000 −0.107901 2.000000 −1.568231

0.000000 0.000000 0.000000 0.000000
0.100000 0.107901 −2.000000 1.568231
0.164720 0.176869 −0.015196 0.933550
0.179515 0.193131 0.382870 0.492446
0.250000 0.274526 1.495506 −2.000000
0.300000 0.332896 1.446206 −0.289432
0.450000 0.512239 −0.675617 1.435794
0.700000 0.870350 −0.443616 0.212976
1.000000 1.585394 −0.934459 −0.163540

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Table 2: A T HRESH rounding scheme that gives a rigorously verified approximation ratio of at
least 0.87414 for MAX 2-AND. (The actual ratio is probably about 0.874202.) The scheme uses
three piecewise-linear odd rounding functions f1, f2, f3 defined on 17 control points. A plot of the
functions is given on the right.

0.5 0.0 0.5
b1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

b2

Approx Ratio for MAX-2AND

0.8741
0.8743
0.8745
0.8747
0.8750
0.8760
0.8780
0.8800
0.9000
1.0000

Figure 5: This plot is a contour plot of the performance of the T HRESH scheme for MAX 2-AND

with 3 piecewise-linear rounding functions for various choices of b1 and b2 (with an approximately
worst-case choice of b12) selected.

27

6 Conclusion

We used a “computational lens” to obtain a much better, and an almost complete, understanding
of the MAX DI-CUT and MAX 2-AND problems. Insights gained from numerical experiments yielded a
completely analytical new upper bound for MAX DI-CUT that can be verified by hand (see Section 3),
as well as new lower bounds, i.e., new approximation algorithms, for MAX DI-CUT and MAX 2-AND,
for which we obtain a rigorous computer-assisted analysis (see Section 4 and Section 5).

We have established that the MAX DI-CUT problem has its own approximation ratio by strictly
separating it from MAX 2-AND and MAX CUT (assuming the unique games conjecture). Fundamen-
tal to our approach was the use of algorithmic discovery to identify both difficult instances of
MAX DI-CUT and MAX 2-AND as well as discovering T HRESH rounding schemes which improve on
the 20+ year state of the art.

As discussed in Section 4, assuming the unique games conjecture and Austrin’s positivity conjec-
ture, the optimal T HRESH schemes8 achieve αDI-CUT and α2AND for MAX DI-CUT and MAX 2-AND,
respectively. We demonstrated a computational procedure which helps us to approximate αDI-CUT

and α2AND to greater precision than previously known. However, a proper theoretical understand-
ing is still missing. In particular:

Theoretical understanding of the optimal T HRESH scheme. Currently, we lack a
satisfactory explanation of why the secondary functions in the currently best-known MAX DI-CUT

and MAX 2-AND T HRESH schemes take on the shapes they do. Perhaps one can prove that the
optimal functions must satisfy particular constraints (such as in the calculus of variations), or at
least provide a satisfactory understand of the second-order affect these functions have.

Theoretical understanding of the hardest configurations. Likewise, we do not under-
stand the structure of the hardest distributions of configurations for MAX DI-CUT and MAX 2-AND.
Appendices B and C show that some rather complex distributions appear to give increasingly bet-
ter upper bounds for αDI-CUT and α2AND. Would it be possible to theoretically describe what
the hardest configurations are? It is not clear whether the hardest distribution should even have
finite support. Properly describing the hardest distributions would also resolve Austrin’s positivity
conjecture.

8Or more precisely a limiting sequence of finite, bounded T HRESH schemes.

28

A Translating into UG-hardness

Some of the notations in this section are borrowed from [Aus07, Aus10]. We remark that the tech-
niques in this section are standard and well-known, and only small modifications to that in [Aus10],
namely, we drop the requirement that a rounding function has to be odd.

