
Triplet Reconstruction and all other Phylogenetic CSPs

are Approximation Resistant

Vaggos Chatziafratis1 Konstantin Makarychev2

1University of California, Santa Cruz
2Northwestern University

Abstract

We study the natural problem of Triplet Reconstruction (also known as Rooted Triplets
Consistency or Triplet Clustering), originally motivated by applications in computational biology
and relational databases (Aho, Sagiv, Szymanski, and Ullman, 1981): given n datapoints, we
want to embed them onto the n leaves of a rooted binary tree (also known as a hierarchical
clustering, or ultrametric embedding) such that a given set of m triplet constraints is satisfied.
A triplet constraint ij|k for points i, j, k indicates that “i, j are more closely related to each
other than to k,” (in terms of distances d(i, j) ≤ d(i, k) and d(i, j) ≤ d(j, k)) and we say that a
tree satisfies the triplet ij|k if the distance in the tree between i, j is smaller than the distance
between i, k (or j, k). Among all possible trees with n leaves, can we efficiently find one that
satisfies a large fraction of the m given triplets?

Aho et al. (1981) studied the decision version and gave an elegant polynomial-time algorithm
that determines whether or not there exists a tree that satisfies all of the m constraints. More-
over, it is straightforward to see that a random binary tree achieves a constant 1

3 -approximation,
since there are only 3 distinct triplets ij|k, ik|j, jk|i (each will be satisfied w.p. 1

3). Unfortu-
nately, despite more than four decades of research by various communities, there is no better
approximation algorithm for this basic Triplet Reconstruction problem.

Our main theorem—which captures Triplet Reconstruction as a special case—is a general
hardness of approximation result about Constraint Satisfaction Problems (CSPs) over infinite
domains (CSPs where instead of boolean values {0, 1} or a fixed-size domain, the variables can be
mapped to any of the n leaves of a tree). Specifically, we prove that assuming the Unique Games
Conjecture (Khot, 2002), Triplet Reconstruction and more generally, every Constraint Satisfac-
tion Problem (CSP) over hierarchies is approximation resistant, i.e., there is no polynomial-time
algorithm that does asymptotically better than a biased random assignment.

Our result settles the approximability not only for Triplet Reconstruction, but for many
interesting problems that have been studied by various scientific communities such as the popular
Quartet Reconstruction and Subtree/Supertree Aggregation Problems. More broadly, our result
significantly extends the list of approximation resistant predicates by pointing to a large new
family of hard problems over hierarchies. Our main theorem is a generalization of Guruswami,
H̊astad, Manokaran, Raghavendra, and Charikar (2011), who showed that ordering CSPs (CSPs
over permutations of n elements, e.g., Max Acyclic Subgraph, Betweenness, Non-Betweenness)
are approximation resistant. The main challenge in our analyses stems from the fact that trees
have topology (in contrast to permutations and ordering CSPs) and it is the tree topology that
determines whether a given constraint on the variables is satisfied or not. As a byproduct, we
also present some of the first CSPs where their approximation resistance is proved against biased
random assignments, instead of uniformly random assignments.

ar
X

iv
:2

21
2.

12
76

5v
2

 [
cs

.D
S]

 5
 A

pr
 2

02
3

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Result I: Beating Random is Hard for Triplet Reconstruction 3
1.3 Result II: From Triplets to Hardness of General CSPs over Trees 4

2 Technical Contributions and Challenges 5

3 Preliminaries 6

4 Biased Random Assignment and Approximation Resistance 9

5 Proof Overview 10
5.1 Hardness for Triplets Consistency . 13

6 Filling the Gaps 14
6.1 Gap Instance is Completely Satisfiable . 15
6.2 Coarse Solutions, Labelling, and Coloring . 15
6.3 How to Transform True Solution to Better Coarse Solution? 16
6.4 No Good Coarse Solution for Gap Instance . 18
6.5 Coarse Solutions for Random Orderings . 19
6.6 Proof of Theorem 5.3 . 21

7 Making the Reduction from Unique Games Work 22

8 Random Solutions for Ordinary CSPs on the Gap Instance are Almost Optimal 26

9 Generalizations 28
9.1 Phylogenetic CSPs with Multiple Payoff Functions 28
9.2 Higher Arity Trees . 29

10 Tree Patterns and Bracket Predicates 29

11 Example when Uniform Random Assignment Fails 31

12 Conclusion 31

A History of the Problems and Further Related Work 36

B Proof of Lemma 8.1 38

C Triplets to Quartets Reduction 40
C.1 The Reduction . 41

D Figures 42

1 Introduction

The algorithmic task of constructing hierarchical representations of data has been studied by various
communities over many decades with applications ranging from statistics (Ward Jr, 1963; Hastie,
Tibshirani, and Friedman, 2009) and databases (Aho, Sagiv, Szymanski, and Ullman, 1981) to
the analysis of complex networks, such as the Internet or social networks (Ravasz and Barabási,
2003; Clauset, Moore, and Newman, 2008), and more recently, to machine learning, where hierar-
chical embeddings have proven useful for understanding text, images, graphs and multi-relational
data (Nickel and Kiela, 2017). The reason why they are so ubiquitous is that many real data
sets stemming from nature or society are organized according to a latent hierarchy (Ravasz and
Barabási, 2003). Interestingly, many relevant questions and algorithmic ideas originated in the field
of Taxonomy and Phylogenetics (Sneath and Sokal, 1963; Eisen, Spellman, Brown, and Botstein,
1998; Felsenstein, 2004) with the goal of classifying all living and extinct organisms into the Tree
of Life.

The easiest way to visualize such hierarchical representations for a given data set is by using
a dendrogram, also known as a Hierarchical Clustering. Hierarchical clustering is an embedding
of the data set to a tree, often depicted as a rooted binary tree whose leaves are in one-to-one
correspondence with the points in the data set, see Figure 1. The hierarchical clustering tree shows
the recursive partitioning of the data set into successively smaller and smaller clusters. Observe
that all data points are clustered together at the root, but eventually they get separated at the
leaves (internal nodes correspond to intermediate subclusters formed by descendant leaves).

internal node

root

dolphin

whale

tuna

lion

tiger

LCA of all 3

tiger

lion

tuna

LCA of all 4
tiger

lion

tuna

whale

Figure 1: Hierarchical Clustering on 5 points (Left), a triplet constraint (Middle) and a quartet
constraint (Right) satisfied by hierarchical clustering. The internal node shown corresponds to the
subcluster {whale, dolphin, tuna}. The basic constituent of a hierarchy is a triplet compari-
son or triplet constraint, e.g., {{lion, tiger}|{tuna}} indicates the closest pair among the 3.
Formally, the Lowest Common Ancestor (LCA) of {lion, tiger} is a descendant of the LCA
of all 3. Another type of a more complicated comparison is among 4 points, e.g., the quar-
tet comparison {{lion, tiger}|{tuna, whale}} prescribes what’s the correct split. We can see
that the hierarchical clustering satisfies the shown triplet and quartet constraint (it also satisfies
triplets {{whale, dolphin}|{tuna}}, {{whale, dolphin}|{lion}}, {{whale, tuna}|{tiger}},
and quartets {{whale, dolphin}|{lion, tiger}}, {{{whale, dolphin}|{tuna}}|{lion}}.

In contrast to “flat” clustering techniques like k-means/k-median which cannot capture fine-
grained relationships among points or groups of points, hierarchical clustering reveals the structure
of a data set at multiple levels of granularity simultaneously. For example, consider triplet queries of
the form “Among 3 items i, j, k, which two are most closely related?”; a quick look at the hierarchical
clustering (see Fig. 1) immediately reveals the answer by locating the 3 leaves i, j, k and noticing
which of the 3 gets separated first from the other two. Answering such triplet comparisons is easy
for humans which makes them popular in metric learning and crowdsourcing settings (Tamuz, Liu,
Belongie, Shamir, and Kalai, 2011; Vikram and Dasgupta, 2016; Emamjomeh-Zadeh and Kempe,

1

2018), and understanding how to accurately aggregate a large collection of such triplet queries into
a hierarchical clustering was the primary motivation of our work. As we will see, studying triplets
will lead us to interesting connections with hardness of approximation and approximation resistant
predicates.

In this paper, we study the approximability of a large class of Constraint Satisfaction Problems
(CSPs) over hierarchies, i.e., trees, which have been studied in various communities, including in
databases (Aho, Sagiv, Szymanski, and Ullman, 1981), in logic and algebra (Bodirsky and Mueller,
2010), in computational biology (Felsenstein, 2004; Byrka, Guillemot, and Jansson, 2010) and in
theoretical computer science (Jiang, Kearney, and Li, 1998; Snir and Rao, 2008; Brodal, Fagerberg,
Mailund, Pedersen, and Sand, 2013; Alon, Snir, and Yuster, 2014). The input is a collection of
(potentially inconsistent) local relationships between k items of a ground set (with total size n),
and we are asked to find the hierarchical clustering that maximizes agreement with the input. Such
local relationships can take the form of triplet or quartet constraints (or even quintuples etc.), and
more generally, they can be a k-arity constraint on k data points which prescribes how the k data
points should be split by the final hierarchy. For the most common examples of triplet and quartet
constraints, please see Figure 1.

For readers familiar with Correlation Clustering (Bansal, Blum, and Chawla, 2004), we should
note here that it is different in at least three important ways: first, in correlation clustering the
desired output is a (flat) partition of the data points (whereas in hierarchical clustering we want a
mapping to the n leaves of a tree), second, constraints in correlation clustering are between pairs of
points (whereas in hierarchical clustering the input specifies constraints on triplets, quartets etc.)
and third, there are technical differences (as we show) in terms of their behavior with respect to
approximation resistance.

1.1 Our Contributions

We revisit several old questions in Hierarchical Clustering and CSPs over Infinite-Domains and prove
tight upper and lower bounds under the Unique Games Conjecture (Khot, 2002), thus settling the
approximability of a large class of hierarchical reconstruction problems. Interestingly, we extend
the notion of approximation resistant CSPs (H̊astad, 2001) to allow for biased random assignments
(instead of uniform random assignments), and our main hardness result for CSPs over trees holds
under this extended definition, which could be of independent interest. As far as we know, our
results provide the first approximation resistant CSPs where the optimal approximation threshold
is achieved by a non-uniform random assignment.

Recall that for CSPs over infinite domains, the variables are not boolean and instead of tak-
ing values {0, 1} (or in a fixed-size domain), they are allowed to be mapped to infinite domains.
Prominent examples include Correlation Clustering (Bansal et al., 2004) and Ordering CSPs,
i.e., CSPs over permutations of n elements, such as Max Acyclic Subgraph, Betweenness, Non-
Betweenness (Guruswami, H̊astad, Manokaran, Raghavendra, and Charikar, 2011); for our case,
the infinite domain corresponds to the n leaves of a hierarchical tree which of course grows as the
number n of data points grows. In fact, our results generalize the hardness results of Guruswami
et al. (2011), since a permutation corresponds (in a formal sense) to a special case of hierarchical
clustering (because we consider ordered trees). At a high-level, the main challenge in our problems
comes from the fact that CSPs over trees depend on the tree’s topology and whether a given con-
straint is satisfied or not is determined by how and in what order exactly various data points got split
at intermediate nodes. Observe that this is irrelevant for correlation clustering and for permuta-
tions. Specifically, we settle the approximability of Triplet Reconstruction, Quartet Reconstruction,
and General CSPs over Trees.

2

Triplet Reconstruction (also Rooted Triplets Consistency): Aggregating triplets into
a hierarchical clustering was originally asked in the context of relational databases by Aho et al.
(1981). A triplet constraint ij|k indicates that “items i, j are more similar to each other than to k.”
Given m triplets, we would like to construct a hierarchical clustering on the n items, that satisfies
as many constraints as possible, i.e., k is split first from i, j (see also Fig. 1).

Quartet Reconstruction: When constraints are on 4 points a, b, c, d, they are called “quartet”
constraints. The task is to find a (rooted or unrooted) tree that satisfies as many of the quartet
constraints as possible (Fig. 1). A special case of Quartet Reconstruction is the popular “Unrooted
Quartet Consistency” problem in computational biology (Steel, 1992; Jiang et al., 1998; Ben-Dor
et al., 1998; Felsenstein, 2004; Snir and Rao, 2008, 2012; Alon et al., 2014).

General CSPs over Trees: The previous two problems are only two special cases of general
CSPs over trees. Specifically, Triplet Reconstruction is a CSP of arity 3 and Quartet Reconstruction
is a CSP of arity 4. However, there is no reason to stop there; in fact, the algebraic and logic
communities have extensively studied what happens if we allow for trees with larger fan-out degree,
or for conjunctions (logical ∧) or disjunctions (logical ∨) between constraints,1 or for the constraints
to be of arity k. In the algebraic and logic literature (Bodirsky and Mueller, 2010; Bodirsky, 2012),
such CSPs are termed Phylogenetic CSPs due to their connections to popular “Consensus Tree” or
“Subtree/Supertree Aggregation” methods in computational biology (Adams III, 1972; Steel, 1992;
Sanderson et al., 1998; Ng et al., 2000; Jansson et al., 2016).

Before stating our general theorem, let us focus only on our first result about the Triplet Recon-
struction problem and highlight its status in terms of approximability and hardness. Then, it will
be much easier to understand our results for Quartet Reconstruction and for General CSPs over
Trees (along with the main technical challenges).

1.2 Result I: Beating Random is Hard for Triplet Reconstruction

We will need the following simple definitions (for examples, see Fig 1):

Definition 1.1 (Triplet). A triplet t, denoted t = ab|c, is a rooted, unordered, binary tree on 3
leaves a, b, c. A rooted, unordered, binary tree T (containing leaves a, b, c) is said to be consistent
with t (or T satisfies t), if the LCA(a, b) in T is a proper descendant of LCA(a, c) in T . Otherwise,
the triplet and the tree are inconsistent with each other (or T violates t). In general, triplets can
also have weights weight(ab|c).

The natural optimization problem associated with Triplet Reconstruction is MaxTriplets:

Definition 1.2 (MaxTriplets Problem). Given a set X of n data points and m triplets defined
on data points from X, find the hierarchical clustering (i.e., the binary rooted tree) that is consistent
with as many triplets as possible (per the definition above).

MaxTriplets is NP-hard in general instances, but Aho, Sagiv, Szymanski, and Ullman (1981)
presented an algorithm for completely satisfiable instances of MaxTriplets: This algorithm finds
a tree that is consistent with all given triplets, if such tree exists, otherwise it halts and declares
that the triplets are conflicting and no tree can satisfy all of the triplets.

The following trivial algorithm achieves a 1
3 -approximation: “output a uniformly random tree

on the n data points.” Observe that for 3 items a, b, c, there are only 3 distinct triplets—namely
ab|c, ac|b, bc|a—and so with probability 1

3 , the uniformly random tree will satisfy each of the input

1For example, ij|k∨ ik|j captures the forbidden triplets problem, that forbids triplets jk|i from the final hierarchy.

3

triplets. Surprisingly, despite four decades of research, this is currently the best known approxima-
tion for triplet reconstruction. Our first result shows that being stuck at the trivial 1

3 -approximation
ratio is not a coincidence:

Theorem 1.3. For every constant ε > 0, it is UG-hard to distinguish instances of Max-
Triplets, where a (1− ε) fraction of the triplets can be satisfied by a hierarchical clustering,
from MaxTriplets instances where at most a (1

3 + ε) fraction can be satisfied.

Stated simply, we prove that if ρ is the expected fraction of constraints satisfied by a uniformly
random tree, then obtaining a ρ′-approximation for any constant ρ′ > ρ is UG-hard. In other words,
we show that MaxTriplets is approximation resistant. Recall that a predicate is approximation
resistant if it is NP-hard (or UG-hard in our case) to approximate the corresponding CSP signifi-
cantly better than what is achieved by the trivial algorithm that picks an assignment uniformly at
random. For example, 3SAT is approximation resistant (H̊astad, 2001) and so is every ordering CSP
such as Max Acyclic Subgraph, Betweenness, Non-Betweenness (Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar, 2011). Prior to our work, the best known hardness of approximation
for MaxTriplets was 2/3 due to Chatziafratis, Mahdian, and Ahmadian (2021).

1.3 Result II: From Triplets to Hardness of General CSPs over Trees

Given our first result on the hardness of MaxTriplets, it is natural to wonder what happens in
terms of approximability if we increase the arity of the constraints from 3 to 4, i.e., what happens
for Quartet Reconstruction and its associated optimization versions of MaxQuartets (we defer
the exact definitions for now, but hopefully the problem is clear). For MaxQuartets even though
there are results (Jiang, Kearney, and Li, 1998) that give a PTAS for very dense instances (density
here implies that there is a quartet for every four data points, thus m = Ω(n4)), the approximability
in the general case remained open: How well can we approximate MaxQuartets in polynomial
time? Again, for the most well-studied case of unrooted quartet reconstruction (Jiang et al.,
1998; Ben-Dor et al., 1998; Felsenstein, 2004), a trivial algorithm that outputs an unrooted tree
uniformly at random is a constant approximation, and this has been the state-of-the-art in the worst-
case for many decades. In light of our Theorem 1.3, we are able to settle the approximability for
MaxQuartets, proving that this trivial algorithm is again optimal (under UGC) (see Appendix C).

General CSPs over Trees. Triplets and Quartets are two special cases of a more general family
of CSPs over trees that are not well-understood from a theoretical perspective. Such general CSPs
over trees are also studied in the algebraic and logic communities under the name Phylogenetic
CSPs (Bodirsky and Mueller, 2010; Bodirsky, 2012; Bodirsky et al., 2017), which will be borrowed
here.2 For formal definitions, please see Preliminaries (Section 3).

