
A Deterministic Almost-Linear Time Algorithm
for Minimum-Cost Flow

Jan van den Brand
Georgia Tech

vdbrand@gatech.edu

Li Chen∗

Georgia Tech
lichen@gatech.edu

Rasmus Kyng†

ETH Zurich
kyng@inf.ethz.ch

Yang P. Liu‡

Stanford University
yangpliu@stanford.edu

Richard Peng§

Carnegie Mellon University ¶

yangp@cs.cmu.edu
Maximilian Probst Gutenberg†

ETH Zurich
maxprobst@ethz.ch

Sushant Sachdeva‖

University of Toronto
sachdeva@cs.toronto.edu

Aaron Sidford∗∗

Stanford University
sidford@stanford.edu

September 29, 2023

Abstract
We give a deterministic m1+o(1) time algorithm that computes exact maximum flows and

minimum-cost flows on directed graphs with m edges and polynomially bounded integral de-
mands, costs, and capacities. As a consequence, we obtain the first running time improvement
for deterministic algorithms that compute maximum-flow in graphs with polynomial bounded
capacities since the work of Goldberg-Rao [J.ACM ’98].

Our algorithm builds on the framework of Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva [FOCS
’22] that computes an optimal flow by computing a sequence of m1+o(1)-approximate undirected
minimum-ratio cycles. We develop a deterministic dynamic graph data-structure to compute
such a sequence of minimum-ratio cycles in an amortized mo(1) time per edge update. Our
key technical contributions are deterministic analogues of the vertex sparsification and edge
sparsification components of the data-structure from Chen et al. For the vertex sparsification
component, we give a method to avoid the randomness in Chen et al. which involved sampling
random trees to recurse on. For the edge sparsification component, we design a deterministic
algorithm that maintains an embedding of a dynamic graph into a sparse spanner. We also show
how our dynamic spanner can be applied to give a deterministic data structure that maintains
a fully dynamic low-stretch spanning tree on graphs with polynomially bounded edge lengths,
with subpolynomial average stretch and subpolynomial amortized time per edge update.

∗Li Chen was supported by NSF Grant CCF-2106444.
†The research leading to these results has received funding from the grant “Algorithms and complexity for high-

accuracy flows and convex optimization” (no. 200021 204787) of the Swiss National Science Foundation.
‡Yang P. Liu was supported by NSF CAREER Award CCF-1844855, NSF Grant CCF-1955039, and a Google

Research Fellowship.
§Richard Peng was partially supported by NSF CAREER Award CCF-1846218, and the Natural Sciences and

Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2022-03207
¶Part of this work was done while at the University of Waterloo.
‖Sushant Sachdeva was supported by an NSERC Discovery Grant RGPIN-2018-06398, an Ontario Early Researcher

Award (ERA) ER21-16-283, and a Sloan Research Fellowship.
∗∗Aaron Sidford was supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award CCF-

1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fellowship.

ar
X

iv
:2

30
9.

16
62

9v
1

 [
cs

.D
S]

 2
8

Se
p

20
23

Contents
1 Introduction 1

1.1 Randomized Maxflow Algorithms . 2
1.2 Our Results . 2
1.3 Our Approach . 3
1.4 Additional Related Work . 4

2 Preliminaries 5

3 Technical Overview 7
3.1 The Randomized Algorithm in [CKLPPS22] . 8
3.2 A Deterministic Min-cost Flow Algorithm . 11

4 Flow Framework 13

5 Data Structure Chain 15
5.1 Dynamic Low-Stretch Forests (LSF) . 16
5.2 Worst-Case Average Stretch via Multiplicative Weights 18
5.3 Sparsified Core Graphs and Path Embeddings . 18
5.4 Shifted Tree Chains . 19

6 Analyzing the Cycle Quality with Shifts and Rebuilds 25
6.1 Cycle Qualities . 25
6.2 Rebuilding and Shifting . 28

7 The Shift-and-Rebuild Game 31
7.1 Game Playing Strategy . 34
7.2 Analysis of the Strategy . 36

8 Decremental Spanner and Embedding 39

9 Deterministic Low-Stretch Spanning Tree 46
9.1 Data Structure Description . 46
9.2 Algorithm Analysis . 46

References 47

A Additional j-tree Proofs 53
A.1 Proof of Lemma 5.4 . 53
A.2 Proof of Lemma 5.5 . 53
A.3 Cycle Maintenance in a Tree Chain . 54

B Proof of Expander Statement 55

1 Introduction
Given a directed, capacitated graph G = (V, E, u) with n = |V | nodes, m = |E| edges, and integer
capacities u ∈ ZE

≥0, the maxflow problem asks to send as much flow as possible on G from a given
source vertex s ∈ V to a sink vertex t ∈ V \ {s} without exceeding the capacity constraints.
This problem is foundational in combinatorial optimization and algorithm design. It has been the
subject of extensive study for decades, starting from the works [Dan51; HK73; Kar73; ET75] and
is a key subroutine for solving a variety of algorithmic challenges such as edge-connectivity and
approximate sparsest cut (e.g., [GH61; KRV06]).

In the standard setting where the capacities are polynomially bounded, a line of work on com-
binatorial algorithms culminated in a seminal result of Goldberg and Rao in 1998 [GR98] which
showed that the problem can be solved in Õ(m · min{m1/2, n2/3}) time. The algorithm which
achieved this result was deterministic and combinatorial; the algorithm consists of a careful repeated
computation of blocking-flows implemented in nearly linear time using dynamic trees. Interest-
ingly, despite advances in randomized algorithms for maxflow ([LS15; BLNPSSSW20; BGJLLPS22;
GLP22]) and deterministic algorithms in special cases (e.g., unit capacity graphs [Mąd13] and pla-
nar graphs [BK09; BKMNW17]), the runtime in [GR98] has remained the state-of-the-art among
deterministic algorithms in the general case of polynomially bounded capacities.

This gap between state-of-the-art runtimes for deterministic and randomized algorithms for
maxflow is particularly striking in light of recent advances: [CKLPPS22] provided an almost linear,
m1+o(1), time randomized maxflow algorithm and [BLLSSSW21] provided an Õ(m + n1.5) time
randomized algorithm which runs in nearly linear time for dense graphs. Unfortunately, as we
discuss in Section 1.1, there are key barriers towards efficiently derandomizing both [CKLPPS22]
and [BLLSSSW21] as well as prior improvements [AMV22; BGJLLPS22; GLP22].

These results raise key questions about the power of randomization in designing flow algorithms.
While there is complexity theoretic evidence that randomization does not affect the polynomial time
solvability of decision problems [IW97] it is less clear what fine-grained effect randomization has
on the best achievable runtimes or whether or not a problem can be solved in almost linear time
[CT21]. The problem of obtaining faster deterministic algorithms for maxflow is of particular
interest given extensive research over the past decade on obtain faster deterministic algorithms for
expander decompositions and flow problems [CGLNPS20; KMP22], and applications to connectivity
problems [KT19; LP20; Li21].

In this paper we provide a deterministic algorithm that solves minimum-cost flow and maxflow
in m1+o(1) time. We obtain this result by providing an efficient deterministic implementation
of the recent flow framework of [CKLPPS22] which reduced the minimum cost flow problem to
approximately solving a sequence of structured minimum ratio cycle problems. We also obtain the
same running time for deterministically finding flows on graphs that minimize convex edge costs.
Further, the techniques we develop have potential broader utility; for example, we show that our
techniques can be used to design a deterministic algorithm that dynamically maintains low-stretch
trees under insertions and deletions with polynomially bounded lengths (see Section 1.2)
Paper Organization. In the remainder of this introduction we elaborate on randomized maxflow
algorithms and the barriers to their derandomization (Section 1.1), present our results (Section 1.2),
give a coarse overview of our approach (Section 1.3), and cover additional related work (Section 1.4).
We then cover preliminaries in Section 2 and give a more technical overview in Section 3. We present
the flow framework in Section 4, build the main dynamic recursive data structure in Section 5,
give a preliminary analysis of its quality in Section 6, strengthen the data structure by periodically
rebuilding data structure levels in Section 7, and give the deterministic spanner in Section 8. Finally,
we briefly describe our deterministic, dynamic low-stretch tree data structures in Section 9.

1

1.1 Randomized Maxflow Algorithms

Although the runtime of deterministic algorithms solving maxflow on graphs with polynomially
bounded capacities has not been improved since [GR98], there have been significant advances
towards designing randomized maxflow algorithms. Here we provide a brief survey of these advances
and discuss the difficulty in obtaining deterministic counterparts of comparable efficiency.
Electric Flow Based Interior Point Methods. A number of randomized algorithms over the
past decade have improved upon the complexity of maxflow by leveraging and building upon interior
point methods (IPMs). IPMs are a broad class of continuous optimization methods that typically
reduce continuous optimization problems, e.g., linear programming, to solving a sequence of linear
systems. In the special case of maxflow the linear systems typically correspond to electric flow or
Laplacian system solving and can be solved in nearly linear time [ST04].

Combining this approach with improved IPMs, [LS19] obtained an Õ(m
√

n) time maxflow algo-
rithm. Further robustifying this optimization method and using a range of dynamic data structures
for maintaining decompositions of a graph into expanders, sparsifiers, and more, [BLLSSSW21]
obtained an improved Õ(m + n1.5) time maxflow algorithm. Incorporating additional dynamic
data structures for maintaining types of vertex sparsifiers (and more) then led to runtimes of
Õ(m3/2−1/328) [GLP22] and Õ(m3/2−1/58) [BGJLLPS22].

Unfortunately, despite improved understanding of IPMs (in particular deterministic robust lin-
ear programming methods [Bra20]) and deterministic Laplacian system solvers [CGLNPS20] it
is unclear how to obtain deterministic analogs of these maxflow results. Each result either uses
1/poly(log n)-accurate estimates of effective resistances [LS19; BLLSSSW21] or edge or vertex spar-
sifiers of similar accuracy [BGJLLPS22; GLP22]. Obtaining deterministic algorithms for either is
an exciting open problem in algorithmic graph theory (and is left unsolved by this paper).
Minimum Ratio Cycle Based Interior Point Methods. In a recent breakthrough result
[CKLPPS22] leveraged a different type of IPM. This method obtained an almost-linear time algo-
rithm for maxflow and instead used an ℓ1-counterpart to the more standard ℓ2-based IPMs that
reduce maxflow to electric flow. Using this IPM, [CKLPPS22] essentially reduced solving maxflow
to solving a dynamic sequence of minimum ratio cycle problems (e.g., Definition 4.5).

On the one hand, [CKLPPS22] seems to create hope in overcoming the obstacles of faster
deterministic maxflow algorithms. Using [CKLPPS22] it is indeed known how to deterministically
solve each individual minimum ratio cycle problem to sufficient accuracy in almost linear time. On
the other hand, unfortunately [CKLPPS22] required a dynamic data structure for solving these
problems in amortized mo(1)-per instance and to obtain their runtime, [CKLPPS22] made key use
of randomization. In Section 1.3 we elaborate on the obstacles in avoiding this use of randomization
and our main results, which are new algorithmic tools which remove this need.

1.2 Our Results

We give a deterministic algorithm for computing min-cost flows on graphs.

Theorem 1.1 (Min-cost flow). There is a deterministic algorithm that given a m-edge graph with
integral vertex demands and edge capacities bounded by U in absolute value, and integral edge costs
bounded by C in absolute value, computes an (exact) minimum-cost flow in time m1+o(1) log U log C.

Our algorithm extends to finding flows that minimize convex edge costs to high-accuracy, for
example, for matrix scaling, entropy-regularized optimal transport, p-norm flows, and p-norm iso-
tonic regression. See [CKLPPS22, Section 10] for a (deterministic) reduction of these problems to
a sequence of minimum ratio cycle problems satisfying the relevant stability guarantees.

2

Additionally, the components of our data structure can be used to deterministically maintain a
low-stretch tree under dynamic updates (see Section 2 and Theorem 2.2 for a formal definition of
edge stretch, and a concrete low-stretch tree statement). Previously, deterministic algorithms for
maintaining a low-stretch tree with subpolynomial update time were only known for unweighted
graphs and those undergoing only edge deletions, achieved by combining the previous result [CZ20]
with derandomization techniques in [Chu21; BGS22]. Even among randomized algorithms, the only
way the authors know how to achieve an algorithm that maintains low-stretch trees on graphs with
polynomially bounded edge lengths in subpolynomial update time is by adapting the components
of [CKLPPS22] to the setting of low-stretch trees.

Theorem 1.2 (Dynamic low stretch tree). There is a deterministic data structure that given a
dynamic n-node graph undergoing insertions and deletions of edges with integral lengths bounded by
exp((log n)O(1)), maintains a low-stretch tree with average stretch no(1) in worst-case no(1) time per
update. The data structure maintains the tree in memory with no(1) amortized recourse per update;
the data structure can be be modified to output the changes explicitly with amortized, rather than
worst-case, no(1) time per update.

1.3 Our Approach

In this paper we obtain an almost linear time algorithm for maxflow by essentially showing how to
eliminate the use of randomness in each of the places it was used [CKLPPS22]. Here we elaborate
on these uses of randomness and the techniques we introduce; we provide a more detailed overview
of our approach in Section 3.
Randomization in [CKLPPS22]. At a high level, [CKLPPS22] treats minimum ratio cycle
as an instance of the more general minimum cost transshipment problem on undirected graphs.
To solve this, [CKLPPS22] applies a time-tested technique of recursively building partial trees (to
reduce the number of vertices) and sparsifying (to reduce the number of edges). This approach
was pioneered by [ST04], and has since been used in multiple algorithms [KMP11; She13; KLOS14;
KPSW19; CPW22] and dynamic data structures [CGHPS20].

More precisely, for a parameter k the partial trees are a collection of Õ(k) forests with O(m/k)
components where the stretch of every edge in a component is Õ(1) on average; here, the stretch
of an edge refers to the ratio of the length of routing the edge in the forest to the length of the
edge itself. The algorithm uses the partial trees to recursively processes the graphs resulting from
contracting each forest. While the forests can be computed and even dynamically maintained
deterministically, recursively processing all the partial trees is prohibitively expensive because the
total number of components is still Õ(k ·m/k) = Õ(m), i.e., there is no total size reduction. Thus,
[CKLPPS22] (motivated in part by [Mąd10; GKKLP18]) showed that it sufficed to subsample only
Õ(1) trees to recurse on. This is the first and, perhaps, most critical use of randomness in the
[CKLPPS22] algorithm. In particular, it initially seems difficult to design a data structure that
maintains all the trees without having a prohibitive runtime.

The dynamic sparsifier constructed in [CKLPPS22] was a spanner with explicit embedding,
i.e., the algorithm maintained a subgraph H ⊆ G, and for each edge e ∈ G, a path in H with
few edges that connected its endpoints. This graph H was maintained with low recourse under
edge insertions, deletions, and vertex splits, where a vertex becomes two vertices, and edges are
split between them. The spanner was constructed by maintaining an expander decomposition and
uniform sampling edges in each expander. This is the second use of randomness in [CKLPPS22],
though it is conceptually easier to circumvent due to recent progress on deterministic expander
decomposition and routings [CGLNPS20; CS21].

3

Removing randomness from sampling forests. To understand how we remove randomness
from sampling the forests, it is critical to discuss how [CKLPPS22] handled the issue of adaptive
adversaries in the dynamic updates to the data structure (i.e., that the input to the dynamic
minimum ratio cycle data structures could depend on the data structure’s output). In particular,
the future updates to the data structure may depend on the trees that were randomly sampled.
To handle this, [CKLPPS22] observed that the IPM provided additional stability on the dynamic
minimum ratio cycle problem, in the sense that there was a (sufficiently good) solution ∆∗ to the
minimum ratio cycle problem arg minB⊤∆=0 g⊤∆/∥L∆∥1 which changed slowly.

In a similar way, our deterministic min-ratio cycle data structure does not work for general
dynamic minimum ratio cycle, and instead heavily leverages the stability of a solution ∆∗. As in
[CKLPPS22], our algorithm computes the Õ(k) partial trees. We know that out of these forests,
there exists at least one of them (in fact, at least half of them) that we can successfully recurse
on. [CKLPPS22] chooses Õ(1) random forests to recurse on, leveraging that at least one of these
forests is good with high probability. As discussed, we cannot afford to recurse on all Õ(k) forests
as this requires dynamically maintaining Ω(m) trees at every step. Consequently, to obtain a
deterministic algorithm we instead show that it suffices to recurse one forest at a time. We recurse
on the first forest until we conclude that it did not output a valid solution, then we switch to the
next forest, and repeat (wrapping around if necessary). This way, we only maintain one recursive
chain and the corresponding spanning tree at each point in time. We argue that the runtime is still
acceptable, and more interestingly, that we do not need to switch between branches very frequently.
We formalize this, we analyze what we call the shift-and-rebuild game in Section 7, and extend the
adaptive adversary analysis of [CKLPPS22] to our new algorithm.
Deterministically constructing spanners with embeddings. At a high level, [CKLPPS22]
gives a deterministic procedure of reducing dynamic spanners to static spanners with embeddings.
To construct the static spanner, [CKLPPS22] decomposed G into expanders, sparsified each ex-
pander by random sampling, and then embedded G into the sparsifier using a decremental shortest
path data structure [CS21]. The expander decomposition can be computed deterministically using
[CGLNPS20]. Thus, the remaining randomized component was the construction of the spanner
by subsampling. Instead, we construct the spanner by constructing a deterministic expander W
on each piece of the expander decomposition, embedding G into W , and then embedding W back
into G (both using the deterministic decremental shortest path data structure [CS21]). The set of
edges in G used to embed W forms the spanner. For our overall maxflow algorithm, we require
additional properties of the dynamic spanner algorithm beyond the embedding; see Theorem 8.2.

1.4 Additional Related Work

Derandomization for flow-related problems. Deterministic algorithms for sparsest cut, bal-
anced cut, and expander decomposition [CGLNPS20] can be directly applied to give a variety
of deterministic algorithms for flow problems, including solving Laplacian linear systems (electric
flows), p-norm flows on unit graphs [KPSW19], and more recently, directed Laplacian linear systems
[KMP22]. While we utilize deterministic expander decompositions and routings from [CGLNPS20]
to give a deterministic spanner with embeddings, these methods seem unrelated to the problem of
avoiding subsampling the partial trees.
Maxflow / Min-cost flow. Over the last several decades there has been extensive work on
the maxflow and minimum cost flow problems [Din70; Din73; Tar85; GT87; GT88; GG88; GT89;
Orl93; OPT93; Gol95; Orl96; GR98; BK04; DS08; Gol08; Hoc08; CKMST11; Mąd13; She13;
KLOS14; GHKKTW15; Mąd16; CMSV17; She17; DPS18; AMV20; KLS20; LS20; BLLSSSW21;

4

OG21; AMV22; BGJLLPS22; GLP22]. Some of these algorithms, primarily in the instance of unit-
capacity maxflow [Mąd13; Mąd16; KLS20; LS20], can be made deterministic using deterministic
flow primitives from [CGLNPS20].
Connectivity problems. There is a long line of work on applications of maxflow to connectivity
problems, including sparsest cuts, Gomory-Hu trees, and global mincuts [Gus90; AK07; OSVV08;
She09; KT19; NSY19; AKT21; Li21; LNPSY21; AKLPST22; AW22; ACOT23]. Some of these
algorithms for global mincut can be made deterministic [KT19; Li21], though the techniques often
rely on expander decomposition, which, again, does not resolve our issue of sampling partial trees.
Since this work was announced, [NSY23] gave a deterministic reduction from k-vertex-connectivity
to computing mo(1)k2 maxflows to achieve a deterministic algorithm for k-vertex-connectivity run-
ning in m1+o(1)k2 time.

2 Preliminaries

General notation. We denote vectors by boldface lowercase letters and matrices by boldface
uppercase letters. Often, we use uppercase letters to denote diagonal matrices corresponding to
vectors with the matching lowercase letter, e.g., L = diag(ℓ). For vectors x, y we define the vector
x ◦ y as the entrywise product, i.e., (x ◦ y)i = xiyi. We also define the entrywise absolute value
of a vector |x| as |x|i = |xi|. For positive real numbers a, b we write a ≈α b for some α > 1 if
α−1b ≤ a ≤ αb. For integer h we let [[h]] def= {0, 1, . . . , h}, and [h] def= {1, . . . , h}. For positive vectors
x, y ∈ Rn

>0, we say x ≈α y if xi ≈α yi for all i ∈ [n].
Graphs. We consider multi-graphs G with edge set E(G) and vertex set V (G). When the graph
is clear from context, we use E for E(G), V for V (G), m = |E|, and n = |V |. We assume that each
edge e ∈ E has an implicit direction and overload the notation slightly by writing e = (u, v) where
u and v are the tail and head of e respectively (note that technically multi-graphs do not allow for
edges to be specified by their endpoints). We let rev(e) be the edge e reversed: if e = (u, v) points
from u to v, then rev(e) points from v to u.

A flow vector is a vector f ∈ RE . If fe ≥ 0, this means that fe units flow in the implicit
direction of the edge e chosen, and if fe ≤ 0, then |fe| units flow in the opposite direction. A
demand vector is a vector d ∈ RV with ∑v∈V dv = 0. For an edge e = (u, v) ∈ G we let be ∈ RV

denote the demand vector of routing one unit from u to v, i.e., be has a 1 at u, −1 at v, and 0
elsewhere. Define the edge-vertex incidence matrix B ∈ RE×V as the matrix whose rows are be.
We say that a flow f routes a demand d if B⊤f = d.

We denote by degG(v) the combinatorial degree of v in G, i.e., the number of incident edges.
We let ∆max(G) and ∆min(G) denote the maximum and minimum degree of graph G. We define
the volume of a set S ⊆ V as volG(S) def= ∑

v∈S degG(v).
Given a set of edges F ⊆ E(G), we define G/F to be the graph where the edges in F are

contracted. In this paper, typically this operations is performed for forests F .
Dynamic Graphs. In this paper, we say that G is a dynamic graph if it undergoes a sequence of
updates. In this paper, the graphs we study will undergo three main types of updates.

• Edge insertion: an edge e = (u, v) is added to the graph. The edge is encoded by its
endpoints, and when necessary, edge lengths and gradients will also be provided.

• Edge deletion: an edge e = (u, v) is deleted from the graph. The edge is encoded by its
label in the graph.

5

• Vertex split: a vertex v becomes two vertices v1 and v2, and the edges adjacent to v are
split between v1 and v2. Precisely, every edge ei = (v, ui) is assigned to either v1 or v2,
becoming edge (v1, ui) or (v2, ui) respectively. This operation is encoded by listing out the
edges moved to the one of v1, v2 with a smaller degree. Thus the encoding size is approximately
min{deg(v1), deg(v2)}.

In this paper, instead of having our dynamic graphs undergo a single update at a time, we think
of them as undergoing batches U (1), U (2), . . . of updates, where each batch U (i) denotes a set of
updates to apply.

We let |U (t)| denote the total number of updates in the batch, i.e., the total number of edge
insertions, deletions, and vertex splits. Enc(u) of an update u ∈ U (t) denotes its encoding size. As
mentioned above, each insertion and deletion can be encoded in size Õ(1), while each vertex split
can be encoded in size Õ(min{deg(v1), deg(v2)}). Finally, the encoding size of a batch U (t) is the
sum of the encoding sizes of each of its updates.

Note that Enc(U (t)) = Ω(|U (t)|), but may be even larger. However, we can bound the total
encoding size using the following lemma.

Lemma 2.1. For a dynamic graph G that undergoes batches of updates U (1), U (2), . . . if G initially
has m edges then we can bound the total encoding size as

∑
t Enc(U (t)) = Õ

(
m +∑

t |U (t)|
)

.

