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Abstract—Computational differential privacy (CDP) is
a natural relaxation of the standard notion of (statisti-
cal) differential privacy (SDP) proposed by Beimel, Nis-
sim, and Omri (CRYPTO 2008) and Mironov, Pandey,
Reingold, and Vadhan (CRYPTO 2009). In contrast to
SDP, CDP only requires privacy guarantees to hold
against computationally-bounded adversaries rather than
computationally-unbounded statistical adversaries. Despite
the question being raised explicitly in several works (e.g.,
Bun, Chen, and Vadhan, TCC 2016), it has remained
tantalizingly open whether there is any task achievable with
the CDP notion but not the SDP notion. Even a candidate
such task is unknown. Indeed, it is even unclear what the
truth could be!

In this work, we give the first construction of a task
achievable with the CDP notion but not the SDP notion,
under the following strong but plausible cryptographic
assumptions:

⊲ Non-Interactive Witness Indistinguishable Proofs,
⊲ Laconic Collision-Resistant Keyless Hash Functions,
⊲ Differing-Inputs Obfuscation for Public-Coin Samplers.

In particular, we construct a task for which there ex-
ists an ε-CDP mechanism with ε = O(1) achieving
1−o(1) utility, but any (ε, δ)-SDP mechanism, including
computationally-unbounded ones, that achieves a constant
utility must use either a super-constant ε or an inverse-
polynomially large δ.

To prove this, we introduce a new approach for showing
that a mechanism satisfies CDP: first we show that a mech-
anism is “private” against a certain class of decision tree
adversaries, and then we use cryptographic constructions
to “lift” this into privacy against computationally bounded
adversaries. We believe this approach could be useful to
devise further tasks separating CDP from SDP.

Index Terms—differential privacy, computational differ-
ential privacy, indistinguishability obfuscation

I. INTRODUCTION

The framework of differential privacy (DP)

[DMNS06], [DKM+06] gives formal privacy guarantees

on the outputs of randomized algorithms. It has been

the subject of a significant body of research, leading to

∗Part of the work done during an internship at Google Research.

numerous practical deployments including the US census

[Abo18], and industrial applications [EPK14], [Sha14],

[Gre16], [App17], [DKY17], [KT18], [RSP+21].

The definition of DP requires privacy against computa-

tionally unbounded, i.e., statistical, adversaries. A natural

modification is to instead only require privacy against

computationally bounded adversaries. In cryptography,

considering computationally bounded adversaries instead

of statistical ones enables a vast array of applications,

like public-key cryptography. Could the same be true

for DP? Despite Beimel, Nissim, and Omri [BNO08]

defining computational differential privacy (CDP) in

2008 (definitions that were further extended by Mironov,

Pandey, Reingold, and Vadhan [MPRV09]), the central

question of separating it from statistical differential

privacy (SDP)1, in the standard client-server model,

remains open:

Question 1. [Vad17, Open Problem 10.6] Is there

a computational task solvable by a single curator with

computational differential privacy but is impossible to

achieve with information-theoretic differential privacy?

There have been several positive and negative results

towards resolving this question. In the positive direction,

it is known that in the multi-party setting, CDP is

stronger than SDP [MMP+10], [MPRV09]. Roughly

speaking, this is because secure multi-party computation

enables many data curators to simulate acting as a single

central curator, without compromising privacy. Still, the

multi-party setting seems very different than the single-

curator (aka central) setting. Indeed, [MMP+10] re-

mark2 that their “strong separation between (information-

theoretic) differential privacy and computational differ-

ential privacy ... stands in sharp contrast with the client-

1See Section III for the formal definitions of CDP and SDP. A good
survey of the area can be found in [Vad17, Section 10].

2This remark is also quoted by Groce, Katz, and Yerukhi-
movich [GKY11].
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server setting where ... there are not even candidates for a

separation.”

In the central setting, Bun, Chen, and Vad-

han [BCV16] show there is a task for which there is

a CDP mechanism, but any SDP mechanism for this

task must be inefficient (modulo certain cryptographic

assumptions). We stress that the task they consider does

have an inefficient SDP mechanism (with parameters that

match their CDP mechanism), so it does not resolve

Question 1. While this may seem like a minor technical

point, we emphasize that it is of crucial importance.

Perhaps the main practical motivation behind studying

CDP is the hope that there are CDP mechanisms for

natural tasks with parameters that beat the lower bounds

against SDP mechanisms. But if, as in the case of the

result in [BCV16], there exists (even an inefficient) SDP

mechanism matching the parameters of the CDP mech-

anism, then there is no hope of the CDP mechanism’s

parameters beating SDP lower bounds.

In the negative direction, Mironov, Pandey, Rein-

gold, and Vadhan [MPRV09] (building on Green and

Tao [GT08], Tao and Ziegler [TZ08], and Reingold,

Trevisan, Tulsiani, and Vadhan [RTTV08]) show a

“dense model theorem” for pairs of random variables

with “pseudodensity” with each other. Mironov et

al. [MPRV09] note that (roughly speaking) extending

this dense model theorem to handle multiple pairs of

random variables would prove that any CDP mechanism

could be converted into an SDP mechanism; such an

extension is still open [Vad17, Open Problem 10.8].

Groce, Katz, and Yerukhimovich [GKY11] show

that CDP mechanisms for certain tasks where the

output is low-dimensional imply SDP mechanisms.

Many natural statistical tasks fall into this category,

and consequently, such tasks cannot separate CDP

from SDP. (This result was further strengthened

by [BCV16].) Furthermore, [GKY11] show that CDP

mechanisms constructed in a black-box way from

a variety of cryptographic objects, such as one-way

functions, random oracles, trapdoor permutations, and

cryptographic hash functions, cannot separate CDP

from SDP.

In summary, there are at least two barriers to separate

CDP from SDP:

1) High-dimensionality: One needs to consider (per-

haps non-natural) tasks with high dimensional out-

puts;

2) Exotic cryptography: One needs to use cryptog-

raphy somewhat specially (perhaps either an exotic

primitive or in a non-black-box manner).

In light of these both positive and negative results as

well as the lack of a candidate separation, it is not even

clear what the truth could be: is there any task for which

there is a CDP mechanism but no SDP mechanism?

Our Contributions. We show, under plausible crypto-

graphic hypotheses, that there are indeed tasks for which

there exist CDP mechanisms but no SDP mechanisms.

This not only positively answers Question 1 but also

negatively answers the dense model extension ques-

tion [Vad17, Open Problem 10.8]. We state this result

now informally and formalize it later in Section II. We

also delay discussing our precise cryptographic assump-

tions to Section II-E, where we discuss their plausibility

in detail.

Theorem 2. [Informal version of Theorem 5] Under

cryptographic assumptions, there exists a task for which

there is a CDP mechanism but no SDP mechanism.

Let us take a step back to discuss the implications

of Theorem 2. Although (as we will see in a moment)

our task is specifically constructed for the purpose of

separating CDP and SDP, the fact that we can separate

them at all opens up a possibility that such a separation

even holds for some “natural” tasks. Indeed, some of

the current lower bound techniques for SDP—such as

the ubiquitous “packing lower bounds”3 (see [HT10])—

do not necessarily rule out CDP mechanisms. It seems

prudent to carefully reexamine the current lower bound

techniques to see whether they also apply to CDP. The

ultimate hope for this program would be to employ CDP

to overcome the known SDP lower bounds for some

more “natural” tasks. (Of course, such tasks would also

give a more “natural” separation of CDP and SDP.)

In fact, the technical approach we use in our

construction already suggests a general approach for

constructing non-trivial CDP mechanisms that could

apply to more tasks. We discuss this in more detail

in Section II, but the idea is as follows. In order to

show a task has a CDP mechanism, first show there is

a mechanism for that task that is “private” against a

certain class of decision tree adversaries. Then, second,

use cryptographic assumptions to “lift” this into privacy

against computational adversaries.

Organization. The rest of the paper is organized as

follows. Section II provides a high-level overview of our

techniques as well as a discussion of our cryptographic

assumptions and their plausibility. Section III contains

3Specifically, when the packing lower bound requires the use of
super-polynomially many datasets, the corresponding adversary does
not necessarily run in polynomial time.
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the background material and Section IV formally de-

fines the problems. We provide our CDP mechanism in

Section V, and prove lower bounds against SDP mech-

anisms in Section VI. These two components are put

together to prove the main result in Section VII. Finally,

we discuss the open problems and future directions in

Section VIII.

II. OVERVIEW OF THE RESULTS

We will next discuss the high-level overview of our

results and techniques. We will sometimes have to be

informal here, but all details are formalized later. We

first recall how a “task” is defined.4 Following [GKY11],

[BCV16], a task is defined by an efficiently computable

utility function u that takes in an input dataset D and

a response y such that u(D, y) = 1 if y is considered

“useful” for D and u(D, y) = 0 otherwise. A mechanism

M is said to be α-useful for u iff E[u(D,M(D))] ≥ α
for all input datasets D; we will refer to α as the

usefulness of M . We remark that many well-studied

problems—such as linear queries with various error

metrics—can be written in this form.

One of our main conceptual contributions is to define

a class of tasks that seems to naturally circumvent the

two earlier-mentioned barriers—tasks where one needs

to output a circuit.

A. The Low Diameter Set Problem

Before we detail why tasks that output a circuit

might evade the two barriers, let us describe a concrete

example. We call the following the low diameter set

LDSτ problem (defined for some parameter τ ∈ N):

⊲ Given: dataset D represented as n bits (adjacent

datasets differ on a single bit)5

⊲ Output: circuit C mapping n bits to 1 bit

⊲ Utility: C is considered useful if it outputs

⊲ 1 on D, and

⊲ 0 on all points at distance greater than τ from D.

Informally, this problem asks to output a circuit C such

that C−1(1) ⊆ {0, 1}n contains D and has diameter

at most τ . While this utility function is not efficiently

computable, we will address this in Section II-C2.

Looking ahead, we will ultimately separate CDP from

SDP under cryptographic assumptions by considering a

“verifiable” version of this problem where we only care

about datasets in a cryptographically special set.

We now revisit the two barriers and discuss how the

distance problem might circumvent them.

4Refer to Section III-B for a more formal definition.
5Refer to Section IV for formal details.

1) High-dimensionality: The output of this task is a

circuit, which is high-dimensional.

2) Exotic cryptography: Because the output of the task

is a circuit, it lends itself to a powerful class of

cryptographic objects: circuit obfuscators [BGI+12].

Roughly speaking, circuit obfuscators take as input a

circuit C and output a scrambled, obfuscated circuit

C′ that computes the same function as C but which,

ideally, has the property that “anything you could

do with access to the circuit C′, you could do with

only black-box access to the function the circuit

computes.” Importantly, obfuscation is not in the list

of primitives ruled out by the barrier in [GKY11].