After seeing our hardness results for MaxTriplets and MaxQuarters, one may assume
that the random assignment algorithm always gives the best possible approximation (ignoring o(1)
terms). However, as we discuss in Section 4, this is not the case. In fact, for some phylogenetic CSPs
the uniform random assignment algorithm satisfies exponentially small in k fraction of all constraints
while other algorithms satisfy e.g., a constant (not depending on k) fraction of all constraints. It

2A technical comment is that our definition of Phylogenetic CSPs is slightly more general than the one in the
logic community (Bodirsky et al., 2017): they only focused on unordered, rooted trees, whereas our results hold even
for CSPs on ordered trees (left and right children are distinguishable) and on unrooted trees. Ordered trees play an
important role when mapping a hierarchy to a permutation on its leaves with specific structure (Bar-Joseph et al.,
2001; Geary et al., 2006; Jansson et al., 2007) and in consensus methods (Jansson et al., 2006, 2016).

4

turns out that the best algorithms for arbitrary phylogenetic CSPs are biased random assignment
algorithms. We show the following result.

Theorem 1.4 (Informal). Assuming the UGC, every Phylogenetic CSP is approximation
resistant. Interestingly, this holds for a more general notion of approximation resistance,
where biased random solutions are allowed (not just uniformly random outputs like in boolean
CSPs and ordering CSPs).

On Approximation Resistance. The subject of approximation resistance is a fascinating topic
in computation with a rich literature, and despite the intensive efforts to characterize the approx-
imability of CSPs, it is not yet clear what properties characterize them in general. It is perhaps strik-
ing, but many CSPs are approximation resistant, and two fundamental examples are Max3SAT,
Max3LIN (H̊astad, 2001). In contrast, for arity 2, H̊astad (2005) showed that no predicate that
depends on two inputs (e.g., MaxCUT) from an arbitrary finite domain can be approximation
resistant. Investigating higher arity CSPs has also yielded interesting results: for arity 3, a precise
classification of approximation resistant 3CSPs is known (Zwick, 1998), but for arity 4 and higher
the situation is unclear (Hast, 2005; H̊astad, 2007; Austrin and Mossel, 2009; Austrin and H̊astad,
2009). For example, Hast gave a characterization for 355 out of 400 different predicate types for
binary 4CSPs. Moreover, H̊astad (2007) showed, under UGC, that a random k-ary predicate for
large k is approximation resistant. More recently, Guruswami and Lee (2015) showed hardness for
the family of symmetric CSPs (predicates whose set of accepting strings is permutation invariant).

Ordering and Ordinary CSPs Beyond the above finite-domain CSPs, approximation resistance
has been studied for infinite-domain CSPs (or “growing” domain CSPs). Several prominent such ex-
amples that were shown approximation resistant include Maximum Acyclic Subgraph (Guruswami,
Manokaran, and Raghavendra, 2008), Betweenness, Non-Betweenness, Cyclic Ordering (Charikar,
Guruswami, and Manokaran, 2009) and in fact, any other ordering CSP (CSPs over permutations
of n elements) is approximation resistant (Guruswami, H̊astad, Manokaran, Raghavendra, and
Charikar, 2011). Each predicate or payoff function of an ordering CSP depends on the ordering of
variables on a line.

In this paper, we will use not only phylogenetic CSPs but also CSPs with finite alphabet and
ordering CSPs. To distinguish finite alphabet CSPs from other CSPs, we will refer to them as
ordinary CSPs.

2 Technical Contributions and Challenges

Most closely related to our paper, both at a conceptual and technical level is the paper by Gu-
ruswami, H̊astad, Manokaran, Raghavendra, and Charikar (2011) who showed that every ordering
CSP is approximation resistant assuming the Unique Games Conjecture (see also Guruswami et al.
(2008); Charikar et al. (2009)). Our main technical contribution is a hardness preserving reduction
from ordering CSPs to phylogenetic CSPs. At a high-level, we must deal with three main challenges:

Trees Have Topology: In Phylogenetic CSPs, whether a phylogenetic constraint is satisfied or
not crucially depends on the topology of the tree. Contrast this with what happens in ordering
CSPs, where simply knowing the position of an item in the permutation determines if the constraint
is satisfied. For trees, the notion of “position” is more complicated and how we split the n items at
internal tree nodes is important (see also the discussion on random assignments).

5

Many Types of Trees: Theorem 1.4 provides hardness for large collections of problems studied
e.g., in logic, algebra and computational biology, where trees may be ordered (left and right children
are distinguishable). Contrast this with ordering CSPs where such considerations are irrelevant.

Biased Random Assignment: Perhaps counterintuitively, even the definition of a “random
tree” for Phylogenetic CSPs requires some attention. Simply outputting a uniformly random tree
on n leaves can result in very poor solutions. Instead, we define a natural “biased” version of a
random assignment that generalizes prior methods. We show that it achieves the best possible
approximation, under UGC. Contrast this with ordering CSPs, where we simply output a random
permutation of n items and this is optimal.

In this paper, we present a reduction from ordering CSPs. Let us stress that a näıve reduction
from ordering CSPs to phylogenetic CSPs does not give the desired hardness results. For example,
the Triplet Consistency predicate uv|w can be satisfied when the vertices are ordered as (u, v, w),
(v, u, w), (w, u, v), and (w, v, u). So, the best hardness for Triplet Consistency we could hope for if
we used the näıve reduction would be 4/3! = 2/3.

Our main technical and conceptual contributions are as follows:

• We define a new class of biased random assignment algorithms for phylogenetic CSPs with
one and many payoff functions and prove matching hardness of approximation results.

• We show that the “gap instance” from the paper by Guruswami et al. (2011) can be adapted
to serve as a “gadget” in the reduction from ordering to phylogenetic CSPs. A priori, it is not
clear that this gap instance can be used for phylogenetic CSPs because phylogenetic CSPs are
quite different from ordering CSPs. We also modify the hardness reduction by Guruswami
et al. (2011) to make it compatible with our own reduction. Their original reduction “erases
the tree structure” of our instances because it cyclically shifts positions of variables. This
preserves the relative order of most k-tuples of variables on the line but not in the tree.

• We provide a new definition of coarse solutions for phylogenetic CSPs. This definition sub-
stantially differs from the definition of coarse solutions for ordering CSPs (Guruswami et al.
(2011); Charikar et al. (2007)). The most important difference is that we need to assign colors
to different buckets of vertices. Without this new ingredient, it is not possible to show that
every solution to the phylogenetic CSP (with payoff function f) can be transformed to a better
coarse solution (for an altered payoff function f+).

• Finally, we extend our results to phylogenetic CSPs with more than one payoff function. The
best algorithm for such CSPs first finds the best possible biased assignment and then uses it
to obtain a random solution.

3 Preliminaries

Trees. For ease of exposition, this discussion is focused only on ordered, rooted, binary trees. Our
results also hold for unordered and unrooted trees since phylogenetic CSPs on rooted unordered and
unrooted unordered trees are special cases of phylogenetic CSPs on ordered trees. Let T = (V,E)
be a rooted tree with root r. A tree T is called ordered if the child nodes of every internal node u
are ordered from left to right. In an ordered tree, all leaves are also ordered from left to right as in
a planar drawing of that tree. In Section 9.2, we discuss an extension of our results for higher arity
trees. Let us note that we will use auxiliary higher arity trees in the proof of our hardness result
even for binary trees. From now on, we simply use the word “tree” to refer to ordered, rooted trees.

6

For u, v ∈ V , we say that u lies below v if the path from u to the root r passes through v; in
this case, we may also say that v lies above u. The Lowest Common Ancestor (LCA) of a set of
vertices S ⊆ V is the node u that lies above all vertices in S and has the largest distance from r
(the LCA node is uniquely determined by the set S).

Tree Homeomorphism. We now define a phylogenetic payoff function. Given a tree T and k
distinct leaves u1, . . . , uk of T , a phylogenetic payoff function f returns a value (payoff) in [0, 1].
Loosely speaking, this payoff can only depend on the relative positions of leaves u1, . . . , uk and
their least common ancestors in the tree. Below, we formalize the definition using the notion of
homeomorphism for labeled ordered rooted trees. Then, we examine two ways of defining phylo-
genetic payoff functions using pattern tables and formulas with bracket predicates. Pattern tables
correspond to truth tables of ordinary CSPs, and formulas with bracket predicates correspond to
formulas with and, or, not predicates for ordinary CSPs.

Consider a graph G and vertex u in G of degree 2. Let v1 and v2 be the neighbours of u. We
call the following operation smoothing u out : Remove vertex u along with edges (u, v1) and (u, v2)
from G and then add edge (v1, v2) to G.

Definition 3.1. Consider two ordered rooted trees A and B. Let u1, . . . , uk be distinct leaves in A
and v1, . . . , vk be distinct leaves in B.

I. We say that A with labeled leaves u1, . . . , uk and B with labeled leaves v1, . . . , vk are isomorphic
if there exists an isomorphism of ordered trees A and B that maps every ui to vi. Note that an
isomorphism g of ordered trees must preserve the order of vertices. That is, if u is to the left of v,
then g(u) must be to the left of g(v). Also, A’s root must be mapped to B’s root.

II. We say that A with labeled leaves u1, . . . , uk and B with with labeled leaves v1, . . . , vk are home-
omorphic if A and B can be transformed to isomorphic trees A′ and B′ using the following three
operations: (1) removing every non-labeled leaf in A or B (i.e., any leaf other than u1, . . . , uk in
A; and any leaf other than v1, . . . , vk in B); (2) smoothing out vertices of degree 2 in A or B (see
above for the definition); (3) removing the root if its degree is 1 and making its only child the new
root.

In the definition of homeomorphic trees, we can assume that A′ and B′ are irreducible trees
i.e., trees that cannot be further minimized using operations (1), (2), and (3). Note that each tree
with k labeled leaves has a unique irreducible tree because operations (1), (2), and (3) commute.
Consequently, the homeomorphic relation between labeled trees is transitive.

We now can formally define phylogenetic payoff functions.

Definition 3.2. A function f that takes as input a tree T and k leaves x1, . . . , xk, and returns
a value in the range [0, 1], is a phylogenetic payoff function if it satisfies the following condition:
for any two trees A and B, and any leaves u1, . . . , uk in A and v1, . . . , vk in B, if A with labels
u1, . . . , uk and B with labels v1, . . . , vk are homeomorphic, then f(A, u1, . . . , uk) = f(B, v1, . . . , vk).
The value returned by f is called a payoff.

To simplify notation, we will omit the tree and write f(x1, . . . , xk) instead of f(T, x1, . . . , xk)
when it is clear that x1, . . . , xk are leaves of T . In this paper, we will only deal with payoff functions
whose maximum payoff equals 1. We call such functions satisfiable. Before, we proceed to the
definition of phylogenetic CSPs, we discuss how to define phylogenetic functions using tree patterns
and formulas with bracket predicates.

Tree Patterns. Intuitively, a pattern (or motif) is a small graph that we want to find in a larger
graph. Here, we are interested in tree patterns.

7

Definition 3.3. A tree pattern P is a tree with k leaves that are labeled by k variable names
x1, . . . , xk.

We refer the reader to Section D for examples of different tree patterns.

Definition 3.4. Consider a tree T and k leaves u1, . . . , uk in T . We say that leaves u1, . . . , uk match
pattern P (x1, . . . , xk) in T if tree T with labeled leaves u1, . . . , uk and P with leaves x1, . . . , xk are
homeomorphic.

Every (ordinary) Boolean predicate or function can be specified using a truth table. We now
define an analog of a truth table for phylogenetic trees. A pattern table for f is a list of distinct (non-
homeomorphic) patterns with k variables x1, . . . , xk and payoffs in [0, 1] assigned to the patterns.
The value of phylogenetic payoff function f defined by a pattern table on leaves u1, . . . uk equals
to the payoff assigned to the pattern P if u1, . . . , uk matches P (x1, . . . , xk) for some pattern P in
the table; and 0 if u1, . . . , uk do not match any pattern in the table. In Figure 4 in Appendix, we
show patterns in the pattern table for the Triplet Consistency problem; each pattern in Figure 4 is
assigned a payoff of 1.

Bracket Predicates [a, b < c]. We can specify patterns using “bracket predicates.” Consider
three leaves a, b, c of a tree T . We say that [a < b] if a appears to the left of b in T . We write
[a, b < c] if vertices a and b lie in the left subtree of LCA(a, b, c) and c lies in the right subtree
of LCA(a, b, c). Similarly, we write [a < b, c] if a lies in the left subtree of LCA(a, b, c) and b, c lie
in the right subtree. It is not hard to see that every pattern can be expressed as a conjunction of
bracket predicates. We show how to represent patterns for the Triplet Consistency payoff function
as a conjunction of bracket predicates in Figure 4. We prove the following Lemma 3.5 in Section 10.

Lemma 3.5. Every pattern can be expressed as a conjunction of bracket predicates.

In Section 10, we prove that every phylogenetic payoff function can be defined using a pattern table.

Phylogenetic CSPs. A phylogenetic CSP problem Γ is defined by one or several phylogenetic
payoff functions f1, . . . , fA of arity k. An instance I of Γ consists of a set of variables V and sets
of k-hyperedges Cfi – one set for each predicate fi in Γ. Thus, I = (V,Cf1 , . . . , CfA). A hyperedge
(u1, . . . , uk) in Cfi represents a constraint fi on variables u1, . . . , uk. The weight of a hyperedge
(u1, . . . , uk) in Cfi is denoted by wfi(u1, . . . , uk).

In this paper, we will focus on phylogenetic CSPs with one payoff function. However, all results
we prove in this paper also hold for phylogenetic CSPs with multiple payoff functions. We will
discuss such CSPs in Section 9.1. When we refer to phylogenetic CSPs with one payoff function,
we will omit the index fi and denote the set of payoff functions by C and weights of constraints by
weight(u1, . . . , uk).

A solution for an instance I of phylogenetic CSP Γ is an assignment of variables V to leaves of
a binary ordered tree T (the tree T is also a part of the solution). We denote the set of all solutions
by Φ(I). The value of a solution ϕ ∈ Φ(I), which we denote by val(ϕ, I), equals the expected value
of payoff functions on a random hyperedge in I:

val(ϕ, I) =
1

weight(I)

∑
i∈{1,...,A}

(x1,...,xk)∈Cfi

weight(u1, . . . , uk) · f(ϕ(u1), . . . , ϕ(uk)),

where weight(I) is total total weight of all hyperedges (constraints) in I:

weight(I) =
∑
i

∑
(u1,...,uk)∈Cfi

weight(u1, . . . , uk).

8

We denote the maximum value of a solution ϕ ∈ Φ(I) by opt(I). We denote the average value of
all payoff functions in I by Avg(u1,...,uk)∈I f(ϕ(u1), . . . , ϕ(uk)).

4 Biased Random Assignment and Approximation Resistance

In this section, we explore definitions of randomized assignment, biased randomized assignment, and
approximation resistance. Recall that a randomized assignment algorithm for ordinary CSPs assigns
a random value from the alphabet Σ to each variable. Similarly, a random assignment algorithm
for ordering CSPs permutes all variables in a random order. An analogue of these algorithms for
phylogenetic CSPs randomly partitions all variables of an instance I into two groups and then
assigns the first group to the left subtree and the second group to the right subtree. It recursively
partitions variables in the left and right subtrees till each node contains at most one variable. This
algorithm works well for MaxTriplets and MaxQuartets. For these problems, it gives a 1/3

approximation. However, it drastically fails for some other phylogenetic CSPs.
Consider the following problem, which we call “split one node to the right” (see Figure 6). The

payoff function s(x1, . . . , xk) returns 1 if at every node when three or more variables split, only
one of those variables goes to the right subtree and the other variables go to the left subtree. The
abovementioned randomized assignment algorithm satisfies a predicate s(x1, . . . , xk) with probabil-
ity exponentially small in k. However, a biased randomized assignment algorithm that places every
vertex to the left subtree with probability 1− δ and to the right subtree with probability δ satisfies
predicate s with probability close to 1 if δ is sufficiently small. In Section 11, we consider a more
interesting example. In that example, a randomized assignment algorithm should split vertices into
two groups with probabilities that change from one recursive call to another.

The discussion above leads us to the following definition of a biased random assignment algorithm
(for biased random assignments for ordinary CSPs, see Guruswami and Lee (2014)). A biased
random assignment algorithm is specified by an absolutely continuous probability measure ρ on the
interval [0, 1]. We remind the reader that ρ is absolutely continuous if there exists a measurable
function h such that ρ(S) =

∫
S h(t)dt for every measurable subset S of [0, 1]. The measure of the

interval [0, 1] equals 1 because ρ is a probability measure. We assign every node of the infinite
complete binary tree a subinterval of [0, 1]. The root of the tree is assigned [0, 1]. Its left child is
assigned [0, 1/2] and right child is assigned [1/2, 1]. This assignment defines weights of all nodes –
the weight ρ(u) equals to the measure of the interval corresponding to u.

We now assume that the algorithm is given oracle access to ρ. The algorithm recursively
partitions variables in I. Initially, it assigns all variables to the root of the binary tree. At every
step, the algorithm picks a node u of the binary tree that contains more than one variable, creates
two child nodes uleft and uright, and randomly splits all variables in u between uleft and uright.
Namely, it assigns each x in u to uleft and uright with probabilities ρ(uleft)/ρ(u) and ρ(uright)/ρ(u),
respectively.