A.1 Preliminary: (Extended) Majority is Stablest

We recall some definitions from the analysis of Boolean functions (e.g., [Aus10, O’D14]). Let Bn
q

be the probability space over {−1, 1}n where each bit is independently set to −1 with probability q

and to 1 with probability 1 − q.. Let Uq(1) =
√

q
1−q and Uq(−1) = −

√
1−q
q , and for any S ⊆ [n],

let USq (x1, . . . , xn) =
∏
i∈S Uq(xi). It is easy to verify (c.f., Proposition 2.7 of [Aus10]) that

{USq : Bn
q → R | S ⊆ [n]}

is an orthonormal basis for real-valued functions on Bn
q with respect to the inner product defined

via expectation. We define the Fourier coefficients of f as f̂S = E
x∼Bnq

[f(x)USq (x)]. Note that these

Fourier coefficients form a basis decomposition:

f =
∑
S⊆[n]

f̂SU
S
q .

In our application, we are also interested in computing correlation of two functions with different
biases.

Definition A.1 (Definition 2.13, [Aus10]). Let f : Bn
q1 → R and g : Bn

q2 → R. The ρ-correlation
between f and g is defined as

Sρ(f, g) := E[f(x)g(y)],

where x ∼ Bn
q1, y ∼ Bn

q2, and furthermore the i-th coordinate of x and the i-th coordinate of y has

correlation ρ, i.e., E[xiyi]−E[xi]E[yi]√
(1−E[xi]2)(1−E[yi]2)

= ρ.

Definition A.2. Let f : Bn
q → R and k ∈ [n]. The k-low-degree influence of coordinate i on f is

defined as

Inf≤ki [f] :=
∑

S:i∈S⊆[n],|S|≤k

f̂2
S .

It is straightforward from the definition that Inf≤ki is convex.

Proposition A.3. Let f : Bn
q → [−1, 1]. For any η > 0 and k ∈ [n], we have∣∣∣{i ∈ [n] | Inf≤ki [f] > η

}∣∣∣ ≤ k

η
.

Proof. We have

n∑
i=1

Inf≤ki [f] =
n∑
i=1

∑
S:i∈S⊆[n],
|S|≤k

f̂2
S =

∑
|S|≤k

|S|f̂2
S ≤ k ·

∑
|S|≤k

f̂2
S ≤ k.

The proposition follows immediately.

29

It turns out that for functions with small low-degree influences, the extremal behavior of their
ρ-correlations is characterized by threshold functions in Gaussian space.

Theorem A.4 (Corollary 2.19, [Aus10]). For any ε > 0, there exist k ∈ N and η > 0 such that for
all f : Bn

q1 → R and g : Bn
q2 → R satisfying min(Inf≤ki [f], Inf≤ki [g]) ≤ η for every i ∈ [n], we have

4Φ−|ρ|(t1, t2)− ε ≤ Sρ(f, g)− E[f]− E[g] + 1 ≤ 4Φ|ρ|(t1, t2) + ε,

where t1 = Φ−1
(

1−E[f]
2

)
and t2 = Φ−1

(
1−E[g]

2

)
.

A.2 UG-Hardness via PCP

For any permutation π : [L] → [L] and vector x = (x1, . . . , xL) ∈ RL, let πx be the vector
(xπ(1), . . . , xπ(L)). Given a distribution of configurations Θ̃, consider the following PCP protocol
VerifierΘ̃(I, F) (c.f., Algorithm 1 of [Aus10]):

• Input: A Unique Games instance I = (G,L,Π), and a set of functions F = {fv : {−1, 1}L →
{−1, 1} | v ∈ V (G)}.

• Choose v ∼ V (G) uniformly at random.

• Choose two edges incident to v uniformly at random. Call them e1 = {v, u1}, e2 = {v, u2}.

• Sample θ = (b1, b2, b12) from Θ̃.

• Independently for every i ∈ [L], sample x
(1)
i , x

(2)
i ∼ {−1, 1} such that E[x

(1)
i] = b1,E[x

(2)
i] =

b2,E[x
(1)
i x

(2)
i] = ρ. Let x(1) = (x

(1)
1 , x

(1)
2 , . . . , x

(1)
R) and x(2) = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
R).

• Compute µ1 = fu1(πu1
e1 x(1)), µ2 = fu2(πu2

e2 x(2)).

• Accept with probability DI-CUT(µ1, µ2).