B. SDP Lower Bound

Our starting point for separating CDP from SDP is the

low diameter set problem described above. Indeed, we

show that there is no SDP mechanism for this problem

for any τ that is essentially sub-linear in n.

Lemma 3. For all 0 < τ ≤ n0.9 and constant ε, α > 0
and δ = 1/nc (for some c > 1), there is no (ε, δ)-SDP

mechanism for LDSτ that is α-useful.

In fact, this lower bound is straightforward (Lemma 15)

from the well-known blatant non-privacy notion (see,

e.g., [De12]): no DP algorithm can output a dataset that

is (with large probability) close to the input dataset.

Crucially, our lower bounds are non-constructive, and

do not yield an efficient adversary (which would imply

a similar lower bound against CDP mechanisms). Thus,

to separate CDP from SDP it suffices to come up with

a CDP mechanism for, say, LDSn0.9 .

C. A CDP Mechanism

By Lemma 3, a positive answer to the following

question would demonstrate a separation between CDP

and SDP.

Question 4. For constant ε = O(1), does there exist an

ε-CDP mechanism for LDSn0.9 with constant usefulness?

A key step in our approach is to reduce the above ques-

tion to whether there is a mechanism for LDSn0.9 that is

differentially private against query (a.k.a. decision-tree)

adversaries. In order to construct such a CDP mechanism

M , our main idea is to use obfuscation. In particular, we

will consider mechanisms where the returned circuit is

obfuscated. Recall that in order to prove a mechanism

M that outputs a circuit C is CDP, one needs to argue

that no efficient adversary that gets C as input can break

the privacy guarantee. By considering mechanisms that

return obfuscated circuits, we can drastically simplify the

3



type of adversaries we need to prove privacy against.

Instead of proving privacy against adversaries that see

the circuit C (i.e., white-box setting), sufficiently strong

obfuscation means we only need to prove privacy against

decision tree adversaries that can query the function

computed by the circuit (i.e., black-box setting). In other

words, if we have a mechanism that satisfies DP against

black-box adversaries (decision trees) with a polynomial

number of queries, we can then hope to use sufficiently

strong obfuscation to “lift” this into a mechanism that

is secure against (white-box) computational adversaries

with polynomial running time.

Of course, one needs to be careful about whether

such “sufficiently strong obfuscation” is even possible,

but, putting that aside for the moment, the question

of whether there is a CDP mechanism for LDSn0.9

(Question 4 above) appears to reduce to whether there is

a mechanism for LDSn0.9 that is DP against query (a.k.a.

decision-tree) adversaries.

While we do not resolve Question 4, we (roughly

speaking) show that there is a mechanism that is DP

against non-adaptive decision tree adversaries, whose

queries are fixed a priori. It turns out a relatively sim-

ple mechanism based on randomized response [War65]

works for these less powerful adversaries.

1) From Non-Adaptive Lower Bound to Computa-

tional Lower Bound: This switch from the usual adap-

tive query adversaries to non-adaptive query adversaries

comes at a price however. It is not clear how to use

obfuscation to lift a mechanism that is private against

non-adaptive queries into one that is private against

computational adversaries. Indeed, a polynomial-time

algorithm with even black-box access to a function

seems to be an inherently adaptive adversary!

Surprisingly, we get around this by using another

cryptographic object introduced by Bitansky, Kalai,

and Paneth [BKP18]: collision-resistant keyless hash

functions. Informally speaking, a hash function being

collision-resistant and keyless means that “any efficient

adversary can only generate a number of hash collisions

that is at most polynomially larger than the advice the

adversary gets.”

We then modify the LDSτ problem to only consider

datasets that belong to a specific set R ⊆ {0, 1}n; in

particular, we will specify it the as set of all strings that

hash to, say the all zeroes string. Formally, LDSτ,R is

the following problem (defined for parameters τ ∈ N

and R ⊆ {0, 1}n).

⊲ Given: dataset D that consists of n bits

⊲ Output: circuit C mapping n bits to 1 bit

⊲ Utility: C is considered useful if D /∈ R or both of

the following hold:

⊲ it outputs 1 on D
⊲ it outputs 0 on all points in R at distance greater

than τ from D

In other words, the utility function now completely

ignores all points outside of R.

The high-level intuition behind this change is the fol-

lowing:

1) Our CDP mechanism can output a circuit C such that

the only inputs where C(x) reveals information are

those x in the set R.

2) Any polynomial-time adversary A can only generate

fixed polynomial number of elements of R by the

collision-resistance property of the hash function.

3) Combining the above makes the inputs A can query

C on, effectively “non-adaptive”.

Finally, in order to “lift” the query separation into the

computational realm we use another cryptographic tool:

differing-inputs obfuscation (diO) [BGI+01], [BGI+12],

[ABG+13]. Roughly speaking, diO is an obfuscator with

the following guarantee: if any efficient adversary can

distinguish the obfuscation of two circuits C1 and C2,

then an efficient adversary can find an input x on which

C1(x) 6= C2(x). In particular, the specific assumption we

use is even weaker than public-coin diO [IPS15], which

is already considered to more plausible than general

diO.6

In summary, diO allows us to reduce computational

adversaries to adaptive query adversaries and collision-

resistant keyless hash functions allows us to reduce adap-

tive query adversaries to non-adaptive query adversaries.

Interestingly, to the best of our knowledge, this is the first

time collision-resistant keyless hash functions are being

used together with any obfuscation assumption.

2) Making the Utility Function Efficiently Com-

putable: We need to address one final issue: utility

functions that we have considered so far are not neces-

sarily efficiently computable. Specifically, a trivial way

to implement the utility function would be to enumerate

all points at distance at least τ , feed it into the circuit,

and check that the output is as expected; this would take

2n
Ω(1)

time.

To overcome the above problem, we restrict circuits

to only those that are relatively simple, so that there

is a small “witness” w that certifies that the circuit

outputs zero at all points that are τ -far from D. A

6See Assumption 22 for formal statement of the assumption and
Section A for comparison with other diO assumptions in literature.
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naive idea is then to let the CDP mechanism output the

circuit C together with such a witness w. The utility

function can then just efficiently check that w is a valid

witness (and that C(D) = 0 or x ∈ R). This makes the

utility function efficient but unfortunately compromises

privacy because the witness w itself can leak additional

information. To avoid this, we instead use non-interactive

witness indistinguishable (NIWI) proofs (e.g., [BOV07]).

Roughly speaking, this allows us to produce a proof

π from w (and C and diO), which does not leak any

information about w (against computationally bounded

adversaries), but at the same time still allows us to verify

that the underlying witness w is valid. The former is

sufficient for CDP, while the latter ensures that the utility

function can be computed efficiently.

This completes the high-level overview of the con-

structed task and our CDP mechanism. The crypto-

graphic primitives needed for our mechanism are for-

malized in Assumptions 18, 22 and 26.

D. Final Steps

Finally, since our problem is now not exactly the

original LDSτ problem anymore, as the utility guarantees

are only now meaningful for datasets in R, we cannot

use the lower bound in Lemma 3 for LDSτ directly. For-

tunately, we can still adapt its proof—a “packing-style”

lower bound on each coordinate—to one which applies

a packing-style argument on each block of coordinates

instead. With this, we can prove the lower bound for

LDSτ,R as long as the setR has sufficiently large density

(≈ 1/n−o(logn)).

Putting all the ingredients together, we arrive at the

following7:

Theorem 5 (Main Result). Under Assumptions 18, 22

and 26, for any constant εCDP > 0, there exists an

ensemble u = {un}n∈N of polynomial time computable

utility functions such that

⊲ There is an εCDP-CDP mechanism that is (1−on(1))-
useful for u.

⊲ For any constants εSDP,α > 0 and δSDP = 1/n27,

no (εSDP, δSDP)-SDP mechanism is α-useful for u.

The task underlying the separation is an instantiation of

the “verifiable low diameter set problem” VLDSτ,R,V

defined in Definition 14.

7We remark that (εSDP, δSDP)-SDP mechanism here refers to an
ensemble of mechanisms {Mn} that are (εSDPn

, δSDPn
)-SDP. (See

Definition 7.)

E. On the Plausiblility of the Cryptographic Assump-

tions

We now discuss the plausiblility of the three crypto-

graphic assumptions we use for our result:

(i) NIWI: Non-interactive Witness Indistinguishable

Proofs (formally, Assumption 26)

(ii) CRKHF: Laconic Collision-Resistant Keyless Hash

Functions (formally, Assumption 18)

(iii) diO-for-pcS: Differing-Inputs Obfuscation for

Public-Coin Samplers (formally, Assumption 22)

Regarding (i), NIWI. Bitansky and Paneth [BP15a] show

that NIWIs exist assuming one-way permutations and in-

distinguishability obfuscation (iO) exists. Recently, Jain,

Lin, and Sahai [JLS21] show that the existence of iO
follows from well-founded assumptions; consequently,

NIWIs exist based on widely-believed assumptions. (We

note that other previous works have also constructed NI-

WIs based on other more specific assumptions [BOV07],

[GOS12].)

Regarding (ii), CRKHF. Bitansky, Kalai, and

Paneth [BKP18] defined CRKHFs to model the

properties of existing hash functions like SHA-2

used in practice. They suggest several candidates for

CRKHFs, such as hash functions based on AES and

Goldreich’s one-way functions. They also note that

CRKHFs exist in the Random Oracle model, as a

random function is a CRKHF. Still, it is an open

question to base the security of a CRKHF on a standard

cryptographic assumption. Part of the difficulty of doing

this, as [BKP18] describe, is that most cryptographic

assumptions involve some sort of structure that is useful

for constructing cryptographic objects. In contrast,

the goal of a CRKHF is to have no structure at all.

In summary, given the various CRKHF candidates,

the existence in the Random Oracle model, and the

fact that CRKHFs exist “in practice,” this assumption

is quite plausible. For our specific construction, we

need a different hash length (equivalently, different

compression rate) than that used in [BKP18]; please

refer to the discussion preceding Assumption 18 for the

parameters and justification.

Finally, we remark that, even though the existence of

CRKHFs is not known to reduce to any “well-founded”

assumption, even refuting their existence would an-

swer a longstanding question in cryptography: giving

non-contrived separations between the Random Oracle

model [BR93] and the standard model. In the words of

Bitansky, Kalai, and Paneth [BKP18],

“Any attack on the multi-collision resistance of a [key-

less] cryptographic hash function would constitute a

5



strong and natural separation between the hash and

random oracles. For several cryptographic hash func-

tions used in practice, the only known separations from

random oracles are highly contrived [CGH04].”

