
Efficient Algorithms for Semirandom Planted CSPs at the
Refutation Threshold

Venkatesan Guruswami*
venkatg@berkeley.edu

UC Berkeley

Jun-Ting Hsieh†

juntingh@cs.cmu.edu

Carnegie Mellon University

Pravesh K. Kothari‡
praveshk@cs.cmu.edu

Carnegie Mellon University

Peter Manohar§

pmanohar@cs.cmu.edu

Carnegie Mellon University

October 2, 2023

Abstract
We present an efficient algorithm to solve semirandom planted instances of any Boolean

constraint satisfaction problem (CSP). The semirandom model is a hybrid between worst-case
and average-case input models, where the input is generated by (1) choosing an arbitrary planted
assignment 𝑥∗, (2) choosing an arbitrary clause structure, and (3) choosing literal negations for
each clause from an arbitrary distribution “shifted by 𝑥∗” so that 𝑥∗ satisfies each constraint. For
an 𝑛-variable semirandom planted instance of a 𝑘-arity CSP, our algorithm runs in polynomial
time and outputs an assignment that satisfies all but a 𝑜(1)-fraction of constraints, provided that
the instance has at least �̃�(𝑛𝑘/2) constraints. This matches, up to polylog(𝑛) factors, the clause
threshold for algorithms that solve fully random planted CSPs [FPV15], as well as algorithms
that refute random and semirandom CSPs [AOW15, AGK21]. Our result shows that despite having
worst-case clause structure, the randomness in the literal patterns makes semirandom planted
CSPs significantly easier than worst-case, where analogous results require 𝑂(𝑛𝑘) constraints
[AKK95, FLP16].

Perhaps surprisingly, our algorithm follows a significantly different conceptual framework
when compared to the recent resolution of semirandom CSP refutation. This turns out to be
inherent and, at a technical level, can be attributed to the need for relative spectral approximation
of certain random matrices — reminiscent of the classical spectral sparsification — which ensures
that an SDP can certify the uniqueness of the planted assignment. In contrast, in the refutation
setting, it suffices to obtain a weaker guarantee of absolute upper bounds on the spectral norm
of related matrices.

Keywords: Semirandom CSPs, Expander Decomposition, Spectral Sparsification
*Supported by a Simons Investigator Award and NSF grants CCF-2211972 and CCF-2228287.
†Supported by NSF CAREER Award #2047933.
‡Supported by NSF CAREER Award #2047933, Alfred P. Sloan Fellowship and a Google Research Scholar Award.
§Supported in part by an ARCS Scholarship, NSF Graduate Research Fellowship (under grant numbers DGE1745016

and DGE2140739), and NSF CCF-1814603.

ar
X

iv
:2

30
9.

16
89

7v
1

 [
cs

.C
C

]
 2

8
Se

p
20

23

Contents

1 Introduction 1
1.1 Our semirandom planted model and results . 3

2 Technical Overview 6
2.1 Approximate recovery for 2-XOR from refutation . 7
2.2 The challenges for 𝑘-XOR and our strategy . 7
2.3 Information-theoretic exact recovery from relative cut approximation 10
2.4 Efficient exact recovery from relative spectral approximation 11
2.5 The case of odd 𝑘 . 14
2.6 Organization . 15

3 Preliminaries 15
3.1 Concentration inequalities . 16
3.2 Graph pruning and expander decomposition . 16

4 From Planted CSPs to Noisy XOR 17

5 From 𝑘-XOR to Spread Bipartite 𝑘-XOR 20
5.1 Proof of Theorem 3 from Lemma 5.2 . 21

6 Identifying Noisy Constraints in Spread Bipartite 𝑘-XOR 22
6.1 Setup and key notation . 23
6.2 Proof outline . 25
6.3 Graph pruning and expander decomposition . 25
6.4 Rank-1 SDP solution from expansion and relative spectral approximation 26
6.5 Recovery of corrupted constraints from corrupted pairs 29
6.6 Finishing the proof of Lemma 5.2 . 32

A Notions of Relative Approximation 38

B Hypergraph Decomposition 39

C Theorem 3 when 𝑘 = 1 40

1 Introduction

Four decades of work in computational complexity has uncovered strong hardness results for
constraint satisfaction problems (CSPs) such as 𝑘-SAT that leave only a little room for non-trivial
efficient algorithms in the worst-case. Strong hardness of approximation [Hås01] essentially rule
out (unless P = NP) any improvement over simply returning a uniformly random assignment
when the input instance is sparse (i.e., has 𝑚 = 𝑂(𝑛) constraints on 𝑛 variables). While there is a
polynomial time approximation scheme (PTAS) [AKK95] for maximally dense instances (e.g., with
𝑚 = 𝑂(𝑛𝑘) constraints for 𝑘-SAT), under the exponential time hypothesis [IP01], we can already rule
out polynomial time algorithms for 𝑜(𝑛𝑘) dense instances and more generally, 2𝑛1−𝛿 time algorithms
for any 𝛿 > 0 for 𝑜(𝑛𝑘−1) dense instances [FLP16].

Search and refutation in the average-case. In sharp contrast, in well-studied average-case settings,
there appears to be significant space for new algorithms and markedly better guarantees for CSPs.
CSPs can be studied as two natural problems in such average-case settings: the problem of refutation
— where we focus on efficiently finding witnesses of unsatisfiability for models largely supported
on unsatisfiable instances, and the problem of search — where our goal is to find an assignment that
the model guarantees is planted in the instance.

The refutation problem has been heavily investigated in the past two decades. For fully random
𝑘-CSPs with uniformly random clause structure (i.e., which variables appear in each clause) and
“literal pattern” (i.e., which variables appear negated in each clause), there is a polynomial-time
algorithm that, with high probability over the instance, certifies that the instance is unsatisfiable,
provided that𝑚 is at least �̃�(𝑛𝑘/2) [GL03, CGL07, AOW15, BM16, RRS17]. This threshold is far below
the ∼ 𝑛𝑘 hardness threshold of [FLP16]. Furthermore, there is lower bounds in various restricted
models [Fei02, BGMT12, OW14, MW16, BCK15, KMOW17, FPV18] provide some evidence that
this threshold might be tight for polynomial time algorithms.

The search problem for planted models of CSPs has also received a fair bit of attention.
The setting naturally arises in the investigation of local one-way functions and pseudorandom
generators in cryptography. Indeed, the security of the well-known one-way function proposed by
Goldreich [Gol00] (also conjectured to be a pseudorandom generator [MST06, App16]) is equivalent
to the hardness of recovering a satisfying assignment planted (via a carefully chosen procedure) in a
random CSP instance with an appropriate predicate. This has led to significant research on solving
fully random planted CSPs [BHL+02, JMS07, BQ09, CCF10, FPV15]. Specifically, Feldman, Perkins
and Vempala [FPV15] showed that for fully random planted 𝑘-CSPs with planted assignment 𝑥∗,
there is a polynomial-time algorithm that, with high probability over the instance, recovers the
planted assignment 𝑥∗ exactly, provided that the instance has at least �̃�(𝑛𝑘/2) constraints. That is,
the refutation and search versions have the same clause threshold.

Beyond the average-case: semirandom instances. The phenomenal progress in average-case
algorithm design notwithstanding, there is a nagging concern that the algorithms so developed
rely too heavily on “brittle” properties of a specific random model. That is, our methods may
have “overfitted” to the specific setting thus offering algorithms that only apply in a limited
setting. Unfortunately, this fear turns out to be rather well-founded — natural spectral algorithms

1

for refuting random 𝑘-CSPs and solving the natural planted variants break down under minor
perturbations such as the introduction of a vanishingly small fraction of additional clauses.

Motivated by such concerns, Blum and Spencer [BS95] and later Feige and Kilian [FK01, Fei07]
introduced semirandom models for optimization problems. In semirandom models, the instances are
constructed by a combination of benign average-case and adversarial worst-case choices. Algorithms
that succeed for such models are naturally “robust” to perturbations of the input instance.

For CSPs, a semirandom instance is generated by first choosing a “worst-case” clause structure
and then choosing the literal negation patterns in each clause via some sufficiently random (and thus
“benign”) process. Recent work [AGK21, GKM22, HKM23] has shown that in the case of refutation,
there are indeed more resilient algorithms that succeed in refuting semirandom instances at the same
�̃�(𝑛𝑘/2) threshold as the fully random case. These developments have added new general-purpose
new spectral methods based on Kikuchi matrices [WAM19, GKM22] to our algorithmic arsenal.

Semirandom planted problems. In this work, we make the first step in obtaining algorithms for
the search variant of CSPs in the semirandom setting. Our main result gives an efficient algorithm for
solving semirandom planted CSPs that succeeds in finding the planted assignment whenever the
number of constraints exceeds �̃�(𝑛𝑘/2)— the same threshold at which polynomial time algorithms
exist for the refutation problem for random (and semirandom) instances.

Theorem 1 (Main result, informal Theorem 2). There is an efficient algorithm that takes as input a 𝑘-CSP
Ψ and outputs an assignment 𝑥 with the following guarantee: if Ψ is a semirandom planted 𝑘-CSP with
𝑚 ≥ �̃�(𝑛𝑘/2) constraints, then with high probability over Ψ, the output 𝑥 satisfies 1 − 𝑜(1)-fraction of the
constraints in Ψ.

We note that in the semirandom setting, it is not possible to efficiently recover an assignment
that satisfies all of the constraints without being able to do so even when 𝑚 = 𝑂(𝑛)1. This is because
it is easy to construct a semirandom instance 𝜓 that is the “union” of two disjoint instances 𝜓1 and
𝜓2, where 𝜓1 and 𝜓2 use disjoint sets of 𝑛/2 variables, but 𝜓1 only has 𝑚1 ∼ 𝑂(𝑛) clauses (and
𝜓2, therefore, contains almost all of the 𝑚 ∼ 𝑛𝑘/2 clauses). Thus, the guarantee in Theorem 1 of
satisfying a 1 − 𝑜(1)-fraction of constraints is qualitatively the best we can hope for.

Search vs. refutation. It is natural to compare Theorem 1 to the recent resolution of the problem
of refuting semirandom CSPs [AGK21, GKM22, HKM23]. For average-case optimization problems,
techniques for refuting random instances can typically be adapted to solving the search problem in
the related planted model. This can be formalized in the proofs to algorithms paradigm [BS14, FKP19]
where spectral/SDP-based refutations can be transformed into “simple” (i.e., ”captured" within
the low-degree sum-of-squares proof system) efficient certificates of near-uniqueness of optimal
solution — that is, every optimal solution is close to the planted assignment. Unfortunately, this
intuition breaks down even in the simplest setting of semirandom 2-XOR where there can be
multiple maximally far-off solutions that satisfy as many (or even more) constraints as the planted
assignment. Such departure from uniqueness also breaks algorithms for recovery [FPV15] that rely

1 Achieving this would break a hardness assumption for the search problem analogous to Feige’s random 3-SAT
hypothesis for the refutation problem [Fei02].

2

on the top eigenvector of a certain matrix built from the instance being correlated with the planted
assignment. In the semirandom setting, one can build instances where the top eigenspace of such
matrices is the span of the multiple optimal solutions and has dimension 𝜔(1) (searching for a
Boolean vector close to the subspace is, in general, hard in super-constant dimensional subspaces).

Our key insight. Our starting point is a new, efficiently checkable certificate of the unique
identifiability of the planted solution for noisy planted 𝑘-XOR (i.e., where each equation in a
satisfiable 𝑘-sparse linear system is corrupted independently with some fixed constant probability)
whenever the constraint hypergraph satisfies a certain weak expansion property. For random
graphs in case of 2-XOR (and generalizations to multiple community stochastic block models), such
certificates (in the form of explicit dual solutions to a semidefinite program) were shown to exist by
Abbe and Sandon [AS15].

Our certificate naturally yields an efficient algorithm for exactly recovering the planted assignment
in noisy 𝑘-XOR instances whenever the constraint hypergraph satisfies a deterministic weak
expansion property and has size exceeding the refutation threshold ∼ 𝑛𝑘/2. Finally, we use expander
decomposition procedures to decompose the input constraint hypergraph into pieces that satisfy
the above condition. This is done in a manner that further allows us to find a good assignment via
a consistent patching scheme to combine solutions across all the pieces in our decomposition.

1.1 Our semirandom planted model and results

Before formally stating our results, we define the semirandom planted model that we work with
and explain some of the subtleties in the definition. Our model is the natural one that arises if we
wish to enforce independent randomness (for each clause) in the literal negations, while still fixing
a particular satisfying assignment.

Definition 1.1 (𝑘-ary Boolean CSPs). A CSP instance Ψ with a 𝑘-ary predicate 𝑃 : {−1, 1}𝑘 → {0, 1}
is a set of 𝑚 constraints on variables 𝑥1 , . . . , 𝑥𝑛 of the form 𝑃(ℓ (®𝐶)1𝑥 ®𝐶1

, ℓ (®𝐶)2𝑥 ®𝐶2
, . . . , ℓ (®𝐶)𝑘𝑥 ®𝐶𝑘) = 1.

Here, ®𝐶 ranges over a collection ®ℋ of scopes2 (a.k.a. clause structure) of 𝑘-tuples of 𝑛 variables and
ℓ (®𝐶) ∈ {−1, 1}𝑘 are “literal negations”, one for each ®𝐶 in ®ℋ . We let valΨ(𝑥) denote the fraction of
constraints satisfied by an assignment 𝑥 ∈ {−1, 1}𝑛 , and we define the value of Ψ, val(Ψ), to be
max𝑥∈{−1,1}𝑛 valΨ(𝑥).
Definition 1.2 (Semirandom planted 𝑘-ary Boolean CSPs). Let 𝑃 : {−1, 1}𝑘 → {0, 1} be a predicate.
We say that a distribution 𝑄 over {−1, 1}𝑘 is a planting distribution for 𝑃 if Pr𝑦←𝑄[𝑃(𝑦) = 1] = 1.

We say that an instance Ψ with predicate 𝑃 is a semirandom planted instance with planting
distribution 𝑄 if it is sampled from a distribution Ψ(®ℋ , 𝑥∗ , 𝑄)where

(1) the scopes ®ℋ ⊆ [𝑛]𝑘 and planted assignment 𝑥∗ ∈ {−1, 1}𝑛 are arbitrary, and

(2) Ψ(®ℋ , 𝑥∗ , 𝑄) is defined as follows: for each ®𝐶 ∈ ®ℋ , sample literal negations ℓ (®𝐶) ← 𝑄(ℓ (®𝐶)⊙ 𝑥∗®𝐶),
where “⊙” denotes the element-wise product of two vectors. That is, Pr[ℓ (®𝐶) = ℓ] = 𝑄(ℓ ⊙ 𝑥∗®𝐶)
for each ℓ ∈ {−1, 1}𝑘 . Then, add the constraint 𝑃(ℓ (®𝐶)1𝑥 ®𝐶1

, ℓ (®𝐶)2𝑥 ®𝐶2
, . . . , ℓ (®𝐶)𝑘𝑥 ®𝐶𝑘) = 1 to Ψ.

2 We additionally allow ®ℋ to be a multiset, i.e., that multiple clauses can contain the same ordered set of variables.

3

Notice that because 𝑄 is supported only on satisfying assignments to 𝑃, it follows that if Ψ ←
Ψ(®ℋ , 𝑥∗ , 𝑄), then 𝑥∗ satisfies Ψ with probability 1.

A (fully) random planted CSP, e.g., as defined in [FPV15], is generated by first sampling
®ℋ ← [𝑛]𝑘 uniformly at random, and then sampling Ψ ← Ψ(®ℋ , 𝑥∗ , 𝑄). The difference in the

semirandom planted model is that we allow ®ℋ to be worst case.
Notice that in Definition 1.2, there are some choices of𝑄 for which the planted instance becomes

easy to solve. In the case of, e.g., 3-SAT, one could set the planting distribution 𝑄 to be uniform
over all 7 satisfying assignments, which results in the literal negations in each clause being chosen
uniformly conditioned on 𝑥∗ satisfying the clause. However, by simply counting how many times
the variable 𝑥𝑖 appears negated versus not negated and taking the majority vote, we recover 𝑥∗ with
high probability [BHL+02, JMS07] (see Appendix C).

Instead of sampling clauses uniformly from all those satisfied by 𝑥∗, one can create more
challenging distributions, e.g., ones where true and false literals appear in equal proportion. Such
distributions are termed “quiet plantings” and have been studied extensively [JMS07, KZ09, CCF10,
KMZ12]. Our semirandom model follows definitions in [FPV15, FPV18] and is a general planted
model with respect to a planting distribution 𝑄, which unifies various plantings studied in the past.

Unlike in the case of random planted CSPs, we cannot hope to recover the planted assignment
𝑥∗ exactly in the semirandom setting. Indeed, the scopes ®ℋ may not use some variable 𝑥𝑖 at all,
and so we cannot hope to recover 𝑥∗

𝑖
! Thus, our goal is instead to recover an assignment 𝑥 that has

nontrivially large value, ideally value 1 − 𝜀 for arbitrarily small 𝜀. Our main result, stated formally
below, gives an algorithm to accomplish this task.

Theorem 2 (Formal Theorem 1). Let 𝑘 ∈ ℕ be constant. There is a polynomial-time algorithm that takes as
input a 𝑘-CSP Ψ and outputs an assignment 𝑥 with the following guarantee. If Ψ is a semirandom planted
𝑘-CSP with 𝑚 ≥ 𝑐𝑘𝑛𝑘/2 · log3 𝑛

𝜀9 constraints drawn from Ψ(®ℋ , 𝑥∗ , 𝑄), then with probability 1 − 1/poly(𝑛)
over Ψ, the output 𝑥 of the algorithm has valΨ(𝑥) ≥ 1 − 𝜀. Here, 𝑐 is a universal constant.

In particular, setting 𝜀 = 1/polylog(𝑛), if 𝑚 ≥ �̃�(𝑛𝑘/2), then with high probability over Ψ ←
Ψ(®ℋ , 𝑥∗ , 𝑄), the algorithm outputs 𝑥 with valΨ(𝑥) ≥ 1 − 𝑜(1).

Theorem 2 shows that one can nearly solve a semirandom planted 𝑘-CSP at the same �̃�(𝑛𝑘/2)
threshold as done in the random case [FPV15], matching the same �̃�(𝑛𝑘/2) threshold as for
semirandom refutation [AGK21, GKM22, HKM23]. However, as explained earlier (and will be
discussed further in Section 2), there are several unanticipated technical hurdles to overcome in the
semirandom planted setting that are not present in the semirandom refutation setting, and this
causes many of the natural approaches that “springboard off” the refutation case to fail. Curiously
enough, for the special case of 𝑘 = 2 there is a simple reduction from search to refutation for the
case of 2-XOR, which we will describe in Section 2.1, but the same approach for 𝑘-XOR encounters
a hardness barrier for 𝑘 ≥ 3, as we will discuss in Section 2.2.

Theorem 2 also breaks Goldreich’s candidate pseudorandom generators [Gol00] and its vari-
ants [App16],3 when they have Ω̃(𝑛𝑘/2) stretch and any 𝑘-hypergraph (not just a random one). In

3 Goldreich’s original PRG is essentially a planted 𝑘-CSP with a Boolean predicate 𝑃 on a random hypergraph,
containing both 𝑃 and ¬𝑃 constraints.

4

fact, not only does Theorem 2 break the PRG, it also gives an algorithm that nearly inverts it.

Noisy planted 𝒌-XOR. Similar to work on random planted CSPs [FPV15] and the refutation setting
[AOW15, RRS17, AGK21, GKM22, HKM23], our proof of Theorem 2 goes through a reduction to
noisy 𝑘-XOR. Our algorithm achieves very strong guarantees in the noisy 𝑘-XOR case, as we now
explain. We define the noisy 𝑘-XOR model below and then state our result.

Definition 1.3 (Noisy planted 𝑘-XOR). Letℋ ⊆
([𝑛]
𝑘

)
be a 𝑘-uniform hypergraph on 𝑛 vertices, let

𝑥∗ ∈ {−1, 1}𝑛 , and let 𝜂 ∈ [0, 1/2). Let 𝜓(ℋ , 𝑥∗ , 𝜂) denote the distribution on 𝑘-XOR instances over 𝑛
variables 𝑥1 , . . . , 𝑥𝑛 ∈ {−1, 1} obtained by, for each 𝐶 ∈ ℋ , adding the constraint

∏
𝑖∈𝐶 𝑥𝑖 =

∏
𝑖∈𝐶 𝑥

∗
𝑖

with probability 1 − 𝜂, and otherwise adding the constraint
∏

𝑖∈𝐶 𝑥𝑖 = −
∏

𝑖∈𝐶 𝑥
∗
𝑖
. In the latter case,

we say that the constraint 𝐶 is corrupted or noisy.
We call 𝜓 a noisy planted 𝑘-XOR instance if it is sampled from 𝜓(ℋ , 𝑥∗ , 𝜂), for someℋ , 𝑥∗, and 𝜂;

the hypergraphℋ is the constraint hypergraph, 𝑥∗ is the planted assignment, and 𝜂 is the noise
parameter. Furthermore, we let ℰ𝜓 ⊆ ℋ denote the (unknown) set of corrupted constraints.

Theorem 3 (Algorithm for noisy 𝑘-XOR). Let 𝜂 ∈ [0, 1/2), let 𝑘, 𝑛 ∈ ℕ, and let 𝜀 ∈ (0, 1). Let
𝑚 ≥ 𝑐𝑛𝑘/2 · 𝑘

4 log3 𝑛

𝜀5(1−2𝜂)4 for a universal constant 𝑐. There is a polynomial-time algorithm𝒜 that takes as input
a 𝑘-XOR instance 𝜓 with constraint hypergraph ℋ and outputs two disjoint sets 𝒜1(ℋ),𝒜2(𝜓) ⊆ ℋ
with the following guarantees: (1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(ℋ)| ≤ 𝜀𝑚 and𝒜1(ℋ) only
depends onℋ , and (2) for any 𝑥∗ ∈ {−1, 1}𝑛 and any 𝑘-uniform hypergraphℋ with at least 𝑚 hyperedges,
with probability at least 1 − 1/poly(𝑛) over 𝜓← 𝜓(ℋ , 𝑥∗ , 𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (ℋ \ 𝒜1(ℋ)).

In words, the algorithm discards a small number of constraints, and among the constraints that
are not discarded, correctly identifies all (and only) the corrupted constraints. In particular, the
subinstance obtained by discarding the ≲ (𝜀 + 𝜂)𝑚 constraints𝒜1(ℋ) ∪ 𝒜2(𝜓) is satisfiable (and a
solution can be found by Gaussian elimination). Thus, Theorem 3 immediately implies that for
𝑘-XOR, the NP-hard task of deciding if 𝜓 has value ≥ 1− 𝜂 or ≤ 1

2 + 𝜂 is actually easy if 𝜓 has ∼ 𝑛𝑘/2
constraints (far below the ∼ 𝑛𝑘-hardness of [FLP16]), provided that the 𝜂-fraction of corrupted
constraints in the “yes” case are a randomly chosen subset of the otherwise arbitrary constraints.