Proof. Each edge insertion/deletion only contributes Õ(1) to the encoding size. Thus, the size
of encodings of edge/insertions deletions is at most Õ

(∑
t |U (t)|

)
. In order to account for vertex

splits, consider the potential Φ = ∑
v deg(v) log deg(v). It is straightforward to verify that an edge

insertion can only increase the potential by O(log m). When a vertex v is split into u1, u2, the
potential decreases by at least Ω(min(deg(u1), deg(u2))).

Paths, Flows, and Trees. Given a path P in G with vertices u, v both on P , then we let P [u, v],
which is another path, denote the path segment on P from u to v. We note that if v precedes u on
P , then the segment P [u, v] is in the reverse direction of P . For a a to b path P and a b to c path
Q we let P ⊕Q denote the a to c path that is the concatenation of P and Q.

For a forest F , we use F [u, v] to denote the unique simple path from u to v along edges in the
forest F ; we ensure that u, v are in the same connected component of F whenever this notation is
used. Additionally, we let p(F [u, v]) ∈ RE(G) denote the flow vector which routes one unit from u
to v along the path in F . Thus, |p(F [u, v])| is the indicator vector for the path from u to v on F .
Note that p(F [u, v]) + p(F [v, w]) = p(F [u, w]) for any vertices u, v, w ∈ V .

The stretch of e = (u, v) with respect to a tree T and lengths ℓ ∈ RE
>0 is defined as

strT,ℓ
e

def= 1 + ⟨ℓ, |p(T [u, v])|⟩
ℓe

= 1 +
∑

e′∈T [u,v] ℓe′

ℓe
.

This differs slightly from the more common definition of stretch because due to the additive 1; we
choose this definition to ensure that strT,ℓ

e ≥ 1 for all e. We define the stretch of an edge e = (u, v)
with respect to a forest F analogously if u, v are in the same connected component of F . Later
in Definition 5.3, we introduce a notion of stretch when u, v are not in the same component of
a rooted forest. In this case, the stretch is instead defined as the total distance of u, v to their
respective roots divided by the length of e. As stated in the following theorem, it is known how to
efficiently construct trees with polylogarithmic average stretch with respect to underlying weights;
we call these low-stretch spanning trees (LSSTs).

6

Theorem 2.2 (Static LSST [AN19]). Given a graph G = (V, E) with lengths ℓ ∈ RE
>0 and

weights v ∈ RE
>0 there is an algorithm that runs in time Õ(m) and computes a tree T such that∑

e∈E vestrT,ℓ
e ≤ γLSST ∥v∥1 for some γLSST

def= O(log n log log n).

In this paper, in contrast to eg., [CKLPPS22, Lemma 6.5], we often use the cruder upper
bound of of γLSST = O(log2 n). We do this to simplify the presentation as it does not effect the
final asymptotic bounds claimed.
Graph Embeddings. Given weighted graphs G and H with V (G) ⊆ V (H), we say that ΠG−→H is
a graph-embedding from G into H if it maps each edge eG = (u, v) ∈ E(G) to a u-v path ΠG−→H(eG)
in H. Let wG be the weight function of G and wH be the weight function of H. We define the
congestion of an edge eH by

econg(ΠG−→H , eH) def=
∑

eG∈E(G) with eH∈ΠG−→H(eG) wG(eG)
wH(eH)

and the congestion of the embedding by econg(ΠG−→H) def= maxeH∈E(H) econg(ΠG−→H , eH). Anal-
ogously, the congestion of a vertex vH ∈ V (H) is defined by

vcong(ΠG−→H , vH) def=
∑

eG∈E(G) with vH∈ΠG−→H(eG)
wG(eG)

and the vertex-congestion of the graph-embedding by

vcong(ΠG−→H) def= max
vH∈V (H)

vcong(ΠG−→H , vH).

We define the length of the embedding by length(ΠG−→H) def= maxeG∈E(G) |ΠG−→H(eG)|.
Given graphs A, B, C and graph-embeddings ΠB→C from B into C and ΠA→B from A to B.

We denote by ΠB→C ◦ ΠA→B the graph embedding of A into C obtained by mapping each edge
eA = (u, v) ∈ E(A) with path ΠA→B(eA) = eB

1 ⊕ eB
2 ⊕ . . . ⊕ eB

k in B to the path ΠB→C(eB
1) ⊕

ΠB→C(eB
2)⊕ . . .⊕ΠB→C(eB

k). The following useful fact is straightforward from the definitions.

Fact 1. Given graphs A, B, C and graph-embeddings ΠB→C from B into C and ΠA→B from A to
B. Then, vcong(ΠB→C ◦ΠA→B) ≤ vcong(ΠB→C) · econg(ΠA→B).

Computational Model. For problem instances encoded with z bits, all algorithms developed in
this paper work in fixed-point arithmetic where words have O(logO(1) z) bits, i.e., we prove that all
numbers stored are in [exp(− logO(1) z), exp(logO(1) z)]. In particular, Theorem 4.6 says that the
min-ratio cycle problems solved by our algorithm satisfy Definition 4.4, where item 5 says that all
weights and lengths are bounded by exp(logO(1) m).

3 Technical Overview
Our approach for obtaining a deterministic almost-linear time min-cost flow algorithm follows the
framework of the recent randomized algorithm in [CKLPPS22]. We start by reviewing the algorithm
in [CKLPPS22] and then lay out the challenges in obtaining deterministic analogs of its randomized
components. By scaling arguments (see [CKLPPS22, Lemma C.1]), we assume that U, C ≤ mO(1).

7

3.1 The Randomized Algorithm in [CKLPPS22]

The Outer-Loop: An ℓ1-Interior Point Method. The starting point for the randomized
algorithm in [CKLPPS22] is a new ℓ1-interior point method (IPM), which is actually completely
deterministic. This method uses a potential reduction IPM inspired by [Kar84], where in each
iteration, the potential function Φ(f) def= 20m log(c⊤f −F ∗) +∑e∈E

(
(u+

e − fe)−α + (fe − u−
e)−α

)
is reduced. Here, α = 1/Θ(log m), but the reader can think of the barrier x−α as the more standard
− log x for simplicity.

[CKLPPS22] showed that one can assume that an initial feasible solution f (0) is given that
routes the demand and has Φ(f (0)) ≤ O(m log m) and that the IPM can be terminated once the
potential function value is at most −200m log m, as at this point, one can round the flow to an exact
solution using an isolation lemma; see [CKLPPS22, Lemma 4.11]. While this step is randomized, it
can easily be derandomized using an alternate flow rounding procedure, as is explained later at the
start of Section 3.2. We next discuss how to achieve a potential reduction of Φ(f) in each iteration
by m−o(1). This yields that the IPM terminates within m1+o(1) steps.

To obtain a potential reduction of m−o(1) at each step, given a current feasible flow f , the
update problem involves finding an update direction ∆ to update the flow to f + ∆ such that
(a) ∆ is a circulation, i.e., adding it to f does not change the net routed demands and (b) ∆
approximately minimizes the inner product with a linear function (the gradient of Φ), relative to
an ℓ1-norm that arises from the second derivatives of Φ. Letting g ∈ RE denote this gradient and
letting ℓ ∈ RE

+ be the edge length (both with respect to the current flow f), we can write the
update problem as

min
∆∈RE :B⊤∆=0

g⊤∆
∥diag(ℓ)∆∥1

. (1)

We refer to this update problem henceforth as the min-ratio cycle problem, since, by a cycle-
decomposition argument, the optimal value is always realized by a simple cycle. As shown in
[CKLPPS22], the update problem has several extremely useful properties:

1. At every time step t, the direction from the current solution f (t) towards the optimal flow
f∗, henceforth called the witness ∆(t) def= f∗ − f (t), achieves g⊤∆(t)

∥diag(ℓ)∆(t)∥1
≤ − 1

Θ(log m) .

2. Performing the update with a cycle ∆ with g⊤∆
∥diag(ℓ)∆∥ 1

= −κ reduces the potential by Ω(κ2).
Thus, even finding an mo(1)-approximate min-ratio cycle reduces the potential by m−o(1).
After m1+o(1) iterations of updates, the potential becomes small enough, and we can round
the current flow to an exact solution.

3. The convergence rate is unaffected if we use approximations ĝ and ℓ̂ of the gradient g and the
lengths ℓ such that both ĝ and ℓ̂ are updated only a total of m1+o(1) times (here, by update
we mean that a single entry of ĝ and ℓ̂ is changed) throughout the entire algorithm.

In this way, the ℓ1-IPM gives a deterministic reduction of (exact) min-cost flow to solving a sequence
of stable min-ratio cycle problems.
A Data Structure for the Min-Ratio Cycle Problem. Since when solving min-cost flow by
approximately solving a sequence of min-ratio cycles, the underlying graph remains the same, and
gradient and lengths change sporadically throughout the algorithm, it is useful to think about the
repeated solving of the min-ratio cycle problem as a data structure problem. This problem is is
formalized in Definition 4.5. [CKLPPS22] designs a randomized data structure for the min-ratio
cycle problem which supports the following operations:

8

• Initialize(G, ĝ(0), ℓ̂(0)): initialize the data structure for graph G and the initial approximate
gradients, ĝ(0), and lengths, ℓ̂(0), on the edges of G.

• Update(ĝ(t), ℓ̂(t)) : the t-th update replaces current gradient and lengths by ĝ(t) and ℓ̂(t).

• Query() : returns a cycle whose ratio with respect to the current gradient ĝ(t) and lengths
ℓ̂(t) is within a mo(1) factor of ∆(t) = f∗ − f (t).

In the Update operation, ĝ(t), ℓ̂(t) are described by their changes from ĝ(t−1), ℓ̂(t−1). By the above
discussion, there are mo(1) coordinate changes on average per instance.

Note that the output cycle returned by Query() may have nonzero flow on Ω(n) edges for
each of the Ω(m) iterations (this is often referred to as the flow decomposition barrier). Thus we
cannot efficiently, explicitly output the solutions. To overcome this issue, the data structure in
[CKLPPS22] maintains a s = mo(1) spanning trees T1, T2, . . . , Ts of the graph G. Each such tree is
itself a dynamic object, i.e., these trees undergo changes over time in the form of edge insertions
and deletions. However, the total number of such edge insertions and deletions is at most m1+o(1)

when amortizing over the sequence of updates generated by the IPM. Using these dynamic trees
T1, T2, . . . , Ts, whenever the operation Query() is invoked, the data structure in [CKLPPS22] finds
(with high probability) an approximate min-ratio cycle that consists of mo(1) subpaths of a tree Ti

and mo(1) additional edges. Using the start and end points of each tree path, the query operation
can encode each solution efficiently, as desired.

As shown in [CKLPPS22], the data structure can overall be implemented to run in amortized
mo(1) time per query and update, yielding an almost-linear algorithm for the min-cost flow problem.
Maintaining Trees in the Data Structure. It remains to review how the data structure in
[CKLPPS22] efficiently maintains a set of dynamic trees T = {T1, T2, . . . , Ts} such that one of the
trees yields a cycle with sufficient ratio with high probability, and how to query this cycle.

To construct the set of trees T , [CKLPPS22] draws on the theory of low-stretch spanning
trees (LSSTs). Let G = G(0) be the original graph whose edge lengths are given by the vector
ℓ̂(0). [CKLPPS22] applied a standard multiplicative weights argument [Mąd10; She13; KLOS14] to
construct a set of k (partial) trees T1, . . . , Tk such that every edge e had average stretch Õ(1) over
these k trees. Thus, if ℓ̂ is the vector of stretches of a random tree among the Ti, then the witness
∆(0) = f∗ − f (0) satisfies in expectation ∥diag(ℓ̃)∆(0)∥1 ≤ mo(1)∥diag(ℓ̂(0))∆(0)∥1 By Markov’s
inequality, this same guarantee (up to constants) must hold with probability at least 1/2. When this
occurs, we say the stretch of the witness with respect to the tree is low. By sampling O(log m) trees
among {T1, . . . , Tk} [CKLPPS22] ensures that this occurs in at least one tree with high probability.
A basic flow decomposition result then implies that one of the fundamental cycles formed by an
off-tree edge and the tree-path (in T) between its endpoints yields an mo(1)-approximate solution.

Now, consider what happens after the current flow solution is changed from f (0) to f (1) by
adding the first update. This changes the witness from ∆(0) to ∆(1) = f∗ − f (1) and changes the
(approximate) gradient from ĝ(0) to ĝ(1), and lengths from ℓ̂(0) to ℓ̂(1). To solve the next update
problem, the sampled trees have to be updated so that the stretch of the new witness ∆(1) is again
low with respect to at least one of the trees (now with respect to ℓ̂(1)).

To update the trees, for each sampled tree T some edges are removed and then replaced by new
edges. To obtain an efficient implementation, [CKLPPS22] applies the well-established technique
of maintaining a hierarchy of partial trees/forests. At each level, a partial tree is computed, and
the next level then finds again a partial tree in the graph where edges in the partial tree at the
higher levels are contracted. Let us illustrate how such a partial tree is found. At the highest level
of the hierarchy, a partial tree/forest F is computed with m/k connected components for some
target value k = mo(1). F is computed so that it only undergoes edge deletions, and at most Õ(1)

9

per update. Additionally, either a fundamental cycle of F or a cycle in G/F (the graph where F is
contracted) has ratio within Õ(1) factor of the desired min-ratio cycle in G. This is illustrated in
Figure 1. This reduces the problem of finding a min-ratio cycle mainly to finding such a cycle in
the graph G/F , which has at most m/k vertices.

We refer to the step of maintaining F and contracting to the graph G/F as the vertex spar-
sification phase. However, G/F might still contain almost all edges of G. To reduce the edge
count, [CKLPPS22] computes a spanner G′ of G/F that yields a reduction in the number of edges
to roughly m/k. We refer to this as edge sparsification, and give a more detailed overview of the
construction in [CKLPPS22] below. The spanner also allows us to either obtain the solution to
the min-ratio cycle problem directly from the spanner construction, or approximately preserve the
solution quality in G′. The algorithm then recurses, again building a partial tree (forest) F ′ on G′,
finding a spanner, and so on. The tree T is taken as the union of the contracted forests F, F ′, and
the forests found in deeper recursion levels.

Whenever lengths and gradients change, updates are handled by making a few adjustments
to the forest and then propagating changes to the deeper levels. By controlling carefully the
propagation, the total number of updates across levels remains small.

Figure 1: In (a), we see a graph G and a forest F (the subgraph shown with red edges). The two
non-trivial connected components of F are encircled by a dotted border bash. In blue, we show the
witness circulation ∆(0). In (b), we see the graph G/F obtained by contracting the components of
G and the circulation ∆(0) again in blue mapped to G/F . The algorithm ensures that since each
contracted edge is approximated well by a path in F , either a solution to (1) is formed by one of
the fundamental cycles, or that the mapped circulation in G/F is a good solution to (1).

Edge Sparsification. As the forest F undergoes edge deletions, the graph G/F undergoes edge
deletions and vertex splits. To design an algorithm to maintain a spanner of G/F , [CKLPPS22] gave
a deterministic reduction from maintaining a spanner in an unweighted graph under edge deletions
and vertex splits to statically constructing a spanner with low-congestion edge embeddings. This
means that for a spanner H ⊆ G, every edge e ∈ E(G) \ E(H) is mapped into a short path
ΠG→H(e) in H between its endpoints with at most mo(1) edges, such at every vertex in H has
at most mo(1) degG(v) paths through it. Note that at least degG(v) paths go through v in any
embedding, so having low vertex congestion means that we match this bound up to the mo(1)

factor. It is worth noting that while we only require a spanner of G/F for the algorithm, the
reduction only works with a low-congestion embedding. Additionally, our dynamic low-stretch tree
data structure makes use of this additional low-congestion property.

Thus, we focus on statically constructing spanners of unweighted graphs with low-congestion
embeddings. [CKLPPS22] designed the following algorithm to achieve this. We may assume that
G/F has is unweighted by the standard trick of bucketing edges in Õ(1) groups whose lengths are
within a factor of 2. First, the graph G/F is decomposed into expanders H1, H2, . . . , Hℓ, where

10

each vertex appears in O(log m) expanders, and each expander is almost-uniform-degree in that
every degree is within an O(log m) factor of the average. Thus, for each graph Hi, random sampling
each edge uniformly with probability about Õ(1) divided by the degree of Hi yields a graph H ′

i

that again is an almost-uniform-degree expander, except now with polylogarithmic degrees. We let
the spanner G′ of G be the union of all such sampled graphs H ′

i and clearly G′ is sparse, i.e., has at
most Õ(|V (G/F)|) edges. This is the only randomized component of the edge sparsification step.

While proving that G′ is a spanner of G is rather straightforward, we also must construct a
low-congestion embedding of G into G′. In [CKLPPS22], this is achieved by embedding each graph
Hi into the corresponding down-sampled graph H ′

i for every i. In [CKLPPS22], this is achieved
by a deterministic procedure that internally uses the decremental shortest paths data structure on
expanders by Chuzhoy and Saranurak [CS21]. Finally, [CKLPPS22] takes the embedding from G
into G′ to be the union of the embeddings from Hi to H ′

i for all i.
We conclude our discussion on edge sparsification by describing how to find a min-ratio cycle

from the spanner construction. Given a spanner G′ of G/F with embedding, a flow decomposition
arguments shows that either some spanner cycle e⊕Π(G/F)→G′(e) has ratio within mo(1) of ∆(t), or
the circulation in G′ achieved by routing ∆(t) along the paths Π(G/F)→G′ into G′ has ratio within
mo(1) of ∆(t). By maintaining the paths Π(G/F)→G′(e) explicitly, and recursing on G′, our data
structure can efficiently query for a min-ratio cycle. This argument is covered in more detail in
Section 6.1.
A Note on the Interaction Between Data Structure and Witness. The above description of
the data structure is an oversimplification and hides many key details. Perhaps most importantly,
the proof of correctness for the data structure in [CKLPPS22] crucially hinges on the existence of
the witness ∆(t) = f∗ − f (t) in order to show that the near-optimal cycle ∆(t) does not ever incur
too much stretch even under possibly adaptive updates. Put another way, the data structure does
not work against general adaptive adversaries, whose updates can depend on the randomness of the
data structure, but can be used to solve min-cost flow due to the stability of the witness solution.
Similarly, in this paper we do not design a deterministic data structure for general min-ratio cycle
instances. Instead, we also require that the update sequence admits a stable witness; leveraging the
stable witness in both cases require modifications to both the LSST and spanner data structures,
and these are deferred to the main body of the paper.

3.2 A Deterministic Min-cost Flow Algorithm

Building on the exposition of the algorithm in [CKLPPS22] given in Section 3.1, we are now ready
to discuss the key changes necessary to obtain our deterministic algorithm. Here, we highlight the
parts of [CKLPPS22] that required randomization and outline strategies to remove the randomness.
Derandomizing the IPM Framework. The main challenge in derandomizing the framework of
[CKLPPS22] is in derandomizing the vertex and edge sparsification routines and solving the requi-
site dynamic min-ratio cycle problem. Indeed, derandomizing the remainder of the IPM framework
is straightforward, because both the IPM presented in the last section and the procedure that
maintains the approximate gradient ĝ and the lengths ℓ̂ are completely deterministic. The only
use of randomness in the above approach, beyond the min-ratio cycle data structure, occurred as
[CKLPPS22] rounded the solution when the potential is sufficiently small, i.e. Φ(f) ≤ −Ω(m log m),
via the Isolation Lemma. However, the use of the Isolation Lemma can be replaced by a determin-
istic flow rounding procedure using Link-Cut trees [ST83] as was shown in [KP15] (see Lemma 4.1).

In the min-ratio cycle data structure of [CKLPPS22], there are two randomized components:

1. Õ(1) forests are sampled at each level of the hierarchy, and

11

2. The spanner of G/F is constructed by decomposing G/F into expanders, and random sam-
pling within each expander.

Below we discuss how to remove the randomness from the first vertex sparsification step, and then
discuss the second edge sparsification step.
Derandomizing Vertex Sparsification. Recall that the vertex sparsification construction de-
scribed above computes a set of k forests F1, . . . , Fk. Of these, Õ(1) are sampled, and for each
sampled forest F , the algorithm recurses on G/F . A natural approach to derandomize this is to
instead recurse on all k forests in the collection to deterministically ensure that some forest has
low stretch of the witness ∆(t). Unfortunately this is too expensive, as it leads to Ω(m) trees being
maintained overall. Additionally, every update to the input graph may change every tree, and this
approach would therefore lead to linear time per update which is far more than we can afford.

However, we show that, somewhat surprisingly, the following strategy works: instead of directly
recursing on all forests, and therefore, on all graphs G/F1, G/F2, . . . , G/Fs, we can recurse only on
the first such tree G/F1 and check if we find a solution to the min-ratio cycle problem. If we do, we
do not need to check G/F2, . . . , G/Fs at that moment. Otherwise, we move on to G/F2 (we refer
to this as a shift), but now know that G/F1 did at some point not give a solution to the min-ratio
cycle and F1 is therefore not a good forest so that we never have to revisit it. Carefully shifting
through these forests F1, F2, . . . , Fs, it then suffices to only forward the updates to G (in the form
of updates to ℓ̂) to the forest that is currently used. When we move to the next forest after failing
to identify a solution to the min-ratio cycle problem, we then apply all updates that previously
happened to G to the contracted graph. We apply this shifting procedure recursively.

Now we need to understand why this improved the amortized update time to mo(1), and perhaps
more interestingly, why the algorithm finds an approximate min-ratio cycle without cycling through
many graphs G/Fi over the course of the algorithm. At a high level, the runtime is acceptable
because the number of dynamic updates to the forests Fi is at most that of the randomized case,
as we only maintain a single branch of the recursion at a time. Shifting between forests does not
cause dynamic updates, and thus can be charged to the original construction cost.

To understand why the algorithm does not have to shift through several graphs G/Fi every
iteration, recall that the witness ∆(t) = f∗ − f (t) is stable in that only Õ(1) edges values change
by a constant factor multiplicatively on average per iteration, and that these edges are passed to
the data structure. This allows us to show that if we find a forest Fi whose stretch against the
witness ∆(t) was small, then it stays small until we must rebuild after about m/k updates, or
∥diag(ℓ(t))∆(t)∥1 decreases by a constant, which can only happen Õ(1) times. This way, over the
course of m/k updates, our algorithm only needs to shift Õ(k) total times. The major challenge
towards formalizing this analysis is that the data structure has multiple levels, which severely
complicates the condition that a forest Fi maintains small stretch for several iterations, because we
do not know which level caused the failure. We analyze this algorithm through what we call the
shift-and-rebuild game (Section 7), a generalization of the (simpler) rebuilding game in [CKLPPS22].
Derandomizing Edge Sparsification. From the description given above, the main challenge for
derandomization of the edge sparsification procedure from [CKLPPS22] is to find a spanner H ′

i of
an almost-uniform-degree expander Hi such that H ′

i consists of few edges and such that we can
find a small vertex congestion short-path embedding of the graph Hi into H ′

i.
We use the following natural derandomization approach: given Hi with maximum-degree dmax

i ,
we first deterministically construct a constant-degree expander W over the vertex set of Hi. Using
the tools from [CKLPPS22], we then compute an embedding ΠW →Hi from W into the graph Hi

with mo(1) vertex congestion using only short paths. Reusing these tools, we also compute an
embedding ΠHi→W from Hi into W with mo(1) · dmax

i edge congestion using only short paths.