Regarding (iii), diO-for-pcS. One can think of

diO [BGI+01], [BGI+12] as an “extractable” strength-

ening of iO. While iO has now become a widely-

believed assumption [JLS21], the existence of diO is

controversial. Several papers (e.g., [BP15b], [GGHW17],

[BSW16]) cast doubt on the existence of diO, especially

in the case where an arbitrary auxillary input is allowed;

we stress that all the negative results for diO hold for

contrived auxillary inputs and/or distributions. On the

positive side, [BCP14] show that diO reduces to iO in

special cases, such as when the number of differing-

inputs is bounded by a polynomial. More related to

our result, [IPS15] gives a definition of public-coin diO
that avoids the difficulties presented by earlier negative

results regarding auxiliary inputs, although [BP15b] pre-

sented some evidence against this definition in special

cases. Our specific assumption of diO-for-pcS is in

fact weaker than the assumption of public-coin diO.

In the definition of public-coin diO, as in [IPS15], we

start with any public-coin sampler (pcS), for which it

is hard to find an input on which two circuits differ,

even given the knowledge of all the randomness that

underlies the circuits. The security of the obfuscation is

required to hold even against adversaries that know all

the randomness that underlies the generation of the two

circuits. However, in our definition, the security of the

obfuscation is required to hold only against adversaries

that observes a single obfuscated circuit, which makes

the assumption weaker. See Section A for a more de-

tailed discussion on comparison of this assumption with

other diO assumptions in literature. Finally, we only use

the existence of diO-for-pcS for a simple circuit family

for our result, so even if general purpose diO-for-pcS

does not exist, we think it is plausible that diO-for-pcS

exists for the specific family of circuits we need for our

result. (See Assumption 22 for the exact pcS family for

which we require a diO.)

a) Final thoughts on our assumptions.: In conclu-

sion, we view each of our three assumptions as plau-

sible. Moreover, each of assumptions has at least some

evidence that is hard to refute: NIWIs exist based on

a widely-believed assumption, refuting CRKHFs would

require giving the first non-contrived separation between

the standard and the Random Oracle model, and despite

many attempts (e.g., [BP15b], [GGHW17], [BSW16])

to refute diO, the question is still open, especially for

the particular diO-for-pcS version. Thus, refuting any

of the assumptions would constitute a breakthrough in

cryptography.

III. PRELIMINARIES

A function g : N → R≥0 is said to be negligible

if g(n) = n−ω(1). Let PPT be an abbreviation for

probabilistic polynomial-time Turing machine.

For x ∈ {0, 1}n and r ∈ N, we use Br(x) to denote

the (Hamming) ball of radius r around x, i.e., {z ∈
{0, 1}n | ‖x− z‖1 ≤ r}. Furthermore, we use diam(S)
for a set S ⊆ {0, 1}n to denote the (Hamming) diameter

of S, i.e., maxx,x′ ∈S ‖x− x′‖1.

A. Dataset and Adjacency

For a domain X , we view a dataset D as a histogram

over the domain X , i.e., D ∈ Z
X
≥0 where Dx denotes

the number of times x ∈ X appears in the dataset. The

size of the dataset is defined as ‖D‖1 :=
∑

x∈X Dx. We

write Xm as a shorthand for the set of all datasets of

size m, and X ∗ for the set of all datasets over domain

X . Two datasets are adjacent iff ‖D − D′‖1 = 1, i.e.,

one of the datasets is a result of adding or removing a

single row from the other dataset.

B. Mechanism, Utility Function, and Usefulness

A mechanism M is a randomized algorithm that takes

in a dataset D ∈ X ∗ and outputs an element from a set

Y . The utility of a mechanism is measured by a utility

function u, which is a polynomial-time deterministic

algorithm that takes in a dataset D ∈ X ∗ together with a

response y ∈ Y and outputs 0 or 1 (whether the response

is good for the dataset). We say that the mechanism M
is α-useful for utility u iff Pr[u(D,M(D)) = 1] ≥ α.

Below, we will often discuss an ensemble M =
{Mn}n∈N of mechanisms where8 Mn : X ∗n → Yn.

We say that an ensemble of mechanisms is efficient if

Mn on input D ∈ Xm
n runs in time poly(n,m). For

an ensemble u = {un}n∈N of utility functions and

α = {αn ∈ [0, 1]}n∈N, we say that M is α-useful with

respect to u iff Mn is αn-useful with respect to un for

all n ∈ N.

For brevity, we will sometimes refer to “ensemble of

mechanisms” simply as “mechanism” and “ensemble of

utility functions” simply as “utility function” when there

is no ambiguity.

8It is always implicitly assumed that Xn,Yn are of size poly(n).
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C. Notions of Differential Privacy

We now define the notions of DP that will be used

throughout the paper.

(Statistical) Differential Privacy. The standard (statis-

tical) notion of DP can be defined in terms of the

following notion of indistinguishability.

Definition 6 (Statistical Indistinguishability). Distribu-

tions P , Q are said to be (ε, δ)-indistinguishable, de-

noted P ≈ε,δ Q, if for all events (measurable sets) E , it

holds for (D0,D1) = (P,Q) and (Q,P ) that

Pr
X∼D0

[X ∈ E ] ≤ eε · Pr
X∼D1

[X ∈ E ] + δ .

For simplicity, we use ≈ε to denote ≈ε,0.

Definition 7 (Statistical Differential Privacy

(SDP) [DMNS06], [DKM+06]). For ε, δ > 0, a

mechanism M is said to be (ε, δ)-SDP if and only

if for every pair D,D′ of adjacent datasets, we

have that M(D) ≈ε,δ M(D′). We say that an

ensemble M = {Mn}n∈N is (ε, δ)-SDP for sequences

ε = {εn}n∈N and δ = {δn}n∈N if Mn is (εn, δn)-SDP
for all n ∈ N.

Computational Differential Privacy. The notion of com-

putational DP relaxes the notion of indistinguishability

to a computational version, where the privacy holds only

with respect to computationally bounded adversaries.

Definition 8 (Computational Indistinguishability). Two

ensembles of distributions P = {Pn}n∈N and Q =
{Qn}n∈N, where Pn and Qn are supported over

{0, 1}p(n) for some polynomial p(·), are said to be ε-

computationally-indistinguishable for a sequence ε =
{εn}n∈N, denoted P ≈c

ε
Q, if there exists a negligible

function negl(·) such that for any PPT adversary A, it

holds for (D0,D1) = (Pn, Qn) and (Qn, Pn) that

Pr
X∼D0

[A(X) = 1] ≤ eεn Pr
X∼D1

[A(X) = 1] + negl(n)

In the special case of ε = 0, we suppress the subscript

and simply write P ≈c Q.

Throughout, when we refer to a sequence

{(Dn, D
′
n)}n∈N of adjacent datasets, it is always

assumed that Dn ∈ X
mn
n , D′n ∈ X

m′
n

n are of sizes

mn,m
′
n = poly(n).

Definition 9 (Computational Differential Privacy

(CDP) [MPRV09]). An ensemble M = {Mn}n∈N
of mechanisms is said to be ε-CDP for a sequence

ε = {εn}n∈N, if for any sequence {(Dn, D
′
n)}n∈N

of adjacent datasets, it holds that {Mn(Dn)}n∈N ≈
c
εn

{Mn(D
′
n)}n∈N.

This definition is often referred to as

indistinguishability-based CDP (IND-CDP) in previous

works [MPRV09], [GKY11], [BCV16]. Since we only

use this notion for our main result, we refer to it simply

as CDP. The other definition of CDP used in previous

works is simulation-based:

Definition 10 (SIM-CDP [MPRV09]). An ensemble

M = (Mn)n∈N of mechanisms is said to be ε-SIM-CDP

if there exists an (εn, 0)-SDP ensemble {M ′n}n∈N of

mechanisms such that for any sequence {Dn ∈ X
∗
n}n∈N

of datasets, with size of Dn being at most poly(n), it

holds that Mn(Dn) ≈
c M ′n(Dn).

It should be noted that SIM-CDP cannot be used

for the separation we are looking for. Specifically, if

{Mn}n∈N is ε-SIM-CDP, we may use {M ′n}n∈N as

our (ε,0)-SDP mechanism. Since the utility function

runs in polynomial time, it follows immediately

that, if {Mn}n∈N is α-useful, then {M ′n}n∈N is also

(α − o(1))-useful. Due to this, we will not consider

SIM-CDP again in this paper.

Another point to note is that unlike prior work (e.g.

[BCV16]) we use both (ε, δ) parameters for SDP, but

only ε parameter for CDP, since δ is always assumed

to be negligible for CDP. Our lower bounds for SDP in

fact work for δ that is not negligible, which only makes

the result stronger.

Calculus of≈ and≈c. The following properties are well-

known.

Fact 11. The notions of (ε, δ)-indistinguishability and

ε-computational-indistinguishability satisfy:

⊲ Basic Composition: If P0 ≈ε,δ P1 and P1 ≈ε′,δ′ P2,

then P0 ≈ε+ε′,δ+δ′ P2. Similarly, if P0 ≈
c
ε
P1 and

P1 ≈
c
ε
′ P2, then P0 ≈

c
ε+ε′ P2.

⊲ Post-processing: If P ≈ε,δ Q, then for all (ran-

domized) functions f , it holds that f(P ) ≈ε,δ f(Q).
Similarly, if P ≈c

ε
Q, then for all PPT algorithms A,

it holds that A(P ) ≈c
ε
A(Q).

IV. LOW DIAMETER SET PROBLEM AND NEARBY

POINT PROBLEM

In this section, we introduce the problems that we

will use in our separation. Before that, we will describe

a simplifying assumption that we can make about the

inputs.
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A. Simplification of Input Representation

Recall that so far a dataset may contain multiple

copies of an element. Below, however, it will be more

convenient to only discuss the case where each element

appears only once, i.e., D ∈ {0, 1}X .

This is sufficient since if we have a utility function

u : {0, 1}X ×Y → {0, 1} defined only on D ∈ {0, 1}X ,

we can easily define the utility function u : NX × Y →
{0, 1} by

u(D, r) =

{
u(D, r) if D ∈ {0, 1}X ,

1 otherwise.

In other words, the utility function considers any re-

sponse good for datasets with repetition. Clearly, if u
is efficiently computable, then so is u. Furthermore,

suppose that we have an ε-CDP mechanism M =
{Mn}n∈N for u = {un}n∈N. For every dataset D, let D
be defined by Di = min

{
Di, 1

}
. Then, we may define

M =
{
Mn

}
n∈N

by M (D) = M(D). It is easy to see

that M remains ε-CDP. Furthermore, if M is α-useful

for u, then M remains α-useful for u.

Finally, note that a lower bound for DP algorithms

restricted to non-repeated datasets trivially implies a

lower bound against all datasets.