Exact vs. approximate recovery. As alluded to above, the guarantees of Theorem 3 are much
stronger: not only can we find a good assignment to 𝜓, we can break the constraints into two
parts, a small fraction,𝒜1(ℋ), where we are unable to determine the corrupted constraints,4 and a
large fraction,ℋ \𝒜1(ℋ), where we can determine exactly all of the corrupted constraints,𝒜2(𝜓).
Moreover, this partition depends only on the hypergraph ℋ and is independent of the noise. We
remark that it is not immediately obvious that this guarantee is achievable even for exponential-time
algorithms, as 𝑥∗ may not be the globally optimal assignment with constant probability. This strong
guarantee of Theorem 3 is in fact required for the reduction from Theorem 2 to Theorem 3; the
weaker (and more intuitive) guarantee of approximate recovery — obtaining an assignment of
value 1 − 𝜂 − 𝑜(1) for the noisy XOR instance — is insufficient for the reduction.

4 Note that discarding a small fraction of constraints is necessary in the semirandom setting, as 𝜓 may contain many
disconnected constant-size subinstances where it is not possible, even information-theoretically, to exactly identify the
corrupted constraints with 1 − 𝑜(1) probability.

5

One can view Theorem 3 as an algorithm that extracts almost all the information about the
planted assignment 𝑥∗ encoded by the instance 𝜓. Indeed, notice that even if 𝜂 = 0, the instance
𝜓 only determines 𝑥∗ “up to a linear subspace.”5 Namely, if we let 𝑦 ∈ {−1, 1}𝑛 be any solution
to the system of constraints

∏
𝑖∈𝐶 𝑦𝑖 = 1 for 𝐶 ∈ ℋ , then 𝑦 ⊙ 𝑥∗ is also a planted assignment for 𝜓:

formally, 𝜓(ℋ , 𝑥∗ , 𝜂) = 𝜓(ℋ , 𝑦 ⊙ 𝑥∗ , 𝜂) as distributions. So, aside from the 𝜀𝑚 constraints that are
discarded, with high probability over 𝜓 the algorithm determines the uncorrupted right-hand sides∏

𝑖∈𝐶 𝑥
∗
𝑖

for every remaining constraint, which is all the information about the planted assignment
𝑥∗ encoded in the remaining constraints.

The importance of relative spectral approximation. As a key technical ingredient in the algorithm,
we uncover a deterministic condition — relative spectral approximation of the Laplacian of a graph
(associated with the input instance) by a certain correlated random sample from it — which when
satisfied implies uniqueness of the SDP solution (Lemma 2.4). In Lemma 2.5 and Lemma 6.7, we
establish such spectral approximation guarantees.

This spectral approximation property is the key ingredient in our certificate of unique identifia-
bility of the planted assignment in a noisy 𝑘-XOR instance (see Section 2.4 for details) and allows us
to exactly recover the planted assignment for 2-XOR instances where the constraint graph 𝐺 is a
weak spectral expander (i.e., spectral gap≫ 1/poly log 𝑛) (Lemma 2.4), and forms the backbone of
our final algorithm. We note that our spectral approximation condition can be seen as an analog of
(and is, in fact, stronger than) the related spectral norm upper bound property that underlie the
refutation algorithm of [AGK21].

This process of extracting a “deterministic property of random instances sufficient for the
analysis” is an important conceptual theme underlying recent progress on semirandom optimization,
and manifests as, e.g., the notion of “butterfly degree” in [AGK21], “hypergraph regularity” or
spreadness in [GKM22] in the context of semirandom CSP refutation, and biclique number bounds
in the context of planted clique [BKS22].

2 Technical Overview

In this section, we give an overview of the proof of Theorem 3 and our algorithm for noisy planted
𝑘-XOR. We defer discussion of the reduction from general 𝑘-CSPs to 𝑘-XOR used to obtain Theorem 2
to Section 4. There, we explain the additional challenges encountered in the semirandom case
as compared to the random case [FPV15, Section 4]. Somewhat surprisingly, the reduction is
complicated and quite different from the random planted case or even the semirandom refutation
setting, where the reduction to XOR is straightforward.

We now explain Theorem 3. As is typical in algorithm design for 𝑘-XOR, the case when 𝑘 is
even is considerably simpler than when 𝑘 is odd. For the purpose of this overview, we will focus
mostly on the even case, and only briefly discuss the additional techniques for odd 𝑘 in Section 2.5.

Notation. Throughout this paper, given a 𝑘-XOR instance 𝜓 on hypergraph ℋ ⊆
([𝑛]
𝑘

)
with

5 A 𝑘-XOR constraint 𝑥𝐶1 · · · 𝑥𝐶𝑘 = 𝑏𝐶 ∈ {−1, 1} can be equivalently written as a linear equation 𝑥′
𝐶1
+ · · · + 𝑥′

𝐶𝑘
= 𝑏′

𝐶
over 𝔽2, where we map +1 to 0 and −1 to 1.

6

𝑚 = |ℋ | and right-hand sides {𝑏𝐶}𝐶∈ℋ , we define 𝜓(𝑥) B ∑
𝐶∈ℋ 𝑏𝐶

∏
𝑖∈𝐶 𝑥𝑖 to be a degree-𝑘

polynomial mapping {−1, 1}𝑛 → [−𝑚, 𝑚]. We note that val𝜓(𝑥) = 1
2 + 1

2𝑚𝜓(𝑥) ∈ [0, 1] is the fraction
of constraints in 𝜓 satisfied by 𝑥. Moreover, we will write 𝑥𝐶 B

∏
𝑖∈𝐶 𝑥𝑖 .

Unless otherwise stated, we will use 𝜙 to denote a 2-XOR instance and 𝜓 to denote a 𝑘-XOR
instance for any 𝑘 ≥ 2.

We note that for even arity 𝑘-XOR, we have val𝜓(𝑥) = val𝜓(−𝑥), and so it is only possible for the
optimal solution to be unique up to a global sign. We will abuse terminology and say that 𝑥∗ is the
unique optimal assignment if ±𝑥∗ are the only optimal assignments, and we will say that we have
recovered 𝑥∗ exactly if we obtain one of ±𝑥∗.

2.1 Approximate recovery for 2-XOR from refutation

First, let us focus on the case of 𝑘 = 2, the simplest case, and let us furthermore suppose that we
only want to achieve the weaker goal of recovering an assignment of value 1 − 𝜂 − 𝑜(1). (Note that
we do need the stronger guarantee of Theorem 3 to solve general planted CSPs in Theorem 2.)

For 2-XOR, this goal is actually quite straightforward to achieve using 2-XOR refutation as a
blackbox. Let us represent the 2-XOR instance 𝜙 as a graph 𝐺 on 𝑛 vertices, along with right-hand
sides 𝑏𝑖 𝑗 for each edge (𝑖 , 𝑗) ∈ 𝐸. Recall that we have 𝑏𝑖 𝑗 = 𝑥∗

𝑖
𝑥∗
𝑗
with probability 1−𝜂, and 𝑏𝑖 𝑗 = −𝑥∗𝑖 𝑥

∗
𝑗

otherwise. Note that by concentration, val𝜙(𝑥∗) = 1 − 𝜂 ± 𝑜(1)with high probability.
We now make the following observation. Let us suppose that we sample the noise in two steps:

first, we add each (𝑖 , 𝑗) ∈ 𝐸 to a set 𝐸′ with probability 2𝜂 independently; then for each (𝑖 , 𝑗) ∈ 𝐸′ we
set 𝑏𝑖 𝑗 to be uniformly random from {−1, 1}. Using known results for semirandom 2-XOR refutation,
it is possible to certify, via an SDP relaxation, that no assignment 𝑥 can satisfy (or violate) more
than 1

2 + 𝑜(1) fraction of the constraints in 𝐸′.
Thus, we can simply solve the SDP relaxation for 𝜙 and obtain a degree-2 pseudo-expectation �̃�

in the variables 𝑥1 , . . . , 𝑥𝑛 over {−1, 1}𝑛 that maximizes 𝜙(𝑥). Let 𝜙𝐸′ be the subinstance containing
only the constraints in 𝐸′, and let 𝜙𝐸\𝐸′ be the subinstance containing only the constraints in 𝐸 \ 𝐸′,
which are uncorrupted. We have �̃�[val𝜙(𝑥)] ≥ 1 − 𝜂 − 𝑜(1), and the guarantee of refutation implies
that �̃�[val𝜙𝐸′ (𝑥)] ≤ 1

2 + 𝑜(1). As val𝜙(𝑥) = (1− 2𝜂) · val𝜙𝐸\𝐸′ (𝑥) + 2𝜂 · val𝜙𝐸′ (𝑥), we therefore have that
�̃�[val𝜙𝐸\𝐸′ (𝑥)] ≥ 1 − 𝑜(1), i.e., �̃� satisfies 1 − 𝑜(1) fraction of the constraints in 𝐸 \ 𝐸′. Then, applying
the standard Gaussian rounding, we obtain an 𝑥 that satisfies 1 −

√
𝑜(1) fraction of the constraints

in 𝐸 \ 𝐸′ and thus has value val𝜙(𝑥) ≥ 1 − 𝜂 − 𝑜(1) (as any 𝑥 must satisfy at least 1
2 − 𝑜(1) fraction of

the constraints in 𝐸′, with high probability over the noise).
One interesting observation is that in the above discussion, we can additionally allow 𝐸′ to be

an arbitrary subset of 𝐸 of size 2𝜂𝑚. Indeed, this is because the rounding only “remembers” that
�̃�[val𝜙𝐸\𝐸′ (𝑥)] has value 1 − 𝑜(1). As we shall see shortly, this is the key reason that the reduction
breaks down for 𝑘-XOR.

2.2 The challenges for 𝑘-XOR and our strategy

Unfortunately, the natural blackbox reduction to refutation given in Section 2.1 does not generalize
to 𝑘-XOR for 𝑘 ≥ 3. Following the approach described in the previous section, given a 𝑘-XOR

7

instance 𝜓, one can solve a sum-of-squares SDP and obtain a pseudo-expectation �̃� where
�̃�[val𝜓(𝑥)] ≥ 1− 𝜂 − 𝛿 and �̃�[val𝜓𝐸\𝐸′ (𝑥)] ≥ 1− 𝛿 as before, where 𝛿 ∼ 1/polylog(𝑛)when 𝑚 ≳ 𝑛𝑘/2,
due to the guarantees of refutation algorithms [AGK21]. However, unlike 2-XOR where we have
Gaussian rounding, for 𝑘-XOR there is no known rounding algorithm that takes a pseudo-expectation
�̃� with �̃�[val𝜓𝐸\𝐸′ (𝑥)] ≥ 1− 𝛿 and outputs an assignment 𝑥 such that val𝜓𝐸\𝐸′ (𝑥) ≥ 1− 𝑓 (𝛿), for some
𝑓 (·) such that 𝑓 (𝛿) → 0 as 𝛿→ 0. In fact, if we only “remember” that 𝜓𝐸\𝐸′ has value 1 − 𝛿, then it
is NP-hard to find an 𝑥 with value > 1/2 + 𝛿 even when 𝛿 = 𝑛−𝑐 for some constant 𝑐 > 0, assuming
a variant of the Sliding Scale Conjecture [BGLR93]6 (see e.g. [MR10, Mos15] for more details).

As we have seen, while semirandom 𝑘-XOR refutation allows us to efficiently approximate and
certify the value of the planted instance, the challenge lies in the rounding of the SDP, where the goal
is to recover an assignment 𝑥. This is a technical challenge that does not arise in the context of CSP
refutation, as there we are merely trying to bound the value of the instance. As a result, new ideas
are required to address this challenge.

Reduction from 𝒌-XOR to 2-XOR for even 𝒌. One could still consider the following natural
approach. For simplicity, let 𝑘 = 4. Given a 4-XOR instance 𝜓, we can write down a natural and
related 2-XOR instance 𝜙, as follows.

Definition 2.1 (Reduction to 2-XOR). Let 𝜓 be a 4-XOR instance, and let 𝜙 be the 2-XOR defined
as follows. The variables of 𝜙 are 𝑦{𝑖 , 𝑗} and correspond to pairs of variables {𝑥𝑖 , 𝑥 𝑗}, and for each
constraint 𝑥𝑖𝑥 𝑗𝑥𝑖′𝑥 𝑗′ = 𝑏𝑖 , 𝑗 ,𝑖′, 𝑗′ in 𝜓, we split {𝑖 , 𝑗 , 𝑖′, 𝑗′} into {𝑖 , 𝑗} and {𝑖′, 𝑗′} arbitrarily and add a
constraint 𝑦{𝑖 , 𝑗}𝑦{𝑖′, 𝑗′} = 𝑏𝑖 , 𝑗 ,𝑖′, 𝑗′ to 𝜙. See Fig. 1 for an example. This reduction easily generalizes to
𝑘-XOR for any even 𝑘.

321 654

1

2

87

3

4

5

6

2

3

+1

7

8

+1 –1 –1

–1

–1

Figure 1: An example of the 2-XOR instance 𝜙 from a 4-XOR instance 𝜓.

By following the approach for 2-XOR described in Section 2.1, we can recover an assignment 𝑦
that satisfies 1−𝜂− 𝑜(1) fraction of the constraints in 𝜙. However, we need to recover an assignment
𝑥 to the original 𝑘-XOR 𝜓, and it is quite possible that while 𝑦 is a good assignment to 𝜙, it is not
close to 𝑥⊗2 for any 𝑥 ∈ {−1, 1}𝑛 . If this happens, we will be unable to recover a good assignment to
the 4-XOR instance 𝜓.

6 Note that we do need the Sliding Scale Conjecture, as the hardness shown in [MR10] is not strong enough; it only
proves hardness for 𝛿 ≥ (log log 𝑛)−𝑐 , whereas we have 𝛿 ∼ 1/polylog(𝑛).

8

The key reason that this simple idea fails is because, unlike for random noisy XOR, the assignment
𝑦 recovered is not necessarily unique, and we cannot hope for it to be in the semirandom setting! For
random noisy XOR, one can argue that with high probability, 𝑦 will be equal to 𝑥∗⊗2, and then we
can immediately decode and recover 𝑥∗ up to a global sign, i.e., we recover ±𝑥∗. But for semirandom
instances, the situation can be far more complex.

Approximate 2-XOR recovery does not suffice for 4-XOR. When constructing the 2-XOR instance
𝜙 from the 4-XOR 𝜓 (Definition 2.1), it may be the case that 𝜙 can be partitioned into multiple
disconnected clusters (or have very few edges across different clusters), even when the hypergraph
ℋ of 𝜓 is connected; see Fig. 1 for example. By the algorithm described in Section 2.1, we can get
an assignment 𝑦 that satisfies 1 − 𝜂 − 𝑜(1) fraction of the constraints within each cluster.

The main challenge is to combine the information gathered from each cluster to recover an
assignment 𝑥 for the original 4-XOR 𝜓. Unfortunately, we do not know of a way to obtain a good
assignment 𝑥 based solely on the guarantee that 𝑦 satisfies 1 − 𝜂 − 𝑜(1) fraction of constraints in
each cluster. The issue occurs because the same variable 𝑖 ∈ [𝑛] can appear in different clusters, e.g.,
𝑦{1,2} and 𝑦{2,3} lie in different clusters in Fig. 1, and the recovered assignments in each cluster may
implicitly choose different values for 𝑥𝑖 because of the noise. Indeed, even if the local optimum is
consistent with 𝑥∗, there can still be multiple “good” assignments that achieve 1 − 𝜂 − 𝑜(1) value
on the subinstance restricted to a cluster. So, unless the SDP can certify unique optimality of 𝑥∗,
standard rounding techniques such as Gaussian rounding will merely output a “good” 𝑦, which
may be inconsistent with 𝑥∗ and thus can choose inconsistent values of 𝑥𝑖 across the different
clusters.

Exact 2-XOR recovery implies exact 4-XOR recovery. This leads to our main insight: if the
subinstance of 𝜙 admits a unique local optimal assignment 𝑦∗ (restricted to the cluster) that matches
the planted assignment up to a sign, i.e., 𝑦∗{𝑖 , 𝑗} = ±𝑥

∗
𝑖
𝑥∗
𝑗
, then for each edge in the cluster we know

𝑦∗{𝑖 , 𝑗}𝑦
∗
{𝑖′, 𝑗′} = 𝑥∗

𝑖
𝑥∗
𝑗
𝑥∗
𝑖′𝑥
∗
𝑗′ , and so the local constraints that are violated must be exactly the corrupted

ones. Moreover, if the SDP can certify the uniqueness of the local optimal assignment for a cluster,
then the SDP solution will be a rank 1 matrix 𝑦∗𝑦∗⊤, and so we can precisely identify which constraints
in 𝜙 are corrupted. By repeating this for every cluster, we can identify all corrupted constraints in
the original 4-XOR 𝜓 (except for the small number of “cross cluster” edges), and thus achieve the
guarantee stated in Theorem 3.

The general algorithmic strategy. The above discussion suggests that given a 𝑘-XOR instance
𝜓, we should first construct the 2-XOR 𝜙, and then decompose the constraint graph 𝐺 of 𝜙 into
pieces in some particular way so that the induced local instances have unique solutions. Namely,
the examples suggest the following algorithmic strategy.

Strategy 1 (Algorithm Blueprint for even 𝑘). Given a noisy 𝑘-XOR instance 𝜓 with planted
assignment 𝑥∗ and 𝑚 constraints, we do the following:

(1) Construct the 2-XOR instance 𝜙 described in Definition 2.1, which is a noisy 2-XOR on 𝑛𝑘/2

variables with planted assignment 𝑦∗. Moreover, there is a one-to-one mapping between

9

constraints in 𝜙 and 𝜓.

(2) Let 𝐺 be the constraint graph of 𝜙. Decompose 𝐺 into subgraphs 𝐺1 , . . . , 𝐺𝑇 while only
discarding a 𝑜(1)-fraction of edges such that each subgraph 𝐺𝑖 satisfies “some property”.
For each subgraph 𝐺𝑖 , we define 𝜙𝑖 to be the subinstance of 𝜙 corresponding to the
constraints in 𝐺𝑖 . The goal is to identify a local property that the 𝐺𝑖’s satisfy so that (1) we
can perform the decomposition efficiently, and (2) for each subinstance 𝜙𝑖 , we can “recover
𝑦∗ locally”, i.e., we can find an assignment 𝑦(𝑖) to the 2-XOR instance 𝜙𝑖 that is consistent
with the planted assignment 𝑦∗.

(3) As each 𝑦(𝑖) is consistent with 𝑦∗, the constraints in 𝜙𝑖 violated by 𝑦(𝑖) must be precisely the
corrupted constraints in 𝜙𝑖 . Hence, for the constraints that appear in one of the 𝜙𝑖’s, we
have determined exactly which ones are corrupted.

(4) We have thus determined, for all but 𝑜(𝑚) constraints, precisely which ones are corrupted
in the original 𝑘-XOR instance 𝜓. (Note that this is the stronger guarantee that we achieve in
Theorem 3.) By discarding the corrupted constraints along with the 𝑜(𝑚) constraints where
we “give up”, we thus obtain a system of 𝑘-sparse linear equations with 𝑚(1 − 𝜂 − 𝑜(1))
equations that has at least one solution (namely 𝑥∗), and so by solving it we obtain an 𝑥
with val𝜓(𝑥) ≥ 1 − 𝜂 − 𝑜(1).

2.3 Information-theoretic exact recovery from relative cut approximation

Following Strategy 1, the first technical question to now ask is: given a noisy 2-XOR instance 𝜙 with
𝑛 variables, 𝑚 ≫ 𝑛 constraints, and planted assignment 𝑥∗, what conditions do we need to impose
on the constraint graph 𝐺 so that we can recover 𝑥∗ (up to a sign) exactly? As a natural first step, we
investigate what conditions are required so that we can accomplish this information-theoretically.

Fact 2.2. Let 𝐺 = (𝑉, 𝐸𝐺) be an 𝑛-vertex graph, and let 𝐻 = (𝑉, 𝐸𝐻) be a subgraph of 𝐺 where 𝐸𝐻 ⊆ 𝐸𝐺.
Let 𝐿𝐺 , 𝐿𝐻 be the unnormalized Laplacians of 𝐺 and 𝐻. Consider a noisy planted 2-XOR instance 𝜙 on
𝐺 with planted assignment 𝑥∗ ∈ {−1, 1}𝑛 (Definition 1.3), and suppose 𝐸𝐻 is the set of corrupted edges.
Suppose that for every 𝑥 ∈ {−1, 1}𝑛 \ {®1,−®1}, it holds that 𝑥⊤𝐿𝐻𝑥 < 1

2𝑥
⊤𝐿𝐺𝑥. Then, 𝑥∗ and −𝑥∗ are the

only two optimal assignments to 𝜙.

Note that the condition 𝑥⊤𝐿𝐻𝑥 < 1
2𝑥
⊤𝐿𝐺𝑥 for 𝑥 ∉ {®1,−®1} implies that 𝐺 is connected, as

otherwise 𝐿𝐺 has a kernel of dimension ≥ 2, which would contradict this assumption.

Proof. Let 𝑥 ∈ {−1, 1}𝑛 be any assignment. We wish to show that 𝜙(𝑥) is uniquely maximized when
𝑥 = 𝑥∗ ,−𝑥∗. We observe that

𝜙(𝑥) =
∑
(𝑖 , 𝑗)∈𝐸𝐺

𝑥𝑖𝑥 𝑗𝑏𝑖 𝑗 =
∑
(𝑖 , 𝑗)∈𝐸𝐺

𝑥𝑖𝑥 𝑗𝑥
∗
𝑖 𝑥
∗
𝑗 − 2

∑
(𝑖 , 𝑗)∈𝐸𝐻

𝑥𝑖𝑥 𝑗𝑥
∗
𝑖 𝑥
∗
𝑗 .

Hence, by replacing 𝑥 with 𝑥 ⊙ 𝑥∗, without loss of generality we can assume that 𝑥∗ = ®1. Now, let
𝐷𝐺 , 𝐷𝐻 and 𝐴𝐺 , 𝐴𝐻 be the degree and adjacency matrices of 𝐺 and 𝐻, so that 𝐿𝐺 = 𝐷𝐺 − 𝐴𝐺 and

10

𝐿𝐻 = 𝐷𝐻 − 𝐴𝐻 . We thus have that

2𝜙(𝑥) = 𝑥⊤𝐴𝐺𝑥 − 2𝑥⊤𝐴𝐻𝑥 = 𝑥⊤(𝐷𝐺 − 2𝐷𝐻)𝑥 − 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥
= 2(|𝐸𝐺 | − 2|𝐸𝐻 |) − 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥 .

By assumption, if 𝑥 ∈ {−1, 1}𝑛 and 𝑥 ≠ ®1,−®1, then we have that 𝑥⊤(𝐿𝐺 − 2𝐿𝐻)𝑥 > 0, which implies
that 𝜙(𝑥) < 𝜙(®1), and finishes the proof. □

Fact 2.2 shows that if we can argue that 𝑥⊤𝐿𝐻𝑥 < 1
2𝑥
⊤𝐿𝐺𝑥 for every 𝑥 ∈ {−1, 1}𝑛 \ {®1,−®1}, then

at least information-theoretically we can uniquely determine 𝑥∗. Observe that if we view 𝑥 as
the signed indicator vector of a subset 𝑆 ⊆ [𝑛], then 𝑥⊤𝐿𝐺𝑥 = 𝐸𝐺(𝑆, �̄�), the number of edges in 𝐺
crossing the cut defined by 𝑆, and similarly for 𝑥⊤𝐿𝐻𝑥. So, one can view the condition in Fact 2.2 as
saying that the subgraph 𝐻 needs to be a (one-sided) cut sparsifier of 𝐺, i.e., it needs to roughly
preserve the size of all cuts in 𝐺. The following relative cut approximation result of Karger [Kar94]
shows that this will hold with high probability when 𝐻 is a randomly chosen subset of 𝐺, provided
that the minimum cut in 𝐺 is not too small.

Lemma 2.3 (Relative cut approximation [Kar94]). Let 𝜂 ∈ (0, 1). Suppose an 𝑛-vertex graph 𝐺 has
min-cut 𝑐min ≥ 12 log 𝑛

𝜂 , and suppose 𝐻 is a subgraph of 𝐺 by selecting each edge with probability 𝜂. Then,
with probability 1 − 𝑜(1),

(1 − 𝛿)𝑥⊤𝐿𝐺𝑥 ≤
1
𝜂
· 𝑥⊤𝐿𝐻𝑥 ≤ (1 + 𝛿)𝑥⊤𝐿𝐺𝑥 , for all 𝑥 ∈ {−1, 1}𝑛

for 𝛿 =

√
12 log 𝑛
𝜂𝑐min

.

With Lemma 2.3 and Fact 2.2 in hand, we now have at least an information-theoretic algorithm
with the same guarantees as in Theorem 3. We follow the strategy highlighted in Strategy 1. To
decompose the graph 𝐺, we recursively find a min cut and split if it is below the threshold in
Lemma 2.3. Notice that this discards at most 𝑂(𝑛 log 𝑛) = 𝑜(𝑚) constraints (for 𝑚 ≫ 𝑛 log 𝑛), and
these are precisely the constraints that we “give up” on and do not determine which ones are
corrupted. Then, with high probability the local optimal assignment is consistent with 𝑥∗, and
so locally we have learned exactly which constraints are corrupted. Hence, we have produced
two sets of constraints: 𝐸1, the 𝑜(1)-fraction of edges discarded during the decomposition, and
𝐸2 = (𝐺 \ 𝐸1) ∩ ℰ𝜙, which is exactly the set of corrupted constraints after discarding 𝐸1. We note
that it is a priori not obvious that this is achievable even for an exponential-time algorithm, as even
though the 2𝑛-time brute force algorithm will find the best assignment 𝑥 to 𝜙, it may not necessarily
be 𝑥∗, and so the set of constraints violated by the globally optimal assignment might not be ℰ𝜙.

2.4 Efficient exact recovery from relative spectral approximation

Information-theoretic uniqueness implies that the planted assignment 𝑥∗ is the unique optimal
assignment. But can we efficiently recover 𝑥∗? One natural approach is to simply solve the basic
SDP relaxation of 𝜙: for 𝑋 ∈ ℝ𝑛×𝑛 , maximize 𝜙(𝑋) B ∑

(𝑖 , 𝑗)∈𝐺 𝑋𝑖 𝑗𝑏𝑖 𝑗 subject to 𝑋 ⪰ 0, 𝑋 = 𝑋⊤, and

11

diag(𝑋) = 𝕀. If the optimal SDP solution is simply 𝑋 = 𝑥∗𝑥∗⊤, then we trivially recover 𝑥∗ from the
SDP solution. We thus ask: does the min cut condition of Fact 2.2 and Lemma 2.3 imply that 𝑥∗𝑥∗⊤

is the unique optimal solution to the SDP? Namely, is the min cut condition sufficient for the SDP to
certify that 𝑥∗ is the unique optimal assignment?

Unfortunately, it turns out that this is not the case, and we give a counterexample in Appendix A.
We thus require a stronger condition than the min cut one in order to obtain efficient algorithms.
Nonetheless, an analogue of Fact 2.2 continues to hold, although now we require a stronger version
that holds for all SDP solutions 𝑋, not just 𝑥 ∈ {−1, 1}𝑛 . This stronger statement shows the SDP can
certify that 𝑥∗ is the unique optimal assignment if and only if a certain relative spectral approximation
guarantee holds for the corrupted edges.

Lemma 2.4 (SDP-certified uniqueness from relative spectral approximation). Let 𝐺 = (𝑉, 𝐸𝐺) be
an 𝑛-vertex connected graph, and let 𝐻 = (𝑉, 𝐸𝐻) be a subgraph of 𝐺 where 𝐸𝐻 ⊆ 𝐸𝐺. Let 𝐿𝐺 , 𝐿𝐻 be
the unnormalized Laplacians of 𝐺 and 𝐻. Consider a noisy planted 2-XOR instance 𝜙 on 𝐺 with planted
assignment 𝑥∗ ∈ {−1, 1}𝑛 (Definition 1.3), and suppose 𝐸𝐻 is the set of corrupted edges.

The SDP relaxation of 𝜙 satisfies

max
𝑋⪰0, 𝑋=𝑋⊤ , diag(𝑋)=𝕀

𝜙(𝑋) = 𝜙(𝑥∗) = |𝐸𝐺 | − 2|𝐸𝐻 | ,

where 𝑋 = 𝑥∗𝑥∗⊤ is the unique optimum if and only if 𝐺 and 𝐻 satisfy

⟨𝑋, 𝐿𝐻⟩ <
1
2 ⟨𝑋, 𝐿𝐺⟩ , ∀𝑋 ⪰ 0, 𝑋 = 𝑋⊤ , diag(𝑋) = 𝕀, 𝑋 ≠ ®1®1⊤ .

Proof. Recall that each 𝑒 = {𝑖 , 𝑗} ∈ 𝐸 corresponds to a constraint 𝑥𝑖𝑥 𝑗 = 𝑏𝑒 where 𝑏𝑒 = 𝑥∗
𝑖
𝑥∗
𝑗

if
𝑒 ∈ 𝐸𝐺 \ 𝐸𝐻 and 𝑏𝑒 = −𝑥∗

𝑖
𝑥∗
𝑗

if 𝑒 ∈ 𝐸𝐻 , meaning that 𝜙(𝑋) = ∑
{𝑖 , 𝑗}∈𝐺\𝐸 𝑋𝑖 𝑗𝑥

∗
𝑖
𝑥∗
𝑗
− ∑

{𝑖 , 𝑗}∈𝐸 𝑋𝑖 𝑗𝑥
∗
𝑖
𝑥∗
𝑗
.

Without loss of generality, we can assume that 𝑥∗ = ®1 and that 𝜙(𝑋) = 1
2 ⟨𝑋, 𝐴𝐺 − 2𝐴𝐻⟩, where 𝐴𝐺,

𝐴𝐻 are the adjacency matrices of 𝐺 and 𝐻.
Note that 𝐿𝐺 = 𝐷𝐺 −𝐴𝐺 and 𝐿𝐻 = 𝐷𝐻 −𝐴𝐻 , and tr(𝐷𝐺) = 2|𝐸𝐺 |, tr(𝐷𝐻) = 2|𝐸𝐻 |. For any 𝑋 ⪰ 0

with diag(𝑋) = 𝕀,

⟨𝑋, 𝐴𝐺 − 2𝐴𝐻⟩ = ⟨𝑋, (𝐷𝐺 − 𝐿𝐺) − 2(𝐷𝐻 − 𝐿𝐻)⟩ = 2(|𝐸𝐺 | − 2|𝐸𝐻 |) + ⟨𝑋, 2𝐿𝐻 − 𝐿𝐺⟩ .

Suppose ⟨𝑋, 𝐿𝐻⟩ < 1
2 ⟨𝑋, 𝐿𝐺⟩ for all 𝑋 ≠ ®1®1⊤. Since ⟨®1®1⊤ , 𝐿𝐺⟩ = ⟨®1®1⊤ , 𝐿𝐻⟩ = 0, we have that the

maximum of 1
2 ⟨𝑋, 𝐴𝐺 − 2𝐴𝐻⟩ is |𝐸𝐺 | − 2|𝐸𝐻 | and 𝑋 = ®1®1⊤ is the unique maximum.

For the other direction, suppose there is an 𝑋 ≠ ®1®1⊤ such that ⟨𝑋, 𝐿𝐻⟩ ≥ 1
2 ⟨𝑋, 𝐿𝐺⟩. Then,

𝜙(𝑋) ≥ |𝐸𝐺 | − 2|𝐸𝐻 | = 𝜙(®1®1⊤), meaning that ®1®1⊤ is not the unique optimum. □

Relative spectral approximation from uniform subsamples. We now come to a key technical
observation. Suppose that 𝐻 is a spectral sparsifier of 𝐺, so that 𝑣⊤(1𝜂𝐿𝐻)𝑣 is (1 ± 𝛿)𝑣⊤𝐿𝐺𝑣 for any
𝑣 ∈ ℝ𝑛 . Then clearly ⟨𝑋, 𝐿𝐻⟩ < 1

2 ⟨𝑋, 𝐿𝐺⟩ if 𝜂 < 1/2 and 𝛿 = 𝑜(1), as we can write 𝑋 =
∑𝑛
𝑖=1 𝜆𝑖𝑣𝑖𝑣

⊤
𝑖

,
and

⟨𝑋, 𝐿𝐻⟩ =
𝑛∑
𝑖=1

𝜆𝑖𝑣
⊤
𝑖 𝐿𝐻𝑣𝑖 ≤ 𝜂(1 + 𝛿)

𝑛∑
𝑖=1

𝜆𝑖𝑣
⊤
𝑖 𝐿𝐺𝑣𝑖 = 𝜂(1 + 𝛿) · ⟨𝑋, 𝐿𝐺⟩ <

1
2 ⟨𝑋, 𝐿𝐺⟩ .

12

Furthermore, note that above we only required that 𝐿𝐻 ⪯ 𝜂(1 + 𝛿)𝐿𝐺, i.e., we only use the upper
part of the spectral approximation.

We are now ready to state the key relative spectral approximation lemma. We observe that
when 𝐻 is a uniformly random subsample of 𝐺 and 𝐺 has a spectral gap and minimum degree
polylog(𝑛), then with high probability 𝐿𝐻 ⪯ 𝜂(1 + 𝛿)𝐿𝐺. We note that, while we do not provide a
formal proof, the same argument using the lower tail of Matrix Chernoff can also establish a lower
bound on 𝐿𝐻 , which proves that 𝐻 is indeed a spectral sparsifier of 𝐺.

Lemma 2.5 (Relative spectral approximation from uniform subsamples). Let 𝜂 ∈ (0, 1). Suppose
𝐺 = (𝑉, 𝐸) is an 𝑛-vertex graph with minimum degree 𝑑min (self-loops allowed) and spectral gap 𝜆2(𝐿𝐺) = 𝜆

such that 𝑑min𝜆 > 18
𝜂 log 𝑛, where 𝐿𝐺 := 𝐷

−1/2
𝐺

𝐿𝐺𝐷
−1/2
𝐺

is the normalized Laplacian. Let 𝐻 be a subgraph
of 𝐺 obtained by selecting each edge with probability 𝜂. Then, with probability at least 1 − 𝑂(𝑛−2),

𝐿𝐻 ⪯ 𝜂(1 + 𝛿) · 𝐿𝐺

for 𝛿 =

√
18 log 𝑛
𝜂𝑑min𝜆

.

Proof. First, note that ®1 lies in the kernel of both 𝐿𝐺 and 𝐿𝐻 , and because of the spectral gap of 𝐺,
dim(ker(𝐿𝐺)) = 1. Therefore, recalling that 𝐿𝐺 = 𝐷

1/2
𝐺
𝐿𝐺𝐷

1/2
𝐺

, it suffices to prove that(𝐿†𝐺)1/2𝐷−1/2
𝐺

𝐿𝐻𝐷
−1/2
𝐺
(𝐿†𝐺)

1/2

2
≤ 𝜂(1 + 𝛿) .

Here 𝐿†
𝐺

is the pseudo-inverse of 𝐿𝐺, and ∥𝐿†
𝐺
∥2 ≤ 1/𝜆 because 𝐺 has spectral gap 𝜆. We will write

𝑋 B (𝐿†
𝐺
)1/2𝐷−1/2

𝐺
𝐿𝐻𝐷

−1/2
𝐺
(𝐿†
𝐺
)1/2 for convenience.

Note that 𝐿𝐺 =
∑
𝑒∈𝐸 𝐿𝑒 , where 𝐿𝑒 ⪰ 0 is the Laplacian of a single edge 𝑒 and ∥𝐿𝑒 ∥2 = 2. Let

𝑋𝑒 = (𝐿†
𝐺
)1/2𝐷−1/2

𝐺
𝐿𝑒𝐷

−1/2
𝐺
(𝐿†
𝐺
)1/2 if 𝑒 is chosen in 𝐻 and 0 otherwise. Then, 𝑋 =

∑
𝑒∈𝐸 𝑋𝑒 and

∥𝔼[𝑋]∥2 = 𝜂. Moreover, each 𝑋𝑒 satisfies 𝑋𝑒 ⪰ 0 and ∥𝑋𝑒 ∥2 ≤ ∥𝐿†𝐺∥2 · ∥𝐷
−1
𝐺
∥2 · ∥𝐿𝑒 ∥2 ≤ 2

𝑑min𝜆
. Thus,

by Matrix Chernoff (Fact 3.3),

Pr [∥𝑋∥2 ≥ 𝜂(1 + 𝛿)] ≤ 𝑛 · exp
(
−𝛿

2𝜂

3 ·
𝑑min𝜆

2

)
≤ 𝑂(𝑛−2)

as long as 18 log 𝑛
𝜂𝑑min𝜆

≤ 𝛿2 ≤ 1. □

Finishing the algorithm. By Lemmas 2.4 and 2.5, we can thus recover 𝑥∗ exactly if the constraint
graph 𝐺 of 𝜙 has a nontrivial spectral gap and minimum degree 𝑑min ≥ polylog(𝑛). To finish the
implementation of Strategy 1, we thus need to explain how to algorithmically decompose any
graph 𝐺 into subgraphs 𝐺1 , . . . , 𝐺𝑇 , each with reasonable min degree and nontrivial spectral gap,
while only discarding a 𝑜(1)-fraction of the edges in 𝐺. This is the well-studied task of expander
decomposition, for which we appeal to known results [KVV04, ST11, Wul17, SW19].

This completes the high-level description of the algorithm in the even 𝑘 case. Below, we
summarize the steps of the final algorithm.

13

Algorithm 1 (Algorithm for 𝑘-XOR for even 𝑘).

Input: 𝑘-XOR instance 𝜓 on 𝑛 variables with 𝑚 constraints and constraint hypergraphℋ .

Output: Disjoint sets of constraints𝒜1 ,𝒜2 ⊆ ℋ such that |𝒜1 | ≤ 𝑜(𝑚) and only depends on
ℋ , and𝒜2 = (ℋ \ 𝒜1) ∩ ℰ𝜓.

Operation:

1. Construct the 2-XOR instance 𝜙 with constraint graph 𝐺, as described in Defini-
tion 2.1.

2. Remove small-degree vertices and run expander decomposition on 𝐺 to produce
expanders 𝐺1 , . . . , 𝐺𝑇 . Set𝒜1 to be the set of discarded constraints of size 𝑜(𝑚).

3. For each 𝑖 ∈ [𝑇], solve the basic SDP on the subinstance 𝜙𝑖 defined by the constraints
𝐺𝑖 . Let𝒜(𝑖)2 denote the set of constraints violated by the optimal local SDP solution.

4. Output𝒜1 and𝒜2 =
⋃𝑇
𝑖=1𝒜

(𝑖)
2 .

2.5 The case of odd 𝑘

We are now ready to briefly explain the differences in the case when 𝑘 is odd. For the purposes of
this overview, we will focus only on the case of 𝑘 = 3. Recall that we are given a 3-XOR instance
𝜓, specified by a 3-uniform hypergraphℋ ⊆

([𝑛]
3
)
, as well as the right-hand sides 𝑏𝐶 ∈ {−1, 1} for

𝐶 ∈ ℋ , where 𝑏𝐶 = 𝑥∗
𝐶

with probability 1 − 𝜂 and 𝑏𝐶 = −𝑥∗
𝐶

otherwise and 𝑥∗ ∈ {−1, 1}𝑛 is the
planted assignment.

We now produce a 4-XOR instance using the well-known “Cauchy-Schwarz trick” from CSP
refutation [CGL07]. The general idea is to, for any pair of clauses (𝐶, 𝐶′) that intersect, add
the “derived constraint” 𝑥𝐶𝑥𝐶′ = 𝑏𝐶𝑏𝐶′ to the 4-XOR instance. Notice that if, e.g., 𝐶 = {𝑢, 𝑖, 𝑗}
and 𝐶′ = {𝑢, 𝑖′, 𝑗′}, then 𝑥𝑢 appears twice on the left-hand side, and thus the constraint is
𝑥𝑖𝑥 𝑗𝑥𝑖′𝑥 𝑗′ = 𝑏𝐶𝑏𝐶′. Given this 4-XOR, we produce a 2-XOR following a similar strategy as in
Definition 2.1. The above description omits many technical details, which we handle in Sections 5
and 6; we remark here that these are the same issues that arise in the CSP refutation case, and we
handle them using the techniques in [GKM22].

We have thus produced a 2-XOR instance 𝜙 that is noisy but not in the sense of Definition 1.3.
Indeed, each edge 𝑒 in 𝜙 is “labeled” by a pair (𝐶, 𝐶′) of constraints in 𝜓, and 𝑒 is noisy if and only
if exactly one of (𝐶, 𝐶′) is, and so the noise is not independent across constraints. Nonetheless, we
can still follow the general strategy as in Algorithm 1. The main technical challenge is to argue
that the relative spectral approximation guarantee of Lemma 2.5 holds even when the noise has
the aforementioned correlations, and we do this in Lemma 6.7. This allows us to recover, for
most intersecting pairs (𝐶, 𝐶′), the quantity 𝜉(𝐶)𝜉(𝐶′), where 𝜉(𝐶) = −1 if 𝐶 is corrupted, and
is 1 otherwise, i.e., 𝑏𝐶 = 𝑥∗

𝐶
𝜉(𝐶); we do not determine 𝜉(𝐶)𝜉(𝐶′) if and only if the pair (𝐶, 𝐶′)

corresponds to an edge 𝑒 that was discarded during the expander decomposition.

14

However, we are not quite done, as we would like to recover 𝜉(𝐶) for most 𝐶, but we only know
𝜉(𝐶)𝜉(𝐶′) for most intersecting pairs (𝐶, 𝐶′). Let us proceed by assuming that we know 𝜉(𝐶)𝜉(𝐶′)
for all intersecting pairs (𝐶, 𝐶′), and then we will explain how to do a similar decoding process
when we only know most pairs. Let us fix a vertex 𝑢, and letℋ𝑢 denote the set of 𝐶 ∈ ℋ containing
𝑢. Now, we know 𝜉(𝐶)𝜉(𝐶′) for all 𝐶, 𝐶′ ∈ ℋ𝑢 , and so by Gaussian elimination we can determine
𝜉(𝐶) for all 𝐶 ∈ ℋ𝑢 up to a global sign. Now, we know that the vector {𝜉(𝐶)}𝐶∈ℋ𝑢 should have
roughly 𝜂|ℋ𝑢 | entries that are −1. So, choosing the global sign that results in fewer −1’s, we thus
correctly determine 𝜉(𝐶) for all 𝐶 ∈ ℋ𝑢 . We can then repeat this process for each choice of 𝑢 to
decode 𝜉(𝐶) for all 𝐶.

Of course, we only actually know 𝜉(𝐶)𝜉(𝐶′) for most intersecting pairs (𝐶, 𝐶′). This implies
that for most choices of 𝑢, the graph 𝐺𝑢 with verticesℋ𝑢 and edges (𝐶, 𝐶′) if we know 𝜉(𝐶)𝜉(𝐶′)
is obtained from the complete graph on vertices ℋ𝑢 and deleting some 𝑜(1)-fraction of edges.
This implies that 𝐺𝑢 has a connected component of size (1 − 𝑜(1))|ℋ𝑢 |, and again via Gaussian
elimination and picking the proper global sign, we can determine 𝜉(𝐶) on this large connected
component. By repeating this process for each choice of 𝑢, we thus recover 𝜉(𝐶) for most 𝑢.

2.6 Organization

The rest of the paper is organized as follows. In Section 3, we introduce some notation, and recall
the various concentration inequalities and facts that we will use in our proofs. In Section 4, we prove
Theorem 2 from Theorem 3 by reducing semirandom planted CSPs to noisy XOR. In Sections 5
and 6, we prove Theorem 3; Section 5 handles the reduction from 𝑘-XOR to “bipartite 𝑘-XOR”, and
then Section 6 gives the algorithm for the bipartite 𝑘-XOR case.

3 Preliminaries

Notation. Given a graph 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges (including self-loops7), we
write 𝐷𝐺 ∈ ℝ𝑛×𝑛 as the diagonal degree matrix, 𝐴𝐺 ∈ ℝ𝑛×𝑛 as the adjacency matrix, and
𝐿𝐺 = 𝐷𝐺 − 𝐴𝐺 as the unnormalized Laplacian (note that the self-loops do not contribute to 𝐿𝐺).
Furthermore, we write 𝐿𝐺 = 𝐷

−1/2
𝐺

𝐿𝐺𝐷
−1/2
𝐺

to be the normalized Laplacian, and denote its eigenvalues
as 0 = 𝜆1(𝐿𝐺) ≤ 𝜆2(𝐿𝐺) ≤ · · · ≤ 𝜆𝑛(𝐿𝐺) ≤ 2.

