
Planar Disjoint Paths, Treewidth, and Kernels

Micha l W lodarczyk∗

Ben Gurion University
Meirav Zehavi†

Ben Gurion University

Abstract

In the Planar Disjoint Paths problem, one is given an undirected planar graph with a set
of k vertex pairs (si, ti) and the task is to find k pairwise vertex-disjoint paths such that the
i-th path connects si to ti. We study the problem through the lens of kernelization, aiming at
efficiently reducing the input size in terms of a parameter. We show that Planar Disjoint
Paths does not admit a polynomial kernel when parameterized by k unless coNP ⊆ NP/poly,
resolving an open problem by [Bodlaender, Thomassé, Yeo, ESA’09]. Moreover, we rule out the
existence of a polynomial Turing kernel unless the WK-hierarchy collapses. Our reduction carries
over to the setting of edge-disjoint paths, where the kernelization status remained open even in
general graphs.

On the positive side, we present a polynomial kernel for Planar Disjoint Paths parame-
terized by k + tw, where tw denotes the treewidth of the input graph. As a consequence of both
our results, we rule out the possibility of a polynomial-time (Turing) treewidth reduction to
tw = kO(1) under the same assumptions. To the best of our knowledge, this is the first hardness
result of this kind. Finally, combining our kernel with the known techniques [Adler, Kolliopoulos,
Krause, Lokshtanov, Saurabh, Thilikos, JCTB’17; Schrijver, SICOMP’94] yields an alternative

(and arguably simpler) proof that Planar Disjoint Paths can be solved in time 2O(k2) · nO(1),
matching the result of [Lokshtanov, Misra, Pilipczuk, Saurabh, Zehavi, STOC’20].

∗Address: michal.wloda@gmail.com
†Address: meiravze@bgu.ac.il

ar
X

iv
:2

30
7.

06
79

2v
1

 [
cs

.D
S]

 1
3

Ju
l 2

02
3

1 Introduction

Disjoint Paths is a fundamental routing problem: for several decades, it has been extensively
studied in a wide variety of areas in computer science and graph theory. We focus on the area of
algorithm design, specifically of parameterized algorithms. Phrased as a parameterized problem,
given an n-vertex undirected graph G and a set of k pairwise disjoint vertex pairs, {si, ti}ki=1,
the objective is to decide whether there exist k pairwise vertex-disjoint paths connecting si to ti
for each i ∈ {1, . . . , k}. Here, the classic parameter choice is k. The problem was shown to be
NP-hard by Karp (attributing it to Knuth) in 1975 [59], in a follow-up paper to his classic list of 21
NP-complete problems [58]. Since then, the problem was shown to be NP-hard on various simple
graph classes [49, 74, 80] including the class of grid graphs [64], a highly restricted subclass of planar
graphs. Notably, Disjoint Paths is a cornerstone for the widely celebrated graph minors project
of Robertson and Seymour, considered to be one of the greatest feats of modern mathematics (see
Section 1.5). Moreover, Disjoint Paths finds applications in various practical fields such as VLSI
layout and virtual circuit routing [42, 82, 92, 93].

Due to its computational hardness, Disjoint Paths was studied from the perspectives of
parameterized complexity and approximation algorithms. In particular, Disjoint Paths was shown
to be in FPT (that is, solvable in time f(k) · nO(1) for some computational function f of k) in 1995
as part of the graph minors project [88], being one of the first problems classified in FPT. Here, the
polynomial is n3. In 2012, the polynomial was improved to n2 [60]. Unfortunately, the dependency
on k in both algorithms is “galactic” [68, 57], being a tower of exponents. Concerning approximation
algorithms, the state-of-the-art is grim as well: despite substantial efforts, the currently best-known
approximation algorithm is still a simple greedy one that achieves a ratio of O(

√
n) [63].

We focus on Planar Disjoint Paths, the most well-studied special case of Disjoint Paths,
where the input graph is restricted to be planar. Understanding this special case is critical for
algorithms for Disjoint Paths, Minor Testing and Topological Minor Testing on general
graphs (see Section 1.5). Moreover, it finds most of the general case’s applications. Fortunately, this
special case is known to be more tractable than the general one. Already in the 90s, Disjoint Paths
on planar [85, 86] and bounded genus graphs [85, 31, 62] were shown to admit algorithms with
running times whose dependency on n in linear. Regarding the dependency on k, the state-of-the-art
for Planar Disjoint Paths is 2O(k2) · nO(1) [71], improving upon earlier works [2, 85]. Very
recently, the dependency on n was improved to be linear without compromising this dependency
on k [17]. It is also noteworthy that when extended to directed graphs, Planar Disjoint Paths
is in FPT [24] (and, for three decades, already known to be in XP [91]), while Disjoint Paths is
NP-hard already when k = 2 [40]. Planar Disjoint Paths has also been intensively studied from
the perspective of approximation algorithms, with a burst of activity in recent years. Some of the
highlights of this line of works include a polynomial-time approximation algorithm with a factor of
n9/19 logO(1) n [19], and, under reasonable complexity-theoretic assumptions, the proof of hardness
of polynomial-time approximation within a factor of 2o(

√
logn) [20].

1.1. Our focus: Kernelization of planar disjoint paths. From the perspective of parameter-
ized complexity, the (arguably) biggest open question that remains regarding Planar Disjoint
Paths is whether it admits a polynomial kernel. Kernelization is a mathematical paradigm for the
analysis of preprocessing procedures [36]. Due to the profound impact of preprocessing, kernelization
has been termed “the lost continent of polynomial time” [35]. Formally, a parameterized problem

1

Π admits a kernel if there is a polynomial-time algorithm (called a kernelization algorithm) that,
given an instance (I, k) of Π, translates it into an equivalent instance (I ′, k′) of Π of size f(k) for
some computable function f depending only on k. (Equivalence means that (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance.) A (decidable) problem admits a kernel if and only if it is in
FPT [13]. So, the central question in kernelization is: Which problems admit kernels of size f(k)
where f is polynomial in k, called polynomial kernels. Originally in 2009, Disjoint Paths was
shown not to admit a polynomial kernel with respect to k unless coNP ⊆ NP/poly [10, 11], being
one of the first problems for which such a result was proved. In the same paper, it was already
asked whether Planar Disjoint Paths has a polynomial kernel. Still, up until this paper, it was
not even known whether its extension to directed planar graphs admits a polynomial kernel.

Remarkably, the literature abounds with problems that do not admit polynomial kernels on
general graphs unless coNP ⊆ NP/poly, but admit polynomial kernels on planar graphs [36]. What
is more, many of them are W[1]-hard1 or even W[2]-hard on general graphs, while the sizes of their
polynomial kernels on planar graphs are, in fact, linear; Dominating Set is a prime example
for this phenomenon. Today, we have very general techniques to design such kernels on planar
graphs [38, 36] and there exist only few2 natural problems that are in FPT on planar graphs, but
have non-trivial kernelization lower bounds. By non-trivial we mean that the proof for planar graphs
is not essentially the same as for general graphs.

In this paper, we decipher the complexity of preprocessing procedures (kernels and treewidth re-
ductions) for Planar Disjoint Paths. Below, we present our main theorems and their implications.
Next, we discuss the role of our work in the efforts of making the graph minors theory efficient.

1.2. On the negative side: Our first main theorem. First, we resolve the almost decade-
and-a-half open question of whether Planar Disjoint Paths admits a polynomial kernel with
respect to k: unless the polynomial hierarchy collapses, the answer is negative.

Theorem 1.1 (Main Theorem I). Unless coNP ⊆ NP/poly, Planar Disjoint Paths does not
admit a polynomial kernel with respect to k.

Our reduction also shows that Planar Disjoint Paths is WK[1]-hard3, which means (see [50])
that it is unlikely even to admit a weaker form of a preprocessing procedure called a polynomial
Turing kernel. Formally, a parameterized problem Π admits a Turing kernel if there exists a
polynomial-time algorithm for Π using an oracle that solves instances of Π of size at most f(k)
for some computable function f . Similarly to standard kernelization, polynomial Turing kernel
refers to the case where f is polynomial in k. Note that a kernel is a special case of a Turing
kernel where the algorithm can perform exactly one call to the oracle. To date, we know of many
problems that admit a polynomial Turing kernel but are unlikely to admit a polynomial kernel. This
is the case for the other most famous path problem in parameterized complexity, called k-Path
(determine whether a given undirected graph contains a path on k vertices): while k-Path is unlikely
to admit a polynomial kernel when restricted to planar graphs (which can be shown by a trivial

1A W[1]-hard problem is unlikely to be in FPT [23].
2We are aware of one example: for Steiner Tree on planar graphs parameterized by the number of terminals, the

unlikely existence of a polynomial kernel is implied by the combination of the lower and upper bounds given in [78].
3The WK-hierarchy organizes parameterized problems with respect to polynomial parameter transformations.

WK[1]-complete problems include Set Cover (par. by the universe size), Connected Vertex Cover (par. by
the solution size), Min Ones 3-SAT (par. by the number of 1’s in an assignment), or Binary Nondeterministic
Turing Machine Halting (par. by the number of steps).

2

OR-composition [36]), it does admit a polynomial Turing kernel on planar graphs [51] or even on
topological-minor-free graphs [54]. In light of this result, we find Theorem 1.2 quite surprising.

Theorem 1.2. Planar Disjoint Paths is WK[1]-hard.

Additionally, our reduction carries over to Planar Edge-Disjoint Paths, where the solution
paths are required to be edge-disjoint rather than vertex-disjoint. Specifically, we show that it is
also unlikely to admit a polynomial kernel (or even a polynomial Turing kernel). Remarkably, prior
to our work, it was not even known whether the problem admits a polynomial kernel on general
graphs, although it was already asked as an open question close to a decade ago [9, 49].

Theorem 1.3. Unless coNP ⊆ NP/poly, Planar Edge-Disjoint Paths does not admit a
polynomial kernel with respect to k. Moreover, Planar Edge-Disjoint Paths is WK[1]-hard.

The Edge-Disjoint Paths problem in general, and the Planar Edge-Disjoint Paths
problem in particular, have been intensively studied in the literature (see, e.g., [5, 15, 16, 41, 83, 60,
81, 49]), although perhaps to a lesser extent than their vertex counterparts. We remark that the
vertex and edge versions sometimes behave very differently—for example, while Disjoint Paths is
in FPT with respect to treewidth [90], Edge-Disjoint Paths is NP-complete even on series-parallel
graphs [81] and thus on graphs of treewidth at most 2. Still, the work of Robertson and Seymour
implies that Edge-Disjoint Paths is solvable in time f(k) · n3; later, the polynomial factor was
reduced to n2 by Kawarabayashi et al. [60].

1.3. On the positive side: Our second main theorem. We prove that Planar Disjoint
Paths admits a polynomial kernel with respect to k + tw, where tw is the treewidth of the input
graph.4 This theorem is (arguably) the broadest and the most involved positive result known to date
regarding the kernelization complexity of Disjoint Paths; other results in the literature concern
highly restricted graph classes: split graphs [49, 95] and well-partitioned chordal graphs [4].

Theorem 1.4 (Main Theorem II). Planar Disjoint Paths admits a polynomial kernel with
respect to k + tw, where tw is the treewidth of the input graph.

The interest in the parameterization of Disjoint Paths and Planar Disjoint Paths by
tw stems, mainly, from the fact that all known algorithms for these problems as well as for
(Topological) Minor Testing rely on treewidth reduction (defined below), and, in particular,
require the resolution of these problems when tw is small as part of their execution (see Section 1.5).
In fact, some of the running times are stated as a function of k + tw rather than k alone (e.g.,
the algorithm of [71] is stated to run in time twO(k) · nO(1)). Moreover, treewidth is the most
well-studied structural parameter is parameterized complexity [23, 30]. It is known that Disjoint
Paths parameterized by tw is solvable in time 2O(tw log tw) · n [90], while, under the Exponential
Time Hypothesis (ETH), Disjoint Paths and Planar Disjoint Paths cannot be solved in times
2o(tw log tw) · nO(1) [70] and 2o(tw) · nO(1) [6], respectively.

A treewidth reduction for a parameterized graph problem Π is a polynomial-time algorithm that,
given an instance (I, k) of Π, translates it into an equivalent instance of Π where the treewidth
of the new graph is bounded by f(k) for some computational function f of k. For Disjoint
Paths, unfortunately, the best-known function is a tower of exponents [88, 60]. However, for

4A trivial AND-composition [36] implies that parameterization by tw alone is unlikely to yield a polynomial kernel.

3

Planar Disjoint Paths, f(k) = 2O(k) [2]. Thus, since the problem is solvable in time nO(k) [91],
Theorem 1.4 yields a 2O(k2) · nO(1)-time algorithm: Reduce the treewidth of the graph to 2O(k)

in polynomial time [17], then run our kernelization algorithm in polynomial time, obtaining an
equivalent instance with 2O(k) vertices, and lastly solve the new instance in time 2O(k2) using the
nO(k)-time algorithm. This provides an alternative (and much shorter) proof of the result of [71].
Unlike [17, 71], we use the algorithm of [91] as a black box, so any improvement upon it (i.e.,
an no(k)-time algorithm) would immediately entail an improvement also in the FPT running time.

Theorem 1.5. The algorithm of Schrijver [91] can be used in a black-box manner to solve Planar
Disjoint Paths in time 2O(k2) · nO(1).

1.4. Implication for treewidth reductions. A remarkable corollary of the combination of
Theorems 1.1 and 1.4 rules out the existence of a polynomial treewidth reduction: If there existed a
polynomial treewidth reduction for Planar Disjoint Paths with respect to k, then combined
with Theorem 1.4, this would have yielded a polynomial kernel with respect to k, contradicting
Theorem 1.1. This result can be viewed as a significant strengthening of Theorem 1.1: not only we
cannot efficiently preprocess the graph so that its size will be polynomial in k, but we even cannot
preprocess it so that only its treewidth will be polynomial in k.

Theorem 1.6. Unless coNP ⊆ NP/poly, Planar Disjoint Paths does not admit a polynomial
treewidth reduction with respect to k.

To the best of our knowledge, this is the first non-trivial result of this form,5 although
treewidth reduction is a common tool in parameterized complexity, particularly since it is tightly
linked to the irrelevant vertex technique as well as to Bidimensionality theory [23]. We refer to
[72, 76, 52, 77, 43, 46, 37, 75, 45, 25, 26, 28] for a few illustrative examples of treewidth reductions for
problems other than Disjoint Paths and Minor Testing. Prior to our work, there was hope that
Planar Disjoint Paths would admit a polynomial treewidth reduction with respect to k—notably,
coupled with the twO(k)-time algorithm of [71], this would have yielded a 2O(k log k) · nO(1)-time
algorithm.

A negative hint was given by Adler et al. [3], who constructed yes-instances of Planar Disjoint
Paths where the treewidth of the graph is 2Ω(k) and every vertex is relevant, that is, the removal of
any vertex would turn the instance into a no-instance. This is indeed a negative hint since all known
algorithms for (Planar) Disjoint Paths apply treewidth reduction by iteratively finding and
removing irrelevant vertices until the treewidth of the graph becomes “small enough”. However, the
result of [3] does not imply that Planar Disjoint Paths does not admit a polynomial treewidth
reduction—indeed, it provably cannot even show that the removal of irrelevant edges rather than
irrelevant vertices is futile. To see this, consider any yes-instance and some solution of it, and remove
from the graph all the edges that are not part of the solution (which are irrelevant edges)—then we
are left with a collection of paths, having treewidth 1. Our result rules out not just the success of
removal of irrelevant edges, but the success of any method implementing a polynomial treewidth
reduction for Planar Disjoint Paths. In fact, since we show that the problem is WK[1]-hard,
our result even rules out a “Turing-version” of a polynomial treewidth reduction (defined in the
natural way), strengthening Theorem 1.2.

5Here, by non-trivial, we mean that the result does not follow simply because the problem does not admit any
treewidth reduction (e.g., since it is in FPT with respect to tw but it is not in FPT with respect to the parameter
under consideration).

4

Theorem 1.7. Unless the WK-hierarchy collapses, Planar Disjoint Paths does not admit a
polynomial Turing treewidth reduction with respect to k.

1.5. Part of the development of an efficient graph minors theory. The concept of a
minor has been extensively studied already in the early 20th century, and it is defined as follows:
A graph H is a minor of a graph G if H can be obtained from G by deleting vertices and edges,
and contracting edges. Kuratowski’s famous theorem states that a graph is planar if and only if it
does not contain the graphs K3,3 and K5 as topological minors [67], which holds also for minors [94].
Thus, the class of planar graphs is characterized by a set of two forbidden minors. The graph
minors project of Robertson and Seymour is a series of 23 papers spanning more than two decades,
dedicated to proving the generalization of Kuratowski’s theorem called Wagner’s conjecture [94]:
The class of all graphs is well-quasi ordered by the minor relation, or, equivalently, any minor-closed
family of graphs can be characterized by a finite set of forbidden minors. The graph minors project
had tremendous impact on various areas of theoretical computer science and on graph theory,
particularly due to numerous concepts, structural results, and algorithms that it yielded. Notably,
it is considered to be the origin of the field of parameterized complexity [29] and the source for a
large number of its most central notions and techniques [73].

Unfortunately, the dependencies on the parameters of most algorithms based on the graph minors
project are huge, being towers of exponents, and so they are called “galactic algorithms” [68, 57].
As written in [73]: “keeping in mind that the primary objective of the paradigm of parameterized
complexity is to cope with computational intractability, we are facing a blatant discrepancy.” Thus,
the holy grail of parameterized complexity is to amend this discrepancy, making the graph minors
theory efficient. While substantial efforts have been made in this direction (e.g., see [47, 60, 61,
14, 18, 21]), it will likely take a long time for the matter to be well understood. In particular, two
central concrete goals posed for this purpose are to solve Minor Testing and Disjoint Paths
efficiently [73].

All known algorithms for (Topological) Minor Testing and Disjoint Paths use the
following case distinction. First, if the treewidth of the graph is “small”, then they directly solve
the problem using dynamic programming (classically) or a different mean [17, 71]. Else, if the graph
contains a large clique as a minor, then they use rerouting arguments to find an irrelevant vertex
within it. Lastly, we are left with the case where the treewidth is large and the graph does not
have a large clique as a minor. This reduces the problem to almost-embeddable graphs [89], where
a so-called flat wall theorem ensures the existence of a large almost planar piece within the graph,
which is afterwards analyzed. Hence understanding the planar case is paramount to understand
the problem in general. Our contributions can be viewed as a piece of the ongoing efforts of many
researchers to establish which parts of the graph minor theory can be made algorithmically efficient.

1.6. Organization. First, in Section 2, we outline the proofs of our results. Afterwards, in
Section 3, we present the more basic preliminaries required for our work. Then, in Sections 4 and 5,
we provide the full details of the proofs of our positive and negative results, respectively. Finally, in
Section 6, we conclude the paper with several open questions. Whenever we want to emphasize
the importance of a statement (e.g., when it is a building block of the main proof), we use the
“proposition” environment, instead of “lemma”.

5

2 Outline

In this section, we give an informal overview of our technical contributions, beginning from the
positive result, which requires fewer intermediate steps.

2.1 Polynomial kernel for parameter k + tw

Our kernelization algorithm is based on several steps that reduce the size of certain subgraphs of
G while treating their boundary vertices as temporary terminals. Since we have no control over
which pairs of these terminals might be connected by paths in a solution, it is convenient to work
in a slightly more general setting. We say that two graphs G1, G2 sharing a set of vertices X are
X-linkage-equivalent if for every set of pairs T ⊆ X2, the instances (G1, T) and (G2, T) of Disjoint
Paths are equivalent. In fact, we prove a theorem that is more general than Theorem 1.4 as we do
not need to know in advance which pairs of terminals should be connected.

Theorem 2.1. Let G be a planar graph of treewidth tw and X ⊆ V (G) be of size k. Then we can
construct, in polynomial time, a planar graph G′ with X ⊆ V (G′) such that |V (G′)| = O(k12tw12)
and G′ is X-linkage-equivalent to G.

Single-face case. The problem becomes simpler when we are equipped with an embedding of G
with all the terminals from X lying on a single face (we can assume that this is the outer face by
flipping the embedding). In fact, in this case Disjoint Paths is solvable in polynomial time [87],
similarly as Steiner Tree [33]. To design a useful subroutine, we need to reduce the size of G to
be polynomial in |X| while maintaining X-linkage-equivalency. To this end, we take advantage of
the criterion by Robertson and Seymour [87], stating that when X lies on the outer face of G and
T ⊆ X2, then the instance (G, T) is solvable if and only if (1) T is cross-free6 with respect to the
cyclic ordering of X and (2) for every partition of X into continuous segments (X1, X2) the number
of requested paths with one endpoint in X1 and the other one in X2 is not greater than the minimum
vertex (X1, X2)-cut (see Figure 1). So, to compress G we need a mimicking network that preserves
such minimum cuts. There are known constructions of mimicking networks for planar [44, 66]
and general [65] graphs, but they are designed to preserve edge-cuts. We give a self-contained
construction of a mimicking network of size O(|X|6) preserving the necessary vertex-cuts.

To reduce the general case to the single-face case, we follow the idea from the kernelization
algorithm for Planar Steiner Tree parameterized by the solution size [84] (cf. [12]). To adapt it
to our setting, we consider the radial graph of the plane graph G, obtained by inserting a vertex
inside each face, connecting it to all vertices from G lying on this face, and removing original edges
from E(G). Let T be a tree in the radial graph that spans all the terminals from X. Imagine “cutting
the graph open” alongside T by widening the fissure marked by T on the plane and duplicating the
vertices of G lying on this fissure (see Figure 1). This operation creates a new face, incident to all
the copies of terminals. We could compress the obtained graph using the approach outlined above
and afterwards stitch it back alongside T . However, now we need to treat all the vertices lying on
T (not only the ones from X) as terminals in order to keep track of paths that might traverse T .
This means that, prior to opening the graph, we need to ensure that the tree T is not too large,
that is, the vertices from X are close to each other in the radial graph. In other words, we need

6When X lies on the outer face, then T ⊆ X2 is called cross-free if there are no pairs (a, b), (c, d) ∈ T such that
a, c, b, d lie in this order on the outer face.

6

1

2

3

4

1

2a

3

2b

4

2c

3

2a

12c

4

2b

Figure 1: A visualization of cutting a graph open alongside a tree T in the radial graph. Left: The tree T is
sketched with dotted lines; we have V (T) ∩ V (G) = {1, 2, 3, 4}. The vertices 1, 3, 4 (black squares) belong
to X. A (1, 3)-path P is drawn with solid orange lines. Middle: After opening the graph, the vertex 2 is
split into three copies 2a, 2b, 2c, while the path P is split into a (1, 2c)-path and a (2a, 3)-path. The white
and black squares are the new terminals. Right: After flipping the embedding, we can assume that the face
where the cut happened is the outer face. The dotted lines illustrate all the cuts that must be preserved in a
mimicking network. As an example, the brown heavier line stands for the minimum cut between {4, 2c} and
{1, 2a, 3, 2b}.

to reduce the radial diameter of the graph, i.e., the maximum number of faces one must cross to
reach a certain vertex from another one. Such an approach has been applied in the reductions to
a single-face case for Vertex Multiway Cut [53] and Vertex Planarization [55].

Radial diameter reduction. The radial diameter of a plane graph G is proportional to the
maximal number of concentric cycles in G (i.e., these cycles are vertex-disjoint and each one is
located in the interior of the next one, resembling a well). In particular, when the radial diameter is
as large as Ω(k · tw2), then one can find a sequence C1, C2, . . . , Cm of concentric cycles such that
m = Ω(tw2) and each terminal from X is located in either the interior of C1 or the exterior of Cm.
We show that in this case, G must contain an irrelevant edge, that is, an edge e for which the graph
G \ e is X-linkage-equivalent to G. Our strategy is to iteratively remove irrelevant edges from G
until its radial diameter becomes bounded by O(k · tw2). Afterwards, we will be able to find a
Steiner tree T of X of size O(k2 · tw2) in the radial graph. This will allow us to reduce the problem
to the single-face case with O(k2 · tw2) terminals.

Consider a sequence of concentric cycles C1, C2, . . . , Ct. It is known [48] that the existence
of t vertex-disjoint paths between V (C1) and V (Ct) yields a minor model of a t × t-grid, thus
implying that the treewidth of the graph is at least t. Conversely, if we know that treewidth is
less than t, Menger’s theorem implies that there is a vertex (V (C1), V (Ct))-separator of size less
than t. We can always find such a separator located within the well, that is, between C1 and Ct

(inclusively). In our setting, this implies that we can find a (V (C1), V (Cm))-separator of size at
most tw located inside the cycle Ctw+1, and similarly, one located outside Cm−tw−1. Therefore, the
search of an irrelevant edge can be reduced to the two-face case: we are given a plane graph G
with a set of terminals Vout located on the outer face, another set of terminals Vin located on some
internal face, such that |Vin|, |Vout| ≤ tw, and a sequence of Ω(tw2) concentric C1, C2, . . . , Cm cycles
around Vin (see Figure 2). Now the task is to find an edge e ∈ E(G) such that G \ e and G are
(Vin ∪ Vout)-linkage-equivalent.

We begin with computing the minimum (Vin, Vout)-separator Sin that is closest to Vin. By

7

0

1

2

3

4

5

6

7

Figure 2: Left: An overview of the two-face case. The well comprises a sequence of concentric cycles
C1, . . . , Cm such that each terminal from X (the red squares) is either inside C1 or outside Cm. The nooses
representing separators Vin, Vout are drawn blue, while the nooses of Sin, Sout are red; each of them can
intersect at most tw cycles. The cycles contained entirely in each of the three parts of the graph are highlighted
in green. A family of vertex-disjoint paths with endpoints at X is sketched with black lines. We can assume
that the (Vin, Vin)-subpaths and the (Vout, Vout)-subpaths, which do not traverse the well from inside to
outside, intersect only few cycles. Since the remaining (Vin, Vout)-subpaths must cross the separator Sin,
which is the minimum (Vin, Vout)-separator closest to Vin, there is a space for an augmenting path between
Vin and S (the orange noose). This fact, crucial for the analysis of Case I, is illustrated with two dashed
lines. Right: An illustration of the notion of the winding number from Case II. The blue, green, and orange
paths have winding numbers 1, -1, -7, respectively.

“closest to Vin” we mean that for any other minimum separator S the set of vertices reachable from
Vin in G− S is a superset of those reachable from Vin in G− Sin. It is well-known [23, Thm. 8.4]
that such a separator exists. Similarly, we compute the minimum (Vin, Vout)-separator Sout closest to
Vout. Every inclusion-minimal vertex separator S in a plane graph G can be represented by a noose
in the plane that intersects the image of G exactly at the vertices of S. Since |Sin|, |Sout| ≤ tw, the
corresponding nooses cannot cross more than tw cycles from C1, C2, . . . , Cm. These nooses form
a partition of G into three parts, one of which must contain Ω(tw2) cycles from C1, C2, . . . , Cm.
Depending on which part is “deep”, we apply different strategies for detecting an irrelevant edge.

Case I: Deep well in the interior/exterior. First consider the case that there are Ω(tw2)
concentric cycles between Vin and Sin. (The case with a deep subgraph between Sout and Vout is
analogous.) Let P be a family of vertex-disjoint paths (a linkage) with endpoints in Vin ∪ Vout

and Plong denote the subfamily of paths in P that connect Vin to Vout. By a standard argument,
the paths from P \ Plong can be assumed to cross only few cycles from C1, C2, . . . , Cm, namely at
most max(|Vin|, |Vout|) ≤ tw, so our main focus is on the paths from Plong. Each of these paths
must traverse the separator Sin, let p denote its size, so |Plong| ≤ p. But since Sin is the minimum
(Vin, Vout)-separator closest to Vin, for any (Vin, Vout)-separator S, located inclusively between Vin

and Sin, there exists at least p+1 vertex-disjoint (Vin, S)-paths, i.e., µ(Vin, S) > p. This allows us to

8

focus on the following variant of the two-face case: S replaces the set of terminals Vout lying on the
outer face, µ(Vin, S) > p, there are still Ω(tw2) concentric cycles between Vin and S, and we want
to detect an edge e that is not relevant for any family P of at most p vertex-disjoint (Vin, S)-paths.
Here, by “not relevant for P” we mean that there exists a linkage P ′ in G \ e connecting the same
pairs of vertices as P. Let V ′ ⊆ Vin (resp. S′ ⊆ S) denote the endpoints of P at Vin (resp. at S).
We prove a criterion that under the given assumptions, such a linkage exists if and only if (1) the
cyclic ordering of V ′ matches the cyclic ordering of S′ and (2) the cut-condition µ(V ′, S′) ≥ |P|
holds. To prove this, we take advantage of the slack µ(Vin, S) > p to show that any family of at
most p disjoint (V ′, S′)-paths can be “shifted” clockwise using Ω(tw) concentric cycles. As we need
at most tw shifts to transform any (V ′, S′)-linkage into P, having Ω(tw2) concentric cycles suffices.
With this criterion at hand, we show that there always exists an edge e whose removal does not
affect the cut-condition for any pair (V ′, S′), implying that e is irrelevant.

Case II: Deep well in the middle. Now consider the case that there are Ω(tw2) concentric
cycles between Sin and Sout. Recall that p = |Sin| = |Sout| = µ(Sin, Sout). Let P be a family of
vertex-disjoint (Sin ∪ Sout)-paths. If P contains less than p paths that connect Sin to Sout, then the
analysis is the same as in the previous case. Therefore, the problem boils down to a very restricted
case: every path in P connects Sin to Sout and every vertex in (Sin ∪ Sout) is an endpoint of a path
from P . We call such P a cylindrical linkage. It is now convenient to fix a concrete plane embedding
of the graph: assume that the vertices from Sin lie on the circle {(x, y) ∈ R2 | x2 + y2 = 1} and the
vertices from Sout lie on {(x, y) ∈ R2 | x2 + y2 = 4}. Furthermore, assume that the j-th element of
Sin, 0 ≤ j < p, has polar coordinates (1, −2πp j) and the j-th element of Sout has polar coordinates

(2, −2πp j). For an (Sin, Sout)-path P , we define its winding number θ(P) ∈ Z as p
2π times the total

angle traversed by the curve corresponding to P , measured clockwise (see Figure 2). It is easy to
see that all paths in a cylindrical linkage P share the same winding number, so we can also define a
winding number θ(P) of P . We say that θ ∈ Z is feasible if there exists a cylindrical linkage P with
θ(P) = θ. Note that if θ(P1) ≡ θ(P2) mod p then the linkages P1,P2 connect the same pairs of
terminals. Therefore there are at most p different connection-patterns that we need to preserve.

The structure of cylindrical linkages has been studied by Robertson and Seymour [87] who
showed that when θ1 < θ2 < θ3 and θ1, θ3 are feasible, then so is θ2. This means that it suffices to
preserve just the minimal and maximal values θmin, θmax that are feasible. They can be efficiently
computed because the problem becomes polynomial-time solvable in this special case [87]. Moreover,
the observation above allows us to assume that the values θmin, θmax differ by at most p− 1. We
prove that there exist cylindrical linkages P1,P2 with θ(P1) = θmin, θ(P2) = θmax, such that the
intersection of any P1 ∈ P1 and P2 ∈ P2 has at most one connected component. Combined with the
presence of many concentric cycles between Sin and Sout, this implies that there exists an edge e
used by neither P1 nor P2. Consequently, removing e from the graph preserves the set of feasible
values of θ (modulo p) and hence yields an (Sin ∪ Sout)-linkage-equivalent instance. This concludes
the description of radial diameter reduction.

Comparison to the previous approach. The known 2O(k2) · nO(1)-time algorithms for Planar
Disjoint Paths [17, 71] are based on bounding the number of relevant homotopy classes of a solution
by 2O(k2). Afterwards, for each fixed homotopy class, the problem can be solved in polynomial
time [91]. An important case in the analysis of the homotopy classes resembles the two-face case,
described above. To bound the winding numbers of paths, these proofs rely on a highly technical

9

argument originating from the FPT algorithm for the directed variant of the problem [24]. By
dividing the analysis into two cases, one with non-maximal linkages and one with highly structured
linkages, we avoid these technicalities and obtain a stronger result (i.e., a kernel) by simpler means.

2.2 Kernelization hardness for parameter k

To establish the kernelization hardness, we present a polynomial-time reduction from Set Cover
with parameter (the universe size) k to Planar Disjoint Paths with parameter (the number
of terminal pairs) k′ = kO(1). Under this parameterization, Set Cover is known not to admit
a polynomial kernel unless coNP ⊆ NP/poly [27] and to be WK[1]-complete [50]. Hence, such a
reduction entails Theorems 1.1 and 1.2.

Before we present the reduction, we discuss the intuition that guided its construction (and, in
particular, of the so-called vector-containment gadget described later). Recall that Planar Disjoint
Paths is solvable in polynomial time once we fix the homotopy class of a sought solution [91]. This
suggests that a polynomial reduction from an NP-hard problem should map different NP-witnesses
(each encoding a solution candidate that can be verified in polynomial time) into different homotopy
classes of a solution. Notice that the solution candidates to Set Cover are tuples of sets (whose
number can be huge), while the number of different homotopy classes is bounded by nO(k

′) [91].7

Thus, we must map the solution candidates to Set Cover into homotopies in an economical fashion.
The main crux of the reduction is an intricate mechanism that allows to encode a set family of size
as large as 2Ω(k) using a homotopy class of just kO(1) paths.

Non-crossing multicommodity flow. We present our reduction in the language of non-crossing
edge-disjoint walks. Focusing on edge-disjoint walks allows us to utilize the convenient link between
max-flows and shortest paths in the dual graph. What is more, this setting generalizes finding both
vertex-disjoint or edge-disjoint paths in planar graphs [7]8, which will make Theorems 1.1, 1.2, 1.3
simple corollaries from the main reduction.

For a multigraph G with a fixed plane embedding, two pairs of edges (e1, f1) and (e2, f2), with
all edges incident to a vertex v ∈ V (G), cross if e1, e2, f1, f2 appear in this order in the cyclic
ordering of edges around v. Next, two edge-disjoint walks W1,W2 in G are non-crossing if there
are no pairs of consecutive edges (e1, f1) in W1 and (e2, f2) in W2 that cross (see Figure 3). In the
Non-crossing Multicommodity Flow problem (cf. [7, 71]), we are given a plane multigraph G
and a family T of k tuples (si, ti, di) ∈ V (G) × V (G) × N, called requests. A solution is a family P
of pairwise edge-disjoint non-crossing walks containing di walks connecting si to ti, for i ∈ [k], called
a non-crossing T -flow.9 We add one more technical requirement for a solution, which is irrelevant
in this informal outline (see Definition 5.2). Since we do not impose any bounds on the demands di,
the total size of the family P may be exponential in the parameter k. We address this issue later.

The main gadgets. We employ three types of gadgets sharing a common interface: each
gadget is a plane multigraph G with a set of requests T ⊆ V (G) × V (G) × N and distinguished
vertices s1, t1, . . . , sm, tm lying on the outer face in this clockwise order. For a subset F ⊆ [m],

7The number of different homotopy classes is also known to be bounded by 2O(k2) [71], if we restrict ourselves to
only “relevant” ones. The precise definition of “relevant” in this context is immaterial for our work.

8We remark that there is a flaw in [7, Proposition 12] because replacing a vertex with merely a cycle is not sufficient.
We give a correct argument using a cylindrical wall instead of a single cycle.

9In this paper, we consider only integral flows.

10

1 2 3

12 12 12

1

2

1

2

3

1

2

3

Figure 3: Left: Three non-crossing walks traversing a vertex. In the reduction from Non-crossing
Multicommodity Flow to Planar (Edge-)Disjoint Paths we replace each vertex with a cylindrical
wall. This transformation makes the graph simple and subcubic, so the three notions of (a) edge-disjoint
non-crossing walks, (b) edge-disjoint paths, and (c) vertex-disjoint paths become equivalent. Right: A system
of gadgets for k = 3, ℓ = 2, in a reduction from Set Cover. The existential gadgets are on the top and the
subset gadgets are on the right. The terminal pairs in each gadget are numbered clockwise. The three squares
in the middle are the junction gadgets. The highlighted stripe shows a way of communication between the
first existential gadget and the first subset gadget. The red flow encodes a solution S1 = {1}, S2 = {2, 3}.

let TF = {(si, ti, 1) | i ∈ F}. A gadget (G, T) encodes some downward-closed family of sets F as
follows: the instance (G, T ∪ TF) should be solvable if and only if F ∈ F . In other words, routing
all (si, ti)-walks for i ∈ F through the gadget should be possible only when F satisfies property F .