Due to this, we will henceforth focus our attention

only on the datasets D ∈ {0, 1}X . Furthermore, through-

out the remainder of this paper, we will always pick

Xn = [n]. This further simplifies the input representation

to be just a bit vector x ∈ {0, 1}n. We will define an

input of our problem in this way. Furthermore, we will

henceforth use x instead of D to denote the input dataset.

B. Nearby Point Problem

We will start by defining our first problem, which

asks to output a point that is close to the input point

if the latter belongs to some set R. As we noted in

the introduction, when R is the set of all points (i.e.,

Rn = {0, 1}n), this is exactly the same as the problem

considered in blatant non-privacy [DN03], [DMT07]. As

we will see later, the presence of the set R is due to our

use of hashing, which is required in our proof for the

CDP mechanism.

Definition 12 (τ -Nearby R-Point Problem). The nearby

point problem parameterized by sequences {τn ∈ N}n∈N
and {Rn ⊆ {0, 1}

n}n∈N is denoted by NBPτ,R. For

input x ∈ {0, 1}n and output y ∈ Yn = {0, 1}n, the

utility is defined as:

uNBP

τn,Rn
(x, y) := 1 {‖x− y‖1 ≤ τn or x /∈ Rn}

For brevity, we will assume throughout that Rn is

efficiently recognizable and henceforth we do not state

this explicitly. Note that this assumption implies that the

utility function defined above is efficiently computable.

The nearby point problem will be primarily used for

proving the lower bounds against SDP.

C. Verifiable Low Diameter Set Problem

Next, we define circuit-based tasks for which we will

give CDP mechanisms. To do so, we need to first define

a “τ -diameter verifier”.

Definition 13 (τ -Diameter Verifier). For a sequence

τ = {τn}n∈N of integers, we say that an efficiently

computable (deterministic) verifier V = {Vn}n∈N is a

τ -diameter verifier for circuits of size s(n) if it takes

as input a circuit C : {0, 1}n → {0, 1} of (polynomial)

size s(n) and a proof π of size poly(n), and outputs

Vn(C, π) = 1 only if diam(C−1(1)) ≤ τn.

We can now define the (verifiable) low diameter set

problem as follows:

Definition 14 (Verifiable τ -Diameter R-Set Problem).

The verifiable low diameter set problem parameterized

by sequences τ = {τn}n∈N, R = {Rn ⊆ {0, 1}
n}n∈N,

and τ -diameter verifier V = {Vn}n∈N is denoted by

VLDSτ,R,V . The input, output, and utility are defined as

follows:

⊲ Input: x ∈ {0, 1}n.

⊲ Output: circuit C and a proof π, both of size poly(n).
⊲ Utility: uVLDS

τn,Rn,Vn
(x, (C, π)) := 1 {Vn(C, π) = 1}

and 1 {C(x) = 1 or x /∈ Rn}.

For convenience, we also define the following utility

function

ueval

R (x,C) := 1 {C(x) = 1 or x /∈ R} .

Note that this does not correspond to a hard task,

because a circuit that always outputs one is 1-useful.

Nonetheless, it will be convenient to state usefulness of

some intermediate algorithms via this utility function.

D. From Low Diameter Set Problem to Nearby Point

Problem

Below we provide a simple observation that reduces

the task of proving an SDP lower bound for the verifiable

low diameter set problem to that of the nearby point

problem. (Note here that the SDP mechanisms consid-

ered below can be computationally inefficient.)

Lemma 15. If there is an (ε, δ)-SDP α-useful mecha-

nism for the VLDSτ,R,V problem, then there is an (ε, δ)-
SDP α-useful mechanism for the NBPτ,R problem.
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Proof. Let M be an (ε, δ)-SDP α-useful mechanism for

the VLDSτ,R,V problem. We will construct an (ε, δ)-
SDP α-useful mechanism M ′ for the NBPτ,R problem.

The mechanism M ′n on input dataset x ∈ {0, 1}n

works as follows. First, let (C, π) ← Mn(x). If

Vn(C, π) = 1, then output the lexicographically first

element of C−1(1) (else, output 0n). This completes our

description of M ′.
Since M is (ε, δ)-SDP, we have that M ′ is also (ε, δ)-

SDP by post-processing. It remains to show that M ′ is

α-useful. Fix some input x ∈ {0, 1}n. If x /∈ Rn, then

any output satisfies utility. Thus, it suffices to consider

the case where x ∈ Rn. With probability αn, we have

that Vn(C, π) = 1 (which implies that C−1(1) has

diameter at most τn), and x ∈ C−1(1). Consequently,

the distance between x and the lexicographically first

element of C−1(1) is at most τn. So with probability at

least αn, the output of M ′ is useful for x, as desired.

V. CDP MECHANISM FOR VERIFIABLE LOW

DIAMETER SET PROBLEM

In this section we build a CDP mechanism for the

verifiable low diameter set problem. We establish the

following result:

Theorem 16. Suppose that Assumptions 18, 22 and 26

hold. Then, for all constant εCDP > 0 and τ ={
τn = n0.9

}
n∈N

, there exists a τ -diameter verifier V
and a sequence R = {Rn}n∈N of sets of sizes |Rn| ≥
2n/no(logn), such that there exists an εCDP-CDP mech-

anism that is (1− on(1))-useful for uVLDS
τ,R,V .

As discussed in the overview, we first build a mecha-

nism that is CDP but without verifiability using collision-

resistant keyless hash functions and differing-inputs ob-

fuscators (Section V-A). We then turn it into a verifi-

able one using non-interactive witness indistinguishable

proofs (Section V-B).

A. CDP Mechanism without Verifiability

In this section, we construct our first CDP mecha-

nism (Algorithm 3). We depart from the overview in

Section II slightly and do not prove a non-adaptive query

lower bound explicitly. Instead, we directly show in

Section V-A2 how to sample the appropriate differing-

inputs circuit family. This can be then easily turned into

our CDP mechanism via diO in Section V-A3.

1) Additional Preliminaries: Cryptographic

Primitives: Throughout this section, we will

repeatedly use the so-called randomized response

(RR) mechanism [War65]. Specifically, RRε is an

algorithm that takes in x ∈ {0, 1}n and outputs

x̃ ∈ {0, 1}n, where x̃i = xi with probability eε

1+eε

independently for each i ∈ [n]. It is well-known (and

very simple to verify) that RRε is ε-SDP.

Collision-Resistant Keyless Hash Functions. In our con-

struction, we will use the Collision-Resistant Keyless

Hash Functions (CRKHFs) [BKP18]. The formal defi-

nition is as given below.

Definition 17 (Collision-Resistant Keyless Hash

Functions [BKP18]). A sequence of hash functions{
Hn : {0, 1}n → {0, 1}γ(n)

}
n∈N

is K-collision

resistant for advice length ζ for sequences

K = {Kn}n∈N, ζ = {ζn}n∈N if, for any PPT A
and a sequence {zn}n∈N of advices where |zn| = ζn, it

holds for (Y1, . . . , YKn
)← A(1n; zn) that

Pr

[
Y1, . . . , YKn

are distinct &

Hn(Y1) = · · · = Hn(YKn
)

]
≤ negl(n).

We skip the subscript n when it is clear from context.

In [BKP18], the hash value length γ(n) is assumed

to be either linear, i.e., γ(n) = Ω(n), or polynomial,

i.e., γ(n) = nΘ(1). However, we need a collision-

resistant hash function with a much smaller γ(n), namely

O(log2 n). We remark that this is still very much plau-

sible: as long as γ(n) is ω(logn), the “guess-and-

check” algorithm will only produce a collision with only

negligible probability. A more precise statement of our

assumption is stated below.

Assumption 18. There is an efficiently computable se-

quence H = {Hn}n∈N of hash functions with hash value

length γ(n) = o(log2 n) such that, for any constant

c1 > 0, there exists a constant c2 > 0 such that the hash

function sequence is K-collision resistant for advice

length ζ where Kn = nc2 and ζn = nc1 .

We remark that, for the existence of CDP mechanism

(shown in this section), we will only use the multi-

collision-resistance without relying on the assumption on

the value of γ. The latter is only used to show that no

SDP mechanism exists for the problem (Section VII).

a) Differing-Inputs Obfuscators for Public-Coin

Samplers.: For any two circuits C0 and C1, a differing-

inputs obfuscator diO [BGI+12] guarantees that the

non-existence of an efficient adversary that can find an

input on which C0 and C1 differ implies that diO(C0)
and diO(C1) are computationally indistinguishable. For

our application, it suffices to assume a weaker notion,

namely that of differing-inputs obfuscator for public-coin

samplers, as defined below.
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Definition 19 (Public-Coin Differing-Inputs Circuit

Sampler). An efficient non-uniform sampling algorithm

Sampler = {Samplern} is a public-coin differing-inputs

sampler for the parameterized collection C = {Cn} of

circuits if the output of Samplern is distributed over

Cn × Cn and for every efficient non-uniform algorithm

A = {An}, there exists a negligible function negl(·)
such that for all n ∈ N:

Pr
θ



C0(y) 6= C1(y) :
(C0, C1)← Samplern(θ),
y ← An(θ)


 ≤ negl(n).

Here, Samplern is a deterministic algorithm and the only

source of randomness is the seed θ.

Definition 20 (Differing-Inputs Obfuscator for Public–

Coin Samplers (cf. [IPS15])). A uniform PPT diO is

a differing-inputs obfuscator for public-coin samplers

for the parameterized circuit family C = {Cn} if the

following conditions are satisfied:

⊲ Correctness: For all n ∈ N, for all C ∈ Cn, for all

inputs y, we have that

Pr[C′(y) = C(y) : C′ ← diO(1n, C)] = 1.

⊲ Polynomial slowdown: There exists a universal poly-

nomial p(·) such that for all C ∈ Cn, it holds that

Pr[|C′| ≤ p(|C|) : C′ ← diO(1n, C)] = 1.

⊲ Differing-inputs: For every public-coin differing in-

puts sampler Sampler = {Samplern} for C, and

every (not necessarily uniform) PPT distinguisher

D = {Dn}, there exists a negligible function negl
such that the following holds for all n ∈ N: For

(C0, C1)← Samplern(θ)

∣∣∣∣
Prθ [Dn(diO(1

n, C0)) = 1]
−Prθ [Dn(diO(1

n, C1)) = 1]

∣∣∣∣ ≤ negl(n).

We note that the notion of diO-for-pcS is in fact weaker

than the notion of general public-coin diO as given

by [IPS15]. We elaborate on this comparison in Ap-

pendix A. Whenever n is clear from context, we use

diO(C) to denote diO(1n, C) for simplicity. When we

want to be explicit about the randomness ρ (of poly(n)
bit length) used by diO we will denote it as diOρ(C).

We only need the existence of a differing-inputs obfus-

cator for a specific family of circuits. This circuit family

will be defined later and therefore we defer formalizing

our assumption to Section V-A3.