Lemma A.5 (Completeness, c.f., Lemma 5.2 of [Aus10]). If Val(I) ≥ 1 − η, then there exists F
such that VerifierΘ̃(I, F) accepts with probability at least (1− 2η) · Completeness(Θ̃).

Proof. Since Val(I) ≥ 1 − η, there exists an assignment A such that Val(I, A) ≥ 1 − η. For any
v ∈ V (G), let fv : {−1, 1}L → {−1, 1} be the dictatorship function (x1, x2, . . . , xL) 7→ xA(v), and
let F = {fv|v ∈ V (G)}. If VerifierΘ̃(I, F) chooses two edges e1, e2 that are both satisfied by A, then
we have

µ1 = fu1(πu1
e1 x(1)) = (πu1

e1 x(1))A(u1) = x
(1)

π
u1
e1

(A(u1)))
= x

(1)
A(v),

and similarly µ2 = x
(2)
A(v). It follows that

Pr[VerifierΘ̃(I, F) accepts]

≥ Pr[e1, e2 both satisfied by A] · Pr[VerifierΘ̃(I, F) accepts | e1, e2 both satisfied by A]

≥ (1− 2η) · E
θ∼Θ̃

[
DI-CUT

(
x

(1)
A(v), x

(2)
A(v)

)]
≥ (1− 2η) · E

θ∼Θ̃

[DI-CUT (b1, b2)]

= (1− 2η) · Completeness(Θ̃).

30

Lemma A.6 (Soundness, c.f., Lemma 5.3 of [Aus10]). For any ε > 0 there exists γ > 0 such that, if
Val(I) ≤ γ, then for any F , VerifierΘ̃(I, F) accepts with probability at most maxh Soundness(Θ̃, h)+ε.

Proof. Fix some ε > 0. We need to find some γ > 0 with the following property: if there
exists F = {fv | v ∈ V (G)} such that VerifierΘ̃(I, F) accepts with probability greater than

maxh Soundness(Θ̃, h) + ε, then Val(I) > γ. Assume the existence of such F , it suffices to show
that Val(I) is lower-bounded by some constant only depending on ε.

For v ∈ V (G) and b ∈ (−1, 1), we define gbv : BL
(1−b)/2 → [−1, 1] as

gbv(x) = E
e={v,u}∈E(G)

[fu(πuex)].

Notice that the family of functions {gbv} naturally lead to the family of thresholds hv(b) :=

Φ−1
(

1+Ex[gbv(x)]
2

)
, under which a variable with bias b has expected value Ex[gbv(x)] after rounding.

We start by computing the accepting probability of the verifier as follows.

Pr[VerifierΘ̃(I, F) accepts]

= E
θ=(b1,b2,b12),v,u1,u2,x1,x2

[DI-CUT(µ1, µ2)]

= E
θ=(b1,b2,b12),v,u1,u2,x1,x2

[
1 + µ1 − µ2 − µ1µ2

4

]
= E

θ=(b1,b2,b12),v,u1,u2,x1,x2

[
1 + fu1(πu1

e1 (x(1)))− fu2(πu2
e2 (x(2)))− fu1(πu1

e1 (x(1)))fu2(πu2
e2 (x(2)))

4

]

= E
θ=(b1,b2,b12),v,x1,x2

[
1 + gb1v (x1)− gb2v (x2)− gb1v (x1)gb2v (x2)

4

]
= E

θ=(b1,b2,b12),v

[
1 + Ex1 [gb1v (x1)]− Ex2 [gb2v (x2)]− Sρ(θ)(g

b1
v , g

b2
v)

4

]
,

On the other hand, we have

max
h

Soundness(Θ̃, h) + ε

≥ E
v
[Soundness(Θ̃, hv)] + ε

= E
θ=(b1,b2,b12),v

[Soundness(θ, hv)] + ε

= E
θ=(b1,b2,b12),v

[
Φ−ρ(θ)(hv(b1),−hv(b2))

]
+ ε

Since we have assumed

Pr[VerifierΘ̃(I, F) accepts] ≥ max
h

Soundness(Θ̃, h) + ε,

from the above computation it follows that

E
θ,v

[
1 + Ex1 [gb1v (x1)]− Ex2 [gb2v (x2)]− Sρ(θ)(g

b1
v , g

b2
v)

4

]
≥ E

θ,v

[
Φ−ρ(θ)(hv(b1),−hv(b2))

]
+ ε.