Let αρ(f) be the approximation factor of the biased random assignment algorithm with mea-
sure ρ for payoff function f and αopt(f) be the best approximation factor of a biased randomized
assignment algorithm for payoff function f :

αopt(f) = sup
ρ
αρ(f).

As we mentioned earlier, we now consider phylogenetic CSPs with one payoff function f . If phy-
logenetic CSP Γ has several payoff functions, then it should first randomly choose the appropriate
measure ρ. We discuss such CSPs in Section 9.1. If a phylogenetic CSP Γ has only one payoff

9

function, we will write αopt(Γ) = αopt(f). We call αopt(Γ) the random assignment approximation
factor for Γ.

We note that every measurable function h can be approximated by a piecewise constant function
h′. Function h′ is a constant on each interval S1, . . . , Sq that partition [0, 1] into q parts. Moreover,
we can assume that the enpoints of intervals Si are binary rational numbers. This lets us define
ρ′-biased algorithms in the following equivalent way. A ρ′-biased algorithm is defined by a constant-
size tree T and a probability distribution ρ′ on the leaves of T . The algorithm first assigns every
variable to one of the leaves of T using the distribution ρ′. Then, it recursively partitions variables
splitting them 50%/50% at every step. The running time of this algorithm is linear in n (the number
of variables). We have the following theorem.

Theorem 4.1. For every phylogenetic CSP Γ and every positive ε, there exists a linear-time biased
randomized rounding algorithm that has an approximation factor of αopt(Γ)− ε.

We discuss the case of CSPs with more than one payoff section in Section 9.1. Finally, we define
approximation resistance for phylogenetic CSPs.

Definition 4.2. A phylogenetic CSP Γ is approximation resistant if for every positive ε, it is NP-
hard to distinguish between instances of Γ that (a) have a solution of value greater than 1 − ε and
(b) do not have a solution of value greater than αopt(Γ) + ε.

We show that all phylogenetic CSPs are approximation resistant. In particular, this means
that, unless P = NP (assuming UGC), for every phylogenetic CSP Γ, there is no approximation
algorithm with a constant approximation factor better than αopt(Γ) + ε.

5 Proof Overview

In this section, we give an overview of our hardness result for phylogenetic CSPs. We first show
that the Triplets Consistency problem (MaxTriplets) is approximation resistant by providing a
reduction from a specially crafted ordering CSP problem to the Triplets Consistency problem. This
reduction works for Triplets Consistency and some other phylogenetic problems, however, fails in
the general case. We then show how to modify the construction by Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar (2011) to make our reduction work for all phylogenetic CSPs.

Consider a phylogenetic CSP Γphy. In this section, we assume that this phylogenetic CSP has
only one payoff function f of arity k. We will discuss the case when Γphy has several payoff functions
in Section 9.1. Let I be an instance of Γphy. Denote the value of the optimal solution for I by
opt(I). Observe that every solution ϕ to I defines an ordering on the variables of the instance
I. In this ordering, the variables are arranged from left to right according to their position in the
embedding ϕ in the binary tree. We denote the ordering of the variables in I by order(ϕ). Let Φπ(I)
be the set of all solutions for instance I in which the order of variables is π (i.e., order(ϕ) = π);
and let opt(I | π) be the value of the best solution ϕ in Φπ(I):

opt(I | π) = max
ϕ∈Φπ(I)

val(ϕ, I). (1)

Gap instance. Following Guruswami et al. (2011), we use a gap instance Ifgap in our reduction.
The variables of this instance are leaves of an ordered perfect k-ary tree of depth d (in this tree all
internal nodes have k children; and the depth of all leaves is d). Each constraint in the instance is a
payoff function f on a subset of k leaves/variables. To define the instance, we introduce a random
map Lk,m : k → V , where V is the set of leaves and m = |V |. Random map Lk,m works as follows: it

10

picks a random i from set {0, 1, . . . , d−1} and then a random (internal) node u at level i of the tree
T . Let u1, . . . , uk be the child nodes of u arranged from left to right. In the subtrees Tu1 , . . . , Tuk
rooted at vertices u1, . . . , uk, we independently pick random leaves l1, . . . , lk and map each i to li.
Now, for every k vertices l1, . . . , lk, we add hyperedge (l1, . . . , lk) to the set of constraints C. The
weight of (l1, . . . , lk) equals Pr{Lk,m(1) = l1, . . . , Lk,m(k) = lk}. Note that we use exactly the same
gap instance as Guruswami et al. (2011). In their instance, the payoff function is an ordering payoff
function. We will use this instance with ordering, phylogenetic, and ordinary payoff functions. In
fact, we will think of Igap as a template for k-ary CSP instances (formally, Igap = C is the set of

hyperedges). Then, Ifgap = (f, C) is an instantiation of this template with the payoff function f .

Guruswami et al. (2011) showed that

I. Ifgap is a completely satisfiable instance of an ordering CSP for every ordering payoff function

f with f(id) = 1. That is, if f(id) = 1, then opt(Ifgap) = 1. Note that for every satisfiable
payoff function f , we can rearrange its inputs using some permutation σ so that f ◦σ(id) = 1.

II. The cost of any so-called coarse solution to this instance is at most α + ε, where α is the
expected value of the random assignment algorithm (which is unique for ordering CSPs unlike
phylogenetic CSPs), and ε tends to 0 as the depth d (see above) of tree T tends to infinity.

In our proof, we will also use coarse solutions. However, we postpone the discussion of such solutions
till Section 6.2, where we define coarse solutions for phylogenetic CSPs (note that coarse solutions
for phylogenetic CSPs and ordering CSPs differ in several important ways). In this paper, we will
use the following lemma, which is an analog of property II above.

Lemma 5.1. Fix natural numbers k ≥ 1, q ≥ 1 and positive real number ε > 0. Then, there exists
a natural m∗ such that for every template Igap with at least m∗ leaves from the family defined above,
every (ordinary) payoff function f of arity k defined on alphabet Σ of size q (i.e., f is a function
from Σk to [0, 1]), the following claim holds:

opt(Ifgap) ≤ max
ρ

Exi∼ρ
[
f(x1, . . . , xk)

]
+ ε, (2)

where ρ is a probability distribution on Σ; and x1, . . . , xk are drawn from ρ independently.

The lemma is similar to Theorem 11.1 from the paper by Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar (2011). For completeness, we provide a proof of Lemma 5.1 in Sec-
tion 8. To prove Lemma 5.1, we rewrite bound (2) as a bound on the KL-divergence of certain
random variables. Then, we prove the new bound on the KL-divergence using the chain rule for
conditional entropy. We believe that our approach is somewhat simpler than the original approach
used by Guruswami et al. (2011).

We also show that gap instance Ifgap is completely satisfiable. We present a proof of the following
lemma in Section 6.1. Note that this statement is not obvious for phylogenetic CSPs and does not
follow from the previously known results.

Lemma 5.2. For every phylogenetic CSP Γ with payoff function f and gap instance Ifgap of arbitrary

size, we have opt(Ifgap) = 1.

The main technical tool in our reduction is Theorem 5.3. This theorem shows that opt(Ifgap|π) ≈
α for a uniformly random permutation π. A crucial ingredient in the proof of this theorem is a new
definition of coarse solutions and colorings, which we discuss in Section 6.2.

11

Theorem 5.3. Consider a phylogenetic CSP Γ with a payoff function f . For every positive ε > 0,
there exists a sufficiently large gap instance Ifgap of phylogenetic CSP Γ such that opt(Ifgap) = 1;

and for a random permutation π of variables of Ifgap:

Eπ[opt(Ifgap | π)] ≤ α+ ε.

We prove this theorem in Section 6. We now discuss how to use this theorem to construct a gap
preserving reduction from a certain ordering CSP problem to Γphy. Fix ε > 0. Let Ifgap be a gap

instance from Theorem 5.3 and m be the number of variables in Ifgap. Define an auxiliary ordering
CSP Γord with a payoff function o of arity m. The value of o(π) on variables x1, . . . , xm equals

o(π(x1), . . . , π(xm)) = opt(Ifgap | π),

where the instance Ifgap is also defined on x1, . . . , xm. In other words, the value of payoff function

o with variables x1, . . . , xm on permutation π equals to the best solution ϕ for instance Ifgap with
the same set of variables x1, . . . , xm subject to the constraint that the variables in solution ϕ are
ordered according to π.

Reduction. Let Γphy be the class of phylogenetic CSPs with payoff function f , and Γord be the
class of ordering CSPs with payoff function o. We now define a reduction hord→phy from CSPs Γord
to CPSs Γphy. We take an arbitrary instance Iord of Γord and transform it to an instance Iphy of
Γphy on the same set of variables as Iord. In instance Iord, we replace every constraint (xi1 , · · · , xim)

for payoff function o with a copy of the gap instance Ifgap on variables xi1 , · · · , xim . That is, Iphy
is the union of copies of the gap instances (“gadgets”) Ifgap – one “gadget” for every constraint
(xi1 , . . . , xim in Iord. We denote the obtained instance of phylogenetic CSP Γphy by Iphy. We let
hord→phy(Iord) = Iphy.

Note that for every solution ϕ to the phylogenetic CSP Iphy, there is a corresponding solution
π to the ordering CSP Iord. This solution π orders all variables in Iord in the same way as they are
ordered by solution ϕ in the phylogenetic tree for Iphy i.e., π = order(ϕ). The value of each payoff

function o on π is greater than or equal to the value of ϕ on the copy of Ifgap created for o. This is

the case, because ϕ is a possible solution for that copy of Ifgap (since the variables in ϕ are ordered
according to π). We have the following claim.

Claim 5.4. Consider instances Iord to Iphy of ordering and phylogenetic CSPs as above. Then,

opt(Iord) ≥ opt(Iphy).

Unfortunately, we cannot claim that opt(Iord) = opt(Iphy). It is possible that opt(Iord) �
opt(Iphy). This may happen if there exists an ordering of variables π such that for every constraint
u = (u1, . . . , um) in Iord, there exists a good local solution ϕu ∈ Φπ(I):

o(ϕu(u1), . . . , ϕu(um)) ≈ 1.

Note that ϕu may depend on the constraint u. However, there is no good global solution ϕ ∈ Φπ(I)
that works for all constraints (u1, . . . , um) (on average) in Iphy. That is, for every ϕ ∈ Φπ(I),

val(ϕ, Iphy) = Avg(u1,...,um)∈Iphy o(ϕ(u1), . . . , ϕ(um))� 1.

Hardness of approximation. We now discuss how to use reduction hord→phy to show that Γphy
is approximation resistant. The ordering CSP Γord is approximation resistant as every ordering
CSP (Guruswami, H̊astad, Manokaran, Raghavendra, and Charikar (2011)). By Theorem 5.3, the
expected value of payoff function o on a random permutation π is at most α+ ε. Hence, assuming
the Unique Games conjecture, it is NP-hard to distinguish between

12

A. instances of Γord that are at most (α+ ε) + ε satisfiable; and

B. instances of Γord that are at least (1− ε) satisfiable.

To finish the proof, we would like to show that hord→phy is a gap preserving reduction. Namely,
hord→phy maps (a) every instance Iord of value at most α+ 2ε to an instance Iphy of value at most
α+ 2ε; and (b) every instance Iord of value at least 1− ε to an instance of Γphy of value 1−O(ε).
If hord→phy satisfied these properties, we would conclude that, assuming UGC, it is NP-hard to
distinguish between (A) instances of Γphy that are at most α + 2ε satisfiable; and (B) instances of
Γphy that are at least 1−O(ε) satisfiable.

Property (a) immediately follows from Claim 5.4 because reduction hord→phy does not increase
the value of the instance. Unfortunately, property (b) is not satisfied for many payoff functions f .
Nevertheless, in the next section, we show that property (b) holds for one particular function f∗

and, consequently, the phylogenetic CSP with that payoff function f∗ is approximation resistant.
We will use this result to prove that Triplets Consistency is also approximation resistant.

In Section 7, we will deal with arbitrary phylogenetic CSPs. Specifically, we will modify the
hardness reduction by Guruswami et al. (2011) and obtain a reduction hUG→ord from Unique Games
to Γord such that the composition of reductions

hUG→phy = hord→phy ◦ hUG→ord

is gap preserving.

5.1 Hardness for Triplets Consistency

In this section, we define a special payoff function f∗ of arity 3 for which the hardness reduction
hord→phy (described in the previous section) maps almost satisfiable instances of Γord to almost
satisfiable instances of Γphy. Fix a small δ ∈ (0, 1). Let triplet(u, v, w) be the Triplet Consistency
payoff function: triplet(u, v, w) = 1, if LCA(u,w) = LCA(v, w) (in other words, w is separated
from u and v before u and v are separated); triplet(u, v, w) = 0, otherwise. Now let f∗(u, v, w) =
triplet(u, v, w) if the ordering of variables u, v, and w in the phylogenetic tree is u, v, and w;
f∗(u, v, w) = (1 − δ) triplet(u, v, w), otherwise. Observe that f∗(u, v, w) is a satisfiable payoff
function i.e., its maximum value is 1. Let Γphy be the phylogenetic CSP with payoff function f∗

and Γord be the corresponding ordering CSP.

Lemma 5.5. Reduction hord→phy maps every (1 − ε)-satisfiable instance of Γord to a (1 − ε/δ)-
satisfiable instance of Γphy.

Proof. Consider a (1 − ε)-satisfiable instance Iord of ordering CSP Γord and the corresponding
instance Iphy = hord→phy(Iord) of phylogenetic CSP Γphy. Let π be the optimal solution to Iord.
Consider the “left” caterpillar binary tree T with n leaves. Tree T is a binary tree in which the right
child of every internal node is a leaf. We construct T by taking a path of length n and attaching a
right child to every node but last (see Figure 7 in Appendix). We now define a solution for instance
Iphy that maps every variable of Iphy to a leaf of T . We number all leaves in the tree from left to
right. Then, we map every variable u to the leaf number π(u). Thus, the ordering of variables in
solution ϕ is π.

We prove that val(ϕ, Iphy) ≥ 1−ε/δ. Observe that f∗(ϕ(u), ϕ(v), ϕ(w)) = 1 for a triplet (u, v, w)
if and only if π(u) < π(v) < π(w) (because ϕ maps all vertices to the leaves of the left caterpillar
tree). So, it is sufficient to show that π(u) < π(v) < π(w) for all but at most 1− ε/δ fraction of all
constraints in Iphy. In other words, we need to show

Avg(u,v,w)∈Iphy 1
(
π(u) < π(v) < π(w)

)
≥ 1− ε/δ,

13

where 1(π(u) < π(v) < π(w)) is the indicator of the event π(u) < π(v) < π(w). Recall that for

every ordering constraint x = (x1, . . . , xm) in Iord, we created a copy Ix of the gap instance If
∗

gap.
Instance Iphy is the union of instances Ix over all constraints x in Iord. Thus,

Avg(u,v,w)∈Iphy 1
(
π(u) < π(v) < π(w)

)
= Avgx∈Iord Avg(u,v,w)∈Ix 1(π(u) < π(v) < π(w)). (3)

Consider an ordering constraint x = (x1, . . . , xm) in Iord. The value of the ordering payoff function
o on x equals (by the definition of o):

o(π(x1), . . . , π(xm)) = opt(Ifgap | π) = max
ϕx∈Φπ(Iphy)

Avg(u,v,w)∈Ix f
∗(ϕx(u), ϕx(v), ϕx(w)).

Observe that
f∗(ϕx(u), ϕx(v), ϕx(w)) ≤ (1− δ) + δ · 1

(
π(u) < π(v) < π(w)

)
.

This is because every ϕx in Φx(Iphy) must order u, v, w according to permutation π. So, if
1(π(u) < π(v) < π(w)) = 0, then f∗(ϕx(u), ϕx(v), ϕx(w)) ≤ 1− δ. Therefore,

o(π(x1), . . . , π(xm)) ≤ (1− δ) + δ ·Avg(u,v,w)∈Ix 1(π(u) < π(v) < π(w)).

Since π satisfies at least (1− ε) fraction of all constraints in Iord, we have

(1− δ) + δ ·Avgx∈Iord Avg(u,v,w)∈Ix 1
(
π(u) < π(v) < π(w)

)
≥ 1− ε.

This inequality implies (3). This concludes the proof of Lemma 5.5.

By Lemma 5.4 and Lemma 5.5, reduction hord→phy maps (a) instances of Γord with value at most
α′+2ε to instances of Γphy also with value at most α′+2ε; and (b) almost satisfiable instances of Γord
to almost satisfiable instances of Γphy, where α′ is the value of the best biased random assignment
for f∗. Therefore, phylogenetic CSP Γphy with payoff function f∗ is approximation resistant.

We now show that the Triplets Consistency problem is also approximation resistant. First,
observe that triplet(u, v, w) ≤ f∗(u, v, w) for all variables u, v, w. Hence, α′ ≤ α = 1/3, where α
is the value of the best biased random assignment for the Triplets Consistency problem. Then,
note that a (1 − ε)-satisfiable instance of the problem with payoff function f∗ is also a (1 − ε)-
satisfiable instance of the problem with payoff function triplet (simply because triplet(u, v, w) ≥
f∗(u, v, w)). Finally, every instance with value at most α + ε with payoff function f∗ has value at
most (α+ε)/(1−δ) with payoff function triplet. This implies that the Triplets Consistency problem
is approximation resistant.

Hardness for Quartets Consistency. Using our hardness results for triplets, a simple reduction
then proves that MaxQuartets is also approximation resistant (see Claim C.3 in Appendix C):

Corollary 5.6. Unrooted Quartet Reconstruction (MaxQuartets) is approximation resistant, so
it is UGC-hard to beat the (trivial) random assignment algorithm that achieves a 1

3 -approximation.