Algorithm 1 Differing-Inputs Circuit Family Sampler

LDS-Samplern.

Parameters: Adjacent datasets x, x′ ∈ {0, 1}n, hash

value υn ∈ {0, 1}
γ(n), privacy parameter ε > 0, radius

r, r̃ > 0.

Randomness: θ ∼ RRε(0
n).

Output: Circuits C0, C1.

x̃← x⊕ θ (bit-wise XOR; equivalent to RRε(x))
C0 ← circuit that on input z returns

1
{
z ∈ Br(x) ∩Br̃(x̃) ∩H−1n (υn)

}

C1 ← circuit that on input z returns

1
{
z ∈ Br(x

′) ∩Br̃(x̃) ∩H−1n (υn)
}

return (C0, C1)

2) Public-Coin Differing-Inputs Circuits from

CRKHFs: The first step of our proof is to construct a

differing-inputs circuit family based on CRKHFs. Our

sampler is described in Algorithm 1.

We next prove that the above sampler is a public-coin

differing-inputs sampler, which means that any efficient

adversary, even with the knowledge of x̃ (which is the

only source of randomness), cannot find an input on

which C0 and C1 differ. The proof starts by noticing that

any input that differentiates C0, C1 must, by definition

of the circuits, have hash value υn. Therefore, if there

were an adversary that can find a differing input, then

we could run it multiple times to get Y1, . . . , YK that

have the same hash value. (See Algorithm 2 below.)

However, our proof is not finished yet, since it is possible

that Y1, . . . , YK are not distinct. Indeed, the crux of the

construction is that, due to how we select x̃ and define

the circuits, a fixed Y will be a differing input with

negligible probability9. It follows that Y1, . . . , YK must

be distinct w.h.p. This is formalized below.

Lemma 21. Let H be as in Assumption 18. For any

constant ε > 0, choosing r = 0.5n0.9 and r̃ = 1
1+eε

n+
n0.6 makes LDS-Samplern (Algorithm 1) a public-coin

differing-inputs sampler.

Proof. Suppose for the sake of contradiction that for

some adjacent x, x′ ∈ {0, 1}n, there exists a PPT ADI

such that

Pr
θ



C0(y) 6= C1(y) :
(C0, C1)← LDS-Samplern(θ),
y ← ADI

n (θ)


 ≥ n−c. (1)

9It is also simple to see that this property suffices to prove a non-
adaptive query lower bound as discussed in Section II.
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for some constant c > 0. Furthermore, let c1 be such that

the total size of the descriptions of ADI
n , LDS-Samplern

is at most nc1 . Finally, let c2 > 0 be as in Assumption 18

and K = nc2 .

Algorithm 2 Collision-Resistant Hash Function Adver-

sary ACRH
n .

Parameter: The target number of collisions K ∈ N,

constant c > 0.

Advice: Descriptions of ADI
n , LDS-Samplern.

Output: Y1, . . . , YK ∈ {0, 1}
n or ⊥.

i← 0
for j = 1, . . . ,K · nc+1 do

θj ← RRε(0
n)

(Cj
0 , C

j
1)← LDS-Samplern(θ

j)
yj ← ADI

n (θj)
if Cj

0(y
j) 6= Cj

1(y
j) then

i← i+ 1
Yi ← yj

if i ≥ K then

break

if i < K then

return ⊥
else

return Y1, . . . , YK

Consider the adversary ACRH
n for collision-resistant

hash function described in Algorithm 2. First, note that

by (1) and a standard concentration inequality, the proba-

bility that ACRH
n outputs⊥ is on(1). Furthermore, notice

that C0, C1 can differ on y only if Hn(y) = υn, meaning

that Hn(Yi) = υn always. Therefore, it suffices for us

to show that the probability that Y1, . . . , YK are distinct

is 1 − on(1). By a union bound, we have that ACRH
n

violates the collision-resistance of H as desired.

Thus, we are only left to show that Y1, . . . , YK are

not distinct with probability o(1). To see that this is the

case, notice that

Pr[Y1, . . . , YK are not distinct]

≤
∑

1≤i1<i2≤K

Pr[Yi1 = Yi2 ]. (2)

Let us now bound Pr[Yi1 = Yi2 ] for a fixed pair i1 < i2.

Suppose that we fix a value of Yi1 and suppose that Yi1

is assigned at step j1 ∈ [1, . . . ,K · nc+1]. Conditioned

on these, notice further that

Pr[Yi2 = Yi1 ] ≤ Pr[∃j > j1, y
j = Yi1 ]

≤ Pr[∃j > j1, C
j
0(Yi1 ) 6= Cj

1(Yi1)]

≤
∑

j>j1

Pr[Cj
0(Yi1 ) 6= Cj

1(Yi1)]. (3)

Now, let us bound the RHS probability for a fixed j >
j1. To see this, first observe that Yi1 must belong to

the symmetric difference Br(x)△Br(x
′); otherwise, we

must have Cj1
0 (Yi1) = Cj1

1 (Yi1), a contradiction to our

definition of Yi1 .

Now, let x̃j denote the x̃ selected by LDS-Sampler when

constructing Cj
0 , C

j
1 . We have

Pr[Cj
0(Yi1 ) 6= Cj

1(Yi1)] ≤ Pr[Yi1 ∈ Br̃(x̃
j)]. (4)

Let d := ‖Yi1 − x‖1 and d̃ := ‖Yi1 − x̃j‖1. Since Yi1 ∈
Br(x)△Br(x

′), it holds that d ∈ {r, r + 1}. Thus, d̃
is distributed as Bin(d, eε

1+eε
) + Bin(n − d, 1

1+eε
). We

have Ex̃j∼RRε(x) d̃ = 1
1+eε

n + eε−1
eε+1d. By Bernstein’s

inequality,

Pr[d̃ ≤ r̃] ≤ exp

(
−

t2

eε

(1+eε)2n+ 2
3 t

)

≤ exp(−Ω(n0.8)),

where t = Ex̃j∼RRε(x) d̃− r̃ ≥ eε−1
eε+1 (0.5n

0.9−1)−n0.6.

Plugging into (4), we have

Pr[Cj
0(Yi1 ) 6= Cj

1(Yi1)] ≤ exp(−Ω(n0.8)). (5)

Combing (2), (3), (5), we have

Pr[Y1, . . . , YK are not distinct]

≤ K3nc+1 · exp(−Ω(n0.8))

≤ exp(−Ω(n0.8)),

where the last inequality follows from K = nO(1).

3) From Differing-Inputs Circuits to CDP: We will

next construct a CDP mechanism from the previously

constructed differing-inputs circuit family. First, let us

state the assumption we need here:

Assumption 22. For H as in Assumption 18, any con-

stant ε > 0 and r = 0.5n0.9, r̃ = 1
1+eε

n + n0.6, there

exists a differing-inputs obfuscator diO for the sampler

LDS-Sampler.

Our mechanism can then be defined by simply apply-

ing the obfuscator to the circuit generated in the same

way as C1 in LDS-Samplern. This mechanism MdiO

is described more formally in Algorithm 3. The CDP

property of the mechanism follows rather simply from

the definition of diO and the fact that RRε is ε-SDP.

Theorem 23. Under Assumptions 18 and 22, MdiO

(Algorithm 3) is ε-CDP.
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Distribution H0:

x̃← RRε(x)
C(z) := 1

{
z ∈ Br(x) ∩Br̃(x̃) ∩H−1n (υn)

}

return diOρ(C)

Distribution H1:

x̃← RRε(x)
C(z) := 1

{
z ∈ Br(x

′) ∩Br̃(x̃) ∩H−1n (υn)
}

return diOρ(C)

Distribution H2:

x̃← RRε(x
′)

C(z) := 1
{
z ∈ Br(x

′) ∩Br̃(x̃) ∩H−1n (υn)
}

return diOρ(C)

Fig. 1: Hybrids in proof of Theorem 23. H0 is precisely MdiO(x) and H2 is precisely MdiO(x
′).

Algorithm 3 CDP mechanism MdiO.

Parameter: Differing-inputs obfuscator diO, hash

function H , parameters ε, r, r̃ (as in Assumption 22),

and a hash value υn ∈ {0, 1}
γ(n).

Input: Dataset x ∈ {0, 1}n.

Output: Circuit : {0, 1}n → {0, 1}.
x̃← RRε(x).
C ← circuit that on input z returns

1
{
z ∈ Br(x) ∩Br̃(x̃) ∩H−1n (υn)

}

Ĉ ← diOρ(C) for randomness ρ

return Ĉ

Proof. For any adjacent datasets x, x′, we want to show

thatMdiO(x) ≈
c
εMdiO(x

′). We show this using an in-

termediate hybrid, as shown in Figure 1, where changes

from one hybrid to next are highlighted in red.

⊲ Distribution H0 is precisely MdiO(x).
⊲ Distribution H1 is a variant of H0, where we change

x to x′ in the definition of C, but continue to sample

x̃ ∼ RRε(x).
⊲ Distribution H2 is a variant of H1, where we sample

x̃ ∼ RRε(x
′). Note that this is exactly MdiO(x

′).

We show that H0 ≈
c
ε H2 by showing that H0 ≈

c H1

and H1 ≈ε,0 H2 and using basic composition (Fact 11).

We have from Lemma 21, that under Assumption 18,

the joint distribution of x̃ ∼ RRε(x), and circuits C
in H0 and H1 is precisely the output of LDS-Sampler.

Thus, from Assumption 22, it follows that H0 ≈
c H1 by

post-processing (Fact 11). Next, we have that H1 ≈(ε,0)

H2, since the only difference between the two is the

distribution of x̃, and RRε(x) ≈(ε,0) RRε(x
′) (again by

post-processing).

Finally, its utility also follows simply from a standard

concentration inequality.

Theorem 24. When choosing r̃ = 1
1+eε

n+ n0.6, MdiO

is (1− o(1))-useful for ueval

H
−1
n (υn)

.

Proof. Consider any dataset x. If x /∈ H−1n (υn), then,

by definition of uLDS

H
−1
n (υn)

, the utility is 1. Therefore, we

may only consider the case where x ∈ H−1n (υn).

In this case, Pr
[
ueval

H
−1
n (υn)

(x,MdiO(x)) = 1
]

is equal

to Prx̃∼RRε(x)[x ∈ Br̃(x̃)]. Notice that ‖x − x̃‖1 is

distributed as Bin(n, 1
1+eε

). Therefore, applying Bern-

stein’s inequality, we have

Pr
x̃∼RRε(x)

[x /∈ Br̃(x̃)] ≤ exp

(
−

t2

eε

(1+eε)2n+ 2
3 t

)

≤ exp(−Ω(n0.2)),

where t = r̃ − n
1+eε

= n0.6. Thus, we have

Pr
[
ueval

H
−1
n (υn)

(x,MdiO(x)) = 1
]

= 1 − o(1) as de-

sired.