The first type of a gadget is an ℓ-Existential Gadget with ℓ terminal pairs (si, ti). For this gadget,
F is defined as a family of all proper subsets of [ℓ]. That is, (G, T ∪ TF) is solvable if and only if
|F | < ℓ. Suppose we are given an instance (k,S, ℓ) of Set Cover, i.e., S is a family of subsets
of [k] and we ask whether there are ℓ sets in S that cover [k]. We will make a single copy of an
ℓ-Existential Gadget for each i ∈ [k]. For j ∈ [ℓ] the intended meaning of j ̸∈ F in the i-th gadget is
that the element i should be covered by the j-th set in a solution. The ℓ-Existential Gadget ensures
that for at least one j ∈ [ℓ] this condition will hold.

Next, we introduce an (r, k,S)-Subset Gadget. By padding the family S with empty sets, we
can assume that |S| = 2r for some integer r ≤ k. The (r, k,S)-Subset Gadget has k terminal pairs
(si, ti) and we require F ∈ F if and only if there exists S ∈ S with F ⊆ S. In other words, the set
of additional terminals should encode a subset of some set from S.

Imagine the following construction: we make k copies of an ℓ-Existential Gadget, ℓ copies of an
(r, k,S)-Subset Gadget and, for each i ∈ [k], j ∈ [ℓ], we add terminals ui,j , vi,j , connected to the
j-th pair of terminals in the i-th existential gadget and the i-th pair of terminals in the j-th subset
gadget. For each created pair ui,j , vi,j , we demand a single unit of flow between ui,j and vi,j . By
the property of an ℓ-Existential Gadget, for each i ∈ [k] there should be at least one j ∈ [ℓ] for which
the (ui,j , vi,j)-walk goes through the j-th subset gadget. On the other hand, for each j ∈ [ℓ] the set
of such indices i forms a subset of some set from S. Therefore satisfying all the requests is possible

11

exactly when there are ℓ sets in S whose union is [k], as intended.
The problem with this construction is that already for ℓ = k = 3 such a graph contains K3,3

as a minor, so it cannot be planar. To circumvent this, we need yet another gadget to allow the
links between each i-th existential gadget and each j-th subset gadget to cross. To this end, we
utilize a JunctionGadget (G, T) with 4 terminal pairs (si, ti). We demand that (G, T ∪ TF) should
be solvable if and only if {1, 3} ̸⊆ F and {2, 4} ̸⊆ F . That is, when we allow a walk on the left then
we cannot route a walk on the right, and when we allow a walk at the top then we cannot route a
walk at the bottom, and vice versa. These two exclusion mechanisms are independent from each
other, thus allowing two bits of information to “travel” in a crossing fashion (see Figure 3).

The existential and junction gadgets have been employed in the original NP-hardness proof of
Planar Disjoint Paths [64] and we can easily adapt them for our purposes. The main challenge
though is to construct the (r, k,S)-Subset Gadget. In order to design a meaningful reduction we can
produce only (r + k)O(1) requests while we need to encode as many as 2r sets from S.

Subset gadget: The first attempt. We begin with a simplified construction, first presenting
the pattern propagation mechanism alone. This also reflects how the full construction is presented
in Sections 5.3.1 and 5.3.2. Additionally, here we do not delve into formulas regarding the numbers
of parallel edges and the non-crucial demands di, aiming at the simplest presentation of the main
ideas. By a slight abuse of notation, we treat S as a function from {0, 1}r to subsets of [k]. We
will build the gadget from k blocks, each of which could “choose” a pattern encoded by a vector
b ∈ {0, 1}r. When i ∈ F and the i-th block chooses a vector bi, this should imply i ∈ S(bi). The
pattern propagation will ensure that each block chooses exactly the same vector b. In turn, this
will imply that i ∈ F ⇒ i ∈ S(b), matching the gadget specification.

Let r-ladder be the (r + 1) × 2-grid, with internal faces numbered bottom-up as f1, . . . , fr. We
construct the i-th block using two r-ladders, an upper one L+

i and a lower one L−i , and connect
the consecutive blocks as depicted in Figure 4. We also connect the first and the last block, thus
creating a ring-like structure with the lower ladders in its interior. In each ladder L we attach
two vertices L[u0], L[u1] to, respectively, the bottom and the top of L, and add a request (L[u0],
L[u1], 1) to T . We will enforce that the (L[u0], L[u1])-walk W must be entirely contained within
L, and so it can be associated with a vector bL ∈ {0, 1}r encoding which faces f1, . . . , fr are to
the left of W (then the corresponding bit in bL is set to 0) and which are to the right (then the
corresponding bit is 1). We shall call bL the pattern in L.

Next, for each i ∈ [k] and j ∈ [r] we attach a vertex inside the face fj of the ladder L+
i (we refer

to this vertex as L+
i [xj]) and a vertex inside the face fj of the ladder L−i (denoted L−i [xj]). We

create a request (L+
i [xj], L

−
i [xj], 2

j−1). Because the (L+
i [xj], L

−
i [xj])-walks cannot cross the (L+

i [u0],
L+
i [u1])-walk, they need to use the passage on the left when the j-th bit of the pattern is 0, or the

passage on the right when this bit is 1. This already implies that the patterns in the ladders L−i ,
L+
i must be the same, and we will refer to this common pattern as bi.

We set the capacity of each passage going through the middle belt to be 2r − 1, i.e., we place
this many parallel edges in each of k passages. Note that the x-requests from the i-th block send∑r

j=1 2j−1 ·1[bi
j=0] units of flow through the passage to the left of the i-th block and

∑r
j=1 2j−1 ·1[bi

j=1]

units of flow through the right passage. If all the patterns are the same, then the total amount of
flow going through each passage is

∑r
j=1 2j−1 = 2r − 1. Because we work on a ring structure, when

some patterns differ then there is a passage through which one would need to push at least 2r units
of flow. Consequently, all the vectors bi must coincide and so pattern propagation works as intended.

12

L+
i [x1]

L+
i [u1]

L+
i [u0]

L−
i [x1] L−

i [y1]

L+
i

L−
i

wi
0 wi

1

zi3

zi2

zi1

si ti

Figure 4: A simplified construction of a (3, k,S)-Subset Gadget and a sketch of a solution (the colorful
lines). The vertices that need to be connected by walks share common colors and shapes. The i-th block is
built from two 3-ladders L+

i , L
−
i , and a (3, ZS

i)-Vector Containment Gadget. The blocks are combined into a
ring-like structure (on the right). The area separating the upper and lower ladder is referred to as the middle
belt. Due to pattern propagation, the choice of which colors are being routed through the left or right passage
must the same in all blocks. The common pattern b = (010) chosen by the solution is sketched with solid
lines. Accommodating an (si, ti)-walk (purple) through the i-th vector-containment gadget is possible if and
only if b ∈ ZS

i .

So far we have established a mechanism that makes a solution choose a single vector b ∈ {0, 1}r
that appears as a pattern in each block of the (r, k,S)-Subset Gadget. The next step is to enforce
that i ∈ F ⇒ i ∈ S(b). It is convenient to define ZSi as the set of vectors b for which i ∈ S(b).
Then the set ZSi can be encoded in the graph, and we need to check whether the pattern b chosen
by a solution belongs to ZSi . To this end, we will need another kind of a gadget, with a slightly
different interface. For Z ⊆ {0, 1}r, an (r, Z)-Vector Containment Gadget is a plane multigraph G
with distinguished vertices z1, . . . , zr and w0, w1, with the last two lying on the outer face. For
b ∈ {0, 1}r we define Tb,d as the family of following requests:

1. (w0, zj , 1) for each j ∈ [r] with bj = 0,
2. (w1, zj , 1) for each j ∈ [r] with bj = 1,
3. the request (w0, w1, d).

(The vertex zj needs to be connected by a walk to either w0 or w1 depending on the j-th bit in b.)
We require that the instance (G, Tb,0) is satisfiable for any b ∈ {0, 1}r but the instance (G, Tb,1) is
satisfiable if and only if b ∈ Z. In other words, the choice of the vector b governs whether we can
insert a (w0, w1)-walk on top of the r walks with endpoints at z1, . . . , zr.

13

Assuming that such a gadget exists, we could finish the construction of the subset gadget as
follows. For each i ∈ [k] we insert an (r, ZSi)-Vector Containment Gadget below the i-th block and
connect it to the lower corners of the ladder L−i . We refer to its distinguished vertices with i in
the superscript, e.g., wi

0, z
i
j . Next, for each i ∈ [k], j ∈ [r], we create another vertex inside the face

fj of the ladder L−i (denoted L−i [yj]) and add a request (L−i [yj], z
i
j , 1). By the same argument as

above, these walks must go through wi
0 when bj = 0 or through wi

1 when bj = 1. Therefore, they
contain subwalks satisfying the requests from Tb,0. Next, we create vertices si, ti attached to the
upper corners of the ladder L+

i ; note that they end up in the exterior of the ring structure, i.e.,
on the outer face of the subset gadget. The only possible way from si to ti leads through the i-th
vector-containment gadget. Hence when i ∈ F and we need to satisfy the request (si, ti, 1), there
must exist a non-crossing Tb,1-flow in the (r, ZSi)-Vector Containment Gadget. By its definition, this
implies b ∈ ZSi and so i ∈ S(b), as intended. The last issue is that the passages through the middle
belt are already saturated by the x-requests. This is not a big problem though as we can multiply
the demands in the x-requests by a constant and similarly multiply the number of the parallel edges
in the passages, creating a little slack sufficient for routing the (si, ti)-walks.

Vector-containment gadget. Unfortunately, the construction above does not work because we
do not know how to construct an (r, Z)-Vector Containment Gadget. Instead, we now present a gadget
with a slightly more complicated specification. First, we explain how to construct a gadget that
behaves almost like an (r, Z)-Vector Containment Gadget and then augment the construction of the
subset gadget with additional elements necessary to plug in the proper vector-containment gadget.

It is convenient to analyze the gadget from the dual perspective. For each b ∈ {0, 1}r we can
draw a curve (the red dashed curve in Figure 4) that has to intersect all the walks in a Tb,d-flow.
When there is a path P in the dual graph whose homotopy aligns with this curve (that is, P
traverses zj from the side of w0 when bj = 0 and from the side of w1 when bj = 1) then the length
of P imposes an upper bound on the maximal number of walks in a Tb,d-flow, what in turn entails
an upper bound on d. Given the set Z, we would like to construct a plane graph, being a prototype
of a dual graph of the gadget, with two vertices s, t on the outer face and r distinguished internal
faces f1, . . . , fr with the following property: the length of a shortest (s, t)-path with homotopy class
encoding the vector b (with respect to the faces f1, . . . , fr) depends on whether b ∈ Z.

We construct a plane graph Hr (see Figure 5) having a unique shortest (s, t)-path Pb for each
homotopy class given by b ∈ {0, 1}r. Moreover, the paths Pb are pairwise edge-disjoint. The graph
Hr has size 2O(r), which is polynomial in the size of family S, and its treewidth is 2Ω(r) due to
large grid subgraphs; this is inevitable in the light of Theorem 1.4. The faces f1, . . . , fr are the dual
counterparts of the vertices z1, . . . , zr, while the areas above and below Hr are the placeholders for
w0, w1. In order to achieve our goal, we would like to modify Hr to increase the length of the path
Pb exactly when b ∈ Z, thus allowing more slack for flows in the dual of Hr. This can be obtained
by subdividing the first edge (incident to s) on the path Pb when b ∈ Z; due to edge-disjointness
of the paths Pb, this does not affect the remaining homotopy classes. This modification raises the
upper bound on the size of a Tb,d-flow by one; by applying some other adjustments to Hr we can
make this upper bound tight for non-crossing flows. As a consequence, we can accommodate one
more (w0, w1)-walk in the dual exactly when the pattern b belongs to Z, as intended.

The main technical hurdle comes from the fact that the length of the path Pb in Hr depends
on b: it is very short for b being a 0-vector and very long for b comprising alternating 0’s and
1’s. So the bound on the size of a Tb,d-walk depends not only on whether b ∈ Z but also on some

14

s t

Figure 5: The graph H4 with 24 vertices in each vertical path. Four distinguished faces f1, f2, f3, f4 are
highlighted in light blue. For b = (1001) the path Pb is drawn in orange and for v = (1110) the path Pv is
drawn in green. These vectors encode whether a path passes above or below each of the faces f1, f2, f3, f4.
The red dashed curves illustrate the directions of walks in a Tb,d-flow in the dual of H4: note that each of
them intersects Pb.

function γ(b), making it useless for the current construction of the subset gadget. To circumvent
this, we first prove that the function γ enjoys a very special form, which will play a crucial role later.

γ(b1b2 . . . br) =
∑

1≤p<q≤r
1[bp ̸=bq] · 2r−q+p−1

We will now work with a generalization of an (r, Z)-Vector Containment Gadget, namely an
(r, γ, Z)-Vector Containment Gadget. The difference is that a non-crossing Tb,d-flow should be feasible
exactly when d ≤ γ(b) + 1[b∈Z]. In fact, the proper definition (5.5) requires more subtleties
concerning factors depending on r but we omit them here.

Subset gadget: The real deal. The current task is to adapt the construction of an (r, k,S)-
Subset Gadget to be compatible with the more complicated (r, γ, Z)-Vector Containment Gadget. The
condition b ∈ Z becomes meaningful for the vector-containment gadget only when it needs to
additionally accommodate γ(b) units of (w0, w1)-flow. We will extend the previous construction
with “dynamic flow generators”: new requests that could be satisfied either locally, within their
ladder, or via walks passing through the vector-containment gadget. We insert

(
r
2

)
new blocks

(without vector-containment gadgets) between each pair of blocks in the ring structure. In each
new block, labeled now with a triple (i, p, q), i ∈ [k], 1 ≤ p < q ≤ r, we request 2r−q+p−1 walks
from a vertex within the face fp of the corresponding lower ladder L to a vertex within the face
fq of the same ladder (see Figure 6). Due to pattern propagation, these faces will end up on the
same side of the (L[u0], L[u1])-walk only when a solution chooses a pattern b with bp = bq. In
this case the new requests can be satisfied by walks contained in L. However, when bp ̸= bq the
faces fp, fq in the ladder L become separated and the corresponding 2r−q+p−1 walks must be routed
elsewhere. Observe that the total amount of flow that cannot be satisfied locally, summing over all
pairs 1 ≤ p < q ≤ r, matches the formula for γ(b).

15

Figure 6: A refined construction of a (3, k,S)-Subset Gadget, showing new blocks inserted between the i-th
block and the (i+1)-th block from the previous construction. The faces with the endpoints of the new requests
are highlighted. The “pipes” are drawn with dotted lines. The blue paths show other new requests whose
purpose is to block the connections between the upper and lower pipes. The common pattern of the solution
is depicted with solid lines while the red lines illustrate the workaround for the new requests traversing the
i-th vector-containment gadget. Observe that one pair of highlighted faces is not being separated by the
pattern so the corresponding request can be satisfied locally.

We need a way to satisfy the requests, that cannot be satisfied locally, with walks that traverse
the i-th vector-containment gadget. To this end, we design an “irrigation system” of workarounds
that are too narrow (in the number of parallel edges) to be used by the other requests. It comprises
two groups of “pipes”, one inside the ring structure, gathering the walks starting on the left-sides
of the ladders and leading towards wi

0, and the other one outside the ring structure, gathering
the walks starting on the right-sides of the ladders and leading towards wi

1. By designing these
systems carefully, we can ensure that (a) the walks going through the pipes can traverse the vector-
containment gadget without crossing each other or the remaining walks, (b) the only way from the
upper pipe system to the lower pipe system leads through the vector-containment gadget, and (c)
the terminals si, ti stay on the outer face of the subset gadget, as required by its specification. This
concludes the description of the (r, k,S)-Subset Gadget (G, T) with the total number of requests
|T | = O(k · r3).

Implementing weights. The last issue is to deal with the fact in the Non-crossing Multi-
commodity Flow problem we allow requests of the form (si, ti, di) where the demand di may
be exponentially large in the parameter. As our final goal is to reduce the problem to Planar
Disjoint Paths, we would like to set all the demands to di = 1 without increasing the number of
requests too much. To this end, we take advantage of the construction by Adler and Krause [3] who

16

presented an instance of Planar Disjoint Paths with parameter ℓ and a roughly 2ℓ × 2ℓ-grid
subgraph in which every vertex must be used in the unique solution (hence no vertex is irrelevant
despite large treewidth). What is important for us, the unique solution must traverse the grid
2ℓ − 1 times from left to right (see Figure 29 on page 77). We utilize this property to implement a
request of the form (si, ti, 2

ℓ − 1) using only ℓ unitary requests. We replace the endpoint si with a
gadget mimicking the left-side of the grid and ti with a gadget for the right-side of the grid. By
the arguments from [3] we obtain that a solution must contain 2ℓ − 1 subwalks between these two
gadgets, which can be translated back into 2ℓ − 1 walks between si and ti. Finally, we can partition
each request (si, ti, di) into O(log di) requests of the form as above, thus increasing the total size of
T by a factor of O(k2) when the demands are bounded by 2O(k). This concludes the outline of the
reduction.

3 Preliminaries

The set {1, . . . , p} is denoted by [p]. A graph G has vertex set V (G) and edge set E(G) of distinct
pairs of vertices. We also consider multigraphs that may have parallel edges but no loops, i.e., E(G)
becomes a multiset of pairs of distinct vertices. For a vertex v ∈ V (G) we denote by EG(v) the set
of edges incident to v. For A,B ⊆ V (G) we define EG(A,B) = {uv | u ∈ A, v ∈ B, uv ∈ E(G)}.
The open neighborhood of v ∈ V (G) is NG(v) := {u | uv ∈ E(G)}. For a vertex set S ⊆ V (G)
the open neighborhood of S, denoted NG(S), is defined as

⋃
v∈S NG(v) \ S. For S ⊆ V (G), the

graph induced by S is denoted by G[S]. We use shorthand G− S for the graph G[V (G) \ S]. For
v ∈ V (G), we write G− v instead of G− {v}. For A ⊆ E(G) we denote by G \A the graph with
vertex set V (G) and edge set E(G) \A. For e ∈ E(G) we write G \ e instead of G \ {e}.

Paths, linkages, and separators. For X,Y ⊆ V (G) an (X,Y)-walk in G is an alternating
sequence of vertices and edges from G so that the first element is a vertex from X, the last one
element is a vertex from Y , and each edge is incident to the proceeding and succeeding vertex.
An (X,Y)-path is an (X,Y)-walk without vertex repetitions; we often identity a path with a
subgraph of G. When X = {x}, Y = {y}, we simply refer to (x, y)-walks and (x, y)-paths. The
length of a path equals the number of its edges. For x, y ∈ V (G) we define distG(x, y) as the length
of the shortest (x, y)-path.

A linkage in G is a family of vertex-disjoint paths in G. For X,Y ⊆ V (G) we say that P is an
(X,Y)-linkage when P comprises (X,Y)-paths. We use shorthand X-linkage for an (X,X)-linkage.
For T ⊆ V (G) × V (G) we say that P is a T -linkage when |P| = |T | and P contains an (si, ti)-path
for each (si, ti) ∈ T . We say that T is realizable in G if there exists a T -linkage in G. Two linkages
P1,P2 are aligned if there is a bijection f : P1 → P2 such that P ∈ P1 has the same endpoints as
f(P). For T ⊆ V (G) × V (G) we denote by VT the set of all vertices occurring in T .

For two sets X,Y ⊆ V (G), a set S ⊆ V (G) is an (X,Y)-separator if no connected component
of G− S contains a vertex from both X \ S and Y \ S. Note that such a separator may intersect
X ∪Y . By Menger’s theorem, the minimum cardinality of such a separator is equal to the maximum
cardinality of an (X,Y)-linkage. We denote this quantity by µG(X,Y). An (X,Y)-separator S is
inclusion-minimal if no proper subset of S is an (X,Y)-separator.

Theorem 3.1 ([23, Thm. 8.4, 8.5]). Let G be a graph and X,Y ⊆ V (G) be disjoint sets of
vertices. There exists a minimum-size (X,Y)-separator S such that for any other minimum-size

17

(X,Y)-separator S′ the set of vertices reachable from X in G− S is a subset of the set of vertices
reachable from X in G− S′. Furthermore, S can be constructed in polynomial time.

We say that S is the minimum-size (X,Y)-separator closest to X. Next, we shall need the
following fact, which follows from the analysis of the residual graph in the Ford-Fulkerson algorithm.

Lemma 3.2 (Augmenting path, [39, 22] (Implicit)). Let X,Y ⊆ V (G) and X ′ ⊂ X, Y ′ ⊂ Y be
such that |X ′| = |Y ′| = µG(X ′, Y ′) < µG(X,Y). Then there exist x ∈ X \X ′, y ∈ Y \ Y ′, and an
(X ′ ∪ {x}, Y ′ ∪ {y})-linkage of size |µG(X ′, Y ′)| + 1.

Contractions and minors. The operation of contracting an edge uv ∈ E(G) introduces a new
vertex adjacent to all of NG({u, v}), after which u and v are deleted. When working with multigraphs,
we accumulate multiplicities of edges with a common endpoint. The result of contracting uv ∈ E(G)
is denoted G/uv. For A ⊆ V (G) such that G[A] is connected, we say we contract A if we
simultaneously contract all edges in G[A] and introduce a single new vertex.

We say that H is a minor of G, if we can turn G into H by a (possibly empty) series of
edge contractions, edge deletions, and vertex deletions. The result of such a process is given by a
minor-model, i.e., a mapping Π: V (H) → 2V (G), such that the branch sets (Π(h))h∈V (H) are pairwise
disjoint, induce connected subgraphs of G, and h1h2 ∈ E(H) implies that EG(Π(h1),Π(h2)) ̸= ∅.

Treewidth. A tree decomposition of graph G is a pair (T, χ) where T is a rooted tree, and χ : V (T) →
2V (G) is a function, such that:

1. For each v ∈ V (G) the nodes {t | v ∈ χ(t)} form a non-empty connected subtree of T .

2. For each edge uv ∈ E(G) there is a node t ∈ V (G) with {u, v} ⊆ χ(t).

The width of a tree decomposition is defined as maxt∈V (T) |χ(t)| − 1. The treewidth of a graph G,
denoted tw(G), is the minimum width of a tree decomposition of G.

Planar graphs and multigraphs. We provide only the necessary background here and refer to
the textbook [79] for more details. A plane embedding of a multigraph G is given by a mapping
from V (G) to R2 and a mapping that associates with each edge uv ∈ E(G) a simple curve on
the plane connecting the images of u and v, such that the curves given by two distinct edges can
intersect only in a common endpoint. A multigraph is called planar if it admits a plane embedding.
A plane (multi)graph is a (multi)graph with a fixed planar embedding, in which we identify the set
of vertices with the set of their images on the plane. For a vertex v in a plane multigraph G we
denote by πG(v) the clockwise ordering of the set EG(v). The family of such orderings is called a
rotation system. For a topological disc D ⊆ R2 such that G[V (G) ∩D] is connected, the outcome of
contracting V (G)∩D is the unique (with respect to the rotation system) plane multigraph obtained
by contracting G ∩D into a point.

A face in a plane embedding of a multigraph G is a maximal connected subset of the plane
minus the image of G. We say that a vertex or an edge lies on a face f if its images belongs to the
closure of f . In every plane embedding there is exactly one face of infinite area, referred to as the
outer face. For a plane multigraph G we define its dual multigraph G∗ with V (G∗) being the set of
faces of G and edges given by pairs of distinct faces that are incident to an image of a common edge

18

from E(G). Each (a) vertex v, (b) edge e, and (c) face f of G has a counterpart in G∗, respectively:
(a) face v∗, (b) edge e∗, and (c) vertex f∗.

For a plane graph G with a set of faces F , we define its radial graph Ĝ as a bipartite graph
with the set of vertices V (Ĝ) = V (G) ∪ F and edges given by pairs (v, f) where v ∈ V (G), f ∈ F ,
and v lies on the face f . For two vertices u, v ∈ V (G) we define their radial distance rdistG(u, v)
to be one less than the minimum length of a sequence of vertices that starts at u, ends in v,
and in which every two consecutive vertices lie on a common face. For two sets X,Y ⊆ V (G)
we define rdistG(X,Y) = minx∈X,y∈Y rdistG(x, y). The radial diameter of a plane graph G equals
maxu,v∈V (G) rdistG(u, v).

Lemma 3.3 ([52, Prop. 2.1]). Let G be a plane graph with non-empty disjoint vertex sets X and
Y , such that G[X] and G[Y] are connected and rdistG(X,Y) = d ≥ 2. For any r with 0 < r < d
there is a cycle C in G− (X ∪ Y) such that all vertices u ∈ V (C) satisfy rdistG(X,u) = r, and such
that V (C) is an (X,Y)-separator in G.

A noose is a subset of R2 homeomorphic to the circle S1. For a plane graph G, a G-noose is a
noose that intersects G only at vertices; the length of a G-noose is defined as the number of vertices
it intersects. For a noose I we define Disc(I) as the closure of the bounded region of R2 \ I. For a
closed set D ⊆ R2 we define its interior int(D) as D minus its boundary ∂D. For two nooses Iin, Iout,
such that Iin lies in the interior of Disc(Iout), we define Ring(Iin, Iout) = Disc(Iout) \ int(Disc(Iin)).
A plane graph G is properly embedded in a set D ⊆ R2 if G ⊆ D and G ∩ ∂D ⊆ V (G).

Lemma 3.4 ([79, Prop. 8.2.3]). Let G be a plane graph, X,Y ⊆ V (G) be non-empty, disjoint,
and inducing connected subgraphs of G, and S ⊆ V (G) \ (X ∪ Y) be an inclusion-minimal (X,Y)-
separator. Then there exists a G-noose γ such that S = γ ∩ V (G) and γ separates the plane into
two regions, one containing X and the second containing Y .

We remark that the original statement in [79] involves singleton sets X,Y and triangulated plane
graphs, but it can be adapted to our setting by contractions and inserting new vertices inside faces.

Lemma 3.5. Let G be a plane graph, C1, C2 be vertex-disjoint cycles in G such that C1 lies in
the interior of C2. Let S be an inclusion-minimal (C1, C2)-separator, not necessarily disjoint from
C1, C2. Then there exists a G-noose γ such that S = γ ∩ V (G) and Disc(C1) ⊆ Disc(γ) ⊆ Disc(C2).

Proof. By the minimality of the separator, S does not contain vertices in the interior of Disc(C1)
and in the exterior of Disc(C2). Consider a graph G′ obtained from G by removing all the vertices
in the interior of Disc(C1), inserting a vertex u inside C1 adjacent to the entire V (C1), removing all
the vertices in the exterior of Disc(C2) and inserting a vertex v outside C2 adjacent to the entire
V (C2). Then S is an inclusion-minimal (u, v)-separator in G′, disjoint from u, v. The claim follows
from Lemma 3.4.

4 Polynomial kernel for parameter k + tw

In this section we prove Theorem 2.1, being a generalization of Theorem 1.4. We begin with providing
additional preliminaries about linkages. Next, we present the radial diameter reduction (Section 4.2),
analyzing the two cases described in the outline, and then combining them into a procedure for the
irrelevant edge detection. Afterwards, we deal with the single-face case (Section 4.3) and then apply
it to process the low-radial-diameter instances in Section 4.4.

19

4.1 Preliminaries for processing linkages

We gather several useful facts about linkages that will form our toolbox for proving Theorem 2.1.
This is mostly a compilation of know facts, adapted to our setting. We begin with the concept of
linkage-equivalency and explain how it helps in compressing subgraphs without terminals.

Definition 4.1. Two graphs G1, G2 sharing a set of vertices X are X-linkage-equivalent if for
every set of disjoint pairs T ⊆ X2, T is realizable in G1 if and only if T is realizable in G2.

Lemma 4.2. Let G be a graph and X,Y ⊆ V (G), U ⊆ V (G) \ (X ∪ Y), NG(U) ⊆ Y . Suppose that
there is an edge e ∈ E(G[U ∪ Y]) such that G[U ∪ Y] \ e is Y -linkage-equivalent to G[U ∪ Y]. Then
G \ e is X-linkage-equivalent to G.

Proof. Let P be an X-linkage in G. For a path P ∈ P let Γ(P) be the family of maximal subpaths
of P with vertex sets contained in U ∪Y . Since U ∩X = ∅ and NG(U) ⊆ Y then every path in Γ(P)
is a (Y, Y)-path. Therefore, the linkage PU given by the union of Γ(P) over P ∈ P is a Y -linkage
in G[U ∪ Y]. Because G[U ∪ Y] \ e is Y -linkage-equivalent to G[U ∪ Y], there exists a linkage P ′U
in G[U ∪ Y] \ e that is aligned with PU . For P ∈ P let P̂ be obtained from P by replacing each
subpath from Γ(P) with its counterpart from P ′U . Then {P̂ | P ∈ P} is a linkage in G \ e that is
aligned with P.

The following concept has been introduced in the work about treewidth reduction for Planar
Disjoint Paths [2].

Definition 4.3 (Tight concentric cycles). Let G be a plane graph, Xin, Xout ⊆ V (G), and C1, . . . , Cm

be a sequence of cycles in G. We call C1, . . . , Cm concentric, if for all i ∈ [m − 1], the cycle Ci

is contained in the interior of Disc(Ci+1). When additionally Xin ⊆ int(Disc(C1)) and Xout ∩
Disc(Cm) = ∅, then we call it an (Xin, Xout)-sequence of concentric cycles.

A (Xin, Xout)-sequence of concentric cycles is tight if, in addition, for every i ∈ [m − 1],
Disc(Ci+1) \ Disc(Ci) does not contain a cycle C with Disc(Ci) ⊆ Disc(C) ⊊ Disc(Ci+1), and
Disc(C1) \Xin does not contain a cycle C with Xin ⊆ Disc(C) ⊊ Disc(C1).

When a plane graph G properly embedded in Ring(Iin, Iout) is clear from the context, we denote
Vin = V (G) ∩ Iin and Vout = V (G) ∩ Iout.

Lemma 4.4. Consider a graph G properly embedded in Ring(Iin, Iout) with d = rdistG(Vin, Vout).
Let Xin ⊆ Vin and Xout ⊆ Vout. Then there exists a tight (Xin, Xout)-sequence of concentric cycles
C1, . . . , Cd−1.

Proof. Consider a graph G′ obtained from G by inserting a vertex vin inside Iin adjacent to entire
Xin and a vertex vout outside Iout adjacent to entire Xout. The sets Xin ∪ {vin} and Xout ∪ {vout}
induce connected subgraphs of G′ and their radial distance is at least d. By Lemma 3.3 there exists
cycles in C1, . . . , Cd−1 in G− (Xin ∪Xout) that are (Xin, Xout)-separators in G. By Lemma 3.4 each
Ci has Xin in its interior and Xout in its exterior, so C1, . . . , Cd−1 are concentric. As long as this
sequence is not tight, we can find a local refinement pushing some cycle closer to Xin. After a finite
number of refinements we obtain a tight (Xin, Xout)-sequence of concentric cycles.

Lemma 4.5. Consider a graph G properly embedded in Ring(Iin, Iout). Let C1, . . . , Cm be a
(Vin, Vout)-sequence of concentric cycles and S be an inclusion-minimal (Vin, Vout)-separator. Then
there exists an interval J ⊆ [m] of size at most |S| so that S ∩ V (Cj) ̸= ∅ implies j ∈ J .

20

Ci

Ci−1

Ci

Ci−1

D

P P P ′
Q

Q

Q′

Figure 7: An illustration of the two cases in Lemma 4.6. Left: The green subpath Q of P is contained in
Disc(Ci) \ Disc(Ci−1) what contradicts the tightness of the sequence. Right: Q is internally disjoint from
Disc(Ci). Since the chosen linkage minimizes the number of used edges that do not belong to any cycle, some
other path P ′ must visit the arc of Ci between the endpoints of Q, again leading to a contradiction.

Proof. The minimality of S implies that there exists a G-noose γ with γ ∩ V (G) = S. Therefore
each pair of consecutive vertices on γ shares a face and the maximal radial distance between vertices
of S is at most |S| − 1. On the other hand, for u ∈ Ci, v ∈ Cj , we have rdistG(u, v) ≥ |i− j|. The
lemma follows.

When working with linkages traversing concentric cycles, it is convenient to assume that each
path in a linkage intersects each cycle exactly once. We can enforce this property as long as the
sequence of concentric cycles is tight. The following proof is an adaptation of [56, Lemma 6.15].

Lemma 4.6. Consider a graph G properly embedded in Ring(Iin, Iout), Xin ⊆ Vin, and Xout ⊆ Vout.
Let C1, . . . , Cm be a tight (Xin, Xout)-sequence of concentric cycles and P be a (Xin, Xout)-linkage in
G such that each vertex in Xin is an endpoint of a path in P. Then there exists a linkage P ′ aligned
with P such that the intersection of each P ∈ P ′ and each Ci has exactly one connected component.

Proof. Let P ′ be a linkage aligned with P that minimizes the number of edges in
⋃

P∈P ′ V (P) that
do not belong to any cycle Ci. Suppose there is i ∈ [d] and P ∈ P ′ such that P ∩Ci has at least two
connected components. Choose the minimal i ∈ [d] with this property. Then P contains a subpath
Q with endpoints on Ci and internal vertices disjoint from V (Ci).

First suppose that these vertices lie in the interior of Disc(Ci). By the choice of i either i = 1
or the path Q does not intersect Ci−1. If i = 1 then by the assumption that each vertex in Xin is
an endpoint of some path we infer that Q cannot intersect Xin. In both cases we could use Q to
construct a cycle C enclosing Xin (resp. Ci−1) with Disc(C) ⊊ Disc(Ci), contradicting the tightness
of the sequence C1, . . . , Cm.

Now suppose that that the internal vertices of Q are disjoint from Disc(Ci). Let D be the
bounded region of R2 \ (Ci ∪Q) incident to Q and Q′ ⊆ Ci be the path within Ci whose image is
Ci ∩ ∂D; then Q′ connects the endpoints of Q (see Figure 7). If the internal vertices of Q′ were
disjoint from all the other paths in P ′ we could replace Q with Q′ (and remove some redundant
vertices if we get a self-crossing of P) but this would contradict the choice of P ′. Therefore there is
some path P ′ ∈ P ′, P ′ ̸= P , using a vertex v ∈ V (Ci) being internal in Q′. When i > 1 then the
(Xin, v)-subpath of P ′ must intersect Ci−1 so by the choice of i the (v,Xout)-subpath of P ′ cannot
intersect Ci−1. As P ′ is disjoint from Q it must contain a subpath with endpoints on Ci and internal
vertices in int(Disc(Ci) \ Disc(Ci−1)). When i = 1 we obtain a subpath of P ′ with endpoints on C1

and internal vertices in int(Disc(C1) \Xin because P ′ does not have internal vertices from Xin. In
both cases we get a contradiction with the tightness of C1, . . . , Cm.

We will work with the notion of a cylindrical grid, which can be regarded as an outcome of
identifying the opposite sides of a standard grid.

21

Definition 4.7. Let k ≥ 3, m ≥ 1. The (k,m)-cylindrical grid Cm
k is a plane graph constructed

as follows. We draw m concentric cycles referred to as C1, . . . , Cm, counting from the innermost
one. Then we draw k pairwise disjoint lines connecting C1 to Cm; these lines are called C1, . . . , Ck,
counting clockwise. We turn each intersection of Ci and Cj into a vertex, referred to as cji .

We require k ≥ 3 in order to avoid using parallel edges and restrict our arguments only to simple
graphs. The (4, 8)-cylindrical grid is shown in Figure 8. It is known [48, Lemma 4.2] that a large
linkage between two sets that are far apart in the radial distance entails a minor model of a large
cylindrical grid. We need an intuitive strengthening of this fact relating the endpoints in this linkage
to the branch sets in the minor model.

Lemma 4.8. Consider a graph G properly embedded in Ring(Iin, Iout) and m = rdistG(Vin, Vout) ≥ 2.
Suppose that T = (s1, t1), . . . , (sk, tk) is realizable in G, where k ≥ 3, and s1, . . . , sk lie in this cyclic
order on Iin and t1, . . . , tk lie in this cyclic order on Iout (both counted clockwise). Then G contains
a minor model of the cylindrical grid Cm−1

k such that for each i ∈ [k] the vertex si belongs to the
branch set of c1i and ti belongs to the branch set of cm−1i .