6 Filling the Gaps

In this section, we build machinery to prove Theorem 5.3. First, we show that every gap instance
Ifgap of a phylogenetic CSP with payoff function f is completely satisfiable. Then, we introduce
coarse solutions for phylogenetic CSPs and prove important results about such solutions. In the
end of this section, we put all parts together and prove Theorem 5.3.

14

6.1 Gap Instance is Completely Satisfiable

Consider a phylogenetic CSP with a satisfiable payoff function f of arity k. Let P be the pattern
of f with a payoff of 1. Pattern P is a tree with k leaves l1, . . . , lk such that f(l1, . . . , lk) = 1.
By permuting the arguments of the payoff function f , we may assume that the leaves l1, . . . , lk are
ordered from left to right in P . We now show that Ifgap is a satisfiable instance of Γphy. We will
need the following definition.

Definition 6.1. Consider k leaves l1, . . . , lk of a full tree T of arity k. Let u be their least common
ancestor and u1, . . . , uk be the child nodes of u ordered from left to right. We say that l1, . . . , lk
are cousins if each li is a leaf in the subtree Tui rooted at ui. We also define a predicate cousins:
cousins(l1, . . . , lk) = 1, if l1, . . . , lk are cousins; and cousins(l1, . . . , lk) = 0, otherwise.

Lemma 6.2. Let f be a satisfiable phylogenetic payoff function and P be a pattern as above.
Consider an instance I = (V,C) of phylogenetic CSP with a payoff function f and a mapping ψ of
variables V of I to a k-ary tree T . Then, there exists a binary tree T ′ with the same set of leaves
as T such that the following statement holds: If x1, . . . , xk are mapped to cousins in T by ψ, then
f(ψ(x1), . . . , ψ(xk)) = 1 in T ′.

Observe that in the gap instance Ifgap all payoff functions are defined on leaves that are cousins.
Hence, the conditions of Lemma 6.2 are satisfied for the identity map ψ. Therefore, we have the
following immediate corollary.

Corollary 6.3. Every gap instance Ifgap with phylogenetic payoff function f as above is completely
satisfiable.

Proof of Lemma 6.2. Let r be the root of pattern P and l1, . . . , lk be its leaves. We build a binary
tree T ′ by replacing every node and its children in T with the pattern P . See Figure 8. Formally,
we define T ′ as follows. For every internal vertex u of T , we create a copy of pattern P . Denote
it by P u. We identify every vertex u of T with the root of P u. Also, we identify the i-th leaf of
P u with the i-th child of u. Now consider a payoff function f on variables x1, . . . , xk. Suppose
that ψ(x1), . . . , ψ(xk) are cousins in tree T . Let u be their least common ancestor and u1, . . . , uk
be u’s child nodes. Then, each ψ(xi) lies in the subtree rooted in ui. Let us now examine where
ψ(x1), . . . , ψ(xk) are located in the new tree T ′. Each ψ(xi) also lies in the subtree rooted at ui.
However, in T ′, u1, . . . uk are not child nodes of u but rather leaves of a copy of the pattern P .
Thus, ψ(x1), . . . , ψ(xk) match pattern P in T ′. Consequently, f(ψ(x1), . . . , ψ(xk)) = 1 for solution
ψ on phylogenetic tree T ′.

6.2 Coarse Solutions, Labelling, and Coloring

In this section, we define coarse solutions for phylogenetic CSPs and discuss how to measure the
value of such solutions. A coarse solution embeds the set of variables V into leaves of a binary tree
T . Unlike a true solution for a phylogenetic CSP, in a coarse solution, many variables can and, in
most cases, will be mapped to the same leaf. A coarse solution also assigns a color to every leaf of
T . We denote the leaf assigned to variable x by ξ(x) and color assigned to the leaf by color(ξ(x)).
We say that a coarse solution ξ is in class Ξε,q,π(I) (where ε ∈ R+, q ∈ N, π is an ordering of V) if
it satisfies the following properties:3

1. (coarse) tree T has at most q leaves;

3These conditions are slightly more complex for phylogenetic CSPs on non-binary trees.

15

2. at most ε|V | distinct variables have the same color; and

3. moreover, variables mapped to a leaf l are consecutive variables in ordering π.

Note that this definition differs a lot from the definition of a coarse solution for ordering CSPs.
In particular, coarse solutions for ordering CSPs do not assign colors to variables.

We now define two value functions for a coarse solution ξ. Consider an instance I = (V,C)
of phylogenetic CSP with payoff function f and an arbitrary constraint (x1, . . . , xk) ∈ C. If all
variables x1, . . . , xk have distinct colors in the coarse solution i.e., color(ξ(xi)) 6= color(ξ(xj)) for all
i, j, then we let

f−(ξ(x1), . . . , ξ(xk)) = f+(ξ(x1), . . . , ξ(xk)) = f(ξ(x1), · · · , ξ(xk)),

here f(ξ(x1), · · · , ξ(xk)) is well defined because all leaves ξ(x1), . . . , ξ(xk) are distinct. If, how-
ever, two variables have the same color (i.e., color(ξ(xi)) = color(ξ(xj)) for some i, j), then we let
f−(ξ(x1), . . . , ξ(xk)) = 0 and f+(ξ(x1), . . . , ξ(xk)) = 1. We then define

val−(ξ, I) = Avg(x1,...,xk)∈I f
−(ξ(x1), . . . , ξ(xk)) and (4)

val+(ξ, I) = Avg(x1,...,xk)∈I f
+(ξ(x1), . . . , ξ(xk)). (5)

In both expressions above, we are averaging over all constraints (x1, . . . , xk) in instance I.
We will use coarse instances and value functions val+, val− to prove Theorem 5.3. Our plan is

as follows. We first show that for every (true) solution ϕ ∈ Φπ for instance I, there exists a coarse
solution ξ ∈ Ξε,q,π with val+(ξ, I) ≥ val(ϕ, I) (see Lemma 6.4). We then argue that for a random
ordering π and ξ ∈ Ξε,q,π, we have val+(ξ, I)−val−(ξ, I) ≤ ε with high probability (see Lemma 6.10
for the precise statement). Loosely speaking, this is the case because for a random ordering π, the
expected fraction of constraints (x1, . . . , xk) with at least two variables having the same color is
very small; but val−(ξ, f) and val+(ξ, f) differ only on such constraints. Finally, we use Lemma 6.6

to show that val−(ξ, Ifgap) ≤ α+ ε. The above chain of inequalities implies that

opt(Ifgap | π) = max
ϕ∈Φπ

val(ϕ, Ifgap) ≤ max
ξ∈Ξε,q,π

val+(ξ, Ifgap) ≤ max
ξ∈Ξε,q,π

val−(ξ, Ifgap) + ε ≤ α+ 2ε

with high probability if π is a random ordering of variables in Ifgap.

6.3 How to Transform True Solution to Better Coarse Solution?

We now show that for every true solution ϕ for I, there exists a coarse solution with val+(ξ, I) ≥
val(ϕ, I). In this coarse solution ξ the variables are ordered in the same way as in ϕ.

Lemma 6.4. Consider an instance I = (V,C) of a phylogenetic CSP Γphy. Let ε > 1/|V |. For
every permutation π and every solution ϕ ∈ Φπ(I) for I, there exists a coarse solution ξ ∈ Ξε,q,π(I)
with q ≤ 16/ε such that

val+(ξ, I) ≥ val(ϕ, I). (6)

Proof. Let T be the tree used in solution ϕ, and Λ be the set of its leaves. Solution ϕ maps the set
of variables V to Λ. We now define a function λ : Λ → Λ that maps all leaves of T to at most q
distinct leaves of T . This function also assigns a color to every leaf in the image. Then, we define
the coarse solution ξ = λ ◦ϕ. That is, ξ uses the true solution ϕ to map a variable x to a leaf l and
then uses function λ to assign x one of q chosen leaves of T .

16

Algorithm. We describe an algorithm for finding function λ. The algorithm first assigns a label
to every leaf u of T and a color to every label. Then, it maps each label to an arbitrary (e.g., the
leftmost) leaf of T that has that label.

Our algorithm considers all nodes of the tree in the bottom-up order. Denote the subtree rooted
at node u by Tu. For every u, the algorithm either processes subtree Tu and marks Tu as processed
or skips node u. It processes u if one of the following conditions is met:

• u is the root of T ; or

• both the left and right subtrees of u contain at least one already processed node; or

• the number of yet unlabelled leaves in Tu is greater than ε|V |/2.

Note that the second item can be rephrased as follows: u is the least common ancestor (LCA) of
two already processed nodes.

To process a node u, the algorithm creates four new labels LLu, LRu, RLu, RRu and assigns the
same new color to all of them. It assigns the first two labels LLu, LRu to leaves in the left subtree
of u and the second two labels RLu, RRu to leaves in the right subtree of u. Consider the left
subtree. If it does not contain already processed nodes, then all leaves of the tree receive label LLu.
Otherwise, there should be one processed node v such that subtree Tv contains all other processed
nodes in the left subtree of Tu. This node v is the least common ancestor (LCA) of all processed
nodes in the left subtree of Tu. We assign label LLu to the leaves in the left subtree of u that are
to the left of Tv and label LRu to the leaves in the left subtree of u that are to the right of Tv. We
assign labels in the right subtree in a similar way. See Figure 9 in the Appendix.

Value of the solution. We now show that for the coarse solution ξ constructed above, inequal-
ity (6) holds. Consider a constraint (x1, . . . , xk) in I. We need to show that f+(ξ(x1), . . . , ξ(xk)) ≥
f(ξ(x1), . . . , ξ(xk)). If at least two variables xi and xj have the same color, then f+(ξ(x1), . . . , ξ(xk)) =
1 and, therefore, f+(ξ(x1), . . . , ξ(xk)) = 1 ≥ f(ξ(x1), . . . , ξ(xk)). So from now on, we assume that
x1, . . . , xk have distinct colors.

Recall, that payoff function f can be specified by a list of patterns and corresponding payoffs:
function f(y1, . . . , yk) returns a certain value if y1, . . . , yk match the corresponding pattern. Each
pattern P can be described either by a tree with k leaves l1, . . . , lk or as a conjunction of bracket
predicates of the form [ya < yb], [ya, yb < yc], [ya < yb, yc]. See Section 10 and Lemma 3.5 for
details. In this proof, we will use the latter type of pattern descriptions.

Claim 6.5. If ϕ(x1), . . . , ϕ(xm) match a pattern P , then ξ(x1), . . . , ξ(xm) match the same pattern
P . Here, ϕ is the original solution, and ξ is the corresponding coarse solution.

Proof. Consider an arbitrary predicate [ya, yb < yc], which is a part of P . If ϕ(x1), . . . , ϕ(xm)match
P , then the predicate [ϕ(xa), ϕ(xb) < ϕ(xc)] must be true. We show that [ξ(xa), ξ(xb) < ξ(xc)] is
also true.

Examine node u in T where ϕ(xa), ϕ(xb), ϕ(xc) are split into two groups. This node u is the
least common ancestor of ϕ(xa), ϕ(xb), ϕ(xc) in tree T . Since [ϕ(xa), ϕ(xb) < ϕ(xc)] is true, ϕ(xa)
and ϕ(xb) must belong to the left subtree of u; and ϕ(xc) must belong to the right subtree of u.
Now, there are two possibilities: u was or was not processed by the algorithm.

If u was processed by the algorithm, then ϕ(xa), ϕ(xb) received labels in the left subtree and
ϕ(xc) received labels in the right subtree. In the coarse solution, labels in the left subtree are
mapped to leaves in the left subtree, and labels in the right subtree mapped to leaves in the right
subtree. Hence, the predicate [ξ(xa), ξ(xb) < ξ(xc)] is true in the coarse solution.

17

Suppose now that u was not processed by the algorithm but, of course, one of its ancestors
was processed. Denote the first ancestor of u which was processed by v. Assume without loss of
generality that u is in the left subtree of v. When the algorithm processed v, it assigned two new
labels LLv, LRv to some leaves in Tu. These labels have the same color. Since ϕ(xa), ϕ(xb), ϕ(xc)
have distinct colors, only one of them could have received label LLv or LRv. Therefore, the other
two leaves were assigned labels before v was processed. Suppose they were assigned labels when v′

was processed. Note that v′ is a descendent of v and u (if v′ was on the path from v to u, then v′

not v would be the first ancestor of u that was processed). If v′ belonged to the right subtree of u,
only ϕ(xc) would be its descendant and, consequently, neither ϕ(xa) nor ϕ(xb) would receive a label
when v′ was processed. Hence, v′ is in the left subtree of u. Therefore, ϕ(xc) must have received
label LRv, and xa, xb received labels in Tv′ . Since all leaves having label LRv are to the right of
leaves in subtree Tv′ , we get that [ξ(xa), ξ(xb) < ξ(xc)] is satisfied in the coarse solution.

This completes the proof of bound (6). It remains to bound the number of labels and colors
used by the algorithm.

The size of the coarse solution. We now show that ξ ∈ Ξε,q,π (see Section 6.2 for definition of
Ξε,q,π). Consider the step of the algorithm when a node u is processed. Observe that each label
LLu, LRu, RLu, RRu is assigned to consecutive leaves in π = order(ϕ). All of them have the
same color and no other label has that color. The number of unlabeled leaves in the left and right
subtrees of u is at most ε|V |/2. So, the total number of leaves that get colored at this step of the
algorithm is at most ε|V |.

We now estimate the number of leaves in the image of ξ. This number equals the number of
labels we create, which, in turn, equals the number of processed vertices multiplied by 4. Each node
u is processed by the algorithm because of one the three reasons provided in the definition of the
algorithm. The number of nodes u processed because Tu has more than ε|V |/2 unlabelled leaves is
at most |V |/(ε|V |/2) = 2/ε. The number of nodes u with at least one processed node in both the
left and right subtrees of u is at most 2/ε−1. Additionally, the algorithm always processes the root
of T . Thus, the total number of processed nodes and, consequently, number of colors is at most
4/ε. The number of labels is upper bounded by 16/ε.

6.4 No Good Coarse Solution for Gap Instance

In the previous two sections, we proved that the gap instance Ifgap has a solution ϕ of value 1 and
then showed how to transform every true solution to a coarse solution ξ with val+(ξ, I) ≥ val(ϕ, I).
Thus, we know that for every ε and q, there exists an ordering π and coarse solution ξ ∈ Ξε,q,π(I)

with val+(ξ, Ifgap) = 1. We now prove that, in conrast, val−(ξ, Ifgap) ≤ α+ ε for every ξ ∈ Ξε,q,π(I)
if the gap instance is sufficiently large.

Lemma 6.6. For every positive k, q ∈ N and ε′ ∈ (0, 1), there exists m∗ such that the following

claim holds. For every phylogenetic payoff function f of arity k, gap instance Ifgap = (V,C) with
|V | ≥ m∗, and coarse solution ξ ∈ Ξε,q,π, we have:

val−(ξ, I)) ≤ α+ ε′, (7)

where α is the biased random assignment threshold for payoff function f ; ε and π are arbitrary.

Proof. Consider a coarse solution ξ. It maps variables of instance Ifgap to leaves of some tree T .
Since ξ ∈ Ξε,q,π, tree T has at most q leaves l1, . . . , lq′ . We view this coarse solution as a solution to
an ordinary CSP with alphabet l1, . . . , lq′ and payoff function f−. This function applied to variables

18

x1, . . . , xk returns f(x1, . . . , xk) if all colors assigned to x1, . . . , xk are distinct and 0, otherwise. By
Lemma 5.1, the value of this solution is at most α′+ε′, where α′ is the expected value of the optimal
biased random assignment for payoff function f−.

To complete the proof, we show that α′ ≤ α. Consider a biased random assignment algorithm
with some probability distribution ρ on labels l1, . . . , lq′ . We can use this distribution to define

a biased randomized algorithm for phylogenetic CSP instance Ifgap. The biased assignment algo-
rithm first randomly and independently assigns all vertices V to leaves l1, . . . , lq′ with probabilities
ρ(l1), . . . , ρ(lq′). Then, it recursively partitions vertices assigned to each leaf each time splitting
vertices between the left and right subtrees with probability 50%/50% (see Section 4 for details).
Note that the expected value of this randomized algorithm for phylogenetic payoff function f is
greater than or equal to the value of the ordinary payoff function f−. This is the case because
both payoff functions have the same value if the colors of the leaves assigned to their arguments are
distinct. However, f−(x1, . . . , xk) = 0 if the colors of two or more leaves xi and xj are the same.
This implies that

Exi∼ρ[f
−(x1, . . . , xk)] ≤ Exi∼ρ[f(x1, . . . , xk)].

6.5 Coarse Solutions for Random Orderings

In this section, we bound the maximum difference maxξ∈Ξε,q,π(val+(ξ, I)− val−(ξ, I)) for a random
ordering π. We assume that the instance I of phylogenetic CSP is regular. That is, the weight
of constraints that contain a variable x is the same for all x ∈ V . Note that our gap instance
Ifgap satisfies this condition. In the lemma below, we will use the notion of a Gaifman graph.
The Gaifman graph for instance I of a constraint satisfaction problem is a weighted graph on the
variables V of I. The weight of edge (x1, x2) equals the total weight of all constraints that depend
on x1 and x2. Given an instance I, we construct the Gaifman graph for I as follows. For every
constraint (x1, . . . , xk), we add a clique on x1, . . . , xk with the weight of edges equal to the weight
of constraint x1, . . . , xk. It is easy to see that if I is a regular instance (see above), then its Gaifman
graph is also regular.