12

Now consider the embedding given by ΠW →Hi ◦ΠHi→W which maps edges from Hi to paths in
W and then back to paths in Hi. We claim that the graph H ′

i consisting of the edges in the image
of ΠW →Hi is a spanner, and ΠW →Hi ◦ ΠHi→W embeds Hi into H ′

i with low vertex congestion and
short paths. To see this, we first show that H ′

i is sparse, i.e., it has at most |V (Hi)|mo(1) edges. This
follows because W has only O(|V (Hi)|) edges by construction, and each edge is mapped to a path
of length at most mo(1). Thus the image of ΠW →Hi consists of at most |V (Hi)|mo(1) edges. Further,
using Fact 1, we immediately obtain that ΠW →Hi ◦ΠHi→W has vertex congestion mo(1) · dmax

i and
it is not hard to see that each embedding path in ΠW →Hi ◦ΠHi→W is short.

There are some additional side constraints that the spanners need to satisfy to work in the
framework of our overall algorithm, relating to leveraging the stability of the witness ∆(t). Ensuring
that these constraints are met requires additional careful analysis, which we give in Section 8.
Dynamic Low-Stretch Trees. Our algorithm that dynamically maintains low-stretch trees uses
a very similar hierarchical data structure as to our dynamic min-ratio cycle algorithm. At the
top level, we statically compute a low-stretch tree, and maintain a partial forest F with O(m/k)
connected components under edge updates. We then maintain a spanner of G/F with explicit edge
embeddings by applying the deterministic edge sparsification algorithm described above. Finally,
we recurse on the spanner of G/F .

4 Flow Framework
In this section, we discuss our main algorithm for solving flow problems to high accuracy.

We first note that in order to solve a min-cost flow problem exactly, it suffices to find a good
enough fractional solution. We use the following result which, as an immediate corollary, shows
that to solve min-cost flow it suffices to find a feasible fractional flow f with a cost that is within
an additive 1/2 of the optimal cost.

Lemma 4.1 ([KP15, Section 4]). There is a deterministic algorithm which when given a feasible
fractional flow f in a m-edge n-vertex mincost flow instance with integer capacities outputs a feasible
integer flow f ′ with cost no larger than f , in O(m log m) time.

To find such an approximate min-cost flow, we use the IPM algorithm introduced in Chen et
al. [CKLPPS22] that can find an almost-optimal fractional solution to the min-cost flow problem by
solving a sequence of min-ratio cycle problems. In order to state the guarantees of the algorithm,
we first define the min-ratio cycle problem and the dynamic variant of it that we consider.

Definition 4.2 (Min-Ratio Cycle). Given a graph G(V, E), gradients g ∈ RE , and lengths ℓ ∈
RE

>0, the min-ratio cycle problem seeks a circulation ∆ satisfying B⊤∆ = 0 that (approximately)
minimizes ⟨g,f⟩

∥Lf∥1
where L = diag(ℓ).

Observe that the minimum objective value of the min-ratio cycle problem is non-positive since
for any circulation ∆, the flow −∆ is also a circulation.

Extending the problem definition to the dynamic setting, a dynamic min-ratio cycle problem
with T instances is described by a dynamic graph G(t), gradients g(t) ∈ RE , and lengths ℓ(t) ∈ RE

>0,
where the dynamic graph is undergoing a batch of updates U (1), . . . , U (T).

The IPM algorithm from [CKLPPS22] requires solving a dynamic min-ratio cycle problem. The
data structure from Chen et al. for solving the dynamic min-ratio cycle problem requires a stability
condition, roughly requiring that there is a dynamic witness for the problem instances whose length
changes slowly across iterations. This condition is captured in the following definitions:

13

Definition 4.3 (Valid pair). For a graph G = (V, E) with lengths ℓ ∈ RE
>0, we say that c, w ∈ RE

are a valid pair if c is a circulation and |ℓece| ≤ we for all e ∈ E.

Definition 4.4 (Hidden Stable α-Flow Updates). We say that a dynamic min-ratio cycle instance
described by a dynamic graph G(t), gradients g(t), and lengths ℓ(t) satisfies the hidden stable α-flow
chasing property if there are hidden dynamic circulations c(t) and hidden dynamic upper bounds
w(t) such that the following holds at all stages t:

1. c(t) is a circulation, i.e., B⊤
G(t)c

(t) = 0.

2. c(t) and w(t) are a valid pair with respect to G(t).

3. c(t) has sufficiently negative objective value relative to w(t), i.e., ⟨g(t),c(t)⟩
∥w(t)∥1

≤ −α.

4. For any edge e in the current graph G(t), and any stage t′ ≤ t, if the edge e was not explicitly
inserted after stage t′, then w

(t)
e ≤ 2w

(t′)
e . However, between stage t′ and t, endpoints of edge

e might change due to vertex splits.

5. Each entry of w(t) and ℓ(t) is quasipolynomially lower and upper-bounded:

log w(t)
e ∈ [− logO(1) m, logO(1) m] and log ℓ(t)

e ∈ [− logO(1) m, logO(1) m] for all e ∈ E(G(t)).

Intuitively, Definition 4.4 says that even while g(t) and ℓ(t) change, there is a witness circula-
tion c(t) that is fairly stable. In particular, there is an upper bound w(t) on the coordinate-wise
lengths of c(t) that stays the same up to a factor of 2, except on edges that are explicitly updated.
Interestingly, even though both c(t) and w(t) are hidden from the data structure, their existence is
sufficient to facilitate efficient implementations. For brevity, use the term Hidden Stability to refer
to Definition 4.4 in the rest of the paper.

Definition 4.5. The problem of κ-approximate Dynamic Min-Ratio Cycle with Hidden Stability
asks for a data structure that, at every stage t, finds a circulation ∆(t), i.e., B⊤

G(t)∆(t) = 0 such
that ⟨g(t),∆⟩

∥L(t)∆∥1
≤ −κα. Additionally, we require that the data structure maintains a flow f ∈ RE

that is initialized at 0, and supports the following operations:

1. Update(U (t), g(t), ℓ(t), η). Apply edge insertions/deletions specified in updates U (t) and up-
date gradients g(t) and lengths ℓ(t) for these edges. Find a circulation ∆(t) that approximately
solves the min-ratio problem as noted above. Update f ← f − β∆(t), where β = η

(g(t))⊤∆(t) .

2. Query(e). Returns the value fe.

3. Detect(). For a fixed parameter ε, where ∆(t) is the update vector at stage t, returns

S(t) def=

e ∈ E : ℓe

∑
t′∈[last(t)

e +1,t]

|∆(t′)
e | ≥ ε

 (2)

where last(t)
e is the last stage before t that e was returned by Detect().

14

Observe that the approximation ratio holds only with respect to the quality of the hidden stable
witness circulation c(t), and not with respect to the best possible circulation. As a sanity check, if
the data structure could find and return c(t) at each iteration, it would achieve a 1-approximation.
Thus, the data structure guarantee can be interpreted as efficiently representing and returning
a cycle whose quality is within a mo(1) factor of c(t). Eventually, we will add ∆(t) to our flow
efficiently by using link-cut trees to efficiently implement Update(·).

The following theorem encapsulates the IPM algorithm presented in [CKLPPS22] and its inter-
face with the dynamic min-ratio cycle data structure.

Theorem 4.6 ([CKLPPS22]). Assume we have access to a κ-approximate dynamic min-ratio cycle
with hidden stability data structure, for some κ ∈ (0, 1] as in Definition 4.5. Then, there is a deter-
ministic IPM-based algorithm that given a min-cost flow problem with integral costs and capacities
bounded by exp((log n)O(1)) in absolute value, solves τ = Õ(mκ−2) min-ratio cycle instances, and
returns a flow with cost within additive 1/2 of optimal. These Õ(mκ−2) many min-ratio cycle
instances satisfy the hidden stable α-flow property for α = 1/Θ(log m).

Over these min-ratio cycle instances, the total sizes of the updates is
∑

t∈τ |U (t)| = Õ(mκ−2),
and the algorithm invokes Update, Query, and Detect Õ(mκ−2) times. Furthermore, it is
guaranteed that over all these instances, the total number of edges included in any of the Detect
outputs is Õ(mκ−2).

The algorithm runs in time Õ(mκ−2) plus the time taken by the data structure.

The above result can be generalized to arbitrary integer costs and capacities at the cost of a
O(log C log mU) factor in the running time by cost/capacity scaling [CKLPPS22, Lemma C.1].

In the next section, we build our new deterministic data structure for approximate dynamic
min-ratio cycles with hidden stability.

5 Data Structure Chain
This section is devoted towards building the core of the data structure for approximately solving
dynamic min-ratio cycle with hidden stability. The following is the main theorem we prove.

Theorem 5.1 (Dynamic Min-Ratio Cycle with Hidden Stability). There is a deterministic data
structure that κ-approximately solves the problem of dynamic min-ratio cycle with hidden stability
for κ = exp(−O(log17/18 m · log log m)). Over τ batches of updates U (1), . . . , U (τ), the algorithm
runs in time mo(1)(m +∑

t∈[τ] |U (t)|).
The data structure maintains a spanning tree T ⊆ G(t) and returns a cycle ∆ represented

as mo(1) paths on T (specified by their endpoints) and mo(1) explicitly given off-tree edges, and
supports Update and Query operations in mo(1) amortized time. The running time of Detect
is mo(1)|S(t)|, where S(t) is the set of edges returned by Detect.

Combining this data structure with Theorem 4.6 and the flow rounding procedure in Lemma 4.1
shows Theorem 1.1. Most of this section is devoted towards building the data structure in Theo-
rem 5.1 and establishing how it finds approximately optimal min-ratio cycles. Sections 5.1 to 5.3
focus on introducing the general layout of the data structure, and provides multiple definitions.
Section 5.4 presents the dynamic data structure and states its properties. Finally, we prove Theo-
rem 5.1 in Section 6.2 by integrating link-cut trees to implement other required operations.
Comparison to [CKLPPS22]. This section is similar to [CKLPPS22, Section 6] in many ways
and several parts are similar; here we describe the key differences (beyond tuning the presentation
for this paper) and reasons for repeating some similar proofs. Sections Section 5.1 to Section 5.3 are

15

largely the same, but with the slight difference that the dynamic graphs in these sections undergo
edge insertions, deletions, and vertex splits. Section 5.4 deviates from [CKLPPS22] by maintaining
only one branch at each level, instead of O(log n) branches. In [CKLPPS22], it was assumed that
the tree-based data structures only underwent edge insertions and deletions, while the vertex splits
were limited to the spanner. Here, we allow all graphs to undergo vertex splits to ensure a tighter
amortized runtime bound: over the course of T updates, the total runtime and recourse of the data
structure is mo(1)T . This contrasts with [CKLPPS22] where the total runtime and recourse was
mo(1)(T + m/k). We cannot afford this because we visit all Õ(k) trees constructed in Lemma 5.5
over O(m/k) iterations, and thus only stay with a single branch for about m/k2 updates.

5.1 Dynamic Low-Stretch Forests (LSF)

As noted in the overview, the data structure is similar in construction to the one from [CKLPPS22].
In order to describe the data structure, we re-state several definitions verbatim from [CKLPPS22].

Variable Definition

ℓ(t), g(t) Lengths and gradients on a dynamic graph G(t) after stage t.

c(t), w(t) Hidden circulation and upper bounds with |ℓ(t) ◦ c(t)| ≤ w(t).

C(G, F) Core graph from a spanning forest F

S(G, F) Sparsified core graph S(G, F) ⊆ C(G, F)
FG = {(T G

j , F G
j , s̃trj

e)}k−1
j=0 Collection of LSFs of G (Lemma 5.4, Lemma 5.5)

d Recursion levels
k = m1/d Reduction factor

G = {G0, . . . , Gd} d-level tree chain (Definition 5.8)
shifti Shift index for Gi (Definition 5.8)

T G Spanning tree in G0 corresponding to the tree chain G (Defini-
tion 5.8)

repTi Representative time stamp (Definition 6.1)

ŝtri
How much w(repTi) is stretched by F Gi

shifti
, the current LSF of Gi

(Definition 6.1)

Table 1: Important definitions and notation to describe the data structure. In general, a (t)
superscript is the corresponding object at the t-th stage of a sequence of updates.

In the following subsections we describe the components of the data structure we maintain to
show Theorem 5.1. At a high level, our data structure maintains d levels of graphs. The graph
size is reduced approximately by a factor of k = m1/d in each level. The size reduction consists
of two parts. First, we reduce the number of vertices by maintaining a spanning forest F of
Õ(m/k) connected components and recurse on G/F , the graph obtained from G by contracting
each connected component of F into a single vertex. Next, we reduce the number of edges in G/F ,
which might have up to m edges, to m1+o(1)/k via the dynamic sparsifier stated in Theorem 8.2.
We start by defining a rooted spanning forest and its induced stretch.

Definition 5.2 (Rooted Spanning Forest). A rooted spanning forest of a graph G = (V, E) is a
forest F on V such that each connected component of F has a unique distinguished vertex known
as the root. We denote the root of the connected component of a vertex v ∈ V as rootF

v .

16

Definition 5.3 (Stretches of F). Given a rooted spanning forest F of a graph G = (V, E) with
lengths ℓ ∈ RE

>0, the stretch of an edge e = (u, v) ∈ E is given by

strF,ℓ
e

def=

1 + ⟨ℓ, |p(F [u, v])|⟩ /ℓe if rootF
u = rootF

v

1 +
〈
ℓ, |p(F [u, rootF

u])|+ |p(F [v, rootF
v])|

〉
/ℓe if rootF

u ̸= rootF
v ,

where p(F [·, ·]), as defined in Section 2, maps a path to its signed indicator vector.

When F is a spanning tree Definition 5.3 coincides with the definition of stretch for a LSST.
Otherwise, strF,ℓ

e measures how the concatenation of the two paths from endpoints to the roots
stretches stretches e.

The goal of the remainder of this section is to give an algorithm to maintain a Low Stretch
Forest (LSF) of a dynamic graph G. As a spanning forest decomposes a graph into vertex-disjoint
connected subgraphs, a LSF consists of a spanning forest F of low stretch. The algorithm produces
stretch upper bounds that hold throughout all updates to the graph, and the number of connected
components of F grows by Õ(1) per update in an amortized sense. At a high level, for any edge
insertion or deletion, the algorithm will force both endpoints to become roots of some component
of F . This way, any inserted edge will actually have stretch 1 because both endpoints are roots.
Also, any deleted edge does not appear in F and we can handle the deletion recursively on G/F.

Lemma 5.4 (Dynamic Low Stretch Forest). There is a deterministic algorithm with total runtime
Õ(m) that on a graph G = (V, E) with lengths ℓ ∈ RE

>0, weights v ∈ RE
>0, and parameter k > 0,

initializes a tree T spanning V , and a rooted spanning forest F ⊆ T , an edge-disjoint partition W
of F into O(m/k) sub trees and stretch overestimates s̃tre. The algorithm maintains F , whose set
of edges is decremental over time, against τ batches of updates to G, say U (1), U (2), . . . , U (τ), such
that s̃tre

def= 1 for any new edge e added by edge insertions, and:

1. F has initially O(m/k) connected components and O(q log2 n) more after q = Õ(m) updates,
i.e., q

def= ∑τ
t=1 |U (i)|.

2. strF,ℓ
e ≤ s̃tre ≤ O(k log6 n) for all e ∈ E at all times, including inserted edges e.

3.
∑

e∈E(0) ves̃tre ≤ O(∥v∥1 log4 n), where E(0) is the initial edge set of G.

4. Initially, W contains O(m/k) subtrees. For any piece W ∈ W, W ⊆ V , |∂W | ≤ 1 and
volG(W \ R) ≤ O(k log2 n) at all times, where R ⊇ ∂W is the set of roots in F . Here, ∂W
denotes the set of boundary vertices that are in multiple partition pieces.

We refer to the triple (T, F, s̃tr) as a Low-Stretch Forest (LSF) of G.

The lemma deviates from [CKLPPS22, Lemma 6.5] in the way they handle vertex splits. Here,
a vertex split adds Õ(1) roots to F while the previous algorithm views it as a sequence of edge
deletions and insertions. The first property states that F has O(m/k) roots initially and each
update, such as an edge update or a vertex split, adds Õ(1) roots to it on average. For any edge
e, the stretch overestimate s̃tre always stays the same and the average stretch, weighted by v, is
always Õ(1). The final property is useful when applying the dynamic sparsifier of Theorem 8.2 to
the contracted graph G/F.

We defer the proof of Lemma 5.4 to Appendix A.1.

17

5.2 Worst-Case Average Stretch via Multiplicative Weights

By applying the multiplicative weights update procedure (MWU) on top of Lemma 5.4, we can
build a distribution over partial spanning tree routings whose average stretch on every edge is Õ(1).
This is very similar to MWUs done in works of [Räc08; KLOS14] for building ℓ∞ oblivious routings,
and cut approximators [Mąd10; She13].

Lemma 5.5 (MWU). There is a deterministic algorithm that when given a m-edge graph G =
(V, E) with lengths ℓ and a positive integer k, in in Õ(mk)-time computes k spanning trees, rooted
spanning forests, and stretch overestimates {(Tj , Fj ⊆ Tj , s̃trj

e)}k−1
j=0 (Lemma 5.4) such that

k−1∑
j=0

λj s̃trj
e ≤ O(log7 n) , for all e ∈ E, (3)

where λ ∈ R[k]
>0 is the uniform distribution over the set [t], i.e. λ = 1⃗/k.

This lemma is nearly identical to [CKLPPS22, Lemma 6.6], but we only build k trees instead
of Õ(k). We include the proof in Appendix A.2 for completeness.

The lemma guarantees that any given flow will be stretched by Õ(1) on average across the k
trees. Thus, the flow is stretched by Õ(1) on at least one of the trees. We will leverage this fact to
design our data structure to prove Theorem 5.1.

5.3 Sparsified Core Graphs and Path Embeddings

Given a rooted spanning forest F , we recursively process the graph G/F where each connected
component of F is contracted to a single vertex represented by the root. We call this the core
graph, and define the lengths and gradients on it as follows. Below, we should think of G as the
result of updates to an earlier graph G(0), so s̃tre = 1 for edges inserted to get from G(0) to G, as
enforced in Lemma 5.4.

Definition 5.6 (Core Graph, [CKLPPS22, Definition 6.7]). Consider a tree T and a rooted span-
ning forest E(F) ⊆ E(T) on a graph G equipped with stretch overestimates s̃tre satisfying the
guarantees of Lemma 5.4. We define the core graph C(G, F) as a graph with the same edge and
vertex set as G/F . For e = (u, v) ∈ E(G) with image ê ∈ E(G/F) we define its length as
ℓ

C(G,F)
ê

def= s̃treℓe and gradient as g
C(G,F)
ê

def= ge + ⟨g, p(T [v, u])⟩.

In our application, we maintain C(G, F) where G is a dynamic graph and F is a dynamic rooted
spanning forest with a decremental edge set. The tree T , the forest F , and the stretch overestimates
{s̃tre} are initialized and maintained using Lemma 5.4.

Because the tree T is static and the graph G is dynamic, T might not be a spanning tree of G
after some updates to G. Definition 5.6 handles the situation by allowing T to be neither a spanning
tree nor a subgraph of G.

Thus, for e = (u, v) ∈ G, u and v might not be connected in T. In this case, we have g
C(G,F)
ê

= ge.
Moreover, the support of the gradient vector g is E(G) ∪ E(T). This way, a deletion of some edge
in T from G dose not affect the gradient g

C(G,F)
ê

.
Note that the length and gradient of the image of any edge e ∈ G in C(G, F) does not change

even if some edge in F is removed, because they are defined with respect to the tree T. This
property will be useful in efficiently maintaining a sparsifier of the core graph using Theorem 8.2,
which reduces the number of edges from m to m1+o(1)/k.

18

Definition 5.7 (Sparsified Core Graph, [CKLPPS22, Definition 6.9]). Given a graph G, forest F ,
and parameter k, define a (γℓ, γc)-sparsified core graph with embedding as a subgraph S(G, F) ⊆
C(G, F) and embedding ΠC(G,F)→S(G,F) satisfying

1. For any ê ∈ E(C(G, F)), all edges ê′ ∈ ΠC(G,F)→S(G,F)(ê) satisfy ℓ
C(G,F)
ê

≈2 ℓ
C(G,F)
ê′ .

2. length(ΠC(G,F)→S(G,F)) ≤ γl and econg(ΠC(G,F)→S(G,F)) ≤ kγc.

3. S(G, F) has at most mγℓ/k edges.

4. The lengths and gradients of edges in S(G, F) are the same as in C(G, F) (Definition 5.6).

5.4 Shifted Tree Chains

In this section, we introduce the notion of Shifted Tree Chains. Our data structure has d levels
with reduction factor k ≈ m1/d. The graph at i-th level has a size roughly m/ki and k forests from
Lemma 5.5. We recursively build the chain on one of the forests and keep the rest. In the dynamic
setting, we support operations to shift a level, that is, recursively rebuild the chain on the next
forest. This is used to handle the case that the current tree chain cannot output any cycle of a
small enough ratio.

Definition 5.8 (Shifted Tree Chain). For a graph G, recursion level d, and reduction factor
k = m1/d, a d-level tree chain is a collection of graphs G = {G0 = G, G1, . . . , Gd}. For each i < d,
we have the following:

1. A collection of low stretch forests FGi = {(Tj ⊆ Gi, Fj ⊆ Tj , s̃trj
e)}k−1

j=0 that satisfies conditions
in Lemma 5.5,

2. A shift index shifti ∈ {0, 1, . . . , k − 1} which is initially 0;

3. For each F ∈ FGi , a (γℓ, γc)-sparsified core graph S(Gi, F) and embedding Π(C(Gi,F)→S(Gi,F));

4. and, we recursively define Gi+1 = S(Gi, F), the sparsified core graph w.r.t. the current LSF
F = F Gi

shifti
.

Finally, for the last level graph Gd, we maintain a collection of Õ(|EGd
|) low stretch trees T using

our MWU procedure (Lemma 5.5) with k = Õ(|EGd
|).

The tree chain G naturally corresponds to a spanning tree T G of G, which is the union of
pre-images of the forests F G0

shift0
, F G1

shift1
, . . . , F Gd

shiftd
.

Compared to the branching tree chain used in [CKLPPS22], our data structure maintains one
graph at each level instead of Õ(1)i.

We can dynamically maintain a tree chain such that we re-initialize FGi and Gi+1 from Gi

every approximately m/ki updates. Between re-initializations, the forests in the collection of LSFs
{Fi} are decremental as guaranteed in Lemma 5.4.

In addition to edge updates, a d-level tree chain is subject to (1) rebuild at level i and (2) shift
at level i.

Definition 5.9 (Rebuild at Level i). Given a d-level tree chain G = {G0 = G, G1, . . . , Gd},
Rebuild(i) re-initializes graphs Gi, Gi+1, . . . , Gd.

Definition 5.10 (Shift at Level i). Given a d-level tree chain G = {G0 = G, G1, . . . , Gd}, Shift(i)
increments shifti ← (shifti + 1) mod k. And it re-initializes every graphs of Gi+1, . . . , Gd.

19

A shift at level i does not change FGi , the collection of low stretch forests at level i, but only
increases the branching index by 1 circularly. Shifting a level i with shifti = k − 1 resets shifti = 0
while the set of low stretch forests remains the same. As we will show in Section 6, one of the forests
preserves a cycle of a small ratio. The circular behavior of shifts ensures that we will reach such
a forest using at most k shifts. An alternative would be to re-initialize the set of forests whenever
shifti hits 0. In this setting, we would require as many as 2k−1 shifts to reach the forest preserving
a small-ratio cycle and the analysis remains roughly the same.

In the rest of the section, we show the following lemma, which is a data structure weaker than
Theorem 5.1 because the output circulation has a larger ratio than desired. In Section 6.1, we
further analyze the cycle maintained by the data structure. We later boost this to an algorithm
for Theorem 5.1 by solving a shift-and-rebuild game in Section 7.