B. CDP Mechanism for VLDS

1) Witness-Indistinguishable Proofs:

For any NP language L with associated

verifier VL, let RL denote the corresponding

relation {(x,w) : x ∈ L and VL(x,w) = 1}. Let

RL(x) := {w : (x,w) ∈ RL}.

Definition 25 (NIWI Proof System). A pair (P, V ) of

PPT algorithms is a non-interactive witness indistin-

guishable (NIWI) proof system for an NP relation RL

if it satisfies:

Correctness: for every (x,w) ∈ RL

Pr[V (x, π) = 1 : π ← P (x,w)] = 1.

Soundness: there exists a negligible function negl such

that for all x /∈ L and π ∈ {0, 1}∗:

Pr[V (x, π) = 1] ≤ negl(|x|).
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Algorithm 4 Sub-routine Maux
diO.

Parameter: Differing-inputs obfuscator diO, hash

function H , parameters ε, r, r̃ (as in Assumption 22),

and a hash value υ ∈ {0, 1}γ(n).
Input: Dataset x ∈ {0, 1}n.

Output: Circuit : {0, 1}n → {0, 1}.
x̃← RRε(x).
C ← circuit that on input z returns

1
{
z ∈ Br(x) ∩Br̃(x̃) ∩H−1n (υ)

}

Ĉ ← diOρ(C) for randomness ρ

return Ĉ, x̃, ρ

Witness Indistinguishability: There exists a polyno-

mial ζ(·) and a negligible function negl(·), such that

for any sequence I = {(x,w0, w1) : w0, w1 ∈ RL(x)}
and for all circuits C of size at most ζ(|x|):
∣∣∣∣
Prπ0←P (x,w0)[C(x, π0) = 1]
−Prπ1←P (x,w1)[C(x, π1) = 1]

∣∣∣∣ ≤ negl(|x|).

Assumption 26 ( [BOV07], [GOS12], [BP15a]). There

exists a NIWI proof system for any language in NP.

2) Making Utility Function Efficient Using Witness-

Indistinguishable Proofs: We consider the NP language

L̂ defined below, and use the corresponding NIWI veri-

fier to define the utility for VLDS.

Definition 27. Language L̂ consists of all circuits Ĉ
with a top AND gate, namely of the form Ĉ0 ∧ Ĉ1

such that there exists some x, x̃ and ρ, such that at

least one of Ĉ0 or Ĉ1 can be obtained as diOρ(C)
where C is a circuit that takes in z and computes

1
{
z ∈ Br(x) ∩Br̃(x̃) ∩H−1(υ)

}
.

A “witness” for Ĉ ∈ L̂ is given by w = (b, x, x̃, ρ),
where b ∈ {0, 1} indicates whether the witness is

provided for Ĉ0 or for Ĉ1. Let (P̂ , V̂ ) denote the

NIWI proof system for L (guaranteed to exist by

Assumption 26).

We consider the verifiable low diameter set problem

VLDS
τ,H−1(υ),V̂ . Note that Ĉ ∈ L̂ automatically implies

that Ĉ encodes a τ -diameter set (since Ĉ = Ĉ0 ∧ Ĉ1, it

suffices to certify that at least one of Ĉ0 or Ĉ1 encodes

a τ -diameter set) where τ = 2r = n0.9.

Theorem 28. Under Assumptions 18, 22 and 26,Mcdp

(Algorithm 5) is 2ε-CDP.

Proof. For any adjacent datasets x, x′, we want to show

thatMcdp(x) ≈
c
2εMcdp(x

′). We show this through the

means of intermediate hybrids, as shown in Figure 2,

Algorithm 5 CDP mechanism Mcdp.

Input: Dataset x ∈ {0, 1}n, radius parameters r, r̃ >
0 and privacy parameter ε.

Output: Circuit C and a proof string π.

Ĉ0, x̃0, ρ0 ←M
aux
diO(x)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (0, x, x̃0, ρ0)) (NIWI proof for Ĉ ∈ L̂
using witness (0, x, x̃0, ρ0)).
return Ĉ, π

where changes from one hybrid to next are highlighted

in red.

⊲ Distribution H0 is precisely Mcdp(x).

⊲ Distribution H1 is a variant of H0, where Ĉ1 is

generated through x′ instead of x.

⊲ Distribution H2 is a variant of H1, where we switch

π from corresponding to witness (0, x, x̃0, ρ0) to the

witness (1, x′, x̃1, ρ1).
⊲ Distribution H3 is a variant of H2, where Ĉ0 is also

generated through x′ instead of x.

⊲ Distribution H4 is a variant of H3, where we switch

π from corresponding to witness (1, x′, x̃1, ρ1) to

the witness (0, x′, x̃0, ρ0). Note that this is exactly

Mcdp(x
′).

From Assumption 26 and post-processing (Fact 11), we

have that H1 ≈
c H2, and similarly H3 ≈

c H4.

Next, we show that H0 ≈
c
ε H1. Note that the output

of H0 and H1 do not depend on x̃1 and ρ1. Thus

the only material change between H0 and H1 is that

Ĉ1 ∼ MdiO(x) in H0 versus Ĉ1 ∼ MdiO(x
′) in

H1. From Theorem 23, we have that MdiO(x) ≈
c
ε

MdiO(x
′). Thus, it follows that H0 ≈

c
ε H1 by post-

processing (Fact 11). Similarly, it follows that H2 ≈
c
ε

H3 (here we use that x̃0 and ρ0 are immaterial to the

final output of H2 and H3).

Combining these using basic composition (Fact 11),

we get that H0 ≈
c
2ε H4, thus implying that Mcdp is

2ε-CDP.

Corollary 29. Mcdp is (1 − o(1))-useful for

uVLDS

τ,H−1(υ),V̂
.

Proof. The utility for x /∈ H−1(υ) is trivially 1. Con-

sider x ∈ H−1(υ). Suppose the mechanism MdiO is

(1− η)-useful for ueval

H−1(υ). Since we sample Ĉ0 and Ĉ1

from MdiO independently we have that Ĉ(x) = 1 with

probability at least 1− 2η. Finally, note that the proof π
in the output of Mcdp is always accepted by V̂ . From
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Distribution H0:

Ĉ0, x̃0, ρ0 ←M
aux
diO(x)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (0, x, x̃0, ρ0))
return Ĉ, π

Distribution H1:

Ĉ0, x̃0, ρ0 ←M
aux
diO(x)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x

′)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (0, x, x̃0, ρ0))
return Ĉ, π

Distribution H2:

Ĉ0, x̃0, ρ0 ←M
aux
diO(x)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x

′)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (1, x′, x̃1, ρ1)).
return Ĉ, π

Distribution H3:

Ĉ0, x̃0, ρ0 ←M
aux
diO(x

′)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x

′)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (1, x′, x̃1, ρ1)).
return Ĉ, π

Distribution H4:

Ĉ0, x̃0, ρ0 ←M
aux
diO(x

′)

Ĉ1, x̃1, ρ1 ←M
aux
diO(x

′)

Ĉ = Ĉ0 ∧ Ĉ1

π ← P̂ (Ĉ, (0, x′, x̃0, ρ0))
return Ĉ, π

Fig. 2: Hybrids in proof of Theorem 28. H0 is precisely Mcdp(x) and H4 is precisely Mcdp(x
′).

Theorem 24, we have that η = o(1), and hence Mcdp

is 1− 2η = 1− o(1) useful for uVLDS

τ,H−1(υ),V̂
.

We end this section by proving Theorem 16. The

proof is essentially a straightforward combination of

the previous two results. The only choice left to make

is to select the hash value υ; we select it so that

the size of the preimage H−1(υ) is maximized. This

ensures that the set R = H−1(υ) has enough density as

required in Theorem 16. (Note: the density requirement

in Theorem 16 is not important for showing the existence

of a CDP mechanism, but instead is later used to show

the non-existence of SDP mechanisms.)

Proof of Theorem 16. Let H, τ, V̂ be as defined above.

Furthermore, let υ be such that H−1(υ) is maximized

and ε = εCDP/2. The fact that there exists an εCDP-

CDP mechanism that is (1−o(1))-useful for uVLDS

τ,R,V̂
fol-

lows immediately from Theorem 28 and Corollary 29.

Furthermore, by our choice of υ, notice that |R| =
|H−1(υ)| ≥ 2n/2γ(n) ≥ 2n/no(logn), where the latter

comes from our assumption on γ in Assumption 18.

VI. SDP LOWER BOUNDS FOR THE NEARBY POINT

PROBLEM

In this section, we will show that there is no O(1)-
SDP algorithm for the nearby point problem with target

threshold n0.9 as long as the set Rn is fairly dense, as

formalized below.

Theorem 30. For τ = {τn}n∈N and R =
{Rn ⊆ {0, 1}

n}n∈N such that τn ≤ n0.9 and |Rn| ≥
2n/no(logn) and for any constant ε,α > 0 and δ =
1/n27, no (ε, δ)-SDP mechanism is α-useful for uNBP

τ,R .

To prove Theorem 30, let us first recall the standard

“blatant non-privacy implies non-DP” proof10, which

corresponds to the case Rn = {0, 1}n. At a high-level,

these proofs proceed by showing that the error in each

coordinate is large by “matching” each x ∈ {0, 1}n with

another point x′ which is the same as x except with the

i-th bit flipped; a basic calculation then shows that (on

average) the i-th bit is predicted incorrectly with large

probability. Summing this up over all the coordinates

yield the desired bound.

As we are in the case where Rn 6= {0, 1}n, we

cannot use the proof above directly. Nonetheless, we can

still adapt the above proof. More specifically, instead

of looking at each coordinate at a time, we look at a

block of coordinates. For each block, we try to find a

matching in the same spirit as above, but we now allow

the x, x′ to have a larger distance; simple calculations

give us a lower bound on being incorrect in this block

(Section VI-B). We then “sum up” across all blocks to

get a large distance (Section VI-C). Even though we get

a large distance τ via this approach, the error proba-

bility (i.e. one minus usefulness) is small (i.e. o(1)).
Fortunately, we can overcome this using the so-called

DP hyperparameter tuning algorithm [LT19], [PS21]

(Section VI-D). This concludes our proof overview.

A. Additional Preliminaries: Tools from Differential Pri-

vacy

We will require several additional tools from DP

literature, which we list below for completeness.

Laplace Mechanism. The Laplace distribution with scale

parameter b > 0, denoted by Lap(b), is the probability

10Here we follow the proofs in [Sur19], [Man22].
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distribution over R with probability mass function z 7→
1
2b exp(−|z|/b).