Proof. Let Xin = VT ∩ Vin and Xout = VT ∩ Vout; then rdistG(Xin, Xout) ≥ m. By Lemma 4.4 there
exists a tight (Xin, Xout)-sequence of concentric cycles C1, . . . , Cm−1 in G. We can apply Lemma 4.6
to obtain that there exists a T -linkage P such that the intersection of each P ∈ P and each Ci is
a single segment of C. Let G′ be the union of all paths in P and the cycles C1, . . . , Cm−1. Let Pi

denote the (si, ti)-path in P ; then P1, . . . , Pk are ordered clockwise. The set V (Pi) ∩ V (Cj) induces

a connected subgraph of G′; we contract it into a single vertex referred to as cji . Let G′′ be the

graph obtained by these contractions; then G′′ is a minor of G and each vertex cji has exactly
four neighbors in G′′. Next, we contract every degree-2 vertex with one of its neighbors. Finally,
we contract each degree-1 vertex with its only neighbor so si gets contracted with c1i and ti gets
contracted with cm−1i . The claim follows.

A linkage in a cylindrical grid can be transformed into a linkage in graph G using the following
observation.

Observation 4.9. Let G,H be graphs and (Vh)h∈V (H) be a minor model of H in G. Con-
sider a set of pairs (s1, t1), . . . , (sk, tk) from V (G) × V (G) with all the vertices distinct. Suppose
there exists an injection π :

⋃k
i=1{si} ∪ {ti} → V (H) such that si ∈ Vπ(si) and ti ∈ Vπ(ti). If

(π(s1), π(t1)), . . . , (π(sk), π(tk)) is realizable in H then (s1, t1), . . . , (sk, tk) is realizable in G.

Because tw(Ct
t) ≥ t [23, §7.7.1] and treewidth is a monotone measure with respect to taking

minors, we also obtain the following corollary from Lemma 4.8. Note that |i− j| ≥ t + 1 implies
rdist(Ci, Cj) ≥ t + 1.

Corollary 4.10. Let G be a plane graph and C1, . . . , Cm be a concentric sequence of cycles. Suppose
there exists i, j ∈ [m] such that |i− j| ≥ t + 1 and µG(Ci, Cj) ≥ t. Then tw(G) ≥ t.

A (Vin ∪ Vout)-linkage may contain paths (or subpaths) with both endpoints in Vin or both in
Vout. The next lemma assures that we can always assume that such paths do not go “too deep”
inside the graph. The proof uses similar ideas as [2, Lemma 3].

Lemma 4.11. Let G be a plane graph properly embedded in Ring(Iin, Iout) and t = max(|Vin|, |Vout|).
Let C1, . . . , Cm be a (Vin, Vout)-sequence of concentric cycles. Then for every (Vin ∪ Vout)-linkage P
there exists a linkage P ′ aligned with P such that

22

1. every inclusion-minimal (Vin∪Vout)-subpath of a path in P ′, that is a (Vin, Vin)-path, intersects
at most t first cycles in C1, . . . , Cm, and

2. every inclusion-minimal (Vin∪Vout)-subpath of a path in P ′, that is a (Vout, Vout)-path, intersects
at most t last cycles in C1, . . . , Cm.

Proof. Let P ′ be a linkage aligned with P that minimizes the number of edges in
⋃

P∈P ′ V (P) that

do not belong to any cycle Ci. Let P̂ be the family of the inclusion-minimal (Vin ∪ Vout)-subpaths
of paths in P ′. Then P̂ is a family of internally disjoint paths and each endpoint can be shared
by at most two paths. For a (Vin, Vin)-path P ∈ P̂ we define R(P) as the bounded region of
R2 \ (P ∪ Iin) incident to P . Let h(P) be the number of paths from P̂ , different from P , which are
contained in R(P). We have h(P) ≤ t− 1 and for every path P ′ ≠ P contained in R(P) it holds
that h(P ′) < h(P).

We show inductively that when h(P) = ℓ then P intersects at most ℓ+1 first cycles in C1, . . . , Cm.
First consider ℓ = 0 and suppose that P intersect C2. Let P ′ be a (C1, C1)-subpath of P with
internal vertices disjoint from Disc(C1). Then there exists a path P ′′ ⊂ C1 ∩R(P) with the same
endpoints as P ′. We can replace P ′ with P ′′ in P and, as a result, obtain a linkage aligned with P ′
which uses less edges not belonging to any cycle Ci. This gives a contradiction.

Assume now that the claim holds for h(P) < ℓ and consider P ∈ P̂ with h(P) = ℓ with intersects
Cℓ+2. Let P ′ be a (Cℓ+1, Cℓ+1)-subpath of P with internal vertices disjoint from Disc(Cℓ+1). Then
there exists a path P ′′ ⊂ Cℓ+1 ∩R(P) with the same endpoints as P ′. By the assumption, this path
is disjoint from all paths in R(P) different than P . Again, by a replacement argument we obtain a
linkage aligned with P ′ with a smaller cost.

This concludes the proof of the first part. The second part, concerning (Vout, Vout)-paths in P̂,
is symmetric.

4.2 Radial diameter reduction

As outlined in Section 2, we will reduce the radial diameter of the graph G by repeatedly removing
irrelevant edges. We focus on the scenario where a subgraph of G, devoid of terminals, can be
properly embedded in Ring(Iin, Iout) and rdist(Vin, Vout) is large. We inspect two cases, first analyzing
non-maximal linkages, in which the number of (Vin, Vout)-paths is less than µ(Vin, Vout). Later on
we will be armed with two strategies for detecting an irrelevant edge, each applicable in a different
setting.

4.2.1 Rerouting a non-maximal linkage

We are going to show that when T ⊆ Vin×Vout, |T | < µ(Vin, Vout), and rdist(Vin, Vout) is large, then
the cut-condition |T | ≤ µ(VT ∩ Vin, VT ∩ Vout) is sufficient for a T -linkage to exist. We begin with
an argument for cylindrical grids.

Lemma 4.12. Consider the cylindrical grid Cm
k with m ≥ k2, k ≥ 3. Let vertices s1, . . . , sk−1 lie

in this cyclic order on C1 and vertices t1, . . . , tk−1 lie in this cyclic order on Cm (both counted
clockwise). Then {(s1, t1), . . . , (sk−1, tk−1)} is realizable in Cm

k .

Proof. For two vertices u, v ∈ V (Cm
k) we define Shift(u, v) as follows. Let i, j ∈ [k] be such that

u ∈ V (Ci) and v ∈ V (Cj). Then Shift(u, v) is the minimum non-negative integer ℓ satisfying (i + ℓ)

23

s1

s2

s3

t1

t2

t3 C8C7C6C5C4C3C2C1

C1

C2

C3

C4

Figure 8: A visualization of the cylindrical grid C8
4 and the proof of Lemma 4.12. Here Shift(s1, t1) = j = 1

so we need at least 2 · 4 = 8 concentric cycles in Claim 4.13. The three (si, ti)-paths are drawn in colors. The
four inner cycles illustrate the inductive argument for j > 0 where each path gets shifted once clockwise. The
four outer cycles show the argument for j = 0 where the origin of the path ending at t1 is already correctly
positioned and we might only need to shift the remaining ones.

mod k = j mod k. In other words, it is the number of clockwise jumps needed to reach Cj from
Ci. We will show the following claim by induction on j.

Claim 4.13. Consider the cylindrical grid Cm
k where k ≥ 3, m = (j + 1)k, for some j ≥ 0. Let

vertices s1, . . . , sk−1 lie in this cyclic order on C1 and vertices t1, . . . , tk−1 lie in this cyclic order on
Cm (both counted clockwise). If Shift(s1, t1) = j then {(s1, t1), . . . , (sk, tk)} is realizable in Cm

k .

Proof. First consider the basic case j = 0 in which m = k. Since Shift(s1, t1) = 0 we can assume
w.l.o.g. that s1, t1 both lie on C1, that is, s1 = c11, t1 = ck1. Let s∗ be the unique vertex in
C1 \ {s1, . . . , sk−1} and t∗ be the unique vertex in Ck \ {t1, . . . , tk−1}. For the clarity of presentation
we examine only the extremal case s∗ = c1k, t∗ = ck2 in detail; the other cases are analogous. The
pair (s1, t1) can be connected directly via the path P1 = C1. By the assumption on the cyclic order
we have that for each i ∈ [2, k − 1] the vertex si lies on Ci and ti lies on Ci+1. For i ∈ [2, k − 1] we
define the path Pi as a concatenation of

1. the subpath of Ci from si = c1i to ck−i+1
i ,

2. the edge ck−i+1
i ck−i+1

i+1 ,

3. the subpath of Ci+1 from ck−i+1
i+1 to cki+1 = ti.

See Figure 8. Note that none of these paths intersect P1 = C1. Furthermore, Pi+1∩Ci+1 is contained
in the disc enclosed by Ck−i−1 (inclusively) while Pi ∩ Ci+1 is disjoint from the interior of the disc
enclosed by Ck−i. Hence, the paths P1, . . . , Pk−1 are vertex-disjoint. The construction for different
s∗, t∗ is analogous. This concludes the analysis for the case j = 0.

Suppose that that j > 0. Let π(i) ∈ [k] be that si = c1π(i) for i ∈ [k]. Let s′i be the vertex

ckj where j = π(i) + 1 modulo k. Then Shift(s′1, t1) = j − 1. By the inductive assumption, the

24

(k, jk)-cylindrical grid induced by the cycles Ck+1, Ck+2, . . . , Cm contains a linkage connecting pairs
(s′1, t1), . . . , (s′k−1, tk−1). Therefore, it suffices to construct a linkage (P1, . . . , Pk−1) in Ck

k connecting
pairs (s1, s

′
1), . . . , (sk−1, s

′
k−1). Due to the assumption on the cyclic order we can assume w.l.o.g.

that π(i) = i for each i ∈ [k− 1]. Then the path Pi for i ∈ [k− 1] is given by the same concatenation
formula as in the case j = 0. Again, these paths are vertex-disjoint, which yields the claim. ■

The lemma follows from the observation that Shift(s1, t1) < k so the claim can be applied.

Now we generalize the argument from a cylindrical grid to the general case.

Lemma 4.14. Let G be a graph properly embedded in Ring(Iin, Iout) and r < p be integers. Suppose
that µG(Vin, Vout) ≥ p and rdistG(Vin, Vout) ≥ p2 + 1. Let vertices s1, . . . , sr lie in this cyclic
order on Iin and vertices t1, . . . , tr lie in this cyclic order on Iout (both counted clockwise). Then
T = {(s1, t1), . . . , (sr, tr)} is realizable in G if and only if µG({s1, . . . , sr}, {t1, . . . , tr}) ≥ r.

Proof. The lemma is trivial for r = 1 so we will assume r ≥ 2. The condition µG(VT ∩Vin, VT ∩Vout) ≥
r is clearly necessary for a T -linkage to exist. Suppose that this condition holds and let P be
some (VT ∩ Vin, VT ∩ Vout)-linkage of size r. Since r < µG(Vin, Vout), by Lemma 3.2 there exist
vertices s∗ ∈ Vin \ VT , t∗ ∈ Vout \ VT , and a linkage P ′ connecting sets S = {s1, . . . , sr, s∗} and
T = {t1, . . . , tr, t∗}. Note that 3 ≤ r + 1 = |S| = |T | ≤ p. By Lemma 4.8 the graph G contains a
minor model of Cm

r+1, where m = p2 ≥ (r + 1)2, and there are bijections πS : S → C1, πT : T → Cm

that preserve the cyclic ordering, such that s ∈ S belongs to the branch set of πS(s) and t ∈ T
belongs to the branch set of πT (t). We can thus assume w.l.o.g. that πS(s1), . . . , πS(sr) lie in this
cyclic order on C1 and πT (t1), . . . , πT (tr) lie in this cyclic order on Cm, counted clockwise. By
Lemma 4.12 the set of pairs {(πS(s1), πT (t1)), . . . , (πS(sr), πT (tr)} is realizable in Cm

r+1. Then the
lemma follows from Observation 4.9.

Our goal is to detect an edge that can be safely removed without modifying the family of possible
non-maximal linkages. We can assume that the (Vin, Vin)-paths and the (Vout, Vout)-paths intersect
only few cycles in the concentric family, so the main challenge is to preserve the non-maximal
(Vin, Vout)-linkages. As we know that the cut-condition is sufficient for a such a linkage to exist, it
remains to find an edge e whose removal does not affect any cut-condition. We show that this can
be guaranteed by two requirements: (a) removing e does not decrease µ(Vin, Vout) and, (b) e has
sufficiently large radial distance from both Vin and Vout.

Proposition 4.15. Let G be a graph properly embedded in Ring(Iin, Iout), t = max(|Vin|, |Vout|),
and s = µG(Vin, Vout). Let C1, . . . , Cm be a (Vin, Vout)-sequence of concentric cycles in G and
m ≥ (t + 2)2.

Consider i ∈ [2t + 1,m − 2t] and edge e ∈ E(Ci) such that µG\e(VinVout) = µG(Vin, Vout) = s.
Let T ⊆ (Vin ∪ Vout)

2. Suppose that T contains less than s pairs with one element in Vin and one
in Vout. Then T is realizable in G if and only if T is realizable in G \ e.

Furthermore, there exists at least one edge e satisfying the requirements above and it can be
found in polynomial time.

Proof. When T is realizable in G then, by Lemma 4.11, there exists a T -linkage P in G such that
every (Vin, Vin)-path in P intersects at most t of the first cycles in the sequence C1, . . . , Cm, while
every (Vout, Vout)-path in P intersects at most t of the last cycles in C1, . . . , Cm. Let Plong ⊆ P

25

Figure 9: An illustration for Proposition 4.15. The nooses Iin, Iout are dotted and the (Vin, Vout)-sequence
of concentric cycles C1, . . . , Cm is gray. The cycles Ct+1, Cm−t are highlighted. To obtain graph G′, we
remove from G the paths in P \ Plong (which do not intersect Ct+1, Cm−t) together with the shaded area.
The edge e is drawn solid red. The proposition relies on the observation that any inclusion-minimal separator
S in G′ \ e between a vertex inside Ct+1 and a vertex outside Cm−t, such that S is not present in G′, is
represented by a noose (dashed) intersecting e. Since e ∈ Ci, where i is sufficiently far for t + 1 and m− t,
this noose cannot intersect Ct+1, Cm−t so it must be a (Ct+1, Cm−t)-separator as well.

be the subfamily of paths from P with one endpoint in Vin and one in Vout. By the assumption
|Plong| < s. If Plong = ∅ then we are done; suppose that this is not the case.

The graph obtained from G by removing the paths from P \ Plong has exactly one connected
component containing the paths from Plong; let G′ indicate this component. Let V ′in ⊆ V (G′) be the
set of vertices lying on the inner face of G′ containing Iin and V ′out ⊆ V (G′) be the set of vertices
lying on the outer face of G′.

Claim 4.16. It holds that µG′(V
′
in, V

′
out) ≥ s.

Proof. Let Pmax be a (Vin, Vout)-linkage of size s in G. Then each path P from Pmax has a non-empty
intersection with V (G′). In particular, P contains a subpath being a (V ′in, V

′
out)-path in G′. This

gives a (V ′in, V
′
out)-linkage in G′ of size s. ■

All the cycles Ct+1, . . . , Cm−t are contained in G′ and so is e. Hence rdistG′(V
′
in, V

′
out) ≥ m−2t ≥

t2 + 2 and rdistG′\e(V
′
in, V

′
out) ≥ t2 + 1 ≥ s2 + 1. Let e = v1v2. Then each of v1, v2 is separated from

each of V ′in, V
′
out with at least t cycles from Ct+1, . . . , Cm−t.

Claim 4.17. It holds that µG′\e(V
′
in, V

′
out) ≥ s.

Proof. Suppose otherwise. Then there exists a (G′ \e)-noose γ in the plane which separates V ′in from
V ′out and intersects G′ \ e on at most s− 1 vertices; let S = γ ∩V (G′ \ e). By Claim 4.16 there are no
such small (V ′in, V

′
out)-separators in G′. Therefore γ must intersect the image of e and so S contains

a vertex u that lies on a common face with e in G′. Suppose that γ intersects Ct+1; then it must also

26

intersect Ci−1. Lemma 4.5 implies that |(i−1)−(t−1)| = |i−t−2| ≤ s−2 ≤ t−2 but this contradicts
the assumption that i ≥ 2t+1. By the symmetric argument, γ cannot intersect Cm−t. Therefore, the
curve γ must be contained in the interior of Ring(Ct+1, Cm−t) and so S is a (Ct+1, Cm−t)-separator
in G′ \ e: see Figure 9. As a consequence, S is also a (Vin, Vout)-separator in G \ e. This implies that
µG\e(Vin, Vout) ≤ s− 1 and contradicts the assumption that µG\e(Vin, Vout) = µG(Vin, Vout). ■

Note that Plong is a (V ′in, V
′
out)-linkage in G′. Let Tin ⊆ V ′in, Tout ⊆ V ′out be the sets of endpoints

of paths from Plong.

Claim 4.18. It holds that µG′\e(Tin, Tout) ≥ |Plong|.

Proof. Clearly, µG′(Tin, Tout) ≥ |Plong|. Suppose that such an inequality does not hold in G′ \ e.
Similarly as in Claim 4.17, there exists a (G′ \ e)-noose γ in the plane which separates Tin from
Tout and intersects G′ \ e on at most |Plong| − 1 vertices; let S = γ ∩ V (G′ \ e). By the same
argument as before we obtain that γ is contained in the interior of Ring(Ct+1, Cm−t) and S is a
(Vin, Vout)-separator in G \ e. Recall that e = v1v2. Observe that any (Vin, Vout)-path in G− S must
go through e so S ∪ {v1} is a (Vin, Vout)-separator in G. Hence, µG(Vin, Vout) ≤ |S| + 1 ≤ |Plong|.
This contradicts the assumption that |Plong| < s = µG(Vin, Vout). ■

The two claims above allows us to apply the criterion from Lemma 4.14 to G′ \ e, V ′in, V ′out, Plong

with p = s, r = |Plong| < p, and rdistG′\e(V
′
in, V

′
out) ≥ p2 + 1. We derive that there exists a linkage

in G′ \ e aligned with Plong. By the construction of G′ this implies that there exists a linkage in
G \ e aligned with P.

It remains to justify that e can be efficiently found. First, (t + 2)2 − 4t > 0 so the interval
[2t + 1,m− 2t] is non-empty. A (Vin, Vout)-linkage Pmax of size s can be found in polynomial time.
Then e can be chosen as any edge on Ci that is not used by Pmax.

4.2.2 Rerouting a maximal linkage

We move on to the scenario in which the number of (Vin, Vout)-paths in a linkage equals µ(Vin, Vout).
The crucial special case occurs when |Vin| = |Vout| = µ(Vin, Vout). This is the same setting that has
been studied by Robertson and Seymour [87] as a subroutine in their FPT algorithm for Planar
Disjoint Paths. We shall adopt the same perspective for analyzing this case, based on the following
convenient plane embedding.

Definition 4.19. A plane graph G is called k-cylindrical if:

1. It is properly embedded in Ring(Iin, Iout) where Iin = {(x, y) ∈ R2 | x2 + y2 = 1} and
Iout = {(x, y) ∈ R2 | x2 + y2 = 4};

2. The sets Vin = V (G) ∩ Iin and Vout = V (G) ∩ Iout have size k each;

3. Vin = {(1, 2jk π)}0≤j<k and Vout = {(2, 2jk π)}0≤j<k in polar coordinates, and

4. µG(Vin, Vout) = k.

We refer to the elements of Vin as s0, s1, . . . , sk−1 so that sj has polar coordinates (1, −2πk j).
Similarly, t0, t1, . . . , tk−1 are the elements of Vout and tj = (2, −2πk j).

27

Definition 4.20. For a path P connecting s ∈ Vin and t ∈ Vout we define its winding number
θ(P) ∈ Z as k

2π times the total angle traversed by the curve corresponding to P (measured clockwise).

See Figure 2 on page 8 for an example. Intuitively, the winding number measures how many
times a path winds around the ring (and in which direction) and what is the difference in the angles
of its endpoints.

Definition 4.21. A cylindrical linkage in G is a (Vin, Vout)-linkage of size k. When P is cylindrical
then every path P ∈ P has the same winding number and we refer to it as θ(P). We say that θ is
feasible in G if there is a cylindrical linkage in G with the winding number θ.

We remark that Robertson and Seymour [87] defined the winding number of P as −θ(P)/k but
we choose this convention so we could work with integers and the more intuitive clockwise ordering.

Lemma 4.22 ([87, Lem. 5.9]). Let G be a k-cylindrical graph. If θ1 < θ2 < θ3 and θ1, θ3 are
feasible in G, then so is θ2.

For a k-cylindrical graph G let ΘG be the set of all feasible values of θ. By Lemma 4.22 the
set ΘG forms an interval of integers and it is non-empty because µG(Vin, Vout) = k. The set ΘG is
always finite and it can enumerated efficiently.

Lemma 4.23 ([87, Lem. 5.11]). There is a polynomial-time algorithm that, given a k-cylindrical
graph G, enumerates the set ΘG.

We define θG1 , θ
G
2 as follows. If |ΘG| < k then θG1 = min ΘG and θG2 = max ΘG. Otherwise, we

set θG1 = min ΘG and θG2 = θG1 + k − 1.

Observation 4.24. Let G be a k-cylindrical graph. Then [θG1 , θ
G
2] ⊆ ΘG. Furthermore, if θ ∈ ΘG

then there exists θ′ ∈ [θG1 , θ
G
2] such that θ′ ≡ θ mod k.

For j ∈ [0, k − 1] let Tj ⊆ Vin × Vout be the set of pairs (si, ti+j mod k)i∈[0,k−1]. Clearly, Tj is

realizable in G if and only if there exists θ ∈ ΘG such that (θ mod k) = j. This is equivalent
to the existence of θ ∈ [θG1 , θ

G
2] with (θ mod k) = j. Combining all these observations with the

strategy for coping with non-maximal linkages yields a criterion for an edge to be irrelevant in a
k-cylindrical graph.

Lemma 4.25. Let G be a k-cylindrical graph and C1, . . . , Cm be a (Vin, Vout)-sequence of concentric
cycles in G with m ≥ (k + 2)2. Consider i ∈ [2k + 1,m− 2k] and edge e ∈ E(Ci) such that θG1 , θ

G
2

are feasible in G \ e. Then G \ e is (Vin ∪ Vout)-linkage-equivalent to G.

Proof. The assumptions imply that µG\e(Vin, Vout) = µG(Vin, Vout) = k. Consider some T ⊆
(Vin ∪ Vout)

2 that is realizable in G. Let ℓ be the number of pairs in T with one endpoint in Vin

and one in Vout. If ℓ < k then T is realizable in G \ e due to Proposition 4.15. Suppose that ℓ = k.
Then T = Tj for some j ∈ [0, k − 1] for which there exists θ ∈ ΘG such that (θ mod k) = j. By
Observation 4.24 we can assume that θ ∈ [θG1 , θ

G
2]. As both θG1 , θ

G
2 are feasible in G \ e, it follows

from Lemma 4.22 that so is θ.

28

u v

P1

P2

P3

Q

Figure 10: Three (u, v)-paths satisfying P1 ⊏ P2 ⊏ P3. The ring has been deformed for a better presentation.
The dashed path Q is a clockwise handle of P3.

Disentangling cylindrical linkages. While finding an edge not required by a single linkage is
simple, finding a single edge that is not needed by two linkages is more challenging. A priori, it
could be the case then the union of any linkages P1 with θ(P1) = θG1 and P2 with θ(P2) = θG2 is the
entire graph. We show that this is not the case by constructing linkages P1,P2 whose intersection
pattern is relatively simple.

We need two additional tools to achieve this goal. We begin with ordering (u, v)-paths in a
k-cylindrical graph in a clockwise fashion.

Definition 4.26. Let G be a k-cylindrical graph, u ∈ Vin, and v ∈ Vout. Consider two distinct (u, v)
paths P1, P2 oriented from u to v; let w be the last vertex on their longest common prefix.

When w = u, let e1, . . . , ed be the clockwise ordering of EG(u) such that e1, ed are incident with
the face containing Iin. We write P1 ⊏ P2 when the first edge of P1 appears earlier in e1, . . . , ed
than the first edge of P2.

When w ̸= u, let e be the edge preceding w in both P1, P2 and e1, . . . , ed be the clockwise ordering
of E(w) \ e such that e lies between ed, e1. We write P1 ⊏ P2 when the edge following w in P1

appears earlier in e1, . . . , ed than the edge following w in P2.

See Figure 10 for an example. The relation ⊏ is transitive and it yields a linear order on the
family of (u, v)-paths in G.

Definition 4.27 (Handle, clockwise-tightness). Let G be a k-cylindrical graph, u ∈ Vin, and v ∈ Vout.
A path Q is called a handle of P is the endpoints of Q lie on P and Q is internally disjoint from P .
Let PQ be the (u, v)-path obtained from P by replacing the subpath between the endpoints of Q with
the path Q. We say that Q is a clockwise handle when P ⊏ PQ.

We say that a cylindrical linkage P is clockwise-tight if no P ∈ P contains a clockwise handle
internally disjoint from all the paths in P.

Intuitively, being clockwise-tight means that internal points of the paths in the linkage are
maximally “bent” in the clockwise direction while maintaining disjointedness. We show that every
cylindrical linkage can be modified to be clockwise-tight.

Lemma 4.28. Let k ≥ 2 and G be a k-cylindrical graph and θ ∈ ΘG. There exists a clockwise-tight
cylindrical linkage P in G with the winding number θ.

29

(1, x)(1, x1)(1, x0)

(2, y)

p0

p1

P

Q0

Q1D

Figure 11: An illustration of Observation 4.31. The interior of the set D is highlighted. The curves Q0, Q1

are disjoint so their endpoints on the boundary of D cannot cross.

Proof. Let P be any cylindrical linkage in G with the winding number θ. We exhaustively apply the
following modification to P: while there exists a path P ∈ P with a clockwise handle Q internally
disjoint from P, replace P with PQ. After such a replacement, we obtain a new cylindrical linkage
in G with the same winding number θ (here we use the assumption that k ≥ 2). We claim that this
process must terminate in a finite number of steps. If not, an infinite number of replacements happens
to a single path P ∈ P. Hence, there exists an infinite sequence of (u, v)-paths P 1 ⊏ P 2 ⊏
This is impossible because the relation ⊏ is a linear order and there are only finitely many different
(u, v)-paths in G.

The second tool is based on the following concept from topology, used in the analysis of topological
spaces with “holes”, like a torus. We only provide simple definitions, tailored for our applications.

Definition 4.29 (Covering). The covering of Ring(Iin, Iout) is a function τ : [1, 2] × R → C defined
as τ((x, y)) = y · exp

(−2iπ
k · x

)
. We identify the image of τ with Ring(Iin, Iout).

Observation 4.30 (Lifting). Let G be a k-cylindrical graph, u = (1, −2πk · p), v = (2, −2πk · q) (in
polar coordinates), and P be a (u, v)-path. Then for every ℓ ∈ Z there is a unique curve P ′ in
[1, 2]×R, called a lifting of P , that starts at (1, ℓ ·k+p), ends at (2, ℓ ·k+p+θ(P)), and τ(P ′) = P .
It holds that p + θ(P) ≡ q mod k. Moreover, any liftings of two vertex-disjoint paths are disjoint.

These notions are depicted in Figure 12. Now we can analyze two linkages with different
winding numbers through their liftings in [1, 2] × R. Here, we can take advantage of the fact that
when two disjoint curves connect points on a boundary of a topological disc, then these points
cannot be intrinsically crossing.

Observation 4.31. Consider a curve P in [1, 2] × R which starts at (1, x), ends at (2, y), and is
internally contained in (1, 2)×R. Let D be the closure of the connected component of ([1, 2]×R) \P
containing the point (1, x − 1). Next, let x0 < x1 ≤ x and p0, p1 ∈ P . Suppose that there exist
disjoint curves Q0, Q1 in D such that Q0 connects (1, x0) to p0 and Q1 connects (1, x1) to p1. Then
p0 occurs later than p1 on P when considered oriented from (1, x) to (2, y).

This observation is illustrated in Figure 11. We are ready to prove the main technical lemma
about cylindrical graphs, showing that any two cylindrical linkages can be “disentagled”.

Lemma 4.32. Let G be a k-cylindrical graph and θ1 ≤ θ2 = θ1 + ℓ, where ℓ < k. If θ1, θ2 are
feasible in G then there exist cylindrical linkages P,R in G such that θ(P) = θ1, θ(R) = θ2, and
and for each P ∈ P, R ∈ R the intersection of P and R comprises at most one path.

30

0 1-1 2 3 4 5-2 6 7

0
1

2
3

0
1

2
3

Figure 12: An illustration for the proof of Lemma 4.32 with k = 4, ℓ = 2.
—- Top left: Two cylindrical linkages in a 4-cylindrical graph. For simplicity the linkage P is drawn as straight
dashed lines and the linkage Q is drawn in colors.

—- Top right: The covering of Ring(Iin, Iout) and the liftings of the paths. The curves Q′
0, Q

′
1, Q

′
2, Q

′
3 are

drawn in colors matching their images on the left. Note that the curve Q′
−1 coincides with Q′

3 modulo a shift.
The same applies to Q′

0 and Q′
4. Since P is clockwise-tight, none path P ∈ P can have a clockwise handle;

hence there cannot be any curve like the red dotted one.
—- Middle right: The curves Q2

0, Q1
1 (red), and Q3

2, Q2
3 (blue). The third one is an example of a curve Qℓ+1

i

which is not necessarily contained in Q′
i due to the last straight segment. This forms a special case for

property (P5) but this choice of definition guarantees property (P3). The relative position of the black disks
located on P ′

1 and P ′
3 is the subject of Claim 4.33.

—- Bottom right: The curves Q̂1
i are drawn in red, while the curves Q̂2

i are blue. Together with the green
segments they form the paths R′

0, R
′
1, R

′
2, R

′
3.

—- Bottom left: The images of paths R′
i form the sought family R.

31

Proof. If k = 1 or θ1 = θ2, then the claim is trivial so we can assume k ≥ 2, ℓ ≥ 1. Let P,Q be
cylindrical linkages with the winding numbers θ1, θ2. By Lemma 4.28 we can assume that P is
clockwise-tight. We order the linkages in a clockwise manner: P = P0, . . . Pk−1,Q = Q0, . . . Qk−1,
so that Pi and Qi start at (1, −2πk i). Consider the covering τ : [1, 2] × R → Ring(Iin, Iout) and the
liftings of P,Q. More precisely, we consider a unique infinite family (P ′i)i∈Z of disjoint curves in
[1, 2] ×R such that P ′i is a path from (1, i) to (2, i + θ1) and τ(P ′i) = P(i mod k). Similarly we define
the lifting (Q′i)i∈Z of Q. Note that each curve P ′i , Q

′
i is internally contained in (1, 2) × R.

Each curve Q′i must intersect P ′i , . . . , P
′
i+ℓ. For i ∈ Z and j ∈ [1, ℓ] we define Qj

i as the minimal

prefix of Q′i which ends at P ′i+j . Furthermore, let Q̂j
i be the minimal suffix of Qj

i which starts at

P ′i+j−1. In order to cover the corner cases, we define both Q0
i and Q̂0

i to be the trivial path from

(1, i) to (1, i), Q̂ℓ+1
i as the trivial path from (2, i + θ2) to (2, i + θ2) (the last point on Q′i), and Qℓ+1

i

as the concatenation of Qℓ
i with the subpath of P ′i+ℓ from the endpoint of Qℓ

i to (2, i + θ2). We
make note of the following properties that hold for each i ∈ Z and j ∈ [0, ℓ + 1]:

(P1) Q̂j
i ⊆ Qj

i ,

(P2) Q̂j
i ⊆ Q′i,

(P3) Qj
i is internally disjoint from P ′i+j ,

(P4) τ(Qj
i) is a walk in G,

(P5) if j ≤ ℓ then Qj
i ⊆ Q′i.

For i ∈ Z we define R′i as the unique path from (1, i) to (2, i + θ2) which is contained in

P ′i ∪ Q̂1
i ∪ P ′i+1 ∪ Q̂2

i ∪ · · · ∪ Q̂ℓ
i ∪ P ′i+ℓ (see Figure 12, bottom right). The intersection of R′i with

P ′i+j , for j ∈ [0, ℓ], is then a subpath of P ′i+j between the endpoints of Q̂j
i and Q̂j+1

i . It holds that
θ(τ(R′i)) = θ2.

Claim 4.33. Let i ∈ Z and j ∈ [1, ℓ]. Consider points p0, p1 ∈ [1, 2] ×R such that p0 ∈ Qj+1
i ∩ P ′i+j

and p1 ∈ Qj
i+1 ∩P ′i+j. Then p0 occurs later than p1 on P ′i+j, when considered oriented from (1, i+ j)

to (2, i + j + θ1).

Proof. Here we exploit the fact that P is clockwise-tight. First consider the case j < ℓ as then,
by property (P5), the paths Qj+1

i and Qj
i+1 are disjoint as subpaths of Q′i, Q

′
i+1. By property

(P3) both Qj+1
i and Qj

i+1 are internally disjoint from P ′i+j+1. Let Q̃′i be the prefix of Qj+1
i ending

at p0 and Q̃′i+1 be the prefix of Qj
i+1 ending at p1. Next, let D be the closure of the connected

component of ([1, 2]×R) \P ′i+j containing the point (1, i+ j− 1). Suppose that Q̃′i or Q̃′i+1 contains

a point y ̸∈ D. Then Q̃′i or Q̃′i+1 has a subpath Q′′ with both endpoints on P ′i+j and internally
contained in the region of [1, 2] ×R between P ′i+j and P ′i+j+1. By property (P4) the image τ(Q′′) is
a walk in G and it contains a clockwise handle of τ(P ′i+j) which is disjoint from P ; this contradicts

P being clockwise-tight. We obtain that Q̃′i, Q̃
′
i+1 lie entirely within D. The claim follows from

Observation 4.31.
Finally, consider the case j = ℓ where Qℓ+1

i is not necessarily a subpath of of Q′i. However, for
p0 ∈ Qℓ+1

i chosen as the unique point on Qℓ
i ∩ P ′i+ℓ the path Q̃′i, defined as above, is a subpath of

Q′i due to property (P5). See Figure 12, middle right. In this case Q′i, Q
′
i+1 are again disjoint and

32

the same argument applies. The general claim follows from the observation that any other point
p ∈ Qℓ+1

i ∩ P ′i+ℓ occurs later than p0 on P ′i+j . ■

Claim 4.34. The paths (R′i)i∈Z are pairwise disjoint.

Proof. It suffices to show that for every i ∈ Z the paths R′i, R
′
i+1 are disjoint. By property (P2)

the paths of the form Q̂j
i , Q̂

j′

i+1 belong to the disjoint paths Q′i, Q
′
i+1 so they cannot intersect each

other. If R′i, R
′
i+1 intersect then there must be j ∈ [1, ℓ] so that R′i ∩ P ′i+j and R′i+1 ∩ P ′i+j intersect.

This may happen only if the subpath of P ′i+j between the endpoints of Q̂j
i , Q̂

j+1
i and the subpath of

P ′i+j between the endpoints of Q̂j−1
i+1 , Q̂

j
i+1 have a non-empty intersection. This is impossible due to

property (P1) and Claim 4.33. ■

It follows from the construction that τ(R′i) = τ(R′j) whenever i ≡ j mod k. We can thus define
R0, . . . , Rk−1 as the path family in G such that τ(R′j) = R(j mod k) for each j ∈ Z. Since ℓ < k, no
path R′i intersects both P ′j and P ′j+k for any j ∈ Z. As each intersection R′i ∩ P ′j is either empty or
a single path, we infer that also each intersection Ri ∩ Pj is either empty or a single path.

Consider 0 ≤ i < j < k: from Claim 4.34 we know that R′i, R
′
j are disjoint. Moreover, the

path R′j is contained in the region D of [1, 2] × R between R′i and R′i+k, exclusively. Because
τ(R′i) = τ(R′i+k) = Ri and τ(D) ∩ Ri = ∅, we obtain that Ri and Rj form disjoint subsets of
Ring(Iin, Iout); hence they are vertex-disoint paths. We conclude that R = R0 . . . , Rk−1 is the
desired linkage with the winding number θ2 and single-path intersections with P.

Since the union of two disentangled linkages cannot contain too many concentric cycles, we can
now find an edge to which the criterion from Lemma 4.25 applies.