Lemma 5.11 (Dynamic Tree Chain). Algorithm 1 takes as input a parameter d, a dynamic graph
G(t) undergoes τ batches of updates U (1), . . . , U (τ) with hidden stability (Definition 4.4).

The algorithm explicitly maintains a tree chain G (Definition 5.8) and T G, the spanning tree
corresponding to the tree chain. At stage t, the algorithm outputs a circulation ∆ represented by
mo(1) off-tree edges and tree paths w.r.t. T G. The output circulation ∆ satisfies B⊤∆ = 0 and∣∣∣⟨g(t), ∆⟩

∣∣∣∥∥diag(ℓ(t))∆
∥∥

1
≥ 1

Õ(k)

∣∣∣⟨g(t), c(t)⟩
∣∣∣∑d

i=0 ∥w(t),Gi∥1

where w(t),Gi is the width at stage t passed down to Gi, the level i graph in the tree chain (Def-
initions 5.12 and 5.15). The algorithm also outputs the changes to T G as an explicit list of edge
insertions and deletions.

In addition, throughout the algorithm, suppose there are si invocations of Shift and ri invoca-
tions of Rebuild at each level i. Note that we only allow Rebuild to be called through Line 28 in
Update. The algorithm is deterministic and runs in time

m1/dÕ(γℓγr)O(d)
(

m +
d∑

i=0
(si + ri) ·m1−i/d

)

The same quantity also bounds the total number of edge updates to the spanning tree T G .

Algorithm 1 initializes a tree chain as in Definition 5.8. For graph Gi at level i, it maintains
a collection of forests, trees, and sparsified core graph using the dynamic data structure from
Lemma 5.17, which will be presented later in the section.

Towards proving Lemma 5.11, we first discuss and define how to pass witness circulations and
upper bounds c and w through the tree chain G.

We first describe how to pass c, w from G to a core graph C(G, F) (Definition 5.6).

Definition 5.12 (Passing c, w to core graph). Given a graph G = (V, E) with a tree T , a rooted
spanning forest E(F) ⊆ E(T), and a stretch overestimates s̃tre as in Lemma 5.4, circulation c ∈ RE ,
and length upper bounds w ∈ RE

>0, we define vectors cC(G,F) ∈ RE(C(G,F)) and wC(G,F) ∈ RE(C(G,F))
>0

as follows. For ê ∈ E(C(G, F)) with preimage e ∈ E, define c
C(G,F)
ê

def= ce and w
C(G,F)
ê

def= s̃trewe.

We verify that cC(G,F) is a circulation on C(G, F) and that wC(G,F) are length upper bounds.

20

Algorithm 1: Dynamically maintains a tree chain (Definition 5.8).
1 global variables
2 d: number of levels in the maintained tree chain.
3 k ← m1/d: reduction factor used in Lemma 5.4.
4 Ψ← logO(1) m such that by Definition 4.4 we have log ∥w(t)∥1 ∈ (−Ψ, Ψ).
5 G = {G0, G1, . . . , Gd}: the maintained tree chain.
6 {F Gi

0 , F Gi
1 , . . . , F Gi

k−1} for each level i: collection of LSFs of each Gi.

7 shift0, shift1, . . . , shiftd−1 : the branching index of each Gi.

8 A(SparseCore): the dynamic sparsified core graph algorithm (Lemma 5.17).
9 passesi, a variable for each level i.

10 procedure Initialize(G(0), ℓ, g)
11 G0 ← G(0) and passesi ← 0 for all i ∈ {0, . . . , d}
12 Rebuild(0)
13 procedure Rebuild(i0)
14 for i = i0, . . . , d− 1 do
15 shifti ← 0.

16
{
S(Gi, F Gi

j)
∣∣∣ j = 0, 1, . . . , k − 1

}
← A(SparseCore)

Gi
.Initialize(Gi, ℓGi , gGi)

17 Gi+1 ← S(Gi, F Gi
shifti

)

18 procedure Shift(i0)
19 shifti ← (shifti + 1) mod k.

20 Gi+1 ← S(Gi, F Gi
shifti

)
21 for i = i0 + 1, . . . , d− 1 do
22 shifti ← 0.

23
{
S(Gi, F Gi

j)
∣∣∣ j = 0, 1, . . . , k − 1

}
← A(SparseCore)

Gi
.Initialize(Gi, ℓGi , gGi)

24 Gi+1 ← S(Gi, F Gi
shifti

)

25 procedure Update(U (t), g(t), ℓ(t))
26 U

(t)
G(t) ← U (t)

27 for i = 0, . . . , d− 1 do
28 if The total number of updates to Gi since its last rebuild is more than

m(γℓ/k)i+1/ log2 n then Rebuild(i)
29

{
U

(t)
S(Gi,Fj)

∣∣∣ j = 0, 1, . . . , k − 1
}
← A(SparseCore)

Gi
.Update(Gi, U

(t)
Gi

)

30 procedure FindCycle()
31 Return the best fundamental spanner cycle/level-d tree cycle ∆ (mapped back to G0) with

largest ratio |⟨g
(t),∆⟩|

∥ℓ(t)◦∆∥1
. See Proof of Lemma 5.11 for details.

21

Lemma 5.13 (Validity of Definition 5.12, Lemma 7.4 of [CKLPPS22]). Let c, w be a valid pair
(Definition 4.3) on a graph G with lengths ℓ. As defined in Definition 5.12, cC(G,F), wC(G,F) are a
valid pair on C(G, F) with lengths ℓC(G,F) (Definition 5.6), and∥∥∥wC(G,F)

∥∥∥
1
≤

∑
e∈E(G)

s̃trewe.

We state an algorithm that takes a dynamic graph G(t) with hidden stability and produces a
dynamic core graph. Below, we let c(t),C(G,F), w(t),C(G,F) denote the result of using Definition 5.12
for c = c(t) and w = w(t), and similar definitions for g(t),C(G,F), ℓ(t),C(G,F) used later in the section.

Lemma 5.14 (Dynamic Core Graphs). There is a deterministic algorithm that takes as input
a parameter k, a dynamic graph G(t) undergoes τ batches of updates U (1), . . . U (τ) that satisfies∑τ

t=1 |U (t)| ≤ m/(k log2 n) and has hidden stability (Definition 4.4).
For each j = 0, 1, . . . , k−1, the algorithm maintains a static tree Tj, a decremental rooted forest

F
(t)
j with O(m/k) components satisfying the conditions of Lemma 5.4, and a core graph C(G(t), F

(t)
j).

The algorithm outputs update batches U
(t)
j that produce C(G(t), F

(t)
j) from C(G(t−1), F

(t−1)
j) such that∑

t′≤t |U
(t′)
j | = O

(∑
t′≤t |U (t′)| · log2 n

)
.

The algorithm runs in Õ(mk)-time.

Proof. This follows almost directly from Lemma 7.5 in [CKLPPS22]. Here we maintain core graphs
of every low stretch forest Fj using Lemma 5.4, which only add O(log2 n) roots to Fj per vertex
split. Adding one root to Fj splits some component of Fj into two and this splits some vertex in
the core graph. Thus, each update, which may be an edge update or vertex split, to G corresponds
to O(1) edge updates and O(log2 n) vertex splits to the core graph. Thus, the total number of
updates to the core graph C(G, Fj) is ∑t′≤t |U

(t′)
j | = O

(∑
t′≤t |U (t′)| · log2 n

)
.

The runtime is Õ((m + Q)k) for Q = ∑
t Enc(U (t)). We concludes the runtime analysis using

Lemma 2.1 to bound Q = Õ(m +∑τ
t=1 |U (t)|) = Õ(m).

We describe how to pass cC(G,F), wC(G,F) on a core graph to a sparsified core graph S(G, F).

Definition 5.15 (Passing c, w to sparsified core graph). Consider a graph G with spanning forest
F , and circulation cC(G,F) ∈ RE(C(G,F)) and upper bound wC(G,F) ∈ RE(C(G,F))

>0 , and embedding
ΠC(G,F)→S(G,F) for a (γc, γl)-sparsified core graph S(G, F) ⊆ C(G, F). Define

cS(G,F) =
∑

ê∈E(C(G,F))

c
C(G,F)
ê

ΠC(G,F)→S(G,F)(ê) (4)

wS(G,F) = 2
∑

ê∈E(C(G,F))

w
C(G,F)
ê

∣∣∣ΠC(G,F)→S(G,F)(ê)
∣∣∣ . (5)

We check that cS(G,F) is a circulation on S(G, F) and wS(G,F) are length upper bounds.

Lemma 5.16 (Validity of Definition 5.15, [CKLPPS22, Lemma 7.7]). Let cC(G,F), wC(G,F) be a
valid pair on graph C(G, F) with lengths ℓC(G,F). As defined in Definition 5.15, cS(G,F), wS(G,F) is
a valid pair on S(G, F) with lengths ℓS(G,F) (Definition 5.7). Also,

∥wC(G,F)∥1 ≤ ∥wS(G,F)∥1 ≤ O(γl)∥wC(G,F)∥1.

22

We can maintain the sparsified core graph of a dynamic graph G(t) with hidden stability. In
particular, the total size of updates to S(G(t), F (t)) is comparable to the one for G(t). This is the
building block for dynamically maintaining the tree chain (Definition 5.8).

Lemma 5.17 (Dynamic Sparsified Core Graphs). There is an algorithm A(SparseCore) takes as
input a parameter k, a dynamic graph G(t) undergoes τ batches of updates U (1), . . . , U (τ) with
hidden stability (Definition 4.4) and

∑τ
t=1 |U (t)| ≤ m/(k log2 n).

Upon initialization via a call A(SparseCore)
G .Initialize(G, ℓ, g), the data structure A(SparseCore)

maintains for each j ∈ {0, 1, . . . , k − 1}, a decremental forest F
(t)
j , a static tree Tj satisfying the

conditions of Lemma 5.4, and a (γℓ, γc)-sparsified core graph S(G(t), F
(t)
j) for parameters γc = γl =

exp(O(log8/9 m log log m)) with embedding ΠC(G(t),F
(t)
j)→S(G(t),F

(t)
j) and supports the operation

A(SparseCore).Update(G(t−1), U (t−1))

which outputs, for each j, an update batch U
(t)
S,j that produces S(G(t), F

(t)
j) from S(G(t−1), F

(t−1)
j).

1. Sparsified Core Graphs have Low Recourse: For each j, the update batches {U (t)
S,j}t to S(G, Fj)

output by A(SparseCore) satisfies ∑
t′≤t

∣∣∣U (t′)
S,j

∣∣∣ = γr ·
∑
t′≤t

∣∣∣U (t′)
∣∣∣ , and

∑
t′≤t

Enc(U (t′)
S,j) = γr ·

m

k
+
∑
t′≤t

∣∣∣U (t′)
∣∣∣

for some γr = exp(O(log8/9 m log log m)), and

2. Sparsified Core Graphs undergo Updates with Hidden Stability: for each j, the update batches

U
(t)
S,j to the sparsified core graph along with the associated gradients g(t),S(G(t)F

(t)
j), and lengths

ℓ(t),S(G(t),F
(t)
j) as defined in Definition 5.7 satisfy the hidden stable-flow property (see Defi-

nition 4.4) with the hidden circulation c(t),S(G(t),F
(t)
j), and width w(t),S(G(t),F

(t)
j) as defined in

Definition 5.15.

The algorithm runs in total time Õ(mk · γr).

Proof. Except Item Item 2, the lemma follows by using Lemma 5.14 to maintain all k core graphs
C(G(t), F

(t)
j) and Theorem 8.2 to maintain sparsified core graphs S(G(t), F

(t)
j). In particular, for

each j, we add D
(t)
j , the re-embeded set of edges in S(G(t), F

(t)
j), as explicit edges updates to U

(t)
S,j .

We now show Item Item 2. c(t),S(G(t),F
(t)
j) and w(t),S(G(t),F

(t)
j) form a valid pair by Lemma 5.16.

Therefore, items 1 and 2 of Definition 4.4 are satisfied.
Next, we prove item 4 of Definition 4.4. At any stage t ∈ [τ] and any edge e ∈ S(G(t), F

(t)
j) for

some j, suppose e was not explicitly inserted after some earlier stage t′, i.e. e ∈ S(G(t′), F
(t′)
j) for

some t′ < t. However, between stage t′ and t, endpoints of e might change due to vertex splits. But
the insertion of e is not included in any of U

(s)
S,j , s ∈ (t′, t]. Thus, we have (Π(t)

j)−1(e) ⊆ (Π(t′)
j)−1(e)

otherwise insertion of e is included in some U
(s)
S,j , s ∈ (t′, t] due to the definition of re-embedded set

(Item 3 of Theorem 8.2).

23

For any edge e′ ∈ (Π(t)
j)−1(e), it exists in the core graph at both stage t and t′, i.e. e′ ∈

C(G(t), F
(t)
j) and C(G(t′), F

(t′)
j). Let e′G be its pre-image in G. e′G also exists in G at both stage t

and t′. Since G is updates with hidden stability, by item 4 of Definition 4.4 we have

w
(t),G(t)

e′G ≤ 2 ·w(t′),G(t′)

e′G .

Definition 5.12 and the immutable nature of s̃tr from Lemma 5.4 yields

w
(t),C(G(t),F

(t)
j)

e′ = s̃trTj ,ℓ

e′G w
(t),G(t)

e′G ≤ 2 · s̃trTj ,ℓ

e′G w
(t′),G(t′)

e′G = 2 ·w(t′),C(G(t′),F
(t′)
j)

e′ . (6)

Combining with the fact that (Π(t)
j)−1(e) ⊆ (Π(t′)

j)−1(e) and Definition 5.15 yields the following
and proves item 4 of Definition 4.4:

w
(t),S(G(t),F

(t)
j)

e = 2 ·
∑

e′∈
(

Π(t)
j

)−1
(e)

w
(t),C(G(t),F

(t)
j)

e′

≤ 2 · 2 ·
∑

e′∈
(

Π(t)
j

)−1
(e)

w
(t′),C(G(t′),F

(t′)
i)

e′

≤ 2 · 2 ·
∑

e′∈
(

Π(t′)
j

)−1
(e)

w
(t′),C(G(t′),F

(t′)
j)

e = 2 ·w(t′),S(G(t′),F
(t′)
i)

e .

Item 5 follows directly from the definition of ℓ(t),S(G(t),F
(t)
j) and w(t),S(G(t),F

(t)
j).

Given Lemma 5.17, we are ready to prove Lemma 5.11 with the data structure described in
Algorithm 1. Recall that the algorithm initializes a shifted tree chain (Definition 5.8) and maintains
a collection of low stretch forests and sparsified core graphs using Lemma 5.17 for graph Gi at each
level i.

However, the data structure of Lemma 5.17 can only take up to m/(k log2 n) updates if the input
graph has at most m edges at all times. This forces us to rebuild the data structure every once in a
while. In particular, we re-initialize everything at every level i ≥ i0 if any of the data structures of
Lemma 5.17 on some level i0 graph Gi0 has accumulated too many updates (approximately m/ki0).
We will show that the cost of re-initializing amortizes well across dynamic updates.

Proof of Lemma 5.11. At any stage t and level i > 0, graph G
(t)
i has at most mγi−1

ℓ /ki vertices
and m(γℓ/k)i edges due to Lemma 5.17.

Ignoring the last level d, we can count the entire cost of all data structure operations toward the
point where each sparse core graph is initialized. By Lemma 5.17, the runtime cost of A(SparseCore)

for Gi until its next initialization is Õ(m(γℓ/k)ikγr). When we initialize all levels i ≥ h, the running
time cost is ∑d

i=h Õ(m(γℓ/k)ikγr) = Õ(m(γℓ/k)hkγr), as the costs decay geometrically. The very
first initialization cost can thus be bounded by Õ(mkγr) by considering h = 0. All remaining
initializations occur when (1) a level i0 is shifted and all levels i > i0 are re-initialized or (2)
when a level i0 is rebuilt and all levels i ≥ i0 are re-initialized. We can bound these cost from (1)
and (2) by ∑i siÕ(m(γℓ/k)i+1kγr) and ∑i riÕ(m(γℓ/k)ikγr) respectively. For the last level, note
that the initialization running time is somewhat larger Õ(γ2d

ℓ), but this does not affect the overall

24

asymptotics of the above sum as long as d is not too large. The overall runtime bound follows
because k = m1/d.

Finally, we describe how to maintain and return a good enough circulation ∆. We have two
kinds of candidate circulations:

1. fundamental spanner cycles: for every level i, and every edge e ∈ C(Gi, F Gi
shifti

) \ S(Gi, F Gi
shifti

),
we consider the cycle formed by e and its spanner embedding path ΠC(Gi,F

Gi
shifti

)→S(Gi,F
Gi
shifti

).

This is a cycle in the core graph C(Gi, F Gi
shifti

) at level i.

2. fundamental tree cycles at level d, i.e., for every edge e ∈ Gd and each a low-stretch tree T
for Gd in the data structure, we consider the unique cycle obtained by adding e to T.

We use tree paths and spanner embeddings to map these cycles back to G0 = G(t). We now claim
that one of these cycles ∆ must satisfy∣∣∣⟨g(t), ∆⟩

∣∣∣∥∥ℓ(t) ◦∆
∥∥

1
≥ 1

Õ(k)

∣∣∣⟨g(t), c(t)⟩
∣∣∣∑d

i=0
∥∥w(t),Gi

∥∥
1

This follows by Lemma A.2, which is shown in [CKLPPS22, Lemma 7.15-7.17] – we include a self-
contained statement in the appendix for completeness. Since all embeddings are known explicitly,
the algorithm can compute the quality of a fundamental spanner cycle when the embedding of
an edge changes. Thus, the algorithm simply tracks the quality of all fundamental spanner cycles
using a heap and returns the best among them.

6 Analyzing the Cycle Quality with Shifts and Rebuilds
The goal of this section is to complete the proof of Theorem 5.1. To do this, we start in Section 6.1
by analyzing the quality of the circulation output by Lemma 5.11 at each stage of the dynamic
updates (Lemma 6.2). This involves defining representative time steps in Definition 6.1, which
intuitively represent the points in time of the data structure that we measure our stretch with
respect to. Because Lemma 6.2 is a weaker version of our desired Theorem 5.1, in Section 6.2 we
describe a strategy for applying shifts and rebuilds (Lemma 6.5) to our cycle quality bound to show
Theorem 5.1.

6.1 Cycle Qualities

An important concept for analyzing cycle quality is our notion of a representative time. A rep-
resentative time stamp is used to record the quality of the witness approximation by our data
structure at this past point in time. This and the shift operation are the main differences in the
data structure between this paper and [CKLPPS22].

Definition 6.1 (Representative timesteps). Consider the setting of Lemma 5.11 at some stage t,
and consider the state of the data structure, right after any sequence of completed procedure calls.
A set of timestamps associated with each level {repTi}di=0 is a set of representative time stamps if,
at any level i, repTi is between t and level i’s previous re-initialization time and is after repTi−1.
We also define, at any level i, for each branch j, we define the stretch w.r.t. {repTi}i to be the
value ŝtri,j such that ∑

e∈Gi

s̃tr
F

Gi
j

e w(repTi),Gi
e = ŝtri,j

∥∥∥w(repTi),Gi

∥∥∥
1

.

25

where F Gi
j ⊆ Gi are the spanning forests associated with Gi. We define the current stretch to be

ŝtri
def= ŝtri,shifti

.

Notice that for level d, we have repTd = t and ŝtrd = Õ(1) because Gd is built from scratch
after every update and has size mo(1).

The crucial role that representative times play comes from a monotonicity property of our data
structures; if the witness was well-approximated in the past by a data structure level, then this
remains the case until the level is re-initialized. This behavior is captured in the following lemma,
Lemma 6.2. This lemma becomes powerful when we later combine it with Corollary 6.4, which
guarantees that we eventually encounter forests with small stretch of the witness.

Lemma 6.2. Consider the setting of Lemma 5.11 at some stage t, and consider the state of the
data structure, right after any sequence of completed procedure calls. Given any set of representative
time stamps {repTi} and its corresponding set of current stretches {ŝtri}, we have

d∑
i=0

∥∥∥w(t),Gi

∥∥∥
1
≤ O(γℓ)d

d∑
i=0

(
d∏

i′=i

ŝtri′

)
∥w(repTi)∥1 (7)

Proof. We will prove the inequality by induction on t as well as the level i. In particular, we will
prove the following during any stage t and at any level i:

∥∥∥w(t),Gi

∥∥∥
1
≤ O(γℓ)i

∥∥∥w(t)
∥∥∥

1
+ O(γℓ)i

i−1∑
a=0

(
i−1∏
b=a

ŝtrb

)
∥w(repTa)∥1 (8)

We first analyze ∥w(t),Gi∥1 at each level i. At level 0, w(t),G0 is exactly w(t), the upper bound
at stage t and we have ∥w(t),G0∥1 = ∥w(t)∥1. At level i + 1, suppose Gi+1 = S(Gi, F) where F is
the current spanning forest F Gi

shifti
. Lemma 5.16 says∥∥∥w(t),Gi+1

∥∥∥
1
≤ O(γℓ)

∥∥∥w(t),C(Gi,F)
∥∥∥

1

We now focus on bounding ∥w(t),C(Gi,F)∥. Let U ⊆ Gi be the set of edges newly inserted after
stage repTi. Because repTi is no earlier than the previous re-initialization time of Gi and every
newly inserted edge e ∈ U has s̃trF

e
def= 1 (Lemma 5.4), we have∥∥∥w(t),C(Gi,F)
∥∥∥

1
≤︸︷︷︸

Lemma 5.13

∑
e

s̃trF
e w(t),Gi

e

=
∑
e ̸∈U

s̃trF
e w(t),Gi

e +
∑
e∈U

w(t),Gi
e

≤︸︷︷︸
Item 4

2
∑
e ̸∈U

s̃trF
e w(repTi),Gi

e +
∥∥∥w(t),Gi

∥∥∥
1

= 2ŝtri

∥∥∥w(repTi),Gi

∥∥∥
1

+
∥∥∥w(t),Gi

∥∥∥
1

Observe that {repTi′}i′ is valid set of representative time stamps for levels i′ ≤ i during stage repTi.

26

This allows us to apply the induction on both ∥w(repTi),Gi∥1 and ∥w(t),Gi∥1 and yields∥∥∥w(t),C(Gi,F)
∥∥∥

1
= 2ŝtri

∥∥∥w(repTi),Gi

∥∥∥
1

+
∥∥∥w(t),Gi

∥∥∥
1

≤ 2ŝtri

(
O(γℓ)i−1

∥∥∥w(repTi)
∥∥∥

1
+ O(γℓ)i−1

i−1∑
a=0

(
i−1∏
b=a

ŝtrb

)
∥w(repTa)∥1

)

+
(

O(γℓ)i−1
∥∥∥w(t)

∥∥∥
1

+ O(γℓ)i−1
i−1∑
a=0

(
i−1∏
b=a

ŝtrb

)
∥w(repTa)∥1

)

≤ O(γℓ)i−1
∥∥∥w(t)

∥∥∥
1

+ O(γℓ)i−1ŝtri

∥∥∥w(repTi)
∥∥∥

1
+ O(γℓ)i−1

i−1∑
a=0

(
i∏

b=a

ŝtrb

)
∥w(repTa)∥1

= O(γℓ)i−1
∥∥∥w(t)

∥∥∥
1

+ O(γℓ)i−1
i∑

a=0

(
i∏

b=a

O(γℓ) · ŝtrb

)
∥w(repTa)∥1

Combining with Lemma 5.16, we have∥∥∥w(t),Gi+1
∥∥∥

1
≤ O(γℓ)

∥∥∥w(t),C(Gi,F)
∥∥∥

1

≤ O(γℓ)i
∥∥∥w(t)

∥∥∥
1

+ O(γℓ)i
i∑

a=0

(
i∏

b=a

ŝtrb

)
∥w(repTa)∥1

The lemma follows by taking the sum of (8) from i = 0 to d and the fact that repTd is always
t during any stage t (Definition 6.1).