Let H = (V,E) be the weighted Gaifman graph for a regular instance I. Consider an arbitrary
coarse solution ξ ∈ Ξε,q,π(I). Denote the total weight of monochromatic edges in H by mc(ξ,H):

mc(ξ,H) = weight({(x, y) ∈ E : color(ξ(x)) = color(ξ(y))}).

We show mc(ξ,H) is small on average for a random ordering π.

Lemma 6.7. For every ε ∈ (0, 1) and positive q ∈ N, there exists m∗ = O(q log(q/ε)/ε2) such that
for every regular instance I = (V,C) with |V | ≥ m∗, the following bound holds:

Eπ

[
max

ξ∈Ξε,q,π(I)
mc(ξ,H)

]
≤ 3ε · weight(E). (8)

Here, H = (V,E) is the Gaifman graph of I; π is a random ordering of V .

Proof. Let m = |V |. We rescale the weight of all edges so that the weight of edges leaving any node
in H equals 2/m. Then, the total weight of all edges in H is 1. In this proof, we will ignore the tree
structure of the coarse solution. The ordering π is a one-to-one mapping of V to {0, . . . ,m − 1}.
Thus, the coarse solution ξ defines a coloring χ on {0, . . . ,m − 1}: The color of i equals the color
assigned by ξ to the preimage of i. That is,

χ(i) = color(ξ(π−1(i))).

19

Note that (1) ξ assigns the same color to at most εm numbers; (2) the entire set {0, . . . ,m− 1} is
partitioned in at most q groups of consecutive numbers and each group receives some color (every
consecutive group corresponds to a leaf in the coarse solution; different groups may have the same
color). We now rephrase the statement of the lemma as follows:

Eπ

[
max
χ

mc(χ ◦ π,H)
]
≤ 3ε, (9)

where χ is a coloring satisfying the conditions above; and mc(χ ◦π,H) is the fraction of monochro-
matic edges in H with respect to the coloring χ ◦ π.

The proof follows a standard probabilistic argument. First, we estimate the number of monochro-
matic edges for a fixed coloring χ and random permutation π. Specifically, we argue that for a fixed
coloring, the expected weight of monochromatic edges is at most ε. Then, we use Maurey’s concen-
tration inequality for permutations to show that for a typical permutation π, the maximum number
of monochromatic edges mc(χ ◦ π,H) over all colorings χ is at most 2ε. This yields the desired
bound (9).

Consider a fixed coloring χ. By the definition, it assigns each color to at most εm numbers.
Let us now orient all edges of H in an arbitrary way. The probability that the right endpoint of an
edge is assigned the number of the same color as the left endpoint is at most ε. Thus, the expected
weight of monochromatic edges is at most ε.

The total number of different colorings satisfying conditions (1), and (2) above is at most (qm)q,
because we can specify the leftmost number in each group in at most mq ways; we can then assign
colors to these q groups in at most qq ways.

We will now use Maurey’s concentration inequality (Maurey (1979); see also Theorem 5.2.6
in the book by Vershynin (2018) and Theorem 13 in lecture notes by Naor (2008)) to bound the
probability that for a random π the weight of monochromatic edges is greater than 2ε. To this end,
define the distance between two permutations or orderings π′ and π′′ as the fraction of x where π′

and π′′ differ:

dist(π′, π′′) =
|{x ∈ V : π′(x) 6= π′′(x)}|

|V |
.

A function f : Sym(m) → R is L-Lipschitz if f(π′) − f(π′′) ≤ L · dist(π′, π′′) for all permutations
π′, π′′ ∈ Sym(m). Here, Sym(m) is the group of all permutations on m elements (symmetric group).

Theorem 6.8 (Maurey). Consider an L-Lipschitz function f : Sym(m) → R. Let π be a random
permutation in Sym(m). Then,

Pr{|f(π)−E[f]| ≥ t} ≤ 2e−
ct2m
L2 (10)

for some constant c > 0.

We will apply Theorem 6.8 to the function π 7→ mc(χ ◦ π,H). To do so, we need the following
claim.

Claim 6.9. The function π 7→ mc(χ ◦ π,H) is 2-Lipschitz.

Proof. Consider two orderings π′ and π′′. We split all edges of G into two sets A and B. Set A
contains edges (x, y) with π′(x) = π′′(x) and π′(y) = π′′(y). Set B contains the remaining edges.
Each edge with both endpoints in A is assigned the same colors by χ ◦ π′ and χ ◦ π′′. Thus, it is
either monochromatic with respect to both colorings χ ◦ π′ and χ ◦ π′′, or not monochromatic with
respect to both colorings χ ◦ π′ and χ ◦ π′′. Hence, mc(χ ◦ π′, H) − mc(χ ◦ π′′, H) ≤ weight(B).
However, each edge in B is incident on a node x with π′(x) 6= π′′(x). Since the number of such

20

nodes equals dist(π′, π′′) |V |, the total weight of edges in B is at most 2 dist(π′, π′′). Here, we use
that the total weight of edges incident on any fixed vertex x is 2/|V |. This concludes the proof of
Claim 6.9.

By Maurey’s concentration inequality (10), we have

Pr
π

{
mc(ξ ◦ π,H)− ε ≥ ε

}
≤ 2e−c

′ε2m

for some positive constant c′. We now apply the union bound over all possible colorings χ and the
the following inequality:

Pr
π
{max

χ
mc(H,χ ◦ π) ≥ 2ε} ≤ 2e−c

′ε2mqqmq.

If m > C ′q log(q/ε)/ε2 (for sufficiently large constant C ′), then the right hand side of the inequality
is less than ε. Since mc(χ ◦ π) is upper bounded by the total weight of all edges, which is 1, we get
the desired bound (9).

We use Lemma 6.7 to bound maxξ∈Ξε,q,π(val+(ξ, I)− val−(ξ, I)).

Lemma 6.10. For every ε ∈ (0, 1) and positive k, q ∈ N, there exists m∗ = O(qk2 log(kq/ε)/ε2))
such that for every regular instance I with at least m∗ variables, the following bound holds:

Eπ

[
max

ξ∈Ξε,q,π
(val+(ξ, I)− val−(ξ, I))

]
≤ ε. (11)

Here, π is a random ordering of variables V of the instance I.

Proof. Let H be the Gaifman graph for instance I. Consider a coarse solution ξ and the induced
coloring of variables V . Let us now examine the definition of functions val+ and val− given in
Equations (4) and (5). These functions differ only on payoff functions f(ξ(x1), . . . , ξ(xk)) with two
variables having the same color (i.e., color(ξ(xi)) = color(ξ(xj))). Thus,

val+(ξ, I)− val−(ξ, I) ≤ mc(ξ,H).

Note that the total weight of all constraints in the instance I is 1; and the total weight of all edges
in H is k(k − 1)/2, because for every payoff function in I, we create a clique of size k in H. We
now apply Lemma 6.7 with ε′ = 2ε/(3k(k − 1)) and get inequality (11).

6.6 Proof of Theorem 5.3

We now complete the proof of Theorem 5.3. Consider a payoff function f of arity k. We assume that
the arguments of f are rearranged so that there exists an assignment ϕ to the variables that satisfies
f and such that the ordering of variables in ϕ is x1, . . . , xm (i.e., order(ϕ) = id). By Corollary 6.3,

the gap instance Ifphy is completely satisfiable. Suppose that the number of leaves in Ifgap is larger
than some sufficiently large m∗. By Lemma 6.4, we have

Eπ

[
opt(Ifgap | π)

]
= Eπ

[
max
ϕ∈Φπ

(val(ϕ, I))
]
≤ Eπ

[
max

ξ∈Ξε,q,π
(val+(ξ, I))

]
.

By Lemma 6.10,

Eπ

[
max

ξ∈Ξε,q,π
(val+(ξ, I))

]
≤ Eπ

[
max

ξ∈Ξε,q,π
(val−(ξ, I))

]
+ ε.

Finally, Lemma 6.6,

Eπ

[
max

ξ∈Ξε,q,π
(val−(ξ, I))

]
≤ α+ ε.

This concludes the proof of Theorem 5.3.

21

7 Making the Reduction from Unique Games Work

We now examine the hardness reduction by Guruswami, H̊astad, Manokaran, Raghavendra, and
Charikar (2011) and then modify it to make it work with our own reduction hord→phy. As most other
hardness reductions from the Unique Games Conjecture, the hardness reduction by Guruswami
et al. (2011) relies on a dictatorship test for the problem (see Khot (2002); Khot and Regev (2003);
Khot, Kindler, Mossel, and O’Donnell (2007); Raghavendra (2008)). A dictatorship test is a special
instance of the problem, in our case ordering CSP Γord, on variables in the grid [M]R. On the one
hand, this instance must have a dictator solution ϕ of value at least 1−ε. On the other hand, every
τ -pseudorandom solution for this instance must have value at most α + ε, where α is the desired
approximation hardness of the problem. We remind the reader that a dictator is a function ϕ
defined on z ∈ [M]R that depends only on one coordinate zj of z. That coordinate j is the dictator.
A function ϕ is τ -pseudorandom if T1−εϕ does not have influential coordinates i.e., coordinates
with influence greater than τ (here T1−ε is the noise operator that “flips” every coordinate of z
with probability ε). Note that we can pick a constant M as we wish (it can depend on ε, which we
treat as a fixed constant). However, the value of R depends on the Unique Games instance we use
in the reduction and is not under our control (R equals the number of labels in the Unique Games
instance).

The general recipe for creating dictatorship tests was provided by Raghavendra (2008) in his
influential paper on optimal approximation algorithms and approximation hardness for ordinary
CSPs. His dictatorship test was adapted for ordering CSPs by Guruswami et al. (2011). Also,
Guruswami et al. (2011) defined τ -pseudorandom functions for ordering CSPs (see Definition 4.2 in
their paper) and developed tools necessary for analyzing such functions.

We now outline the dictatorship test used by Guruswami et al. (2011). We will work with the
ordering predicate o of arity m defined in Section 5. Guruswami et al. (2011) use a gap instance
Ĩogap with M variables. This is the same gap instance4 as we described in the proof in Section 5
only of a larger size and applied to the ordering predicate o. Then, for every tuple s of m variables
s1, . . . , sm ∈ [M] (m is the arity of the ordering CSP), they define a random map Ls that maps
s1, . . . , sm to another m tuple in [N]k (in their case N = M). This map should satisfy several
important conditions we examine in a moment. We give a description of the dictatorship test in
Figure 2.

The map Ls should satisfy several conditions. First, for every j, the dictatorship solution
ϕ : z 7→ zj (where z ∈ V = [M]R is a variable; zj is a number in [N]) should have value 1− O(ε).
In this solution, several distinct variables z can be mapped to the same position i; in this case, we
pick a random ordering among them, but preserve their relative order with other z’s. Then, Ls

should be η-smooth i.e., for all t1, . . . , tm ∈ [N]R, we have (for some η > 0)

Pr
{
Ls(s1, . . . , sm) = (t1, . . . , tm)

}
≥ η. (12)

The marginal distribution of each coordinate of Ls should be uniform i.e., for every s ∈ [M]m, every
i ∈ {1, . . . ,m}, and every t ∈ [N],

Pr{Ls(s)i = t} =
1

N
. (13)

Here, Ls(s)i denotes the i-th coordinate of Ls(s). Finally, there should exist a global SDP solution
(the same for all functions Ls) that match the first and second moments of every Ls.

4For technical reasons, they take several copies of this gap instance. However, in our modified hardness reduction,
we will use this instance Ĩogap as is.

22

Dictatorship Test from Guruswami et al. (2011):

- Pick a random constraint (s1, . . . , sm) from Ĩogap.

- Draw m vectors z1, . . . , zm ∈ [N]R using R independent random functions

L
(1)
s , . . . , L

(R)
s :

(z
(j)
1 , . . . , z(j)

m) = L
(j)
s (s1, . . . , sm).

- Apply ε-noise to each z
(j)
i i.e. with probability ε, replace it with a random value in [N].

- Return constraint (z1, . . . , zm) for the payoff function o.

The instance I of the ordering CSP Γord generated by the dictatorship test consists of a set
of variables V = [N]R and set of constraints C = V × · · · × V︸ ︷︷ ︸

m

. The weight of each constraint

(z1, . . . , zm) equals the probability that this constraint is returned by the procedure above.

Figure 2: Dictatorship Test

Unfortunately, this dictatorship test instance does not work for us as is. As we discussed earlier,
we need to get a hardness reduction hUG→ord from Unique Games to ordering CSP Γord, which not
only maps almost satisfiable instances of Unique Games to almost satisfiable instances of Γord, but
also satisfies the following condition: The composition of hardness reductions hord→phy ◦ hUG→ord
maps almost satisfiable instances of Unique Games to almost satisfiable instances of our phylogenetic
CSP Γphy. To satisfy this condition, we need map Ls to have one additional property. Each
dictatorship solution ϕ : z 7→ zj must have value at least 1−O(ε) when evaluated on the phylogenetic
CSP corresponding to the dictatorship test instance (i.e., the image of the dictatorship test instance
under hord→phy). Note that each zj is a leaf in the tree must be a leaf of a tree, so we also need to
provide a tree whose leaves are elements of [N].

The map used in the paper by Guruswami et al. (2011) cyclically shifts elements in [N] (in their
case, N = M). This destroys any tree structure we can define on [N]. Let us illustrate this point
by example. Consider the Triplet Consistency constraint uv|w and binary tree of depth 2 with 4
leaves 1, 2, 3, 4. This constraint is satisfied if u = 1, v = 2, w = 3. However, if we shift values by
one, u = 2, v = 3, w = 4, then the constraint is no longer satisfied.

We are going to define an alternative random function L that maps all variables in [M] to some
larger domain [N]. The elements of [N] are associated with leaves of a binary tree. We then let
Ls(s1, . . . , sk) = (L(s1), . . . , L(sk)) and plug these functions Ls into the dictatorship test described
above.

To make the proof of Guruswami et al. (2011) work for this new function L, we need to ensure
that maps Ls satisfy the required conditions. Finding a global SDP solution for L is easy: We
get it for free, because L is a global distribution and, as such, is a convex combination of integral
solutions (each realization of L is an integral solution; it maps variables in [M] to leaves in [N]).
The smoothness condition (12) can be easily obtained by perturbing L.

Now, we show that there exists a random function L : [M] → [N] that satisfies the following
conditions:

• for all u ∈ [M] and v ∈ [N], Pr{L(u) = v} = 1/N (cf. Equation (13));

23

• for every j and assignment ϕ : z 7→ zj , we have val(ϕ, hord→phy(Itest)) ≥ 1−O(ε), where Itest
is the dictatorship test instance obtained using function L.

Let us examine the second condition. Denote Ired = hord→phy(Itest). Recall that instance Ired is
obtained from the dictatorship test instance Itest by replacing every constraint (z1, . . . , zm) for the

payoff function o with a copy of the phylogenetic gap instance Ifgap on the same set of variables

(z1, . . . , zm). We remind the reader that m is the number of leaves in the gap instance Ifgap, and

hence is a power of k. Similarly, M is the number of leaves in the gap instance Ĩogap and is a

power of m, and, consequently, a power of k. We let N = Md for some constant d. Thus, m,
M , and N are powers of k. We will associate sets [m], [M], and [N] with leaves of k-ary trees
of appropriate depths. We will also map set [N] to leaves of a binary tree using Lemma 6.2. We
will use this mapping to define val(ϕ, Ired). We now show how to construct the desired function L
for a sufficiently large number N . Later, in Lemma 7.4, we will prove that L satisfies the required
conditions.

Lemma 7.1. Fix a natural k > 1 and consider a perfect k-ary tree TM with M leaves labeled
0, . . . ,M − 1. For every positive ε, there exists an integer N and a random map L from leaves of
TM to leaves of another k-ary tree TN with N leaves labeled 0, . . . , N − 1 such that

• for every u ∈ [M] and v ∈ [N], we have

Pr{L(u) = v} = 1/N ;

• for every k cousins u1, . . . , uk in TM ,

Pr
{

cousins(L(u1), · · · , L(uk))
}
≥ 1−O(ε);

Pr{L(ui) = vi ∀i} > 0.

Remark: We define the notion of cousins in Section 6.1. Leaves u1, . . . , uk are cousins in a tree of
arity k if each ui lies in the subtree rooted at the i-th child of LCA(u1, . . . , uk).

Proof. Let N = Md for d = 3M
ε2

ln(Mε). We create k-ary tree TN with N leaves 0, . . . , N − 1. We
also define a set of “shortcut” edges for TN . These edges go from level 0 to d′, d′ to 2d′ and so on,
where d′ = logkM is the depth of tree TM . We will denote the tree with shortcut edges by Tsc.
This tree has arity M .

Consider the random map LM,N defined in Section 5. It maps [M] to [N]. Note that it always
maps leaves that are cousins in TM to leaves that are cousins in TN . We define L using the following
well-known lemma about the optimal coupling of random variables.

Lemma 7.2 (Coupling Lemma; see e.g. Roch (2022)). Consider two probability distributions P
and Q on a finite domain. Suppose random variable X has distribution P, then there exists another
random variable Y having distribution Q such that

Pr{X 6= Y } = ‖P −Q‖TV ,

where ‖P −Q‖TV is the total variation distance between P and Q.