For any subset 𝑆 ⊆ 𝑉 , we denote 𝐺[𝑆] as the subgraph of 𝐺 induced by 𝑆, and 𝐺{𝑆} as the
induced subgraph 𝐺[𝑆] but with self-loops added so that any vertex in 𝑆 has the same degree as its
degree in 𝐺.

Definition 3.1 (Uniform hypergraphs). A 𝑘-uniform hypergraphℋ on 𝑛 vertices is a collectionℋ
of subsets of [𝑛] of size exactly 𝑘. For a set 𝑄 ⊆ [𝑛], we define deg(𝑄) := |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}|.

7 Each self-loop contributes 1 to the degree of a vertex.

15

3.1 Concentration inequalities

Fact 3.2 (Chernoff bound). Let 𝑋1 , . . . , 𝑋𝑛 be independent random variables taking values in {0, 1}. Let
𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜇 = 𝔼[𝑋]. Then, for any 𝛿 ∈ [0, 1],

Pr [|𝑋 − 𝜇| ≥ 𝛿𝜇] ≤ 2𝑒−𝛿2𝜇/3 .

Fact 3.3 (Matrix Chernoff [Tro15, Theorem 5.1.1]). Let 𝑋1 , . . . , 𝑋𝑛 ∈ ℝ𝑑×𝑑 be independent, random,
symmetric matrices such that 𝑋𝑖 ⪰ 0 and 𝜆max(𝑋𝑖) ≤ 𝑅 almost surely. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜇 =

𝜆max(𝔼[𝑋]). Then, for any 𝛿 ∈ [0, 1],

Pr [𝜆max(𝑋) ≥ (1 + 𝛿)𝜇] ≤ 𝑑 · exp
(
−𝛿

2𝜇

3𝑅

)
.

3.2 Graph pruning and expander decomposition

It is a standard result that given a graph with 𝑚 edges and average degree 𝑑, one can delete vertices
such that the resulting graph has minimum degree 𝜀𝑑 and at least (1 − 2𝜀)𝑚 edges. We include a
short proof for completeness.

Lemma 3.4 (Graph pruning). Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑 and 𝑚 = 𝑛𝑑
2 edges, and let

𝜀 ∈ (0, 1/2). There is an algorithm that deletes vertices of 𝐺 such that the resulting graph has minimum
degree 𝜀𝑑 and at least (1 − 2𝜀)𝑚 edges.

Proof. The algorithm is simple: repeatedly remove any vertex with degree < 𝜀𝑑. First, we show by
induction that each deletion cannot decrease the average degree. Suppose there are 𝑛′ ≤ 𝑛 vertices
left and average degree 𝑑′ ≥ 𝑑. Then, after deleting a vertex 𝑢 with degree 𝑑𝑢 < 𝜀𝑑, the average
degree becomes 𝑛′𝑑′−2𝑑𝑢

𝑛′−1 > 𝑛′𝑑−2𝜀𝑑
𝑛′−1 = 𝑑 · 𝑛′−2𝜀

𝑛′−1 . Thus, for 𝜀 < 1/2, the average degree is always at least
𝑑. Furthermore, since the algorithm can delete at most 𝑛 vertices, it can delete at most 𝜀𝑑𝑛 = 2𝜀𝑚
edges. □

We will also need an algorithm that partitions a graph into expanding clusters such that total
number of edges across different clusters is small. Expander decomposition has been developed
in a long line of work [KVV04, ST11, Wul17, SW19] and has a wide range of applications. For
our algorithm, we only require a very simple expander decomposition that recursively applies
Cheeger’s inequality.

Fact 3.5 (Expander decomposition). Given a (multi)graph 𝐺 = (𝑉, 𝐸) with 𝑚 edges and a parameter
𝜀 ∈ (0, 1), there is a polynomial-time algorithm that finds a partition of 𝑉 into 𝑉1 , . . . , 𝑉𝑇 such that
𝜆2(𝐿𝐺{𝑉𝑖}) ≥ Ω(𝜀2/log2 𝑚) for each 𝑖 ∈ [𝑇] and the number of edges across partitions is at most 𝜀𝑚.

Proof. Fix𝜆 = 𝑐𝜀2/log2 𝑚 for some constant 𝑐 to be chosen later. The algorithm is very simple. Given
a graph 𝐺 = (𝑉, 𝐸) (with potentially parallel edges and self-loops), if 𝜆2(𝐿𝐺) < 𝜆, then by Cheeger’s
inequality we can efficiently find a subset 𝑆 ⊆ 𝑉 with vol(𝑆) ≤ vol(𝑆) such that |𝐸(𝑆,𝑆)|vol(𝑆) <

√
2𝜆. Here

vol(𝑆) B ∑
𝑣∈𝑆 deg(𝑣). Then, we cut along 𝑆, add self-loops to the induced subgraphs 𝐺[𝑆] and

16

𝐺[𝑆] so that the vertex degrees remain the same (each self-loop contributes 1 to the degree). This
produces two graphs 𝐺{𝑆} and 𝐺{𝑆}, and we recurse on each. By construction, in the end we will
have partitions 𝑉1 , . . . , 𝑉𝑇 where either 𝑉𝑖 is either a single vertex or satisfies 𝜆2(𝐿𝐺{𝑉𝑖}) ≥ 𝜆.

We now bound the number of edges cut via a charging argument. Consider the “half-edges” in
the graph, where each edge (𝑢, 𝑣) contributes one half-edge to 𝑢 and one to 𝑣, and each self-loop
counts as one half-edge. Then, vol(𝑆) equals the number of half-edges attached to 𝑆. Now, imagine
we have a counter for each half-edge, and every time we cut along 𝑆 we add

√
2𝜆 to each half-edge

attached to 𝑆 (the smaller side). Since 𝐸(𝑆, 𝑆) <
√

2𝜆 · vol(𝑆), it follows that the number of edges
cut is at most the total sum of the counters. On the other hand, each half-edge can appear on the
smaller side of the cut at most log2 2𝑚 times, as each time the half-edge is on the smaller side of
the cut, vol(𝑆) decreases by at least a factor of 2, and vol([𝑛]) = 2𝑚. So, the total sum must be
≤
√

2𝜆 · 2𝑚 log2 2𝑚 ≤ 𝜀𝑚 for a small enough constant 𝑐. □

4 From Planted CSPs to Noisy XOR

In this section, we show how to use Theorem 3 to prove Theorem 2. Before we delve into the formal
proof, we will first explain the reduction given in [FPV15]. We begin with some definitions.

Setup. Let Ψ be sampled from Ψ(®ℋ , 𝑥∗ , 𝑄), where 𝑥∗ ∈ {−1, 1}𝑛 , ®ℋ ⊆ [𝑛]𝑘 , and 𝑄 is a planting
distribution for the predicate 𝑃. Let 𝑄(𝑦) = ∑

𝑆⊆[𝑘] �̂�(𝑆)
∏

𝑖∈𝑆 𝑦𝑖 be the Fourier decomposition of
𝑄, where �̂�(𝑆) = 1

2𝑘
∑
𝑦∈{−1,1}𝑘 𝑄(𝑦)

∏
𝑖∈𝑆 𝑦𝑖 ∈ [−2−𝑘 , 2−𝑘]. Recall (Definition 1.2) that Ψ is specified

by a collection ®ℋ ⊆ [𝑛]𝑘 of scopes, along with a vector ℓ (®𝐶) ∈ {−1, 1}𝑘 for each ®𝐶 ∈ ®ℋ of literal
negations.

Definition 4.1. Let 𝑆 ⊆ [𝑘] be nonempty. Let 𝜓(𝑆,+) be the |𝑆 |-XOR instance obtained by, for each
constraint ®𝐶 in Ψ, adding the constraint

∏
𝑖∈𝑆 𝑥 ®𝐶𝑖 =

∏
𝑖∈𝑆 ℓ (®𝐶)𝑖 . Similarly, let 𝜓(𝑆,−) have constraints∏

𝑖∈𝑆 𝑥 ®𝐶𝑖 = −
∏

𝑖∈𝑆 ℓ (®𝐶)𝑖 .

We make use of the following simple claim.

Claim 4.2. For each nonempty 𝑆 ⊆ [𝑘], 𝜓(𝑆,+) is a noisy |𝑆 |-XOR instance (Definition 1.3) with
planted assignment 𝑥∗ and noise 𝜂 = 1

2 (1 − 2𝑘�̂�(𝑆)). Similarly, 𝜓(𝑆,−) is a noisy |𝑆 |-XOR instance
with planted assignment 𝑥∗ and noise 𝜂 = 1

2 (1 + 2𝑘�̂�(𝑆)).

Proof. For each ®𝐶, the literal negation ℓ (®𝐶) is sampled such that Pr[ℓ (®𝐶) = ℓ] = 𝑄(ℓ ⊙ 𝑥∗®𝐶), where ⊙
denotes the element-wise product. This is equivalent to sampling 𝑦 ← 𝑄 and setting ℓ (®𝐶) = 𝑦 ⊙ 𝑥∗®𝐶 .

It thus follows that the probability that the constraint ®𝐶 produces a corrupted constraint in 𝜓(𝑆,+) is

Pr
𝑦←𝑄

[∏
𝑖∈𝑆

𝑦𝑖 = −1

]
=

1
2

(
1 −𝔼𝑦←𝑄

[∏
𝑖∈𝑆

𝑦𝑖

])
=

1
2 (1 − 2𝑘�̂�(𝑆)) ,

and is independent for each ®𝐶. A similar calculation handles the case of 𝜓(𝑆,−). □

17

With the above observations in hand, we can now easily describe the reduction in [FPV15]. First,
their reduction requires the algorithm to have a description of the distribution 𝑄. Given 𝑄, the
algorithm then finds the smallest 𝑆 such that �̂�(𝑆) is nonzero. Since they know the exact value of
�̂�(𝑆), they can determine its sign correctly. Suppose that �̂�(𝑆) > 0 (the other case is similar). Then,
by solving the |𝑆 |-XOR instance 𝜓(𝑆,+), they recover the planted assignment of 𝜓(𝑆,+) exactly.8 But
this planted assignment is precisely 𝑥∗, and so they have also succeeded in recovering the planted
assignment of 𝜓.

The aforementioned reduction clearly does not generalize to the semirandom setting, as in
general the subinstances 𝜓(𝑆,±) will not uniquely determine 𝑥∗. Furthermore, their reduction
additionally requires knowing 𝑄, and while it is not too unreasonable to assume this for random
planted CSPs (as it is perhaps natural for the algorithm to know the distribution), in the semirandom
setting this assumption is a bit strange because we want to view semirandom CSPs as “moving
towards” worst case ones.

We now prove Theorem 2 from Theorem 3.

Proof of Theorem 2 from Theorem 3. We will present the proof in three steps. First, like [FPV15], we
will assume that the algorithm is given a description of 𝑄 and we will assume that each |�̂�(𝑆)| is
either 0 or at least 2−𝑘𝜀 > 0.9 Then, we will remove this assumption provided that 𝑄(𝑦) > 2𝜀 for all
𝑦 with 𝑄(𝑦) > 0, i.e., the every 𝑦 in the support of 𝑄 has some minimum probability. Finally, we
will remove the last assumption.

Step 1: the proof when we are given 𝑸. For each 𝑆 where �̂�(𝑆) ≠ 0, we construct the instance
𝜓(𝑆,+) (if �̂�(𝑆) > 0) or 𝜓(𝑆,−) (if �̂�(𝑆) < 0). We then apply10 Theorem 3 to each such instance. Note
that by Claim 4.2, the instance has noise 𝜂 = 1

2 (1 − 2𝑘 |�̂�(𝑆)|) ≤ 1
2 (1 − 𝜀) (because we picked the

correct sign when choosing between 𝜓(𝑆,+) and 𝜓(𝑆,−), and we assume |�̂�(𝑆)| ≥ 2−𝑘𝜀). Then, since
𝑚 ≥ 𝑐𝑘𝑛𝑘/2 · log3 𝑛

𝜀9 and |𝑆 | ≤ 𝑘, by applying Theorem 3 with noise 𝜂 and parameter 𝜀′ B 2−𝑘𝜀, we
obtain sets ®ℋ (𝑆,1) (the discarded set) and ®ℋ (𝑆,2) (the corrupted constraints) where | ®ℋ (𝑆,1) | ≤ 𝜀′𝑚 and
®ℋ (𝑆,2) = (®ℋ\ ®ℋ (𝑆,1))∩ℰ𝜓(𝑆) . Hence, for every constraint ®𝐶 ∈ ®ℋ\ ®ℋ (𝑆,1), it follows that we have learned∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

, where 𝑥∗ is the planted assignment for Ψ. By setting ®ℋ ′ B ®ℋ \ ∪𝑆:�̂�(𝑆)≠0
®ℋ (𝑆,1), it follows

that we know
∏

𝑖∈𝑆 𝑥
∗
®𝐶𝑖

for all ®𝐶 ∈ ®ℋ ′ and 𝑆 with �̂�(𝑆) ≠ 0, where | ®ℋ ′ | ≥ (1 − 2𝑘𝜀′)𝑚 = (1 − 𝜀)𝑚.

We now solve the system of linear equations given by
∏

𝑖∈𝑆 𝑥
∗
®𝐶𝑖

for all ®𝐶 ∈ ®ℋ ′ and 𝑆 with

�̂�(𝑆) ≠ 0 to obtain some assignment 𝑥 ∈ {−1, 1}𝑛 . As 𝑥∗ is a valid solution to these equations, such
an 𝑥 exists, although it may not be 𝑥∗.

The final step is to argue that for every ®𝐶 ∈ ®ℋ ′, 𝑥 satisfies the constraint ®𝐶, namely that
𝑃(ℓ (®𝐶)1𝑥 ®𝐶1

, ℓ (®𝐶)2𝑥 ®𝐶2
, . . . , ℓ (®𝐶)𝑘𝑥 ®𝐶𝑘) = 1. Indeed, if this is true then we are done, as 𝑥 satisfies at

least (1 − 𝜀)𝑚 constraints in Ψ, and so we have obtained the desired assignment.
8 Here, they also treat |�̂�(𝑆)| as constant, as if |�̂�(𝑆)| ≪ 1/𝑛, say, then their algorithm would not succeed in recovering

the planted assignment on the XOR instance.
9 This assumption is implicit in [FPV15]; see the previous footnote.

10 Note that Theorem 3 only applies when |𝑆 | ≥ 2. When |𝑆 | = 1, there is a trivial algorithm; see Appendix C for details.

18

Let ®𝐶 ∈ ®ℋ ′. We know that for every 𝑆 with �̂�(𝑆) ≠ 0, we have that
∏

𝑖∈𝑆 𝑥 ®𝐶𝑖 =
∏

𝑖∈𝑆 𝑥
∗
®𝐶𝑖

. Hence,
it follows that

𝑄(ℓ (®𝐶) ⊙ 𝑥) =
∑
𝑆⊆[𝑘]

�̂�(𝑆)
∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥 ®𝐶𝑖 =
∑
𝑆⊆[𝑘]

�̂�(𝑆)
∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥∗®𝐶𝑖 = 𝑄(ℓ (
®𝐶) ⊙ 𝑥∗) > 0 ,

where the last inequality is because ℓ (®𝐶) was sampled from the distribution 𝑄(ℓ (®𝐶) ⊙ 𝑥∗), and so it
must be sampled with nonzero probability. As 𝑄 is supported only on satisfying assignments to
the predicate 𝑃, it thus follows that ℓ (®𝐶) ⊙ 𝑥∗ must also satisfy 𝑃.

Step 2: removing the dependence on 𝑸 assuming a lower bound on 𝑸(𝒚). First, we observe that
because 𝑘 is constant, we can, for each 𝑆, guess a symbol {0,+,−}, where 0 denotes, informally, the
belief that |�̂�(𝑆)| < 2−𝑘𝜀, + denotes that �̂�(𝑆) ≥ 2−𝑘𝜀, and − denotes that �̂�(𝑆) ≤ −2−𝑘𝜀. For each
of the 32𝑘 choices of guesses, i.e., functions 𝑓 : {𝑆 ⊆ [𝑘]} → {0,+,−}, we run algorithm mentioned
in the previous step. Namely, for each 𝑆: (1) if 𝑓 (𝑆) = 0, then we ignore 𝑆, (2) if 𝑓 (𝑆) = +, then we
run Theorem 3 on 𝜓(𝑆,+) to obtain ®ℋ (𝑆,1) and ®ℋ (𝑆,2), and (3) if 𝑓 (𝑆) = −, then we run Theorem 3
on 𝜓(𝑆,+) to obtain ®ℋ (𝑆,1) and ®ℋ (𝑆,2). As before, we solve the system of linear equations to obtain
some assignment 𝑥(𝑓) ∈ {−1, 1}𝑛 . By enumerating over all possible choices of 𝑓 , we obtain a list of
at most 32𝑘 = 𝑂(1) assignments. We then try all of them and output the best one.

It thus remains to show that at least one of the assignments in the list has high value. As one
may expect, this will be the assignment 𝑥(𝑓 ∗), where 𝑓 ∗ is the correct label function. Indeed, when
𝑓 = 𝑓 ∗, then we are precisely running the algorithm in Step 1, and as observed, after solving the
linear system of equations we obtain an assignment 𝑥 B 𝑥(𝑓

∗) with the following property. For
every ®𝐶 ∈ ®ℋ ′ and every 𝑆 with |�̂�(𝑆)| ≥ 2−𝑘𝜀, we have that

∏
𝑖∈𝑆 𝑥 ®𝐶𝑖 =

∏
𝑖∈𝑆 𝑥

∗
®𝐶𝑖

, where ®ℋ ′ ⊆ ®ℋ
has size ≥ (1 − 𝜀)𝑚.

Finally, we show that for every ®𝐶 ∈ ®ℋ ′, 𝑥 satisfies the constraint ®𝐶. Namely, we have
𝑃(ℓ (®𝐶)1𝑥 ®𝐶1

, ℓ (®𝐶)2𝑥 ®𝐶2
, . . . , ℓ (®𝐶)𝑘𝑥 ®𝐶𝑘) = 1. Let ®𝐶 ∈ ®ℋ ′. We know that for every 𝑆 with |�̂�(𝑆)| ≥ 2−𝑘𝜀,

we have that
∏

𝑖∈𝑆 𝑥 ®𝐶𝑖 =
∏

𝑖∈𝑆 𝑥
∗
®𝐶𝑖

. Hence, it follows that

���𝑄(ℓ (®𝐶) ⊙ 𝑥) −𝑄(ℓ (®𝐶) ⊙ 𝑥∗)��� = ������ ∑𝑆⊆[𝑘] �̂�(𝑆)
∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥 ®𝐶𝑖 −
∑
𝑆⊆[𝑘]

�̂�(𝑆)
∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥∗®𝐶𝑖

������
=

������ ∑
𝑆⊆[𝑘]:|�̂�(𝑆)|<2−𝑘𝜀

�̂�(𝑆)
(∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥 ®𝐶𝑖 −
∏
𝑖∈𝑆

ℓ (®𝐶)𝑖𝑥∗®𝐶𝑖

)������ ≤ 2𝑘 · 2−𝑘+1𝜀 .

Now, if we assume that 𝑄(𝑦) > 2𝜀 for every 𝑦 ∈ {−1, 1}𝑘 with 𝑄(𝑦) > 0, then it follows that
𝑄(ℓ (®𝐶) ⊙ 𝑥) > 0, and so 𝑥 satisfies the constraint 𝑃(ℓ (®𝐶)1𝑥 ®𝐶1

, ℓ (®𝐶)2𝑥 ®𝐶2
, . . . , ℓ (®𝐶)𝑘𝑥 ®𝐶𝑘) = 1.

Step 3: removing the lower bound on 𝑸(𝒚). In Step 2, we assumed that 𝑄(𝑦) > 2𝜀 for all
𝑦 ∈ {−1, 1}𝑘 with 𝑄(𝑦) > 0. However, we only used this fact in the final step, when we argue that
𝑄(ℓ (®𝐶) ⊙ 𝑥) > 0 by observing that 𝑄(ℓ (®𝐶) ⊙ 𝑥) ≥ 𝑄(ℓ (®𝐶) ⊙ 𝑥∗) − 2𝜀 > 0. To remove the assumption,
we will show that for at most 2𝑘+2𝜀 constraints ®𝐶 ∈ ®ℋ , it holds that 𝑄(ℓ (®𝐶) ⊙ 𝑥∗) ≤ 2𝜀. This then
implies that 𝑥 satisfies at least (1 − 𝜀 − 2𝑘+2𝜀)𝑚 = (1 − 𝑂(𝜀))𝑚 constraints, which finishes the proof.

19

Let 𝒮 denote the set of ®𝐶 ∈ ®ℋ where 𝑄(ℓ (®𝐶) ⊙ 𝑥∗) ≤ 2𝜀. Observe that the probability, over the
choice of ℓ (®𝐶), that ®𝐶 ∈ 𝒮 is at most 2𝑘 ·2𝜀 = 2𝑘+1𝜀, and moreover this is independent for each ®𝐶 ∈ ®ℋ .
Thus, by a Chernoff bound, it follows that with probability ≥ 1 − exp(−𝑂(𝜀𝑚)) ≥ 1 − 1/poly(𝑛), it
holds that |𝒮| ≤ 2 · 2𝑘+1𝜀, and so we are done. □

Remark 4.3 (Tolerating fewer constraints for structured 𝑄’s). We have shown that the above
algorithm succeeds in finding an assignment 𝑥 that satisfies at least (1 − 𝑂(𝜀))𝑚 constraints when
𝑚 ≥ 𝑛𝑘/2 · poly(log 𝑛, 1/𝜀). However, if the distribution 𝑄 has |�̂�(𝑆)| < 2−𝑘𝜀 for all 𝑆 with |𝑆 | > 𝑟,
then we only need 𝑛𝑟/2 · poly(log 𝑛, 1/𝜀) constraints. (If 𝑟 = 0, then for small enough constant 𝜀,
𝑄 will be supported on all of {−1, 1}𝑘 , and so any assignment satisfies all constraints. If 𝑟 = 1,
we require 𝑂(𝑛 · log 𝑛

𝜀) constraints; see Lemma C.1.) Indeed, this follows because for such 𝑄, the
true label function 𝑓 ∗ will have 𝑓 ∗(𝑆) = 0 for any 𝑆 with |𝑆 | > 𝑟. Hence, for this choice of 𝑓 ∗, we
only call Theorem 3 on noisy 𝑡-XOR instances for 𝑡 ≤ 𝑟, and so we have enough constraints. It
therefore follows that the assignment 𝑥(𝑓 ∗) that we obtain for the label function 𝑓 ∗ will be, with high
probability an assignment that satisfies at least (1 − 𝑂(𝜀))𝑚 constraints.