31

Simplifying using the fact that Φ−ρ(t1,−t2) = Φ(t1)−Φρ(t1, t2) = Φ(−t2)−Φρ(−t1,−t2), we obtain

E
θ=(b1,b2,b12),v

[
4Φρ(θ)(−hv(b1),−hv(b2))−

(
Sρ(θ)(g

b1
v , g

b2
v))− E

x1

[gb1v (x1)]− E
x2

[gb2v (x2)] + 1

)]
≥ 4ε.

We can therefore find some θ = (b1, b2, b12) such that

E
v

[
4Φρ(θ)(−hv(b1),−hv(b2))−

(
Sρ(θ)(g

b1
v , g

b2
v))− E

x1

[gb1v (x1)]− E
x2

[gb2v (x2)] + 1

)]
≥ 4ε.

Each term in the above expectation is bounded by some absolute constant, so we can find C > 0
such that∣∣∣∣4Φρ(θ)(−hv(b1),−hv(b2))−

(
Sρ(θ)(g

b1
v , g

b2
v))− E

x1

[gb1v (x1)]− E
x2

[gb2v (x2)] + 1

)∣∣∣∣ ≤ C.
It follows that for at least an ε fraction of v ∈ V (G), we have

4Φρ(θ)(−hv(b1),−hv(b2))−
(
Sρ(θ)(g

b1
v , g

b2
v))− E

x1

[gb1v (x1)]− E
x2

[gb2v (x2)] + 1

)
≥ ε

C
.

Let V0 be the set of v ∈ V (G) that satisfy the above inequality. since the configurations are all
positive, we have ρ(θ) ≤ 0, and therefore by Theorem A.4, there exist η > 0 and k ∈ N such that,
for every v ∈ V0 there is some i ∈ [n] with

Inf≤ki [gb1v] ≥ min(Inf≤ki [gb1v], Inf≤ki [gb2v]) ≥ η.

Since Inf≤ki is convex, we also have

η ≤ Inf≤ki [gb1v] = Inf≤ki

[
E

e={v,u}∈E(G)
[fu ◦ πue]

]
≤ E

e={v,u}∈E(G)
[Inf≤ki [fu ◦ πue]].

Since Inf≤ki takes value in [0, 1], there is an η/2 fraction of u ∼ v such that Inf≤ki [fu ◦ πue] =

Inf≤k
(πue)−1(i)

[fu] ≥ η/2. Now let L1(v) = {i ∈ [n] | Inf≤ki [gb1v] ≥ η} and L2(v) = {i ∈ [n] | Inf≤ki [f b1v] ≥
η/2}. By Proposition A.3, we have |L1(v)| ≤ k

η and |L2(v)| ≤ 2k
η , and by union bound |L1(v) ∪

L2(v)| ≤ 3k
η .

Now consider the following labeling strategy for I: for every v ∈ V (G), if L1(v)∪L2(v) is non-
empty, then choose a label A(v) ∈ L1(v)∪L2(v) uniformly at random, otherwise choose A(v) ∈ [R]
uniformly at random. By our analysis above, if we choose an edge e = (u, v) with v ∈ V0, then
there is at least ε · η/2 probability such that there is some i ∈ L1(v) with πve (i) ∈ L2(u), which our
strategy will then find with probability at least 1/(3k/η)2, so Val(I, A) is at least ε ·η/2 ·1/(3k/η)2,
which is a constant only depending on ε, and the lemma is proven.

32

B Possibly improved upper bounds for MAX DI-CUT

In Section 3 we presented a simple distribution on three configurations that shows that αDI-CUT ≤
0.8746024732 assuming UGC. This distribution, which also given in Table 3, used only one pair
of biases, b and −b, where b = 0.1757079639. The simplicity of this distribution enabled us to
rigorously prove that αDI-CUT ≤ 0.8746024732.