By appealing to Lemma 5.11 and Lemma 6.2, we conclude that the output circulation has a
ratio small enough to meet the condition of Theorem 5.1 if the following holds at time t for some
set of representative time stamps {repTi}, and its current stretches {ŝtri}:

Õ(k)O(γℓ)d
d∑

i=0

(
d−1∏
i′=i

ŝtri′

)
∥w(repTi)∥1 ≤ 100(d + 1) · Õ(k)Õ(γℓ)d

∥∥∥w(t)
∥∥∥

1
(9)

The contrapositive implication tells us that if the data structure cannot output a good cycle,
we know (9) is violated. Next, we show that there are only two possible reasons that (9) could fail
to hold. In particular, it must either be the case that some current stretch {ŝtri} is too large or that
the current witness norm

∥∥∥w(t)
∥∥∥

1
has dropped much below the largest value maxd

i=0 ∥w(repTi)∥1 at
the representative times for different levels.

Lemma 6.3. Set depth d
def= O(log1/18 m), then for some κ = exp

(
−O

(
log17/18 m log log m

))
the following holds. Consider the setting of Lemma 5.11 at some stage t, and consider the state
of the data structure, right after any sequence of completed procedure calls. Given any set of
representative time stamps {repTi}di=0 and its corresponding set of current stretches {ŝtri}, if the
cycle quality output by FindCycle() (see Algorithm 1) is not good, i.e.,∣∣∣⟨g(t), ∆⟩

∣∣∣∥∥ℓ(t) ◦∆
∥∥

1
< κα

then at least one of the following two conditions hold:
d∑

i=0

∥∥∥w(repTi)
∥∥∥

1
> 2(d + 1)

∥∥∥w(t)
∥∥∥

1
(10)

27

or
For some level i, we have ŝtri,j > Ω̃(1) on the current branch j = shifti. (11)

Proof. We prove the lemma by proving the contrapositive form of the implication. Thus, we assume
both Condition (10) and (11) are false.

Then our cycle ∆ satisfies∣∣∣⟨g(t), ∆⟩
∣∣∣∥∥L(t) ◦∆
∥∥

1
≥︸︷︷︸

Lemma 5.11

∣∣∣⟨g(t), c(t)⟩
∣∣∣

Õ(k)∑d
i=0

∥∥w(t),Gi
∥∥

1

≥︸︷︷︸
Lemma 6.2

∣∣∣⟨g(t), c(t)⟩
∣∣∣

Õ(k)O(γℓ)d
∑d

i=0

(∏d
i′=i ŝtri′

)
∥w(repTi)∥1

≥︸︷︷︸
Conditions

(10) and (11)
are false.

1
100(d + 1) · Õ(k)Õ(γℓ)d

∣∣∣⟨g(t), c(t)⟩
∣∣∣

∥w(t)∥1

≥︸︷︷︸
stable α-flow

by Lemma 5.11
assumptions.

κα

where in the last inequality we choose d = O(log1/18 m) and κ such that

1
κ

= 100(d + 1) · Õ(k)Õ(γℓ)d ≤ d ·m1/d+o(1) · exp
(
O
(
d log8/9 m log log m

))
= exp

(
O
(
log17/18 m log log m

))

6.2 Rebuilding and Shifting

Lemma 6.3 allowed us to conclude that if we cannot find a good cycle, it must be either because
our data structure at some level i has bad stretch ŝtri for the current branch (Condition (11) in
the lemma), or because the current witness norm ∥w(t)∥1 has dropped much below the norm at
the earlier representative times (Condition (10) in the lemma). Next, we want to observe that on
every level i, there exists a branch j that leads to good stretch. This will help us ensure that if
we use Shift to try out all the branches in an appropriate order, we must eventually have good
stretch on all levels.

Corollary 6.4. Under the setting of Lemma 5.11, during any stage t, consider any set of rep-
resentative time stamps {repTi}di=0 (Definition 6.1) and any level i. Then, for some branch j,
ŝtri,j ≤ Õ(1).

Proof. Let {(Fj , s̃trFj)} be the collection of low stretch forests from Lemma 5.5. We have

1
k

k−1∑
j=0

∑
e∈Gi

s̃trFj

e w(repTi),Gi
e = O(log7 n)

∑
e∈Gi

w(repTi),Gi
e

28

Thus, one of the j∗ satisfies that∑
e∈Gi

s̃trFj∗
e w(repTi),Gi

e = O(log7 n)
∑

e∈Gi

w(repTi),Gi
e

Thus ŝtri,j∗ = O(log7 n).

Informally, we now note that if we have done shifts that ensure all branches have good current
stretch, and we still cannot find a good cycle, it must be because the norm ∥w(t)∥1 has dropped
much below the norm at the earlier representative times (Condition (10) in the lemma). Naïvely,
we could fix this by re-initializing everything, which would update the representative times to the
current time, and then trying every possible shift at each level. But, this is slow, and in fact much
too slow, once we realize that the norm ∥w(t)∥1 could drop again as soon as we find another good
cycle, and we might have to re-initialize everything again.

To deal with this, we note that there is an important constraint on these norms: log(∥w(t)∥1) ∈
(− logO(1) m, logO(1) m), so the weight can only halve 2 logO(1) m times. If the data structure only
had a single level, i.e., d = 1, this would immediately lead to a working strategy: try all branches,
and re-initialize if they all failed. However, the situation gets more complicated, because deep levels
of the data structure can only survive through few updates, and so we are forced to re-initialize
them frequently, which may happen at times when the norm ∥w(t)∥1 is large.

To deal with this, we develop an algorithmic strategy for choosing when to shift and when to
re-initialize levels when trying to find good cycles to route along. This yields our overall algorithm
for firstly, updating the data structure in response to changes coming from the IPM, secondly,
finding a good cycle to route or shifting and re-initializing until one is found, and finally routing
flow along a cycle. This is encapsulated in the Update(. . .) procedure (Algorithm 2).

At a high level, the strategy plays a game, called the shift-and-rebuild game (Definition 7.2),
against the IPM. At each stage, the IPM picks a witness w(t) unknown to the data structure. The
data structure outputs a circulation of a ratio small enough. If it fails to find one, it can pick a level
and shift it. The stage does not finish until the data structure finds circulation of a small ratio.

The efficiency of this strategy is established by Lemma 6.5, which bounds the number of shift
calls as function of the number of Rebuild() calls. The number of Rebuild() calls can be easily
bounded by the fact that each such call only occur in response to the the data structure receiving
many updates, which implies that Update() returned a good cycle many times. Roughly speaking,
we show that the strategy shifts any level at most Õ(k)-times until rebuilds that level.

Lemma 6.5. In the execution of T calls to Update() (Algorithm 2), let ri equal the total number
of calls to Rebuild(i) and let si equal the number of calls to Shift(i). Then

si ≤
∑
i′≤i

ri′(k logO(1)(m))i+1−i′
.

Section 7 is dedicated to proving Lemma 6.5. Here we conclude this section by showing how to
prove Theorem 5.1 using Lemma 6.5.

Theorem 5.1 (Dynamic Min-Ratio Cycle with Hidden Stability). There is a deterministic data
structure that κ-approximately solves the problem of dynamic min-ratio cycle with hidden stability
for κ = exp(−O(log17/18 m · log log m)). Over τ batches of updates U (1), . . . , U (τ), the algorithm
runs in time mo(1)(m +∑

t∈[τ] |U (t)|).
The data structure maintains a spanning tree T ⊆ G(t) and returns a cycle ∆ represented

as mo(1) paths on T (specified by their endpoints) and mo(1) explicitly given off-tree edges, and

29

Algorithm 2: Update: Data structure shift-and-rebuild schedule.
// GAME comments are intended to help the reader verify the correspondence
between Algorithm 2 and Algorithm 3 (for the proof of Lemma 6.5).

1 procedure Update(U (t), g(t), ℓ(t), η)
2 Update(U (t), g(t), ℓ(t)) // call DynamicTreeChain update. This could update

the shift variables.
// GAME: Let i∗ be the smallest level index where the number of updates

of Gi exceeds m(γℓ/k)i+1/ log2 n and hence during Update(), we call
Rebuild(i∗). If i∗ exists, the adversary declares a rebuild at level
i∗.

3 ∆← FindCycle()
4 if |⟨g(t),∆⟩|

∥ℓ(t)◦∆∥1
≤ κα then

// GAME: the round is not completing.
5 Let i be the largest level index with passesi < 2Ψ, where Ψ = logO(1) m. // GAME:

The player declares a shift at level i
6 Shift(i) // shift variables are updated
7 if shifti = 0 then
8 passesi ← passesi + 1. // Passed through all branches.

9 for level i′ ∈ {i + 1, . . . , d} do passesi′ ← 0.
10 go to Line 3.
11 Compute ∆⊤g(t) using link-cut trees
12 ∆← η

∆⊤g(t) ∆
13 f ← f −∆ using link-cut trees
14 Also track |∆| updates using link-cut trees to support Detect

// GAME: The round is completing.

supports Update and Query operations in mo(1) amortized time. The running time of Detect
is mo(1)|S(t)|, where S(t) is the set of edges returned by Detect.

Proof of Theorem 5.1. We utilize the data structure provided by Lemma 5.11, and combine it with
link-cut trees [ST83]. Since Lemma 5.11 maintains a tree chain G and outputs an amortized mo(1)

edge updates to the underlying spanning tree T G , we can use Link-Cut trees to represent T G . We
will use these to maintain both the flow (as a sum of scaled ∆(t)) and the absolute value of the
updates

∣∣∣∆(t)
∣∣∣ (for implementing Detect). This allows us to support updating gradients/lengths,

routing flow along a tree-path, computing the inner product of a tree path with g(t) or its length
in O(log m) amortized time. In order to support Detect, we rewrite the condition as∑

t′∈[last(t)
e +1,t]

|∆(t′)
e | −

ε

ℓe
≥ 0 .

We initialize each edge at −ε/ℓe and repeatedly add |∆(t′)
e | whenever we route some flow. Thus,

detecting edges is now equivalent to finding edges with non-negative values, which can be done in
O(log m) amortized time per edge returned by Detect. Since all link-cut tree operations taken
O(log m) amortized time, and Lemma 5.11 guarantees that the number of edge insertions and

30

deletions is bounded by the running time, our total running time remains unchanged up to polylog
factors.

The key piece now remaining is to prove that we can efficiently find a good circulation ∆(t). By
Lemma 5.11, the total time spent is

m1/dÕ(γℓγr)O(d)
(

m +
d∑

i=0
(si + ri) ·m1−i/d

)
(12)

where si and ri, the number of calls to Shift and Rebuild at each level i.
Next, recall that Q = ∑

t |U (t)| denotes the total update count. We can bound the rebuild
counts ri by, first, observing that when a rebuild at level i occurs, the level must have received
m(γℓ/k)i+1/ log2 n updates, by the pseudo-code in Update() in Algorithm 1. Second, the number
of updates received at level i from is bounded by γi

rQ by the recourse bounds from Lemma 5.16.
Thus,

ri ≤
γi

rQ

m(γℓ/k)i+1/ log2 n
=
(

kγr

γl

)i kQ log2 m

γℓm
≤ ki kγd

r Q

m

By Lemma 6.5, we know that si ≤
∑

j≤i rj(k logO(1)(m))i+1−j . Combining these observations gives
us an overall bound on the shift counts of

si ≤
∑
j≤i

(k logO(1)(m))i+1−jkj kγd
r Q

m
≤ ki dk2 logO(d)(m)γd

r Q

m
= ki k2γ

O(d)
r Q

m

Recalling that k = m1/d, and plugging our bounds into (12), we bound the overall running time by

m3/dÕ(γℓγr)O(d) (m + Q) = (m + Q) mo(1).

7 The Shift-and-Rebuild Game
In this section we translate the execution of repeated calls to Update() (Algorithm 2) into an
instance of a game played between a player and an adversary and analyze strategies for the game
to prove the efficiency of the algorithm. We first establish a more general game, called the shift-and-
rebuild game (Definition 7.2), that abstracts away most of the data structure behavior. We analyze
this game, and provide an efficient strategy for playing this game. This is our central technical result
of the section, Lemma 7.3. We also prove that Update() indeed corresponds to particular instances
of the game, and that the algorithm corresponds to playing our efficient strategy. Therefore, we
show the efficiency of the algorithm in our main result of the section, Lemma 6.5.

We start by briefly recalling elements of Algorithm 2, before defining our game. However, the
game and its analysis in the proof of Lemma 7.3 can be read in isolation, without first checking the
correspondence to our data structure problem.
Shift-and-Rebuild game motivation. Recall that in each call to Update(), we first update
our data structure, rebuilding any sparse core graph levels as necessary, and then find a cycle to
route flow along. If the cycle has a small enough ratio, we use it – in our game, this will correspond
to a round of the game completing. If the cycle is not good enough, Update() decides on a data
structure level i to call Shift(i) on and repeats this until a good cycle is found. Every completed
call to Update() will correspond to a round of our game.

31

We set up our game so that it captures the behavior of Update(). This game is played between a
player whose actions correspond to decisions made by Update() about which levels to call Shift()
on and an adversary where firstly, its actions capture the the times when we are forced to rebuild
data structure levels in Line 2 of Update() (Algorithm 2), and secondly, its actions reflect the
behavior of the witness norm

∥∥∥w(t)
∥∥∥

1
and the data structure stretch values ŝtri,j . In the proof of

Lemma 6.5, we set up the precise correspondence between our game and Update().
Shift-and-Rebuild game parameters and definitions. The Shift-and-Rebuild game has sev-
eral parameters: integer depth d > 0, a branching factor k, and a weight range Ψ ≥ 1. We say
the game has d + 1 levels and each level has k branches. In the game, these levels and branches
are simply abstract indices, but ultimately, they will correspond to the data structure levels and
branches in Theorem 5.1.

The game is played between a player and an adversary and proceeds in rounds t = 1, 2, . . . , T .
At certain points in the game, the player or adversary may update certain variables. Furthermore,
at special points in the game, the player or the adversary is required to perform a “step,” after
which the value of some game variables are updated. These “steps” play an important role in
our later analysis of strategies for the game and hence to index the steps, we keep a step counter
s ∈ {1, 2, . . . , S}.

As part of the game, we define a number of variables. All of these quantities are updated at
different points of the game, stated in the formal description in Definition 7.2. For every level index
i ∈ [[d]],

• We define a current branch shift(s)
i ∈ [[k− 1]]. The variable gets updated at various points in

the game. Both the player and adversary know its value.

• For every round t ∈ [T] we define a “weight” W (t), satisfying log W (t) ∈ (−Ψ, Ψ). The weight
values are hidden from the player.

• We define a “representative round” index repTi ∈ [T]. At certain points in the game, a new
value for the representative round is set by the rules of the game, and the outcome is hidden
from the player.

• For every branch j ∈ [[k − 1]] of the level, we define a “stretch” str(s)
i,j ≥ 0. The adversary

chooses these values anew at various points and the outcome of this choice is hidden from the
player.

Note that we use different symbols to clearly distinguish the data structure and game variables.
The game variables repTi and str(s)

i,j will correspond to data structure variables repTi and str(s)
i,j ,

and we formally establish the correspondence as part of the proof of Lemma 6.5. Both the data
structures and the game uses counters shift(s)

i ∈ [[k − 1]] and passesi ∈ [[W]] for each level i. Here,
the correspondence is trivial, and so, overloading notation, we avoid defining new names for the
game variables.

It is crucial to our game strategy that the adversary’s choice of str(s)
i,j values is constrained – we

encapsulate this in the following notion of valid stretch values.

Definition 7.1 (Valid stretch values). For each level i ∈ [[d]], we say the stretch values for this
level are valid if there exists a branch j satisfying str(s)

i,j ≤ Õ(1).

The value of the completed game is given by two tuples (s0, . . . , sd) ∈ Nd and (r0, . . . , rd) ∈ Nd,
where si is the number of times the player took the step shift-step(i), and ri is the number of
times the player took the step rebuild-step(i)

32

Game outline. Having established the basic parameters and variable definitions, we briefly outline
the game, before giving the formal definition in Definition 7.2. At the start of each round t, the
adversary decides weight W (t) ≥ 0 (in our data structure analysis, this will correspond to the new
value of the witness norm

∥∥∥w(t)
∥∥∥

1
after update). After this weight choice, the adversary may choose

to take the step rebuild-step(i) which updates some of the game variables (this will correspond
to Rebuild calls in our data structure). Then, the adversary decides if the round is completing
or continuing (a completing round corresponds to the data structure finding a good enough cycle,
while a continuing round corresponds to the cycle not being good enough). The game sets rules for
when the adversary may decide to continue the round. Next, the player chooses a step, choosing
either to take a do-nothing-step or to take the step shift-step(i) for some level i ∈ [[d]] (this
will correspond to Shift calls in our data structure). The shift step updates some of the game
variables. After this, the round either completes, or repeats from the point where the adversary
decides whether to complete the round or not.

Definition 7.2 (Shift-and-Rebuild Game). The Shift-and-Rebuild Game is defined as follows. At
the beginning of the game, at round t = 1 and step s = 0, and for all levels i ∈ [[d]], we set
shifti ← 0, and repTi ← t. Additionally, the adversary chooses valid stretch values for each branch
j ∈ [[k− 1]] of the level i, stri,j ≥ 0. The game then proceeds across rounds t = 1, 2, . . . , T . In each
round t ∈ [T], we proceed through the following game stages in order, and, depending on conditions
outlined in Game Stage 5, we complete the round at the end of this game stage, or move back to
Game Stage 3 and continue through the game stages again from there.

1. The adversary first chooses a positive real weight W (t) satisfying log2 W (t) ∈ (−Ψ, Ψ). This
weight is hidden from the player.

2. Next, the adversary must choose a step. The adversary may pick any level i and choose the
step rebuild-step(i), or choose the step do-nothing-step.
If the adversary chooses rebuild-step(i), for all levels i′ ≥ i, we set shifti′ ← 0 and repTi′ ←
t; and the adversary chooses valid stretch values stri′,j ≥ 0 for each branch j ∈ [[k−1]]. These
stretch values are hidden from the player.
The player is informed of the step chosen by the adversary, including the level value i if the
adversary chose rebuild-step(i).
Then, the step counter is incremented: s← s + 1.

3. Next, the adversary must again choose a step. If at least one of the following two conditions
is true,

d∑
i=0

W (repTi) > 2(d + 1)W (t) (13)

or

some level i, we have stri,j > Ω̃(1) on the current branch j = shifti (14)

then the adversary must choose either the step round-completing-step or must choose the
step round-continuing-step. If neither condition holds, the adversary must choose the step
round-completing-step.
The player is informed of the step chosen by the adversary, i.e., round-completing-step or
round-continuing-step, but the player is not informed whether (13) or (14) held.
In all cases, proceed to Game Stage 4 and then Game Stage 5.

33

4. The player must choose a step. The player can either choose the step do-nothing-step or
select a level i and choose step shift-step(i). In the latter case, we update variables as
follows:

• For all levels i′ > i, we set shifti′ ← 0; and repTi′ ← t and the adversary chooses valid
stretch values stri′,j ≥ 0 for each branch j ∈ [[k − 1]].

• We set shifti ← (shifti + 1 mod k). If the updated shifti is zero, then we set
repTi ← arg minrepTi≤x≤t W (x), and the adversary chooses valid stretch values stri′,j ≥ 0
for each branch j ∈ [[k − 1]].

Then, the step counter is incremented: s← s + 1.

5. If, in the latest execution of Game Stage 3, the adversary chose round-completing-step,
then the round counter t is incremented, t← t+1, and we move to the next round. Otherwise
(i.e., the adversary chose round-continuing-step) we continue the round, moving to Game
Stage 3 and continuing from there.

When all rounds of the game are complete, the game returns a value value given by tuples
(s0, . . . , sd) ∈ Nd and (r0, . . . , rd) ∈ Nd, where si is the number of times the player took the
step shift-step(i) and ri is the number of times the adversary took the step rebuild-step(i).

Now that we have set up the Shift-and-Rebuild game, we state a strategy for the player in
Algorithm 3 below. The strategy is implemented by a simple pseudocode that uses an additional
variable passesi for each level.

Now that we have a concrete strategy for the game, we state our main technical lemma of this
section, Lemma 7.3, which proves that the strategy implemented by Algorithm 3 is efficient in a
certain sense. In particular, the lemma upper bounds the number of times the player may need
to choose the step shift-step(i) for each level i, as a function of how many times the adversary
chooses rebuild-step(i′) at levels i′ ≤ i.

Lemma 7.3. In the Shift-and-Rebuild game, if the player follows Strategy 3, then when the game
completes, for all levels i ∈ [[d]], we have si ≤

∑
i′≤i ri′(10Ψk)i+1−i′.

We prove this lemma in Section 7.2, but first, we show how to use it to prove that Algorithm 2
is efficient.

7.1 Game Playing Strategy

We now prove prove Lemma 6.5 (restated below) by showing that Algorithm 2 corresponds to
executing Strategy 3 in particular instances of the Shift-and-Rebuild game, which then lets us
apply Lemma 7.3 to shows its efficiency.

Lemma 6.5. In the execution of T calls to Update() (Algorithm 2), let ri equal the total number
of calls to Rebuild(i) and let si equal the number of calls to Shift(i). Then

si ≤
∑
i′≤i

ri′(k logO(1)(m))i+1−i′
.

Proof of Lemma 6.5. We first establish a correspondence that allows us to derive an instance of
the Rebuild-and-Shift game from the execution of Algorithm 2. We define the game to have the
same level count d and branch count k as the data structures of Update(). We let Ψ = logO(1) m.

To establish the correspondence, we define the adversary’s actions as follows:

34

Algorithm 3: Player strategy for the rebuilding game.
1 foreach level i← 0, . . . , d. do
2 Player maintains a "passes count", passesi, initialized to zero.
3 foreach round t← 1, 2, . . . , T of the game do
4 The adversary chooses weight W (t), hidden from the player. // Game Stage 1
5 The adversary may choose rebuild-step(i), and if so, the player is informed of the

level i. The shift, repT, and str update arbitrarily, following the rules of the game.
// Game Stage 2

6 if the adversary chose rebuild-step(i) then
7 foreach level i′ ← i, i + 1, . . . , d of the game do
8 passesi′ ← 0.

9 The adversary decides if the round is completing or not, by choosing
round-completing-step or round-continuing-step and the player is informed of
the choice. // Game Stage 3

10 if the adversary chose round-continuing-step. then
11 Let i be the largest index level with passesi < 2Ψ.
12 The player chooses step shift-step(i). Some shift, repT, and str variables update.
13 // Game Stage 4
14 if shifti = 0 then passesi ← passesi + 1. // Passed through all branches.
15 foreach level i′ ← i + 1, . . . , d do
16 passesi′ ← 0.

17 if the adversary chose round-continuing-step then
18 go to Line 9. // Game Stage 5

1. At the beginning of every round the game adversary chooses W (t) =
∥∥∥w(t)

∥∥∥
1
. It is immediate

that the choice of W (t) =
∥∥∥w(t)

∥∥∥
1

satisfies log2 W (t) ∈ (− logO(1) m, logO(1) m) by Item 5 in
Definition 4.4, as the updates received by Update() are Hidden Stable Flow Chasing.

2. When data structure level i initiates a rebuild in Algorithm 2, the adversary chooses the
action rebuild-step(i). Thus the number of calls to Rebuild(i) equals ri by Definition 7.2.

3. When a data structure rebuild leads to new stretches ŝtri,j for level i and branch j (which
occurs either during a Rebuild(i′) or a Shift(i′) data structure call), the adversary chooses
stri,j ← ŝtri,j . Observe that this choice of game stretch values are valid by Corollary 6.4.