An example where this gives an improvement is the well-studied NAE-3-SAT (not-all-equal-
3SAT) predicate [AE98, ACIM01, DSS14]. Suppose 𝑄 is the uniform distribution over satisfying
assignments to NAE-3-SAT: 𝑄(𝑥1 , 𝑥2 , 𝑥3) = 1

6 · 1
4 (3 − 𝑥1𝑥2 − 𝑥2𝑥3 − 𝑥1𝑥3). Then, we only need

𝑚 ≥ �̃�(𝑛) constraints, even though it is a 3-CSP (𝑘 = 3).

5 From 𝑘-XOR to Spread Bipartite 𝑘-XOR

In this section, we begin the proof of Theorem 3. See Definition 1.3 for a reminder of our semirandom
planted 𝑘-XOR model 𝜓(ℋ , 𝑥∗ , 𝜂) given a 𝑘-uniform hypergraphℋ , assignment 𝑥∗ ∈ {−1, 1}𝑛 , and
noise parameter 𝜂 ∈ (0, 1/2). Recall also that ℰ𝜓 denotes the set of corrupted hyperedges.

We think of𝒜1(ℋ) as the small set of edges that we discard (or give up on), and this will only
depend on the hypergraphℋ . For the rest of the graph, the algorithm will correctly identify which
edges are corrupted.

Our proof of Theorem 3 goes via a reduction to spread bipartite 𝑡-XOR instances for 𝑡 = 2, . . . , 𝑘,
which are 𝑡-XOR instances with some additional desired structure. Such instances were introduced
in [GKM22] to study the refutation of semirandom 𝑘-XOR instances. The reduction here is nearly
identical to the corresponding reduction in [GKM22, Section 4].

Definition 5.1 (Spread bipartite 𝑘-XOR). A 𝑝-bipartite 𝑘-XOR instance 𝜓 on 𝑛 variables with 𝑚
constraints is defined by a collection of (𝑘−1)-uniform hypergraphsℋ = {ℋ𝑢}𝑢∈[𝑝] on the vertex set
[𝑛], as well as “right-hand sides” 𝑏𝑢,𝐶 for each 𝑢 ∈ [𝑝] and 𝐶 ∈ ℋ𝑢 . There are two sets of variables
of 𝜓: the “normal” variables 𝑥1 , . . . , 𝑥𝑛 , and the “special” variables 𝑦1 , . . . , 𝑦𝑝 . The constraints of 𝜓
are 𝑦𝑢

∏
𝑖∈𝐶 𝑥𝑖 = 𝑏𝑢,𝐶 for each 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ𝑢 .

We furthermore say that 𝜓 is 𝜏-spread if it has the following additional properties:

(1) |ℋ𝑢 | = 𝑚
𝑝 ≥ 2⌊ 1

2𝜏2 ⌋ and 𝑚
𝑝 is even for each 𝑢 ∈ [𝑝],

(2) For each 𝑢 ∈ [𝑝] and set 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1
𝜏2 max(1, 𝑛 𝑘

2−1−|𝑄 |).

20

Analogously to Definition 1.3, we call 𝜓 a semirandom planted instance with planted assignment
(𝑥∗ , 𝑦∗) and noise parameter 𝜂 if the right-hand sides 𝑏𝑢,𝐶 are generated by setting 𝑏𝑢,𝐶 = 𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖

with probability 1− 𝜂 and 𝑏𝑢,𝐶 = −𝑦∗𝑢
∏

𝑖∈𝐶 𝑥
∗
𝑖

otherwise, independently for each choice of 𝑢, 𝐶. For
a choice of 𝑥∗ , 𝑦∗,ℋ = {ℋ𝑢}𝑢∈[𝑝], and 𝜂, we call this distribution 𝜓({ℋ𝑢}𝑢∈[𝑝] , 𝑥∗ , 𝑦∗ , 𝜂). As before,
if an edge (𝑢, 𝐶) has 𝑏𝑢,𝐶 = −𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
, we call (𝑢, 𝐶) a corrupted hyperedge, and we denote the set

of corrupted hyperedges in 𝜓 by ℰ𝜓.

The main technical result of the paper is the following lemma, which gives an algorithm to find
the noisy constraints in a semirandom planted 𝜏-spread bipartite 𝑘-XOR instance.

Lemma 5.2 (Algorithm for 𝜏-spread bipartite 𝑘-XOR). Let 𝑘 ≥ 2, 𝑛, 𝑝 ∈ ℕ, 𝜀 ∈ (0, 1), 𝜂 ∈ [0, 1/2),
and let 𝛾 B 1 − 2𝜂 > 0. Let 𝜏 ≤ 𝑐𝛾√

𝑘 log 𝑛
, and let 𝑚 ≥ 𝐶𝑛 𝑘−1

2
√
𝑝 · (𝑘 log 𝑛)3/2

𝜏𝛾2𝜀3/2 for some universal constants

𝑐, 𝐶. There is a polynomial-time algorithm𝒜 that takes as input an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance 𝜓
with constraint hypergraphℋ = {ℋ𝑢}𝑢∈[𝑝] and outputs two disjoint sets 𝒜1(ℋ),𝒜2(𝜓) ⊆ ℋ with the
following guarantee: (1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(ℋ)| ≤ 𝜀𝑚 and𝒜1(ℋ) only depends
onℋ , and (2) for any 𝑥∗ ∈ {−1, 1}𝑛 , 𝑦∗ ∈ {−1, 1}𝑝 and anyℋ = {ℋ𝑢}𝑢∈[𝑝] with |ℋ | B ∑

𝑢∈[𝑝] |ℋ𝑢 | ≥ 𝑚,
with probability 1 − 1

poly(𝑛) over 𝜓← 𝜓({ℋ𝑢}𝑢∈[𝑝] , 𝑥∗ , 𝑦∗ , 𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (ℋ \ 𝒜1(ℋ)).

Note that as 𝜂→ 1
2 , 𝛾 = 1− 2𝜂→ 0 and 𝜏→ 0, which blows up 𝑚. This is the expected behavior

since when 𝜂 = 1
2 , it is impossible to recover the planted assignment since the signs of the constraints

are uniformly random.

5.1 Proof of Theorem 3 from Lemma 5.2

With Lemma 5.2, we can finish the proof of Theorem 3. The high-level idea of this proof is very
simple. First, we decompose the 𝑘-XOR instance 𝜓 into subinstances 𝜓(𝑡) for each 𝑡 = 2, . . . , 𝑘, using
a hypergraph decomposition algorithm very similar to the one used in [GKM22, HKM23]. The
algorithm and its guarantees are shown in Appendix B. Then, we run the algorithm in Lemma 5.2
to identify a set of corrupted constraints and a small set of discarded constraints within each
subinstance 𝜓(𝑡). We then take the union of these outputs to be the final output of the algorithm.

Proof of Theorem 3. We begin with the decomposition of 𝜓 into 𝜓(2) , . . . ,𝜓(𝑘) along with a set of
“discarded” hyperedgesℋ (1), which is done using Algorithm 3 with spread parameter 𝜏 B 𝑐(1−2𝜂)√

𝑘 log 𝑛

where 𝑐 is the constant in Lemma 5.2. For each 𝑡 = 2, . . . , 𝑘, 𝜓(𝑡) is a semirandom (with noise 𝜂)
planted 𝜏-spread 𝑝(𝑡)-bipartite 𝑡-XOR instance specified by (𝑡−1)-uniform hypergraphs {ℋ (𝑡)𝑢 }𝑢∈[𝑝(𝑡)].

Let 𝑚(𝑡) B
∑
𝑢∈[𝑝(𝑡)] |ℋ

(𝑡)
𝑢 |. Algorithm 3 has the following guarantees:

(1) The runtime is 𝑛𝑂(𝑘),

(2) For each 𝑡 ∈ {2, . . . , 𝑘} and 𝑢 ∈ [𝑝(𝑡)], |ℋ (𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
= 2⌊ 1

2𝜏2 max(1, 𝑛𝑡− 𝑘2−1)⌋; in particular, |ℋ (𝑡)𝑢 |
is even and is at least 2⌊ 1

2𝜏2 ⌋,

(3) For each 𝑡 = 2, . . . , 𝑘, the instance 𝜓(𝑡) is 𝜏-spread,

21

(4) The number of “discarded” hyperedges is 𝑚(1) B |ℋ (1) | ≤ 1
𝑘𝜏2 𝑛

𝑘
2 ,

(5) For 𝑡 ∈ {2, . . . , 𝑘}, each 𝐶 ∈ ℋ (𝑡)𝑢 is obtained by removing 𝑘 − (𝑡 − 1) vertices from an edge in the
original hypergraphℋ . Thus, there is a one-to-one map Decomp : ℋ →ℋ (1)∪⋃𝑘

𝑡=2{ℋ
(𝑡)
𝑢 }𝑢∈[𝑝(𝑡)],

such that an edge 𝐶 ∈ ℋ is corrupted if and only if the edge Decomp(𝐶) is corrupted in the
instance 𝜓(𝑡) that it lies in.

For convenience, we denote 𝛾 B 1 − 2𝜂 and 𝛽 B 4𝐶 · (𝑘 log 𝑛)3/2
𝜏𝛾2𝜀3/2 = 4𝐶

𝑐 ·
𝑘2 log2 𝑛

𝛾3𝜀3/2 where 𝐶, 𝑐 are the
constants in Lemma 5.2. The algorithm in Theorem 3 works as follows. First, it runs Algorithm 3
to produce the instances 𝜓(2) , . . . ,𝜓(𝑘). Then, for each 𝑡 = 2, . . . , 𝑘, if 𝑚(𝑡) ≥ 𝑛 𝑡−1

2
√
𝑝(𝑡) · 𝛽, we run

Lemma 5.2 on 𝜓(𝑡) and obtain, with probability 1 − 1/poly(𝑛), a set 𝐴(𝑡)1 where |𝐴(𝑡)1 | ≤
𝜀
2𝑚
(𝑡) and

𝐴
(𝑡)
2 = ℰ𝜓(𝑡) \ 𝐴

(𝑡)
1 . Otherwise, if 𝑚(𝑡) < 𝑛

𝑡−1
2
√
𝑝(𝑡) · 𝛽, we set 𝐴(𝑡)1 = ℋ (𝑡) and 𝐴

(𝑡)
2 = ∅. Finally, we

output 𝒜1 B ℋ (1) ∪
⋃𝑘
𝑡=2 Decomp−1(𝐴(𝑡)1) and 𝒜2 B

⋃𝑘
𝑡=2 Decomp−1(𝐴(𝑡)2), where Decomp is the

mapping in property (5) of Algorithm 3.
Note that 𝑚(𝑡) = 𝑝(𝑡) |ℋ (𝑡)𝑢 | ≥ 𝑝(𝑡) · 1

2𝜏2 𝑛
𝑡− 𝑘2−1, which means 𝑝(𝑡) ≤ 2𝜏2𝑛

𝑘
2−𝑡+1𝑚(𝑡), and since∑

𝑡

√
𝑚(𝑡) ≤

√
𝑘
∑
𝑡 𝑚
(𝑡) ≤
√
𝑘𝑚 by Cauchy-Schwarz, we have

𝑘∑
𝑡=2

𝑛
𝑡−1
2

√
𝑝(𝑡) · 𝛽 ≤ 𝑂(𝜏) · 𝑛 𝑘

4
√
𝑘𝑚 · 𝛽 ≤ 𝑜(𝜀)𝑚

as long as 𝑚 ≫ 𝑛
𝑘
2 · 𝑘𝜏2𝛽2/𝜀2. Moreover, 𝑚(1) ≤ 1

𝑘𝜏2 𝑛
𝑘
2 =

log 𝑛
𝑐2𝛾2 𝑛

𝑘
2 ≤ 𝑜(𝜀)𝑚. One can verify, by

plugging in 𝛽, that the lower bound on 𝑚 in Theorem 3 suffices.
By union bound over 𝑡, it thus follows that

|𝒜1 | ≤ 𝑚(1) +
𝑘∑
𝑡=2

𝜀
2𝑚
(𝑡) +

𝑘∑
𝑡=2

𝑛
𝑡−1
2

√
𝑝(𝑡)𝛽 ≤ 𝜀𝑚 ,

and 𝒜2 = ℰ𝜓 \ 𝒜1. Moreover, by Lemma 5.2, 𝒜1 only depends on the hypergraph ℋ . This
completes the proof. □

6 Identifying Noisy Constraints in Spread Bipartite 𝑘-XOR

In this section, we prove Lemma 5.2. The proof will be decomposed into the following steps. First,
we take the semirandom planted bipartite 𝑘-XOR instance 𝜓 and transform it into a 2-XOR instance
𝜙. Second, we decompose the constraint graph of 𝜙 into expanders. For each expander in the
decomposition, we argue that the SDP solution to this subinstance is rank 1, and moreover agrees
exactly with the planted assignment. This allows us to identify, for each expanding subinstance,
exactly which edges in 𝜙 are errors. Finally, we use this information to identify the set of corrupted
constraints in the original instance 𝜓, which finishes the proof.

22

6.1 Setup and key notation

We now introduce the key notation that shall be used throughout this section. Let 𝜓 be the
semirandom 𝜏-spread 𝑝-bipartite 𝑘-XOR instance (recall Definition 5.1) with 𝑚 constraints given as
the input to the algorithm. Recall that the instance 𝜓 is specified by a collection of 𝑝 hypergraphs
{ℋ𝑢}𝑢∈[𝑝], where each ℋ𝑢 is a (𝑘 − 1)-uniform hypergraph on 𝑛 vertices and |ℋ𝑢 | = 𝑚/𝑝. Each
constraint in 𝜓 is specified by a pair (𝑢, 𝐶) where 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ𝑢 , and has a right-hand side
𝑏𝑢,𝐶 ∈ {−1, 1}, and the constraints are 𝑦𝑢

∏
𝑖∈𝐶 𝑥𝑖 = 𝑏𝑢,𝐶 , where {𝑦𝑢}𝑢∈[𝑝] and {𝑥𝑖}𝑖∈[𝑛] are variables.

Because the instance 𝜓 is semirandom with noise parameter 𝜂 and planted assignment (𝑥∗ , 𝑦∗),
for each constraint (𝑢, 𝐶) we have, with probability 1 − 𝜂 independently, 𝑏𝑢,𝐶 = 𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
, and

otherwise 𝑏𝑢,𝐶 = −𝑦∗𝑢
∏

𝑖∈𝐶 𝑥
∗
𝑖
. Our goal is to output, in 𝑛𝑂(𝑘)-time, a set 𝒜1(ℋ) of size ≤ 𝜏𝑚 to

discard, and then for the rest of the instance, identify exactly the corrupted constraints, i.e., those
for which 𝑏𝑢,𝐶 = −𝑦∗𝑢

∏
𝑖∈𝐶 𝑥

∗
𝑖
.

We now define the 2-XOR instance 𝜙 from 𝜓. An example is shown in Fig. 2.

Definition 6.1 (2-XOR instance 𝜙 from bipartite 𝑘-XOR 𝜓). For every 𝑢 ∈ [𝑝] andℋ𝑢 , we partition
ℋ𝑢 arbitrarily into two setsℋ (𝐿)𝑢 andℋ (𝑅)𝑢 of equal size.

• If 𝑘 is odd, then there are
(𝑛
𝑘−1
2

)2 variables in 𝜙, one variable 𝑧(𝑆1 ,𝑆2) for each pair of sets
𝑆1 , 𝑆2 ⊆ [𝑛]where |𝑆1 | = |𝑆2 | = 𝑘−1

2 .

• If 𝑘 is even, then there are 2
(𝑛
⌈ 𝑘−1

2 ⌉
) (𝑛
⌊ 𝑘−1

2 ⌋
)

variables in 𝜙, one variable 𝑧(𝑆1 ,𝑆2) for each pair of
sets 𝑆1 , 𝑆2 ⊆ [𝑛]where either |𝑆1 | = ⌈ 𝑘−1

2 ⌉ and |𝑆2 | = ⌊ 𝑘−1
2 ⌋ or |𝑆1 | = ⌊ 𝑘−1

2 ⌋ and |𝑆2 | = ⌈ 𝑘−1
2 ⌉.

For each 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 and 𝐶′ ∈ ℋ (𝑅)𝑢 , we arbitrarily partition 𝐶 into sets 𝑆1 ∪ 𝑆2 and 𝐶′

into sets 𝑆′1 ∪ 𝑆
′
2, where |𝑆1 | = |𝑆′1 | = ⌈

𝑘−1
2 ⌉ and |𝑆2 | = |𝑆′2 | = ⌊

𝑘−1
2 ⌋. We then add the constraint

𝑧(𝑆1 ,𝑆
′
2)𝑧(𝑆2 ,𝑆′1) = 𝑏𝑢,𝐶𝑏𝑢,𝐶′ to 𝜙.

It is intuitive to think of clauses fromℋ (𝐿)𝑢 andℋ (𝑅)𝑢 as having different colors, and each variable
𝑧(𝑆1 ,𝑆

′
2) contains roughly 𝑘/2 of each color. See Fig. 2 for an example of a 2-XOR 𝜙 constructed from

a bipartite 𝑘-XOR 𝜓.
Observation 6.2 (Size of 𝜙). The number of variables in 𝜙 is at most 𝑛𝑘−1 (for both even and odd
𝑘). Since each |ℋ𝑢 | = 𝑚/𝑝, |ℋ (𝐿)𝑢 | = |ℋ (𝑅)𝑢 | = 𝑚

2𝑝 , and the number of constraints in 𝜙 is exactly
𝑝 · (𝑚2𝑝)2 = 𝑚2

4𝑝 . In particular, when 𝑚 ≥ 𝑛 𝑘−1
2
√
𝑝 · 𝛽 for 𝛽 = poly(log 𝑛) as assumed in Lemma 5.2, the

average degree of 𝜙 is at least 1
4𝛽

2.
Remark 6.3 (Corrupted constraints in 𝜙). A constraint 𝑧(𝑆1 ,𝑆

′
2)𝑧(𝑆2 ,𝑆′1) = 𝑏𝑢,𝐶𝑏𝑢,𝐶′ in 𝜙 is corrupted

if exactly one of 𝑏𝑢,𝐶 and 𝑏𝑢,𝐶′ is corrupted in 𝜓. Thus, if each constraint in 𝜓 is corrupted with
probability 𝜂 ∈ (0, 1/2), then each constraint in 𝜙 is corrupted with probability 2𝜂(1 − 𝜂) < 1/2.
Note, however, that the constraints in 𝜙 are not corrupted independently.

We need some more definitions about the constraint graph of 𝜙.

Definition 6.4 (Constraint graph of 𝜙). Let 𝐺(𝜙) = (𝑉, 𝐸) be the constraint graph of 𝜙. Notice
that each edge 𝑒 ∈ 𝐸 uniquely identifies 𝑢(𝑒) ∈ [𝑝] and 𝐶𝐿(𝑒) ∈ ℋ (𝐿)𝑢(𝑒), 𝐶𝑅(𝑒) ∈ ℋ

(𝑅)
𝑢(𝑒). For each

23

𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 , define 𝐺(𝐿)
𝑢,𝐶
(𝜙) to be the subgraph of 𝐺 that 𝐶 participates in, i.e., with edge set

{𝑒 ∈ 𝐸 : 𝑢(𝑒) = 𝑢, 𝐶𝐿(𝑒) = 𝐶}. We similarly define 𝐺(𝑅)
𝑢,𝐶′(𝜙) for 𝐶′ ∈ ℋ (𝑅)𝑢 .

u
1

6
7

3
2

1

8
9

6
5

4

1

2

1

3

6

7

3

8

9

4

5

1

6

6

7

6

8

9

+1
–1

–1 +1

–1

–1+1

+1

Figure 2: An example of the 2-XOR instance 𝜙 from a bipartite 4-XOR 𝜓 (Definition 6.1). On the
left, ℋ (𝐿)𝑢 consists of 𝐶1 = {1, 2, 3} and 𝐶2 = {4, 5, 6} (with green vertices), and ℋ (𝑅)𝑢 consists of
𝐶′1 = {1, 6, 7} and 𝐶′2 = {1, 8, 9} (with blue vertices). On the right, the constraint graph 𝐺(𝜙) has
vertices 𝑧𝑆1 ,𝑆2 where either |𝑆1 | = 2, |𝑆2 | = 1 or |𝑆1 | = 1, |𝑆2 | = 2 (we can view 𝑆1, 𝑆2 as having green,
blue vertices). Each edge corresponds to two clauses in 𝜓; for example, the edge

{
𝑧{1,2},{1} , 𝑧{3},{6,7}

}
comes from the clauses 𝐶1 and 𝐶′1.
Corruptions. In the figure, we label a clause −1 if it is corrupted and +1 otherwise. An edge in 𝐺 is
corrupted if exactly one of the two corresponding clauses in 𝜓 is corrupted.
Degree of 𝐺(𝐿)

𝑢,𝐶
(𝜙). For 𝐶1 ∈ ℋ (𝐿)𝑢 , the subgraph 𝐺(𝐿)

𝑢,𝐶1
(𝜙) corresponds to the edges colored red, i.e.,

all edges that 𝐶1 participates in. The vertex 𝑧{1,2},{1} has degree 2 in 𝐺(𝐿)
𝑢,𝐶1
(𝜙) because |𝐶′1 ∩ 𝐶

′
2 | = 1.

We next make the important observation that the degree of a vertex in 𝐺(𝐿)
𝑢,𝐶
(𝜙) is upper bounded

by the number of 𝐶′ ∈ ℋ (𝑅)𝑢 sharing at least ⌊ 𝑘−1
2 ⌋ vertices. See Fig. 2 also for an illustration.

Therefore, assuming that 𝜓 is 𝜏-spread, we have a maximum degree bound on 𝐺(𝐿)
𝑢,𝐶
(𝜙) and 𝐺(𝑅)

𝑢,𝐶′(𝜙)
for all 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 and 𝐶′ ∈ ℋ (𝑅)𝑢 .

Lemma 6.5 (Degree bounds for 𝐺(𝐿)
𝑢,𝐶

, 𝐺(𝑅)
𝑢,𝐶′). Let 𝜓 be an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance. Then, for

any 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 and 𝐶′ ∈ ℋ (𝑅)𝑢 , the maximum degree of 𝐺(𝐿)
𝑢,𝐶
(𝜙), 𝐺(𝑅)

𝑢,𝐶′(𝜙) is at most 1/𝜏2.

Proof. Consider any 𝐶 ∈ ℋ (𝐿)𝑢 and two adjacent edges {𝑧(𝑆1 ,𝑆
′
2) , 𝑧(𝑆2 ,𝑆′1)} and {𝑧(𝑆1 ,𝑆

′′
2) , 𝑧(𝑆2 ,𝑆′′1)} in

𝐺
(𝐿)
𝑢,𝐶
(𝜙) formed by joining 𝐶 = 𝑆1 ∪ 𝑆2 with 𝐶′ = 𝑆′1 ∪ 𝑆

′
2 and 𝐶′′ = 𝑆′′1 ∪ 𝑆

′′
2 ∈ ℋ

(𝑅)
𝑢 . As the edges

are adjacent, it must be the case that either 𝑆′1 = 𝑆′′1 or 𝑆′2 = 𝑆′′2 , which means that |𝐶′ ∩ 𝐶′′ | ≥ ⌊ 𝑘−1
2 ⌋.