Proposition 4.35. Let G be a k-cylindrical graph with rdistG(Vin, Vout) ≥ (k + 2)2. Then there
exists an edge e ∈ E(G) such that G \ e is (Vin ∪ Vout)-linkage-equivalent to G. Furthermore, such
an edge can be found in polynomial time.

Proof. Let C1, . . . , Cm be a (Vin, Vout)-sequence of concentric cycles in G with m = (k + 2)2 − 1.
We need to show that there exists an edge satisfying the requirements of Lemma 4.25. Note that
θG2 < θG1 + k. Let P1,P2 be the linkages from Lemma 4.32 such that θ(P1) = θG1 , θ(P2) = θG2 , and
G′ be the union of P1,P2. We claim that there exists i ∈ [2k + 1,m− 2k] and e ∈ E(Ci) such that
e ̸∈ E(G′). Suppose otherwise. Then there is a (Vin, Vout)-sequence of m− 4k concentric cycles in
G′ and so rdistG′(Vin, Vout) ≥ m− 4k ≥ k + 3. Due to Lemma 4.32, for each P1 ∈ P1, P2 ∈ P2 the
intersection of P1 and P2 has at most one path. Consider a region R of Ring(Iin, Iout) between two
consecutive paths from P1. Each path from P2 has at most one subpath intersecting R, which gives
at most k subpaths in total. As a consequence, rdistG′(Vin, Vout) ≤ k + 1 and we get a contradiction
with the assumption that there is no edge e obeying the specification above. Therefore, there exists
i ∈ [2k + 1,m − 2k] and e ∈ E(Ci) such that both linkages P1,P2 are present in G \ e. As both
θG1 , θ

G
2 are feasible in G \ e, the criterion from Lemma 4.25 applies.

In order to detect such an edge, we simply enumerate all edges in G and check for each e
whether e satisfies the requirements of Lemma 4.25. This can be done in polynomial time with
Lemma 4.23.

33

J1
in J ′ J1

out

J2
in J2

mid J2
out

Vin

S1
in S1

out

Vout

S2
in S2

outS3
in

P

P3

G2

G1

G3

Figure 13: An illustration for the proof of Lemma 4.36. The planar structure is discarded here (cf. Figure 2)
and the innermost layers of the graph G are portrayed to the left. The separators S1

in, S
2
in, S

2
out, S

1
out are

sketched gray while the separator S3
in is light blue. The vertical lines represent the family of cycles C1, . . . , Cm,

where the dashed lines are the cycles intersecting one of the separators above. An (S1
in, S

1
out)-linkage P

illustrates the argument for the case where J2
in is large. The blue linkage P3 is given by the intersections of

(S1
in, S

1
out)-paths from P with the subgraph G3. Since S2

in is the minimal (S1
in, S

1
out)-separator closest to S1

in,
there exists a (S1

in, S
3
in)-linkage larger than P3: this is shown with the dashed paths. This observation allows

us to use Proposition 4.15 to find an edge in G3 that is not needed for any choice of P.

4.2.3 Finding an irrelevant edge

We can now combine the two strategies for detecting an irrelevant edge to process any graph properly
embedded in Ring(Iin, Iout) with sufficiently many concentric cycles.

Note that the notation in the following lemma differs slightly from that in the outline. The
separators Vin, Vout therein become here S1

in, S
1
out, the separators Sin, Sout become S2

in, S
2
out, and S

corresponds to S3
in.

Lemma 4.36. Let G be a plane graph properly embedded in Ring(Iin, Iout) and C1, . . . , Cm be a
(Vin, Vout)-sequence of concentric cycles. Suppose that m ≥ 3(t + 4)2 where t = tw(G) + 1. Then
there exists an edge e ∈ E(G) such that G \ e is (Vin ∪ Vout)-linkage-equivalent to G. Furthermore,
such an edge can be found in polynomial time.

Proof. Let J1
in = [1, t + 2] and J1

out = [m− t− 1,m]. By Corollary 4.10 there exists a (C1, Ct+2)-
separator S1

in of size less than t and a (Cm−t−1, Cm)-separator S1
out of size less than t. By Lemma 3.5

there exist G-nooses N1
in, N

1
out contained respectively in Ring(C1, Ct+2), Ring(Cm−t−1, Cm), so that

N1
in ∩ V (G) = S1

in and likewise for N1
out. Let G1 be the subgraph of G induced by the vertices

located in Ring(N1
in, N

1
out). By Lemma 4.2 it suffices to find an edge e ∈ E(G1) so that G1 \ e is

(S1
in ∪ S1

out)-linkage-equivalent to G1. This simplifies our task because |S1
in|, |S1

out| < t.
There are at least m−2(t+ 1) ≥ 3(t+ 3)2 + 2t cycles from C1, . . . , Cm lying entirely between N1

in

and N1
out. Let S2

in, S
2
out be the minimum-size (S1

in, S
1
out)-separators in G1 that are closest to S1

in, S
1
out,

34

respectively. They can be found in polynomial time (Theorem 3.1). Let p denote |S2
in| = |S2

out|. By
Corollary 4.10 we have p < t. By Lemma 4.5, each of S2

in, S
2
out intersects at most p consecutive cycles

from C1, . . . , Cm. Let J2
in, J

2
mid, J

2
out denote the intervals representing indices of cycles in C1, . . . , Cm

which lie respectively: between S1
in and S2

in, between S2
in and S2

out, between S2
out and S1

out. Note that
the separators S2

in, S
2
out may intersect; in this case J2

mid = ∅. We have |J2
in|+|J2

mid|+|J2
out| ≥ 3(t+3)2.

One of these intervals must contain at least (t + 3)2 elements. We distinguish two scenarios.

Deep cylindrical subgraph in the middle. First suppose that |J2
mid| ≥ (t + 3)2. Let N2

in, N
2
out

be the G1-nooses corresponding to the separators S2
in, S

2
out and G2 be the subgraph of G1 induced

by the vertices lying in Ring(N2
in, N

2
out). Note that µG2(S2

in, S
2
out) = p due to the choice of S2

in, S
2
out.

We can thus transform G2 in a homotopic way to a p-cylindrical graph H. There may be many
ways to obtain H which differ by a relative cyclic shift between S2

in, S2
out and give different sets ΘH

but we can choose an arbitrary one. Proposition 4.35 works regardless of the chosen embedding of
H and it gives a polynomial-time algorithm to find an edge e ∈ E(H) = E(G2) such that G2 \ e is
(S2

in ∪ S2
out)-linkage-equivalent to G2. Since S2

in ∪ S2
out separates the endpoints of e from S1

in ∪ S1
out,

we obtain from Lemma 4.2 that G1 \ e is (S1
in ∪ S1

out)-linkage-equivalent to G1.

Deep subgraph with a non-maximal linkage. Suppose now that |J2
in| ≥ (t + 3)2 or |J2

out| ≥
(t + 3)2. These cases are symmetric so we only examine the first one. Let J ′ be the subinterval of
J2
in comprising its last t+ 2 elements (representing the cycles closest to S2

in). By the same argument
as before, there exists an (S1

in, S
2
in)-separator S3

in of size at most t given by a G1-noose N3
in which

may intersect only these cycles from C1, . . . , Cm with indices within J ′. Let G3 be the subgraph of
G1 induced by the vertices lying in Ring(N1

in, N
3
in). There are at least (t + 3)2 − (t + 2) ≥ (t + 2)2

cycles from C1, . . . , Cm lying in the interior of Ring(N1
in, N

3
in). Since S2

in was chosen as the minimum
(S1

in, S
1
out)-separator in G1 closest to S1

in, there are no such separators within Ring(N1
in, N

3
in) of size

p or smaller. This implies that µG3(S1
in, S

3
in) ≥ p + 1. As a result, G3 satisfies the preconditions of

Proposition 4.15 with max(|S1
in|, |S3

in|) ≤ t and s ≥ p + 1; let e ∈ E(G3) be an edge provided by
that proposition. We will show that G1 \ e is (S1

in ∪ S1
out)-linkage-equivalent to G1.

Let P be an (S1
in ∪S1

out)-linkage in G1. Recall that |S1
in|, |S1

out| ≤ t. Because the interval J2
in \ J ′

is sufficiently long and due to Lemma 4.11, there exists a linkage P ′ in G1 that is aligned with
P and every inclusion-minimal (S1

in ∪ S1
out)-subpath of P ∈ P ′ which is an (S1

in, S
1
in)-path does

not intersect S3
in. Let P ′long be the family of inclusion-minimal (S1

in ∪ S1
out)-subpaths of paths in

P ′ which are (S1
in, S

1
out)-paths. There are at most p paths in P ′long because every such path must

intersect the separator S2
in of size p. Observe that every minimal (S1

in ∪ S1
out)-subpath in P ′ that

visits both S1
in, S

3
in belongs to P ′long. Let P3 be a linkage in G3 given by the maximal intersections

of paths from P ′ with V (G3); then P3 is a (S1
in ∪ S3

in)-linkage (see Figure 13). By the observation
above, each (S1

in, S
3
in)-path Q ∈ P3 intersects some path Q′ ∈ P ′long and the mapping Q → Q′ is

injective. We infer that P3 contains at most p many (S1
in, S

3
in)-paths. We apply Proposition 4.15

with s ≥ p + 1 to derive that there exists a linkage in G3 \ e aligned with P3. As a result, G1 \ e
contains a linkage aligned with P. This concludes the proof.

Finally, we show that when a plane graph G has sufficiently large radial diameter, then we can
find a subgraph of G to which Lemma 4.36 applies. This allows us to detect an irrelevant edge in G.

35

Proposition 4.37. Let G be a plane graph, X ⊆ V (G) be of size k, and t = tw(G) + 1. Suppose
that the radial diameter of G is at least 7(k + 1)(t + 5)2. Then we can find, in polynomial time, an
edge e ∈ E(G) such that G \ e is X-linkage-equivalent to G.

Proof. Let v be a vertex on the outer face of G. By the triangle inequality we obtain that there
must exist a vertex u with rdistG(u, v) > 3(k + 1)(t + 5)2. By Lemma 3.3 there exists a ({u}, {v})-
sequence of concentric cycles C1, . . . , Cm, where m = 3(k + 1)(t + 5)2. For i ∈ [m − 1] let Vi =
V (G)∩(Disc(Ci+1)\Disc(Ci)). These sets are disjoint and there may be at most k of them containing
a vertex from X. Hence, there is an interval J ⊆ [m−1] of length (m−1−k)/(k+ 1) ≥ 3(t+ 4)2 + 1
where Vj ∩X = ∅ for j ∈ J . Let i = min(J), j = max(J), and U be the set of vertices lying between
Ci and Cj+1. Then U ∩X = ∅. Let G′ = G[U ∪ V (Ci) ∪ V (Cj+1)]; then tw(G′) ≤ tw(G) = t− 1
and G′ is properly embedded in Ring(Iin, Iout) for some curves Iin, Iout such that Iin ∩ G′ = Ci

and Iout ∩G′ = Cj+1. Furthermore, Ci+1, . . . , Cj forms a (V (Ci), V (Cj+1))-sequence of concentric
cycles in G′ of length 3(t + 4)2. We apply Lemma 4.36 to find an edge e ∈ E(G′) such that
G′ \ e is (V (Ci) ∪ V (Cj+1))-linkage equivalent to G′. It follows from Lemma 4.2 that G \ e is
X-linkage-equivalent to G.

4.3 Single-face case

Let G be a plane graph properly embedded in Disc(I) and X = V (G) ∩ I. We say the a set of
disjoint pairs T ⊆ X2 is cross-free if it does not contain pairs (a, c), (b, d) so that a, b, c, d lie on I in
this order. A division X = X1 ∪X2 is called canonical if both X1, X2 are non-empty and there are
points y1, y2 ∈ I so that X1, X2 belong to different connected components of I \ {y1, y2}. We define
µT (X1, X2) to be the number of pairs in T with one element in X1 and the other one in X2.

It turns out that when a graph is properly embedded in a disc and all the terminals occur at the
boundary of the disc, then again the cut-condition is sufficient for a linkage to exist.

Lemma 4.38 ([87, Lem. 3.6]). Let G be properly embedded in Disc(I), V (G)∩ I = X, and T ⊆ X2.
Then T is realizable in G if and only if T is cross-free and for every canonical division (X1, X2) of
X it holds that µG(X1, X2) ≥ µT (X1, X2).

Our goal now is to compress a given graph with terminal set X located on the boundary of
the disc, to an X-linkage-equivalent graph of size |X|O(1). By the lemma above, it is sufficient to
preserve the sizes of minimum (X1, X2)-separators for all canonical divisions (X1, X2). Our strategy
is to mark |X|O(1) vertices covering all the relevant separators and then replace the remaining parts
of the graph with gadgets that are “at least as good”.

Lemma 4.39. Let I be a noose and X ⊆ I be a finite set of size k. There exists a plane graph
H properly embedded in Disc(I) on at most k2 vertices such that H ∩ I = X and every cross-free
T ⊆ X2 is realizable in H. This graph can be constructed in time polynomial in k.

Proof. The lemma is trivial for k ≤ 2, so we will assume k ≥ 3. We use the (k, k)-cylindrical grid
Ck
k (Definition 4.7), which has k2 vertices, and identify the vertices on the outer cycle Ck with the

points from X. It is easy to see that Ck
k can be properly embedded in Disc(I) in such a way that

Ck
k ∩ I = Ck. We argue that Ck

k satisfies the lemma using the criterion from Lemma 4.38. We claim
that for any canonical division (X1, X2) of X = Ck it holds that µCk

k
(X1, X2) = min(|X1|, |X2|).

Let p = min(|X1|, |X2|) and assume w.l.o.g. that X1 = {cki | i ∈ [p]}. For i ∈ [p] let Pi be the
unique (cki , c

k
k+1−i)-path contained in the paths Ci, Ck+1−i and the subpath of Ck+1−i between Ci,

36

Ck+1−i that contains the vertex ck+1−i
1 . Then P1, . . . , Pℓ form an (X1, X2)-linkage implying that

µCk
k
(X1, X2) ≥ p. In fact, we get equality because each of the sets X1, X2 is an (X1, X2)-separator.

For any T ⊆ X2 it holds that µT (X1, X2) ≤ min(|X1|, |X2|). Hence any cross-free T is realizable in
Ck
k due to Lemma 4.38.

The following fact will come in useful for estimating the number of necessary gadgets.

Lemma 4.40 ([36, Lem. 13.3]). Let G be a planar graph, X ⊆ V (G), and let N3 be a set of vertices
from V (G)\X such that every vertex from N3 has at least three neighbors in X. Then |N3| ≤ 2 · |X|.

Proposition 4.41. Let G be properly embedded in Disc(I), V (G) ∩ I = X, and k = |X|. One can
construct, in polynomial time, a graph Ĝ on O(k6) vertices, properly embedded in Disc(I), that is
X-linkage-equivalent to G and with V (Ĝ) ∩ I = X.

Proof. For each canonical division (X1, X2) of X we compute a minimum-size (X1, X2)-separator
S(X1, X2). Clearly, |S(X1, X2)| ≤ k. When one of the sets X1, X2 is a singleton {v} then we can
assume that S(X1, X2) = {v}. Otherwise the separator S(X1, X2) can be represented by a simple
curve N(X1, X2) ⊆ Disc(I) connecting two points on I so that N(X1, X2) ∩ G = S(X1, X2) and
every curve within Disc(I) connecting points from X1 and X2 must intersect N(X1, X2). Let N
be the union of all the curves N(X1, X2) and S be the union of all the sets S(X1, X2). By the
argument above, we have X ⊆ S. There are at most k2 canonical divisions so |S| ≤ k3.

We say that F is a face of (I,N) if it is a closure of an inclusion-maximal subset of Disc(I) \N .
Every face F is of the from F = Disc(∂F). For a face F let VF = V (G)∩int(F), and XF = V (G)∩∂F ;
clearly XF ⊆ S. Note that G∩F = G[VF ∪XF] is properly embedded in F . If VF ̸= ∅, we replace the
subgraph G∩F with a graph HF given by Lemma 4.39 applied to ∂F and XF . Then HF ∩∂F = XF

and |V (HF)| ≤ |XF |2. Observe that this modification does not affect G ∩N . Let G′ be obtained
from G by applying this modification to every face F of (I,N).

Claim 4.42. For every canonical division (X1, X2) of X it holds that µG′(X1, X2) ≤ µG(X1, X2).

Proof. By construction G′ ∩N(X1, X2) = G ∩N(X1, X2) = S(X1, X2). Therefore µG′(X1, X2) ≤
|S(X1, X2)| = µG(X1, X2). ■

Claim 4.43. For every canonical division (X1, X2) of X it holds that µG′(X1, X2) ≥ µG(X1, X2).

Proof. Let P be an (X1, X2)-linkage in G of size µG(X1, X2). We claim that there exists an
(X1, X2)-linkage P ′ in G′ of the same size. Let P = {P1, . . . , Ps}. Let F be a face of (I,N) and
PF be the family of maximal subpaths of P1, . . . , Ps that traverse F . This is an XF -linkage in
G ∩ F . Let TF be the set of pairs representing the endpoints of PF ; then TF is cross-free with
respect to ∂F . As a consequence of Lemma 4.39, TF is realizable in HF . By applying this argument
to every F , we turn P into a linkage P ′ in G′ connecting the same pairs of vertices in X. Hence,
µG′(X1, X2) ≥ |P ′| = |P| = µG(X1, X2). ■

With the two claims above we apply Lemma 4.38 to infer that G′ is X-linkage-equivalent to
G. Finally, we apply two reduction rules to bound the size of G′. When there exists a vertex set
C ⊆ V (G) \ S such that NG′(C) ⊆ S and (a) |NG′(C)| = 1, then remove C; or (b) NG′(C) = {u, v},
then replace C with the edge uv (when such an edge already exists, do nothing). Let Ĝ be the result
of applying these rules to G′. These modifications preserve X-linkages and Ĝ remains properly
embedded in Disc(I). Moreover, for every face F of (I,N) with a non-empty set V (Ĝ) ∩ int(F) it
holds that |XF | ≥ 3.

37

Claim 4.44. The graph Ĝ has O(k6) vertices.

Proof. Consider a graph Ĝc obtained from Ĝ by contracting each connected component of Ĝ− S
into a single vertex. Let B be the set of the vertices created due to contractions. Each vertex from
B corresponds to some face F of (I,N) with V (Ĝ) ∩ int(F) ̸= ∅ and |XF | ≥ 3, so the minimum
degree in B is at least 3. By Lemma 4.40 the size of B is at most 2|S| ≤ 2k3. Due to planarity, the
number of edges in Ĝc is at most 3 · (|B| + |S|) = O(k3). Let F be the set of faces F of (I,N) with
V (Ĝ) ∩ int(F) ̸= ∅. We have

∑
F∈F |XF | ≤ |E(Ĝc)|. In turn,

∑
F∈F |V (HF)| ≤

∑
F∈F |XF |2 ≤

(
∑

F∈F |XF |)2 = O(k6). This entails the claimed bound on the size of Ĝ. ■

The construction of Ĝ can be easily performed in polynomial time. The proposition follows.

4.4 Cutting the graph open

In this section, we finalize the construction of a polynomial kernel. After reducing the radial
diameter, we can find a tree of moderate size spanning the set of terminals X in the radial graph.
We shall cut the graph open alongside this tree to reduce the problem to the case where all the
terminals lie on a single face. The following transformation has been used in the algorithms for
Steiner Tree [12, 84] and Vertex Multiway Cut [53] on planar graphs.

Definition 4.45 (Cut alongside a tree). Let G be a plane graph and T be a tree in the radial graph
of G. The plane graph GT is obtained from G as follows. Consider an Euler tour of T that traverses
each edge twice in different directions, and respects the plane embedding of T . We replace each
vertex v ∈ V (T) ∩ V (G) with degT (v) many copies, reflecting its occurrences on the Euler tour, and
distribute the copies in the plane, creating a new face incident to all the created copy-vertices (we
refer to the set of these vertices as VT ⊆ V (GT)). For v ∈ V (T) ∩ V (G) let ΓT (v) ⊆ VT be the set
of copies of v created during this process.

This construction is depicted in Figure 1 on page 7. Since the sum of vertex degrees in a tree is
at most twice the number of its vertices, we obtain the following observation.

Observation 4.46. For a plane graph G and a tree T in the radial graph of G, we have |VT | ≤
2 · |V (T)|.

We show that for the sake of obtaining an equivalent instance of Planar Disjoint Paths, we
can focus on the new instance obtained via the cutting operation.

Lemma 4.47. Let G1, G2 be plane graphs sharing a vertex set Y . Next, let T1, T2 be trees in the
radial graphs of G1, G2, respectively, such that Y = V (T1) ∩ V (G1) = V (T2) ∩ V (G2), VT1 = VT2

(we refer to this set as Y ′) and for each v ∈ Y it holds that ΓT1(v) = ΓT2(v). If GT1
1 and GT2

2 are
Y ′-linkage-equivalent, then G1 and G2 are Y -linkage-equivalent.

Proof. By symmetry, it suffices to prove that when T ⊆ Y × Y is realizable in G1, then it is also
realizable in G2. Let P1 be a T -linkage in G1. We say that a path Q in G1 does not cross T1 if
for each pair of consecutive edges e1, e2 ∈ EG1(V) on Q there is a single v-copy v′ ∈ ΓT1(v) such
that e1, e2 ∈ E

G
T1
1

(v′). Note that when a subpath Q of a (Y, Y)-path does not cross T1 then Q

corresponds to a unique path in GT1
1 . We partition each path P ∈ P1 into maximal subpaths that

do not cross T1; let Γ1(P) denote the family of corresponding paths in GT1
1 . We define T ′ ⊆ Y ′× Y ′

38

as follows. First, we insert to T ′ the endpoints of each path from Γ1(P) for every P ∈ P1. Next,
when v′ ∈ VT1 does not belong to any of the paths above, we insert the pair (v′, v′) to T ′; we then
say that v′ is blocked. Clearly, T ′ is realizable in GT1

1 and, by the assumption, it is realizable in GT2
2

as well.
Let P ′2 be a T ′-linkage in GT2

2 . We need to show that it can be merged back to a T -linkage in
G2. For P ∈ P1 let Γ2(P) ⊆ P ′2 be the linkage aligned with Γ1(P); these families are disjoint for

distinct P ∈ P1. The paths from Γ2(P) can be merged into a path P̂ in G2 with the same endpoints
as P ; let P2 be the union of such paths. We argue that different paths from P2 are vertex-disjoint.
There is a 1-1 mapping between the vertices from V (GT2

2) \ Y ′ and V (G2) \ Y so we only need to
check that no vertices from Y collide. Consider v ∈ Y ; if v is not being visited by any path from
P1, then for each v′ ∈ ΓT2(v) the pair (v′, v′) belongs to T ′ (i.e., v′ is blocked) and so v cannot
belong to any path from P2. Suppose that v ∈ V (P) for some P ∈ P1; we consider two cases. If v
is an endpoint of a maximal subpath of P that does not cross T1, then either v is an endpoint of
P or there are two vertices v′, v′′ ∈ ΓT2(v) which are endpoints of paths in Γ2(P) whereas all the
remaining vertices from ΓT2(v) are blocked. Therefore v is being visited only by P̂ . In the last case,
v is being visited by P but no vertex from ΓT2(v) is an endpoint of a path in Γ2(P). Then there is
exactly one vertex v′ ∈ ΓT2(v) and one path P ′ ∈ Γ1(P) that visits v′ while the remaining vertices
from ΓT2(v) are blocked. So also in this case v is being visited only by P̂ . We infer that P2 is a
T -linkage in G2 aligned with P1; this concludes the proof.

We are ready to prove Theorem 2.1 which, in turn, implies Theorem 1.4.

Theorem 2.1. Let G be a planar graph of treewidth tw and X ⊆ V (G) be of size k. Then we can
construct, in polynomial time, a planar graph G′ with X ⊆ V (G′) such that |V (G′)| = O(k12tw12)
and G′ is X-linkage-equivalent to G.

Proof. Consider an arbitrary plane embedding of G. While the radial diameter of G is larger than
7(k + 1)(tw + 6)2, we apply Proposition 4.37 to find an irrelevant edge and reduce the size of G
while maintaining X-linkage-equivalency. By applying this reduction exhaustively, we can assume
that G has radial diameter d = O(k · tw2). We greedily construct a Steiner tree T of X in the radial
graph of G: we order the vertices x1, x2, . . . , xk of X arbitrarily and for i = 1, 2, . . . , k we construct
a tree Ti by finding a shortest radial path between xi and a vertex of Ti−1. In each step we augment
the tree with a path of length at most 2d = O(k · tw2), so, eventually, |V (T)| = O(k2 · tw2).

We cut G open alongside T obtaining a graph GT . It can be properly embedded in Disc(I)
for some noose I in such a way that GT ∩ I = VT (this requires flipping the embedding to turn
the newly created face into the outer face). Observation 4.46 implies that |VT | = O(k2 · tw2). We
apply Proposition 4.41 to replace GT with a graph H on O(|VT |6) = O(k12 · tw12) vertices, properly
embedded in Disc(I), such that V (H) ∩ I = VT and H is VT -linkage-equivalent to GT . Then we
merge the split vertices back together: for each v ∈ V (T) ∩ V (G) we identify the vertices from
ΓT (v) in H. The graph G′ obtained this way remains planar. Since X ⊆ V (T)∩ V (G), Lemma 4.47
implies that G′ is X-linkage-equivalent to G. The theorem follows.

5 Kernelization hardness for parameter k

In this section, we prove Theorems 1.1, 1.2, and 1.3. First, we introduce the intermediate problem
Non-crossing Multicommodity Flow and present a reduction to it from Set Cover. In

39

a b

c

d

e

Figure 14: Left: An example of a non-crossing flow. The vertex b is a terminal for the three blue walks.
Because of the condition (b) in Definition 5.2, these walks can be connected within the image of b without
crossing the other walks. The edges ab and the one incident to c (solid gray lines) have multiplicities 2 so
the walks are pairwise edge-disjoint. Right: After contracting b, c, d into a single vertex, we still obtain a
non-crossing flow. Note that the edges eb and ed now become parallel.

Section 5.2 we construct the most internal gadget, allowing us to encode a large family of sets
using homotopy classes. We use it as a building block to design a subset gadget in Section 5.3.
In order to introduce the ideas gradually, we first give a simplified construction working under an
overly-optimistic assumption (Section 5.3.1), followed by a proper one (Section 5.3.2), reflecting the
exposition in Section 2. The reduction to Non-crossing Multicommodity Flow is finalized
in Section 5.4. Afterwards, we explain how to get rid of the weighted requests (Section 5.5) and
to translate the hardness to Planar (Edge-)Disjoint Paths (Section 5.6). Note that several
definitions in this section differ from their simplified versions in Section 2.

5.1 Non-crossing multicommodity flow

We introduce the concept of a non-crossing flow and establish some notation to work with it.

Definition 5.1. Let G be a plane multigraph. Consider a vertex v ∈ V (G) and two pairs of edges
(e1, f1) and (e2, f2), such that {e1, f1, e2, f2} ⊆ EG(v). We say that these pairs cross if e1, e2, f1, f2
appear in this, or opposite, order in the cyclic ordering πG(v) of EG(v). Two edge-disjoint walks
W1,W2 in G are non-crossing if there are no pairs of consecutive edges (e1, f1) in W1 and (e2, f2)
in W2 that cross.

For two walks W1 = (v1, e1, . . . , ep, vp+1), W2 = (u1, f1, . . . , fq, uq+1) with vp+1 = u1, we define
their concatenation W1 + W2 as a walk given by (v1, e1, . . . , ep, u1, f1, . . . , fq, uq+1).

Definition 5.2. Let G be a plane multigraph and T be a multiset of triples from V (G)× V (G)×N.
A family P of edge-disjoint walks in G is a T -flow if for every triple (si, ti, di) ∈ T there exists a
subfamily Pi ⊆ P of di many (si, ti)-walks, and these subfamilies are disjoint for distinct triples
from T .

A T -flow P is called non-crossing if (a) each pair of walks in P is non-crossing, and (b) for any
(si, ti, di) ∈ T , any two walks W1,W2 ∈ Pi and a walk W ′ ∈ P \ Pi, the walks W1 + W2 and W ′ are
non-crossing.

The last condition enforces that all the walks from Pi can “touch” each other at vertex si (or ti)
without the need to cross the other walks. One can imagine each vertex to have a positive area so a
non-crossing flow can be depicted as a family of disjoint curves on the plane. By connecting the
images of the endpoints of paths in Pi we can draw E(P1), . . . , E(Pk) as connected pairwise-disjoint
subsets of the plane (see Figure 14). This interpretation leads to the following observation.

40

Observation 5.3. Let G be a plane multigraph, T be a multiset of triples from V (G) × V (G) × N,
and D ⊆ R2 be a topological disc such that G[V (G) ∩D] is connected. Next, let G′ be obtained from
G by contracting the set V (G) ∩D to a single vertex s and T ′ be obtained from T by replacing each
occurrence of a vertex from V (G) ∩D with s. Suppose that there exists a non-crossing T -flow in G.
Then there exists a non-crossing T ′-flow in G′.

Observe that this property would not hold if we replaced “walks” in the definition of a non-
crossing flow with “paths” because a path might enter and exit V (G) ∩D multiple times and all
these visits may be necessary even after contraction to avoid crossings. This is the main reason why
we prefer to work with walks. Also note that the opposite implication in Observation 5.3 does not
necessarily hold even if D contains no vertices from T .

Non-crossing Multicommodity Flow Parameter: k
Input: Plane multigraph G, set T of k vertex-disjoint requests (s1, t1, di), . . . , (sk, tk, dk) ∈
V (G) × V (G) × N.
Task: Determine whether there exists a non-crossing T -flow in G.

We will refer to each triple (si, ti, di) ∈ T as a request and to the integer di as the demand of
this request. All vertices occurring in T are referred to as terminals.

An instance of Non-crossing Multicommodity Flow is called unitary if each demand di
equals 1 and every terminal has degree 1.

5.2 Vector-containment gadget

We begin describing the reduction from the innermost gadget. In order to provide an interface that
will be consistent with the other gadgets, we need to impose a technical condition on the desired
flow. Whereas in the problem definition we require that each vertex may occur in at most one
request, here we will consider families T that violate this condition. Therefore, we need to specify
in which order the walks enter a terminal.

Definition 5.4. Let P be a non-crossing flow in a plane multigraph G whose outer face is confined
by a simple cycle, U ⊆ V (G), and v ∈ V (G) \ U lie on the outer face of G. Next, let Pv,U ⊆ P be
the family of walks in P with one endpoint at v and the other one at a vertex in U . We define π as
the clockwise order on Pv,U given by the ordering of edges incident to v, starting from the one being
next to the outer face.

We say that v sees vertices from U in the order u1, u2, . . . , uk (with respect to flow P) if (a) for
each i ∈ [k] the occurrences of (v, ui)-walks in Pv,U form a continuous interval with respect to π,
and (b) the order of these intervals matches the order u1, u2, . . . , uk.

A visualization of this property is given in Figure 15.

Definition 5.5. Consider k ∈ N, γ : {0, 1}k → N, and Z ⊆ {0, 1}k. A plane multigraph G is a
(k, γ, Z)-Vector Containment Gadget if the following conditions hold.

1. G has distinguished vertices z1, z2, . . . , zk and w0, w1, where the last two lie on the outer face.

2. Let b ∈ {0, 1}k, d ∈ N, and Tb,d be the family of following requests:

(a) (w0, zi, 2
k) for each i ∈ [k] with bi = 0,

41

w0

z1
z2

z3
z4

w1

Figure 15: A conceptual sketch of a (4, γ, Z)-Vector Containment Gadget. The flow on the picture corresponds
to b = (1010): the vertex zi sends the blue flow to w0 when bi = 0 or to w1 when bi = 1. The vertex
w0 sees vertices z4, z2 in this order while w1 sees vertices z1, z3 in this order. The amount of the available
(w0, w1)-flow (green) depends on γ(b) and on whether b ∈ Z. Observe that each path in the flow must cross
the red dashed curve whose homotopy class (with respect to z1, z2, z3, z4) agrees with the vector b. We will
rely on this observation when constructing the gadget.

(b) (w1, zi, 2
k) for each i ∈ [k] with bi = 1,

(c) d copies of the request (w0, w1, 1).

Then the following conditions are equivalent:

(a) d ≤ γ(b) + 1[b∈Z],

(b) there exists a Tb,d-flow in G,

(c) there exists a non-crossing Tb,d-flow in G, in which w0 sees {zi | bi = 0} in the order of
decreasing i and w1 sees {zi | bi = 1} in the order of increasing i.

For the existence of a Tb,d-flow, using d copies of the request (w0, w1, 1) is equivalent to using a
single request (w0, w1, d). This however does matter for the existence of a non-crossing Tb,d-flow.
The reason for considering d copies of (w0, w1, 1) instead of just (w0, w1, d) comes from condition
(b) in Definition 5.2: we want to allow the (w0, w1)-walks to be arbitrarily intertwined with the
other walks at w0 or w1 (see Figure 15). On the other hand, we require those other walks to be
well-structured.

Basically, the vector b specifies for each terminal zi whether it should send the flow to the left
(w0) or to the right (w1). In turn, the condition b ∈ Z governs how many (w0, w1)-walks can be
allocated on top of the walks above.

The rest of Section 5.2 is devoted to a construction of a (k, γ, Z)-Vector Containment Gadget of
size 2O(k) for a certain function γ.

5.2.1 Homotopy classes and shortest paths

Instead of constructing a vector-containment gadget directly, we begin from a prototype of its dual.
Its most important property is the uniqueness of a shortest (s, t)-path in each homotopy class (to
be defined later).

Operations on bit vectors. We number the coordinates in a size-k vector from 1 to k. Consider
a binary vector b = (b1, b2, . . . , bk). When referring to indices or performing arithmetic, we implicitly

42

Q1Q
′
1

s t

Figure 16: The graph H4. The vertical lines are Q1, Q
′
1, . . . , Q4, Q

′
4, counting from left to right. For each

i ∈ [4] the vertices vi,j and v′i,j are drawn with black boundary when j < 23 and with brown boundary when

j ≥ 23. For b = (1001) the path Pb is highlighted in orange and for v = (1110) the path Pv is highlighted in
green. Observe that the positions of the first vertices on Pb, Pv correspond to the numbers encoded by b,v
in binary. The violet path is an example of a different v-homotopic path.

use the big-endian binary decoding {0, 1}k → [0, 2k) given as
∑k

i=1 bi · 2k−i. For i ∈ [k] let b[i]

denote a binary string obtained from b by reversing its prefix of length i. Note that for every i ∈ [k]
the mapping b → b[i] is a bijection; for i = 1 it is identity.

Construction of the graph Hk. We define a plane graph Hk as follows. We draw 2k vertical
lines Q1, Q

′
1, Q2, Q

′
2, . . . , Qk, Q

′
k, in this order from left to right, and mark 2k vertices on each of

them. The vertices on Qi are referred to as vi,j , where j ∈ [0, 2k), counting from the top to the
bottom. Similarly, vertices on Q′i are referred to as v′i,j . We add two additional vertices: s to the
left of Q1, and t to the right of Q′k.

For each b ∈ {0, 1}k we draw a curve Pb which starts at s, crosses all the lines Q1, Q
′
1, Q2, Q

′
2, . . . ,

Qk, Q
′
k, in this order, and ends at t. The curve Pb crosses the line Qi (resp. Q′i) at the vertex

vi,b[i] (resp. v′
i,b[i]). Each segment of Pb between crossing consecutive vertical lines is a straight

line. The plane graph Hk is obtained from this drawing by turning every crossing of curves Pb,
Pb′ into a vertex. See Figure 16 for an illustration. We retain the names Pb, Qi, Q

′
i to denote the

corresponding paths in Hk.

Observation 5.6. Let b,v ∈ {0, 1}k be distinct and j ∈ [k − 1]. The paths Pb and Pv in Hk

intersect between Q′j and Qj+1 if and only if b[j] − v[j] and b[j+1] − v[j+1] have different signs.

We will study the geometric relations between Pb and Pv through bit substrings in b and v.

Lemma 5.7. Let b,v ∈ {0, 1}k be distinct and j ∈ [k − 1]. If b[j] < v[j] and b[j+1] > v[j+1] then
bj+1 = 1 and vj+1 = 0. Furthermore, there exists i ∈ [j] for which bi = 0, vi = 1, and bh = vh for
i < h < j + 1.