The random variable Y in Lemma 7.2 can be obtained from X using the maximum matching
between distributions P and Q. For each u ∈ [M], we use this lemma to find a random variable
L(u) uniformly distributed in [N] such that

Pr{L(u) 6= LM,N (u)} =
1

2

∑
v∈[N]

∣∣∣Pr{LM,N (u) = v} − 1

N

∣∣∣. (14)

24

The expression on the right hand side is the total variation distance between the distribution of
LM,N and the uniform distribution on [N]. We now upper bound this distance.

Claim 7.3. For all j ∈ [M],

1

2

∑
v∈[N]

∣∣∣Pr{LM,N (j) = v} − 1

N

∣∣∣ ≤ ε.
Proof. Consider a leaf v in M -ary tree Tsc. Let v(0), . . . , v(d) = v be the path from the root of the
tree to v. For every j ∈ [M], we count the number of times this path goes along the j-th branch of
the tree. Namely, we let B(v, j) be the number of nodes v(i) such that v(i+ 1) is the j-th child of
v(i).

Recall that random function LM,N picks a random t ∈ 0, . . . , d− 1 and then selects a random
node u at depth t in tree Tsc. If for this random t, v(t+1) is the j-th child of v(t), then Pr{LM,N (j) =
v | t} = M/N (because, in this case, LM,N (j) = v if two events occur: u = v(t), and v is randomly
chosen in the subtree rooted at v(t+ 1)). Otherwise, Pr{LM,N (j) = v | t} = 0. Hence,

Pr{LM,N (j) = v} =
M

N
· B(v, j)

d
.

We have∑
v∈[N]

∣∣∣Pr{LM,N (j) = v} − 1

N

∣∣∣ =
∑
v∈[N]

∣∣∣M
N
· B(v, j)

d
− 1

N

∣∣∣ =
M

d
Ev∈[N]

∣∣∣B(v, j)− d

M

∣∣∣.
Consider a random leaf v of TN . The path from the root to v is a random path. Every next vertex
on this path is randomly chosen among the children of the current vertex. Thus, the probability that
v(i+ 1) is the j-th child of v(i) is 1/M for every i. Consequently, Bv,j is the sum of d independent
Bernoulli random variables with parameter 1/M . By the Chernoff bound,

Pr
{∣∣B(v, j)− d

M

∣∣ ≥ ε · d
M

}
≤ 2e−

ε2(d/M)
3 <

ε

M
.

Inequality |B(v, j)− d/M | < d holds always. Thus,

Ev∈[N]

∣∣∣B(v, j)− d

M

∣∣∣ ≤ ε · d
M

+
ε

M
· d =

2d

M
ε.

We now finish proof of Lemma 7.1. Random function L satisfies the first condition of Lemma 7.1
because each L(u) is a random variable with uniform distribution in [N]. Function LM,N maps every
set of cousins in TN to cousins in TM . Thus, for all cousins u1, . . . uk in TM , we have

Pr
{

cousins(L(u1), · · · , L(uk))
}
≥ Pr

{
cousins(LM,N (u1), · · · , LM,N (uk))

}
− εk = 1− εk.

Here, we used that Pr{LM,N (u) 6= L(u)} ≤ ε for all u ∈ [M]. This proves the second condition of
function L and completes the proof of Lemma 7.1.

We now verify that the random function L from the previous lemma can be used in the
dictatorship test. Specifically, we prove that the second item of Lemma 7.1 guarantees that
val(ϕ, Ired) ≥ 1 − O(ε). After that, we smooth L and plug it into the dictatorship test. The
smooth variant of L returns a completely random mapping into [N] with a small probability η′ and
with the remaining probability 1− η′, it returns L.

25

Lemma 7.4. Let L be the random map L : [M]→ [N] from Lemma 7.1. Consider the dictatorship
test instance Itest constructed using L. Let Itest = hord→phy(Itest) be the corresponding instance of
phylogenetic CSP. Finally, let ϕ be a solution defined as ϕ : z 7→ zj. Then,

val(ϕ, Ired) ≥ min
a1,...,ak∈[M]

cousins(a1,...,ak)=1

Pr
{

cousins(L(a1), . . . , L(ak)) = 1
}
− εk.

Proof. Observe that the value of solution ϕ equals

val(ϕ, Ired) = Ez1,...,zmE(i1,...,ik)f(zji1 , . . . , z
j
ik

),

where (z1, . . . , zm) is a random constraint for the the ordering payoff function o returned by the

dictatorship test; and (i1, . . . , ik) is a random constraint in the copy of Ifgap created by the reduction
hord→phy for constraint (z1, . . . , zm).

The probability that one of zji1 , . . . , z
j
ik

is affected by ε-noise and replaced by a random value
at the third step of the dictatorship test is at most εk, since each of the values is changed with
probability at most ε. If zji1 , . . . , z

j
ik

are not changed at the third step, then

(zji1 , . . . , z
j
ik

) = (L(j)(si1), . . . , L(j)(sik)),

where (s1, . . . , sm) is a random constraint in Ĩogap selected at the first step of the dictatorship test.
Consequently,

val(ϕ, Ired) ≥ E[f(L(j)(si1), . . . , L(j)(sik))]− εk,

where the expectation on the right hand side is taken over the random choice of s1, . . . sm, i1, . . . , ik,
and random realization of L(j). Variables in every constraint in the gap instance Ifgap are cousins;

(si1 , . . . , sik) is a constraint in the copy of Ifgap created for constraint (s1, . . . , sm). Thus, si1 , . . . , sik
are also cousins. Hence,

val(ϕ, Ired) ≥ min
a1,...,ak∈[M]

cousins(a1,...,ak)=1

E[f(L(j)(a1), . . . , L(j)(ak))]− εk.

By Lemma 6.2, f(L(j)(a1), . . . , L(j)(ak)) = 1, if L(j)(a1), . . . , L(j)(ak) are cousins. Therefore,

val(ϕ, Ired) ≥ min
a1,...,ak∈[M]

cousins(a1,...,ak)=1

Pr{cousins(L(j)(a1), . . . , L(j)(ak))} − εk.

This concludes the proof of Lemma 7.4, because L(j) has the same distribution as L.

8 Random Solutions for Ordinary CSPs on the Gap Instance are
Almost Optimal

In this section, we prove Lemma 5.1. Loosely speaking, this lemma says that every solution to
an ordinary CSP instance Ifgap has value at most α + ε, where α is the optimal biased random
assignment for this ordinary CSP:

α = max
ρ

Exi∼ρ
[
f(x1, . . . , xk)

]
.

See Section 5 for details.

26

We first examine a variant of Lemma 11.3 from the paper by Guruswami, H̊astad, Manokaran,
Raghavendra, and Charikar (2011). Instance Ifgap is defined on a perfect k-ary tree T of depth d.
Define a probability distribution P on the internal nodes of T . To draw a random vertex from P,
we first pick a random leaf u of T (with the uniform distribution). We denote the path from the
root to u by u(0), . . . , u(d−1), u(d) = u. Then, we pick a random t from 0 to d−1 and output u(t).
Note that u(t) has exactly the same distribution as the one we used in the definition of random

map Lk,m and instance Ifgap in Section 5.
We now consider a solution ϕ for an ordinary CSP with payoff function f . Let µi(Tu) be the

fraction of leaves in subtree Tu (rooted at u) having label i (i.e., leaves l in Tu with ϕ(l) = i). Then,
the following lemma holds.

Lemma 8.1 (cf. Lemma 11.3 in Guruswami et al. (2011)).

Eu,t∼P

[1

k

∑
y∈child(u(t))

q∑
i=1

∣∣µi(Ty)− µi(Tu(t))
∣∣] ≤√2 log2 q

d
.

A variant of this lemma was proved by Guruswami et al. (2011). Their upper bound is a little
worse than ours. However, we will only use that the upper bound tends to 0 as d goes to infinity. We
provide a proof of this lemma in Section B. Arguably, our proof is more intuitive than the original
proof. However, it is also longer. We now use Lemma 8.1 to prove Lemma 5.1.

Proof of Lemma 5.1. Let ϕ be a solution for Ifgap where the depth d of the tree T (see above) is

sufficiently large. Specifically, d > (k/ε)2 log2 q. The value of ϕ on instance Ifgap equals

E[f(ϕ(Lk,m(1)), . . . , ϕ(Lk,m(k))]

because payoff functions in Ifgap are defined on k-tuples of leaves (Lk,m(1), . . . , Lk,m(1)). Define
another random map L̃k,m. This function works as Lk,m except after choosing a random node u(t),
it maps all numbers 1, . . . , k randomly into subtree rooted at u(t). For each choice of u(t), the total
variation distance between the conditional distributions of Lk,m(j) and L̃k,m(j)) equals

1

2

q∑
i=1

∣∣µi(Tuj(t))− µi(Tu(t))
∣∣.

Thus, we can couple ϕ(Lk,m(j)) and ϕ(L̃k,m(j)) in such a way that (see Lemma 7.2)

Pr
(
ϕ(Lk,m(j)) 6= ϕ(L̃k,m(j)) | u(t)

)
=

1

2

q∑
i=1

∣∣µi(Tuj(t))− µi(Tu(t))
∣∣.

Then,

Pr
(
∃j s.t. ϕ(Lk,m(j)) 6= ϕ(L̃k,m(j)) | u(t)

)
=

1

2

k∑
j=1

q∑
i=1

∣∣µi(Tuj(t))− µi(Tu(t))
∣∣.

Finally,

Pr
(
∃j s.t. ϕ(Lk,m(j)) 6= ϕ(L̃k,m(j))

)
=

1

2
Eu,t∼P

[q∑
i=1

k∑
j=1

∣∣µi(Tuj(t))− µi(Tu(t))
∣∣].

27

By Lemma 8.1, the right hand side is upper bounded by k

√
log2 q

2d
. Thus,

E
[
f(ϕ(Lk,m(1)), . . . , ϕ(Lk,m(k))

]
≤ E

[
f(ϕ(L̃k,m(1)), . . . , ϕ(L̃k,m(k))

]
+ k

√
log2 q

2d
.

Here we used that f is upper bound by 1. Now, observe that when we use function L̃k,m(k)),
we essentially do a biased random assignment. Namely, we first pick u(t) and then randomly and
independently pick labels for x1, . . . , xk in the subtree rooted at u(t). It is important that after u(t)
is chosen all variables x1, . . . , xk are i.i.d. Thus, the first term is upper bounded by α. We get

E
[
f(ϕ(Lk,m(1)), . . . , ϕ(Lk,m(k))

]
≤ α+ k

√
log2 q

2d
≤ α+ ε.

This concludes the proof of Lemma 5.1.

9 Generalizations

9.1 Phylogenetic CSPs with Multiple Payoff Functions

We now discuss phylogenetic CSPs with multiple payoff functions f1, . . . , fr. We assume that they
are scaled so that the maximum payoff of each fi is 1. First, consider a special case of the problem
when the total weight of constraints of every type is prescribed in advance. Namely, suppose that
every instance must have µi weight of constraints for payoff function fi i.e. weight(Cfi) = µi. This
variant of the problem is essentially equivalent to the problem with a composite payoff function f
defined as follows:

f∗µ
(
x

(1)
1 , . . . , x

(1)
k , x

(2)
1 , . . . , x

(2)
k , . . . , x

(r)
1 , . . . , x

(r)
k

)
= µi

r∑
i=1

fi(x
(i)
1 , . . . , x

(i)
k).

More precisely, the phylogenetic CSP problem with payoff function f∗µ is a special case of the problem
with functions {fi} and prescribed weights µi. This is the case simply because f∗µ can be expressed
as the sum of functions f i. For every µ, we know the hardness of this problem. It is defined by the
approximation threshold

αopt(f
∗
µ) = sup

ρ
αρ(f

∗
µ) = sup

ρ

r∑
i=1

µi αρ(fi).

Let µ∗ = argminµ(f∗µ). Our phylogenetic problem with functions f1, . . . , fr is at least as hard as f∗µ∗ .
Consequently, for almost satisfiable instances of phylogenetic CSPs with payoff functions f1, . . . , fr,
it is NP-hard to find a solution of value at least αopt(f1, . . . , fr) + ε, where

αopt(f1, . . . , fr) = αopt(f
∗
µ∗) = sup

ρ

r∑
i=1

µi αρ(fi).

Note that approximation αopt(f1, . . . , fr) − ε can be achieved. The algorithm can first find the
ratios µi and the corresponding distribution ρ (for example, we discretize possible values of µ and
store corresponding ρ in the precomputed table). Furthermore, instead of finding the best ρ for
the current weights µ, the algorithm can pick a measure ρ at random from a list of measures. This
follows from von Neumann’s (1928) minimax theorem.

28

The reader may ask if we can use the same distribution ρ for all instances of phylogenetic CSP Γ
with several payoff function . It turns out that the answer is no. Consider payoff functions one split
to the left and one split right to the right (see Figure 6). For every fixed distribution ρ, we can find
an instance of the problem for which the biased randomized assignment satisfies exponentially small
in k fraction of all constraints. However, if we first decide to satisfy only one type of predicates –
one split to the left and one split right to the right – and pick the appropriate ρ for it, then we can
satisfy 1/2− ε fraction of all constraints.

9.2 Higher Arity Trees

In this paper, we proved our main hardness result for binary phylogenetic trees. However, the same
hardness result also holds for trees of an arbitrary fixed arity r ≥ 2. To make our proof work for
r-ary trees, we need to adjust the definitions of the coarse solution and bracket predicates, and then
slightly modify the proof of Lemma 6.4. Specifically, the coarse solution must satisfy the following
conditions:

1. (coarse) tree T has at most q leaves;

2. at most ε|V | distinct variables have the same color; and

3′. moreover, every color class is the union of at most 2r groups of consecutive variables in
ordering π.

The bracket predicates we need to use for r-ary trees have form [u → a, v → b, w → c]. This
predicate indicates that u, v, and w must be in subtrees a, b, and c of the LCA(u, v, w).

Finally, the algorithm from Lemma 6.4 should use more than four labels at every step of recur-
sion. When node u is processed, it created r groups of labels, one group for each of u’s children.
In turn, every group has r(r − 1) labels. So, the total number of labels is r2(r − 1). Suppose that
yet unlabeled leaf l belongs to the subtree rooted at the a-th child of u. Assume that the top
processed node in that tree is v. Then, l receives label (a, b, c) where b and c are indices of subtrees
of LCA(v, l), where v and l belong to. If there are no processed nodes in the subtree rooted at the
a-th child of u, all leaves in that tree receive label (a, 0, 0).

10 Tree Patterns and Bracket Predicates

In this section, we prove (1) that every phylogenetic payoff function can be defined by a list of
pattern and (2) every pattern can be expressed as a conjunction of bracket predicates mentioned
(Lemma 3.5 in Section 3).

Claim 10.1. Every phylogenetic payoff function can be defined by a list of patterns (with a payoff
assigned to each pattern).

Proof. Consider a phylogenetic function f of arity k. Let P be the set of all non-isomorphic
irreducible patterns with k leaves labeled by x1, . . . , xk. This set is finite because each irreducible
tree has 2k − 1 nodes (it is a full binary tree with k leaves). See Section 3 for the definition of
homeomorphic trees and reductions. Now for every pattern P with leaves x1, . . . , xk in P, we
compute f(P, x1, . . . , xk) (the value of f on pattern P) and assign it to pattern P . Finally, we
remove all patterns with payoff 0.

We now prove that the obtained patterns define function f . Consider an arbitrary tree T and k
leaves u1, . . . , uk. This tree with with leaves u1, . . . , uk can be reduced to some irreducible pattern

29

P ∗. This pattern P ∗ with leaves u1, . . . , uk and tree T with leaves u1, . . . , uk are homeomorphic.
Thus, f(T, u1, . . . , uk) = f(P ∗, u1, . . . , uk). Since P ∗ is irreducible, it must be in the list P. The
value we assign to P ∗ is f(P ∗, u1, . . . , uk). Hence, the function defined by the list of pattern obtained
above equals f .

To prove Lemma 3.5, we need the following claim.

Claim 10.2. Consider two irreducible non-isomorphic patterns P1 and P2 with k leaves each labeled
by x1, . . . , xk. Then, there exists a bracket predicate such that P1 satisfies this predicate, but P2 does
not.

Proof. We prove this claim by induction on k. For k = 1, there is only pattern, so P1 must be
isomorphic to P2. Suppose k ≥ 2. Consider the left and right subtrees of P1 and P2: P left1 , P right1 ,

P left2 , and P right2 . Note that each tree P left1 , P right1 , P left2 , and P right2 must be non-empty because

P1 and P2 are irreducible. Since P1 and P2 are not isomorphic, one of the two pairs P left1 and

P right1 or P left2 and P right2 must be non-isomorphic. Suppose without loss of generality that P left1

and P right1 are non-isomorphic. Then, we consider two cases.

I. If P left1 contains the same set of leaves as P left2 (e.g. {x3, x7, x8}), then we apply the inductive

hypothesis to P left1 and P left2 and obtain the desired bracket predicate satisfied by P left1 but not

P left2 . It is also satisfied by P1 but not by P2.

II. Suppose now that P left1 and P left2 contain different sets of variables (e.g., P left1 contains

{x3, x7, x8} but P left2 contains {x1, x7, x8}). If P left1 has a variable xi which is not in P left2 , and

P left2 has a variable xj which is not in P left1 , then P1 satisfies [xi < xj] but P2 does not. Otherwise,

the set of variables in P left1 must be a proper subset of variables in P left2 or vice versa. Note that

if the set of variables in P left1 is a proper subset of variables in P left2 , then the set of variables in

P right2 is a proper subset of variables in P right2 . In this case, let xa be a common variable in P left1

and P left2 , xc be a common variable in P right1 and P right2 , xb be common variable between P right1

and P left2 . We have that P1 satisfies the predicate [xa < xb, xc] but P2 does not. The case when the

set of variables in P left2 is a proper subset of variables in P left1 is handled similarly.