Thus, the degree of a vertex 𝑧(𝑆1 ,𝑆
′
2) in 𝐺 is upper bounded by the maximum number of 𝐶′ ∈ ℋ (𝑅)𝑢

that all share the same ⌊ 𝑘−1
2 ⌋ variables.

Suppose 𝜓 is 𝜏-spread, meaning that deg𝑢(𝑄) ≤ 1
𝜏2 max(1, 𝑛 𝑘

2−1−|𝑄 |) for 𝑄 ⊆ [𝑛]. Since
𝑘
2 − 1 − ⌊ 𝑘−1

2 ⌋ ≤ 0, we have that 𝐺(𝐿)𝑢,𝑐(𝜙) has maximum degree ≤ 1/𝜏2. □

24

6.2 Proof outline

With the setup in Section 6.1 in hand, our proof now proceeds in three conceptual steps.

Step 1: graph pruning and expander decomposition. Suppose the instance 𝜙 has average degree 𝑑.
We first prune the instance using Lemma 3.4 such that the resulting constraint graph has minimum
degree ≥ 𝜀𝑑 while only removing 𝜀 fraction of the constraints, where 𝜀 = 𝑜(1). We further apply
expander decomposition (Fact 3.5) to the pruned instance to obtain subinstances 𝜙1 , . . . , 𝜙𝑇 while
discarding only a 𝜀 fraction of the constraints of 𝜙 such that the constraint graph of each 𝜙𝑖 has
spectral gap Ω̃(𝜀2).

Step 2: relative spectral approximation and recovery of corrupted pairs. We show that for each
expanding subinstance 𝜙𝑖 , the basic SDP for the 2-XOR instance 𝜙𝑖 is equal to 𝑥∗(𝑥∗)⊤, where 𝑥∗ is the
planted assignment for 𝜙. That is, the SDP solution is rank 1 and agrees with the planted assignment
for 𝜙. We show this by arguing that, for each 𝜙𝑖 , the Laplacian of the corrupted constraints in 𝜙𝑖 is
a spectral sparsifier of the Laplacian of the constraint graph of 𝜙𝑖 (see Lemma 2.4). Here, we crucially
use that each such constraint graph has large minimum degree and spectral gap.

From this, it is trivial to identify the corrupted edges in each 𝜙𝑖 , as they are the ones violated by
the SDP solution. We are not quite done yet, however, because each constraint in 𝜙 corresponds to
a pair of constraints in the original instance 𝜓.

Step 3: recovery of corrupted constraints from corrupted pairs. The previous step shows that for
all but a 𝜀 fraction of tuples (𝑢, 𝐶, 𝐶′)where 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 , and 𝐶′ ∈ ℋ (𝑅)𝑢 , we can recover the
product 𝜉𝑢(𝐶)𝜉𝑢(𝐶′), where 𝜉𝑢(𝐶) = −1 if (𝑢, 𝐶) is noisy in 𝜓, and is +1 otherwise. Because 𝜀 is
small, it must be the case that for most 𝑢 ∈ [𝑝], we know the product 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) (from Step 2) for
most pairs (𝐶, 𝐶′)with 𝐶 ∈ ℋ (𝐿)𝑢 and 𝐶′ ∈ ℋ (𝑅)𝑢 .

Suppose we knew 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for all (𝐶, 𝐶′) ∈ ℋ (𝐿)𝑢 ×ℋ (𝑅)𝑢 . Then, it is trivial to decode 𝜉𝑢(𝐶)
up to a global sign. Formally, we could obtain 𝑧 ∈ {−1, 1}ℋ𝑢 where 𝑧𝐶 = 𝛼𝜉𝑢(𝐶) for some 𝛼 ∈ {−1, 1}.
From this, it is easy to obtain 𝜉𝑢(𝐶), as the fraction of 𝐶 ∈ ℋ𝑢 for which 𝜉𝑢(𝐶) = −1 should be
roughly 𝜂 < 1

2 ; so, if 𝑧 has < 1
2 -fraction of −1’s, then 𝑧 = 𝜉𝑢(𝐶), and otherwise −𝑧 = 𝜉𝑢(𝐶). This,

however, requires |ℋ𝑢 | ≥ Ω

(
log 𝑛
(1−2𝜂)2

)
for a high-probability result.

Additionally, we do not quite know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for all (𝐶, 𝐶′) ∈ ℋ (𝐿)𝑢 × ℋ (𝑅)𝑢 : we only know
this for all but a 𝜀𝑢-fraction of the pairs. By forming a graph 𝐺𝑢 where we have an edge (𝐶, 𝐶′) if
(𝐶, 𝐶′) is a pair where we know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′), we can thus obtain such a 𝑧 for all 𝐶 in the largest
connected component of 𝐺𝑢 . Because 𝐺𝑢 is obtained by taking a complete biclique and deleting only
a 𝜀𝑢-fraction of all edges, the largest connected component has size (1 − 𝜀𝑢)|ℋ𝑢 |, and so we can
recover 𝜉𝑢(𝐶) for all but a 𝜀𝑢-fraction of constraints inℋ𝑢 . We do this for each partition 𝑢, which
finishes the proof.

6.3 Graph pruning and expander decomposition

This step is a simple combination of graph pruning and expander decomposition.

25

Lemma 6.6. Fix 𝜀 ∈ (0, 1). There is a polynomial-time algorithm such that, given a 2-XOR instance 𝜙

whose constraint graph has 𝑚 edges and average degree 𝑑, outputs subinstances 𝜙1 , . . . , 𝜙𝑇 on disjoint
variables with the following guarantees: 𝜙1 , . . . , 𝜙𝑇 contain at least 1 − 𝜀 fraction of the constraints in 𝜙,
and for each 𝑖 ∈ [𝑇], the constraint graph 𝐺𝑖 of 𝜙𝑖 , after adding some self-loops, has minimum degree at least
1
3𝜀𝑑 and 𝜆2(𝐿𝐺𝑖) ≥ Ω(𝜀2/log2 𝑚).

The self-loops in Lemma 6.6 are only for the analysis of 𝐿𝐺𝑖 and do not correspond to actual
constraints in 𝜙𝑖 . Observe that adding self-loops to a graph 𝐺 does not change the unnormalized
Laplacian 𝐿𝐺, but as 𝐷𝐺 (the degree matrix) increases, the spectral gap of the normalized Laplacian,
i.e. 𝜆2(𝐿𝐺) = 𝜆2(𝐷−1/2

𝐺
𝐿𝐺𝐷

−1/2
𝐺
), may decrease. The expander decomposition algorithm (Fact 3.5)

guarantees that each piece, even after adding self-loops to preserve degrees, has large spectral gap.
This does not change the subinstances 𝜙1 , . . . , 𝜙𝑇 , but in the next section, it is crucial that we use
this stronger guarantee to ensure a lower bound on the minimum degree.

Proof of Lemma 6.6. We first apply the graph pruning algorithm (Lemma 3.4) such that the resulting
instance has minimum degree ≥ 𝜀

3 𝑑 and at least (1 − 2
3𝜀)𝑚 constraints. Then, we apply expander

decomposition (Fact 3.5) that partitions the vertices of the pruned graph 𝐺′ into𝑉1 , . . . , 𝑉𝑇 such that
the number of edges across partitions is at most 𝜀

3𝑚, and for each 𝑖 ∈ [𝑇], the normalized Laplacian
satisfies 𝜆2(𝐿𝐺′{𝑉𝑖}) ≥ Ω(𝜀2/log2 𝑚). Here we recall that 𝐺′{𝑉𝑖} is the induced subgraph of 𝐺′ with
self-loops such that the vertices in 𝐺′{𝑉𝑖} have the same degrees as in 𝐺′.

In total, we have removed at most 𝜀𝑚 edges. This completes the proof. □

6.4 Rank-1 SDP solution from expansion and relative spectral approximation

We next show that for each subinstance 𝜙𝑖 obtained from Lemma 6.6, its constraint graph 𝐺 and the
subgraph of corrupted edges 𝐻 satisfy 𝐿𝐻 ≺ 1

2𝐿𝐺. Recall from Lemmas 2.4 and 2.5 that this implies
the basic SDP for the 2-XOR 𝜙𝑖 is rank 1 and agrees with the planted assignment of 𝜙.

The next lemma is analogous to Lemma 2.5 but differs in an important way: a constraint in 𝜙 is
corrupted if and only if exactly one of the two corresponding constraints in 𝜓 is corrupted; thus,
the corruptions in 𝜙 are correlated. This is why each constraint in 𝜙 is obtained from one clause in
ℋ (𝐿)𝑢 and one clause inℋ (𝑅)𝑢 (recall Definition 6.1), so that in the proof below we have independent
randomness to perform a “2-step sparsification” proof. It is also worth noting that the following
lemma requires not just a lower bound on the minimum degree and spectral gap of 𝐺 but also that
the original bipartite 𝑘-XOR instance 𝜓 is well-spread, which allows us to apply Lemma 6.5.

Same as Lemma 2.5, the following lemma is a purely graph-theoretic statement.

Lemma 6.7 (Relative spectral approximation with correlated subsamples). Suppose 𝐺 = (𝑉, 𝐸)
is an 𝑛-vertex graph with minimum degree 𝑑min (self-loops and parallel edges allowed) and spectral gap
𝜆2(𝐿𝐺) = 𝜆 > 0. Let 𝑚1 , 𝑚2 ∈ ℕ, 𝜂 ∈ [0, 1/2), and let 𝜉(1)1 , . . . , 𝜉(1)𝑚1 , 𝜉

(2)
1 , . . . , 𝜉(2)𝑚2 be i.i.d. random

variables that take value −1 with probability 𝜂 and +1 otherwise. Suppose there is an injective map that maps
each edge 𝑒 ↦→ (𝑐1(𝑒), 𝑐2(𝑒)) ∈ [𝑚1] × [𝑚2], and for each 𝑖 ∈ [𝑚1] (resp. 𝑗 ∈ [𝑚2]) define 𝐺(1)

𝑖
(resp. 𝐺(2)

𝑗
) be

the subgraph of 𝐺 with edge set {𝑒 ∈ 𝐸 : 𝑐1(𝑒) = 𝑖} (resp. {𝑒 ∈ 𝐸 : 𝑐2(𝑒) = 𝑗}). Moreover, suppose 𝐺(1)
𝑖

and
𝐺
(2)
𝑗

have maximum degree ≤ Δ for all 𝑖 ∈ [𝑚1], 𝑗 ∈ [𝑚2].

26

Let 𝐻 be the subgraph of 𝐺 with edge set
{
𝑒 ∈ 𝐸 : 𝜉(1)

𝑐1(𝑒)𝜉
(2)
𝑐2(𝑒) = −1

}
. There is a universal constant 𝐵 > 0

such that if 𝑑min𝜆 ≥ 𝐵Δ log 𝑛, then with probability 1 − 𝑂(𝑛−2),

𝐿𝐻 ⪯ max
(
(1 + 𝛿) · 2𝜂(1 − 𝜂), 1

3

)
· 𝐿𝐺

for 𝛿 =

√
𝐵Δ log 𝑛
𝑑min𝜆

.

Let 𝛾 B 1 − 2𝜂 > 0 since 𝜂 < 1
2 . Notice that 2𝜂(1 − 𝜂) = 1

2 (1 − 𝛾2), which approaches 1
2 as 𝜂→ 1

2 .
Thus, if 𝛿 ≤ 𝛾2, then (1 + 𝛿) · 2𝜂(1 − 𝜂) ≤ (1 + 𝛾2) · 1

2 (1 − 𝛾2) < 1
2 , and 𝐿𝐻 ≺ 1

2𝐿𝐺 suffices to conclude
via Lemma 2.4 that the SDP relaxation on the expanding subinstance is rank 1 and recovers the
planted assignment, which also gives us the set of corrupted constraints.

Proof of Lemma 6.7. First, note that by the definition of Laplacian and the spectral gap of 𝐿𝐺, span(®1)
is exactly the null space of 𝐿𝐺 and is contained in the null space of 𝐿𝐻 . Therefore, recalling that
𝐿𝐺 = 𝐷

1/2
𝐺
𝐿𝐺𝐷

1/2
𝐺

, it suffices to prove that(𝐿†𝐺)1/2𝐷−1/2
𝐺

𝐿𝐻𝐷
−1/2
𝐺
(𝐿†𝐺)

1/2

2
≤ max

(
(1 + 𝛿) · 2𝜂(1 − 𝜂), 1

3

)
. (1)

Here 𝐿†
𝐺

is the pseudo-inverse of 𝐿𝐺, and ∥𝐿†
𝐺
∥2 ≤ 1/𝜆. For simplicity, for any graph 𝐺′, we will

write 𝐿𝐺′ B (𝐿†𝐺)1/2𝐷
−1/2
𝐺

𝐿𝐺′𝐷
−1/2
𝐺
(𝐿†
𝐺
)1/2. Thus,

𝐿𝐻 =
∑
𝑒∈𝐸

1
(
𝜉(1)
𝑐1(𝑒)𝜉

(2)
𝑐2(𝑒) = −1

)
· 𝐿𝑒 , and 𝔼[𝐿𝐻] = 2𝜂(1 − 𝜂)

∑
𝑒∈𝐸

𝐿𝑒 .

Note that
∑
𝑒∈𝐸 𝐿𝑒 = 𝐿𝐺, a projection matrix, thus

∑
𝑒∈𝐸 𝐿𝑒

2 = 1.

For each 𝑖 ∈ [𝑚1], we further define 𝐺(1)
𝑖 ,+ and 𝐺

(1)
𝑖 ,− to be (random) edge-disjoint subgraphs of

𝐺
(1)
𝑖

where 𝐺(1)
𝑖 ,+ has edge set

{
𝑒 ∈ 𝐸 : 𝑐1(𝑒) = 𝑖 , 𝜉(2)

𝑐2(𝑒) = +1
}

and 𝐺
(1)
𝑖 ,− has edge set

{
𝑒 ∈ 𝐸 : 𝑐1(𝑒) =

𝑖 , 𝜉(2)
𝑐2(𝑒) = −1

}
. Note that 𝐺(1)

𝑖 ,+, 𝐺
(1)
𝑖 ,− are independent of 𝜉(1) = (𝜉(1)1 , . . . , 𝜉(1)𝑚1). By the maximum

degree bound on 𝐺(1)
𝑖

, we have that
𝐿

𝐺
(1)
𝑖 ,+

2 and

𝐿
𝐺
(1)
𝑖 ,−

2 ≤

𝐿
𝐺
(1)
𝑖

2 ≤ 2Δ. Thus,𝐿

𝐺
(1)
𝑖 ,+

2
,
𝐿

𝐺
(1)
𝑖 ,−

2
≤

𝐿
𝐺
(1)
𝑖

2
≤ 2Δ ·

𝐿†𝐺2
·
𝐷−1

𝐺

2 ≤

2Δ
𝑑min𝜆

. (2)

Similarly, for 𝑗 ∈ [𝑚2], 𝐺(2)𝑗 ,+ and 𝐺(2)
𝑗 ,− are (random) edge-disjoint subgraphs of 𝐺(2)

𝑗
independent of

𝜉(2) = (𝜉(2)1 , . . . , 𝜉(2)𝑚2) such that
𝐿

𝐺
(2)
𝑗 ,+

2 and

𝐿
𝐺
(2)
𝑗 ,−

2 ≤

2Δ
𝑑min𝜆

.

Now, we first fix 𝜉(2) ∈ {−1, 1}𝑚2 . Observe that we can write 𝐿𝐻 as

𝐿𝐻 =
∑
𝑖∈[𝑚1]

1(𝜉(1)
𝑖

= +1) · 𝐿
𝐺
(1)
𝑖 ,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖 ,+
, (3)

27

and
𝔼[𝐿𝐻 |𝜉(2)] = (1 − 𝜂)

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖 ,−
+ 𝜂

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖 ,+

=
∑
𝑒∈𝐸

(
(1 − 𝜂) · 1(𝜉(2)

𝑐2(𝑒) = −1) + 𝜂 · 1(𝜉(2)
𝑐2(𝑒) = +1)

)
· 𝐿𝑒

B
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 .

(4)

Here 𝑤𝑐2(𝑒) ∈ {𝜂, 1 − 𝜂}, thus
𝔼[𝐿𝐻 |𝜉(2)]2 ≥ 𝜂

∑
𝑒∈𝐸 𝐿𝑒

2 = 𝜂.

We now split the analysis into two cases. Let 𝜂0 B 1/12.

Case 1: 𝜼 ≥ 𝜼0. In light of Eq. (3), we define 𝑋𝑖 B 1(𝜉(1)
𝑖

= +1) · 𝐿
𝐺
(1)
𝑖 ,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖 ,+

such that

𝐿𝐻 =
∑
𝑖∈[𝑚1] 𝑋𝑖 . Moreover, we have that 𝑋𝑖 ⪰ 0 and ∥𝑋∥2 ≤ 2Δ

𝑑min𝜆
almost surely from Eq. (2). Thus,

applying matrix Chernoff (Fact 3.3), we get

Pr
𝜉(1)

[𝐿𝐻
2
≥ (1 + 𝛿)

𝔼[𝐿𝐻 |𝜉(2)]
2

]
≤ 𝑛 · exp

(
−1

3𝛿
2
𝔼[𝐿𝐻 |𝜉(2)]

2
· 𝑑min𝜆

2Δ

)
≤ 𝑛 · exp

(
−𝛿

2𝜂𝑑min𝜆

6Δ

)
,

(5)

which is at most 𝑂(𝑛−2) as long as 𝛿2 ≥ 𝐵1Δ log 𝑛
𝑑min𝜆

for a large enough constant 𝐵1.
Next, we similarly prove concentration for

𝔼[𝐿𝐻 |𝜉(2)]2 over 𝜉(2). Recalling Eq. (4),

𝔼[𝐿𝐻 |𝜉(2)] =
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗

∑
𝑒∈𝐺(2)

𝑗

𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗 · 𝐿𝐺(2)
𝑗

.

𝔼[𝑤 𝑗] = 2𝜂(1−𝜂), and
𝔼𝜉(2)𝔼[𝐿𝐻 |𝜉(2)]

2 = 2𝜂(1−𝜂)

∑
𝑒∈𝐸 𝐿𝑒

2 = 2𝜂(1−𝜂). Since

𝑤 𝑗𝐿𝐺(2)
𝑗

2 ≤

2(1−𝜂)Δ
𝑑min𝜆

,
we can apply matrix Chernoff again:

Pr
𝜉(2)

[𝔼[𝐿𝐻 |𝜉(2)]
2
≥ (1 + 𝛿′) · 2𝜂(1 − 𝜂)

]
≤ 𝑛 · exp

(
−1

3𝛿
′2 · 2𝜂(1 − 𝜂) · 𝑑min𝜆

2(1 − 𝜂)Δ

)
(6)

which is at most 𝑂(𝑛−2) as long as 𝛿′2 ≥ 𝐵2Δ log 𝑛
𝑑min𝜆

for a large enough constant 𝐵2. Combining both tail
bounds, by the union bound, we have that with probability at least 1−𝑂(𝑛−2),

𝐿𝐻
2 ≤ (1+𝛿)·2𝜂(1−𝜂)

as long as 𝛿2 ≥ 𝐵Δ log 𝑛
𝑑min𝜆

for a large enough 𝐵. This establishes Eq. (1), proving the lemma for this
case.

Case 2: 𝜼 < 𝜼0. To handle this case, observe that the exact same analysis goes through for
𝐻 = {𝑒 ∈ 𝐸 : 𝜉(1)

𝑐1(𝑒) = −1 or 𝜉(2)
𝑐2(𝑒) = −1} ⊇ 𝐻. Indeed, similar to Eq. (3) and (4), we have

𝐿
𝐻

=
∑
𝑖∈[𝑚1] 𝑋𝑖 where 𝑋𝑖 = 1(𝜉(1)

𝑖
= +1) · 𝐿

𝐺
(1)
𝑖 ,−
+ 1(𝜉(1)

𝑖
= −1) · 𝐿

𝐺
(1)
𝑖

(notice the 2nd term is 𝐺(1)
𝑖

instead of 𝐺(1)
𝑖 ,+), and

𝔼[𝐿
𝐻
|𝜉(2)] = (1 − 𝜂)

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖 ,−
+ 𝜂

∑
𝑖∈[𝑚1]

𝐿
𝐺
(1)
𝑖

=
∑
𝑒∈𝐸

𝑤𝑐2(𝑒) · 𝐿𝑒 =
∑
𝑗∈[𝑚2]

𝑤 𝑗 · 𝐿𝐺(2)
𝑗

,

28

where 𝑤 𝑗 = 1 if 𝜉(2)
𝑗

= −1 and 𝜂 if 𝜉(2)
𝑗

= +1, hence 𝔼[𝑤 𝑗] = 𝜂 + 𝜂(1 − 𝜂) = 𝜂(2 − 𝜂). Moreover,𝔼𝜉(2)𝔼[𝐿𝐻 |𝜉(2)]

2 = 𝜂(2 − 𝜂)
∑

𝑒∈𝐸 𝐿𝑒

2 = 𝜂(2 − 𝜂).
First, set 𝜂 = 𝜂0, and let 𝐻0 be the random subgraph as defined above. Similar to Eq. (5) and (6),

we apply matrix Chernoff (Fact 3.3) and get that with probability 1−𝑂(𝑛−2),
𝐿

𝐻0

2 ≤ (1+𝛿)·𝜂0(2−𝜂0)

for 𝛿 =

√
𝐵Δ log 𝑛
𝑑min𝜆

≤ 1. In particular, this means that 𝐿
𝐻0
⪯ 2𝜂0(2 − 𝜂0)𝐿𝐺 ⪯ 1

3𝐿𝐺 when 𝜂0 = 1/12.
Now, fix any 𝜂 < 𝜂0. We can obtain a coupling between this case and the case when 𝜂 = 𝜂0 by

randomly changing 𝜉(1)
𝑖

and 𝜉(2)
𝑗

from +1 to −1 (while not flipping the ones with −1). Notice that 𝐻
is monotone increasing as we change any +1 to −1 (whereas 𝐻 is not!), thus we must have 𝐻 ⊆ 𝐻0
in this coupling. Then, as 𝐻 ⊆ 𝐻, we have

𝐿𝐻 ⪯ 𝐿𝐻 ⪯ 𝐿𝐻0
⪯ 1

3𝐿𝐺

with probability 1 − 𝑂(𝑛−2). This finishes the proof of Lemma 6.7. □

6.5 Recovery of corrupted constraints from corrupted pairs

We have thus shown that, with probability ≥ 1 − 1/poly(𝑛), we can exactly recover the set of
corrupted constraints within each expanding subinstance 𝜙1 , . . . , 𝜙𝑇 . Recall that after pruning and
expander decomposition (Lemma 6.6), the expanding subinstances contain a (1 − 𝜀)-fraction of all
edges in the instance 𝜙, and the set of edges removed only depends on the constraint graph and not
the right-hand sides of 𝜙. As stated in Observation 6.2, the instance 𝜙 has exactly 𝑚2/4𝑝 edges, and
they correspond exactly to the set {(𝑢, 𝐶, 𝐶′) : 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 , 𝐶′ ∈ ℋ (𝑅)𝑢 }, and moreover an edge
𝑒 in 𝜙 is corrupted if and only if exactly one of the two constraints (𝑢, 𝐶), (𝑢, 𝐶′) is corrupted in the
original instance 𝜓, where 𝑒 corresponds to (𝑢, 𝐶, 𝐶′). For each 𝑢 ∈ [𝑝] and 𝐶 ∈ ℋ𝑢 = ℋ (𝐿)𝑢 ∪ℋ (𝑅)𝑢 ,
let 𝜉𝑢(𝐶) = −1 if (𝑢, 𝐶) is corrupted in 𝜓, and 1 otherwise. It thus follows that we have learned, for
1 − 𝜀 fraction of all {(𝑢, 𝐶, 𝐶′) : 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 , 𝐶′ ∈ ℋ (𝑅)𝑢 }, the product 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′).