Slightly improved upper bounds on αDI-CUT can probably be obtained using more complicated
distributions that use two, three or four pairs of biases, as shown in Tables 4, 5 and 6. However,
analyzing the performance of any rounding procedure from T HRESH− on these distributions is a
much harder task that can probably not be done by hand. The bounds given in Tables 4 to 6 were
only verified using non-rigorous numerical optimizations.

In the simple case of Table 3, the function s(t1, t2), where t1 and t2 are the thresholds correspond-
ing to the thresholds −b and b, had a unique global maximum. Unfortunately, the corresponding
function s2(t−2, t−1, t1, t2) for the distribution of Table 4, and the corresponding functions for the
distributions of Tables 5 and 6, also have local maxima that make a rigorous analysis much more
difficult. In some of the cases the global maximum is also not unique. (The probabilities are
carefully chosen to make several local maxima have the same value.)

More pairs of biases can of course be used but it seems that the improvement obtained would
be negligible, as going from one pair of biases to four pairs of biases improved the upper bound by
only 2 × 10−5. We thus conjecture that the (non-rigorous) upper bound αDI-CUT ≤ 0.8745794663
is close to being tight.

b = 0.1757079639

probability configuration

0.3770580402 (b , b , −1 + 2b)
0.3770580402 (−b , −b , −1 + 2b)
0.2458839196 (b , −b , −0.6876930468)

Table 3: The distribution over configurations used to obtain the bound αDI-CUT ≤ 0.8746024732 in
Section 3. Only one pair of biases is used.

b1 = 0.1644279457
b2 = 0.1797733117

probability configuration

0.1907744673 (b2 , b1 , −1 + b1 + b2)
0.1907744673 (−b1 , −b2 , −1 + b1 + b2)
0.1858539509 (b2 , b2 , −1 + 2b2)
0.1858539509 (−b2 , −b2 , −1 + 2b2)
0.2371153723 (b1 , −b1 , −0.6874089540)
0.0048138957 (b1 , −b2 , −0.6876719134)
0.0048138957 (b2 , −b1 , −0.6876719134)

Table 4: A distribution that uses two pairs of biases that seems to yield an upper bound αDI-CUT ≤
0.8745896786. (Not verified rigorously.)

33

b1 = 0.1389906477
b2 = 0.1758192542
b3 = 0.2016555060

probability configuration

0.2267479169 (b2 , b2 , −1 + 2b2)
0.2267479169 (−b2 , −b2 , −1 + 2b2)
0.0493365471 (b2 , b3 , −1 + b2 + b3)
0.0493365471 (−b3 , −b2 , −1 + b2 + b3)
0.1001888661 (b3 , b1 , −1 + b1 + b3)
0.1001888661 (−b1 , −b3 , −1 + b1 + b3)
0.1237266700 (b1 , −b2 , −0.6873638769)
0.1237266700 (b2 , −b1 , −0.6873638769)

Table 5: A distribution that uses three pairs of biases that seems to yield an upper bound αDI-CUT ≤
0.8745810643. (Not verified rigorously.)

b1 = 0.1367092212
b2 = 0.1726598484
b3 = 0.1778293053
b4 = 0.2039443849

probability configuration

0.0346789517 (b2 , b2 , −1 + 2b2)
0.0346789517 (−b2 , −b2 , −1 + 2b2)
0.0371520073 (b2 , b3 , −1 + b2 + b3)
0.0371520073 (−b3 , −b2 , −1 + b2 + b3)
0.0495233867 (b2 , b4 , −1 + b2 + b4)
0.0495233867 (−b4 , −b2 , −1 + b2 + b4)
0.0592278650 (b3 , b2 , −1 + b2 + b3)
0.0592278650 (−b2 , −b3 , −1 + b2 + b3)
0.0953106050 (b3 , b3 , −1 + 2b3)
0.0953106050 (−b3 , −b3 , −1 + 2b3)
0.1003411331 (b4 , b1 , −1 + b1 + b4)
0.1003411331 (−b1 , −b4 , −1 + b1 + b4)
0.0471058388 (b1 , −b2 , −0.6876148335)
0.0471058388 (b2 , −b1 , −0.6876148335)
0.0766602123 (b1 , −b3 , −0.6876243954)
0.0766602123 (b3 , −b1 , −0.6876243954)

Table 6: A distribution that uses four pairs of biases that seems to yield an upper bound αDI-CUT ≤
0.8745794663. (Not verified rigorously.)