Lemma 3.5. Every pattern can be expressed as a conjunction of bracket predicates.

Proof. Let P be a given (ordered, binary) tree pattern on k leaves. We create all bracket constraints
[xa < xb], [xa, xb < xc], and [xa < xb, xc] that are satisfied in P . We show that the conjunction of
all these predicates define the pattern P .

I. If tree T with leaves u1, . . . , uk matches pattern P with leaves x1, . . . , xk, then T must satisfy
all generated bracket constraints because P and T are homeomorphic trees and reductions defined
in Section 3 preserve the value of every bracket predicate.

II. We now show that if T with leaves u1, . . . , uk does not match pattern P with leaves x1, . . . , xk,
then there there is at least one pattern in the description of P that does not match u1, . . . , uk in T .
We reduce T with leaves u1, . . . , uk to an irreducible tree P ′ with leaves u1, . . . , uk. Leaves u1, . . . , uk
in this tree or pattern P ′ satisfy the same set of bracket predicates as in T . By Claim 10.2, there
exists a bracket predicate that is satisfied in P but not in P ′. The same predicate is not satisfied
in T .

30

11 Example when Uniform Random Assignment Fails

In Figure 10, we provide an example of a phylogenetic predicate of 2k variables. If we use a
biased random assignment algorithm which assigns variables to the left and right subtrees with
fixed probabilities pleft and pright, then we will satisfy an exponentially small in k fraction of all
predicates.

Instead, we should split variables with probability 50%/50% in the root r of the tree. Then, in
each vertex u in the left subtree of r, we will assign variables to the left part with probability 1− δ
and right part with probability δ. We do the opposite in the right subtree of r. If δ is sufficiently
small, then the probability that we satisfy this predicate is almost the same as the probability that
we split the variables into two equal groups in the root, which equals

(
2k
k

)
/2k = Ω(1/

√
k).

12 Conclusion

Here we studied a large class of problems that have been studied in various communities that
concern how to find hierarchical representation of data, when given as input a collection of local
constraints among n data points. Specifically, the input is a set of local information on k items
of interest (e.g., species of animals, documents, images etc.) and the goal is to aggregate it into
a global hierarchy on the whole dataset of size n that closely agrees with the local information.
The most basic case is when the input contains triplet constraints that give information about the
relative similarity between 3 points a, b, c; such triplet queries are especially useful in crowdsourcing,
databases, metric learning, logic, and computational biology. Furthermore, there are various other
objectives that have been studied depending on the types of input information that is allowed and/or
the properties required of the final hierarchy. Overall, the corresponding problems form a class of
constraint satisfaction problems (CSPs) over hierarchies, that are called Phylogenetic CSPs and have
been formally studied in the algebraic and logic communities. We note that many of the problems
over hierarchies resemble at a high-level analogous formulations of well-motivated problems in the
(flat) clustering and ranking literature, e.g., Correlation Clustering, Maximum Acyclic Subgraph,
Betweenness etc.

Even though Phylogenetic CSPs have been studied for more than four decades, their approx-
imability was not well-understood. The main result in the paper is that Phylogenetic CSPs are
approximation resistant, meaning that they are hard-to-approximate better than a (biased) ran-
dom assignment. This generalizes previously-known results for ordering CSPs, extends the definition
of approximation resistance (to also allow for non-uniform randomized assignments) and it signifi-
cantly augments the list of approximation resistant predicates by pointing to a large family of hard
problems.

References

E. N. Adams III. Consensus techniques and the comparison of taxonomic trees. Systematic Biology,
21(4):390–397, 1972.

A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. SIAM Journal on
Computing, 10(3):405–421, 1981.

N. Alon, M. Bădoiu, E. D. Demaine, M. Farach-Colton, M. Hajiaghayi, and A. Sidiropoulos. Or-

31

dinal embeddings of minimum relaxation: general properties, trees, and ultrametrics. ACM
Transactions on Algorithms (TALG), 4(4):1–21, 2008.

N. Alon, S. Snir, and R. Yuster. On the compatibility of quartet trees. SIAM Journal on Discrete
Mathematics, 28(3):1493–1507, 2014.

N. Alon, H. Naves, and B. Sudakov. On the maximum quartet distance between phylogenetic trees.
SIAM Journal on Discrete Mathematics, 30(2):718–735, 2016.

S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances
of np-hard problems. In Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, pages 284–293, 1995.

P. Austrin and J. H̊astad. Randomly supported independence and resistance. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 483–492, 2009.

P. Austrin and E. Mossel. Approximation resistant predicates from pairwise independence. Com-
putational Complexity, 18(2):249–271, 2009.

P. Awasthi, M. Balcan, and K. Voevodski. Local algorithms for interactive clustering. In Interna-
tional Conference on Machine Learning, pages 550–558. PMLR, 2014.

H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from observed dissimilarity data.
Advances in applied mathematics, 7(3):309–343, 1986.

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning, 56:89–113, 2004.

Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering for hierarchical
clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001.

A. Ben-Dor, B. Chor, D. Graur, R. Ophir, and D. Pelleg. Constructing phylogenies from quartets:
elucidation of eutherian superordinal relationships. Journal of computational Biology, 5(3):377–
390, 1998.

M. Bodirsky. Complexity classification in infinite-domain constraint satisfaction. arXiv preprint
arXiv:1201.0856, 2012.

M. Bodirsky and J. K. Mueller. The complexity of rooted phylogeny problems. In Proceedings of
the 13th International Conference on Database Theory, pages 165–173, 2010.

M. Bodirsky, P. Jonsson, and T. V. Pham. The complexity of phylogeny constraint satisfaction
problems. ACM Transactions on Computational Logic (TOCL), 18(3):1–42, 2017.

G. S. Brodal, R. Fagerberg, T. Mailund, C. N. Pedersen, and A. Sand. Efficient algorithms for
computing the triplet and quartet distance between trees of arbitrary degree. In Proceedings
of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1814–1832.
SIAM, 2013.

D. Bryant. Building trees, hunting for trees, and comparing trees: theory and methods in phyloge-
netic analysis. PhD Thesis, 1997.

A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal
of the ACM (JACM), 53(1):66–120, 2006.

32

A. A. Bulatov. A dichotomy theorem for nonuniform csps. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 319–330. IEEE, 2017.

A. A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints. In International
Conference on Principles and Practice of Constraint Programming, pages 183–198. Springer, 2003.

J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consistency.
Discrete Applied Mathematics, 158(11):1136–1147, 2010.

M. Charikar, K. Makarychev, and Y. Makarychev. On the advantage over random for maxi-
mum acyclic subgraph. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07), pages 625–633. IEEE, 2007.

M. Charikar, V. Guruswami, and R. Manokaran. Every permutation csp of arity 3 is approximation
resistant. In 2009 24th Annual IEEE Conference on Computational Complexity, pages 62–73.
IEEE, 2009.

V. Chatziafratis, M. Mahdian, and S. Ahmadian. Maximizing agreements for ranking, clustering
and hierarchical clustering via max-cut. In International Conference on Artificial Intelligence
and Statistics, pages 1657–1665. PMLR, 2021.

A. Clauset, C. Moore, and M. E. Newman. Hierarchical structure and the prediction of missing
links in networks. Nature, 453(7191):98–101, 2008.

A. Dessmark, J. Jansson, A. Lingas, and E.-M. Lundell. Polynomial-time algorithms for the ordered
maximum agreement subtree problem. Algorithmica, 48(3):233–248, 2007.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns. Proceedings of the National Academy of Sciences, 95(25):14863–14868,
1998.

E. Emamjomeh-Zadeh and D. Kempe. Adaptive hierarchical clustering using ordinal queries. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
415–429. SIAM, 2018.

M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees. Information
Processing Letters, 55(6):297–301, 1995.

J. Felsenstein. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.

R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. ACM
Transactions on Algorithms (TALG), 2(4):510–534, 2006.

V. Guruswami and E. Lee. Complexity of approximating csp with balance/hard constraints. In
Proceedings of the 5th conference on Innovations in theoretical computer science, pages 439–448,
2014.

V. Guruswami and E. Lee. Towards a characterization of approximation resistance for symmetric
csps. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is hard: Inapprox-
imability of maximum acyclic subgraph. In 2008 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 573–582. IEEE, 2008.

33

V. Guruswami, J. H̊astad, R. Manokaran, P. Raghavendra, and M. Charikar. Beating the random
ordering is hard: Every ordering csp is approximation resistant. SIAM Journal on Computing,
40(3):878–914, 2011.

G. Hast. Beating a random assignment. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 134–145. Springer, 2005.

J. H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798–859,
2001.

J. H̊astad. Every 2-csp allows nontrivial approximation. In Proceedings of the thirty-seventh Annual
ACM Symposium on Theory of Computing, pages 740–746, 2005.

J. H̊astad. On the approximation resistance of a random predicate. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, pages 149–163. Springer,
2007.

T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning: data mining,
inference, and prediction, volume 2. Springer, 2009.

M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic subtrees, with
applications to computational evolutionary biology. Algorithmica, 24(1):1–13, 1999.

L. Jain, K. G. Jamieson, and R. Nowak. Finite sample prediction and recovery bounds for ordinal
embedding. Advances in neural information processing systems, 29, 2016.

K. G. Jamieson and R. D. Nowak. Low-dimensional embedding using adaptively selected ordinal
data. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1077–1084. IEEE, 2011.

J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung. Rooted maximum agreement supertrees.
Algorithmica, 43:293–307, 2005.

J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted triplets into a galled
phylogenetic network. SIAM Journal on Computing, 35(5):1098–1121, 2006.

J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees. In SODA,
volume 7, pages 575–584, 2007.

J. Jansson, R. S. Lemence, and A. Lingas. The complexity of inferring a minimally resolved phylo-
genetic supertree. SIAM Journal on Computing, 41(1):272–291, 2012.

J. Jansson, C. Shen, and W.-K. Sung. Improved algorithms for constructing consensus trees. Journal
of the ACM (JACM), 63(3):1–24, 2016.

T. Jiang, P. Kearney, and M. Li. Orchestrating quartets: approximation and data correction. In
Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280),
pages 416–425. IEEE, 1998.

S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees. SIAM Journal
on Computing, 27(6):1695–1724, 1998.

S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 767–775, 2002.

34

S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-/spl epsiv. In
18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings., pages 379–386.
IEEE, 2003.

S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for max-cut
and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357, 2007.

B. Maurey. Construction de suites symétriques. CR Acad. Sci. Paris Sér. AB, 288(14):A679–A681,
1979.

A. Naor. Concentration of measure. https://web.math.princeton.edu/~naor/homepagefiles/

ConcentrationofMeasure.pdf, 2008.

M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Discrete applied
mathematics, 69(1-2):19–31, 1996.

M. P. Ng, M. Steel, and N. C. Wormald. The difficulty of constructing a leaf-labelled tree including
or avoiding given subtrees. Discrete Applied Mathematics, 98(3):227–235, 2000.

M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. Advances
in neural information processing systems, 30, 2017.

P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 245–254, 2008.

E. Ravasz and A.-L. Barabási. Hierarchical organization in complex networks. Physical review E,
67(2):026112, 2003.

S. Roch. Modern discrete probability: An essential toolkit. https://people.math.wisc.edu/

~roch/mdp/roch-mdp-chap4.pdf, 2022.

M. J. Sanderson, A. Purvis, and C. Henze. Phylogenetic supertrees: assembling the trees of life.
Trends in Ecology & Evolution, 13(3):105–109, 1998.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. Advances in
neural information processing systems, 16, 2003.

C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied Mathematics, 105
(1-3):147–158, 2000.

P. H. Sneath and R. R. Sokal. Numerical taxonomy. The principles and practice of numerical
classification. W.H. Freeman and Company; 1st edition (January 1, 1963), 1963.

S. Snir and S. Rao. Quartets maxcut: a divide and conquer quartets algorithm. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 7(4):704–718, 2008.

S. Snir and S. Rao. Quartet maxcut: a fast algorithm for amalgamating quartet trees. Molecular
phylogenetics and evolution, 62(1):1–8, 2012.

S. Snir and R. Yuster. Reconstructing approximate phylogenetic trees from quartet samples. SIAM
Journal on Computing, 41(6):1466–1480, 2012.

M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal
of classification, 9(1):91–116, 1992.

35

https://web.math.princeton.edu/~naor/homepage files/Concentration of Measure.pdf
https://web.math.princeton.edu/~naor/homepage files/Concentration of Measure.pdf
https://people.math.wisc.edu/~roch/mdp/roch-mdp-chap4.pdf
https://people.math.wisc.edu/~roch/mdp/roch-mdp-chap4.pdf

K. Strimmer and A. Von Haeseler. Quartet puzzling: a quartet maximum-likelihood method for
reconstructing tree topologies. Molecular biology and evolution, 13(7):964–969, 1996.

O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai. Adaptively learning the crowd kernel.
28th International Conference on Machine Learning (ICML), 2011.

Y. Terada and U. Luxburg. Local ordinal embedding. In International Conference on Machine
Learning, pages 847–855. PMLR, 2014.

R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

S. Vikram and S. Dasgupta. Interactive bayesian hierarchical clustering. In International Conference
on Machine Learning, pages 2081–2090. PMLR, 2016.

J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with background
knowledge. In Icml, volume 1, pages 577–584, 2001.

J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

U. Zwick. Approximation algorithms for constraint satisfaction problems involving at most three
variables per constraint. In SODA, volume 98, pages 201–210, 1998.

A History of the Problems and Further Related Work

Representing data as a tree is useful across various domains in order to describe the fine-grained rela-
tions between items of interest, or to visualize their treelike structure (e.g., in large networks) or the
evolutionary history, e.g., for different species in taxonomy, and in natural languages/manuscripts
in linguistics.

The problems considered here are old problems going back to more than four decades ago, to
the original work of Aho, Sagiv, Szymanski, and Ullman (1981) who wanted to understand how
to build a hierarchical clustering given ancestry relationships for the leaves. In their paper titled
“Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of
Relational Expression” the explain how this seemingly unrelated problem of aggregating triplets
(triplet reconstruction) has important applications in the area of relational databases. Since then
problems finding hierarchical representations on data has been been studied in various communities,
as we summarize below:

• Databases, Logic and Algebra: Aho et al. (1981) gave the first algorithm to aggregate triplet
constraints that finds a tree that satisfies all of them, if such a tree exists. Interestingly,
similar algorithmic ideas were considered by Steel (1992) motivated by applications in com-
putational biology. Generalizations of the Triplet and Quartet Reconstruction problems have
been intensively studied in the Computational Logic and Algebraic communities, see for ex-
ample Bodirsky and Mueller (2010); Bodirsky (2012); Bodirsky et al. (2017) and references
therein. Specifically, they study CSPs over trees called Phylogenetic CSPs, which are infinite-
domain CSPs and they are interested in the complexity of related problems. Interestingly,
there are dichotomy results for Phylogenetic CSPs similar to the dichotomy results observed

36

in complexity of boolean or finite-domain CSPs (Bulatov and Jeavons, 2003; Bulatov, 2006,
2017).

• Theoretical Computer Science: After the work of Aho et al. (1981), many works built on
improving the runtime of their algorithm using specialized data structures or studying related
questions in various settings (Farach, Przytycka, and Thorup, 1995; Ng and Wormald, 1996;
Kannan, Warnow, and Yooseph, 1998; Henzinger, King, and Warnow, 1999; Semple and Steel,
2000). As we mentioned in the introduction, in terms of approximability not much was known.
For the maximization version the best approximation was achieved by the random tree and
no progress had been made. Special instances like dense instances were studied in an early
work of Jiang et al. (1998), where they gave a PTAS using techniques of Arora et al. (1995) on
instances with m = Ω(n4) constraints. Moreover, the work of Byrka, Guillemot, and Jansson
(2010) studies approximation questions for maximization and minimization variants of triplet
reconstruction and the work of Brodal, Fagerberg, Mailund, Pedersen, and Sand (2013) gives
efficient algorithms for computing distances between trees based on how the two trees differ
with respect to triplets. Other methods for constructing trees or comparing trees based on
quartets have also been studied in theoretical computer science, for example see the works
of Alon, Snir, and Yuster (2014); Alon, Naves, and Sudakov (2016); Snir and Rao (2008, 2012);
Snir and Yuster (2012). Finally, the more general CSPs over trees that we studied here with
the constraints involving more than 3 or 4 items, have also been studied as “subtree/supertree”
aggregation methods (Jansson, Ng, Sadakane, and Sung, 2005; Dessmark, Jansson, Lingas,
and Lundell, 2007; Jansson, Lemence, and Lingas, 2012).