4. When the data structure cycle query FindCycle() fails, the adversary decides that the round
is continuing-step and when the cycle query succeeds, the adversary decides that the round
is completing-step.

Furthermore, the game player chooses shift-step(i) at level i, exactly when in Update() we call
Shift(i). Thus the number of calls to Shift(i) equals si by Definition 7.2.

With this correspondence, we see that we can trivially identify the shifti and passesi variables
in Algorithm 2 with the same variables in the Strategy Algorithm 3 for the player.

Next, we have to confirm that the adversary in the game only chooses round-continuing-step
at points when this is allowed according to the game rules in Game Stage 3. Observe that when

35

the adversary makes this choice, we must have that the data structure failed to find a cycle in
Algorithm 2.

Notice that if we choose repTi equal to repTi, these choices fullfill the requirements of Lemma 6.3.
By the lemma, using our corresponce, if we failed to find a cycle in the data structure, at least

one of game Conditions (13) or (14) is true, which means that the adversary is allowed choose
round-continuing-step by the game rules in Definition 7.2.

7.2 Analysis of the Strategy

In this section, we prove Lemma 7.3. Throughout this section, we parameterize variables by step
count s in our proofs. The step counter is always updated immediately after updating variables,
and by str(s)

i,j , repT(s)
i etc. we may the value of the variable immediately after the step counter is

updated.
We now summarize how the game representative rounds {repT(s)

i }i change when we either
rebuild or shift some level i.

Definition 7.4 (The rule for updating {repTi}i). If the player chooses shift-step(i) at step s

and the branching index then becomes 0, i.e., shifti = 0, we set repT(s+1)
i to

repT(s+1)
i ← arg min

repT(s)
i ≤x≤t

W (x), (15)

We also set repT(s+1)
i′ ← t for i′ > i.

If the adversary chooses rebuild-step(i) in step s, then repT(s+1)
i′ ← t for i′ ≥ i.

Given the rules for updating {repTi}, the variable passesi counts exactly how many times we
update repTi using (15) since last rebuild at level i.

In the rest of the proof, we use str(s)
i to denote str(s)

i,j where j = shifti, the current stretch.

Lemma 7.5. Let s1, s2 be the steps of any two consecutive shifts at level i on the same set of
stretch values {stri,j}j. There exists some step s ∈ (s1, s2] such that

str(s)
i+1 = . . . = str(s)

d = Õ(1)

Furthermore, we can ensure that all passes(s)
i+1, . . . , passes(s)

d are exactly 2Ψ− 1.

Proof. We prove by induction i. The base cases of i = d−1 holds trivially because Gd has constant
size and str(s)

1 is always O(1). We can just take s = s2. In the strategy (Algorithm 3), we shift level
d− 1 at step s2 because passes(s2)

d = 2Ψ.
For i < d − 1, we know that in order to shift level i at step s2, we need to shift level i + 1 for

2Ψk times. By Definition 7.1 we know right after one of the last k + 1 shifts, str(s)
i+1 = Õ(1) and

passes(s)
i+1 = 2Ψ− 1. Let s′ be the next step during which level i + 1 is shifted. By induction, there’s

some step s∗ ∈ (s, s′] such that str(s∗)
i+2 = . . . = str(s∗)

d = Õ(1). Observe that str(s∗)
i+1 = str(s)

i+1 = Õ(1)
and passes(s∗)

i+1 = passes(s)
i+1 because we have not shifted level i + 1 between step s and s∗. This

concludes the proof because str(s∗)
i+1 = . . . = str(s∗)

d = Õ(1) and passes(s∗)
i+1 , . . . , passes(s∗)

d are all
2Ψ− 1.

36

Intuitively, our proof of Lemma 7.3 is based on the observation that W (repTi) becomes smaller
whenever we update repTi (see (15)). Furthermore, W (repTi) decreae by at least a half if the current
step has good stretches up to level i, i.e., str(s)

0 = . . . = str(s)
i−1 = Õ(1) and W (repTi) is larger than

any W (repTi′) at level i′ < i. Because W (repTi) is within the range (2−Ψ, 2Ψ), there will be at most
2Ψ updates to repTi. This implies the 2Ψ upper bound on passes0. Therefore, between two rebuilds
at level i (or lower-index shifts that cause a reset of passesi), there are at most 2kΨ shift-step(i)
chosen at level i.

Proof of Lemma 7.3. Our goal is to prove that at any time, passes0 cannot exceed 2Ψ. Given this
fact, we can prove the lemma as follows: At any level i, the number of times the player chooses
shift-step(i) w.r.t. a fixed set of stretch values {stri,j}j is at most 2kΨ because passesi is at most
2Ψ. Throughout the entire game, the stretch set can only be changed at most ∑i′≤i ri′ +∑

i′<i si′

times. We conclude the lemma via induction on i.
The rest of the proof aims to show that passes0 cannot exceed 2Ψ. The proof works via induction

on step s. We first define two sets for technical reasons:

Definition 7.6 (Prefix Max Set). At any step s, we define

M(s) =
{

i ∈ {0, 1, . . . , d}
∣∣∣∣ W (repT(s)

i′) < W (repT(s)
i), for all i′ < i

}
Definition 7.7 (Prefix Good Stretch Set). At any step s, we define

P(s) =
{

i ∈ {0, 1, . . . , d}
∣∣∣ str(s)

i′ = Õ(1), for all i′ < i
}

We prove the following holds at any step s.
Induction Hypothesis: At the start of any step s, we have

log2 W (repT(s)
i) < Ψ− passes(s)

i , for all i ∈M(s) ∩ P(s) (16)

To verify the induction hypothesis, we go through what happens during step s and how (16)
could be affected.
Event 1: The adversary chooses rebuild-step(i). From the game (Definition 7.2) and the
strategy (Algorithm 3), some variables are updated as follows:

repT(s+1)
i′ ← t, for all i′ ≤ i

passes(s+1)
i′ ← 0, for all i′ ≤ i

Because W (t) < 2Ψ always holds, (16) even holds for levels i′ ≥ i. Every other level, i′ < i are not
affected, as the variables at step s + 1 equal the variables at step s. So, (16) still holds after the
completion of a step rebuild-step(i).
Event 2: The adversary or player chooses do-nothing-step. In this case, every variable
stays the same and (16) holds at the start of the next step, s + 1.

Event 3: The player chooses shift-step(i). We will argue that (16) still holds at the start of
the next step, s + 1. First, let us look at the set M(s) ∩ P(s) before the shift.

Claim 7.8. M(s) ∩ P(s) ∩ {i + 1, . . . , d} = ϕ.

37

Proof. Assume for contradiction that there is some i′ > i that is inM(s) ∩P(s). From the strategy,
we know that passes(s)

i′ = 2Ψ. Combining with the induction hypothesis (16), we know

log2 W (repT(s)
i′) < Ψ− passes(s)

i′ ≤ Ψ− 2Ψ = −Ψ

which leads to a contradiction because W (t) > 2−Ψ always holds.

The following claim argues that we need to check (16) only at the level i.

Claim 7.9. At the start of step s + 1, the induction hypothesis (16) holds for all levels i′ ̸= i.

Proof. For any larger level i′ > i, passes(s+1)
i′ is 0 at the start of step s + 1. If there is some i′ > i

in M(s+1) ∩ P(s+1), log2 W (repT(s)
i′) < Ψ and (16) holds because W (t) < 2Ψ. For any smaller level

j < i, W (repT(s+1)
i′), str(s+1)

i′ , and passes(s+1)
i′ remain unchanged and (16) holds trivially.

Next, we do a case analysis on whether i ∈M(s) and/or i ∈ P(s).

Case A: i ̸∈ M(s). Because level i is not rebuilt, from Definition 7.4 we know W (repT(s+1)
i) is at

most W (repT(s)
i). And a shift at level i does not affect repTj for any level i′ < i. So i cannot be in

M(s+1) and (16) holds for level i at step s + 1.

Case B: i ∈ M(s) but i ̸∈ P(s). After a shift at level i, the current stretch at level i′ < i remains
unchanged, i.e., str(s+1)

i′ = str(s)
i′ for all i′ < i. Because i is not in P(s), str(s+1)

i′ = str(s)
i′ > Õ(1) at

some level i′ < i. Thus, i is still not in P(s+1) and (16) holds for level i at step s + 1.

Case C: i ∈M(s) ∩P(s). If repT(s+1)
i = repT(s)

i , i ∈M(s+1) ∩P(s+1) and (16) still holds for level i
at step s + 1.

Otherwise, repT(s+1)
i is determined using (15) and this increments passes(s+1)

i ← passes(s)
i + 1.

We verify (16) by showing that

W (repT(s+1)
i) ≤ 1

2W (repT(s)
i)

By Lemma 7.5, there must be a step x after the previous shift at level i such that str(x)
i+1 =

. . . str(x)
d = Õ(1) and passes(x)

i′ ≥ 2Ψ− 1, for all i′ > i.
Because after the previous shift at level i, every level i′ ≤ i is not affected, i.e. str(x)

i′ =
str(s)

i′ , repT(x)
i′ = repT(s)

i′ , for all i′ ≤ i. Combining with the fact that i ∈ P(s), we know that at step
x, all stretches are small, i.e.

str(x)
0 = . . . str(x)

d = Õ(1)

That is, P(x) = {0, 1, . . . , d}.
However, at step x, the data structure cannot find a good cycle, and (13) fails to hold. Let tx

be the corresponding round during step x. Because (13) fails, we know that

d∑
i′=0

W (repT(x)
i′) > 2(d + 1)W (tx) (17)

38

Now, we want to prove that W (repT(x)
i) is the largest among all levels by contradiction. Let i∗

be the level to shift at step x. Assume for contradiction that i∗ ∈ M(x) and i∗ ̸= i. Claim 7.8 and
the fact that P(x) = {0, 1, . . . , d} says that i∗ = maxM(x) and we have

W (repT(x)
i∗) = max

i′∈{0,1,...,d}
W (repT(x)

i′) > 2W (tx)

where the last inequality comes from (17).
Because passes(x)

i∗ = 2Ψ− 1 and passes(s)
i∗ = 2Ψ, we must update repTi∗ using (15) at some step

y between x and s. We know from the update rule that

W (repT(y+1)
i∗) ≤W (tx) <

1
2W (repT(x)

i∗)

and passes(y+1)
i∗ = 2Ψ.

According to the strategy, all levels i′ < i∗ are not affected between step x and y, i∗ is still in
M(y+1) ∩ P(y+1). Using the inductive hypothesis (16) on step y + 1 ≤ s and level i∗, we have that

log2 W (repT(y+1)
i∗) < Ψ− passes(y+1)

i∗ ≤ Ψ− 2Ψ = −Ψ,

which leads to a contradiction.
Therefore, we know i = maxM(x) and W (repT(x)

i) > 2W (tx). At step s, the player choosing
shift-step(i) updates repT(s+1)

i so that

W (repT(s+1)
i) ≤W (tx) <

1
2W (repT(x)

i) = 1
2W (repT(s)

i)

This concludes the case as well as the proof.

8 Decremental Spanner and Embedding
The main result of this section is a new deterministic static algorithm to find a sparsifier J̃ of a
graph J . As mentioned in the overview (Section 3), we also need to find a low-congestion embedding
of J into J̃ . In fact, we need the following additional stronger property of J̃ : given access to an
embedding ΠJ→H′ from J to H ′, the graph J̃ also must satisfy that the composition ΠJ→H′ ◦Π

J→J̃
has almost the same bounds on vertex congestion and length as ΠJ→H′ . It is worth pointing out
that the composed embedding ΠJ→H′ ◦ Π

J→J̃
is well-defined because E(J̃) ⊆ E(J), as J̃ will be

a spanner of J . [CKLPPS22] showed that this holds if J̃ was a random sample of J by applying
concentration bounds. This section gives a deterministic method for achieving this.

Theorem 8.1. Given unweighted, undirected graphs H ′ and J with V (J) ⊆ V (H ′) and an embed-
ding ΠJ→H′ from J into H ′. Then, there is a deterministic algorithm Sparsify(H ′, J, ΠJ→H′) that
returns a sparsifier J̃ ⊆ J with an embedding Π

J→J̃
from J to J̃ such that

1. vcong(ΠJ→H′ ◦Π
J→J̃

) ≤ γc · length(ΠJ→H′) · (vcong(ΠJ→H′) + ∆max(J)), and

2. length(ΠJ→H′ ◦Π
J→J̃

) ≤ γℓ · length(ΠJ→H′), and

3. |E(J̃)| = Õ(|V (J)|γℓ).

The algorithm runs in time Õ(|E(J)|γ2
ℓ length(ΠJ→H′)).

39

Given this result, one can obtain a deterministic dynamic algorithm to maintain a spanner of a
graph G undergoing edge deletions and vertex splits using the reduction presented in [CKLPPS22,
Sec. 5.1, arXiv]. We point out that in [CKLPPS22], an analogous result to Theorem 8.1 was
given with slightly better vertex congestion, length and runtime guarantees. However, the result in
[CKLPPS22] was randomized, while the goal of this section is to provide a determinstic algorithm.
Applying the reduction to Theorem 8.1, one obtains the following result.

Theorem 8.2. Given an m-edge n-vertex unweighted, undirected, dynamic graph G undergoing
update batches U (1), U (2), . . . consisting only of edge deletions and Õ(n) vertex splits. There is a
deterministic algorithm with parameter 1 ≤ L ≤ o

(
log1/6 m
log log m

)
, that maintains a spanner H and an

embedding ΠG→H such that for some γℓ, γc = exp(O(log2/3 m · log log m)), we have

1. Sparsity and Low Recourse: initially H(0) has sparsity Õ(nγℓ). At any stage t ≥ 1, the algo-
rithm outputs a batch of updates U

(t−1)
H that when applied to H(t−1) produce H(t) such that

H(t) ⊆ G(t), H(t) consists of at most Õ(nγℓ) edges and

∑
t′≤t

Enc(U (t′)
H) = Õ

nγℓ +
∑
t′≤t

|U (t′)| · n1/Lγℓ

 , and

∑
t′≤t

|U (t′)
H | = Õ

∑
t′≤t

|U (t′)| · n1/Lγℓ

 , and

2. Low Congestion, Short Paths Embedding: length(ΠG→H) ≤ (γℓ)O(L) and vcong(ΠG→H) ≤
(γℓ)O(L2)(γc)O(L)∆max(G), and

3. Low Recourse Re-Embedding: the algorithm further reports after each update batch U (t) at
stage t is processed, a (small) set D(t) ⊆ E(H(t)) of edges, such that for all other edges
e ∈ E(H(t))\D(t), there exists no edge e′ ∈ E(G(t)) whose embedding path Π(t)

G→H(e′) contains
e at the current stage but did not before the stage. The algorithm ensures that at any stage t,
we have

∑
t′≤t |D(t′)| = Õ

(∑
t′≤t |U (t)| · n1/L(γcγℓ)O(L2)

)
, i.e. that the sets D(t) are roughly

upper bounded by the size of U (t) on average.

The algorithm takes initialization time Õ(mγℓ) and processing the t-th update batch U (t) takes
amortized update time Õ(Enc(U (t)) · n1/L(γcγℓ)O(L2)∆max(G)).

Taking L = log1/9 m in Theorem 8.2 gives a parameter γs = exp(O(log8/9 m log log m)) such
that the lengths of the embeddings, amortized recourse of the spanner, and amortized size of
D are all O(γs). The vertex congestion and amortized runtime are bounded by O(γs∆max(G)).
Ultimately, ∆max(G) will be chosen to be around exp(log17/18 log log m)≫ γs. We emphasize that
the guarantees 1 and 3 of Theorem 8.2 are with respect to the number of updates in each batch U (t)

and not with respect to the (possibly much larger) encoding size of U (t). This allows us to bound
the recourse of our algorithm by a quantity that is mo(1), independent of the maximum degree.

The rest of this section is concerned with proving Theorem 8.1.
Additional Tools. At a high level, the proof of Theorem 8.1 follows by performing an expander
decomposition, and producing a sparsifier on each expander by applying a data structure for finding
short paths in decremental expanders. This differs from the previous approach of [CKLPPS22] that
first produced a sparsifier by uniformly sampling each edge of the expander, and then applying the

40

decremental shortest path data structure to find an embedding. Here, we also use the data structure
and embedding to deterministically find a sparsifier. To formalize this, we start by surveying some
tools on expander graphs. Recall the definiton of expanders.

Definition 8.3 (Expander). Let G be an unweighted, undirected graph and ϕ ∈ (0, 1], then we
say that G is a ϕ-expander if for all ∅ ≠ S ⊊ V , |EG(S, V \ S)| ≥ ϕ ·min{volG(S), volG(V \ S)}.

Sparse expander graphs can be constructed efficiently by a deterministic algorithm.

Theorem 8.4 (see [CGLNPS20]). Given an integer n > 1, and a weight vector w ∈ R≥1, there is
a deterministic algorithm ConstructExpander(n, w), that constructs an (unweighted) ϕConst-
expander W for ϕConst = Θ(1) on n vertices with w ≤ degW ≤ 18·w. The runtime is O(n+∥w∥1).

We can further decompose any graph into a collection of expanders. The proof of this statement
follows almost immediately from [SW19; CGLNPS20] and is therefore deferred to Appendix B.

Theorem 8.5 (see Corollary 6.2 in arXiv v2 in [CGLNPS20]). Given an unweighted, undirected
graph G, there is an algorithm Decompose(G, r) that computes an edge-disjoint partition of G
into graphs G0, G1, . . . , Gℓ for ℓ = O(log n) such that for each 0 ≤ i ≤ ℓ, |E(Gi)| ≤ 2in and
for each 0 < i ≤ ℓ and nontrivial connected component X of Gi, Gi[X] is a ϕ-expander for
ϕ = Ω̃(1/ exp((log m)2/3)), and each x ∈ X has degGi

(x) ≥ ϕ2i. The algorithm runs in time
Õ(m · exp

(
O(log(m)2/3 log log(m))

)
).

Further, we use the following result from [CS21] (see Theorem 3.9 in arXiv v1 in [CS21]).
Given a ϕ-expander undergoing edge deletions the data structure below implicitly maintains a
vertex subset that stays an expander using standard expander pruning techniques (see for example
[NSW17; SW19]). Further, on this vertex subset, it can output a path of length mo(1) between any
pair of queried vertices. We note that we cannot use [CS21] directly and instead replace its internal
randomized expander computation by using Corollary 6.2 in arXiv v2 in [CGLNPS20] to compute
the expanders deterministically.

Theorem 8.6 (see [CGLNPS20; CS21]). There is a deterministic data structure that when given
an unweighted, undirected graph G that is ϕ-expander for ϕ = Ω̃(1/ exp((log m)2/3)). explicitly
maintains a monotonically increasing vertex subset V̂ ⊆ V (G) and handles the following operations:

• Delete(e): Deletes edge e from E(G) and then explicitly outputs a set of vertices that were
added to V̂ due to the edge deletion.

• GetPath(u, v): for any u, v ∈ V (G)\ V̂ returns a simple path consisting of at most γExpP ath

edges between u and v in the graph G[V (G)\ V̂]. Each path query can be implemented in time
γExpP ath, where γExpP ath = exp

(
O(log(m)2/3 log log(m))

)
for some γExpP ath ≥ 1/ϕ. The

operation does not change the set V̂ .

The data structure ensures that after t deletions volG(0)(V̂) ≤ γdelt/ϕ for some constant γdel = O(1).
The total time to initialize the data structure and to process all deletions is O(|E(G(0))|γExpP ath).

The Algorithm. We can now use these tools to give Algorithm 4 that implements the proce-
dure Sparsify(H ′, J, ΠJ→H′). Instead of attempting to directly find a graph J̃ , the procedure in
Algorithm 4 divides the task into three subtasks:

41

Algorithm 4: Sparsify(H ′, J, ΠJ→H′)
1 τ1

def= 2γExpP athlength(ΠJ→H′)γdel (vcong(ΠJ→H′) + ∆max(J)) /ϕ; τ2
def= γExpP athγdel/ϕ.

/* Task 1: Decompose J into expanders and construct witness graph W */
2 J0, J1, . . . , Jℓ ← Decompose(J, r).
3 W ← (V, ∅).
4 foreach i ∈ [0, ℓ] and connected component X in Ji do
5 For i > 0, invoke ConstructExpander(|X|, degJi[X]/(ϕ2i)) and identify the vertices of the

expander WJi[X] with the vertices of X (arbitrarily); for i = 0, set WJi[X] to Ji[X].
6 Add the edges of WJi[X] to W with weight ϕ2i.

/* Task 2: Embed Witness Graph W into J with low vertex congestion and small
support. */

7 η1 ← 0; foreach e ∈ E(W) do ΠW →J(e)←
{

e e ∈ E(J)
∅ otherwise

8 do
9 η1 ← η1 + 1.

10 foreach i ∈ (0, ℓ] and connected component X in Ji do
11 JAP SP

Ji[X] ← a copy of Ji[X].
12 Initialize a data structure from Theorem 8.6 denoted by DSJi[X] on graph JAP SP

Ji[X] with
parameter ϕ

def= ϕ maintaining set V̂Ji[X].
13 while ∃e = (u, v) ∈ E(W) such that ΠW →J(e) = ∅ and for some i ∈ [0, ℓ] and connected

component X in Ji, we have u, v ∈ X \ V̂Ji[X] do
14 ΠW →J(e)← DSJi[X].GetPath(u, v).
15 while ∃x ∈ V (H ′), vcong(ΠJ→H′ ◦ΠW →J , x) ≥ η1 · τ1 do
16 foreach edge e′ in JAP SP

Ji[X] with x ∈ ΠJ→H′(e′) do
17 Remove edge e′ from JAP SP

Ji[X] via DSJi[X].Delete(e′).

18 while ∃e ∈ E(W) such that ΠW →J(e) = ∅
/* Task 3: Embed J into witness graph W with low edge congestion. */

19 η2 ← 0; foreach e ∈ E(J) do ΠJ→W (e)←
{

e e ∈ E(W)
∅ otherwise

.

20 do
21 η2 ← η2 + 1.
22 foreach i ∈ (0, ℓ] and connected component X in Ji do
23 W AP SP

Ji[X] ← an unweighted copy of WWJi[X] .
24 Initialize a data structure from Theorem 8.6 denoted by DSWJi[X] on graph W AP SP

Ji[X] with
parameter ϕConst (see Theorem 8.4) maintaining set V̂WJi[X] .

25 while ∃e = (u, v) ∈ E(J) such that ΠJ→W (e) = ∅ and for some i ∈ [0, ℓ] and connected
component X in Ji, we have u, v ∈ X \ V̂WJi[X] do

26 ΠJ→W (e)← DSWJi[X] .GetPath(u, v).
27 while ∃e′ ∈ E(WJi[X]) for some i and X with econg(ΠJ→W , e′) ≥ η2 · τ2 do
28 Remove edge e′ from W AP SP

Ji[X] via DSWJi[X] .Delete(e′).

29 while ∃e ∈ E(J) such that ΠJ→W (e) = ∅
30 return (J̃ ← ΠW →J(W), Π

J→J̃
← ΠW →J ◦ΠJ→W)

42

• (Task 1) The algorithm performs an expander decomposition on J , and applies Theorem 8.4
to deterministically build a graph on each expander, which we refer to as a witness (as in
previous works). Thus the union of these graphs is a witness graph W on the vertex set of
J . W will be a sparse graph with Õ(n) edges.

• (Task 2) Then, starting in Line 7, the algorithm finds the graph J̃ by finding an embedding
ΠW →J of W into J . We then later take J̃ to be the image of ΠW →J which is again sparse
since W is sparse and the embedding maps to paths of short length.