It now remains to show how to recover 𝜉𝑢(𝐶) for most 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ𝑢 . For each 𝑢 ∈ [𝑝],
let 𝑃𝑢 ⊆ {(𝐶, 𝐶′) : 𝐶 ∈ ℋ (𝐿)𝑢 , 𝐶′ ∈ ℋ (𝑅)𝑢 } such that we have determined 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′), and let
𝑃 = ∪𝑢∈[𝑝]𝑃𝑢 . We know that |𝑃 | ≥ (1 − 𝜀)𝑚2

4𝑝 . Let 𝜀𝑢 be chosen so that |𝑃𝑢 | = (1 − 𝜀𝑢) 𝑚
2

4𝑝2 , i.e., 𝜀𝑢 is

the fraction of pairs inℋ (𝐿)𝑢 ×ℋ (𝑅)𝑢 that were deleted in Lemma 6.6. Notice that we have

(1 − 𝜀)𝑚
2

4𝑝 ≤ |𝑃 | =
∑
𝑢∈[𝑝]
|𝑃𝑢 | =

𝑚2

4𝑝2

∑
𝑢∈[𝑝]
(1 − 𝜀𝑢)

=⇒ 1
𝑝

∑
𝑢∈[𝑝]

𝜀𝑢 ≤ 𝜀 .

(7)

One can think of this problem as a collection of disjoint satisfiable (noiseless) 2-XOR instances on 𝑃𝑢 ,
where each 𝑃𝑢 is a biclique (𝑚2𝑝 vertices on each side) with 𝜀𝑢 fraction of edges are removed.

29

Algorithm 2 (Recover corrupted constraints from corrupted pairs).

Given: For each 𝑢 ∈ [𝑝], a set 𝑃𝑢 ⊆ ℋ (𝐿)𝑢 × ℋ (𝑅)𝑢 such that |𝑃𝑢 | = (1 − 𝜀𝑢) 𝑚
2

4𝑝2 for 𝜀𝑢 ∈ [0, 1],
along with “right-hand sides” 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′) for each (𝐶, 𝐶′) ∈ 𝑃𝑢 .

Output: For each 𝑢 ∈ [𝑝], disjoint subsets𝒜(1)𝑢 ,𝒜(2)𝑢 ⊆ ℋ𝑢 .

Operation:

1. Initialize: 𝒜(1)𝑢 ,𝒜(2)𝑢 = ∅ for each 𝑢 ∈ [𝑝].
2. For each 𝑢 ∈ [𝑝]:

(a) If 𝜀𝑢 ≥ 1/3, set𝒜(1)𝑢 = ℋ𝑢 and𝒜(2)𝑢 = ∅.
(b) Else if 𝜀𝑢 < 1/3, let 𝐺𝑢 be the graph with vertex setℋ𝑢 = ℋ (𝐿)𝑢 ∪ℋ (𝑅)𝑢 with edges

given by 𝑃𝑢 , and let 𝑆𝑢 be the size of the largest connected component in 𝐺𝑢 .
(c) As 𝑆𝑢 is connected in 𝐺𝑢 , and we know 𝜉𝑢(𝐶)𝜉𝑢(𝐶′) for each edge (𝐶, 𝐶′) in 𝐺𝑢 ,

by solving a linear system of equations we obtain 𝑧 ∈ {−1, 1}ℋ𝑢 such that either
𝑧𝐶 = 𝜉𝑢(𝐶) for all 𝐶 ∈ 𝑆𝑢 , or 𝑧𝐶 = −𝜉𝑢(𝐶) for all 𝐶 ∈ 𝑆𝑢 . That is, 𝑧𝐶 = 𝜉𝑢(𝐶) up
to a global sign.

(d) Pick the global sign to minimize the number of 𝐶 ∈ 𝑆𝑢 for which 𝑧𝐶 = −1. Set
𝒜(1)𝑢 = ℋ𝑢 \ 𝑆𝑢 and𝒜(2)𝑢 = {𝐶 ∈ 𝑆𝑢 : 𝑧𝐶 = −1}.

3. Output {𝒜(1)𝑢 }𝑢∈[𝑝], {𝒜(2)𝑢 }𝑢∈[𝑝].

We now analyze Algorithm 2 via the following lemma.

Lemma 6.8. Let 𝜂 ∈ [0, 1/2), and let |ℋ𝑢 | = 𝑚
𝑝 ≥ 24𝑘

(1−2𝜂)2 log 𝑛 and |𝑃𝑢 | = (1 − 𝜀𝑢) 𝑚
2

4𝑝2 with 𝜀𝑢 ∈ [0, 1] for

each𝑢 ∈ [𝑝], and 1
𝑝

∑
𝑢∈[𝑝] 𝜀𝑢 ≤ 𝜀. The outputs of Algorithm 2 satisfy the following: (1)

∑
𝑢∈[𝑝] |𝒜

(1)
𝑢 | ≤ 4𝜀𝑚,

and (2) with probability 1 − 𝑛−𝑘 over the noise {𝜉𝑢(𝐶)}𝑢∈[𝑝],𝐶∈ℋ𝑢 , for every 𝑢 ∈ [𝑝] we have that
𝒜(2)𝑢 = {𝐶 ∈ ℋ𝑢 : 𝜉𝑢(𝐶) = −1} \ 𝒜(1)𝑢 .

Proof. Suppose that 𝜀𝑢 < 1/3. Observe that 𝐺𝑢 is a graph obtained by taking a biclique with left
vertices ℋ (𝐿)𝑢 and right vertices ℋ (𝑅)𝑢 , i.e., with 𝑚/2𝑝 left vertices and 𝑚/2𝑝 right vertices. The
following lemma shows that the largest connected component 𝑆𝑢 in 𝐺𝑢 has size at least 𝑚

𝑝 (1 − 𝜀𝑢).
Claim 6.9. Let 𝐾𝑛,𝑛 be the complete bipartite graph with 𝑛 left vertices 𝐿 and 𝑛 right vertices 𝑅. Let
𝐺 be a graph obtained by deleting 𝜀𝑛2 edges from 𝐾𝑛,𝑛 . Then, the largest connected component in
𝐺 has size ≥ 2𝑛(1 − 𝜀).

We postpone the proof of Claim 6.9 to the end of the section, and continue with the proof of
Lemma 6.8.

We now argue that we can efficiently obtain the vector 𝑧 in Step (2c) of Algorithm 2. Indeed, this is
done as follows. First, pick one 𝐶0 ∈ 𝑆𝑢 arbitrarily, and set 𝑧𝐶0 = 1. Then, we propagate in a breadth-
first search manner: for any edge (𝐶, 𝐶′) in 𝑆𝑢 where 𝑧𝐶 is determined, set 𝑧𝐶′ = 𝑧𝐶 · 𝜉𝑢(𝐶)𝜉𝑢(𝐶′).
We repeat this process until we have labeled all of 𝑆𝑢 . Notice that as 𝑆𝑢 is a connected component,

30

fixing 𝑧𝐶0 for any 𝐶0 ∈ 𝑆𝑢 uniquely determines the assignment of all 𝑆𝑢 , thus we have obtained
𝑧𝐶 = 𝜉𝑢(𝐶) up to a global sign.

Now, we observe that 𝑆𝑢 does not depend on the noise in 𝜓. Indeed, this is because the pruning
and expander decomposition (and thus the graph 𝐺𝑢) depends solely on the constraint graph 𝐺
of the instance 𝜙, and not on the right-hand sides of the constraints. The following lemma thus
shows that with high probability over the noise, the number of 𝐶 ∈ 𝑆𝑢 where 𝜉𝑢(𝐶) = −1 is strictly
less than 1/2|𝑆𝑢 |. Hence, in Step (2d), by picking the assignment ±𝑧 that minimizes the number of
𝐶 ∈ 𝑆𝑢 with 𝜉𝑢(𝐶) = −1, we see that𝒜(2)𝑢 = {𝐶 ∈ 𝑆𝑢 : 𝑧𝐶 = −1} = {𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}.
Claim 6.10. Let 𝜂 ∈ (0, 1/2) be the corruption probability, and assume that 𝑝 ≤ 𝑛𝑘 and 𝑚

𝑝 ≥
24𝑘
(1−2𝜂)2 log 𝑛. With probability 1−𝑛−𝑘 over the noise in 𝜓, it holds that for each 𝑢 ∈ [𝑝]with 𝜀𝑢 < 1/3,
|{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| < 1

2 |𝑆𝑢 |.
We postpone the proof of Claim 6.10, and finish the proof of Lemma 6.8. We next bound∑

𝑢∈[𝑝] |𝒜
(1)
𝑢 |. By Eq. (7) we have that 1

𝑝

∑
𝑢 𝜀𝑢 ≤ 𝜀. Thus,∑

𝑢:𝜀𝑢≥1/3
|ℋ𝑢 | ≤

𝑚

𝑝

∑
𝑢:𝜀𝑢≥1/3

3𝜀𝑢 ≤ 3𝜀𝑚 .

Moreover, by Claim 6.9 we have |𝑆𝑢 | ≥ (1 − 𝜀𝑢)|ℋ𝑢 | = (1 − 𝜀𝑢)𝑚𝑝 . Thus,∑
𝑢:𝜀𝑢<1/3

|ℋ𝑢 \ 𝑆𝑢 | ≤
∑

𝑢:𝜀𝑢<1/3
𝜀𝑢 ·

𝑚

𝑝
≤ 𝜀𝑚 .

Therefore, combining the two,∑
𝑢∈[𝑝]
|𝒜(1)𝑢 | =

∑
𝑢:𝜀𝑢<1/3

|ℋ𝑢 \ 𝑆𝑢 | +
∑

𝑢:𝜀𝑢≥1/3
|ℋ𝑢 | ≤ 4𝜀𝑚 ,

which finishes the proof of Lemma 6.8. □

In the following, we prove Claims 6.9 and 6.10.

Proof of Claim 6.9. Let 𝑆1 , . . . , 𝑆𝑡 be the connected components of 𝐺. Let ℓ𝑖 = |𝑆𝑖∩𝐿| and 𝑟𝑖 = |𝑆𝑖∩𝑅 |.
The number of edges in 𝐺 is at most

∑𝑡
𝑖=1 ℓ𝑖𝑟𝑖 .

Now, suppose that the largest connected component of 𝐺 has size at most 𝑀. Then, we have
that ℓ𝑖 + 𝑟𝑖 ≤ 𝑀 for all 𝑖 ∈ [𝑡]. Notice that the number of edges deleted from 𝐾𝑛,𝑛 to produce 𝐺 must
be at least 𝑛2 −∑𝑡

𝑖=1 ℓ𝑖𝑟𝑖 , and this is at most 𝜀𝑛2. Hence, by maximizing the quantity
∑𝑡
𝑖=1 ℓ𝑖𝑟𝑖 subject

to ℓ𝑖 + 𝑟𝑖 ≤ 𝑀 for all 𝑖 ∈ [𝑡] and
∑𝑡
𝑖=1 ℓ𝑖 + 𝑟𝑖 = 2𝑛, we can obtain a lower bound on the number of

edges deleted from 𝐾𝑛,𝑛 in order for the largest connected component of 𝐺 to have size at most 𝑀.
We have that

𝑡∑
𝑖=1

ℓ𝑖𝑟𝑖 ≤
𝑡∑
𝑖=1

(
ℓ𝑖 + 𝑟𝑖

2

)2
≤ 𝑀

2 ·
𝑡∑
𝑖=1

ℓ𝑖 + 𝑟𝑖
2 =

𝑛𝑀

2 ,

31

where the first inequality is by the AM-GM inequality. Thus,

𝜀𝑛2 ≥ 𝑛2 − 𝑛𝑀2 =⇒ 𝑀 ≥ 2𝑛(1 − 𝜀) ,

which finishes the proof. □

Proof of Claim 6.10. Let 𝑢 be such that 𝜀𝑢 < 1/3, and let 𝑆𝑢 be the largest connected component in
𝐺𝑢 . Observe that 𝑆𝑢 is determined solely by the constraint graph of 𝜙, and in particular does not
depend on the noise in 𝜙 (and hence on the noise in 𝜓). As 𝑝 ≤ 𝑛𝑘 by assumption, it thus suffices to
show that for each 𝑢 ∈ [𝑝], with probability 1 − 𝑛−2𝑘 it holds that |{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| < 1

2 |𝑆𝑢 |.
Notice that |{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) = −1}| is simply the sum of |𝑆𝑢 | Bernoulli(𝜂) random variables. By
Hoeffding’s inequality, with probability ≥ 1 − exp(−2𝛿2 |𝑆𝑢 |) it holds that |{𝐶 ∈ 𝑆𝑢 : 𝜉𝑢(𝐶) =
−1}| ≤ (𝜂 + 𝛿)|𝑆𝑢 |. We choose 𝛿 = 1

2 (12 − 𝜂) such that 𝜂 + 𝛿 < 1
2 for 𝜂 ∈ (0, 1

2). Then, by noting
that 2𝛿2 |𝑆𝑢 | ≥ 2𝛿2(1 − 𝜀𝑢)|ℋ𝑢 | ≥ 1

2 (12 − 𝜂)2 · 2
3 · 𝑚𝑝 ≥ 2𝑘 log 𝑛 since 𝑚

𝑝 ≥ 24𝑘
(1−2𝜂)2 log 𝑛, Claim 6.10

follows. □

6.6 Finishing the proof of Lemma 5.2

Proof of Lemma 5.2. We are given an 𝜏-spread 𝑝-bipartite 𝑘-XOR instance 𝜓 with constraint graph
ℋ = {ℋ𝑢}𝑢∈[𝑝], where we recall from Definition 5.1 that (1) 𝑚 = |ℋ | and each |ℋ𝑢 | = 𝑚

𝑝 ≥ 2⌊ 1
2𝜏2 ⌋

and 𝑚
𝑝 is even, and (2) for any 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1

𝜏2 max(1, 𝑛 𝑘
2−1−|𝑄 |). For convenience, let

𝑚 ≥ 𝑛 𝑘−1
2
√
𝑝 · 𝛽 where 𝛽 B 𝐶 · (𝑘 log 𝑛)3/2

𝜏𝛾2𝜀3/2 and 𝛾 B 1 − 2𝜂 ∈ (0, 1] since 𝜂 ∈ [0, 1
2).

First, we construct the 2-XOR instance 𝜙 defined in Definition 6.1. As stated in Observation 6.2,
the average degree is at least 𝑑 B 1

4𝛽
2, and furthermore, by Lemma 6.5, the maximum degree

of 𝐺(𝐿)
𝑢,𝐶
(𝜙) and 𝐺

(𝑅)
𝑢,𝐶′(𝜙) for any 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 and 𝐶′ ∈ ℋ (𝑅)𝑢 is bounded by Δ B 1/𝜏2. The

algorithm then follows the steps outlined in Section 6.2.

Step 1. We apply graph pruning and expander decomposition (Lemma 6.6) with parameter
𝜀′ B 1

4𝜀, which decomposes 𝜙 into 𝜙1 , . . . , 𝜙𝑇 such that they contain 1−𝜀′ fraction of the constraints
in 𝜙, and their constraint graphs (after adding some self-loops due to expander decomposition)
have minimum degree 𝑑min ≥ 1

3𝜀
′𝑑 = 1

48𝜀𝛽
2 and spectral gap 𝜆 ≥ Ω(𝜀′2/log2 𝑚) = Ω(𝜀2/(𝑘2 log2 𝑛)).

Step 2. We solve the SDP relaxation for each subinstance 𝜙𝑖 . Let 𝐺 be the constraint graph of 𝜙𝑖
(with at most 𝑁 ≤ 𝑛𝑘−1 vertices) and 𝐻 be the corrupted edges of 𝐺. We apply the relative spectral
approximation result (Lemma 6.7) with 𝜉(1)1 , . . . , 𝜉(1)

𝑚/2𝑝 (resp. 𝜉(2)1 , . . . , 𝜉(2)
𝑚/2𝑝) being {−1, 1} random

variables indicating whether each 𝐶 ∈ ℋ (𝐿)𝑢 (resp. 𝐶′ ∈ ℋ (𝑅)𝑢) is corrupted. Moreover, the subgraphs
𝐺
(1)
𝑖

and 𝐺(2)
𝑗

in Lemma 6.7 (which are simply subgraphs of 𝐺(𝐿)
𝑢,𝐶
(𝜙) and 𝐺(𝑅)

𝑢,𝐶′(𝜙)) have maximum
degree ≤ Δ = 1/𝜏2. Thus, we have that with probability 1 − 𝑂(𝑁−2),

𝐿𝐻 ⪯ max
(
(1 + 𝛿) · 2𝜂(1 − 𝜂), 1

3

)
· 𝐿𝐺

32

where 𝛿 =

√
𝐵Δ log𝑁
𝑑min𝜆

≤ 𝑂
(√

𝑘3 log3 𝑛

𝜏2𝜀3𝛽2

)
. Plugging in 𝛽 (for large enough 𝐶), we get that 𝛿 ≤ 𝛾2 =

1 − 4𝜂(1 − 𝜂). Therefore, we have (1 + 𝛿) · 2𝜂(1 − 𝜂) ≤ (1 + 𝛾2) · 1
2 (1 − 𝛾2) < 1

2 , hence 𝐿𝐻 ≺ 1
2𝐿𝐺.

By union bound over all 𝑇 ≤ 𝑁 subinstances, this holds for all subinstances 𝜙𝑖 with probability
1 − 1

poly(𝑛) over the randomness of the noise.
Then, by Lemma 2.4, the SDP relaxation has a unique optimum which is the planted assignment.

Thus, we can identify the set of corrupted edges in each 𝜙𝑖 .

Step 3. So far we have identified, for ≥ 1−𝜀′ fraction of all {(𝑢, 𝐶, 𝐶′) : 𝑢 ∈ [𝑝], 𝐶 ∈ ℋ (𝐿)𝑢 , 𝐶′ ∈ ℋ (𝑅)𝑢 },
the product 𝜉𝑢(𝐶) · 𝜉𝑢(𝐶′), where 𝜉𝑢(𝐶) = −1 if (𝑢, 𝐶) is corrupted in 𝜓, and +1 otherwise. Let
𝑃𝑢 ⊆ {(𝐶, 𝐶′) : 𝐶 ∈ ℋ (𝐿)𝑢 , 𝐶′ ∈ ℋ (𝑅)𝑢 } be such pairs for each 𝑢 ∈ [𝑝], and let 𝑃 = ∪𝑢∈[𝑝]𝑃𝑢 . Note that
|𝑃 | ≥ (1 − 𝜀′)𝑚2

4𝑝 and 𝑃 depends only onℋ and not on the noise.
We then run Algorithm 2. By the assumption that 𝜏 ≤ 𝑐𝛾√

𝑘 log 𝑛
for a small enough 𝑐, we

have |ℋ𝑢 | = 𝑚
𝑝 ≥ 2⌊ 1

2𝜏2 ⌋ ≥ 24𝑘
(1−2𝜂)2 , which is the condition we need in Lemma 6.8. Thus, with

probability 1 − 𝑛−𝑘 , Algorithm 2 outputs (1) 𝒜1 ⊆ ℋ which only depends on ℋ and such that
|𝒜1 | ≤ 4𝜀′𝑚 = 𝜀𝑚, and (2)𝒜2 ⊆ ℋ , the set of corrupted constraints inℋ \𝒜1. This completes the
proof of Lemma 5.2. □

Acknowledgements

We would like to thank Omar Alrabiah, Sidhanth Mohanty and Jeff Xu for enlightening discussions
and feedback on our paper. We also thank anonymous reviewers for their valuable feedback.