Proof. First, targeting a contradiction, suppose that bj+1 = vj+1. Observe that b[j] can be
obtained from b[j+1] by moving the first bit to the position j + 1, and likewise for v[j],v[j+1]. When

43

bj+1 = vj+1 then this operation does not affect the “<” relation between the encoded integers, so
this implies b[j] > v[j], contrary to the assumption. Hence bj+1 ̸= vj+1 and it must be bj+1 > vj+1.

Now, suppose that b,v coincide on first j coordinates. Since bj+1 > vj+1, this implies that
b[j] > v[j], a contradiction. As a consequence, there is an index in [j] at which b,v differ; let i
denote the last such index. Then, the choice of i implies bh = vh for i < h < j + 1. Consider the
first coordinate at which b[j],v[j] differ: for the first vector this bit equals bi and for the second one
it is vi. Since v[j] > b[j], this implies vi > bi.

We will refer to the structure observed in the last lemma as a crossing pair.

Definition 5.8. Consider two vectors b,v ∈ {0, 1}k. We say that (i, j) ∈ [k]2 is a crossing pair for
(b,v) if (a) i < j, (b) the pair ((bi,vi), (bj ,vj)) equals either ((0, 1), (1, 0)) or ((1, 0), (0, 1)) and
(c) bh = vh for each i < h < j. We define C(b,v) to be the set of crossing pairs for (b,v).

As an example, consider b = (1001101) and v = (0101000). They differ at positions 1, 2, 5, 7
and C(b,v) = {(1, 2), (2, 5)}.

Observation 5.9. When (i1, j1) and (i2, j2) are different crossing pairs for some (b,v) then j1 ≤ i2
or j2 ≤ i1.

We would like to employ some notion of a homotopy class for the (s, t)-paths. However, instead
of working with the topological notion of homotopy, we introduce a simpler definition, tailored
just for our analysis of the graph Hk. Let Ei ⊆ E(Hk) denote the set of edges between V (Qi)
and V (Q′i). Each edge from Ei is of the form vi,jv

′
i,j for j ∈ [0, 2k). For b ∈ {0, 1} we define

Half(k, b) ⊆ [0, 2k) to be [0, 2k−1) when b = 0 and [2k−1, 2k) when b = 1. Next, we define Ei
b ⊆ Ei as

{vi,jv′i,j | j ∈ Half(k, b)}. The edges from Ei
0 have black circles as endpoints on Figure 16 whereas

the ones from Ei
1 have brown circles as endpoints.

Definition 5.10. For b ∈ {0, 1}k we say that an (s, t)-path P in Hk is b-homotopic if E(P)∩Ei ⊆
Ei

bi
for each i ∈ [k].

A canonical example of a b-homotopic path is Pb. Note that it might be the case that some
(s, t)-path is not b-homotopic for any b ∈ {0, 1}k according to our definition. We can now express
some geometric properties of (s, t)-paths in terms of crossing pairs.

Lemma 5.11. Consider two vectors b,v ∈ {0, 1}k. Let R be a v-homotopic (s, t)-path in Hk. The
graph given by the intersection R ∩ Pb contains at least |C(b,v)| connected components disjoint
from s and t.

Proof. Let (i, j) ∈ C(b,v). The path R must contain a subpath Ri,j that starts at Q′i, ends at Qj ,

and is internally contained between Q′i and Qj . Similarly, let P i,j
b be the subpath of Pb between

Q′i and Qj . By the definition of a crossing pair, the endpoints of Ri,j , P i,j
b are all distinct and

they lie in different orders on Q′i and Qj ; hence these paths must intersect between Q′i and Qj ,
exclusively. From Observation 5.9 we obtain that the paths Ri,j constructed for distinct crossing
pairs are disjoint. Therefore, each (i, j) ∈ C(b,v) contributes at least one connected component of
R ∩ Pb that is disjoint from s, t.

For the special case R = Pv we can make a stronger observation.

44

Lemma 5.12. Consider distinct vectors b,v ∈ {0, 1}k. The number of internal vertices shared by
Pb and Pv equals |C(b,v)|.

Proof. Clearly, Pb and Pv cannot intersect between Qi and Q′i for any i ∈ [k]. Let J ⊆ [k − 1] be
the set of indices j for which b[j] − v[j] and b[j+1] − v[j+1] have different signs. By Observation 5.6,
the number of common internal vertices in Pb and Pv equals |J |. Let j ∈ J and assume w.l.o.g.
that b[j+1] > v[j+1] and b[j] < v[j]. By Lemma 5.7 we have bj+1 = 1 and vj+1 = 0. Furthermore,
bi = 0 and vi = 1, where i is the last index in [j] at which b,v differ. Hence (i, j + 1) forms a
crossing pair for (b,v). The crossing pairs obtained for different j1, j2 ∈ J must be different, what
implies |J | ≤ |C(b,v)|. The equality follows from the Lemma 5.11, as the number of shared internal
vertices is no less than the number of components in Pb ∩ Pv disjoint from s and t.

As a next step, we compute the length of the path Pb. It can be expressed with a very convenient
formula which will come in useful later.

Definition 5.13. We define function γk : {0, 1}k → N as follows.

γk(b1b2 . . . bk) =
∑

1≤j<i≤k
1[bi ̸=bj] · 2k−i+j−1.

When the parameter k is clear from the context, we abbreviate γ = γk.

Lemma 5.14. For each b ∈ {0, 1}k the length of the path Pb in Hk equals 2k + 1 + γ(b).

Proof. The length of Pb equals the total number of its crossings with Pv for v ̸= b plus the number
of crossings with Qi, Q

′
i (2k in total) plus one. By Lemma 5.12 it suffices to show that the sum of

|C(b,v)| over v ̸= b equals γ(b). To this end, we change the order of summation and, for each
pair 1 ≤ i < j ≤ k, we count the number of vectors v ̸= b for which (i, j) ∈ C(b,v). So, consider
some pair 1 ≤ i < j ≤ k. First, note that if (i, j) ∈ C(b,v) is non-empty for any v, then bi ̸= bj .
In this case, (i, j) ∈ C(b,v) if and only if vi ̸= bi, vj ̸= bj , and b,v coincide between i and j.
These conditions fix exactly (j − i+ 1) coordinates of v and on the remaining coordinates v may be
arbitrary. Therefore there are exactly 2k−i+j−1 vectors v for which (i, j) ∈ C(b,v). This agrees
with the definition of function γ.

Finally, we prove the most crucial property of the graph Hk: the uniqueness of a shortest
(s, t)-path in each homotopy class.

Lemma 5.15. For each b ∈ {0, 1}k the path Pb is the unique shortest b-homotopic (s, t)-path
in Hk.

Proof. Let R ̸= Pb be a b-homotopic (s, t)-path in Hk. We are going to show that |R| > |Pb|. First
observe that R cannot be the path Pv for any v ̸= b as then it would not be b-homotopic.

Let P be the family of all paths of the form Pv, Qi, Q
′
i. Every vertex v ∈ V (Hk) \ {s, t} is an

intersection of some two paths P1, P2 ∈ P. For P ∈ P let ΓR(P) be the set of internal vertices v in
R such that v ∈ V (P) but the predecessor of v on R does not belong to V (P). Observe that when
v is an internal vertex of R and v is an intersection of paths P1, P2 ∈ P then the predecessor of v is
either s (which belongs to exactly one of V (P1), V (P2)) or it is an intersection of paths P ′1, P

′
2 ∈ P

with |{P1, P2}∩{P ′1, P ′2}| = 1. Consequently, the sets ΓR(P) are pairwise disjoint and every internal
vertex of R belongs to some set ΓR(P). We infer that the length of R equals

∑
P∈P |ΓR(P)| + 1.

45

1

2

2

1

2

3

2

3

ŝ t̂

s

t

Figure 17: An (s, t)-dual (G◦, ŝ, t̂) of a multigraph G. The vertices of G are black whereas the vertices
of G◦ are hollow. A shortest (s, t)-path P in G is drawn with solid green lines. A non-crossing family of
three edge-disjoint (ŝ, t̂)-paths in G◦ is highlighted with colors. Each of these paths must cross some edge of
P . They illustrate the construction from Lemma 5.18. We have indicated the distances from s in G for the
vertices on the paths P s and P t.

When P = Pv for some v ∈ {0, 1}k then |ΓR(Pv)| is lower bounded by the number of connected
components of R ∩ Pv disjoint from s, t, which in turn is at least |C(b,v)| due to Lemma 5.11. So
|ΓR(Pv)| ≥ |C(b,v)|. When P = Qi or P = Q′i then |ΓR(P)| ≥ 1. If in both cases we always had
equalities then the length of R would be the same as Pb (by Lemma 5.12). Therefore, it is sufficient
to show that for some v ∈ {0, 1}k we have strict inequality |ΓR(Pv)| > |C(b,v)|.

Let v be the vector for which the last edge on R (the one incident to t) belongs to Pv (possibly
v = b). Since R ̸= Pv, we obtain that R∩Pv has a connected component of size at least 2 containing
t but not s. The first vertex (with respect to R) in this component belongs to ΓR(Pv) but this
component has not been taken into account in the bound |ΓR(Pv)| ≥ |C(b,v)| above (because it
contains t). Therefore, |ΓR(Pv)| > |C(b,v)|, what implies |R| > |Pb|. This concludes the proof.

5.2.2 Dual flows

Before we are ready to finish the construction of a vector-containment gadget, we need to establish
a method for constructing non-crossing flows with certain properties in a dual graph.

Lemma 5.16 ([79, Prop. 2.6.4]). Let G be a 2-connected plane multigraph and G∗ be its dual.
Suppose that S ⊆ E(G) is an inclusion-minimal (u, v)-edge-separator for some u, v ∈ V (G). Then
S∗ is an edge set of a cycle in G∗ such that the vertices u, v belong to different connected components
of R2 \ S∗.

Definition 5.17. Let G be a connected plane multigraph and s, t ∈ V (G) lie on the outer face. Let
Gst be obtained from G by inserting the edge st within the outer face and G∗st be the dual of Gst.
Let ŝ, t̂ denote the endpoints of the edge (st)∗ in G∗st so that ŝ corresponds to the face incident to
the edge st on the right when considering the orientation of st from s to t. The (s, t)-dual of G is
the triple (G∗st \ (st)∗, ŝ, t̂).

46

See Figure 17 for an example of an (s, t)-dual. We use notation G◦ to refer to the graph G∗st\(st)∗

(when s, t are clear from context). For an edge e ∈ E(G) we refer to its counterpart in G◦ as e◦.
Similarly, for an internal face f in G we refer to the corresponding vertex in G◦ as f◦.

We will utilize the correspondence between the length of the shortest (s, t)-path in G and the
maximal size of an (ŝ, t̂)-flow in the (s, t)-dual of G. The following lemma also reveals which of the
edges incident to ŝ, t̂ are used in this flow.

Lemma 5.18. Let G be a 2-connected plane multigraph whose outer face is confined by a simple
cycle C, s, t ∈ V (C), and d = distG(s, t). Let (G◦, ŝ, t̂) be the (s, t)-dual of G. Next, let P s, P t be
the (s, t)-paths in C such that the edges of P s (resp. P t) are incident to ŝ (resp. t̂).

For i ∈ [d] let vsi be the last vertex on P s with distG(s, vsi) < i and usi be its successor on P s.
Analogously we define vertices vti , u

t
i ∈ V (P t). Then there exists a non-crossing family of d edge-

disjoint (ŝ, t̂)-paths P ◦1 , P
◦
2 , . . . , P

◦
d in G◦, such that (vsi u

s
i)
◦ ∈ P ◦i and (vtiu

t
i)
◦ ∈ P ◦i for each i ∈ [d].

Proof. For i ∈ [d] let V̂i = {v ∈ V (G) | distG(s, v) ≥ i} and let Vi ⊆ V̂i induce the connected
component of G[V̂i] that contains t. We set Si = E(Vi, V (G) \ Vi). The vertices usi , u

t
i belong to Vi

because they can be connected to t with subpaths of P s, P t contained in G[V̂i]. Therefore, vsi u
s
i ∈ Si

and vtiu
t
i ∈ Si.

We claim that Si is an inclusion-minimal (s, t)-separator. Let vu ∈ Si and u ∈ Vi, v ̸∈ Vi.
Observe that v ̸∈ V̂i because otherwise it would belong to the connected component of G[V̂i]
containing t, which would imply v ∈ Vi. Hence distG(s, v) = i− 1 and there is an (s, v)-path in
G \Si. As G[Vi] is connected, this implies that Si \ vu is not an (s, t)-separator, hence Si is minimal.

Recall that Gst is obtained from G by inserting the edge st and G∗st is the dual of Gst. Then
Si∪{st} is an inclusion-minimal (s, t)-separator in Gst. By Lemma 5.16 the set S∗i ∪{(st)∗} ⊆ E(G∗st)
forms a cycle in G∗st separating the vertices s and t on the plane. This cycle goes through vertices
ŝ, t̂, and the edge ŝt̂ = (st)∗. Therefore S∗i forms an edge set of an (ŝ, t̂)-path in G◦ = G∗st \ (st)∗;
this shall be the path P ◦i . We have (vsi u

s
i)
◦ ∈ P ◦i , (vtiu

t
i)
◦ ∈ P ◦i , and these paths are edge-disjoint

because the sets S1, . . . , Sd are disjoint.
Finally we argue that P ◦1 , P

◦
2 , . . . , P

◦
d are non-crossing. Let Di ⊂ R2 be the connected component

of R2 \ (S∗i ∪{(st)∗}) containing t (it may be unbounded). We have Di∩V (Gst) = Vi for each i ∈ [d].
Therefore, Di is a union of the faces in the dual G∗st corresponding to vertices from Vi. Observe
that for i < d the set Vi+1 is contained in Vi. Consequently, we have D1 ⊃ D2 ⊃ · · · ⊃ Dd. Since
the path Pi is an arc of ∂Di, these paths cannot cross. See Figure 17 for an illustration.

5.2.3 Construction of a non-crossing flow

A direct approach to construct a vector-containment gadget would be to consider the (s, t)-dual
(H◦, ŝ, t̂) of the graph Hk and set zi to be the vertex corresponding to the face between the last edge
from Ei

0 and the first edge from Ei
1. Consider some b ∈ {0, 1}k and a flow P in H◦ that consists of

(a) (ŝ, t̂)-paths, (b) (ŝ, zi)-paths for bi = 0, and (c) (t̂, zi)-paths for bi = 1. Then every path in P
must cross any b-homotopic (s, t)-path in Hk (see Figure 15) and so the length of the shortest such
path upper bounds the size of P.

Since Pb is the unique shortest b-homotopic (s, t)-path in Hk, subdividing its first edge (the one
incident to s) increases the length of the shortest b-homotopic (s, t)-path (see Figure 18). This allows
P to have one more element. We could thus encode the set Z by subdivisions of the edges incident to

47

Q1Q
′
1

s t

Figure 18: Graph H ′
4,Z for Z = {1, 2, 5, 8, 9, 13}. The red edges are subdivided once and the blue edges are

subdivides 24 − 1 = 15 times. For legibility only one blue edge on the top is drawn subdivided. The gray
edges are not being subdivided. The faces f1, f2, f3, f4 are highlighted in light blue.

s, increasing the upper bound for the size of P exactly when b ∈ Z. It is more complicated though
to obtain the implication in the other direction: when b ∈ Z we want to construct a non-crossing
flow P satisfying certain requests of the three mentioned types. Performing such a construction “by
hand” would be very tedious and instead we will take advantage of Lemma 5.18. To this end, we
need to first subdivide more edges in Hk to make it amenable to this lemma.

Definition 5.19. Let Z ⊆ {0, 1}k. The graph H ′k,Z is obtained from Hk as follows.

1. For each i ∈ [k] and j ∈ [0, 2k), each of the two edges incident to v′i,j but not contained in Q′i
gets subdivided 2k − 1 times.

2. For each j ∈ Z the edge sv1,j gets subdivided once.

An example is given in Figure 18. There is a 1-1 correspondence between (s, t)-paths in Hk and
H ′k,Z therefore by a slight abuse of notation we can consider b-homotopic (s, t)-paths in H ′k,Z .

Lemma 5.20. Let Z ⊆ {0, 1}k and b ∈ {0, 1}k. The length of the shortest b-homotopic (s, t)-path
in H ′k,Z equals k · 2k+1 + γ(b) + 2 if b ∈ Z and k · 2k+1 + γ(b) + 1 otherwise.

Proof. First consider an intermediate graph H ′k obtained from Hk by the first modification from
Definition 5.19. Every (s, t)-path P in Hk must cross Q′i for each i ∈ [k] and so it must contain
two edges incident to Q′i. Due to the subdivisions, the length of P in H ′ increases by at least
2k · (2k − 1). The length of Pb increases by exactly 2k · (2k − 1) and so its length in H ′k becomes
k · 2k+1 + γ(b) + 1. Since Pb is the unique shortest b-homotopic (s, t)-path in Hk, it is also the
unique shortest b-homotopic (s, t)-path in H ′k.

Now consider the second modification from Definition 5.19. Clearly, it cannot decrease the
length of any path. If b ̸∈ Z then this modification does not affect any edge on Pb so its length in
H ′k,Z is again k · 2k+1 + γ(b) + 1. However, if b ∈ Z then we have subdivided an edge on the unique
shortest b-homotopic (s, t)-path so now the length of the shortest b-homotopic (s, t)-path becomes
k · 2k+1 + γ(b) + 2.

48

s t

ŝb

t̂b

gi1

gi2

gi3

gi4

Qi Q′
i

Figure 19: Left: The graph Hb
4,Z for b = (1001) and arbitrary Z (the edge subdivisions are omitted here).

The edges on the purple paths are exposed. The areas highlighted in color correspond to vertices ŝb, t̂b in the
(s, t)-dual of Hb

4,Z . The blue and green curvy lines are examples of the paths from the family constructed in
Lemma 5.21. The crux of the lemma is that this family does not contain paths like the red one. The green
paths belong to subfamilies P3,P4 from Lemma 5.25 while the blue ones belong to Plong.

—- Right: An illustration for Lemma 5.25 showing a fragment of the graph Hb
3,Z with bi = 1. The gray paths

are present in H ′
3,Z but not in Hb

3,Z while the highlighted faces of H ′
3,Z become merged with ŝb in Hb

3,Z . The

purple path consists of the exposed edges. The face gi4 is the same as fi (cf. Figure 18). The paths in the
(s, t)-dual of Hb

3,Z are drawn as paths going through the faces of Hb
3,Z .

—- The condition of edge-disjointedness means that each drawn edge may be crossed by only a single path.
The paths from Pi ⊆ P are sketched in green; their common upper endpoint is ŝb but when we consider them
in the (s, t)-dual of H ′

3,Z this endpoint becomes (fi)
◦ = (gi4)◦. The paths from Plong ⊆ P which enter ŝb

through Qi or Q′
i are sketched in blue; they can be extended to reach ŝ in H ′

3,Z using the orange paths.

Carving off the cavities. We introduce some additional notation for the two following lemmas.
For i ∈ [k] we distinguish face fi as the face between Qi and Q′i incident to the vertices vi,2k−1−1
and vi,2k−1 (the four highlighted faces in Figure 18). Recall that Half(k, b) stands for [0, 2k−1) when

b = 0 and for [2k−1, 2k) when b = 1. For b ∈ {0, 1}k we define Hb
k,Z as the plane graph obtained

from H ′k,Z by removing all the internal vertices in the subdivided (vi,j , v
′
i,j)-edge for each i ∈ [k]

and j ∈ Half(k, 1 − bi). See Figure 19 for a visualization.
An edge e ∈ E(Hb

k,Z) is called exposed if e belongs to the subdivided (vi,j , v
′
i,j)-edge where

j = 2k−1 if bi = 0 and j = 2k−1 + 1 if bi = 1. Note that every exposed edge is incident to the outer
face of Hb

k,Z . An edge e◦ in an (s, t)-dual of Hb
k,Z is called exposed if e is exposed in Hb

k,Z .

In order to construct a non-crossing Tb,d-flow in the (s, t)-dual of H ′k,Z , we first construct a flow

in the (s, t)-dual of Hb
k,Z and then translate it to the dual above. We will work with flows consisting

of paths instead of walks, what obviously meets our definition of a non-crossing flow.

Lemma 5.21. Let Z ⊆ {0, 1}k, b ∈ {0, 1}k, and d = k · 2k+1 + γ(b) + 1 + 1[b∈Z]. Furthermore, let

(H◦b, ŝb, t̂b) be the (s, t)-dual of Hb
k,Z .

Then there exists a non-crossing family of d edge-disjoint (ŝb, t̂b)-paths P ◦1 , P
◦
2 , . . . , P

◦
d in H◦b

49

such that (1) every exposed edge belongs to some path P ◦i , and (2) every path P ◦i contains at most
one exposed edge.

Proof. The distance between s and t in Hb
k,Z equals the length of the shortest b-homotopic (s, t)-path

in H ′k,Z , which is d = k · 2k+1 + γ(b) + 1 + 1[b∈Z] due to Lemma 5.20. Let P s, P t be the (s, t)-paths

within the outer cycle of Hb
k,Z , defined as in Lemma 5.18. We also reuse the definitions of vertices

vsi , u
s
i , v

t
i , u

t
i for i ∈ [d]. In order to derive the claim from Lemma 5.18 we need to prove the following.

(P1) Every exposed edge is of the form vsi u
s
i or vtiu

t
i for some i ∈ [d].

(P2) For each i ∈ [d] only one of the edges vsi u
s
i , v

t
iu

t
i can be exposed.

All distances considered in this proof are measured with respect to the graph Hb
k,Z .

Claim 5.22. For each i ∈ [k] and any vertices x ∈ V (Qi), y ∈ V (Q′i), it holds that dist(s, x) <
dist(s, y). Furthermore, for i ∈ [k − 1] and any vertices x ∈ V (Q′i), y ∈ V (Qi+1) it holds that
dist(s, x) < dist(s, y).

Proof. We will use the following three observations. First, for each i ∈ [k] any path from s to V (Q′i)
must intersect V (Qi) and, when i > 1, any path from s to V (Qi) must intersect V (Q′i−1). Next, the
minimal distance between V (Qi) and V (Q′i) or V (Q′i−1) is 2k. Finally, for each two u, v ∈ V (Qi)
(resp. u, v ∈ V (Q′i)) we have dist(u, v) < 2k.

We prove only the first claim in detail, as the second one has an analogous proof. Let y be the
vertex from V (Q′i) that minimizes distance from s and P be the shortest (s, y)-path in Hb

k,Z . Then
V (P) ∩ V (Q′i) = {y}. Let x′ be a vertex from V (Qi) ∩ V (P). Since the minimal distance between
V (Qi) and V (Q′i) is 2k we have dist(s, x′) ≤ dist(s, y) − 2k. Now, for any other x′ ∈ V (Qi) we have
dist(x, x′) < 2k, what implies dist(s, x) ≤ dist(s, x′) + dist(x′, x) < dist(s, y) and proves the claim
due to the choice of y. ■

Claim 5.23. For each i ∈ [k] and j ∈ Half(k, bi), it holds that dist(s, v′i,j) = dist(s, vi,j) + 2k.

Proof. By the triangle inequality we have dist(s, v′i,j) ≤ dist(s, vi,j) + 2k. Let P be a shortest

(s, v′i,j)-path in Hb
k,Z . Let j′ ∈ Half(k, bi) be such that v′i,j′ is the first vertex from V (Q′i) on P . Then

P visits vi,j′ as well and so dist(s, vi,j′) = dist(s, v′i,j) − dist(vi,j′ , v
′
i,j) = dist(s, v′i,j) − 2k − |j − j′|.

Next, dist(s, vi,j) ≤ dist(s, vi,j′) + |j − j′| = dist(s, v′i,j) − 2k, what gives the inequality in the second
direction. ■

It follows that every exposed edge is of the form vu where dist(s, u) = dist(s, v) + 1. Moreover,
when v is the ℓ-th vertex on the subdivided (vi,j , v

′
i,j)-edge (counting from vi,j) then dist(s, v) =

dist(s, vi,j) + ℓ.

Claim 5.24. For each i ∈ [k] and any vertex x ∈ V (Qi), it holds that dist(s, x) + 2k < dist(s, t).

Proof. Due to Claim 5.22 it suffices to consider i = k. Let x ∈ V (Qk). Let P be a shortest (s, t)-path
in Hb

k,Z . This path must intersect V (Qk); let x′ be a vertex from V (Qk) ∩ V (P). The minimal

distance from V (Qk) to t is 2k+1, hence dist(s, x′) ≤ dist(s, t) − 2k+1. Since dist(x′, x) < 2k, the
claim follows from the triangle inequality. ■

50

Let vu be an exposed edge and u be the vertex with ℓ = dist(s, u) = dist(s, v) + 1. Suppose
w.l.o.g. that vu ∈ E(P s). From Claims 5.22 and 5.23 we obtain that for every vertex v′ that lies
further than v on P s it holds dist(s, v′) ≥ ℓ. Claim 5.24 implies that ℓ ≤ dist(s, t) = d. We therefore
obtain property (P1): vu = vsℓu

s
ℓ for some ℓ ∈ [d]. Similarly, when vu ∈ E(P t) then vu = vtℓu

t
ℓ for

some ℓ ∈ [d].
Finally, consider vu ∈ E(P s), v′u′ ∈ V (P t), such that vu, v′u′ are exposed. Then there is i ∈ [k]

such that V (Q′i) separates v from v′ and one of v, v′ belongs to the same connected component
of Hb

k,Z − V (Q′i) as s. By Claims 5.22 and 5.23 the distances dist(s, v) and dist(s, v′) are different,

what implies property (P2). We apply Lemma 5.18 to obtain a family of (ŝb, t̂b)-paths that satisfies
the conditions of the lemma.

As the last step, we want to employ Lemma 5.21 to construct a certain flow in the (s, t)-dual of
H ′k,Z . The only modification needed involves extending the paths from the (s, t)-dual of Hb

k,Z that

end at ŝb or t̂b but, when considered in the (s, t)-dual of H ′k,Z , this endpoint corresponds to an

internal face of H ′k,Z . Note that when an (ŝb, t̂b)-path in the (s, t)-dual of Hb
k,Z reaches its endpoint

through an exposed edge then this endpoint corresponds to (fi)
◦ for some i ∈ [k] in the (s, t)-dual

of H ′k,Z . For the remaining cases, we will extend the path to reach ŝ or t̂ using the subdivided edges
between Qi and Q′i.

Lemma 5.25. Let k ∈ N, Z ⊆ {0, 1}k, b ∈ {0, 1}k, and d = k · 2k + γ(b) + 1 + 1[b∈Z]. Let (H◦, ŝ, t̂)
be the (s, t)-dual of H ′k,Z and Tb,d be the family of following requests:

1. (ŝ, f◦i , 2
k) for each i with bi = 0,

2. (t̂, f◦i , 2
k) for each i with bi = 1,

3. d copies of the request (ŝ, t̂, 1).

Then there exists a non-crossing Tb,d-flow in H◦, in which ŝ sees {f◦i | bi = 0} in the order of
decreasing i and t̂ sees {f◦i | bi = 1} in the order of increasing i (recall Definition 5.4).

Proof. Let (H◦b, ŝb, t̂b) be the (s, t)-dual of Hb
k,Z . Let ℓ = d+ k · 2k and, for i ∈ [k], E◦bi ⊆ E(H◦b)

be the set of 2k exposed edges located between Qi and Q′i. We apply Lemma 5.21 to obtain a
non-crossing (ŝb, t̂b)-flow P = {P ◦1 , . . . , P ◦ℓ } in H◦b. For each i ∈ [k] there is a subfamily Pi ⊆ P
of 2k paths containing an edge from E◦bi . Moreover, the subfamilies P1, . . . ,Pk are disjoint. Let
Plong = P \ (P1 ∪ · · · ∪ Pk).

Every internal face of Hb
k,Z is also an internal face of H ′k,Z . Therefore, every path in H◦b that is

internally disjoint from ŝb, t̂b is also a path in H◦. We can thus consider the flow P in H◦. When
P ∈ Pi for some i ∈ [k] then one of its endpoints (incident to an exposed edge) becomes f◦i . The
other endpoint (incident to a non-exposed edge) will be either ŝ, t̂ or g◦, where g is an internal
face of H ′k,Z that is not present in Hb

k,Z . When P ∈ Plong then the latter scenario applies to both
endpoints of P .

Let gi1, . . . , g
i
2k−1 be the internal faces of H ′k,Z between Qi and Q′i that are not present in Hb

k,Z ,

ordered in such a way that gi1 is incident to the outer face, gi
2k−1 = fi, and gij+1 shares an edge with

gij . When e ∈ E(H◦b) is incident to ŝb or t̂b in H◦b then either e is incident to ŝ, t̂, or some (gij)
◦

in H◦. In the last case, when e is non-exposed then e crosses Qi or Q′i.

51

For each i ∈ [k], j ∈ [2k−1], there is exactly one edge in H◦ incident to (gij)
◦ that crosses Qi and

exactly one that crosses Q′i; in total 2k for fixed i. Observe that for each j ∈ [1, 2k−1 − 1] there are
2k parallel edges between the vertices (gij)

◦ and (gij+1)
◦. Therefore, paths from P that reach some

(gij)
◦ via a non-exposed edge can be extended to reach ŝ (resp. t̂) in a non-crossing manner (see

Figure 19, right, and the caption below). As a result, the paths from families Pi are being extended
to satisfy requests of types (1, 2), while the paths from Plong are being extended to satisfy requests
of type (3).

Finally, we argue that ŝ (resp. t̂) sees the vertices f◦1 , f
◦
2 , . . . , f

◦
k in the right order. First, consider

the flow P in the graph H◦b, in which every path is an (ŝb, t̂b)-path. Observe that each subfamily
Pi ⊆ P forms a continuous interval in P ordered with respect to the ordering of edges incident to ŝb

(or t̂b). Consider now i < j with bi = bj = 0, and let Pi ∈ Pi, Pj ∈ Pj . Let ei, ej ∈ E(H◦b) be the
edges on respectively Pi, Pj that are incident to ŝb. Then ei occurs later than ej in the clockwise
ordering of edges incident to ŝb (starting from the edge next to the outer face of H◦b), reflecting
the relative order of the edges at the other ends of Pi, Pj . The transformation between the flow in
H◦b and the flow in H◦ preserves the relative order of paths Pi, Pj , yielding the same relation with
respect to ŝ. The analysis for the paths ending at t̂ is symmetric: when i < j and bi = bj = 1 then
any path from Pi occurs earlier than any path from Pj with respect to the clockwise ordering of
edges incident to t̂b. This concludes the proof.

The flow considered above is exactly the one that we require in the vector-containment gadget.
We can therefore summarize the construction.

Proposition 5.26. Let γ̂k : {0, 1}k → N be defined as γ̂k(b) = k · 2k + γk(b) + 1. For each k and
Z ⊆ {0, 1}k there exists a (k, γ̂k, Z)-Vector Containment Gadget of size 2O(k) and it can be constructed
in time 2O(k).

Proof. Let (H◦, ŝ, t̂) be the (s, t)-dual of the plane graph H ′k,Z . Both graphs can be constructed in

time polynomial in their size, which is 2O(k). We construct a (k, γ̂k, Z)-Vector Containment Gadget
using the graph H◦. We set w0 = ŝ, w1 = t̂, and zi = (fi)

◦ for i ∈ [k].
Let Tb,d be the family of requests defined as in Lemma 5.25. We need to show the following

conditions to be equivalent:

(a) d ≤ γ̂k(b) + 1[b∈Z],

(b) there exists a Tb,d-flow in H◦,

(c) there exists a non-crossing Tb,d-flow in H◦, in which ŝ sees {f◦i | bi = 0} in the order of
decreasing i and t̂ sees {f◦i | bi = 1} in the order of increasing i.

The implication (c) ⇒ (b) is trivial. To see (b) ⇒ (a), consider some shortest b-homotopic
(s, t)-path P in H ′k,Z . By Lemma 5.20 the length of P equals k · 2k+1 + γ(b) + 1 + 1[b∈Z]. Each
walk Q in a Tb,d-flow in H◦ must cross the path P , i.e., there exists e ∈ E(P) such that e◦ ∈ E(Q).
Therefore the number of paths in a Tb,d-flow, that is k · 2k + d, cannot be greater than the length
of P . This implies d ≤ γ̂k(b) + 1[b∈Z]. The last implication (a) ⇒ (c) is proven in Lemma 5.25.

5.3 Subset gadget

The aim of the following gadget is to determine whether a given set F ⊆ [k] is a subset of one of
2r sets from a family S. To make the notation consistent with the previous gadget, we encode

52

the set family as a function from the bit vectors to the subsets of [k]. We use the notation 2[k] to
distinguish the family of subsets of [k] from the family of vectors of length k.

Definition 5.27. Let r, k be integers and S : {0, 1}r → 2[k] be a function. We say that a pair (G, T)
is an (r, k,S)-Subset Gadget if the following conditions hold.

1. G is a plane multigraph with 2k distinguished vertices s1, t1, s2, t2, . . . , sk, tk lying on the outer
face in this clockwise order.

2. T is a set of triples from V (G) × V (G) × N.

3. For F ⊆ [k] let TF = {(si, ti, 1) | i ∈ F}. Then there exists a non-crossing (T ∪ TF)-flow in G
if and only if there exists b ∈ {0, 1}r for which F ⊆ S(b).

Our goal is to construct an (r, k,S)-Subset Gadget of size 2O(r) · kO(1) with |T | = (r + k)O(1).

5.3.1 The first attempt

Let γ0 : {0, 1}r → N be the zero-function, i.e., γ0(b) = 0 for all b ∈ {0, 1}r. In this section we
present a simplified construction working under the assumption that for any set Z ⊆ {0, 1}r there
exists an (r, γ0, Z)-Vector Containment Gadget of size 2O(r). Of course, this assumption is overly
optimistic but it allows us to first present the pattern propagation mechanism alone. We strongly
encourage the Reader to first familiarize with this simplified construction before reading the proper
proof in Section 5.3.2. The proper proof builds atop this construction in an incremental way.

We use following conventions to describe the constructed graphs. When H is a graph with a
distinguished vertex named v and a graph G is constructed using explicit vertex-disjoint copies
of the graph H, referred to as H1, H2, . . . ,Hℓ, we refer to the copy of v within the subgraph Hi

as Hi[v] ∈ V (G). When vertices u, v are connected by multiple parallel edges, we refer to the
number of such edges as the capacity of uv.

The ladder. An r-ladder is a plane multigraph defined as follows (see Figure 20). We begin
construction from r + 1 disjoint paths (v1,1, v1,2, v1,3), . . . , (vr+1,1, vr+1,2, vr+1,3), followed by adding
additional edges forming paths (v1,1, v2,1, . . . , vr+1,1) and (v1,3, v2,3, . . . , vr+1,3). Next, we duplicate
each edge 23r+5 times (i.e., we place this many parallel edges).

We create vertices u0, u1 on the outer face adjacent respectively to v1,2 and vr+1,2. Let f1, . . . , fr
be the internal faces in the already constructed graph, numbered in such a way that v1,1 is incident
to f1 and for each i ∈ [r − 1] the faces fi, fi+1 share an edge. For each j ∈ [r] we create vertices
xj , yj within the face fj , and then insert edges xjvj+1,2 and yjvj,2.

The ring. Let H = H1, . . . ,Hk be a sequence of plane multigraphs that satisfy condition (1) of
Definition 5.5: each Hi has r + 2 distinguished vertices z1, . . . , zr, w0, w1 so that the last two lie on
the outer face. We build the graph Ring(r, k,H) from k blocks arranged in a ring-like structure, so
that Hi will be installed inside the i-th block.

For i ∈ [k] we start construction of the plane multigraph Ri from two copies of an r-ladder,
L+
i , L

−
i . For ⊙ ∈ {+,−} we duplicate the edges incident to L⊙i [u0], L

⊙
i [u1] times 23r+4. For j ∈ [r]

we duplicate the edge incident to L⊙i [xj] times 22r+j and the edge incident to L−i [yj] times 22r.