• Crowdsourcing, Metric Learning and other Machine Learning Applications: Recall, a triplet
ab|c indicates that “a and b are more similar to each other than to c”. For example, in
Figure 1, we had {{lion, tiger}|{tuna}}. In the context of finding a hierarchy over the
dataset, such triplets are interpreted as “must-link-before” constraints (Vikram and Dasgupta,
2016), which are the analogue of the popular “must-link” and “cannot-link” constraints that
are used in the clustering literature (Wagstaff, Cardie, Rogers, and Schrödl, 2001) (notice
that in HC, all points belong in the same cluster initially, and all points are separated at the
leaves, so such “must-link”/“cannot-link” constraints do not apply). Triplets are especially
useful in crowdsourcing and active learning. This is because humans are notoriously bad at
providing accurate numerical information, but are quick and precise at comparing items (e.g.,
answering questions like which pair out of {lion, tiger, tuna} is most similar); consequently,
triplet queries (or more generally “ordinal” interactions) have been used to query users for a
variety of downstream tasks like tree reconstruction or finding non-metric embeddings (also
called ordinal embeddings) (Schultz and Joachims, 2003; Alon, Bădoiu, Demaine, Farach-
Colton, Hajiaghayi, and Sidiropoulos, 2008; Tamuz, Liu, Belongie, Shamir, and Kalai, 2011;
Jamieson and Nowak, 2011; Awasthi, Balcan, and Voevodski, 2014; Terada and Luxburg,
2014; Jain, Jamieson, and Nowak, 2016; Emamjomeh-Zadeh and Kempe, 2018).

• Taxonomy and Computational Biology: The study of hierarchical clustering is fundamental in
evolutionary biology and the scientific field of Taxonomy tries to uncover the Tree of Life based
on the evolutionary relationships among organisms (e.g., by finding similar genetic patterns
in their DNA) (Sneath and Sokal, 1963). Once again, such relationships often take the form
of triplets and quartets aggregation methods (Bandelt and Dress, 1986; Steel, 1992; Strimmer
and Von Haeseler, 1996; Bryant, 1997; Semple and Steel, 2000; Ng, Steel, and Wormald, 2000;
Felsenstein, 2004).

37

B Proof of Lemma 8.1

In this section, we will prove Lemma 8.1 stated in Section 8. We will focus on one label i. To
simplify notation, let us call all leaves having that label red. Let Tx be the subtree of T rooted at
x. Also, let R(Tx) and µ(Tx) be the number of red leaves in Tx and the fraction of red leaves in Tx,
respectively (for a subtree Tx of depth d′, we have µ(Tx) = R(Tx)/kd

′
). We claim that for a random

vertex u(t) (drawn from P) and each of its children x, the number of red leaves in Tx is close to
R(Tu(t))/k on average. Below, we denote the set of k child nodes of u(t) by child(u(t)).

Lemma B.1. For a random internal node u ∼ D, we have

Eu,t∼P

[1

k

∑
y∈child(u(t))

∣∣µ(Ty)− µ(Tu(t))
∣∣] ≤ µ(T)

√
2 log2

1/µ(T)

d
.

Proof. We will assume that T has at least one red leaf. Define an auxiliary probability distribution
Q on the internal nodes of the tree. Pick a random red vertex v in T . Then, as before, pick an
independent t in {0, · · · , d− 1} and output v(t) (where v(0), · · · , v(d− 1), v(d) = v is the path from
the root of the tree to v). Note that in the definition of P, we pick u uniformly among all leaves of
T but in the definition of Q, we pick v uniformly among all red leaves of T . Thus, v(t) = x if and
only if v is a red leaf in Tx and t is the depth of x in tree T . Consequently,

Pr
v,t∼Q

{v(t) = x} =
R(Tx)

R(T)
· 1

d
=
R(Tx)/kd

′

R(T)/kd︸ ︷︷ ︸
µ(Tx)/µ(T)

·
(kd′
kd
· 1

d

)
=
µ(Tx)

µ(T)
· Pr
u,t∼P

{u(t) = x}.

If µ(Tx) 6= 0, then

Pr
u,t∼P

{u(t) = x} =
µ(T)

µ(Tx)
· Pr
v,t∼Q

{v(t) = x}.

Thus,

Eu,t∼P

[∑
y∈child(u(t))

∣∣µ(Ty)− µ(Tu(t))
∣∣] = Ev,t∼Q

[µ(T)

µ(Tv(t))
·

∑
y∈child(v(t))

∣∣µ(Ty)− µ(Tv(t))
∣∣]

= µ(T) ·Ev,t∼Q

[∑
y∈child(v(t))

∣∣∣ µ(Ty)

µ(Tv(t))
− 1
∣∣∣]

= k µ(T) ·Ev,t∼Q

[∑
y∈child(v(t))

∣∣∣ R(Ty)

R(Tv(t))
− 1

k

∣∣∣].
In the expectation above, we ignore the terms with R(Tv(t)) = 0 — the probability of such v(t)
equals 0. For an internal node x of T , define two distributions, Ax and Bx, on the set of its children
child(x). The first distribution, Ax, is the uniform distribution on child(x). The second distribution,
Bx, picks a y in child(x) with probability proportional to the number of red leaves in Ty i.e., for
y ∈ child(x),

Pr
Y∼Bx

{Y = y} =
R(Ty)

R(Tx)
.

If Tx does not have any red leaves and, consequently, R(Tx) = 0, then we let Bx be the uniform

38

distribution on child(x). For y ∈ child(v(t)), we have∑
y∈child(v(t))

∣∣∣ R(Ty)

R(Tv(t))
− 1

k

∣∣∣ =
∑

y∈child(v(t))

∣∣∣ Pr
Y∼Av(t)

{Y = y} − Pr
Y∼Bv(t)

{Y = y}
∣∣∣

≤ 2δTV (Av(t),Bv(t)),

where δTV (Av(t),Bv(t)) is the total variation distance between Av(t) and Bv(t). Thus,

1

k
Eu,t∼P

[∑
y∈child(u(t))

∣∣µ(Ty)− µ(Tu(t))
∣∣] ≤ 2µ(T) δTV (Av(t),Bv(t)).

We will now show that the total variation distance between Av(t) and Bv(t) is small on average
for a random node v(t) with v, t ∼ Q. This will conclude the proof of the theorem.

Lemma B.2. As before, let µ(T) = R(T)/kd be the fraction of red leaves in tree T . Suppose
µ(T) > 0. Then, for a random internal node v(t) having distribution Q, we have

Ev,t∼Q

[
δTV (Av(t),Bv(t))

]
≤
√

log2
1/µ

2d
.

Proof. Let v be a random red vertex in T . Random variable v takes R(T) different values with
probability 1/R(T) each. Hence, its entropy equals

H(v) = log2R(T) = log2(kd · µ(T)) = d log2 k − log2
1/µ. (15)

By the chain rule of conditional entropy, we also have

H(v) =

d−1∑
i=0

H(v(i+ 1) | v(i)). (16)

Observe that the conditional distribution of v(i+ 1) given v(i) is Bv(i). Thus,

H(v(i+ 1) | v(i)) = Ev[H(Bv(i))].

From (16), we have

H(v)

d
=

1

d

d−1∑
i=0

Ev[H(B(v(i)))] = E[H(Bv(t))],

here t is a random number in {0, . . . , d− 1} and, consequently, v(t) has distribution Q. Using (15),
we get

Ev,t∼Q
[
H(Bv(t))

]
= log2 k −

log2 1/µ

d
.

We now rearrange the terms and obtain the following bound:

Ev,t∼Q
[

log2 k −H(Bv(t))
]

=
log2 1/µ

d
.

For a fixed v and t, random variable Bv(t) takes at most k distinct values. Hence, H(Bv(t)) ≤ log2 k.
Moreover, if H(Bv(t)) = log2 k, then H(Bv(t)) is uniformly distributed in child(v(t)). That is,

39

Bv(t) = Av(t). Thus, we interpret the expression log2 k−H(Bv(t)) as the distance between Bv(t) and
Av(t). In fact, it is equal to the Kullback–Leibler divergence between Bv(t) and Av(t), since

DKL(Bv(t) ‖ Av(t)) = −
∑

y∈child(v(t))

Pr{Bv(t) = y} · log2

1/k

Pr{Bv(t) = y}

= −
∑

y∈child(v(t))

Pr{Bv(t) = y} · log2

1

k︸ ︷︷ ︸
log2 k

−
∑

y∈child(v(t))

Pr{Bv(t) = y} · log2

1

Pr{Bv(t) = y}︸ ︷︷ ︸
H(Bv(t))

.

Therefore, Ev,t

[
DKL(Bv(t) ‖ Av(t))

]
= log2 1/µ

d . Finally, by Pinsker’s inequality, we have

Ev,t∼Q
[
δTV (Bv(t),Av(t))] = Ev,t∼Q

[√
DKL(Bv(t) ‖ Av(t))

2

]
≤

≤

√
Ev,t∼Q

[
DKL(Bv(t) ‖ Av(t))

2

]
=

√
log2 1/µ

2d
.

Lemma 8.1 immediately follows from Lemma B.1:

Eu,t∼P

[1

k

∑
y∈child(u(t))

q∑
i=1

∣∣µi(Ty)− µi(Tu(t))
∣∣] ≤ q∑

i=1

µi(T)

√
2 log2

1/µi(T)

d
≤
√

2 log2 q

d
.

The function t 7→ t
√

log2
1/t is concave and 1/q

∑
µi(T) = 1/q. Thus by Jensen’s inequality:

1

q

q∑
i=1

µi(T)
√

log2
1/µi(T) ≤ 1

q

√
log2 q.

C Triplets to Quartets Reduction

As we shown in the main part of the paper, Triplet Reconstruction MaxTriplets is hard-to-
approximate better than a random assignment, which achieves a 1

3 -approximation. A very similar
situation appears for another basic problem based on arity 4 constraints:

We will need the following simple definition:

Definition C.1 (Quartet). A quartet q, denoted q = ab|cd, is an unrooted, unordered, trivalent5 tree
(see Figure 11). tree on 4 leaves a, b, c, d (see Figure 3, 11). An unrooted, unordered, trivalent tree T
(containing leaves a, b, c, d) is said to be consistent with q (or T satisfies q), if the path in T between
a, b is disjoint with the path in T between c, d. Otherwise, the quartet and the tree are inconsistent
with each other (or T violates q). In general, quartets can also have weights weight(ab|cd).

The natural optimization problem associated with Quartet Reconstruction is MaxQuartets:

5Trivalent is an unrooted tree where every node has degree 3, except the leaves that have degree 1.

40

Definition C.2 (MaxQuartets Problem). Given a set X of n data points and m quartets defined
on data points from X, find the unrooted, unordered, trivalent tree T that is consistent with as many
quartets as possible (per the definition above).

We note that in phylogenetics the problem above is called Unrooted Quartet Consistency. In
general, Quartet methods also have a long history and are widely deployed in computational biol-
ogy (Bandelt and Dress, 1986; Strimmer and Von Haeseler, 1996; Felsenstein, 2004). There are other
related versions of Quartet Reconstruction (where constraints and the output need to be rooted).
All of our hardness results also hold for the rooted quartet reconstruction problem.

C.1 The Reduction

Here we present a simple reduction from the rooted triplets consistency problem (MaxTriplets)
to the popular unrooted quartets consistency problem (MaxQuartets) that has been extensively
studied (Jiang, Kearney, and Li, 1998; Alon, Snir, and Yuster, 2014; Snir and Rao, 2008; Snir and
Yuster, 2012). Recall that a triplet ab|c is a rooted tree with 3 leaves a, b, c and the output is a
binary rooted tree, whereas a quartet ab|cγ is an unrooted tree with 4 leaves and the output is an
unrooted trivalent tree (every internal node has degree 3).

Claim C.3. There is an approximation-preserving reduction from MaxTriplets to MaxQuar-
tets.

Proof. Given an instance of MaxTriplets with m triplets t1, t2, . . . , tm over a set L of n labels,
we create an instance of MaxQuartets with m quartets q1, q2, . . . , qm over a set L′ of n+ 1 labels
as follows:

• L′ = L ∪ {γ}, where γ is a distinguished vertex to be used in order to define quartets below.

• For every triplet ti = aibi|ci of MaxTriplets, we generate a quartet qi = aibi|ciγ. Notice
that γ is present in all generated quartets, and γ always appears on the side of the “outsider”
item ci for each of the triplets ai, bi|ci. See Figure 3.

We claim that the generated quartet instance is equivalent to the triplet instance, in the sense that
any candidate solution T for triplets (binary rooted tree) can be turned into a candidate solution T ′

for quartets (trivalent unrooted tree) that satisfies the same number of constraints, and vice versa.

c

ba

c

γ

a

b

Figure 3: The transformation of a rooted triplet ab|c to an unrooted quartet ab|cγ used in the
reduction of Claim C.3.

To do so, we start with T and connect its root vertex r (that has degree 2) to another newly
created vertex γ. Hence the degree of r becomes 3 and γ is a leaf (since its degree is 1). The final

41

tree corresponds to a trivalent unrooted tree T ′. Notice that a triplet ab|c is satisfied by T if and
only if the quartet ab|cγ is satisfied by T ′, because the unique path from a to b in T is disjoint from
the unique path from c to the root r and hence also to the special vertex γ. Finally, to turn any
unrooted trivalent T ′ into a binary rooted T , we simply root T ′ at the special vertex γ. Then, a
quartet ab|cγ is satisfied by T ′ if and only if the triplet ab|c is satisfied by T for the same reason as
previously.

Corollary C.4. Unrooted Quartets Consistency (MaxQuartets) is approximation resistant, so
it is UGC-hard to beat the (trivial) random assignment algorithm that achieves a 1

3 -approximation.

D Figures

x3

x2x1

x3

x1x2 x2x1

x3

x1x2

x3

Figure 4: Four patterns that define the Triplets Consistency problem. These pattern can also be
specified using the “square brackets notation”. First pattern: [x1, x2 < x3] & [x1 < x2]. Second
pattern: [x1, x2 < x3] & [x2 < x1]. Third pattern: [x3 < x1, x2] & [x1 < x2]. Fourth pattern:
[x3 < x1, x2] & [x2 < x1].

P

x3

x2x1

I

dc

eb

a

II

dcab

III

cbab

Figure 5: Consider the leftmost tree P above. It is a pattern on variables x1, x2, x3. Let f be
payoff function defined by this pattern. Namely, let f(a, b, c) = 1, if a, b, c match P ; 0, otherwise.
Then, f(a, b, c) = 1 for the tree I. However, f(a, b, c) = 0 for tree II, because a and b are ordered
incorrectly. Also, f(a, b, c) = 0 for tree III, because a is the first node that splits from a,b, and c.

42

x6

x5

x4

x3

x2x1 x6x5

x4

x3

x2

x1

Figure 6: The left tree is a pattern for the split-one-to-the-right constraint. The right tree is a
pattern for the split-one-to-the-left constraint. Each of the constraints contains all 6! permutations
of variables x1, . . . , x6. So, the order in which variables split from others is not important.

5

4

3

21

Figure 7: Binary left caterpillar with five leaves. The right child of each internal node is a leaf.
Observe that triplet(a, b, c) = 1 if a < b < c. For example, triplet(1, 3, 4) = 1.

43

u

w/u3

w3y

w2w1

x

u2u1

Figure 8: Binary tree T ′ constructed based on ternary tree T . Nodes u1, u2, u3 are children of u
in ternary tree T . They are leaves in the pattern tree that consists of vertices u, x, u1, u2, and
u3. Similarly, vertices w1, w2, w3 are children of w in T . They are leaves in the pattern tree that
consists of vertices w = u3, y, w1, w2, and w3.

· · ·

· · ·u

RRuRRuP2RLuLRuP1LLuLLu

Figure 9: Algorithm for constructing a coarse solution. Vertices P1 and P2 are already processed
by the algorithm. The algorithm is currently processing vertex u. It assigns four labels LLu, LRu,
RLu, RRu to yet unlabeled leaves in subtree rooted at u.

44

x10x9

x8

x7

x6x5

x4

x3

x2x1

Figure 10: This phylogenetic predicate consists of patterns obtained from the pattern above by
permuting variables x1, . . . , x10. The predicate requires that at some node u variables x1, . . . , x10

are split into two equal groups. The first group is assigned to the left subtree; the second group
is assigned to the right subtree. Then, the variables in the first group should satisfy the split-
one-to-the-right constraint, and variables in the second group should satisfy the split-one-to-the-left
constraint (see Figure 6).

.

tuna

whale

lion

tiger

Figure 11: A quartet tree is the smallest informative unrooted tree used in phylogenetic reconstruc-
tion (Felsenstein (2004); Snir and Rao (2008)). Here the quartet {{lion, tiger}, {tuna, whale}}
is shown.

c

d

a

b

b

d

a

c

c

b

a

d

Figure 12: There are only 3 different (unrooted) quartet trees for items a, b, c, d. The performance
of a random assignment achieves a 1

3 -approximation, in expectation.

45

	1 Introduction
	1.1 Our Contributions
	1.2 Result I: Beating Random is Hard for Triplet Reconstruction
	1.3 Result II: From Triplets to Hardness of General CSPs over Trees

	2 Technical Contributions and Challenges
	3 Preliminaries
	4 Biased Random Assignment and Approximation Resistance
	5 Proof Overview
	5.1 Hardness for Triplets Consistency

	6 Filling the Gaps
	6.1 Gap Instance is Completely Satisfiable
	6.2 Coarse Solutions, Labelling, and Coloring
	6.3 How to Transform True Solution to Better Coarse Solution?
	6.4 No Good Coarse Solution for Gap Instance
	6.5 Coarse Solutions for Random Orderings
	6.6 Proof of Theorem 5.3

	7 Making the Reduction from Unique Games Work
	8 Random Solutions for Ordinary CSPs on the Gap Instance are Almost Optimal
	9 Generalizations
	9.1 Phylogenetic CSPs with Multiple Payoff Functions
	9.2 Higher Arity Trees

	10 Tree Patterns and Bracket Predicates
	11 Example when Uniform Random Assignment Fails
	12 Conclusion
	A History of the Problems and Further Related Work
	B Proof of Lemma 8.1
	C Triplets to Quartets Reduction
	C.1 The Reduction

	D Figures