References

[ACIM01] Dimitris Achlioptas, Arthur Chtcherba, Gabriel Istrate, and Cristopher Moore. The
phase transition in 1-in-k SAT and NAE 3-SAT. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages 721–722, 2001. 20

[AE98] Gunnar Andersson and Lars Engebretsen. Better approximation algorithms for Set
splitting and Not-All-Equal SAT. Information Processing Letters, 65(6):305–311, 1998. 20

[AGK21] Jackson Abascal, Venkatesan Guruswami, and Pravesh K. Kothari. Strongly refuting
all semi-random Boolean CSPs. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 454–472.
SIAM, 2021. 0, 2, 4, 5, 6, 8

[AKK95] Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada,
USA, pages 284–293. ACM, 1995. 0, 1

33

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to Refute a Random CSP. In
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 689–708. IEEE Computer Society, 2015. 0, 1, 5

[App16] Benny Applebaum. Cryptographic Hardness of Random Local Functions: Survey.
Computational complexity, 25:667–722, 2016. 1, 4

[AS15] Emmanuel Abbe and Colin Sandon. Detection in the stochastic block model with
multiple clusters: proof of the achievability conjectures, acyclic bp, and the information-
computation gap. arXiv preprint arXiv:1512.09080, 2015. 3

[BCK15] Boaz Barak, Siu On Chan, and Pravesh K. Kothari. Sum of Squares Lower Bounds from
Pairwise Independence. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 97–106.
ACM, 2015. 1

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient
probabilistically checkable proofs and applications to approximations. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pages 294–304, 1993. 8

[BGMT12] Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP
gaps from pairwise independence. Theory of Computing, 8(1):269–289, 2012. 1

[BHL+02] Wolfgang Barthel, Alexander K Hartmann, Michele Leone, Federico Ricci-Tersenghi,
Martin Weigt, and Riccardo Zecchina. Hiding solutions in random satisfiability
problems: A statistical mechanics approach. Physical review letters, 88(18):188701, 2002.
1, 4

[BKS22] Rares-Darius Buhai, Pravesh K Kothari, and David Steurer. Algorithms approaching
the threshold for semi-random planted clique. In Proceedings of the 55th Annual ACM
SIGACT Symposium on Theory of Computing, 2022. 6

[BM16] Boaz Barak and Ankur Moitra. Noisy Tensor Completion via the Sum-of-Squares
Hierarchy. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York,
USA, June 23-26, 2016, volume 49 of JMLR Workshop and Conference Proceedings, pages
417–445. JMLR.org, 2016. 1

[BQ09] Andrej Bogdanov and Youming Qiao. On the security of Goldreich’s one-way func-
tion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 12th International Workshop, APPROX 2009, pages 392–405. Springer, 2009. 1

[BS95] Avrim Blum and Joel Spencer. Coloring Random and Semi-Random k-Colorable
Graphs. J. Algorithms, 19(2):204–234, 1995. 2

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. CoRR, abs/1404.5236, 2014. 2

34

[CCF10] Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity
concept. SIAM Journal on Discrete Mathematics, 23(4):2000–2034, 2010. 1, 4

[CGL07] Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics
for random 𝑘-SAT. Combinatorics, Probability & Computing, 16(1):5, 2007. 1, 14

[DSS14] Jian Ding, Allan Sly, and Nike Sun. Satisfiability threshold for random regular NAE-
SAT. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 814–822, 2014. 20

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
534–543, 2002. 1, 2

[Fei07] Uriel Feige. Refuting Smoothed 3CNF Formulas. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA,
Proceedings, pages 407–417. IEEE Computer Society, 2007. 2

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput. Syst.
Sci., 63(4):639–671, 2001. 2

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic Proofs and Efficient
Algorithm Design. Foundations and Trends® in Theoretical Computer Science, 14(1-2):1–221,
2019. 2

[FLP16] Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-exponential Ap-
proximation Schemes for CSPs: From Dense to Almost Sparse. In 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. 0, 1, 5

[FPV15] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. Subsampled Power Iteration:
a Unified Algorithm for Block Models and Planted CSP’s. In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 2836–2844, 2015. 0,
1, 2, 4, 5, 6, 17, 18

[FPV18] Vitaly Feldman, Will Perkins, and Santosh S. Vempala. On the Complexity of Random
Satisfiability Problems with Planted Solutions. SIAM Journal on Computing, 47(4):1294–
1338, 2018. 1, 4

[GKM22] Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algorithms and
certificates for Boolean CSP refutation: smoothed is no harder than random. In STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 -
24, 2022, pages 678–689. ACM, 2022. 2, 4, 5, 6, 14, 20, 21, 39

35

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-sat
instances efficiently. Electron. Notes Discret. Math., 16:21–46, 2003. 1

[Gol00] Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs. Electron.
Colloquium Comput. Complex., 2000. 1, 4

[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001. 1

[HKM23] Jun-Ting Hsieh, Pravesh K. Kothari, and Sidhanth Mohanty. A simple and sharper
proof of the hypergraph Moore bound. In Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2324–2344.
SIAM, 2023. 2, 4, 5, 21

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. 1

[JMS07] Haixia Jia, Cristopher Moore, and Doug Strain. Generating Hard Satisfiable Formulas
by Hiding Solutions Deceptively. Journal of Artificial Intelligence Research, 28:107–118,
2007. 1, 4

[Kar94] David R Karger. Random sampling in cut, flow, and network design problems. In
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
648–657, 1994. 11

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 132–145. ACM, 2017. 1

[KMZ12] Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Reweighted Belief Propagation
and Quiet Planting for Random k-SAT. Journal on Satisfiability, Boolean Modeling and
Computation, 8(3-4):149–171, 2012. 4

[KVV04] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM (JACM), 51(3):497–515, 2004. 13, 16

[KZ09] Florent Krzakala and Lenka Zdeborová. Hiding Quiet Solutions in Random Constraint
Satisfaction Problems. Physical review letters, 102(23):238701, 2009. 4

[Mos15] Dana Moshkovitz. The Projection Games Conjecture and the NP-Hardness of ln 𝑛-
Approximating Set-Cover. Theory Comput., 11:221–235, 2015. 8

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5):29:1–29:29, 2010. 8

36

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On 𝜀-biased generators in NC0.
Random Structures & Algorithms, 29(1):56–81, 2006. 1

[MW16] Ryuhei Mori and David Witmer. Lower Bounds for CSP Refutation by SDP Hierar-
chies. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of
LIPIcs, pages 41:1–41:30, 2016. 1

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In 2014 IEEE 29th Conference on Computational Complexity (CCC),
pages 1–12. IEEE, 2014. 1

[PS17] Aaron Potechin and David Steurer. Exact tensor completion with sum-of-squares.
In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, pages
1619–1673. PMLR, 2017.

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random CSPs
below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
121–131. ACM, 2017. 1, 5

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011. 13, 16, 38

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2616–2635. SIAM, 2019. 13, 16

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends® in Machine Learning, 8(1-2):1–230, 2015. 16

[WAM19] Alexander S. Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi Hierarchy
and Tensor PCA. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 1446–1468. IEEE Computer Society, 2019. 2

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved
worst-case update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1130–1143, 2017. 13, 16

37

A Notions of Relative Approximation

In this paper, we have encountered several notions of relative graph approximations. Let 𝐺 be an
𝑛-vertex graph, and let 𝐻 be a random subgraph of 𝐺 by selecting each edge with a fixed probability
𝜂 ∈ (0, 1). We are interested in the sufficient conditions on 𝐺 for each of the following to hold with
probability 1 − 𝑜(1) (for some 𝛿 = 𝑜(1)):

(1) Relative cut approximation: 𝑥⊤𝐿𝐻𝑥 ≤ (1 + 𝛿)𝜂 · 𝑥⊤𝐿𝐺𝑥 for all 𝑥 ∈ {−1, 1}𝑛 .

(2) Relative SDP approximation: ⟨𝑋, 𝐿𝐻⟩ ≤ (1 + 𝛿)𝜂 · ⟨𝑋, 𝐿𝐺⟩ for all symmetric matrices 𝑋 ⪰ 0
with diag(𝑋) = 𝕀.

(3) Relative spectral approximation: 𝐿𝐻 ⪯ (1 + 𝛿)𝜂 · 𝐿𝐺.

Here, we only state one-sided inequalities, as solving noisy XOR requires only an upper bound on
𝐿𝐻 . Note also that the above is in increasing order: relative spectral approximation implies relative
SDP approximation, which in turn implies relative cut approximation.

Recall from Lemma 2.3 that a lower bound on the min-cut of 𝐺 suffices for cut approximation to
hold, while Lemma 2.5 shows that lower bounds on the minimum degree and spectral gap of 𝐺
suffice for spectral approximation to hold. It is natural to wonder whether a min-cut lower bound
is sufficient for SDP approximation as well, since it allows us to efficiently recover the planted
assignment in a noisy planted 2-XOR via solving an SDP relaxation (see Lemma 2.4). Unfortunately,
there is a counterexample.

Separation of cut and SDP approximation. The example is the same graph that separates cut
and spectral approximation described in [ST11]. Let 𝑛 be even and 𝑘 = 𝑘(𝑛). Define 𝐺 = (𝑉, 𝐸)
be a graph on 𝑁 = 𝑛𝑘 vertices where 𝑉 = {0, 1, . . . , 𝑛 − 1} × {1, . . . , 𝑘} and (𝑢, 𝑖), (𝑣, 𝑗) ∈ 𝑉 are
connected if 𝑣 = 𝑢 ± 1 mod 𝑛. Moreover, there is one additional edge 𝑒∗ between (0, 1) and (𝑛/2, 1).
In other words, 𝐺 consists of 𝑛 clusters of vertices of size 𝑘, where the clusters form a ring with a
complete bipartite graph between adjacent clusters, along with a special edge 𝑒∗ in the middle.

Clearly, the minimum cut of 𝐺 is 2𝑘, which means that cut approximation holds. Essentially, the
special edge 𝑒∗ does not play a role here.

However, we will show that 𝑒∗ breaks SDP approximation. Define vector 𝑥0 ∈ ℝ𝑉 such that the
(𝑢, 𝑖) entry is

𝑥0(𝑢, 𝑖) = min(𝑢, 𝑛 − 𝑢) ,

and vectors 𝑥1 , . . . , 𝑥𝑛−1 to be cyclic shifts of 𝑥0: for 𝑤 ∈ {0, 1, . . . , 𝑛 − 1},

𝑥𝑤(𝑢, 𝑖) = 𝑥0(𝑢 − 𝑤 (mod 𝑛), 𝑖) .

We note that 𝑥0 is the vector shown in [ST11] that breaks spectral approximation. We now show
that 𝑋 =

∑𝑛−1
𝑤=0 𝑥𝑤𝑥

⊤
𝑤 (scaled so that 𝑋 has all 1s on the diagonal) breaks SDP approximation.

First, it is easy to see that the diagonal entries of 𝑋 are all equal due to symmetry. Thus, for
some scaling 𝑐, 𝑐𝑋 ⪰ 0 and diag(𝑐𝑋) = 𝕀.

38

Observe that for 𝑤 ≤ 𝑛
2 − 1, 𝑥𝑤(0, 1) = 𝑤 and 𝑥𝑤(𝑛2 , 1) = 𝑛

2 − 𝑤. For 𝑤 ≥ 𝑛
2 , 𝑥𝑤(0, 1) = 𝑛 − 𝑤 and

𝑥𝑤(𝑛2 , 1) = 𝑤 − 𝑛
2 . Thus, as 𝑥⊤𝑤𝐿𝑒∗𝑥𝑤 =

(
𝑥𝑤(0, 1) − 𝑥𝑤(𝑛2 , 1)

)2,

⟨𝑋, 𝐿𝑒∗⟩ =
𝑛−1∑
𝑤=0

𝑥⊤𝑤𝐿𝑒∗𝑥𝑤 =

𝑛
2−1∑
𝑤=0

(𝑛
2 − 2𝑤

)2
+

𝑛−1∑
𝑤= 𝑛

2

(
3𝑛
2 − 2𝑤

)2
= Θ(𝑛3) .

On the other hand, 𝑥⊤𝑤𝐿𝐺\𝑒∗𝑥𝑤 = 𝑛𝑘2 for any 𝑤, thus ⟨𝑋, 𝐿𝐺\𝑒∗⟩ = 𝑛2𝑘2. This is 𝑜(𝑛3), i.e. dominated
by ⟨𝑋, 𝐿𝑒∗⟩, when 𝑘 = 𝑜(

√
𝑛). Since 𝑒∗ is selected in 𝐻 with probability 𝜂, we have that with

probability 𝜂,
⟨𝑋, 𝐿𝐻⟩ ≥ ⟨𝑋, 𝐿𝑒∗⟩ ≥ (1 − 𝑜(1)) · ⟨𝑋, 𝐿𝐺⟩ ,

which violates the desired SDP approximation.

B Hypergraph Decomposition

In this section, we describe the hypergraph decomposition algorithm used in Section 5 (for the
proof of Theorem 3). This algorithm is nearly identical to the hypergraph decomposition step of
[GKM22, Section 4].

Algorithm 3.

Given: A semirandom (with noise 𝜂) 𝑘-XOR instance 𝜓 with constraint hypergraphℋ over 𝑛
vertices, and a spread parameter 𝜏 ∈ (0, 1).

Output: For each 𝑡 = 2, . . . , 𝑘, a semirandom (with noise 𝜂) planted 𝜏-spread 𝑝(𝑡)-bipartite
𝑡-XOR instance 𝜓(𝑡) with constraint hypergraph {ℋ (𝑡)𝑢 }𝑢∈[𝑝(𝑡)], along with “discarded”
hyperedgesℋ (1).

Operation:

1. Initialize: 𝜓(𝑡) to the empty instance, and 𝑝(𝑡) = 0 for 𝑡 = 2, . . . , 𝑘.

2. Fix violations greedily:

(a) Find a maximal nonempty violating 𝑄. That is, find 𝑄 ⊆ [𝑛] of size 1 ≤
|𝑄 | ≤ 𝑘 − 1 such that deg(𝑄) = |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}| > 1

𝜏2 max(1, 𝑛 𝑘
2−|𝑄 |), and

deg(𝑄′) ≤ 1
𝜏2 max(1, 𝑛 𝑘

2−|𝑄′ |) for all 𝑄′ ⊋ 𝑄.

(b) Let 𝑞 = |𝑄 |. Let 𝑢 = 1 + 𝑝(𝑘+1−𝑞) be a new “label”, and defineℋ (𝑘+1−𝑞)
𝑢 to be an

arbitrary subset of {𝐶 \𝑄 : 𝐶 ∈ ℋ , 𝑄 ⊆ 𝐶} of size exactly 2 · ⌊ 1
2𝜏2 max(1, 𝑛 𝑘

2−𝑞)⌋.

(c) Set 𝑝(𝑘+1−𝑞) ← 1 + 𝑝(𝑘+1−𝑞), andℋ ←ℋ \ℋ (𝑘+1−𝑞)
𝑢 .

3. If no such 𝑄 exists, then put the remaining hyperedges inℋ (1).

Lemma B.1. Algorithm 3 has the following guarantees:

39

(1) The runtime is 𝑛𝑂(𝑘),

(2) The number of “discarded” hyperedges is 𝑚(1) B |ℋ (1) | ≤ 1
𝑘𝜏2 𝑛

𝑘
2 ,

(3) For each 𝑡 ∈ {2, . . . , 𝑘} and 𝑢 ∈ [𝑝(𝑡)], |ℋ (𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
= 2⌊ 1

2𝜏2 max(1, 𝑛𝑡− 𝑘2−1)⌋,

(4) For each 𝑡 = 2, . . . , 𝑘, the instance 𝜓(𝑡) is 𝜏-spread.

Proof. The runtime of Algorithm 3 is obvious. We now argue that 𝑚(1) is small. By construction,
ℋ (1) is the set of remaining hyperedges when the inner loop terminates, and so we must have
deg({𝑖}) ≤ 1

𝜏2 max(1, 𝑛 𝑘
2−1) = 1

𝜏2 𝑛
𝑘
2−1 for every 𝑖 ∈ [𝑛]; here, deg only counts hyperedges remaining

inℋ . We then have
∑
𝑖∈[𝑛] deg({𝑖}) = 𝑘 |ℋ (1) |, as every 𝐶 ∈ ℋ (1) is counted exactly 𝑘 times in the

sum. Hence, 𝑚(1) ≤ 1
𝑘𝜏2 𝑛

𝑘
2 .

Next, for each 𝑡 ∈ {2, . . . , 𝑘}, by construction (Step (2b)) eachℋ (𝑡)𝑢 has the same size, namely
2⌊ 1

2𝜏2 max(1, 𝑛𝑡− 𝑘2−1)⌋. It then follows that 𝑚(𝑡) :=
∑
𝑢∈[𝑝(𝑡)] |ℋ

(𝑡)
𝑢 | = 𝑝(𝑡) · 2⌊ 1

2𝜏2 max(1, 𝑛𝑡− 𝑘2−1)⌋, and
so |ℋ (𝑡)𝑢 | = 𝑚(𝑡)

𝑝(𝑡)
. We also note that 𝑚(𝑡)/𝑝(𝑡) is clearly even.

We now argue that for each 𝑡, the instance 𝜓(𝑡) is 𝜏-spread. From Definition 5.1, we need to
prove that for each 𝑢 ∈ [𝑝(𝑡)] and 𝑄 ⊆ [𝑛], deg𝑢(𝑄) ≤ 1

𝜏2 max(1, 𝑛 𝑘
2−1−|𝑄 |). To see this, let 𝑢 ∈ [𝑝(𝑡)],

and let 𝑄𝑢 be the set “associated” with the label 𝑢, i.e., the set picked in Step (2a) of Algorithm 3
when the label 𝑢 is added in Step (2b). Note that we must have |𝑄𝑢 | = 𝑘 + 1 − 𝑡. Let ℋ ′ denote
the set of constraints inℋ at the time when 𝑢 andℋ (𝑡)𝑢 is added to 𝜓(𝑡). Namely, we have that for
every 𝐶 ∈ ℋ (𝑡)𝑢 , 𝑄𝑢 ∪ 𝐶 ∈ ℋ ′, and 𝑄𝑢 , 𝐶 are disjoint. Now, let 𝑅 ⊆ [𝑛] be a nonempty set of size at
most 𝑡 − 1. First, observe that if 𝑅 ∩𝑄𝑢 is nonempty, then we must have deg𝑢(𝑅) = 0 (this degree is
in the hypergraphℋ (𝑡)𝑢). Indeed, this is because 𝐶 ∩ 𝑄𝑢 = ∅ for all 𝐶 ∈ ℋ (𝑡)𝑢 . So, we can assume
that 𝑅 ∩ 𝑄𝑢 = ∅. Next, we see that deg𝑢(𝑅) ≤ degℋ ′(𝑄𝑢 ∪ 𝑅) (where degℋ ′ is the degree inℋ ′),
as 𝑄𝑢 ∪ 𝐶 ∈ ℋ ′ for every 𝐶 ∈ ℋ (𝑡)𝑢 . Because 𝑄𝑢 was maximal whenever it was processed in our
decomposition algorithm and 𝑄𝑢 ⊊ 𝑄𝑢 ∪ 𝑅 as 𝑅 is nonempty and 𝑅 ∩𝑄𝑢 = ∅, it follows that

degℋ ′(𝑄𝑢 ∪ 𝑅) ≤
1
𝜏2 max(1, 𝑛 𝑘

2−|𝑄𝑢∪𝑅 |) = 1
𝜏2 max(1, 𝑛 𝑘

2−|𝑄𝑢 |−|𝑅 |)

=
1
𝜏2 max(1, 𝑛𝑡− 𝑘2−1−|𝑅 |) ≤ 1

𝜏2 max(1, 𝑛 𝑡
2−1−|𝑅 |) ,

where the last inequality follows because 𝑡 − 𝑘
2 − 1 − |𝑅 | ≤ 𝑡

2 − 1 − |𝑅 | always holds, as 𝑡 ≤ 𝑘.
Finally, when 𝑅 = ∅, we trivially have

deg𝑢(∅) =
���ℋ (𝑡)𝑢 ��� = 2

⌊
1

2𝜏2 max(1, 𝑛𝑡− 𝑘2−1)
⌋
≤ 1

𝜏2 max(1, 𝑛𝑡− 𝑘2−1) ≤ 1
𝜏2 max(1, 𝑛 𝑡

2−1) ,

where we use again that 𝑡 − 𝑘
2 ≤ 𝑡

2 as 𝑡 ≤ 𝑘. This finishes the proof. □

C Theorem 3 when 𝑘 = 1

In this section, we state and prove a variant of Theorem 3 for the degenerate case of 𝑘 = 1. The
algorithm here is straightforward, and we include it only for completeness.

40

Lemma C.1 (Algorithm for noisy 1-XOR). Let 𝜂 ∈ (0, 1/2) be a constant. Let 𝑛 ∈ ℕ and 𝜀 ∈ (0, 1), and
let 𝑚 ≥ 𝑂(𝑛 log 𝑛/𝜀). There is a polynomial-time algorithm𝒜 that takes as input a 1-XOR instance 𝜓 with
constraint hypergraphℋ and outputs two disjoint sets𝒜1(ℋ),𝒜2(𝜓) ⊆ ℋ with the following guarantees:
(1) for any instance 𝜓 with 𝑚 constraints, |𝒜1(ℋ)| ≤ 𝜀𝑚 and𝒜1(ℋ) only depends onℋ , and (2) for any
𝑥∗ ∈ {−1, 1}𝑛 and any 𝑘-uniform hypergraph ℋ with at least 𝑚 hyperedges, with high probability over
𝜓← 𝜓(ℋ , 𝑥∗ , 𝜂), it holds that𝒜2(𝜓) = ℰ𝜓 ∩ (ℋ \ 𝒜1(ℋ)).

Proof. First, observe that a 1-XOR instance is a degenerate case whereℋ is a multiset of [𝑛] of size
𝑚. Let 𝑆 ⊆ [𝑛] denote the set of 𝑖 ∈ [𝑛]where 𝑖 appears inℋ with multiplicity ≤ 𝑐 log 𝑛, where 𝑐 is
a constant to be determined later. Let𝒜1(ℋ) denoteℋ ∩ 𝑆, i.e., the set of elements inℋ that are in
𝑆. We clearly have that |𝒜1(ℋ)| ≤ 𝑐𝑛 log 𝑛 ≤ 𝜀𝑚.

Now, let 𝑖 ∉ 𝑆. Observe that for each occurrence of 𝑖 inℋ , we have a corresponding independent
right-hand side 𝑏 ∈ {−1, 1} where 𝑏 = 𝑥∗

𝑖
with probability 1 − 𝜂 and −𝑥∗

𝑖
with probability 𝜂. Thus,

by taking the majority, we can with high probability decode 𝑥∗
𝑖

and thus determine the corrupted
constraints. It thus remains to show that with probability ≥ 1 − 1/poly(𝑛), the fraction of corrupted
right-hand sides for 𝑖 is < 1

2 . Indeed, by a Chernoff bound, with probability ≥ 1 − exp(−2𝛿2𝑐 log 𝑛),
it holds that the fraction of corrupted right-hand sides is at most (𝜂 + 𝛿). By choosing 𝛿 = 1

2 (12 − 𝜂)
and 𝑐 to be a sufficiently large constant, Lemma C.1 follows. □

41

	Introduction
	Our semirandom planted model and results

	Technical Overview
	Approximate recovery for 2-XOR from refutation
	The challenges for k-XOR and our strategy
	Information-theoretic exact recovery from relative cut approximation
	Efficient exact recovery from relative spectral approximation
	The case of odd k
	Organization

	Preliminaries
	Concentration inequalities
	Graph pruning and expander decomposition

	From Planted CSPs to Noisy XOR
	From k-XOR to Spread Bipartite k-XOR
	Proof of Theorem 3 from Lemma 5.2

	Identifying Noisy Constraints in Spread Bipartite k-XOR
	Setup and key notation
	Proof outline
	Graph pruning and expander decomposition
	Rank-1 SDP solution from expansion and relative spectral approximation
	Recovery of corrupted constraints from corrupted pairs
	Finishing the proof of Lemma 5.2

	Notions of Relative Approximation
	Hypergraph Decomposition
	Theorem 3 when k = 1