Next, we create six vertices: si, ti, h
+
i , ĥ

+
i , h

−
i , ĥ

−
i . For ⊙ ∈ {+,−} we insert 23r+4 + 22r parallel

edges h⊙i ĥ
⊙
i and 23r+4+23r+1+2 parallel edges h+i h

−
i . Next, we put 23r+1 parallel edges between h+i

53

22r 22r

23r+1

23r+4 + 23r+1 + 2

23r+1 23r+1

23r+1

23r+4

22r+1

22r+2

22r+3

2r

2r

2r

23r+4 + 22r+1

L+
i [u1]

L+
i [u0]

L−
i [u1]

L−
i [u0]

si ti

L+
i [x1]

L+
i [x2]

L+
i [x3]

L−
i [x1] L−

i [y1]

ĥ+
i

ĥ−
i

h+
i

h−
i

ĥ−
i+1

h−
i+1

Hi[w0] Hi[w1]

Hi[z1]

Hi[z2]

Hi[z3]

v1,1 v1,3
v1,2

u0

x1

v2,1 v2,3
v2,2

y1

x2

y2

x3

y3

u1

v3,1 v3,3
v3,2

v4,1 v4,3
v4,2

f1

f2

f3

C

C

C

A

A

C

C

C

D

D

D

D

D

D

B

B

Figure 20: Top left: a 3-ladder labeled with vertices’ and faces’ names. Right: a fragment of the graph
Ring(r, k,H) for r = 3. The subgraph Ri is labeled with the vertices’ names while the subgraph Ri+1 is
labeled with the edge capacities and the numbers of walks requested between each terminal pair (on a colorful
background). The ladder edges with capacities 23r+5 are drawn with thicker lines. The vertices that need to
be connected in the flow Tr,k share common colors and shapes. They are also labeled with letters indicating
the types of requests. The gray ovals in the bottom represent the subgraphs Hi, Hi+1 (the vector-containment
gadgets). Bottom left: a sketch of the ring structure obtained from combining the subgraphs R1, R2, . . . , Rk.

54

and L+
i [v1,1] (the bottom-left corner vertex of the upper ladder), and 23r+1 parallel edges between

h−i and L−i [vr+1,1] (the upper-left corner vertex of the lower ladder). We insert a single edge between
si (resp. ti) and L+

i [vr+1,1] (resp. L+
i [vr+1,3]).

Recall that Hi has vertices Hi[w0], Hi[w1] on its outer face. We connect Hi[w0] (resp. Hi[w1])
to L−i [v1,1] (resp. L−i [v1,3]) (the bottom corners of the lower ladder) via 22r parallel edges. The
arrangement of the vertices on the plane is depicted in Figure 20.

Finally, we arrange the multigraphs R1, R2, . . . , Rk into a ring. For i ∈ [k − 1] we insert 23r+1

parallel edges between L+
i [v1,3] and h+i+1, as well as between L−i [vr+1,3] and h−i+1. The graphs Rk, R1

get connected in the same way. The constructed ring encloses a bounded region incident to the
minus-sides of the multigraphs R1, R2, . . . , Rk.

Next, we define the requests of the gadget, divided into four groups. Although it is possible to
achieve the same properties with slightly smaller demands, we choose to use the same numbers that
appear in Section 5.3.2 in order to reduce the edit distance between the proofs.

The requests. We define a family Tr,k of requests over Ring(r, k,H).

A. In each ladder L of the form L+
i , L

−
i we create a request (L[u0], L[u1], 2

3r+4), 2k in total.

B. For each i ∈ [k] we create a request (ĥ+i , ĥ
−
i , 2

3r+4 + 22r).

C. For each i ∈ [k] and j ∈ [r] we create a request (L+
i [xj], L

−
i [xj], 2

2r+j).

D. For each i ∈ [k] and j ∈ [r] we create a request (L−i [yj], Hi[zj], 2
r).

For a Tr,k-flow P we use variables PA+
i , PA−

i , PB
i , PC

i,j , PD
i,j to refer to subfamilies of P satisfying

the respective types of requests.

Observation 5.28. For every vertex v of the form ĥ⊙i , L
⊙
i [uj], L

⊙
i [xj], L

−
i [yj], the number of edges

incident to v equals the number of walks in a Tr,k-flow that have an endpoint at v.

This observation allows us to exclude cases where one walk would start at a vertex v and another
walk would only pass through v.

Intuition. The aim of the (A) requests is to draw a pattern through each ladder which splits it
into the left and the right side (see Figure 21). Then the (C) requests must be satisfied by walks
between the upper ladder and the lower ladder that traverse the middle belt either through the left
or the right side, according to the pattern above. The (B) requests work as guards and ensure that
no other walks of type (C) are possible (ruling out the possibility that some walk winds around the
entire ring). Since the (C) requests encode powers of two, a partition of them encodes an integer
from 0 to 2r − 1. Because the blocks are arranged in a ring structure and the number of walks that
can cross h+i h

−
i is limited, these integers must coincide. As a consequence, the pattern drawn in

each ladder must be the same; in this way, the flow “chooses” a vector b ∈ {0, 1}r.
The (D) requests originate from the same faces in the lower ladders as their (C) counterparts, so

they also need to stay either on the left or right side of the ladder. This determines which entrance
to the vector-containment gadget Hi they can use (left or right). Then the vertex Hi[zj] must
be connected to Hi[w0] when bj = 0 or to Hi[w1] when bj = 1. The vector-containment gadget
governed by the zero-function γ0 alters its behavior depending on whether b belongs to a certain

55

set: it allows one additional walk between Hi[w0] and Hi[w1] if and only if the containment occurs.
Subsequently, this leaves space for an (si, ti)-walk, which must go through Hi because the walks of
type (A) and (B) block the other passages. By supplying appropriate sets to the vector-containment
gadgets, we enforce that an (si, ti)-walk can be accommodated exactly when i ∈ S(b).

For S : {0, 1}r → 2[k] and i ∈ [k] we define ZSi ⊆ {0, 1}r as the set of vectors b for which
i ∈ S(b). Assume that for each i ∈ [k] there exists a plane multigraph Hi which is an (r, γ0, ZSi)-
Vector Containment Gadget. We define Hvcg

S as H1, . . . ,Hk. We are going to show that then
(Ring(r, k,Hvcg

S), Tr,k) forms an (r, k,S)-Subset Gadget.
We need to prove two implications to establish condition (3) of Definition 5.27. We begin from

the easier one: when F ⊆ S(b) for some vector b, then the desired non-crossing flow exists. For a
flow P and a walk W , we say that W is non-crossing with P if W does not cross or share an edge
with any walk in P.

Lemma 5.29. Consider r, k ∈ N and S : {0, 1}r → 2[k]. Assume that the sequence of multigraphs
Hvcg
S exists. For F ⊆ [k] let TF = {(sj , tj , 1) | j ∈ F}. If F ⊆ S(b) for some b ∈ {0, 1}r there exists

a non-crossing (Tr,k ∪ TF)-flow in Ring(r, k,Hvcg
S).

Proof. The construction is depicted in Figure 21. We begin by describing which vertices are being
visited by each walk and later we check that the edge capacities are sufficient to accommodate all
the walks.

First, consider i ∈ [k] and ⊙ ∈ {+,−}. Let P be a path that traverses the ladder L⊙i in such a
way that the face fj is to the right of P exactly when bj = 1. Each walk from PA⊙

i traverses L⊙i
through the same vertices as P . Next, every walk in the family PB

i is of the form (ĥ+i , h
+
i , h

−
i , ĥ

−
i).

Now we describe the families PC
i,j , PD

i,j . First, suppose that i ̸∈ F . Whenever bj = 0 all the

walks from PC
i,j go through an edge h+i h

−
i and otherwise they go through h+i+1h

−
i+1 (counting modulo

k). We arrange them from left to right in such a way that the families PC
i,j appear in the order of

increasing j (see Figure 21). For each j ∈ [r] there is a common internal face of L−i incident to
L−i [xj] (the endpoint for PC

i,j) and L−i [yj] (the endpoint for PD
i,j). When constructing the walks in

a top-bottom fashion, one can imagine that the walks from PD
i,j replace the ones from PC

i,j in the

same position among the other walks. The walks from the families PD
i,j with bj = 0 reach the vertex

Hi[w0] in a monotone order (with respect to j). Similarly, the walks from PD
i,j with bj = 1 reach

the vertex Hi[w1], however this time we arrange them from left to right in the order of decreasing j.
It remains to connect Hi[zj] to Hi[w0] (when bj = 0) or to Hi[w1] (when bj = 1) in a non-crossing
way. Since we do not need to accommodate any additional Hi[w0]Hi[w1]-walks, the value of d in
Definition 5.5 is 0 and the desired non-crossing flow exists. The condition (2c) in the definition
ensures that the order of walks entering w0 (resp. w1) in Hi matches the order of walks outside Hi.

When i ∈ F we begin from constructing a non-crossing Tb,1-flow in Hi: we request 2r walks
from Hi[zj] to Hi[w0] (when bj = 0) or to Hi[w1] (when bj = 1) and a single Hi[w0]Hi[w1]-walk.
Because i ∈ F ⊆ S(b) we have b ∈ ZSi . By the definition of a (r, γ0, ZSi)-Vector Containment Gadget,
there exists a non-crossing Tb,1-flow in Hi. We construct the remainders of walks from PD

i,j , as well

as walks from PC
i,j , similarly as before. The only difference is that we place an Hi[w0]si-walk W 0

i in

between the left-side walks and an Hi[w1]ti-walk W 1
i in between the right-side walks, creating an

siti-walk as a result. We keep the same relative position of W 0
i (resp. W 1

i) among the families PC
i,j ,

PD
i,j as the position on which it leaves the subgraph Hi (see Figure 21).

56

PA+
i

PA−
i

PA+
i

PA+
i

PB
i PC

i,1

PC
i,3

PC
i,2

PD
i,1

PD
i,3

PD
i,2

PB
i+1

si ti

Figure 21: Two examples of solutions constructed in Lemma 5.29. The walks from families PA⊙
i and PB

i

are drawn in black and blue, respectively. The colors red, orange, and green represent walks from families
PC
i,j and PD

i,j (single color for each j ∈ {1, 2, 3}). In each solution, the choice of which colors go through the
left or right passage is fixed for all i ∈ [k] because otherwise some edge passing the middle belt (along the
blue walks from PB

i) would be overloaded. The (si, ti)-walk is drawn in cyan.

57

Finally, we check that we have a sufficient number of parallel edges. First consider the edges
h+i h

−
i : there are 23r+4 + 23r+1 + 2 copies of each. There are 23r+4 + 22r+1 walks in PB

i . Next, for
each j ∈ [r], exactly one of the families PC

i−1,j , PC
i,j go through h+i h

−
i . These sum up to

r∑
j=1

22r+j = 22r+1 · (2r − 1) = 23r+1 − 22r+1.

The only additional walks that might go through h+i h
−
i are W 1

i−1 and W 0
i . In total we obtain

(23r+4 + 22r+1) + (23r+1 − 22r+1) + 2 = 23r+4 + 23r+1 + 2

walks, as intended.
The number of walks passing between a vertex h⊙i and any ladder is at most

∑r
j=1 22r+j + 1

(the additive 1 depends on whether i ∈ F) which is bounded by 23r+1, the capacity of this passage.
The number of walks going from Hi[w0] to L−[v1,1] (resp. from Hi[w1] to L−[v1,3]) is at most
r2r + 1 ≤ 22r. Within each ladder, every pair of adjacent vertices of the form vx,y is connected via
23r+5 parallel edges, which upper bounds the total number of walks in PA⊙

i , PC
i,j , PD

i,j , together

with W 0
i ,W

1
i . This concludes the proof.

We have thus established the first implication in the proof of correctness. Next, we show that
any non-crossing Tr,k-flow must obey certain properties. They will allow us to prove the second
implication: when adding requests encoding a set F ⊆ [k] results in a satisfiable instance, then F
must be a subset of some S(b).

Lemma 5.30. Consider r, k ∈ N and S : {0, 1}r → 2[k]. Let H = H1, . . . ,Hk be arbitrary and P be
a non-crossing Tr,k-flow in Ring(r, k,H). Then the following hold.

1. Let i ∈ [k], ⊙ ∈ {+,−}, and W be an (h⊙i , h
⊙
i+1)-walk internally contained in L⊙i . Then W

cannot be non-crossing with PA⊙
i .

2. For each i ∈ [k] the family PB
i contains a walk on vertices {ĥ+i , h

+
i , h

−
i , ĥ

−
i }. Moreover, every

walk from PB
i goes through an edge h+i h

−
i .

3. There exists a vector b ∈ {0, 1}r such that for each i ∈ [k], j ∈ [r], every walk P ∈ PD
i,j

contains an (Hi[w0], Hi[zj])-walk in Hi when bj = 0, or an (Hi[w1], Hi[zj])-walk in Hi when
bj = 1.

Proof. Within this proof, whenever we perform addition +1 or subtraction -1 from i ∈ [k], we do it
modulo k, that is, we adopt the convention that k + 1 = 1 and 1 − 1 = k.

Proof of (1). First we argue that there exists a walk Q ∈ PA⊙
i contained entirely within L⊙i . To

see this, we count the total number of edges leaving L⊙i ; there are at most 2 · 23r+1 + 2 · 22r of
them, which is less than |PA⊙

i | = 23r+4. Therefore, at least one walk from PA⊙
i never leaves the

subgraph L⊙i .
Now suppose that W,Q are edge-disjoint and non-crossing; then W must go through either

L+
i [u0] or L+

i [u1]. But the number of edges incident to each of these vertices equals the number of
walks in PA+

i . Therefore W cannot be edge-disjoint with every walk in PA+
i ; a contradiction.

■

58

Proof of (2). As before, we count the total number of edges leaving the subgraph induced by
{ĥ+i , h

+
i , h

−
i , ĥ

−
i } to be 4 · 23r+1 = 23r+3. Since this number is less than the size of the family PB

i ,

at least one walk from PB
i does not leave the vertex set {ĥ+i , h

+
i , h

−
i , ĥ

−
i }.

Suppose now that P ∈ PB
i does not go through any edge h+i h

−
i . Then P goes through the vertex

h+i+1 or h+i−1. Assume w.l.o.g. the first scenario, so P needs to traverse L+
i . Then P contains a

subwalk that meets the specification of Part (1) of the lemma. This contradicts the assumption
that P is a non-crossing flow. ■

We need two intermediate observations to reach the last claim of the lemma.

Claim 5.31. For each i ∈ [k] there exists a vector bi ∈ {0, 1}r such that when bi
j = 0 then all the

walks from PC
i,j go through an edge h+i h

−
i and when bi

j = 1 then all the walks from PC
i,j go through

an edge h+i+1h
−
i+1.

Proof. First we argue that for every j ∈ [r] each walk from P ∈ PC
i,j goes either through h+i h

−
i or

h+i+1h
−
i+1. The edges ĥ+i h

+
i are saturated by the walks from PB

i , so P cannot visit the vertex ĥ+i .

By Part (2), there is a walk W ∈ PB
i on vertex set {ĥ+i , h

+
i , h

−
i , ĥ

−
i }. Because P and W do not

cross, P is blocked from the left by the path (ĥ+i , h
+
i , h

−
i , ĥ

−
i). Similarly, P is blocked from the right

by the path (ĥ+i+1, h
+
i+1, h

−
i+1, ĥ

−
i+1). Therefore P must proceed alongside one of these paths.

Suppose now that for some j ∈ [r] the family PC
i,j contains a walk W0 that does not go through

any edge h+i+1h
−
i+1 and a walk W1 that does not go through any edge h+i h

−
i . By Definition 5.2 of a

non-crossing flow, the concatenation W0 +W1 does not cross any walk from PA+
i . But then W0 +W1

contains a subwalk that meets the specification of Part (1). This contradicts the assumption that P
is a non-crossing flow. Therefore for each j ∈ [r] the choice whether to go via the left passage or the
right one is fixed.

■

Let us keep the variable bi to indicate the vector defined in Claim 5.31.

Claim 5.32. There exists a single vector b ∈ {0, 1}r so that bi = b for all i ∈ [k].

Proof. We define τ(b1b2 . . . br) =
∑r

h=1 bh · 2h−1. Suppose that the claim does not hold. Because we
work on a ring structure, there exists i ∈ [k] for which τ(bi) < τ(bi+1). By Claim 5.31 the number
of walks from PC

i,1 ∪ PC
i,2 ∪ . . .PC

i,r that go through an edge h+i+1h
−
i+1 equals 22r+1 · τ(bi). On the

other hand, the number of walks from PC
i+1,1 ∪ PC

i+1,2 ∪ . . .PC
i+1,r that go through an edge h+i+1h

−
i+1

equals 22r+1 · (2r − 1 − τ(bi+1)). Since τ(bi) < τ(bi+1), this quantity is at least 22r+1 · (2r − τ(bi)).
In total, we obtain at least 23r+1 walks that go through h+i+1h

−
i+1. Due to Part (2) of the lemma,

all 23r+4 + 22r+1 walks from PB
i+1 also go through h+i+1h

−
i+1. But there are only 23r+4 + 23r+1 + 2

parallel edges h+i+1h
−
i+1, which are too few to accommodate all 23r+4 + 23r+1 + 22r+1 walks above,

and so we arrive at a contradiction. ■

Proof of (3). Let b ∈ {0, 1}r be the vector from Claim 5.32. Consider some i ∈ [k] and j ∈ [r].
When bj = 0 then any walk from PC

i,j must enter L−i via L−i [vr+1,1], that is, the upper left

corner, due to Claim 5.31. Since |PC
i,j | > 22r, there is at least one walk in PC

i,j does not use any edge

L−i [v1,1]Hi[w0] (there are only 22r such parallel edges). This walk includes an (h−i , L
−
i [xj])-walk

internally contained in L−i . Note that both the vertices L−i [xj], L
−
i [yj] lie on the face fj of L−i and

59

the number of edges incident to each of them equals the number of walks in PC
i,j , PD

i,j , respectively.

Therefore no walk from PA−
i can visit L−i [xj] nor L−i [yj].

Consequently, when bj = 0 then each walk W ∈ PD
i,j must also stay “on the left” of any walk

from PA−
i . The walk W cannot pass through L+

i or cross the path (ĥ+i , h
+
i , h

−
i , ĥ

−
i) by the same

argument as in Claim 5.31. Therefore, the only possibility for W to reach Hi[zj] is to enter Hi

through Hi[w0] and utilize some (Hi[w0], Hi[zj])-walk in Hi.
The argument for the case bj = 1 is analogous. ■

This concludes the proof of Lemma 5.30.

Having imposed a structure of a non-crossing Tr,k-flow, we can finish the correctness proof.

Lemma 5.33. Consider r, k ∈ N and S : {0, 1}r → 2[k]. Assume that the sequence of multigraphs
Hvcg
S exists. For F ⊆ [k] let TF = {(sj , tj , 1) | j ∈ F}. Suppose that there exists a non-crossing

(Tr,k ∪ TF)-flow in Ring(r, k,Hvcg
S). Then there exists b ∈ {0, 1}r for which F ⊆ S(b).

Proof. Let P be a Tr,k-flow and PF be a TF -flow so that P ∪ PF is non-crossing in Ring(r, k,Hvcg
S).

We apply Lemma 5.30 to P; let b ∈ {0, 1}r be the vector given by Part (3) of the lemma. Fix
i ∈ F . We obtain that when bj = 0 then each walk P ∈ PD

i,j ⊆ P contains an (Hi[w0], Hi[zj])-

walk within Hi, and when bj = 1 each walk P ∈ PD
i,j contains an (Hi[w1], Hi[zj])-walk within Hi.

Therefore, the subwalks of PD
i,j within Hi satisfy request (Hi[w0], Hi[zj], 2

r) when bj = 0 or request
(Hi[w1], Hi[zj], 2

r) when bj = 1.
Now consider the (si, ti)-walk Pi ∈ PF . By Lemma 5.30(2), the walk Pi can cross neither the

path (ĥ+i , h
+
i , h

−
i , ĥ

−
i) nor the path (ĥ+i+1, h

+
i+1, h

−
i+1, ĥ

−
i+1). Next, due to Lemma 5.30(1), the walk

Pi cannot contain any subwalk that traverses L+
i nor L−i from left to right. Hence Pi must go

through the following vertices:

L+
i [vr+1,1], L

+
i [v1,1], L

−
i [vr+1,1], L

−
i [v1,1], Hi[w0], Hi[w1], L

−
i [v1,3], L

−
i [vr+1,3], L

+
i [v1,3], L

+
i [vr+1,3].

Consequently, Pi contains an (Hi[w0], Hi[w1])-walk contained in Hi. Because Hi is an (r, γ0, ZSi)-
Vector Containment Gadget and γ0(b) = 0, this implies b ∈ ZSi (Definition 5.5, (2b) ⇒ (2a)).

The argument above works for every i ∈ [k], and so the definition of ZSi implies that i ∈ S(b)
whenever i ∈ F .

Lemmas 5.29 and 5.33 imply that if the (r, γ0, ZSi)-Vector Containment Gadgets existed, then
indeed (Ring(r, k,Hvcg

S), Tr,k) would form an (r, k,S)-Subset Gadget.

5.3.2 Dynamic flow generators

We will now get rid of the unrealistic assumption that an (r, γ0, ZSi)-Vector Containment Gadget
exists. The construction from the previous section could be easily extended to a setting where the
function γ is constant for fixed r, i.e., γr(b) = f(r) for some function f . One could then simply
insert additional requests of the form (si, ti, f(r)) to generate this many additional units of flow to
be pushed through each vector-containment gadget. The real issue is that Proposition 5.26 provides
us with a gadget governed by the following function

γ̂r(b1b2 . . . br) = r · 2r + 1 +
∑

1≤p<q≤r
1[bp ̸=bq] · 2r−q+p−1.

60

This means that the amount of additional flow passing through the vector-containment gadget
must depend on the pattern encoded by the bit vector b = b1b2 . . . br. We will take advantage of the
special form of the function γ̂r to extend the previous construction with “dynamic flow generators”:
new requests that could be satisfied either locally, within their ladder, or via walks passing through
Hi. We are going to insert

(
r
2

)
new blocks between each pair of blocks in the ring structure. Using

the pattern propagation mechanism, we will guarantee that the new block inserted after the i-th
one, labeled with a triple (i, p, q), generates 2r−q+p−1 additional units of flow exactly when the p-th
bit and the q-th bit in the pattern differ, matching the formula for γ̂r.

The extended ring. Similarly as before, for S : {0, 1}r → 2[k] and i ∈ [k] we define ZSi ⊆ {0, 1}r as
the set of vectors b for which i ∈ S(b). For i ∈ [k] let Hi be the (r, γ̂r, Z

S
i)-Vector Containment Gadget

provided by Proposition 5.26.
We construct the graph ExRing(r, k,S) by extending the building blocks of Ring(r, k,H) from

the previous construction (see Figure 22). Since the family H1, . . . ,Hk is now fixed for given S, we
directly pass S as a parameter of the construction. We reuse the notion of r-ladder from Section 5.3.1.

Let Γr be the set of pairs (a, b) ∈ [r]2 with 1 ≤ a < b ≤ r, plus one special element ⊥. We
have |Γr| =

(
r
2

)
+ 1. We define an ordering on Γr so that ⊥ is the smallest element and the pairs

are ordered lexicographically. For i ∈ [k] and q ∈ Γr we start constructing the plane multigraph
Ri,q from two copies of an r-ladder, L+

i,q, L
−
i,q. For ⊙ ∈ {+,−} we duplicate the edges incident to

L⊙i,q[u0], L
⊙
i,q[u1] times 23r+4. For j ∈ [r] we duplicate the edge incident to L⊙i,q[xj] times 22r+j . We

duplicate the edge incident to L−i,⊥[yj] (only for q = ⊥) times 2r, for all j ∈ [r]. When q = (a, b) for

some 1 ≤ a < b ≤ r, we duplicate the edges incident to L−i,q[ya], L−i,q[yb] times 2r−b+a−1.

Next, for each i ∈ [k] and q ∈ Γr we create four vertices: h+i,q, ĥ
+
i,q, h

−
i,q, ĥ

−
i,q. For ⊙ ∈ {+,−} we

insert 23r+4 + 22r parallel edges h⊙i,qĥ
⊙
i,q and 23r+4 + 23r+1 + 22r parallel edges h+i h

−
i . Note that this

is different from the previous construction where the third summand was just 2. Next, we put 23r+1

parallel edges between h+i,q and L+
i,q[v1,1] (the bottom-left corner vertex of the upper ladder), and

23r+1 parallel edges between h−i,q and L−i,q[vr+1,1] (the upper-left corner vertex of the lower ladder).
The arrangement of the vertices on the plane is presented in Figure 22.

We connect Hi[w0] (resp. Hi[w1]) to L−i,⊥[v1,1] (resp. L−i,⊥[v1,3]) (the bottom corners of the lower

ladder) via 22r parallel edges. We create vertices si, ti and connect each of them with r · 2r + 2
parallel edges to L+

i,⊥[vr+1,1] or L+
i,⊥[vr+1,3], respectively. These steps are omitted for q ̸= ⊥.

Analogously as before, we arrange the multigraphs Ri,q into a ring. We consider the lexicographic
order on the set [k] × Γr. For each i ∈ [k] and q ∈ Γr let (i→, q→) denote the successor of (i, q) in
this order. When (i, q) is the last element in [k] × Γr, then (i→, q→) becomes the first element, i.e.,
(1,⊥). We insert 23r+1 parallel edges between L+

i,q[v1,3] and h+i→,q→ , as well as between L−i,q[vr+1,3]

and h−i→,q→ . The constructed ring encloses a bounded region incident to the minus-sides of the
multigraphs Ri,q.

The last step is novel compared to the previous construction. For each i ∈ [k] and q ∈ Γr, q ̸= ⊥,
we create vertices g+i,q, g

−
i,q, connected via r · 2r parallel edges to h+i→,q→ or h−i,q, respectively. The new

edges incident to h+i→,q→ (resp. h−i,q) are located between the edges to L+
i,q[v1,3] and ĥ+i→,q→ (resp.

between ĥ−i,q and L−i,q[v1,1]).

For ⊙ ∈ {+,−} we connect g⊙i,q via r · 2r parallel edges to its predecessor in the ordering given

by Γr, unless q = (1, 2) (i.e., q is first in the ordering). The vertex g+i,(1,2) gets connected to h+i,(1,2)

61

22r 22r

23r+1

23r+1 23r+1

23r+1

23r+4

22r+1

22r+2

22r+3

23r+4 + 22r+1

L+
i,⊥[u1]

L+
i,⊥[u0]

L−i,⊥[u1]

L−i,⊥[u0]

si ti

L−i,⊥[x1] L−i,⊥[y1]

ĥ+
i,⊥

ĥ−i,⊥

h+
i,⊥

h−i,⊥

ĥ−i,(1,2)

h−i,(1,2)

Hi[w0] Hi[w1]

Hi[z1]

Hi[z2]

Hi[z3]

L−i,(1,2)[y2]

L−i,(1,2)[y1]

L+
i,(1,2)[u1]

L+
i,(1,2)[u0]

si+1 ti+1

g+i,(1,2) g+i,(1,3) g+i,(2,3)

g−i,(1,2) g−i,(1,3) g−i,(2,3)

h+
i,(1,2)

ĥ+
i,(1,2)

r · 2r

C

C

B

B

F F

A

A

E

E

C

C

C

C

D

D

D

D

D

E

E

E

E

L−i,(1,3)[y3]

L−i,(1,3)[y1]

L−i,(2,3)[y3]

L−i,(2,3)[y2]

r · 2r r · 2r r · 2r

r · 2r r · 2r r · 2r r · 2r

r · 2r r · 2r

r · 2rr · 2r

r · 2r

23r+4 + 23r+1 + 22r

2r

2r

2r

20

21

21

r · 2r + 1

D

23r+5

Figure 22: A fragment of the graph ExRing(r, k,S) for r = 3, comprising subgraphs Ri,⊥, Ri,(1,2), Ri,(1,3),

Ri,(2,3), Ri+1,⊥. The edges incident to vertices of the form g⊙i,q. which are not present in the previous
construction, are dotted. The gray ovals in the bottom represent the subgraphs Hi, Hi+1 (the vector-
containment gadgets). The vertices’ names and edges’ capacities (i.e., numbers of parallel edges) are provided.

The pairs of vertices that need to be connected in a T̂r,k-flow share common colors and shapes. The colorful
letters indicate the requests’ types. The number of walks requested between each terminal pair is given on a
colorful background. In each ladder of the form L−

i,(a,b) the faces fa, fb are highlighted. Note that the lower

part of the figure becomes the interior of the ring structure, so the vertices si, ti end up on the outer face.

62

via r · 2r parallel edges while g−i,(1,2) gets connected to h−i,⊥ via r · 2r parallel edges, in an analogous
way as before.

The requests. We define a family T̂r,k of requests over ExRing(r, k,S). The first four groups are
analogous to those from Section 5.3.1.

A. (L[u0], L[u1], 23r+4) for each ladder L of the form L+
i,q, L

−
i,q.

B. (ĥ+i,q, ĥ
−
i,q, 23r+4 + 22r) for each i ∈ [k], q ∈ Γr.

C. (L+
i,q[xj], L

−
i,q[xj], 22r+j) for each i ∈ [k], q ∈ Γr, j ∈ [r].

D. (L−i,⊥[yj], Hi[zj], 2r) for each i ∈ [k], j ∈ [r].

E. (L−i,(a,b)[ya], L−i,(a,b)[yb], 2r−b+a−1) for each i ∈ [k], 1 ≤ a < b ≤ r.

F. (si, ti, r · 2r + 1) for each i ∈ [k].

For a T̂r,k-flow P we use variables PA+
i,q , PA−

i,q , PB
i,q, PC

i,q,j , PD
i,j , PE

i,a,b, PF
i to refer to subfamilies

of P satisfying the respective types of requests.
We make note of an observation analogous to the one (5.28) from the previous construction.

Observation 5.34. For every vertex v of the form ĥ⊙i,q, L⊙i,q[uj], L⊙i,q[xj], L−i,⊥[yj], L−i,(a,b)[ya],

L−i,(a,b)[yb], the number of edges incident to v equals the number of walks in a T̂r,k-flow that have an
endpoint at v.

In order to keep the calculations as clean as possible, we will neglect small values of r (for which
we will be able to solve the instance we reduce from in polynomial time) and work in the setting
where the following convenient inequalities hold. They compare the maximal amount of flow that
needs to go through particular edges with these edges’ capacities.

Lemma 5.35. For r ≥ 6, k ≥ 1, and a T̂r,k-flow P, the following bounds hold for each fixed i ∈ [k],
q ∈ Γr, and ⊙ ∈ {+,−}, with summation over all q′ ∈ Γr and j ∈ [r].

1.
∑

|PE
i,q′ | ≤ r · 2r

2. |PB
i,q| +

∑
|PC

i,q,j | + 4 · (
∑

|PE
i,q′ | + |PF

i | + 1) ≤ 23r+4 + 23r+1 + 22r

3.
∑

|PD
i,j | +

∑
|PE

i,q′ | + |PF
i | + 1 ≤ 22r

4. |PA⊙
i,q | +

∑
|PC

i,q,j | +
∑

|PD
i,j | + 4 · (

∑
|PE

i,q′ | + |PF
i | + 1) ≤ 23r+5

5.
∑

|PC
i,q,j | + 2 · (

∑
|PE

i,q′ | + |PF
i | + 1) ≤ 23r+1

Proof. (Part 1.) We estimate

∑
1≤a<b≤r

|PE
i,(a,b)| =

∑
1≤a<b≤r

2r−b+a−1 =
r∑

b=1

(
2r−b ·

b−1∑
a=1

2a−1

)
≤

r∑
b=1

2r−b · 2b = r · 2r.

63

(Part 2.) Using the bound above, we obtain∑
1≤a<b≤r

|PE
i,(a,b)| + |PF

i | + 1 ≤ r · 2r+1 + 2.

Starting from r = 6 the right-hand side becomes bounded by 22r−2. By multiplying this by 4 we
obtain 22r. It remains to inspect the remaining summands.

|PB
i,q|+

r∑
j=1

|PC
i,q,j | = (23r+4 + 22r+1) +

r∑
j=1

22r+j = (23r+4 + 22r+1) + (23r+1− 22r+1) = 23r+4 + 23r+1.

(Part 3.) We have already established that
∑

1≤a<b≤r |PE
i,(a,b)| + |PF

i | + 1 ≤ r · 2r+1 + 2 ≤ 22r−2.

From the second inequality we can derive
∑r

j=1 |PD
i,j | = r · 2r ≤ 22r−2. Summing these two terms

leads to the claimed bound.
(Part 4.) We have |PA⊙

i,q | = 23r+4 and
∑r

j=1 |PC
i,q,j | ≤ 23r+1. From the previous calculations we

get
∑r

j=1 |PD
i,j | ≤ 22r−2 and the last term is bounded by 22r. In total, these numbers clearly cannot

exceed 23r+5.
(Part 5.) We have

∑r
j=1 |PC

i,q,j | = 23r+1 − 22r+1 while the second term can be at most 22r. The
bound follows.

Recall that (i→, q→) stands for the successor of (i, q) in the cyclic ordering of [k] × Γr; we will
also denote by (i←, q←) the predecessor of (i, q). We are going to show that (ExRing(r, k,S), T̂r,k)
forms a truly working (r, k,S)-Subset Gadget. We move on to the first implication in the proof of
correctness. The sketch of the construction is provided in Figures 23, 24, and 6 (on page 16) but we
need to check (in a rather tedious way) that the edge capacities suffice to accommodate the flow.

Lemma 5.36. Consider r ≥ 6, k ≥ 1, and S : {0, 1}r → 2[k]. For F ⊆ [k] let TF = {(sj , tj , 1) |
j ∈ F}. If F ⊆ S(b) for some b ∈ {0, 1}r, then there exists a non-crossing (T̂r,k ∪ TF)-flow in
ExRing(r, k,S).

Proof. We deal with the requests of types A,B,C,D similarly as in Lemma 5.29. Again, we begin
with describing which vertices are being visited by each walk and later we check that the edge
capacities are large enough to receive all the walks.

For each i ∈ [k], q ∈ Γr, and ⊙ ∈ {+,−}, we consider a path P that traverses the ladder L⊙i,q in

such a way that the face fj is to the right of P exactly when bj = 1. Each walk from PA⊙
i,q traverses

L⊙i,q through the same vertices as P . Every walk in the family PB
i,q is of the form (ĥ+i,q, h

+
i,q, h

−
i,q, ĥ

−
i,q).

Now consider i ∈ [k], q ∈ Γr, and j ∈ [r]. When bj = 0 then all the walks from the family
PC
i,q,j go through an edge h+i,qh

−
i,q and otherwise they go through h+i→,q→h

−
i→,q→ . When bj = 0

then all the walks from the family PD
i,j go through an edge L−i,⊥[v1,1]Hi[w0] and otherwise through

L−i,⊥[v1,3]Hi[w1].

Let di = γr(b) + 1[i∈S(b)]. Note that the condition i ∈ S(b) is equivalent to b ∈ ZSi . We define
family Ti following Definition 5.5: for each j ∈ [r] with bj = 0 we add request (Hi[w0], Hi[zj], 2

r),
for each j ∈ [r] with bj = 1 we add request (Hi[w1], Hi[zj], 2

r), and finally we add request
(Hi[w0], Hi[w1], di). From the definition of an (r, γr, Z

S
i)-Vector Containment Gadget, we obtain that

there exists a non-crossing Ti-flow PH
i in Hi. Moreover, in this flow the vertices Hi[w0], Hi[w1] see

the vertices Hi[zj] in the order consistent with the ordering of families PD
i,j on the edges leaving

64

Figure 23: An illustration for the proof of Lemma 5.36. For a less detailed version with only walks of types
(E, F) see Figure 6. Due to the abundance of different walks in the flow, the walks are only roughly sketched
with the colorful curves. Their colors represent the types of requests: black (A), blue (B), green (C, D),
orange (C, D), red (C, D), and purple (E, F). For a = 1, b = 2 the request of type (E) cannot be satisfied
within the ladder L−

1,2 because the vertices L−
1,2[y1], L−

1,2[y2] lie on different sides of the black curve (the flow
for a request of type (A)). The same applies to a = 2, b = 3. The respective flow must use the lower dotted
edges to reach the subgraph Ri,⊥, traverse the subgraph Hi, and proceed through the upper dotted edges.
The general strategy of bundling the walks on parallel edges stays the same as in Figure 21, while the detailed
view on how the purple walks are routed is provided in Figure 24.