• (Task 3) Finally, starting in Line 19 the algorithm finds an embedding ΠJ→W from J into
W . This allows us to take the embedding from J to J̃ as ΠW →J ◦ ΠJ→W which maps each
edge in J to a path in the image of ΠW →J , i.e. J̃ .

Crucially, we require the embeddings ΠW →J and ΠJ→W to be of low congestion. To achieve this
goal, we embed using only short paths, found efficiently via shortest-path data structures.
Analysis. We start by proving a simple invariant that states that the congestion of ΠJ→H′ ◦ΠW →J

increases slowly throughout the first do-while loop.

Invariant 1. vcong(ΠJ→H′ ◦ ΠW →J) ≤ (η1 + 1
2) · τ1 holds before and after each iteration of the

do-while loop starting in Line 8.

Proof. Initially, i.e., before the first do-while loop iteration, each edge mapped by ΠW →J is either
already in J and mapped to itself or is set to an empty path. Thus, each edge in J is used at
most once and therefore initially econg(ΠW →J) ≤ 1. Using Fact 1, we thus have that initially
vcong(ΠJ→H′ ◦ΠW →J) ≤ vcong(ΠJ→H′) ≤ 1

2τ1.
Let us take the inductive step for η1-th iteration. Since before the η1-th iteration, the embed-

dings and η1 are in the state of either the base case or in the same state as after the (η1−1)-th iter-
ation, we have that the claim holds before the iteration. Further, we observe that vcong(ΠJ→H′ ◦
ΠW →J , x) increases during the iteration only in Line 26 when a new path is added to the embed-
ding ΠW →J . Since thereafter, vertices with congestion at least η1 · τ1 are removed from all data
structures, thus can not appear on any paths in this iteration of the do-while loop, we have that the
congestion can be exceeded by at most as much as a single path can contribute to the congestion.

Let us finally bound the maximal contribution of embedding a single edge e ∈ E(W) to the
maximum vertex congestion. Let us first observe that the graphs Ji with 2i > ∆max(J)/ϕ are
empty since by Theorem 8.5 every vertex x in a non-trivial component X, we have degJi(x) ≥ ϕ2i

with ∆max(Ji) ≤ ∆max(Ji) since Ji ⊆ J . Thus, the weight of any edge e ∈ E(W) as defined in
Line 6 is at most ∆max(J)/ϕ. Finally, we use that when we embed e in Line 14, we do so by using
a simple path from the data structure from Theorem 8.6. Thus, on each vertex, we add at most
∆max(J)/ϕ ≤ τ1/2 congestion.

It thus only remains to upper bound the number of iterations that the first do-while loop takes
to bound the total vertex congestion of ΠJ→H′ ◦ΠW →J .

Claim 8.7. At the end of Algorithm 4, we have η1 = O(log m).

Proof. Clearly, η1 is exactly the number of iterations of the do-while loop starting in Line 8. Let
us analyze one such iteration.

Let us denote by Eembed the set of edges embed during the current iteration, and let us denote
by EnotEmbed the set of edges that remain not embedded after the iteration (both are subsets of
E(W)). Let us first observe that by the while-loop condition in Line 15, each edge e ∈ EnotEmbed

43

that lives in graph WJi[X] for some i and X has at least one of its endpoints in the set V̂Ji[X].
Note further, that we have by construction that for each i and connected component X in Ji, and
ϕ(r)2idegWJi[X]

≤ 18 · degJi[X] by Theorem 8.4. Recall that each edge e in WJi[X] receives weight
ϕ2i in W . We can therefore deduce that

∑
i,X

volJi[X](V̂Ji[X]) ≥
volW (EnotEmbed)

18 . (18)

On the other hand, whenever we embed an edge e ∈ E(W) with weight 2i for some i in the
current do-while loop, the amount of new vertex congestion added to ∑x∈V (H′) vcong(ΠJ→H′ ◦
ΠW →J , x) is at most 2i · γExpP athlength(ΠJ→H′) since the data structure from Theorem 8.6 re-
turns paths of length at most γExpP ath and ΠJ→H′ maps each edge to a path of length at most
length(ΠJ→H′). But, every time a vertex x ∈ V (H ′) is deleted in the while-loop starting in Line 15
(or more precisely, the edges in J that embed into x are removed from all shortest path data struc-
tures), we must have by Invariant 1 that vcong(ΠJ→H′ ◦ ΠW →J , x) has increased by at least 1

2τ1
since the last do-while loop iteration. The number of all edges removed from J due to the deletion
of a vertex x is meanwhile bound by vcong(ΠJ→H′ , x) ≤ vcong(ΠJ→H′). Let Edel be the edges
deleted from J in the while-loop in Line 15 during the current do-while loop iteration. Then, we
can conclude that volW (Eembed)2γExpP athlength(ΠJ→H′)vcong(ΠJ→H′)

τ1
≥ volJ(Edel).

Finally, we can conclude by the guarantees of Theorem 8.6 that

volW (Eembed)2γExpP athlength(ΠJ→H′)γdelvcong(ΠJ→H′)
ϕτ1

≥
∑
i,X

volJi[X](V̂Ji[X]).

Replacing τ1 by its value, we get volW (Eembed) ≥∑i,X volJi[X](V̂Ji[X]) and combined with (18), we
derive volW (Eembed) ≥ 18 ·volW (EnotEmbed). This implies that in a single round, we embed at least
a constant fraction of the volume of edges not embedded yet. Since the total volume of edges in W
is a small polynomial in m, we have that after O(log m) rounds, the algorithm has embedded all
edges, as desired.

The following corollary is immediate from our analysis.

Corollary 8.8. At the end of the algorithm, we have vcong(ΠJ→H′ ◦ΠW →J) = O(τ1 · log(m)).

We use the same proof strategy to bound the congestion of ΠW →J .

Invariant 2. econg(ΠJ→W) ≤ (η2 + 1
2)τ2 holds before and after each iteration of the do-while loop

starting in Line 20.

Proof. Again, before the first do-while loop iteration, the invariant is trivially true as the embedding
maps edges either to themselves or to empty paths. Consider now the η2-th iteration of the do-
while loop. We have that the invariant holds before the do-while loop since it holds before the first
iteration and clearly also after the (η2 − 1)-th iteration for η2 > 1 by the induction hypothesis.

In a do-while loop iteration, η2 is increased by one. After this increase, we have econg(ΠJ→W) ≤
η2τ2. While η2 remains fixed throughout the rest of the iteration, econg(ΠJ→W) might increase.
However, whenever we increase the congestion by a new embedding path, we check the edge con-
gestion of every edge in E(W) and remove it if it exceeds η2τ2 (see the while-loop starting in
Line 27).

Thus, the congestion can exceed η2τ2 by at most the amount that a single embedding path
can increase the congestion. But since each edge in J has weight 1 and the paths returned by

44

the data structure from Theorem 8.6 returns simple paths, the maximum increase can be at most
1 ≤ 1

2τ2.

Claim 8.9. At the end of Algorithm 4, we have η2 = O(log m).

Proof. We have that η2 being the number of iterations of the do-while loop starting in Line 20. Let
us again analyze one such iteration.

Let us denote by Eembed the set of edges embed during the current iteration, and let us denote
by EnotEmbed the set of edges that remain not embedded after the iteration (both are subsets of
E(J) \ E(J0)). We first observe that for each edge e ∈ EnotEmbed that lives in Ji[X] for some
i and X, we have that at least one of its endpoints is in V̂WJi[X] (see Line 25). Note that by
construction of WJi[X] using the procedure in Theorem 8.4, we have that degJi[X] ≤ ϕ2idegWJi[X]

.
Recall that each edge in WJi[X] receives weight ϕ2i in W . Therefore, we have volJ(EnotEmbed) ≤∑

i,X volW (E(V̂WJi[X])).
On the other hand, whenever we embed an edge e ∈ E(J), the amount of edge congestion added

to ∑e∈E(W) econg(ΠJ→W , e) is at most γExpP ath since we add paths from the data structure from
Theorem 8.6. But we remove an edge e′ ∈ WJi[X] only after its congestion econg(ΠJ 7→W , e′) has
increased by at least 1

2τ2 since the start of the do-while loop iteration by the while-loop condition
in Line 27 and Invariant 2. Thus, we have by the guarantees of Theorem 8.6 and the fact that edges
in each WJi[X] receive a uniform weight that ∑i,X volW (E(V̂WJi[X])) ≤

γdelγExpP athvolJ (Eembed)
ϕτ2

.
Combined with our previous insight and plugging in the value of τ2, this holds volJ(EnotEmbed) ≤

volJ(Eembed). Thus, again, we have that in each round the volume of edges embedded is at least a
constant fraction of the remaining edges to be embedded into W . The do-while loop thus terminates
after O(log m) iterations.

Corollary 8.10. At the end of the algorithm, we have econg(ΠJ→W) = O(τ2 · log(m)).

With the congestion of both embeddings bound tightly, we can prove Theorem 8.1.

Proof of Theorem 8.1. Let us first argue about correctness. To establish the bound on the vertex
congestion, it remains to use Fact 1, Corollary 8.8 and Corollary 8.10 and the values of τ1, τ2 to
conclude that vcong(ΠJ→H′ ◦Π

J→J̃
) ≤ γc · length(ΠJ→H′) · (vcong(ΠJ→H′) + ∆max(J)) for some

γc = O

(
γ2

ExpP athγ2
del log2(m)

ϕ2

)
= exp

(
O(log(m)2/3 log log(m))

)
.

For to bound length(ΠJ→H′ ◦ Π
J→J̃

), we recall that Π
J→J̃

= ΠW →J ◦ ΠJ→W and both em-
beddings ΠW →J and ΠJ→W find the embedding paths using the data structure from Theorem 8.6
which produces paths of length at most γExpP ath. Thus length(ΠJ→H′ ◦Π

J→J̃
) ≤ length(ΠJ→H′) ·

length(ΠW →J) · length(ΠJ→W) ≤ γℓ · length(ΠJ→H′) for γℓ = γ2
ExpP ath.

For the runtime analysis, we first see that we can bound the total runtime of all shortest
paths data structures by Õ(|E(J)| · γℓ). Further, we have to track the vertex congestion of all
vertices in H ′ when constructing the embedding ΠW →J . For the sparsity analysis, we observe that
|E(W)| = Õ(|V (J)|/ϕ) by the construction of W in the foreach-loop starting in Line 4, and each
edge is embedded via a path of length at most γℓ and each such edge is then mapped to a path in
H ′ of length at most length(ΠJ→H′), it is not hard to verify that we can track the vertex congestion
in time Õ(|V (J)|γℓlength(ΠJ→H′)/ϕ) = Õ(|E(J)|γ2

ℓ length(ΠJ→H′)). The rest of the algorithm can
straightforwardly be implemented in time asymptotically bounded by either of the above-analyzed
components.

45

Finally, for the sparsity analysis, we use again that |E(W)| = Õ(|V (J)|/ϕ) and the fact that J̃
is just the image of ΠW →J which ensures that |E(J̃)| = O(|V (J)|length(ΠW →J)/ϕ) and we finally
use that length(ΠW →J) ≤ γExpP ath and γExpP ath ≥ 1/ϕ, holding |E(J̃)| = O(|V (J)|γℓ).

9 Deterministic Low-Stretch Spanning Tree
In this section, we prove Theorem 1.2 regarding deterministic dynamic low-stretch spanning tree
algorithms. Here, we give a proof of the result in Theorem 1.2 with amortized update time, how-
ever, since the algorithm uses a standard batching technique, it can be de-amortized via standard
techniques (see for example [GW20]) at the cost of only a constant factor increase in runtime.

Similarly to our min-ratio cycle data structure, the data structure maintains a hierarchy of
partial trees and uses a deterministic spanner algorithm. It is worth noting that the algorithm does
not need anything resembling the rebuilding game or shift-and-rebuild game Section 7.

Let us formalize some notation for the data structure. We will let E denote the edge set of the
graph G. E and G may change over time. For simplicity, we assume that the number of edges in
the graph is always in the range [m, 2m] for some parameter m. Otherwise, when the number of
edges halves or doubles, we restart the data structure. This only increases the amortized runtime
by a constant. At time t, let ℓ(t) ∈ RE be the lengths. We want to maintain a tree T ⊆ E(G) such
that ∑e∈E strT,ℓ(e) ≤ m1+o(1).

9.1 Data Structure Description

The data structure is a hierarchy of partial trees and spanners with low-congestion routings. Let
k = m1/d. Let G0 = G be the input graph. For i = 0, 1, . . . , d − 1 we will inductively define Gi+1
given Gi. Gi will have around m/ki edges.
Partial tree. Let Fi ⊆ Gi be a partial tree maintained by Lemma 5.4 for weights v = 1, and
parameter k −m1/d as defined. Let s̃tre be the stretch overestimates. Define the contracted graph
Hi = Gi/Fi, with edge lengths ℓHi

e := s̃treℓGi
e . Rebuild level i, i + 1, . . . , d − 1 whenever the total

number of updates passed to Gi exceeds m/ki+1.
Spanner with embeddings. We first partition the graph Hi into Õ(1) subgraphs. For j′ ≤ Õ(1)
and j ≤ log2 k, define Hi,j,j′ to be the subgraph of Hi consisting of edges e satisfying s̃tre ∈ [2j , 2j+1]
and ℓHi

e ∈ [2j′
, 2j′+1]. Let Gi+1,j,j′ be a decremental spanner with embedding of Hi,j,j′ , maintained

using Theorem 8.2. Critically, we know that |E(Hi,j,j′)| ≤ Õ(|E(Gi)|/2j) so we will ensure that all
edge congestions in the embedding ΠHi,j,j′ →Gi+1,j,j′ are bounded by mo(1)k/2j . Finally, we define
Gi+1 = ⋃

j,j′≤Õ(1) Gi+1,j,j′ . The edge lengths in Gi+1 are defined to be the same as those in Hi.
The low stretch tree. Define Ti = Fi ∪ Fi+1 ∪ · · · ∪ Fd. Note that Ti is a spanning tree of Gi.
The low-stretch tree maintained by our data structure will be T0.

9.2 Algorithm Analysis

We now prove Theorem 1.2 by analyzing the amortized runtime and stretch.

Proof of Theorem 1.2. We use the algorithm described in Section 9.1. It is clearly deterministic.
To bound the runtime, recall that the recourse of Fi from Lemma 5.4 is Õ(1), and the recourse
from the spanner in Theorem 8.2 is at most some γr ≤ exp(O(log8/9 log log m)), because there are
Õ(1) buckets (j, j′). Thus the amortized runtime of the data structure is bounded by k · Õ(γr)d =
m1/dÕ(γr)d ≤ exp(O(log17/18 log log m)) for the choice d = log1/18 m.

46

We will bound ∑e∈E(Gi) strTi,ℓ
Gi (e) by induction. We calculate

∑
e∈E(Gi)

strTi,ℓ
Gi

e (e)
(i)
≤ 4

∑
e∈E(Gi)

s̃trestrTi+1,ℓHi (e)

(ii)
≤ 4

∑
j,j′

∑
e∈E(Hi,j,j′)

s̃tre

∑
f∈ΠHi,j,j′ →Gi+1,j,j′ (e)

strTi+1,ℓGi+1 (f)ℓHi(f)
ℓHi(e)

(iii)
≤ 16

∑
j,j′

∑
e∈E(Hi,j,j′)

∑
f∈ΠHi,j,j′ →Gi+1,j,j′ (e)

s̃trf strTi+1,ℓGi+1 (f)

= 16
∑
j,j′

∑
f∈Gi+1,j,j′

econg(ΠHi,j,j′ →Gi+1,j,j′ , f)s̃trf strTi+1,ℓGi+1 (f)

(iv)
≤ O(kγc)

∑
f∈E(Gi+1)

strTi+1,ℓGi+1 (f),

for some γc ≤ exp(O(log8/9 m log log m)). Step (i) follows from the forest portal routing, (ii) follows
from the embedding, and (iii) follows from the fact that s̃tre ≤ 2s̃trf and ℓHi(f) ≤ 2ℓHi(e) for
e, f ∈ Hi,j,j′ . To see (iv), recall that ∑e∈E(Gi) s̃tre ≤ Õ(|E(Gi)|), so |E(Hi,j,j′)| ≤ Õ(|E(Gi)|/2j).
Hence Theorem 8.2 ensures that the

econg(ΠHi,j,j′ →Gi,j,j′ , f) ≤ O(γc) ·
|E(Hi,j,j′)|
|V (Hi,j,j′)| ≤ O(γck/2j) ≤ O(γck/s̃trf).

Hence we conclude that ∑e∈E(Gi) strTi,ℓ
Gi (e) ≤ O(γc)d−i ·m/ki for all i = 0, 1, . . . , d− 1.

Acknowledgments
We thank the anonymous reviewers for their helpful comments.

References
[AKLPST22] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Sara-

nurak, and Ohad Trabelsi. “Breaking the Cubic Barrier for All-Pairs Max-Flow: Gomory-
Hu Tree in Nearly Quadratic Time”. In: FOCS. IEEE, 2022, pp. 884–895 (cit. on p. 5).

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. “Subcubic algorithms for Gomory-
Hu tree in unweighted graphs”. In: STOC. ACM, 2021, pp. 1725–1737 (cit. on p. 5).

[AN19] Ittai Abraham and Ofer Neiman. “Using petal-decompositions to build a low stretch
spanning tree”. In: SIAM Journal on Computing 48.2 (2019), pp. 227–248 (cit. on p. 7).

[ACOT23] Konstantinos Ameranis, Antares Chen, Lorenzo Orecchia, and Erasmo Tani. “Efficient
Flow-based Approximation Algorithms for Submodular Hypergraph Partitioning via a
Generalized Cut-Matching Game”. In: CoRR abs/2301.08920 (2023) (cit. on p. 5).

[AW22] Simon Apers and Ronald de Wolf. “Quantum Speedup for Graph Sparsification, Cut
Approximation, and Laplacian Solving”. In: SIAM J. Comput. 51.6 (2022), pp. 1703–
1742 (cit. on p. 5).

[AK07] Sanjeev Arora and Satyen Kale. “A combinatorial, primal-dual approach to semidefinite
programs”. In: STOC. ACM, 2007, pp. 227–236 (cit. on p. 5).

47

[AMV20] Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu. “Circulation control for faster
minimum cost flow in unit-capacity graphs”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 93–104 (cit. on p. 4).

[AMV22] Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu. “Faster sparse minimum cost
flow by electrical flow localization”. In: 2021 IEEE 62nd Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE. 2022, pp. 528–539 (cit. on pp. 1, 5).

[BGS22] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. “Deter-
ministic decremental sssp and approximate min-cost flow in almost-linear time”. In: 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2022, pp. 1000–1008 (cit. on p. 3).

[BK09] Glencora Borradaile and Philip Klein. “An O (n log n) algorithm for maximum st-flow in
a directed planar graph”. In: Journal of the ACM (JACM) 56.2 (2009), pp. 1–30 (cit. on
p. 1).

[BKMNW17] Glencora Borradaile, Philip N Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. “Multiple-source multiple-sink maximum flow in directed planar graphs in near-
linear time”. In: SIAM Journal on Computing 46.4 (2017), pp. 1280–1303 (cit. on p. 1).

[BK04] Yuri Boykov and Vladimir Kolmogorov. “An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Vision”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 26.9 (2004). Available at: https://arxiv.org/abs/1202.3367, pp. 1124–
1137 (cit. on p. 4).

[BGJLLPS22] Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P Liu, Richard Peng,
and Aaron Sidford. “Faster maxflow via improved dynamic spectral vertex sparsifiers”.
In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing.
2022, pp. 543–556 (cit. on pp. 1, 2, 5).

[Bra20] Jan van den Brand. “A Deterministic Linear Program Solver in Current Matrix Multi-
plication Time”. In: SODA. SIAM, 2020, pp. 259–278 (cit. on p. 2).

[BLLSSSW21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. “Minimum cost flows, MDPs, and ℓ1-regression in nearly linear
time for dense instances”. In: STOC. ACM, 2021, pp. 859–869 (cit. on pp. 1, 2, 4).

[BLNPSSSW20] Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. “Bipartite matching in nearly-
linear time on moderately dense graphs”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 919–930 (cit. on p. 1).

[CZ20] Shiri Chechik and Tianyi Zhang. “Dynamic low-stretch spanning trees in subpolynomial
time”. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM. 2020, pp. 463–475 (cit. on p. 3).

[CGHPS20] Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Sara-
nurak. “Fast dynamic cuts, distances and effective resistances via vertex sparsifiers”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1135–1146 (cit. on p. 3).

[CKLPPS22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. “Maximum flow and minimum-cost flow in almost-linear time”.
In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).
https://arxiv.org/abs/2203.00671. IEEE. 2022, pp. 612–623 (cit. on pp. 1–4, 7–13,
15–19, 22, 25, 39, 40, 53–55).

[CPW22] Li Chen, Richard Peng, and Di Wang. “2-norm Flow Diffusion in Near-Linear Time”.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).
https://arxiv.org/abs/2105.14629. IEEE. 2022, pp. 540–549 (cit. on p. 3).

48

https://arxiv.org/abs/1202.3367
https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2105.14629

[CT21] Lijie Chen and Roei Tell. “Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost”. In: STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. Ed. by
Samir Khuller and Virginia Vassilevska Williams. ACM, 2021, pp. 283–291 (cit. on p. 1).

[CKMST11] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel A. Spielman, and
Shang-Hua Teng. “Electrical flows, Laplacian systems, and faster approximation of maxi-
mum flow in undirected graphs”. In: Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, June 6-8 2011. Available at https:
//arxiv.org/abs/1010.2921. ACM, 2011, pp. 273–282 (cit. on p. 4).

[Chu21] Julia Chuzhoy. “Decremental All-Pairs Shortest Paths in Deterministic near-Linear Time”.
In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.
Available at: https://arxiv.org/abs/2109.05621. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 626–639 (cit. on p. 3).

[CGLNPS20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. “A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond”. In: 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS). IEEE. 2020, pp. 1158–1167 (cit. on pp. 1–5, 41, 55).

[CS21] Julia Chuzhoy and Thatchaphol Saranurak. “Deterministic algorithms for decremental
shortest paths via layered core decomposition”. In: Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM. 2021, pp. 2478–2496 (cit. on pp. 3,
4, 11, 41).

[CMSV17] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. “Negative-
Weight Shortest Paths and Unit Capacity Minimum Cost Flow in Õ(m10/7 log W) Time
(Extended Abstract)”. In: SODA. SIAM, 2017, pp. 752–771 (cit. on p. 4).

[DS08] Samuel I Daitch and Daniel A Spielman. “Faster approximate lossy generalized flow via
interior point algorithms”. In: Proceedings of the fortieth annual ACM symposium on
Theory of computing. 2008, pp. 451–460 (cit. on p. 4).

[Dan51] George B Dantzig. “Application of the simplex method to a transportation problem”.
In: Activity analysis and production and allocation (1951) (cit. on p. 1).

[Din70] E.A. Dinic. “Algorithm for solution of a problem of maximum flow in networks with
power estimation”. In: Soviet Mathematics Doklady 11 (1970), pp. 1277–1280 (cit. on
p. 4).

[Din73] E.A. Dinic. “Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi”.
In: Issledovaniya po Diskretnǒı Matematike (1973). In Russian. Title translation: Excess
scaling and transportation problems. (cit. on p. 4).

[DPS18] Ran Duan, Seth Pettie, and Hsin-Hao Su. “Scaling Algorithms for Weighted Matching
in General Graphs”. In: ACM Trans. Algorithms 14.1 (2018). Available at: https://
arxiv.org/abs/1411.1919, 8:1–8:35 (cit. on p. 4).

[ET75] Shimon Even and R. Endre Tarjan. “Network Flow and Testing Graph Connectivity”.
In: SIAM journal on computing 4.4 (1975), pp. 507–518 (cit. on p. 1).