Given a function f : X ∗ → R, its sensitivity is

defined as ∆(f) := maxD,D′ |f(D) − f(D′)|, where

the maximum is over all pair D,D′ of adjacent datasets.

The Laplace mechanism [DMNS06] is an ε-SDP

mechanism that simply outputs f(X) + Lap(∆(f)/ε).

Group Privacy. The following fact is well-known and is

often referred to as group privacy.

Fact 31 (Group Privacy (e.g., [Vad17])). Let M : X ∗ →
Y be an (ε, δ)-SDP mechanism and let D,D′ ∈ N

X be

such that ‖D − D′‖ ≤ t, then, we have M(D) ≈ε′,δ′

M(D′) where ε′ = tε and δ′ = eε
′
−1

eε−1 · δ.

DP Hyperparameter Tuning. We will also use the follow-

ing result of Liu and Talwar [LT19] on DP hyperparam-

eter tuning. We remark that some improvements in the

constants has been made in [PS21], by using a different

distribution of the number of repetitions. Nonetheless,

since we are only interested in an asymptotic bound, we

choose to work with the slightly simpler hyperparameter

tuning algorithm from [LT19].

The hyperparameter tuning algorithm from [LT19]

allows us to take any DP “base” mechanism Mbase,

which outputs a candidate y and a score q ∈ R, run

it multiple times and output a candidate with score that

is below a certain threshold.11 The precise description is

in Algorithm 6.

Algorithm 6 DP Hyperparameter Tuning Mtuning.

Parameters: Mechanism Mbase, Threshold s, Num-

ber of Steps T , Stopping Probability γ.

Input: Dataset D
for j = 1, . . . , T do

Let (y, q)←Mbase(D).
if q ≤ s then

return y (and halt)

With probability γ:

return ⊥ (and halt)

We will use the following DP guarantee of Mtuning,

which was shown in [LT19]12.

Theorem 32 (DP Hyperparameter Tuning [LT19]). For

all ε > 0, δ, γ ∈ [0, 1] and T ≥ 2/γ, if Mbase is (ε, δ)-
SDP, thenMtuning (Algorithm 6) is (2ε+1, 10e2ε·δ/γ).

11While DP Hyperparameter tuning is typically stated for choosing
based on score above a threshold, the formulations are equivalent.

12Note that this is a simplified version of [LT19, Theorem 3.1] where
we simply set ε0 = 1.

B. Weak Hardness

We start with a relatively weak hardness for the case

of τ = 0, i.e., the answer is considered correct iff it is

the same as the input. To prove this, we recall a couple

of facts.

The first is a simple relation between independent set

and maximum matching. Let ind(G) denote the size of

the maximum independent set of G.

Fact 33. For any graph G = (V,E), there exists

matching of size at least (|V | − ind(G))/2.

Let Hd denote the distance-d graph on the hypercube,

i.e., H
d = ({0, 1}n, E) where (x,x′) ∈ E iff ‖x −

x′‖1 ≤ d. Let
(

n
≤d

)
=
∑d

i=0

(
n
i

)
. The following standard

lower bound follows from a “packing argument”.

Fact 34. For any d ∈ N, ind(H2d+1) ≤ 2n/
(

n
≤d

)
.

We are now ready to prove a lower bound for the

nearby problem.

Theorem 35. For any R ⊆ {0, 1}n, d, ε, δ, let ε′ =

(2d + 1)ε and δ′ = eε
′
−1

eε−1 δ. Then, for any (ε, δ)-SDP
algorithm M , we have

∑

x∈R

Pr[M(x) 6= x] ≥ 0.5e−ε
′

(1− δ′)

(
|R| −

2n(
n
≤d

)
)
.

Proof. Let H2d+1[R] denote the subgraph of H2d+1 in-

duced on R. Notice that ind(H2d+1[R]) ≤ ind(H2d+1).
Therefore, by Fact 33 and Fact 34, we can con-

clude H
2d+1[R] contains a matching of size at least

m ≥
(
|R| − 2n/

(
n
≤d

))
/2. Let the matching be

(x1, x̃1), . . . , (xm, x̃m).
For each i ∈ [m], we have

Pr[M(xi) 6= xi] + Pr[M(x̃i) 6= x̃i]

≥ Pr[M(xi) = x̃i] + Pr[M(x̃i) 6= x̃i]

≥ e−ε
′

(Pr[M(x̃i) = x̃i]− δ′) + Pr[M(x̃i) 6= x̃i]

≥ e−ε
′

(Pr[M(x̃i) = x̃i] + Pr[M(x̃i) 6= x̃i]− δ′)

= e−ε
′

(1− δ′).

Adding this over all i ∈ [m] yields the claimed bound.

C. Boosting the Distance

We can now prove a hardness for larger τ by dividing

the coordinates into groups and applying the previously

derived weak hardness result on each group. We note

that the “non-usefulness” we get on the right hand side

is still insufficient for Theorem 30; this will be dealt with

in Section VI-D.
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Theorem 36. Let n = n′ · b′ for some n′, b′ ∈ N. For

any R ⊆ {0, 1}n, d, ε, δ, ζ, let ε′ = (2d + 1)ε and δ′ =
eε

′
−1

eε−1 δ. Then, for any (ε, δ)-SDP algorithm M , there

exists x ∈ R such that

Pr[uNBP

ζ·b′,R(M(x), x) = 0]

≥

(
0.5e−ε

′

(1− δ′)

(
1− 2n

|R|·(n′

≤d)

))
− ζ.

Proof. Let Bi := {(i−1)n′+1, . . . , in′} for all i ∈ [b′].
Furthermore, let R(Bi,z−Bi

) denote the set of all x ∈ R
such that x−Bi

= z−Bi
.

First, notice that
∑

x∈R

Pr[uNBP

ζ·b′,R(M(x), x) = 0]

=
∑

x∈R Ey←M(x) 1

{
|{i∈[n]|yi 6=xi}|

b′
> ζ
}

≥
∑

x∈R Ey←M(x) 1

{
|{i∈[b′]|yBi

6=xBi
}|

b′
> ζ
}

≥
∑

x∈R Ey←M(x)

[
Pri∈[b′][yBi

6= xBi
]− ζ

]

=
(

1
b′

∑
i∈[b′]

∑
x∈R Pr[M(x)Bi

6= xBi
]
)
− ζ|R|

≥ 1
b′

∑
i∈[b′]

z−Bi
∈{0,1}[n]\Bi

x∈R(Bi,z−Bi
)

Pr[M(x)Bi
6= xBi

]− ζ|R|.

For each fixed z−Bi
∈ {0, 1}[n]\Bi, consider the

mechanism M ′ : {0, 1}Bi → {0, 1}Bi defined by

M ′(xBi
) := Mi(xBi

◦ z−Bi
)|Bi

. It is clear that M ′

is (ε, δ)-SDP. Furthermore, observe that Pr[M(x)Bi
6=

xBi
] = Pr[M ′(x) 6= xBi

] for all x ∈ R(Bi,z−Bi
).

Therefore, by applying Theorem 35 and plugging it back

into the above, we get
∑

x∈R

Pr[uNBP

ζ·b′,R(M(x), x) = 0]

≥ 1
b′

∑
i∈[b′]
z−Bi

0.5e−ε
′

(1 − δ′)

(
|R(Bi,z−Bi

)| −
2n

′

(n′

≤d)

)

− ζ|R|

= 1
b′

∑
i∈[b′] 0.5e

−ε′(1− δ′)

(
|R| − 2n−n′

·2n
′

(n′

≤d)

)

− ζ|R|

=

(
0.5e−ε

′

(1− δ′)

(
|R| − 2n

(n′

≤d)

))
− ζ|R|.

Dividing by |R| then gives us the claimed bound.

D. Boosting the Failure Probability

We will now prove the last part of the lower bound,

which is to show that the existence of even slightly useful

mechanism also leads to an existence of a highly useful

mechanism, albeit at a slight increase in the distance

threshold. The formal statement and its proof are given

below; the proof uses the DP hyperparameter tuning

algorithm (Theorem 32).

Theorem 37. Suppose that there exists an (ε, δ)-SDP
mechanism M : {0, 1}n → {0, 1}n that is α-useful for

uNBP
τ,R . Then, for all C > 0, there exists an (ε′, δ′)-

SDP mechanism M̂ : {0, 1}n → {0, 1}n that is

(1 − 1/nC)-useful for uNBP
τ ′,R where ε′ = 4ε + 1, δ′ =

O
(

e4εnC lnn
α

· δ
)

and τ ′ = τ +O
(
lnn
α

)
.

Proof. First, let us construct the mechanism Mbase :
{0, 1}n → {0, 1}n × R as follows:

⊲ On input x ∈ {0, 1}n, first let y ←M(x).
⊲ Then, let q = ‖x− y‖1 + z where z ∼ Lap(1/ε).
⊲ Output (y, q).

Since M is (ε, δ)-SDP and the Laplace mechanism is

ε-SDP, the basic composition theorem implies that the

entire Mbase mechanism is (2ε, δ)-SDP.

Let T̂ = ln(5nC)/α. Let τ ′ = τ + 2 log(10nC T̂ )/ε.

We now apply Algorithm 6 with γ = 0.5/(nC T̂ ), T =
2/γ and threshold s = τ ′− log(10nC T̂ )/ε. Theorem 32

ensures that the resulting algorithm Mtuning is (4ε +

1, 10e4εδ/γ)-SDP. Our final mechanism M̂ is the mech-

anism that runs Mtuning. If the output is not ⊥, M̂

returns that output. Otherwise, M̂ returns an arbitrary

element of {0, 1}n. Since M̂ is a post-processing of

Mtuning, we have M̂ is also (4ε+ 1, 10e4εδ/γ)-SDP.

We will next show that Mtuning is (1 − 1/nC)-
useful for uNBP

τ ′,R. By definition of the utility function, this

immediately holds for any x /∈ R. Therefore, we may

only consider any x ∈ R. ConsiderMtuning on such an

x. Let yi, zi, qi denote the corresponding values of y, z, q
in the i-th run ofMbase. We consider the following three

events:

⊲ Let E1 denote the event that |‖xi − yi‖1 − qi| >
log(10nC T̂ )/ε for some i ∈ [T̂ ].

⊲ Let E2 denote the event that uτ,R(yi) = 0 for all

i ∈ [T̂ ].
⊲ Let E3 denote the event thatMtuning halts and returns

⊥ in the first T̂ steps.

Before we bound the probability of each event, no-

tice that, if none of E1, E2, E3 occurs, we must have

uNBP
τ ′,R(y) = 1 (where y denotes the output of M̂ ), since

s− τ, τ ′ − s ≥ log(10nC T̂ )/ε. That is,

Pr
y←M̂(x)

[uNBP

τ ′,R(y) = 0] ≤ Pr[E1 ∨ E2 ∨ E3]

≤ Pr[E1] + Pr[E2] + Pr[E3].
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We will now bound the probability for each event. For

E1, it immediately follows from the Laplace tail bound

together with a union bound that

Pr[E1] ≤ T̂ · 2/(10nCT̂ ) = 0.2/nC.