65

Hi (recall Definition 5.4). However, we have no control how the (Hi[w0], Hi[w1])-walks in PH
i are

intertwined with the other walks at Hi[w0] and at Hi[w1]. Therefore, we will adjust the routing of
the remaining walks to fit between the families PD

i,j in the same fashion.
We move on to the requests of type (E). Consider i ∈ [k] and 1 ≤ a < b ≤ r. If ba = bb then

the faces fa, fb of the ladder L−i,(a,b) are on the same side of the walks from family PA−
i,(a,b). The

walks in family PE
i,(a,b) must connect L−i,(a,b)[ya] to L−i,(a,b)[yb]. The only issue is to avoid crossing the

walks from families PC
i,(a,b),j , j ∈ [r], which also need to reach vertices within L−i,(a,b). Observe that

both vertices L−i,(a,b)[ya], L−i,(a,b)[yb] can be reached from L−i,(a,b)[v1,1] (when ba = bb = 0) or from

L−i,(a,b)[v1,3] (when ba = bb = 1) without crossing the other walks. Hence every walk in PE
i,(a,b) can

be obtained via a concatenation of such two walks.
Suppose now that ba ̸= bb and assume w.l.o.g. that ba = 0 and bb = 1. First, one can reach

L−i,(a,b)[vr+1,1] from L−i,(a,b)[ya] without crossing other walks, and then one can move to h−i,(a,b). Due

to ordering of edges incident to h−i,(a,b), the walks can proceed “down” to g−i,(a,b) and then follow the

“lower” path from g−i,(a,b) to h+i,⊥ (see Figure 23). Looking from the other end, starting at L−i,(a,b)[yb],

one first reaches L−i,(a,b)[vr+1,3], then h−i→,q→ , h+i→,q→ , g+i,(a,b), and follows the “upper” path towards

h+i,(1,2) (the vertex just to the right of the subgraph Ri,⊥).

So far we have explained how to reach the left side the subgraph Ri,⊥ from each L−i,(a,b)[ya] with

ba = 0 and how to reach the right side Ri,⊥ from each L−i,(a,b)[yb] with bb = 1. The total amount of

flow from families PE
i,(a,b) that need to traverse Ri,⊥ equals∑

1≤a<b≤r
1[ba ̸=bb] · 2r−b+a−1.

We also need to take care of the request (si, ti, r · 2r + 1) and, when i ∈ S(b), the request
(si, ti, 1) from TF . In total, we need to push exactly di units of flow through Ri,⊥, from left to
right. The flow PH

i in Hi already includes this many (Hi[w0], Hi[w1])-walks. It remains to group
the walks coming from the left side (that is, from si and h+i,⊥) into bundles, reflecting the bundles of

(Hi[w0], Hi[w1])-walks in PH
i between the (Hi[w0], Hi[zj])-walks at vertex Hi[w0], and accommodate

these bundles respectively between the families PC
i,⊥,j . Similarly, we group the walks coming from

the right side (that is, from ti and h+i,(1,2)) accordingly to the bundles of (Hi[w0], Hi[w1])-walks in

PH
i between the (Hi[w1], Hi[zj])-walks at vertex Hi[w1]. The order of walks in these two families is

symmetric, so one can match the requested endpoints (see Figure 24).
Finally, we check that the edge capacities are sufficient to accommodate all the walks. The edges

incident to vertices of the form g⊙i,q have capacity r · 2r. In an extreme case, such an edge might be

utilized by all families PE
i,(a,b) for 1 ≤ a < b ≤ r and fixed i. The total number of walks in these

families is bounded by r · 2r due to Lemma 5.35(1).
Now consider the edges h+i,qh

−
i,q: there are 23r+4 + 23r+1 + 22r copies of each. In our construction

each walk from family PB
i,q uses one of these edges. For each j ∈ [r], exactly one of the families

PC
i←,q←,j , PC

i,q,j goes through h+i h
−
i . This gives a number of walks equal to

∑r
j=1 |PC

i,q,j |. We might
also need to accommodate the walks of types (E), (F), and the (si, ti)-walk requested by TF . Each
of these walks might go at most twice through h+i,qh

−
i,q. For q = ⊥ there might be also walks indexed

with (i←, q←) that traverse h+i,qh
−
i,q to the left of family PB

i,q. We upper bound the number of all

66

g+i,(1,2) g+i,(1,3) g+i,(1,4) g+i,(2,3) g+i,(2,4) g+i,(3,4)

g−i,(1,2) g−i,(1,3) g−i,(1,4) g−i,(2,3) g−i,(2,4) g−i,(3,4)

z1

z2

z3

z4

Hi

y3 x3

y1 x1

h+
i,⊥ h−i,⊥

h+
i,(1,2)

si ti

x4 y4

x2 y2

Figure 24: A topological view on the construction from Lemma 5.36 for r = 4 and b = (1010), illustrating
walks traversing the vector-containment gadget Hi. The length of the red dashed curve, measuring how many
(Hi[w0], Hi[w1])-walks can pass through the gadget, is governed by the choice of the vector b. The walks of
types (C) and (D) are drawn in black, with a single curve representing each family PC

i,⊥,j or PD
i,j . The labels

xj , yj mark vertices L−
i,⊥[xj], L

−
i,⊥[yj]. For (a, b) ∈ {(1, 3), (2, 4)} the vertices L−

i,(a,b)[ya], L−
i,(a,b)[yb] lie on the

same side of the pattern drawn by walks of type (A), so they can be connected within the ladder L−
i,(a,b). For

the remaining pairs (a, b), the flow PE
i,(a,b) must go through the subgraph Hi. Each such family, as well as

the family of (si, ti)-walks, is represented by a single curve, except for PE
i,(3,4). In that last case, two walks

are drawn to demonstrate that even walks satisfying a single request may exhibit different behavior when
traversing Hi (they pass vertex Hi[z4] from different sides). The coloring of the curves illustrates that all the
requests can be satisfied in a non-crossing way.

these walks by multiplying
∑

1≤a<b≤r |PE
i,(a,b)| + |PF

i | + 1 by 4. In total we get a quantity bounded

23r+4 + 23r+1 + 22r, due to Lemma 5.35(2).
The edges of the form Hi[w0]L−i,⊥[v1,1] or Hi[w1]L−i,⊥[v1,3] have capacity 22r. Such an edge might

be used by all families PD
i,j , PE

i,(a,b), PF
i , for fixed i, and the (si, ti)-walk requested in TF . By

Lemma 5.35(3), the total number of these walks is at most 22r.
For each i ∈ [k], q ∈ Γr, and ⊙ ∈ {+,−}, the edges within the ladder L⊙i,q, which are not adjacent

to any terminal, might need to accommodate the all respective families of types (A), (C), (D), (E),
(F), and the (si, ti)-walk requested by TF . The walks of the last three types might traverse up to
four copies of a single edge: by going “up” and “down” on each of two sides of the ladder. We use
Lemma 5.35(4) to bound the total number of necessary parallel edges by 23r+5, that is, the number
of copies for each edge.

The last non-trivial case is the passage between a vertex of the form h⊙i,q and a ladder. The
edges therein are utilized by the walks of type (C) for a fixed pair (i, q) and possibly the walks of
types (E), (F) plus the (si, ti)-walk requested by TF . We multiply by 2 the total amount of flow
from the last three types to cover potential detours of walks. By Lemma 5.35(5), we need no more
than 23r+1 parallel edges, which is exactly the capacity.

This concludes the construction of a non-crossing (T̂r,k ∪ TF)-flow.

We move on to the second implication in the correctness proof. It will be convenient to formally
define a pattern of a walk Q ∈ PA⊙

i,q . We do not use the term “homotopy” in order to avoid confusion
with Definition 5.10.

67

Definition 5.37. Consider i ∈ [k], q ∈ Γr, and ⊙ ∈ {+,−}. Let Q be an (L⊙i,q[u0], L
⊙
i,q[u1])-walk

in ExRing(r, k,S) and b ∈ {0, 1}r. We say that Q has pattern (i, q,⊙,b) if Q is contained in the
subgraph L⊙i,q and for each j ∈ [r] there exists a walk Wj such that:

1. Wj starts at L⊙i,q[xj] and ends at h⊙i,q (when bj = 0) or h⊙i→,q→ (when bj = 1);

2. Wj is internally contained in L⊙i,q;

3. Wj and Q are non-crossing.

Intuitively, the face fj is to the left of Q when bj = 0 and to the right when bj = 1. The
next lemma plays the same role as Lemma 5.30 in Section 5.3.1. We prove that any non-crossing
T̂r,k-flow must enjoy essentially the same structure as the solution constructed in Lemma 5.36. The
difference with Lemma 5.30 is that now some walks of types (A), (B), (C) may potentially use the
new connections through the g-vertices. We argue that their numbers are large enough, compared to
those edges’ capacities, to ensure that the majority of walks exhibits the same behaviour as before.

Lemma 5.38. Consider r ≥ 6, k ≥ 1, and S : {0, 1}r → 2[k]. Let P be a non-crossing T̂r,k-flow in
ExRing(r, k,S). Then the following hold.

1. Let i ∈ [k], q ∈ Γr, ⊙ ∈ {+,−}, and W be an (h⊙i,q, h
⊙
i→,q→)-walk internally contained in L⊙i,q.

Then W crosses with PA⊙
i,q .

2. For each i ∈ [k], q ∈ Γr, the family PB
i,q contains a walk on vertices {ĥ+i,q, h

+
i,q, h

−
i,q, ĥ

−
i,q}.

Moreover, there are at least |PB
i,q| − r · 2r walks in PB

i,q that go through an edge h+i,qh
−
i,q.

3. There exists a vector b ∈ {0, 1}r such that for each i ∈ [k], q ∈ Γr, and ⊙ ∈ {+,−}, there is a
walk Q⊙i,q ∈ PA⊙

i,q with pattern (i, q,⊙,b).

Proof. The proof of Part (1) is analogous to the one of Lemma 5.30(1).

Proof of (2). We count the total number of edges leaving the subgraph induced by {ĥ+i,q, h
+
i,q, h

−
i,q, ĥ

−
i,q}

to be 4 · 23r+1 + 2r · 2r. For r ≥ 6 this is less than 23r+4 < |PB
i,q|. Hence there is at least one walk

from PB
i,q that does not leave the vertex set {ĥ+i,q, h

+
i,q, h

−
i,q, ĥ

−
i,q}.

Suppose now that P ∈ PB
i,q does no go through any edge h+i,qh

−
i,q nor h+i,qg

+
i,q. Then P needs to

traverse L+
i,q or L+

i←,q← . This means that P contains a subwalk that meets the specification of Part
(1) of the lemma. This contradicts the assumption that P is a non-crossing flow. Since the number
of edges h+i,qg

+
i,q is r · 2r, we obtain that at least |PB

i,q| − r · 2r walks in PB
i,q go through h+i,qh

−
i,q. ■

Similarly to the proof of Lemma 5.30, we first establish two intermediate claims. We say that
a walk W leaves a subgraph H through vertex v if exactly one of the endpoints of W belongs to
V (H) and v is the first vertex on W (counting from this endpoint) that does not belong to V (H).
Unlike Claim 5.31 in the previous section, we first only specify the vertex through which the walks
from PC

i,q,j leave L+
i,q, and then inspect the next edge on these walks in Claim 5.40.

Claim 5.39. For each i ∈ [k] and q ∈ Γr there exists a vector bi,q ∈ {0, 1}r such that when bi,q
j = 0

then all the walks from PC
i,q,j leave L+

i,q through vertex h+i,q, and when bi,q
j = 1 then all the walks

from PC
i,q,j leave L+

i,q through vertex h+i→,q→.

68

Proof. Suppose that there are walks W0,W1 ∈ PC
i,q,j so that W0 leaves L+

i,q through h+i,q and W1

leaves L+
i,q through h+i→,q→ . By Definition 5.2 of a non-crossing flow, the concatenation W0 +W1 does

not cross any walk from PA+
i . But then W0 +W1 contains a subwalk that meets the specification of

Part (1). This contradicts the assumption that P is a non-crossing flow. Therefore for each j ∈ [r]
the choice whether to leave L+

i,q through h+i,q or h+i→,q→ is fixed. ■

Claim 5.40. There exists a single vector b ∈ {0, 1}r so that bi,q = b for all i ∈ [k] and q ∈ Γr.

Proof. We define τ(b1b2 . . . br) =
∑r

h=1 bh · 2h−1. Suppose that the claim does not hold. Because we
work on a ring structure, there exist i ∈ [k], q ∈ Γr, for which τ(bi,q) < τ(bi→,q→). By Claim 5.39
the number of walks from PC

i,q,1 ∪PC
i,q,2 ∪ . . .PC

i,q,r that leave L+
i,q through h+i→,q→ equals 22r+1 · τ(bi).

On the other hand, the number of walks from PC
i→,q→,1 ∪ PC

i→,q→,2 ∪ . . .PC
i→,q→,r that leave L+

i→,q→

through h+i→,q→ equals 22r+1 · (2r − 1 − τ(bi→,q→)). Since τ(bi,q) < τ(bi→,q→), this quantity is at

least 22r+1 · (2r − τ(bi,q)). In total, we obtain at least 23r+1 walks from the two ladders that meet
at h+i→,q→ .

By Part (1), when a walk of type (C) leaves the ladder L+
i,q (resp. leaves L+

i→,q→) from the right

side (resp. the left side), it must at some point reach a neighbor of h+i→,q→ that does not belong to

V (L+
i,q) (resp. V (L+

i→,q→)). There are at most r · 2r walks that can use an edge h+i→,q→q
+
i,q and no

(C)-type walk can use an edge h+i→,q→ ĥ
+
i→,q→ because they are all used by walks from PB

i→,q→ . Also,

due to Part (2), at least 23r+4 + 22r+1 − r · 2r walks from PB
i→,q→ go through h+i→,q→h

−
i→,q→ . Since

the remaining walks of type (C) need to go through h+i→,q→h
−
i→,q→ as well, in total we have at least

23r+4 + 23r+1 + 22r+1− r · 2r+1 walks that need to go through this passage. On the other hand, there
are only 23r+4 + 23r+1 + 22r parallel edges h+i→,q→h

−
i→,q→ . Since for r ≥ 6 we have r · 2r+1 < 22r,

there are too few edges to accommodate all the walks above, and so we arrive at a contradiction. ■

Proof of (3). Let b be the vector from Claim 5.40. Fix i ∈ [k], q ∈ Γr, and ⊙ ∈ {+,−}. First we
argue that there exists a walk Q⊙i,q ∈ P⊙i,q entirely contained in L⊙i,q. This follows from counting the

edges leaving L⊙i,q: there are at most 2 · 23r+1 + 2 · 22r of them, which is less than |P⊙i,q|. To see that

Q+
i,q has pattern (i, q,+,b), fix j ∈ [r]. The existence of the walk Wj in Definition 5.37 follows from

Claim 5.39: it can be chosen as a subwalk of any walk from PC
i,q,j . The argument that Q−i,q has

pattern (i, q,−,b) is the same. ■

This concludes the proof of Lemma 5.38.

We can now take advantage of the structure imposed on a non-crossing T̂r,k-flow to analyze
which walks need to go through the subgraphs Hi. The following lemma is based on the analogous
observations as Lemma 5.33.

Lemma 5.41. Consider r ≥ 6, k ≥ 1, and S : {0, 1}r → 2[k]. For F ⊆ [k] let TF = {(sj , tj , 1) |
j ∈ F}. If there exists a non-crossing (T̂r,k ∪ TF)-flow in ExRing(r, k,S), then F ⊆ S(b) for some
b ∈ {0, 1}r.

Proof. Let P be a T̂r,k-flow and PF be a TF -flow so that P ∪ PF is non-crossing in ExRing(r, k,S).
We apply Lemma 5.38 to P; let b ∈ {0, 1}r be the vector given by Part (3) of the lemma. Fix
i ∈ [k] for the rest of the proof. For each q ∈ ΓR and ⊙ ∈ {+,−} we apply Lemma 5.38(1) to obtain

69

that no walk W that traverses the ladder L⊙i,q from left to right can be non-crossing with PA⊙
i,q . Let

j ∈ [r]. By the same concatenation argument as in Claim 5.39 we arrive at the following.

Observation 5.42. If there is walk W ′j, non-crossing with PA⊙
i,q , that starts at L⊙i,q[xj] and leaves

the ladder through vertex h⊙i,q, then bj = 0. Symmetrically, if W ′j leaves the ladder through vertex

h⊙i→,q→, then bj = 1.

When L−i,q[yj] occurs as a terminal in T̂r,k (that is, when (I) q = ⊥ or (II) q = (a, b) and j ∈ {a, b})

then the number of edges incident to L−i,q[xj] or L−i,q[yj] equals the number of walks in P ending at

this vertex. Therefore, no walk from PA−
i,q can visit L−i,q[xj] nor L−i,q[yj]. Since these two vertices

share a face, they are both to the left or both to the right of the walk QA−
i,q ∈ PA−

i,q with pattern

(i, q,−,b). This means that in these cases Observation 5.42 remains true if we can replace L−i,q[xj]

with L−i,q[yj].

By Lemma 5.38(2), each family PB
i,q contains a walk on vertices {ĥ+i,q, h

+
i,q, h

−
i,q, ĥ

−
i,q}. Because

the number of edges incident to ĥ+i,q or ĥ−i,q equals |PB
i,q|, no walk from P can cross the path

(ĥ+i,q, h
+
i,q, h

−
i,q, ĥ

−
i,q). Together with Observation 5.42, this rules out all the connections between the

two sides of a ladder other than the way through Hi.

Observation 5.43. For each q ∈ Γr and a, b ∈ [r] with ba ̸= bb, any (L−i,q[ya], L−i,q[yb])-walk W , that
is non-crossing with the walks in P of types (A) and (B), must contain an (Hi[w0], Hi[w1])-subwalk.

The sum of |PE
i,(a,b)| over (a, b) satisfying ba ̸= bb equals∑

1≤a<b≤r
1[ba ̸=bb] · 2r−b+a−1.

Next, each (si, ti)-walk in P ∪ PF must contain an (Hi[w0], Hi[w1])-subwalk as well. In total,
the number di of walks that traverse Hi from left to right equals γ̂r(b) + 1[i∈F]. Furthermore, the
only way for the walks of type (D) to reach the vertices Hi[zj] is to enter Hi from the same side of
the walk QA−

i,⊥ as L−i,⊥[yj] is located.

Observation 5.44. For each j ∈ [r], every walk P ∈ PD
i,j contains an (Hi,[w0], Hi[zj])-walk in Hi

when bj = 0, or an (Hi[w1], Hi[zj])-walk in Hi when bj = 1.

Therefore, the subwalks of PD
i,j within Hi satisfy request (Hi[w0], Hi[zj], 2

r) when bj = 0 or
request (Hi[w1], Hi[zj], 2

r) when bj = 1. Together with di units of the (Hi[w0], Hi[w1])-flow, these
match the flow requested in Definition 5.5. Since Hi is an (r, γ̂r, Z

S
i)-Vector Containment Gadget this

implies that b ∈ ZSi whenever i ∈ F . By the definition of ZSi , we obtain i ∈ F ⇒ i ∈ S(b). This
concludes the proof of the containment F ⊆ S(b).

We can finally summarize the entire construction of the subset gadget.

Proposition 5.45. There is a polynomial-time algorithm that, given r ≥ 6, k ≥ 1, and a function
S : {0, 1}r → 2[k], outputs an (r, k,S)-Subset Gadget (G, T) with |V (G)| + |E(G)| = k · 2O(r) and
|T | = O(k · r3). Moreover, for each request (ui, vi, di) ∈ T it holds that di ≤ O(23r).

70

s3t3

s1 t1 s2 t2

u1 u2

v2 v1

s1 t1 s` t` s1 t1 s2 t2 s3 t3

u

v

Figure 25: An illustration for Lemma 5.47. Top left: A 3-Existential Gadget (G3, T3) with T3 given as
{(u1, v1, 1), (u2, v2, 1)}. Top right: Constructing a non-crossing (T3 ∪ TF)-flow in G3 is possible whenever
F misses some element from {1, 2, 3}. Bottom: A construction of an (ℓ + 1)-Existential Gadget using an
ℓ-Existential Gadget and a 3-Existential Gadget. The black vertices become the new terminals.

Proof. For each i ∈ [k] we use Proposition 5.26 to construct an (r, γr, Z
S
i)-Vector Containment Gadget

of size 2O(r) in time polynomial in 2r, which is the input size. This allows us to construct the graph
ExRing(r, k,S). It is divided into k ·

((
r
2

)
+ 1
)

blocks, each equipped with O(r) requests from T̂r,k.

Due to Lemmas 5.36 and 5.41, the pair (ExRing(r, k,S), T̂r,k) forms an (r, k,S)-Subset Gadget.

5.4 From a set cover to a non-crossing flow

In this section, we finish the reduction from Set Cover to Non-crossing Multicommodity
Flow. We need two more simple gadgets, which are adaptations of the gadgets used in the
NP-hardness proof of Planar Disjoint Paths [64]. The first gadget encodes which of ℓ sets
should cover an element i ∈ [k].

Definition 5.46. For ℓ ∈ N, a pair (G, T) is an ℓ-Existential Gadget if the following conditions hold.

1. G is a plane graph with 2ℓ distinguished vertices s1, t1, s2, t2, . . . , sℓ, tℓ lying on the outer face
in this clockwise order.

2. T is a set of triples from V (G) × V (G) × {1}.

3. For F ⊆ [ℓ], let TF = {(si, ti, 1) | i ∈ F}. Then, there exists a non-crossing (T ∪ TF)-flow in
G if and only if |F | < ℓ.

When seeking a set cover of size ℓ, we make a single copy of an ℓ-Existential Gadget for each
i ∈ [k]. We will allow an index j ∈ [ℓ] to belong to F when the element i is not covered by the set
Sj in a solution S1, S2, . . . , Sℓ to Set Cover. Condition (3) ensures that one of the indices will be
missing in F , implying that i gets covered.

Lemma 5.47. For each ℓ ≥ 3 there exists an ℓ-Existential Gadget (Gℓ, Tℓ) with |V (Gℓ)| + |E(Gℓ)| +
|Tℓ| = O(ℓ). Furthermore, (Gℓ, Tℓ) can be constructed in time ℓO(1).

Proof. A construction of a 3-Existential Gadget (G3, T3) is given in Figure 25. We refer to this figure
in the arguments below. We define T3 as {(u1, v1, 1), (u2, v2, 1)}. We argue that (G3, T3) satisfies

71

condition (3) of Definition 5.46. If F = [3], then each orange edge must be used by an (si, ti)-walk
in any (T3 ∪ TF)-flow, as otherwise the walks in the flow would not be edge-disjoint. Let G′3 be
obtained from G3 by removing the orange edges. Then u1, u2, v1, v2 lie on the outer face of G′3 in
this order. Since the pairs (u1, v1) and (u2, v2) cross and each of these vertices has degree 2 in G′3,
no non-crossing T3-flow exists in G′3. Consequently, a non-crossing (T3 ∪ TF)-flow exists in G3. On
the other hand, whenever |F | < 3, then a non-crossing (T3 ∪ TF)-flow exists in G3: see the top right
of the figure.

Suppose now that an ℓ-Existential Gadget (Gℓ, Tℓ) with the claimed size exists. We show in-
ductively how to construct an (ℓ + 1)-Existential Gadget (Gℓ+1, Tℓ+1). We build Gℓ+1 from a dis-
joint union of Gℓ and G3, insert new vertices u, v on the outer face, and add edges uGℓ[sℓ],
uG3[t1], vGℓ[tℓ], vG3[s1] (see Figure 25, bottom). We define Tℓ+1 as a union of the requests
Tℓ in Gℓ and T3 in G3, together with request (u, v, 1). The distinguished vertices of Gℓ+1 are:
Gℓ[s1], Gℓ[t1], . . . , Gℓ[sℓ−1], Gℓ[tℓ−1], G3[s2], G3[t2], G3[s3], G3[t3]. There are (ℓ+ 1) pairs of them; let
T̂ denote a family of ℓ + 1 unitary requests, one for each pair.

Clearly, the terminals of Gℓ+1 can be arranged on the outer face in the presented order. To
establish condition (3) of Definition 5.46, we need to show that there is no non-crossing (Tℓ+1 ∪ T̂)-
flow in Gℓ+1 but removing any request from T̂ suffices to construct the flow. Suppose that there
exists a non-crossing (Tℓ+1∪T̂)-flow P in Gℓ+1. It contains a (u, v)-walk Wuv that needs to go either
through Gℓ or G3. Suppose w.l.o.g. the first scenario. Then Wuv contains a (Gℓ[sℓ], Gℓ[tℓ])-subwalk
W in Gℓ. Let T̂ℓ be the family of ℓ− 1 requests from T̂ concerning the terminals of Gℓ. Next, let Pℓ

be the non-crossing (Tℓ∪T̂ℓ)-flow contained in P . Since no walk from Pℓ can use edges from E(Wuv),
this flow must be entirely contained in the graph Gℓ. Therefore, the non-crossing flow Pℓ ∪ {W}
satisfies all the requests from Tℓ and all of the form (Gℓ[si], Gℓ[ti]) for i ∈ [ℓ]. This contradicts the
assumption that (Gℓ, Tℓ) is an ℓ-Existential Gadget.

Next, consider a family T̂ ′ obtained from T̂ by removal of any single request. We argue that
there exists a non-crossing (Tℓ+1 ∪ T̂ ′)-flow in Gℓ+1. Suppose w.l.o.g. that T̂ ′ is missing a request

concerning a pair of terminals from Gℓ. Let T̂ ′ℓ =
(
T̂ ′ \ {(G3[s2], G3[t2], 1), (G3[s3], G3[t3], 1)}

)
∪

{(Gℓ[sℓ], Gℓ[tℓ], 1)}. Note that T̂ ′ℓ has less than ℓ elements. By the definition of an ℓ-Existential Gadget,

there exists a non-crossing (Tℓ∪T̂ ′ℓ)-flow Pℓ in Gℓ. Next, let T̂ ′3 = {(G3[s2], G3[t2], 1), (G3[s3], G3[t3], 1)}.

Again by the definition, there exists a non-crossing (T3 ∪ T̂ ′3)-flow P3 in G3. We take the union of
Pℓ and P3 and extend the (Gℓ[sℓ], Gℓ[tℓ])-walk from Pℓ with edges uGℓ[sℓ], vGℓ[tℓ], so it becomes a
(u, v)-walk. This forms a non-crossing (Tℓ+1 ∪ T̂ ′)-flow in Gℓ+1.

We have thus established that (Gℓ+1, Tℓ+1) is indeed an (ℓ+1)-Existential Gadget. In the inductive
step we increase the size of the graph and the number of requests by O(1), so the claimed bound
holds. The construction of (Gℓ, Tℓ) can be easily performed in time polynomial in size of Gℓ.

Suppose we want to encode an instance (k,S, ℓ) of Set Cover with |S| = 2r. Here is the first
(naive) attempt. We make k copies of an ℓ-Existential Gadget, ℓ copies of an (r, k,S)-Subset Gadget
and, for each i ∈ [k], j ∈ [ℓ], we add terminals ui,j , vi,j , connected to the j-th pair of terminals
in the i-th existential gadget and the i-th pair of terminals in the j-th subset gadget. For each
created pair ui,j , vi,j , we demand a single unit of flow between ui,j and vi,j . By condition (3) of
Definition 5.46, for each i ∈ [k] there needs to be at least one j ∈ [ℓ] for which the (ui,j , vi,j)-walk
goes through the j-th subset gadget. Next, condition (3) of Definition 5.27 implies that for each
j ∈ [ℓ] the set of such indices i forms a subset of some set from S. The problem is that already for
ℓ = k = 3 such a graph contains K3,3 as a minor, so it cannot be planar. To circumvent this issue,

72

s1 t1
u1 u2

s2

t2

s3t3

s4

t4

v2
v1

Figure 26: An illustration for Lemma 5.48: a JunctionGadget. The graph G is on the left and T is given as
{(u1, v1, 1), (u2, v2, 1)}. The four flows on the right demonstrate that whenever F excludes one of 1, 3 and
one of 2, 4, then we can construct a non-crossing (T ∪ TF)-flow.

we need yet another gadget to allow the links between each i-th existential gadget and each j-th
subset gadget to cross. Since the number of such links is only k · ℓ, we can afford adding O(1) new
requests to implement such a crossing in a planar fashion.

Lemma 5.48. There exists a pair (G, T) (called a JunctionGadget) with the following properties.

1. G is a plane graph with 8 distinguished vertices s1, t1, s2, t2, s3, t3, s4, t4 lying on the outer face
in this clockwise order.

2. T is a set of triples from V (G) × V (G) × {1}.

3. For F ⊆ [4], let TF = {(si, ti, 1) | i ∈ F}. Then, there exists a non-crossing (T ∪ TF)-flow in
G if and only if {1, 3} ̸⊆ F and {2, 4} ̸⊆ F .

Proof. The graph G is depicted in Figure 26. We refer to this figure in the arguments below. The
family T is given as {(u1, v1, 1), (u2, v2, 1)}. Let F ⊆ [4]. The three edges crossing the dotted line
separate {u1, u2, s2, t4} from {v1, v2, t2, s4}; so, when {2, 4} ⊆ F , then there can be no (T ∪TF)-flow
in G. Suppose now that {1, 3} ⊆ F and there exists a non-crossing (T ∪ TF)-flow in G. The orange
edges must be utilized by the (s1, t1)-walk and the (s3, t3)-walk, as otherwise the walks would not
be edge-disjoint with the T -flow. Let G′ be obtained from G by removing the orange edges. Then
u1, u2, v1, v2 lie on the outer face of G′ in this order. Since the pairs (u1, v1) and (u2, v2) cross and
each of these vertices has degree 2 in G′, no non-crossing T -flow exists in G′. Hence we arrive at a
contradiction. The four flows on the right of the figure demonstrate that whenever {1, 3} ̸⊆ F and
{2, 4} ̸⊆ F , then a non-crossing (T ∪ TF)-flow exists in G.

We are ready to present the proper reduction.

Theorem 5.49. There is a polynomial-time algorithm that, given an instance (k,S, ℓ) of Set
Cover, outputs an equivalent instance (G, T) of Non-crossing Multicommodity Flow with
|T | = O(k5). The demands di for (si, ti, di) ∈ T are bounded by 2O(k).

Proof. By removing duplicates in the family S, we can assume that it contains at most 2k sets.
Next, by padding the family S with empty sets and increasing its size at most twice, we can
assume that the size S is a power of 2. Let r ∈ N be such that |S| = 2r. We can solve (k,S, ℓ) in
polynomial time when r < 6 or ℓ < 3. Therefore, we can assume that 6 ≤ r ≤ k and ℓ ≥ 3, so

73

1 2 3

12 12 12

1

2

1

2

3

1

2

3

Figure 27: (Figure 3 restated) A visualization of the reduction in Theorem 5.49 with k = 3, ℓ = 2. The
existential gadgets are on the top and the subset gadgets are on the right. The terminal pairs in each gadget
are numbered in a clockwise manner. The three squares in the middle are the junction gadgets. The (1,1)-road
is highlighted. The red Troad-flow encodes a solution S1 = {1}, S2 = {2, 3}.

we will meet preconditions of the used lemmas. Note that the running time of the form 2O(r) is
polynomial in the input size.

By a slight abuse of notation, we represent the set family S as a function {0, 1}r → 2[k]. The
choice of this function is irrelevant. We begin the construction of the graph G by creating k
copies A1, . . . , Ak of an ℓ-Existential Gadget (Lemma 5.47) and ℓ copies B1, . . . , Bℓ of an (r, k,S)-
Subset Gadget (Proposition 5.45). We arrange them on the plane as illustrated in Figure 27. For each
i ∈ [k], j ∈ [ℓ], we draw two L-shaped paths, first connecting vertices Ai[sj] and Bj [ti], the second
one connecting vertices Ai[tj] and Bj [si]. We refer to the union of these two paths as the (i, j)-road.
When the (i1, j1)-road and the (i2, j2)-road cross, we place there a copy of the JunctionGadget
Ji1,j1,i2,j2 (Lemma 5.48). Let H be the family of all constructed gadgets of three types. Now each
road becomes divided into subroads, each connecting a pair of terminals sx, tx from some gadget
H1 ∈ H to a pair of terminals sy, ty from some gadget H2 ∈ H. We place two new vertices u, v in the
middle of this subroad and insert edges uH1[sx], uH2[ty], vH1[sy], vH2[tx]. The edges are chosen
in such a way as to avoid any edge crossings; note that the ordering of terminals s1, t1, s2, t2, . . .
for each gadget is clockwise around its outer face. For each such pair (u, v), we insert a request
(u, v, 1) to a family Troad. For a gadget H ∈ H, let T [H] denote the family of its internal requests.
We define T as Troad ∪

⋃
H∈H T [H]. This finishes the construction of the instance (G, T).

Claim 5.50. If there exist ℓ vectors b1, . . . ,bℓ ∈ {0, 1}r for which
⋃ℓ

i=1 S(bi) = [k], then there
exists a non-crossing T -flow in G.

Proof. Consider the (i, j)-road for i ∈ [k], j ∈ [ℓ]. If i ∈ S(bj), then for each pair (u, v) of terminals
on the (i, j)-road, we route the (u, v)-walk through the gadget H ∈ H that is closer to the subset
gadget Bj . Otherwise, we route the (u, v)-walk through the gadget closer to the existential gadget
Ai. First, observe that in every junction gadget J we either use a connection between J [s1] and J [t1]
or between J [s3] and J [t3]. We also either use a connection between J [s2] and J [t2] or between J [s4]

74

and J [t4]. By condition (3) of Lemma 5.48, such two connections can be realized via a non-crossing
flow within J together with T [J].

Consider the existential gadget Ai for i ∈ [k]. Let Fi ⊆ [ℓ] indicate the indices j for which a
(u, v)-walk from the (i, j)-road goes through Ai. Since there is at least one j ∈ [ℓ] with i ∈ S(bj), we
obtain |Fi| < ℓ. By condition (3) of Definition 5.46, there exists a non-crossing (T [Ai] ∪ TFi)-flow in
Ai. Finally, consider the subset gadget Bj . Let F ′j ⊆ [k] indicate the indices i for which a (u, v)-walk
from the (i, j)-road goes through Bj . By construction, we have F ′j = S(bj). Hence by condition (3)
of Definition 5.27, a non-crossing (T [Bj] ∪ TF ′j)-flow exists in Bj . The claim follows. ■

Claim 5.51. If there exists a non-crossing T -flow P in G, then there exist vectors b1, . . . ,bℓ ∈
{0, 1}r for which

⋃ℓ
i=1 S(bi) = [k].

Proof. Since the walks from P are edge-disjoint, the requests from family Troad forbid any walk
from family T [H], for H ∈ H, to use edges outside the subgraph H. Therefore, for every H ∈ H,
the T [H]-flow included in P is entirely contained in H.

Let Fi ⊆ [ℓ] indicate the indices j for which a (u, v)-walk from the (i, j)-road goes through Ai.
Similarly, let F ′j ⊆ [k] indicate the indices i for which a (u, v)-walk from the (i, j)-road goes through
Bj . Consider the (i, j)-road for i ∈ [k], j ∈ [ℓ]. By the properties of a junction gadget, no two
pairs (u1, v1), (u2, v2) of terminals located on this road can make use of a single junction gadget.
This implies that either j ∈ Fi or i ∈ F ′j or possibly both conditions hold. By the properties of an
existential gadget, for each i ∈ [k] there exists τ(i) ∈ [ℓ] such that τ(i) ̸∈ Fi. Consequently, i ∈ F ′τ(i).

By the properties of a subset gadget, for each j ∈ [ℓ] there exists a vector bj such that F ′j ⊆ S(bj).
We infer that an element i ∈ [k] is contained in the set S(bτ(i)). Therefore, a set cover of size ℓ
exists. ■

We have thus established that the instances (k,S, ℓ) and (G, T) are equivalent. All the requests
in T are unitary apart from those in the subset gadget. Proposition 5.45 guarantees that the
demands in this gadget are bounded by O(23r) = 2O(k). It remains to count the number of requests
in T . Each of k existential gadgets requires O(ℓ) requests. Each of ℓ subsets gadgets requires O(kr3)
requests. The number of junction gadgets equals the number of crossings between the roads, which
is at most the number of roads squared, that is, O(k2ℓ2). Each such gadget contains only O(1)
requests. The size of the family Troad is proportional to the number of junction gadgets, so also
|Troad| = O(k2ℓ2). Since both r, ℓ are bounded by k, we obtain |T | = O(k5). Finally, each of the
three types of gadgets can be constructed in time polynomial in the input size. This concludes the
proof.

5.5 Implementing weights

As the last step, we need to get rid of large demands in the request family T . Our construction of
the subset gadget requires demands as large as 2O(k) and we cannot afford requesting this many
vertex-disjoint paths in a meaningful reduction. Instead, we shall implement such a request with
O(r2) unitary requests by utilizing the construction by Adler and Krause [3].

We begin by simplifying the requests so that the demands are of the form 2i − 1 and the
number of edges incident to each terminal v equals the number of paths starting at v. We also
place additional “guarding” requests of demand 1 that will come in handy in further topological
arguments. This operation is depicted in Figure 28.