34

C Possibly improved upper bounds for MAX 2-AND

Austrin [Aus10] gave two upper bound on the best approximation ratio achievable for MAX 2-AND,
assuming UGC. The first used only one non-zero bias and gave an upper bound α2AND ≤ 0.87451.
The second used two non-zero biases and gave an upper bound α2AND ≤ 0.87435. We believe that
using four non-zero biases distribution given in Table 7 it is possible to prove that α2AND ≤ 0.874247,
but we have not verified it rigorously.

b1 = 0.0726617
b2 = 0.165630
b3 = 0.248978
b4 = 0.317508

probability configuration

0.00778369 (0 , b4 , −1 + b4)
0.264364 (b1 , b4 , −1 + b1 + b4)
0.050959 (b2 , b2 , −1 + 2b2)
0.0572364 (b2 , b3 , −1 + b2 + b3)
0.113076 (b3 , b1 , −1 + b1 + b3)
0.506466 (b4 , 0 , −1 + b4)

Table 7: A distribution that uses four non-zero biases that seems to yield an upper bound α2AND ≤
0.874247. (Not verified rigorously.)

35

References

[ABZ05] Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved approximation algorithms for
MAX NAE-SAT and MAX SAT. In Approximation and Online Algorithms, Third
International Workshop, WAOA 2005, volume 3879 of Lecture Notes in Computer
Science, pages 27–40. Springer, 2005.

[AE98] Gunnar Andersson and Lars Engebretsen. Better approximation algorithms for set
splitting and not-all-equal SAT. Information Processing Letters, 65(6):305–311, 1998.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[Aus07] Per Austrin. Balanced MAX 2-SAT might not be the hardest. In Proc. of 39th STOC,
pages 189–197, 2007.

[Aus10] Per Austrin. Towards sharp inapproximability for any 2-CSP. SIAM Journal on
Computing, 39(6):2430–2463, 2010.

[AVDB18] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting
system for convex optimization problems. Journal of Control and Decision, 5(1):42–
60, 2018.

[AW02] Takao Asano and David P Williamson. Improved approximation algorithms for MAX
SAT. Journal of Algorithms, 42(1):173–202, 2002.

[AZBG+22] Sepehr Abbasi-Zadeh, Nikhil Bansal, Guru Guruganesh, Aleksandar Nikolov, Roy
Schwartz, and Mohit Singh. Sticky brownian rounding and its applications to con-
straint satisfaction problems. ACM Trans. Algorithms, 18(4), oct 2022.

[BHPZ21] Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. On the mysteries
of MAX NAE-SAT. In Proc. of 32nd SODA, pages 484–503. SIAM, 2021.

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[DCB13] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded
systems. In 2013 European Control Conference (ECC), pages 3071–3076. IEEE, 2013.

[DW90] Zvi Drezner and G. O. Wesolowsky. On the computation of the bivariate normal
integral. Journal of Statistical Computation and Simulation, 35(1-2):101–107, 1990.

[EN19] Ronen Eldan and Assaf Naor. Krivine diffusions attain the Goemans–Williamson
approximation ratio, 2019.

[FG95] Uriel Feige and Michel Goemans. Approximating the value of two prover proof sys-
tems, with applications to MAX 2SAT and MAX DICUT. In Proceedings Third Israel
Symposium on the Theory of Computing and Systems, pages 182–189. IEEE, 1995.

[Gen92] Alan Genz. Numerical computation of multivariate normal probabilities. J. Comp.
Graph Stat., 1:141–149, 1992.

36

[Gen93] Alan Genz. Comparison of methods for the computation of multivariate normal prob-
abilities. Computing Science and Statistics, 25:400–405, 1993.

[GPAM+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[GW95] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of
the ACM, 42(6):1115–1145, 1995.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[HZ01] Eran Halperin and Uri Zwick. Approximation algorithms for MAX 4-SAT and round-
ing procedures for semidefinite programs. Journal of Algorithms, 40(2):184–211, 2001.