For E2, the α-usefulness of M implies that

Pr[E2] ≤ (1 − α)T̂ ≤ 0.2/nC .

Finally, for E3, a simple union bound gives

Pr[E3] ≤ γ · T̂ ≤ 0.5/nC.

By combining the four inequalities above, we have

Pr
y←M̂(x)

[uNBP

τ ′,R(y) = 0] < 1/nC ,

as desired.

E. Putting Things Together: Proof of Theorem 30

Proof of Theorem 30. Suppose for the sake of contra-

diction that, for some constant ε > 0 and δ = 1/n−27

there exists an (ε, δ)-SDP mechanism M that is 0.01-

useful for uNBP
τ,R for every n ∈ N; recall τn ≤ n0.9.

Using Theorem 37 with C = 26, there is a (ε̂, δ̂)
mechanism M ′n for ε̂ = 4ε + 1 and δ̂ = O(n26 logn ·
δ) = O(log n/n) that is (1 − 1/n26)-useful for uNBP

τ ′
n,Rn

where τ ′n = τn + O(log n) = O(n0.9). Plugging this

into Theorem 36 with R = Rn, n
′ = n0.05, b′ =

n0.95, ζ = τ ′n/b
′ ≤ O(n−0.05), ε = ε̂, δ = δ̂, d =

(logn0.04)/3ε (which gives ε′ ≤ log(2n0.04) and δ′ =
O(log n/n0.96) = on(1) in Theorem 36), we have

1

n26
≥
(
0.5 · e− log(2n0.04)(1 − on(1)) (1− on(1))

)

−O(n−0.05)

= O(n−0.04) · (1− o(1))−O(n−0.05),

which is a contradiction for any sufficiently large n.

VII. PUTTING THINGS TOGETHER: PROOF OF

THEOREM 5

Our main theorem follows from combining the main

results from the previous two sections.

Proof of Theorem 5. Let u = uVLDS
τ,R,V be as given in

Theorem 16, which immediately yields the existence of

an εCDP-CDP mechanism that is (1− o(1))-useful. Fur-

thermore, since |R| ≥ 2n/no(logn), Theorem 30 implies

that for any constant εSDP,α > 0, there is δSDP = 1/n27

such that no (εSDP, δSDP)-SDP mechanism is α-useful

for uNBP
τ,R . Finally, applying Lemma 15, we can conclude

that no (εSDP, δSDP)-SDP mechanism is α-useful for

uVLDS
τ,R,V . This concludes our proof.

VIII. CONCLUSION AND DISCUSSION

In this work, we give a first task that, under certain

assumptions, admits an efficient CDP algorithm but does

not admit an SDP algorithm (even inefficient ones). As

mentioned in Section I, perhaps the most intriguing next

direction would be to see if there are more “natural”

tasks for which CDP algorithms can go beyond known

SDP lower bounds.

On the technical front, there are also a few interesting

directions. For example, it would be interesting to see if

the three assumptions in our paper can be removed, re-

laxed, or replaced (by perhaps more widely believed as-

sumptions). Alternatively, we can ask the opposite ques-

tion: what are the (cryptographic) assumptions necessary

for separating CDP and SDP? Such a question has been

extensively studied in the multiparty model [HMST22],

[GMPS13], [GKM+16], [HMSS19], [HNO+18]; for ex-

ample, it is known that key-agreement is necessary and

sufficient to get better-than-local-DP protocol for inner

product in the two-party setting [HMST22]. Achieving

such a result in our setting would significantly deepen

our understanding of the CDP-vs-SDP question in the

central model.

Another possible improvement is to strengthen the

hardness of the adversary. In this paper, we only consider

polynomial-time adversaries. Indeed, our CDP mech-

anism does not remain CDP against quasi-polynomial

adversary. The reason is that we choose the hash value

length to be only o(log2 λ) in Assumption 18, so a trivial

“guess-and-check” algorithm can break this assumption

in time λO(log λ). However, as far as we are aware,

there is no inherent barrier in proving a separation with

CDP that holds even against, e.g., sub-exponential time

adversaries. Achieving such a result (potentially under

stronger or different assumptions) would definitely be

interesting.

Furthermore, our task (or more precisely the utility

function) is non-uniform (through the choice of υn). It

would also be interesting to have a uniform task.
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APPENDIX A

COMPARISON OF VARIOUS diO ASSUMPTIONS

We review and compare the various notions of dif-

fering inputs obfuscation, showing that the notion of

diO-for-pcS (Definition 20) is in fact weaker (or at

least, no stronger) than all notions of differing inputs

obfuscation studied in literature.

The definition of diO as given by [BGI+12] did not

include the notion of a sampler. Informally speaking, it

requires that for all efficient adversaries A there is an

efficient adversary A′ such that if A can distinguish the

obfuscation of a circuit C0 from the obfuscation of C1,

then for any circuits C′0 and C′1 that are functionally

equivalent to C0 and C1 respectively, A′ can find an

input on which C0 and C1 disagree.

This notion is stronger than the corresponding notion

involving samplers. Since most applications of differing-

inputs obfuscation in literature are stated using differing-

inputs samplers, we will only refer to diO notions that

involve these.

Definition 38 (Differing-Inputs Circuit Sam-

pler [ABG+13]). An efficient non-uniform sampling

algorithm Sampler = {Samplern} is a differing-inputs

sampler for the parameterized collection C = {Cn} of

circuits if the output of Samplern is distributed over

Cn × Cn × {0, 1}
∗ and for every efficient non-uniform

algorithm A = {An}, there exists a negligible function

negl(·) such that for all n ∈ N:

Pr
θ



C0(y) 6= C1(y) :
(C0, C1, aux)← Samplern(θ),
y ← An(C0, C1, aux)


 ≤ negl(n).

Plain Sampler. We call a differing-inputs sampler as a

Plain Sampler if aux is always ⊥.

Public-Coin Sampler. We call a differing-inputs sam-

pler as Public-Coin Sampler if aux is equal to θ
(precisely Definition 19).

General Sampler. We call a differing-inputs sampler as

a General Sampler whenever we want to emphasize

that aux is allowed to be any function of θ. In particular,

plain and public-coin samplers are special cases of

general samplers.

Note that, the more information that aux is allowed

to contain, the more restricted the distribution over

circuit pairs (C0, C1) gets. In particular, any public-coin

Sampler remains a differing-inputs Sampler if we set

aux to be some function of θ (instead of being all of

θ), and similarly, any general differing-inputs Sampler

can be converted to a plain-Sampler by simply setting

aux = ⊥.

We can consider two notions of security of differing

inputs obfuscators, depending on whether or not the dis-

tinguisher has access to aux. Recall that the “differing-

inputs” condition in Definition 20 was
∣∣∣∣
Prθ [Dn(diO(1

n, C0)) = 1]
−Prθ [Dn(diO(1

n, C1)) = 1]

∣∣∣∣ ≤ negl(n). (6)

On the other hand, we could consider a differ-

ent notion where for any general sampler Sampler,

for (C0, C1, aux) ← Samplern(θ), we replace the

“differing-inputs” condition with
∣∣∣∣
Prθ [Dn(diO(1

n, C0), aux) = 1]
−Prθ [Dn(diO(1

n, C1), aux) = 1]

∣∣∣∣ ≤ negl(n). (7)

Depending on the type of sampler (plain or public-

coin or general) and the notion of security for differing

inputs obfuscators ((6) or (7)), we get various kinds of

diO assumptions, which we list below.

Plain diO. We refer to plain-diO as the notion of diO
that holds only against plain samplers. Note, there is

no difference here between the security notions of (6)

and (7), since aux = ⊥ anyway.

Public-Coin diO. We refer to pc-diO, as the notion of

public-coin diO defined by [IPS15], corresponding to

the notion of diO that holds only against public-coin

samplers, where the distinguisher also has access to

aux = θ, as in (7).

General diO. We refer to gen-diO, as the notion of

general diO defined by [ABG+13], corresponding to

the notion of diO that holds for general samplers, and

where the distinguisher also has access to aux, as in

(7).

diO for General Samplers. We define diO-for-genS

as the notion of diO that holds only against general

samplers, but where the distinguisher does not have

access to aux, as in (6).

diO for Public-Coin Samplers. This is precisely

Definition 20, where the security of diO holds only

for public-coin samplers, where the distinguisher does

not have access to aux = θ, as in (6).

Comparison between different diO assumptions. The

comparison between the assumptions asserting existence
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plain-diO pc-diO

gen-diO

diO-for-genS

diO-for-pcS

Fig. 3: Comparisons between different diO assumptions,

where A → B denotes that existence of A implies

existence of B, or in other words, existence of A is

a stronger assumption than existence of B. Existence

of diO-for-pcS (assumption used in this paper) is the

weakest among all the notions.

of each type of diO is illustrated in Figure 3, with

justification for each arrow given as follows:

⊲ Existence of gen-diO implies existence of plain-diO
and pc-diO, since both are special cases corresponding

to plain samplers and public-coin samplers respec-

tively.

⊲ To the best of knowledge, it is unknown whether

the assumptions of existence of plain-diO and the

existence of pc-diO are comparable or not.

⊲ Existence of plain-diO implies existence of

diO-for-genS since any general sampler can be

converted to a plain sampler by simply setting

aux = ⊥; note that the distinguisher (in the definition

of diO) does not have access to aux in either case.

⊲ Existence of diO-for-genS implies existence of

plain-diO and diO-for-pcS since both are special

cases corresponding to plain samplers and public-coin

samplers respectively.

⊲ Existence of pc-diO implies existence of diO-for-pcS,

since the distinguisher in the definition of diO-for-pcS

does not have access to θ and hence is less powerful.

Finally, one may wonder, what was special about the

application of diO in this paper that only required

diO-for-pcS and not gen-diO or pc-diO as in prior work

in cryptography. The main reason is that, in crypto-

graphic applications, an aux is provided to adversaries

to enable certain cryptographic functionality (such as by

revealing some public key parameters), and thus, it is

required that the diO is secure even given knowledge

of this aux information. In applications of pc-diO, the

distinguisher typically does not have access to all of θ
(such as some secret key parameters may be hidden),

but security given knowledge of entire θ implies security

given partial knowledge of θ. In the setting of this paper,

there wasn’t any particular functionality that needed to

be enabled, other than basic circuit evaluation, and the

particular circuit samplers of interest were public-coin

differing inputs samplers, which is why it suffices to

only assume diO-for-pcS.
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