75

s

t

s′

t′

vis ui
s

vit ui
t

Figure 28: Left: An example of binary simplification of a request (s, t, d), where d has two 1’s in the binary
representation. Right: A correspondence between non-crossing flows in the original multigraph and the
multigraph after modification. Note that the edges on the cycles are duplicated. Two exemplary (s, t)-paths
are drawn in red.

Definition 5.52 (Binary simplification). Let (G, T) be an instance of Non-crossing Multicom-
modity Flow and (s, t, d) ∈ T . We obtain an instance (G′, T ′) from (G, T) as follows. First,
we replace the vertex s (resp. t) in G with a cycle Cs (resp. Ct) having a single vertex for each
edge incident to s (resp. t). We multiply each of the edges on the cycle |E(G)| times. We pick an
arbitrary vertex v on Cs (resp. Ct) and create a new vertex s′ (resp. t′) in the interior of the cycle,
connected to v via d parallel edges. Next, let D ⊆ N be the set of 1’s in the binary representation of
d, i.e., d =

∑
i∈D 2i. For each i ∈ D we create vertices vis, u

i
s, adjacent to s′, and vertices vit, u

i
t,

adjacent to t′. We place them in a clockwise manner around s′ and in an counter-clockwise manner
around t′. For every vertex of the form uis, u

i
t, we multiply the only edge incident to it times 2i − 1.

We remove (s, t, d) from T and replace it with
⋃

i∈D{(vis, v
i
t, 1), (uis, u

i
t, 2

i − 1)}. We say that (G′, T ′)
is obtained from (G, T) via binary simplification of (s, t, d).

Lemma 5.53. Let (G′, T ′) be obtained from (G, T) via binary simplification of (s, t, d) ∈ T . Then
these two instances of Non-crossing Multicommodity Flow are equivalent.

Proof. Note that by the definition of the problem, no other terminals from T coincide with s, t.
Consider a non-crossing T -flow P in G and let Pst ⊆ P be the family of d walks connecting s

with t. Since the vertices of the cycle Cs (resp. Ct) are connected via |E(G)| parallel edges and
each walk from P visiting s or t must use some edge incident to this vertex, there is enough space
to route all the walks from P \ Pst alongside the cycle. The walks from Pst can be translated into
(V (Cs), V (Ct))-walks in G′. Let us order them as P1, . . . , Pd in a clockwise manner around Cs,
starting from an arbitrary one. Then P1, . . . , Pd arrive at Ct in an counter-clockwise manner. By
Definition 5.2 of a non-crossing flow, no two walks Pi, Pj cross with any other walk from P at Cs

(resp. Ct). Therefore we can route them using the innermost edges on the cycles Cs, Ct to reach s′

and t′ in an order reflecting the terminal pairs (vis, v
i
t) and (uis, u

i
t) (see Figure 28).

Consider now a non-crossing T ′-flow P ′ in G′. Let P ′st ⊆ P ′ be the family of walks realizing the
requests created due to binary simplification of (s, t, d). We contract the vertex set V (Cs) together
with all the vertices lying inside Cs into a single vertex s, and similarly for Ct, thus obtaining the

76

s1s2
t1

s3

t2

s4

t3

t4

Y s
4 Y t

4

s1s2
t1

s3

t2

s4

t3

t4s′ t′

Gs
4 Gt

4

Figure 29: Left: The instance (X4, T4) of Topological Disjoint Paths. The set X4 is gray and the
points from T4 are black discs. The black and hollow discs form the set Y4, which is divided into Y s

4 and Y t
4 .

Middle: The unique solution to (X4, T4) traverses the disc 24 − 1 times from left to right. Right: The gadgets
Gs

4 and Gt
4.

graph G again. By Observation 5.3, this operation transforms P ′ into a non-crossing flow in G.
Because there are exactly d parallel edges between s′ and the fixed vertex on Cs (resp. t′ and the
fixed vertex on Ct), no paths from P ′ \ P ′st can visit s′ or t′. The only terminals contracted into s
(resp. t) are the ones created due to binary simplification of (s, t, d), so we obtain a non-crossing
T -flow.

The binary simplification imposes a convenient structure on the multigraph, which we will utilize
next to replace each request of demand 2i − 1 with just i unitary requests. We will analyze the
reduction using the following artificial problem.

Definition 5.54 ([3, Def. 3]). Given a subset X of the plane and a set of k pairs of terminals
T ⊆ X2, the Topological Disjoint Paths problem is to determine whether there exist k pairwise
disjoint curves in X, such that each curve Pi is homeomorphic to [0, 1] and its ends are si and ti
where (si, ti) ∈ T .

We will use this problem only for the sake of analysis, so we do not have to specify how the set
X is encoded. For k ∈ N we define an instance (Xk, Tk) of Topological Disjoint Paths. This is
a concise version of [3, Definition 4], where the set Xk is called a disc-with-edges. See Figure 29 for
an illustration.

Definition 5.55. Let Lk be an ordered list of elements from {s1, t1, s2, t2, . . . , sk, tk} defined induc-
tively. For k = 1 we set L1 = (s1, t1). Assume that Lk is already constructed with tk being its last
element. We obtain Lk+1 from Lk by inserting sk+1 before tk and inserting tk+1 after tk. We define
Tk = {(si, ti) | i ∈ [k]}.

Now we construct the set Xk ⊆ R2. Let D ⊆ R2 be a closed disc. We place the elements of Lk on
the boundary of D in the counter-clockwise order. For i ∈ [k] let Si, Ti be the connected components
of ∂D \ Lk neighboring ti. For each i ∈ [k] let Ei be a family of 2i−1 − 1 curves connecting Si and
Ti outside D, in such a way that the are no crossings in

⋃k
i=1Ei. We set Xk = D ∪

⋃k
i=1Ei and

refer to the curves from E1, . . . , Ek as the edges of Xk.
Next, let Yk ⊆ Xk ∩ ∂D be the union of the set Lk and all the endpoints of edges in Xk. We set

Y t
k = Yk ∩ (Ek ∪ {tk}) and Y s

k = Yk \ Y t
k .

77

Note that 21−1− 1 = 0 so E1 = ∅. The sets Y s
k , Y

t
k divide the distinguished points in Xk into the

left side and the right side. Observe that |Y s
k | = |Y t

k | = 2k − 1. The instance (Xk, Tk) is designed to
have a unique solution, depicted in Figure 29. In this solution, the (si, ti)-path must “go around”
the (si−1, ti−1)-path, thus traversing the disc twice as many times.

Lemma 5.56 ([3, Lem. 1, Thm. 4]). For each k ∈ N the instance (Xk, Tk) of Topological
Disjoint Paths has a unique solution (up to homeomorphism). The curves in this solution contain
2k − 1 subcurves connecting a point in Y s

k to a point in Y t
k .

Adler and Krause [3] used this lemma to construct an instance of Planar k-Disjoint Paths
with a (2k − 1)× (2k − 1)-grid, in which every vertex is used by the unique solution. This constitutes
an example of a large-treewidth instance in which no vertex is irrelevant.

We want to turn the instance (Xk, Tk) into two gadgets that can be plugged into a plane
multigraph, enforcing a flow of size 2k − 1 between the gadgets by using only k terminal pairs. To
this end, we need to translate the topological structure of the disc-with-edges into a graph structure.

Definition 5.57. Consider the instance (Xk, Tk) of Topological Disjoint Paths. We define a
gadget Gs

k by placing a vertex s′ in the interior of D, inserting edges between s′ and each element
in Y s

k , and adding the edges of Xk with both endpoints in Y s
k . Analogously we obtain a gadget Gt

k

by placing a vertex t′ in the interior of D, inserting edges between t′ and each element in Y t
k , and

adding the edges of Xk with both endpoints in Y t
k . We refer to the vertices s′, t′ as the roots of the

gadgets.

The gadgets are depicted in Figure 29. By a slight abuse of notation, we will treat si, ti as
vertices from Gs

k ∪Gt
k and Tk as a set of pairs of vertices.

Definition 5.58 (Weight implementation). Let (G, T) be an instance of Non-crossing Multi-
commodity Flow and (s, t, d) ∈ T be such that d = 2i − 1, i > 0, and each of s, t has exactly d
incident edges, which are parallel. We obtain an instance (Ĝ, T̂) from (G, T) as follows. Let s′, t′ be
the only neighbors of s, t, respectively, in G. We replace s with the gadget Gs

i rooted at s′ and replace
t with the gadget Gt

i rooted at t′. We replace (s, t, d) in T with the set {(sj , tj , 1) | (sj , tj) ∈ Ti}.

In order to prove correctness of this transformation, we need to show that Ti-walks in a non-
crossing T̂ -flow in Ĝ traverse 2i− 1 many times between the gadgets Gs

i , G
t
i. We will take advantage

of the “guarding” request (vis, v
i
t, 1) to reduce the analysis to the case where the Ti-flow traverses a

topological disc. Then we could apply Lemma 5.56 to reveal the structure of the flow.

Lemma 5.59. Let (G′, T ′) be obtained from (G, T) via binary simplification of (s, t, d) ∈ T and
i ∈ N belong to the binary representation of d. Next, let (Ĝ, T̂) be obtained from (G′, T ′) by applying
the transformation from Definition 5.58 to the request (uis, u

i
t, 2

i − 1) ∈ T ′. Then the instances
(G′, T ′) and (Ĝ, T̂) are equivalent.

Proof. First, consider a non-crossing T ′-flow P ′ in G′ and the family P ′u ⊆ P ′ realizing the (uis, u
i
t)-

paths. They all must visit s′ and t′. Because (vis, v
i
t, 1) ∈ P ′, there is a (vis, v

i
t)-path Pv in P ′, also

visiting s′ and t′. Since Pv is non-crossing with P ′u, the order in which the paths from P ′u enter uis is
symmetric to the order in which they enter uit. Therefore, P ′u can be translated into a non-crossing
Ti-flow.

Next, consider a non-crossing T̂ -flow P̂ in Ĝ and the family P̂u ⊆ P̂ being a Ti-flow. We need to
show that P̂u contains 2i− 1 subwalks connecting s′ and t′. We can flip the embedding of Ĝ to make

78

v2s

v2t

s1 s2 t1

t2

s′

t′

Cs

Ct

Figure 30: An illustration to the proof of Lemma 5.59 for d = 4, i = 2. Left: A multigraph after binary
simplification and weight implementation. The vertices s, t got replaced by cycles Cs, Ct. The vertices s′, t′

and the incident parallel edges are part of the gray area. Next, the vertices u2
s, u

2
t and request (u2

s, u
2
t , 3) got

replaced with the gadgets Gs
2, G

t
2 and requests (s1, t1, 1), (s2, t2, 1). The crux of the lemma is to show that

the green walk cannot use the dotted shortcut and it needs to enter the cycle Ct. Middle: After flipping
the embedding we can assume that s′ lies on the outer face. Right: After removing the (v2s , v

2
t)-walk, the

remaining gray area becomes a topological disc. This reduces the analysis to the instance (X2, T2) where the
unique solution traverses 2i − 1 = 3 times between Cs and Ct.

the face incident to s′ the outer face, without changing the rotation system; this transformation
preserves the property of being a non-crossing flow (see Figure 30). Let DG ⊆ R2 be the subset
of the plane without the outer face of Ĝ and the face incident to t′. Due to the existence of a
(vis, v

i
t)-path Pv in P̂ , which is non-crossing with P̂u and has endpoints of degree 1, the flow P̂u can

be drawn as a family of non-crossing curves in DG \ Pv. This set is a topological disc, i.e., there
is a homotopy that translates (DG \ Pv, Ti) into (Xi, Ti). Hence Lemma 5.56 implies that P̂u is
equivalent to the unique solution to the Topological Disjoint Paths instance (Xi, Ti), and so it
contains 2i − 1 walks connecting s′ and t′. This concludes the proof.

We are ready to summarize our reduction. Recall that an instance (G, T) of Non-crossing
Multicommodity Flow is called unitary if every demand in T is 1 and every terminal occurring in
T has degree 1 in G. Observe that the newly created requests are unitary and the new terminals are
of degree 1. Hence applying both transformations to all original requests yields a unitary instance.

Proposition 5.60. Let (G, T) be an instance of Non-crossing Multicommodity Flow and
ℓ ∈ N be such that di ≤ 2ℓ for each (si, ti, di) ∈ T . Then in polynomial time we can transform (G, T)
into an equivalent unitary instance (Ĝ, T̂) of Non-crossing Multicommodity Flow satisfying
|T̂ | = O(ℓ2) · |T |.

Proof. We first apply binary simplification to all requests in T , thus increasing the number of
requests by the factor of O(ℓ). By Lemma 5.53, the obtained instance (G′, T ′) is equivalent to
(G, T). Next, we apply weight implementation to each non-unitary request in T ′, obtaining a unitary

79

instance (Ĝ, T̂). Again, the number of requests is being multiplied by O(ℓ). The instance (Ĝ, T̂) is
equivalent to (G′, T ′) due to Lemma 5.59.

We remark that almost all the requests used in our reduction from Set Cover have demands
being powers of two. The only exceptions are the requests of type (F) in Section 5.3.2. While
it is possible to replace each of them with r requests of demand 2r (without increasing the total
number of requests significantly) and shave off a single O(ℓ)-factor in weight implementation, we
have chosen not to further complicate the description of the already complex gadget. Besides, we
think that Proposition 5.60 in its general form might find applications also outside our context.

5.6 From a non-crossing flow to disjoint paths

Recall that for a vertex set X ⊆ V (G), a set of pairs T ⊆ X2 is called realizable if there exists a
T -linkage (that is, a T -family of vertex-disjoint paths) in G. Also recall the notion of a proper
embedding from Section 3 and the property of being cross-free from Section 4.3.

Lemma 5.61. Let I be a noose and X ⊆ I be a finite set of size k. There exists a subcubic plane
graph H properly embedded in Disc(I) such that H ∩ I = X, degH(x) ≤ 2 for every x ∈ X, and
every cross-free T ⊆ X2 is realizable in H. This graph can be constructed in time polynomial in k.

Proof. The claim is trivial for k ≤ 2. For k ≥ 3 we use a construction similar to that from
Lemma 4.39 but instead of a (k, k)-cylindrical grid (that have vertices of degree 4) we use a k-
cylindrical wall (with k cycles and k edges between each pair of consecutive cycles; see Figure 3 on
page 11 with 3 cycles) and identify the degree-2 vertices on the outer face with X. A k-cylindrical
wall is a subcubic graph. The argument that every cross-free T ⊆ X2 is realizable is the same as for
the cylindrical grid and follows from the criterion from Lemma 4.38.

Armed with this gadget, we can assume that a given graph is simple and subcubic.

Lemma 5.62. There is a polynomial-time algorithm that, given a unitary instance (G, T) of
Non-crossing Multicommodity Flow, transforms it into an equivalent unitary instance (G′, T ′)
such that G′ is simple, subcubic, and |T ′| = |T |.

Proof. By the definition of a unitary instance, when v ∈ V (G) occurs as a terminal in T then
degG(v) = 1. Therefore it suffices to reduce the degrees of non-terminal vertices. Let v ∈ V (G) be
a vertex of degree k = degG(v) ≥ 2; then v does not appear in T . We draw a noose I around v,
intersecting each edge from EG(v) once, and no more edges or vertices from G. Let X be the set of
intersections of I with EG(v). We replace v with a gadget from Lemma 5.61, creating a subcubic
subgraph H properly embedded in Disc(I). Since degH(x) ≤ 2 for for every x ∈ X, the degree of x
in G′ becomes 3.

We argue that this transformation yields an equivalent instance. Consider a non-crossing T -flow
P in G. Let Tv ⊆ X2 be the set of pairs representing pairs of consecutive edges from EG(v) traversed
by walks from P (recall that no path from P has v as an endpoint). Then Tv is cross-free with
respect to H. By Lemma 5.61, there exists a Tv-linkage in H. Since vertex-disjoint paths are clearly
non-crossing, this allows us to transform P into a non-crossing T -flow in G′. On the other hand,
when a non-crossing T -flow exists in G′, it can be turned into a non-crossing T -flow in G by simply
contracting H back to a single vertex (see Observation 5.3).

80

We apply this modification to every vertex in G with degree at least 2, thus creating a subcubic
graph. Note that every pair of parallel edges in G connects two vertices of degree at least 2, and
during the transformation their endpoints become distinct. Hence the outcome is also a simple
graph.

In a subcubic graph, the notions of (non-crossing) edge-disjointness and vertex-disjointness
coincide, so we can treat an instance of Non-crossing Multicommodity Flow as an instance
of Planar (Edge-)Disjoint Paths. Note that in the first problem we assume that a plane
embedding is provided in the input, while in the last two we do not. However, once the reduction is
done, we can discard the fixed embedding.

Theorem 5.63. There is a polynomial-time algorithm that, given an instance (k,S, ℓ) of Set
Cover, outputs an equivalent instance (G, T) of Planar (Edge-)Disjoint Paths with |T | =
O(k7).

Proof. Theorem 5.49 allows us to compute an instance (G, T) of Non-crossing Multicommodity
Flow with |T | = O(k5) that is equivalent to (k,S, ℓ). The demands in (G, T) are bounded by 2O(k).
Next, we use Proposition 5.60 to transform (G, T) into an equivalent unitary instance (Ĝ, T̂) with
|T̂ | = O(k7). Subsequently, (Ĝ, T̂) can be transformed into an equivalent unitary instance (G′, T ′)
such that G′ is simple, subcubic, and |T ′| = |T̂ | (Lemma 5.62). Let TDP = {(s, t) | (s, t, 1) ∈ T ′}.
In a subcubic graph with all terminals of degree 1, every walk in a solution is a path and two paths
are edge-disjoint if and only if they are vertex-disjoint. In turn, vertex-disjointness implies being
non-crossing. Hence the following statements are equivalent.

1. There is a non-crossing T ′-flow in G′.
2. There is a TDP -family of vertex-disjoint paths in G′.
3. There is a TDP -family of edge-disjoint paths in G′.

As a consequence, (G′, TDP) is a yes-instance of Planar Disjoint Paths (resp. Planar Edge-
Disjoint Paths) if and only if (G′, T ′) is a yes-instance of Non-crossing Multicommodity
Flow. This concludes the proof.

The Set Cover problem parameterized by the universe size is known not to admit a polynomial
kernel unless coNP ⊆ NP/poly [27]. Theorem 5.63 implies the same for Planar (Edge-)Disjoint
Paths parameterized by the number of the requests. Since Set Cover under this parameterization
is also WK[1]-complete [50], we establish WK[1]-hardness of Planar (Edge-)Disjoint Paths as
well. As a consequence, we obtain Theorems 1.1, 1.2, and 1.3.

6 Conclusion

We conclude the paper with several open questions. Possibly, the ideas used in this paper will
be useful in solving some of these questions. In particular, we believe that our construction of a
2O(k

2) · nO(1)-time algorithm for Planar Disjoint Paths, based on the irrelevant edge rule, could
be easier to generalize to bounded-genus graphs than the approach based on enumerating homotopy
classes of [17, 71]. It is unclear, however, how to extend the treewidth reduction procedure [2] and
the nO(k)-time algorithm [91]. This leads to the first open question.

• Can Disjoint Paths on graph classes substantially larger than the class of planar graphs
(such as bounded-genus or minor-free graphs) be solved in time 2k

O(1) · nO(1), and does it

81

admit a polynomial kernel when parameterized by k + tw? Currently, the best known running
time for proper minor-closed graph classes is galactic as in the general case.

• Can Planar Disjoint Paths be solved in time 2o(k
2) ·nO(1) or even 2O(k) ·nO(1)? We remark

that the existing NP-hardness proof for Planar Disjoint Paths [64] only implies that the

problem is not solvable in time 2o(
√
k) · nO(1) unless the ETH is false. Note that even though

2o(
√
k) may seem a natural parameter dependency for a “genuinely planar” problem, for the

related Planar Steiner Tree problem a 2o(k) · nO(1) lower bound is known [78].

• Can the extension of Planar Disjoint Paths to directed graphs be solved in time 2k
O(1) ·nO(1),

and does it admit a polynomial kernel when parameterized by k + tw? Currently, the best

known running time is 22
kO(1)

· nO(1) [24].

• While Disjoint Paths is long known to be in FPT, the existing algorithms are very com-
plicated. Can one design a “simple” f(k) · nO(1)-time (or even nf(k)-time) algorithm for this
problem?

• Being a close relative of Disjoint Paths, can Topological Minor Testing on the class
of planar graphs be solved in time 2k

O(1) · nO(1)? Currently, the best known running time

is 22
2k
O(1)

· nO(1) [37]. Note that the question is not asked for Minor Testing since it
becomes “easy” on planar graphs (due to reasons that do not apply to Disjoint Paths and
Topological Minor Testing on planar graphs, and not to Minor Testing in general) [1].

• The Min-Sum Disjoint Paths problem is the optimization version of Disjoint Paths where
we do not only need to determine whether a solution exists, but, if the answer is positive, find
one where the sum of the lengths of the solution paths is minimized. The Shortest Disjoint
Paths is a restricted case of this problem where the task is to determine whether there exists
a solution where every path is a shortest one between its endpoints. Although introduced
more than 20 years ago [32], to date, all we know on Shortest Disjoint Paths is that it
is W[1]-hard [69] (and hence also Min-Sum Disjoint Paths is W[1]-hard), in XP [69], and,
on digraphs, in P when k = 2 [7] (in contrast to Disjoint Paths). The status of Min-Sum
Disjoint Paths is grimmer: all we know is that it is in P when k = 2 [8], and, on digraphs, it
is NP-hard even when k = 2 (because it generalizes Disjoint Paths). Specifically, we ask: Is
Shortest Disjoint Paths (or even Min-Sum Disjoint Paths) on planar graphs in FPT?
Is Min-Sum Disjoint Paths (on undirected graphs) in XP? Is Shortest Disjoint Paths
on digraphs in XP?

• Does Disjoint Paths admit a polynomial kernel when restricted to chordal graphs? Currently,
a positive answer is known for split graphs [49, 95], and, more generally, well-partitioned
chordal graphs [4].

• For which other problems that admit a treewidth reduction can we show the impossibility
of a polynomial treewidth reduction? We refer to [37, 43, 45, 46, 72, 76] for some examples
of problems other than Disjoint Paths and Minor Testing that are known to admit
super-polynomial treewidth reductions.

Lastly, we remark that it might be interesting to study lossy kernels and FPT approximation
algorithms [34] for optimization versions of the above-mentioned problems in future works.

82

References

[1] Isolde Adler, Frederic Dorn, Fedor V Fomin, Ignasi Sau, and Dimitrios M Thilikos. Fast minor
testing in planar graphs. Algorithmica, 64:69–84, 2012.

[2] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,
and Dimitrios M. Thilikos. Irrelevant vertices for the planar disjoint paths problem. J. Comb.
Theory, Ser. B, 122:815–843, 2017. doi:10.1016/j.jctb.2016.10.001.

[3] Isolde Adler and Philipp Klaus Krause. A lower bound on the tree-width of graphs with
irrelevant vertices. Journal of Combinatorial Theory, Series B, 137:126–136, 2019. doi:https:
//doi.org/10.1016/j.jctb.2018.12.008.

[4] Jungho Ahn, Lars Jaffke, O-joung Kwon, and Paloma T Lima. Well-partitioned chordal graphs:
obstruction set and disjoint paths. In Graph-Theoretic Concepts in Computer Science: 46th
International Workshop, WG 2020, Leeds, UK, June 24–26, 2020, Revised Selected Papers 46,
pages 148–160. Springer, 2020.

[5] Matthew Andrews and Lisa Zhang. Hardness of the undirected edge-disjoint paths problem.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
276–283, 2005.

[6] Julien Baste and Ignasi Sau. The role of planarity in connectivity problems parameterized by
treewidth. Theoretical Computer Science, 570:1–14, 2015.

[7] Kristof Berczi and Yusuke Kobayashi. The Directed Disjoint Shortest Paths Problem. In Kirk
Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms (ESA
2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:13,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http:
//drops.dagstuhl.de/opus/volltexte/2017/7824, doi:10.4230/LIPIcs.ESA.2017.13.

[8] Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial time. SIAM
J. Comput., 48(6):1698–1710, 2019.

[9] Hans L Bodlaender, Pinar Heggernes, and Daniel Lokshtanov. Graph modification problems
(dagstuhl seminar 14071). In Dagstuhl Reports, volume 4(2). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2014.

[10] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, pages 635–646, 2009.

[11] Hans L Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theoretical Computer Science, 412(35):4570–4578, 2011.

[12] Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(n log n) approximation scheme for
Steiner tree in planar graphs. ACM Trans. Algorithms, 5(3), jul 2009. doi:10.1145/1541885.
1541892.

83

https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/https://doi.org/10.1016/j.jctb.2018.12.008
https://doi.org/https://doi.org/10.1016/j.jctb.2018.12.008
http://drops.dagstuhl.de/opus/volltexte/2017/7824
http://drops.dagstuhl.de/opus/volltexte/2017/7824
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.1145/1541885.1541892
https://doi.org/10.1145/1541885.1541892

[13] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Ann. Pure Appl. Log., 84(1):119–138, 1997.

[14] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM (JACM), 63(5):1–65, 2016.

[15] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 71–80.
IEEE, 2004.

[16] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs with constant congestion. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of Computing, pages 757–766, 2006.

[17] Kyungjin Cho, Eunjin Oh, and Seunghyeok Oh. Parameterized algorithm for the disjoint path
problem on planar graphs: Exponential in k2 and linear in n. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3734–3758. SIAM, 2023.

[18] Julia Chuzhoy. Improved bounds for the flat wall theorem. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 256–275. SIAM, 2014.

[19] Julia Chuzhoy, David HK Kim, and Shi Li. Improved approximation for node-disjoint paths
in planar graphs. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 556–569, 2016.

[20] Julia Chuzhoy, David HK Kim, and Rachit Nimavat. New hardness results for routing on
disjoint paths. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 86–99, 2017.

[21] Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the excluded grid theorem. J.
Comb. Theory, Ser. B, 146:219–265, 2021.

[22] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

[23] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

[24] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed
k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 197–206, 2013.

[25] Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005.

[26] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008.

84

https://doi.org/10.1007/978-3-319-21275-3

[27] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors
and ids. In Proceedings of the 36th International Colloquium on Automata, Languages and
Programming: Part I, ICALP ’09, page 378–389, Berlin, Heidelberg, 2009. Springer-Verlag.
doi:10.1007/978-3-642-02927-1_32.

[28] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential parameterized
algorithms. Comput. Sci. Rev., 2(1):29–39, 2008.

[29] Rod Downey. The birth and early years of parameterized complexity. In The Multivariate
Algorithmic Revolution and Beyond, pages 17–38, 2012.

[30] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[31] Zdeněk Dvořák, Daniel Král’, and Robin Thomas. Coloring triangle-free graphs on surfaces. In
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
120–129. SIAM, 2009.

[32] Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discret. Appl. Math., 85(2):113–138,
1998.

[33] Ranel E. Erickson, Clyde L. Monma, and Arthur F. Veinott. Send-and-split method for
minimum-concave-cost network flows. Mathematics of Operations Research, 12(4):634–664,
1987. doi:10.1287/moor.12.4.634.

[34] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020.

[35] Michael R Fellows. The lost continent of polynomial time: Preprocessing and kernelization. In
Parameterized and Exact Computation: Second International Workshop, IWPEC 2006, Zürich,
Switzerland, September 13-15, 2006. Proceedings 2, pages 276–277. Springer, 2006.

[36] Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
parameterized preprocessing. Cambridge University Press, 2019. doi:10.1017/9781107415157.

[37] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Hitting
topological minors is FPT. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1317–1326,
2020.

[38] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimensionality
and kernels. SIAM J. Comput., 49(6):1397–1422, 2020.

[39] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8:399–404, 1956.

[40] Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980.

85

https://doi.org/10.1007/978-3-642-02927-1_32
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1287/moor.12.4.634
https://doi.org/10.1017/9781107415157

[41] András Frank. Edge-disjoint paths in planar graphs. Journal of Combinatorial Theory, Series
B, 39(2):164–178, 1985.

[42] András Frank. Packing paths, cuts, and circuits-a survey. Paths, Flows and VLSI-Layout,
49:100, 1990.

[43] Petr A Golovach, Pim van’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013.

[44] Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees for vertex spar-
sification in planar graphs. SIAM Journal on Discrete Mathematics, 34(1):130–162, 2020.
doi:10.1137/17M1163153.

[45] Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285–
302, 2004.

[46] Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 479–488, 2011.

[47] Martin Grohe, Ken-ichi Kawarabayashi, and Bruce Reed. A simple algorithm for the graph
minor decomposition–logic meets structural graph theory. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 414–431. SIAM, 2013.

[48] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with respect
to the largest grid minor size. Algorithmica, 64(3):416–453, November 2012. doi:10.1007/

s00453-012-9627-5.

[49] Pinar Heggernes, Pim van’t Hof, Erik Jan van Leeuwen, and Reza Saei. Finding disjoint paths
in split graphs. Theory of Computing Systems, 57:140–159, 2015.

[50] Danny Hermelin, Stefan Kratsch, Karolina So ltys, Magnus Wahlström, and Xi Wu. A com-
pleteness theory for polynomial (turing) kernelization. Algorithmica, 71(3):702–730, 2015.

[51] Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph
classes. J. Comput. Syst. Sci., 85:18–37, 2017.

[52] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 1802–1811. SIAM, 2014.

[53] Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A Deterministic Polynomial
Kernel for Odd Cycle Transversal and Vertex Multiway Cut in Planar Graphs. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 39:1–39:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2019.39.

[54] Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernelization for finding
long paths in graph classes excluding a topological minor. Algorithmica, 81(10):3936–3967,
2019.

86

https://doi.org/10.1137/17M1163153
https://doi.org/10.1007/s00453-012-9627-5
https://doi.org/10.1007/s00453-012-9627-5
https://doi.org/10.4230/LIPIcs.STACS.2019.39

[55] Bart M. P. Jansen and Micha l W lodarczyk. Lossy planarization: A constant-factor approximate
kernelization for planar vertex deletion. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 900–913. ACM, 2022. doi:10.1145/3519935.3520021.

[56] Bart M. P. Jansen and Michal Wlodarczyk. Lossy planarization: A constant-factor approximate
kernelization for planar vertex deletion. CoRR, abs/2202.02174, 2022. arXiv:2202.02174.

[57] David S Johnson. The NP-completeness column: An ongoing guide. Journal of algorithms,
6(3):434–451, 1985.

[58] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA, pages 85–103, 1972.

[59] Richard M Karp. On the computational complexity of combinatorial problems. Networks,
5(1):45–68, 1975.

[60] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

[61] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the graph minor algorithm: the
unique linkage theorem. In Proceedings of the Forty-second ACM Symposium on Theory of
Computing, pages 687–694, 2010.

[62] Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for finding an induced cycle in
planar graphs and bounded genus graphs. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1146–1155. SIAM, 2009.

[63] Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using packing
integer programs. Mathematical Programming, 99(1):63–87, 2004.

[64] Mark R. Kramer and Jan van Leeuwen. The complexity of wire-routing and finding minimum
area layouts for arbitrary VLSI circuits. Advances in Computing Research, 2:129–146, 1984.

[65] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:

10.1145/2635810.

[66] Robert Krauthgamer and Havana Inbal Rika. Refined vertex sparsifiers of planar graphs. SIAM
Journal on Discrete Mathematics, 34(1):101–129, 2020. doi:10.1137/17M1151225.

[67] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta mathe-
maticae, 15(1):271–283, 1930.

[68] Richard J Lipton and Kenneth W Regan. People, Problems, and Proofs: Essays from Gödel’s
Lost Letter: 2010. Springer, 2013.

[69] William Lochet. A polynomial time algorithm for the k -disjoint shortest paths problem. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 169–178, 2021.

87

https://doi.org/10.1145/3519935.3520021
http://arxiv.org/abs/2202.02174
https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1137/17M1151225

[70] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM Journal on Computing, 47(3):675–702, 2018.

[71] Daniel Lokshtanov, Pranabendu Misra, Micha l Pilipczuk, Saket Saurabh, and Meirav Zehavi. An
exponential time parameterized algorithm for planar disjoint paths. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 1307–1316, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3357713.3384250.

[72] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Covering small independent sets and separators with applications to parameterized algorithms.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2785–2800, 2018.

[73] Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Efficient graph minors theory and
parameterized algorithms for (planar) disjoint paths. In Treewidth, Kernels, and Algorithms -
Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 112–128,
2020.

[74] James F Lynch. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, 5(3):31–36, 1975.

[75] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.

[76] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Transactions on Algorithms (TALG), 9(4):1–35, 2013.

[77] Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012.

[78] Dániel Marx, Marcin Pilipczuk, and Micha l Pilipczuk. On subexponential parameterized
algorithms for steiner tree and directed subset tsp on planar graphs. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 474–484, 2018. doi:
10.1109/FOCS.2018.00052.

[79] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins series in the
mathematical sciences. Johns Hopkins University Press, 2001.

[80] Sridhar Natarajan and Alan P Sprague. Disjoint paths in circular arc graphs. Nordic Journal
of Computing, 3(3):256–270, 1996.

[81] Takao Nishizeki, Jens Vygen, and Xiao Zhou. The edge-disjoint paths problem is np-complete
for series–parallel graphs. Discrete Applied Mathematics, 115(1-3):177–186, 2001.

[82] Richard G Ogier, Vladislav Rutenburg, and Nachum Shacham. Distributed algorithms for
computing shortest pairs of disjoint paths. IEEE transactions on information theory, 39(2):443–
455, 1993.

[83] Haruko Okamura and Paul D Seymour. Multicommodity flows in planar graphs. Journal of
Combinatorial Theory, Series B, 31(1):75–81, 1981.

88

https://doi.org/10.1145/3357713.3384250
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1109/FOCS.2018.00052

[84] Marcin Pilipczuk, Micha l Pilipczuk, Piotr Sankowski, and Erik Jan Van Leeuwen. Network
sparsification for Steiner problems on planar and bounded-genus graphs. ACM Transactions
on Algorithms (TALG), 14(4):1–73, 2018. doi:10.1145/3239560.

[85] Bruce Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57(2-3):213–227,
1995.

[86] Bruce A Reed, Neil Robertson, Alexander Schrijver, and Paul D Seymour. Finding disjoint
trees in planar graphs in linear time. Contemporary Mathematics, 147:295–295, 1993.

[87] Neil Robertson and Paul D Seymour. Graph minors. VI. Disjoint paths across a disc. Journal
of Combinatorial Theory, Series B, 41(1):115–138, 1986. doi:https://doi.org/10.1016/

0095-8956(86)90031-6.

[88] Neil Robertson and Paul D Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

[89] Neil Robertson and Paul D Seymour. Graph minors: XVII. Taming a vortex. Journal of
Combinatorial Theory, Series B, 77(1):162–210, 1999. doi:https://doi.org/10.1006/jctb.
1999.1919.

[90] Petra Scheffler. A practical linear time algorithm for disjoint paths in graphs with bounded
tree-width. TU, Fachbereich 3, 1994.

[91] Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal on
Computing, 23(4):780–788, 1994.

[92] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

[93] Anand Srinivas and Eytan Modiano. Finding minimum energy disjoint paths in wireless ad-hoc
networks. Wireless Networks, 11:401–417, 2005.

[94] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen, 114(1):570–
590, 1937.

[95] Yongjie Yang, Yash Raj Shrestha, Wenjun Li, and Jiong Guo. On the kernelization of split
graph problems. Theoretical Computer Science, 734:72–82, 2018.

89

https://doi.org/10.1145/3239560
https://doi.org/https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/https://doi.org/10.1006/jctb.1999.1919
https://doi.org/https://doi.org/10.1006/jctb.1999.1919

	Introduction
	Outline
	Polynomial kernel for parameter k+tw
	Kernelization hardness for parameter k

	Preliminaries
	Polynomial kernel for parameter k + tw
	Preliminaries for processing linkages
	Radial diameter reduction
	Rerouting a non-maximal linkage
	Rerouting a maximal linkage
	Finding an irrelevant edge

	Single-face case
	Cutting the graph open

	Kernelization hardness for parameter k
	Non-crossing multicommodity flow
	Vector-containment gadget
	Homotopy classes and shortest paths
	Dual flows
	Construction of a non-crossing flow

	Subset gadget
	The first attempt
	Dynamic flow generators

	From a set cover to a non-crossing flow
	Implementing weights
	From a non-crossing flow to disjoint paths

	Conclusion