[Joh17] Fredrik Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arith-
metic. IEEE Transactions on Computers, 66(8):1281–1292, 2017.

[Joh18] Fredrik Johansson. Numerical integration in arbitrary-precision ball arithmetic. In
International Congress on Mathematical Software, pages 255–263. Springer, 2018.

[Joh19] Fredrik Johansson. Computing hypergeometric functions rigorously. ACM Transac-
tions on Mathematical Software (TOMS), 45(3):1–26, 2019.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In FOCS 2002, pages
767–775, 2002.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on
Computing, 37(1):319–357, 2007.

[KZ97] Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? In
Proc. of 38th FOCS, pages 406–415. IEEE, 1997.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
MAX 2-SAT and MAX DI-CUT problems. In International Conference on Integer
Programming and Combinatorial Optimization, pages 67–82. Springer, 2002.

[MM03] Shiro Matuura and Tomomi Matsui. New approximation algorithms for MAX 2SAT
and MAX DICUT. Journal of the Operations Research Society of Japan, 46(2):178–
188, 2003.

[MM17] Konstantin Makarychev and Yury Makarychev. Approximation Algorithms for CSPs.
In Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 287–325.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

[Nas51] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

37

[Neu28] J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–
320, 1928.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
CSP? In Proc. of 40th STOC, pages 245–254, 2008.

[Rag09] Prasad Raghavendra. Approximating NP-hard Problems - Efficient Algorithms and
their Limits. PhD thesis, University of Washington, 2009.

[RS09] Prasad Raghavendra and David Steurer. How to round any CSP. In Proc. of 50th
FOCS, pages 586–594. IEEE, 2009.

[Tan11] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine,
36(1):42–47, Feb 2011.

[TSSW00] Luca Trevisan, Gregory B Sorkin, Madhu Sudan, and David P Williamson. Gadgets,
approximation, and linear programming. SIAM Journal on Computing, 29(6):2074–
2097, 2000.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill-
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

[Zwi98] Uri Zwick. Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In Proc. of 9th SODA, pages 201–210, 1998.

[Zwi99] Uri Zwick. Outward rotations: A tool for rounding solutions of semidefinite program-
ming relaxations, with applications to MAX CUT and other problems. In Proc. of
31th STOC, pages 679–687. ACM, 1999.

[Zwi02] Uri Zwick. Computer assisted proof of optimal approximability results. In Proc. of
13th SODA, pages 496–505, 2002.

[ZYH04] Jiawei Zhang, Yinyu Ye, and Qiaoming Han. Improved approximations for max set
splitting and max NAE SAT. Discrete Applied Mathematics, 142(1-3):133–149, 2004.

38

	1 Introduction
	1.1 Our results
	1.2 Organization of paper

	2 Preliminaries
	2.1 MAX CSP and canonical SDP relaxations
	2.2 Unique Games Conjecture
	2.3 Configurations of biases and pairwise biases
	2.4 The THRESH and THRESH- families of rounding functions

	3 Upper bounds for MAX DI-CUT
	3.1 Separating MAX DI-CUT from MAX CUT
	3.2 Intuition for the upper bound
	3.3 Possibly improved upper bounds

	4 A new approximation algorithm for MAX DI-CUT
	4.1 Intuition for the separation between MAX 2-AND and MAX DI-CUT
	4.2 The rounding scheme
	4.3 Discovery of the THRESH scheme
	4.3.1 Finite F: a game-theoretic approach
	4.3.2 Extending to infinite F
	4.3.3 Extension to infinite Theta
	4.3.4 Implementation details

	4.4 Verification using interval arithmetic
	4.4.1 Sketch of the algorithm
	4.4.2 Removing the completeness requirement and a proof of Theorem 1.3
	4.4.3 Further optimizations
	4.4.4 Implementation details

	5 A new approximation algorithm for MAX 2-AND
	6 Conclusion
	A Translating into UG-hardness
	A.1 Preliminary: (Extended) Majority is Stablest
	A.2 UG-Hardness via PCP

	B Possibly improved upper bounds for MAX DI-CUT
	C Possibly improved upper bounds for MAX AND