[GT88] Zvi Galil and Éva Tardos. “An O(n2(m + n log n) log n) Min-Cost Flow Algorithm”. In:
J. ACM 35.2 (1988), pp. 374–386 (cit. on p. 4).

[GLP22] Yu Gao, Yang P Liu, and Richard Peng. “Fully dynamic electrical flows: Sparse maxflow
faster than goldberg-rao”. In: 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2022, pp. 516–527 (cit. on pp. 1, 2, 5).

[GKKLP18] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz
Patt-Shamir. “Near-Optimal Distributed Maximum Flow”. In: SIAM J. Comput. 47.6
(2018), pp. 2078–2117 (cit. on p. 3).

49

https://arxiv.org/abs/1010.2921
https://arxiv.org/abs/1010.2921
https://arxiv.org/abs/2109.05621
https://arxiv.org/abs/1411.1919
https://arxiv.org/abs/1411.1919

[GT87] Andrew Goldberg and Robert Tarjan. “Solving minimum-cost flow problems by suc-
cessive approximation”. In: Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 1987, pp. 7–18 (cit. on p. 4).

[Gol08] Andrew V Goldberg. “The partial augment–relabel algorithm for the maximum flow
problem”. In: European Symposium on Algorithms. Springer. 2008, pp. 466–477 (cit. on
p. 4).

[Gol95] Andrew V. Goldberg. “Scaling Algorithms for the Shortest Paths Problem”. In: SIAM
J. Comput. 24.3 (1995), pp. 494–504 (cit. on p. 4).

[GHKKTW15] Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Pushmeet Kohli, Robert Endre Tarjan,
and Renato F. Werneck. “Faster and More Dynamic Maximum Flow by Incremental
Breadth-First Search”. In: Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings. Ed. by Nikhil Bansal and Irene
Finocchi. Vol. 9294. Lecture Notes in Computer Science. Available at: https://www.
microsoft.com/en-us/research/wp-content/uploads/2016/11/ghkktw_ESA2015.
pdf. Springer, 2015, pp. 619–630 (cit. on p. 4).

[GR98] Andrew V. Goldberg and Satish Rao. “Beyond the Flow Decomposition Barrier”. In:
Journal of the ACM 45.5 (1998). Announced at FOCS’97, pp. 783–797 (cit. on pp. 1, 2,
4).

[GT89] Andrew V. Goldberg and Robert E. Tarjan. “Finding Minimum-Cost Circulations by
Canceling Negative Cycles”. In: J. ACM 36.4 (1989), pp. 873–886 (cit. on p. 4).

[GG88] Donald Goldfarb and Michael D Grigoriadis. “A computational comparison of the Dinic
and network simplex methods for maximum flow”. In: Annals of Operations Research
13.1 (1988), pp. 81–123 (cit. on p. 4).

[GH61] Ralph E Gomory and Tien Chung Hu. “Multi-terminal network flows”. In: Journal of
the Society for Industrial and Applied Mathematics 9.4 (1961), pp. 551–570 (cit. on p. 1).

[Gus90] Dan Gusfield. “Very Simple Methods for All Pairs Network Flow Analysis”. In: SIAM
J. Comput. 19.1 (1990), pp. 143–155 (cit. on p. 5).

[GW20] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. “Fully-dynamic all-pairs short-
est paths: Improved worst-case time and space bounds”. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2020, pp. 2562–2574 (cit.
on p. 46).

[Hoc08] Dorit S. Hochbaum. “The Pseudoflow Algorithm: A New Algorithm for the Maximum-
Flow Problem”. In: Operations Research 56.4 (2008), pp. 992–1009 (cit. on p. 4).

[HK73] John E. Hopcroft and Richard M. Karp. “An n5/2 Algorithm for Maximum Matchings
in Bipartite Graphs”. In: SIAM Journal on Computing 2.4 (Dec. 1973), pp. 225–231
(cit. on p. 1).

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E Requires Exponential Circuits:
Derandomizing the XOR Lemma”. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. Ed. by
Frank Thomson Leighton and Peter W. Shor. ACM, 1997, pp. 220–229 (cit. on p. 1).

[KP15] Donggu Kang and James Payor. “Flow Rounding”. In: CoRR abs/1507.08139 (2015)
(cit. on pp. 11, 13).

[Kar84] Narendra Karmarkar. “A New Polynomial-Time Algorithm for Linear Programming”.
In: STOC. ACM, 1984, pp. 302–311 (cit. on p. 8).

[Kar73] Alexander V Karzanov. “On finding maximum flows in networks with special struc-
ture and some applications”. In: Matematicheskie Voprosy Upravleniya Proizvodstvom 5
(1973), pp. 81–94 (cit. on p. 1).

50

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ghkktw_ESA2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ghkktw_ESA2015.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ghkktw_ESA2015.pdf

[KLS20] Tarun Kathuria, Yang P. Liu, and Aaron Sidford. “Unit Capacity Maxflow in Almost
O(m4/3) Time”. In: 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020. IEEE, 2020, pp. 119–130 (cit.
on pp. 4, 5).

[KT19] Ken-ichi Kawarabayashi and Mikkel Thorup. “Deterministic Edge Connectivity in Near-
Linear Time”. In: J. ACM 66.1 (2019), 4:1–4:50 (cit. on pp. 1, 5).

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. “An Almost-
Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Mul-
ticommodity Generalizations”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014. Ed. by Chandra Chekuri. SIAM, 2014, pp. 217–226 (cit. on pp. 3, 4, 9, 18).

[KRV06] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. “Graph partitioning using single
commodity flows”. In: STOC. ACM, 2006, pp. 385–390 (cit. on p. 1).

[KMP11] Ioannis Koutis, Gary L Miller, and Richard Peng. “A nearly-m log n time solver for sdd
linear systems”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science. IEEE. 2011, pp. 590–598 (cit. on p. 3).

[KMP22] Rasmus Kyng, Simon Meierhans, and Maximilian Probst. “Derandomizing Directed Ran-
dom Walks in Almost-Linear Time”. In: 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022.
IEEE, 2022, pp. 407–418 (cit. on pp. 1, 4).

[KPSW19] Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. “Flows in Almost Linear
Time via Adaptive Preconditioning”. In: Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. 2019, pp. 902–913 (cit. on pp. 3, 4).

[LS15] Yin Tat Lee and Aaron Sidford. “Efficient Inverse Maintenance and Faster Algorithms for
Linear Programming”. In: 56th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, October 17-20, 2015. Available at https:
//arxiv.org/abs/1503.01752. IEEE Computer Society, 2015, pp. 230–249 (cit. on
p. 1).

[LS19] Yin Tat Lee and Aaron Sidford. “Solving Linear Programs with Sqrt(rank) Linear System
Solves”. In: CoRR abs/1910.08033 (2019). arXiv: 1910.08033 (cit. on p. 2).

[Li21] Jason Li. “Deterministic mincut in almost-linear time”. In: STOC. ACM, 2021, pp. 384–
395 (cit. on pp. 1, 5).

[LNPSY21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. “Vertex connectivity in poly-logarithmic max-flows”.
In: STOC. ACM, 2021, pp. 317–329 (cit. on p. 5).

[LP20] Jason Li and Debmalya Panigrahi. “Deterministic Min-cut in Poly-logarithmic Max-
flows”. In: FOCS. IEEE, 2020, pp. 85–92 (cit. on p. 1).

[LS20] Yang P Liu and Aaron Sidford. “Faster energy maximization for faster maximum flow”.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
2020, pp. 803–814 (cit. on pp. 4, 5).

[Mąd10] Aleksander Mądry. “Fast Approximation Algorithms for Cut-Based Problems in Undi-
rected Graphs”. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society,
2010, pp. 245–254 (cit. on pp. 3, 9, 18).

[Mąd13] Aleksander Mądry. “Navigating central path with electrical flows: From flows to match-
ings, and back”. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science. IEEE. 2013, pp. 253–262 (cit. on pp. 1, 4, 5).

51

https://arxiv.org/abs/1503.01752
https://arxiv.org/abs/1503.01752
https://arxiv.org/abs/1910.08033

[Mąd16] Aleksander Mądry. “Computing Maximum Flow with Augmenting Electrical Flows”. In:
57th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. Available at https:
//arxiv.org/abs/1608.06016. IEEE Computer Society, 2016, pp. 593–602 (cit. on
pp. 4, 5).

[NSY23] Chaitanya Nalam, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. “De-
terministic k-Vertex Connectivity in k2 Max-flows”. In: arXiv preprint arXiv:2308.04695
(2023). Available at https://arxiv.org/pdf/2308.04695.pdf (cit. on p. 5).

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. “Dynamic
Minimum Spanning Forest with Subpolynomial Worst-Case Update Time”. In: 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017. Ed. by Chris Umans. Available at: https://arxiv.
org/abs/1708.03962. IEEE Computer Society, 2017, pp. 950–961 (cit. on p. 41).

[NSY19] Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai.
“Breaking quadratic time for small vertex connectivity and an approximation scheme”.
In: STOC. ACM, 2019, pp. 241–252 (cit. on p. 5).

[OSVV08] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi.
“On partitioning graphs via single commodity flows”. In: STOC. ACM, 2008, pp. 461–
470 (cit. on p. 5).

[OG21] James B Orlin and Xiao-yue Gong. “A fast maximum flow algorithm”. In: Networks 77.2
(2021), pp. 287–321 (cit. on p. 5).

[Orl93] James B. Orlin. “A Faster Strongly Polynomial Minimum Cost Flow Algorithm”. In:
Oper. Res. 41.2 (1993), pp. 338–350 (cit. on p. 4).

[Orl96] James B. Orlin. “A Polynomial Time Primal Network Simplex Algorithm for Minimum
Cost Flows”. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’96. Atlanta, Georgia, USA: Society for Industrial and Applied
Mathematics, 1996, pp. 474–481 (cit. on p. 4).

[OPT93] James B. Orlin, Serge A. Plotkin, and Éva Tardos. “Polynomial Dual Network Simplex
Algorithms”. In: Math. Program. 60.1–3 (1993), pp. 255–276 (cit. on p. 4).

[Räc08] Harald Räcke. “Optimal hierarchical decompositions for congestion minimization in net-
works”. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008. Ed. by Cynthia Dwork. ACM,
2008, pp. 255–264 (cit. on p. 18).

[SW19] Thatchaphol Saranurak and Di Wang. “Expander Decomposition and Pruning: Faster,
Stronger, and Simpler”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
Ed. by Timothy M. Chan. Available at: https://arxiv.org/abs/1812.08958. SIAM,
2019, pp. 2616–2635 (cit. on pp. 41, 55).

[She09] Jonah Sherman. “Breaking the Multicommodity Flow Barrier for O(
√

log n)-Approximations
to Sparsest Cut”. In: FOCS. IEEE Computer Society, 2009, pp. 363–372 (cit. on p. 5).

[She13] Jonah Sherman. “Nearly Maximum Flows in Nearly Linear Time”. In: 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA. IEEE Computer Society, 2013, pp. 263–269 (cit. on pp. 3, 4,
9, 18).

[She17] Jonah Sherman. “Area-convexity, ℓ∞ regularization, and undirected multicommodity
flow”. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting. 2017, pp. 452–460 (cit. on p. 4).

[ST83] Daniel D Sleator and Robert Endre Tarjan. “A data structure for dynamic trees”. In:
Journal of computer and system sciences 26.3 (1983), pp. 362–391 (cit. on pp. 11, 30).

52

https://arxiv.org/abs/1608.06016
https://arxiv.org/abs/1608.06016
https://arxiv.org/pdf/2308.04695.pdf
https://arxiv.org/abs/1708.03962
https://arxiv.org/abs/1708.03962
https://arxiv.org/abs/1812.08958

[ST04] Daniel A. Spielman and Shang-Hua Teng. “Nearly-linear time algorithms for graph par-
titioning, graph sparsification, and solving linear systems”. In: Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, STOC 2004, Chicago, IL, USA,
June 13-16, 2004. Available at https://arxiv.org/abs/0809.3232, https://arxiv.
org/abs/0808.4134, https://arxiv.org/abs/cs/0607105. 2004, pp. 81–90 (cit. on
pp. 2, 3).

[Tar85] Éva Tardos. “A Strongly Polynomial Minimum Cost Circulation Algorithm”. In: Com-
binatorica 5.3 (1985), pp. 247–255 (cit. on p. 4).

A Additional j-tree Proofs
In this section, we give a brief description of how to modify the proof of [CKLPPS22, Lemma 6.5]
to show our Lemma 5.4. The only difference between [CKLPPS22, Lemma 6.5] and Lemma 5.4
is that we require our data structure to handle vertex splits. Fortunately, the data structure of
[CKLPPS22, Lemma 6.5] can be trivially modified to handle vertex splits at no extra runtime cost.

A.1 Proof of Lemma 5.4

In this section, we use the same notations as in [CKLPPS22, Appendix B.3], arXiv version. We
will use the notions of branch-free set [CKLPPS22, Definition B.3], the forest FT (R, π) given a tree
T , a set of roots R, and a permutation on tree edges π ([CKLPPS22, Definition B.4]).

We now describe how to modify the proof of [CKLPPS22, Lemma 6.5], which appears at the
end of [CKLPPS22, Appendix B.3], to handle vertex splits. When a vertex u is split into u and
uNEW, we create a new isolated vertex for uNEW and add both uNEW and u↑TH to the set of roots
R. This set is branch free by [CKLPPS22, Lemma B.9]. We also update the forest F

def= FT (R, π).
Because R is incremental and π is a total ordering, F is decremental. [CKLPPS22, Lemma B.9]
item 1 tells us that we only add O(log2 n) vertices to R per vertex split, so the operation can be
implemented efficiently.

The remainder of the proof is identical to the proof of [CKLPPS22, Lemma 6.5] in [CKLPPS22,
Appendix B.3].

A.2 Proof of Lemma 5.5

The MWU in this section is very similar to previous standard arguments, and is based on [CKLPPS22,
Section B.4]. The main change is to run the MWU for only k steps so that we have k trees, as
opposed to Õ(k). This is not necessary in the argument, but simplifies some notation.

Proof. Let W = O(log4 n) be such that items 2, 3 of Lemma 5.4 imply∑
e∈E

ves̃tre ≤W ∥v∥1 , and

max
e∈E

s̃tre ≤ kW log2 n.

Let ρ = 10kW log2 n = Õ(k). The algorithm sequentially constructs edge weights v1, . . . , vk using
a multiplicative weight update algorithm, and finds low-stretch trees T1, . . . , Tk, forests F1, . . . , Fk,
and stretch overestimates s̃tr1

, . . . , s̃trk with respect to these weights via Lemma 5.4.

53

https://arxiv.org/abs/0809.3232
https://arxiv.org/abs/0808.4134
https://arxiv.org/abs/0808.4134
https://arxiv.org/abs/cs/0607105

Initially, v1
def= 1 is an the all 1’s vector. After computing Ti, vi+1 is defined as

vi+1,e
def= vi,e exp

(
s̃tri

e

ρ

)
= exp

1
ρ

i∑
j=1

s̃trj
e

 for all e ∈ E.

Finally we define the distribution λ to be uniform over the set {1, . . . , k}.
To show the desired bound (3), we first relate it with ∥vk+1∥ using the following:

max
e∈E

1
k

k∑
i=1

s̃tri
e = ρ

k
max
e∈E

1
ρ

k∑
i=1

s̃tri
e ≤

ρ

k
log

(∑
e

exp
(

1
ρ

k∑
i=1

s̃tri
e

))
= ρ

k
log ∥vk+1∥1 ,

where vt+1 is defined similarly even though it is never used in the algorithm.
Next, we upper bounds ∥vi∥1 inductively for every i = 1, . . . , k + 1. Initially, v1 = 1 and we

have ∥v1∥1 = m. To bound ∥vi+1∥, we plug in the definition and have the following:

∥vi+1∥1 =
∑

e

vi,e exp
(

s̃tri
e

ρ

)
≤
∑

e

vi,e

(
1 + 2 · s̃tri

e

ρ

)

= ∥vi∥1 + 2
ρ

∑
e

vi,es̃tri
e ≤ ∥vi∥1 + 2

ρ
W ∥vi∥1 =

(
1 + 2W

ρ

)
∥vi∥1 ,

where the first inequality comes from the bound s̃tri
e ≤ kW log2 n = 0.1ρ and ex ≤ 1 + 2x for

0 ≤ x ≤ 0.1. Applying the inequality iteratively yields

max
e∈E

1
k

k∑
i=1

s̃tri
e ≤

ρ

k
log ∥vk+1∥1 ≤

ρ

k
log

(
1 + 2W

ρ

)k

∥v1∥1 ≤ 2W + ρ log m

k
= O(W log3 n)

The desired bound (3) now follows by taking the logarithm of both sides.

A.3 Cycle Maintenance in a Tree Chain

In this section, we recall the relevant pieces of [CKLPPS22, Section 7.2] in order to show how to
find a cycle ∆ from a tree chain that has sufficient ratio, thus showing Lemma 5.11. We start with
some preliminary definitions. Consider a tree chain G = {G0, G1, . . . , Gd} , with a corresponding
tree T

def= T G as defined in Definition 5.8. For g, ℓ and a valid pair c, w (Definition 4.3), define
cG0 def= c and wG0 def= w, and cGi and wGi recursively for 1 ≤ i ≤ d via Definitions 5.12 and 5.15.
Let ℓGi , gGi be the lengths and gradients on the graphs Gi, and ℓC(Gi,Fi), gC(Gi,Fi) be the lengths
and gradients on the core graphs.

Note that every edge eG ∈ E(G) \E(T) has a “lowest” level that the image of it (which we call
e) exists in a tree chain, after which it is not in the next sparsified core graph. In this case, the
edge plus its path embedding induce a cycle, which we call the sparsifier cycle associated to e. In
the below definition, we assume that the path embedding of a self-loop e in C(Gi, Fi) is empty.

Definition A.1. Consider a tree-chain G0 = G, . . . , Gd (Definition 5.8) with corresponding tree
T

def= T G0,...,Gd where for every 0 ≤ i ≤ d, we have a core graph C(Gi, Fi) and sparsified core graph
S(Gi, Fi) ⊆ C(Gi, Fi), with embedding ΠC(Gi,Fi)→S(Gi,Fi).

We say an edge eG ∈ E(G) is at level leveleG = i if its image e is in E(C(Gi, Fi))\E(S(Gi, Fi)).
Define the sparsifier cycle a(e) of such an edge e = e0 ∈ C(Gi, Fi) to be the cycle a(e) = e0 ⊕

54

rev(ΠC(Gi,Fi)→S(Gi,Fi)(e0)) = e0⊕ e1⊕ · · · ⊕ eL. We define the preimage of this sparsifier cycle in G
to be the fundamental chain cycle

aG(eG) = eG
0 ⊕ T [vG

0 , uG
1]⊕ eG

1 ⊕ T [vG
1 , uG

2]⊕ · · · ⊕ eG
L ⊕ T [vG

L , uG
L+1],

where eG
i = (uG

i , vG
i) is the preimage of edge ei in G for each i ∈ [L] and where we define uG

L+1 = uG
0 .

We let a(e) and aG(eG) be the associated flow vectors for the sparsifier cycle a(e) and funda-
mental chain cycle aG(eG). The following result shows that there is some fundamental chain cycle
with good ratio.

Lemma A.2 ([CKLPPS22, Lemma 7.17]). Let c, w be a valid pair. Let T = T G for a tree-chain
G = {G0, . . . , Gd}. Then

max
eG∈E(G)\E(T)

|⟨g, aG(eG)⟩|
⟨ℓ, |aG(eG)|⟩ ≥

1
Õ(k)

|⟨g, c⟩|∑d
i=0 ∥wGi∥1

.

While [CKLPPS22, Lemma 7.17] has a l̃eneG term in the denominator on the LHS, [CKLPPS22,
Lemma 7.14] shows that l̃eneG ≥ ⟨ℓ, |aG(eG)|⟩.

B Proof of Expander Statement
The goal of this section is to show Theorem 8.5. The proof is through a standard reduction to
deterministic expander decomposition [SW19; CGLNPS20].

Theorem B.1 (see [SW19; CGLNPS20]). Given an unweighted, undirected m-edge graph G, there
is an algorithm that finds a partition of V (G) into sets V1, V2, . . . , Vk such that for each 1 ≤
j ≤ k, G[Vj] is a ϕ-expander for ϕ = Ω̃(1/ exp((log m)1/3)), and there are at most m/4 edges
that are not contained in any one of the expander graphs. The algorithm runs in time Õ(m ·
exp((log m)2/3 log log(m))).

We run Algorithm 5 (given below) to obtain the graphs Gi as desired in Theorem 8.5.

Algorithm 5: Decompose(G)
1 ℓ← ⌈log2 ∆max(G)⌉+ 1; Gℓ = G
2 for i = ℓ, ℓ− 1, . . . , 1 do
3 Let Gœ

i denote the graph Gi with 2i self-loops added to each vertex.
4 Compute an expander decomposition V0, V1, . . . , Vk of Gœ

i using Theorem B.1.
5 Gi−1 ←

(⋃
0≤j≤k EGi(Vj , V \ Vj)

)
.

6 Gi ← Gi \Gi−1.

Claim B.2. At initialization, for each i the graph Gi has in Line 1 or Line 5 has at most 2in
edges.

Proof. We proceed by induction on i. For the base case, i = ℓ, observe that 2ℓ ≥ ∆max(G) and
since Gℓ is a subgraph of G, we have |E(Gℓ)| ≤ 2ℓn.

55

For i 7→ i− 1, we observe that Gi is unchanged since its initialization until at least after Gi−1
was defined in Line 5. Thus, using the induction hypothesis and the fact above, we conclude that
Gœ

i (defined in Line 3) consists of at most 2in edges from Gi plus 2in edges from all self-loops. Thus
Theorem B.1 implies that |⋃0≤j≤k EGi(Vj , V \Vj)| = |⋃0≤j≤k EGœ

i
(Vj , V \Vj)| ≤ 2i+1n/4 = 2i−1n,

and since this is exactly the edge set of Gi−1, the claim follows.

Proof of Theorem 8.5. Using Claim B.2 and the insight that each graph Gi, after initialization, can
only have edges deleted from it, we conclude that |E(Gi)| ≤ 2in for each i.

For the minimum degree property of each Gi with i > 0, we observe by Theorem B.1, that for
Gœ

i and vertex v in expander Vj , degGi
(v) = |EGi(v, Vj \ {v})| = |EGœ

i
(v, Vj \ {v})| ≥ ϕ · 2i.

The guarantee that the connected components in each graph G1, G2, . . . , Gℓ (but not necessarily
G0) are ϕ-expanders stems from Theorem B.1.

56

	Introduction
	Randomized Maxflow Algorithms
	Our Results
	Our Approach
	Additional Related Work

	Preliminaries
	Technical Overview
	The Randomized Algorithm in chen2022
	A Deterministic Min-cost Flow Algorithm

	Flow Framework
	Data Structure Chain
	Dynamic Low-Stretch Forests (LSF)
	Worst-Case Average Stretch via Multiplicative Weights
	Sparsified Core Graphs and Path Embeddings
	Shifted Tree Chains

	Analyzing the Cycle Quality with Shifts and Rebuilds
	Cycle Qualities
	Rebuilding and Shifting

	The Shift-and-Rebuild Game
	Game Playing Strategy
	Analysis of the Strategy

	Decremental Spanner and Embedding
	Deterministic Low-Stretch Spanning Tree
	Data Structure Description
	Algorithm Analysis

	References
	Additional j-tree Proofs
	Proof of lemma:globalstretch
	Proof of lemma:strMWU
	Cycle Maintenance in a Tree Chain

	Proof of Expander Statement

