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Abstract

We define new graph parameters, called flip-width, that generalize treewidth, degeneracy,
and generalized coloring numbers for sparse graphs, and clique-width and twin-width for
dense graphs. The flip-width parameters are defined using variants of the Cops and Robber
game, in which the robber has speed bounded by a fixed constant r ∈ N ∪ {∞}, and the cops
perform flips (or perturbations) of the considered graph. We then propose a new notion of
tameness of a graph class, called bounded flip-width, which is a dense counterpart of classes
of bounded expansion of Nešetřil and Ossona de Mendez, and includes classes of bounded
twin-width of Bonnet, Kim, Thomassé, and Watrigant. This unifies Sparsity Theory and
Twin-width Theory, for the first time providing a common language for studying the central
notions of the two theories, such as weak coloring numbers and twin-width – corresponding
to winning strategies of one player – or dense shallow minors, rich divisions, or well-linked
sets, corresponding to winning strategies of the other player. To demonstrate the robustness
of the introduced notions, we prove that boundedness of flip-width is preserved by first-
order interpretations, or transductions, generalizing previous results concerning classes of
bounded expansion and bounded twin-width. We also show that the considered notions are
amenable to algorithms, by providing an algorithm approximating the flip-width of a given
graph, which runs in slicewise polynomial time (XP) in the size of the graph. Finally, we
propose a more general notion of tameness, called almost bounded flip-width, which is a dense
counterpart of nowhere dense classes. We conjecture, and provide evidence, that classes
with almost bounded flip-width coincide with monadically dependent (or monadically NIP)
classes, introduced by Shelah in model theory. We also provide evidence that classes of
almost bounded flip-width characterise the hereditary graph classes for which the model-
checking problem is fixed-parameter tractable, which is of central importance in structural
and algorithmic graph theory.

*University of Warsaw, Poland. This paper is part of a project that has received funding from the European
Research Council (ERC) (grant agreement No 948057 – BOBR).
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1 Introduction

A recent focus of algorithmic and structural graph theory, and of finite model theory, is to
find graph parameters that extend the parameters used in the context of sparse graphs, to the
dense setting. More generally, the goal is to extend the Sparsity theory of Nešetřil and Ossona
de Mendez [NdM12] to dense graph classes. Two central parameters used in the sparse
setting are treewidth and degeneracy; both have found numerous applications in algorithms
and combinatorics. Whereas the dense analogue of treewidth – clique-width, or rank-width –
is well-understood, there is not even a clear candidate for the dense analogue of degeneracy1.
Recall that a graph has degeneracy at most d if its vertices can be totally ordered so that every
vertex has at most d neighbors before it in the order. Generalized coloring numbers are related
parameters, specified by a radius r, which impose restrictions on neighborhoods of radius r,
degeneracy being the case of radius r = 1. Sparsity theory is a very successful theory studying
classes of sparse graphs in which degeneracy and generalized coloring numbers play a central
role. The fundamental notions of this theory are two tameness conditions for graph classes:
bounded expansion and nowhere denseness. A class of graphs has bounded expansion if and only
if each generalized coloring number is bounded by a constant (depending on the radius), on
all graphs in the class. Examples include every class with bounded maximum degree, the class
of planar graphs, classes of bounded treewidth, and every class that excludes some graph as
a minor or as a topological minor. The more general nowhere dense classes are characterized
analogously, with the constant bound on the generalized coloring numbers of n-vertex graphs
replaced with O(nε), for any fixed ε > 0. In particular, nowhere dense classes are sparse –
every n-vertex graph in such a class has O(n1+ε) edges for any fixed ε > 0, and every nowhere
dense class excludes some biclique Kt,t as a subgraph. Classes with bounded expansion and
nowhere dense classes can be characterized in many other ways, in terms of their remarkable
combinatorial, algorithmic, and logical properties, yielding multiple applications in those
areas.

One of the driving questions in this line of work [Gro07], on the algorithmic side, is to
characterize those graph classes for which the model-checking problem for first-order logic is
fixed-parameter tractable: there is an algorithm that determines whether a given graph G from
the class satisfies a given first-order sentence φ in time f (φ) · |G|c, for some constant c and
function f that depend only on the class. Such a characterization is known in the special case
of monotone graph classes, that is, graph classes that are closed under removing vertices and
edges. In a landmark result, Grohe, Kreutzer and Siebertz [GKS17] proved that a monotone
graph class has fixed-parameter tractable model-checking if and only if it is nowhere dense
(under a complexity-theoretic assumption, FPT ̸=AW[∗]).

There is an ongoing effort to lift Sparsity theory to hereditary graph classes, that is, classes
that are closed under removing vertices. For example, the class of cliques is hereditary and
combinatorially and logically very simple, but lies outside of the realm of Sparsity theory,
which is only suited to the study of monotone graph classes. Indeed, all notions studied in
Sparsity theory – generalized coloring numbers, bounded expansion, nowhere denseness, etc.
– are monotone under edge removals. There are many other known hereditary graph classes
that are well-behaved in a similar way to classes with bounded expansion and nowhere dense
classes, but are not monotone, and are not sparse (e.g. contain arbitrarily large cliques).
Those include for instance classes of bounded clique-width, the class of unit interval graphs,
or proper hereditary classes of permutation graphs – which are all subsumed by the recently
introduced classes of bounded twin-width [BKTW20] (see below) – as well as structurally
nowhere dense classes [DMS23] – classes of graphs that can be obtained from a nowhere dense
graph class by redefining the edges using a fixed first-order formula φ(x, y) – for instance,
the edge-complements of graphs from a nowhere dense class, or the squares of graphs from
a nowhere dense class.

The developments in Structural graph theory – where many results concerning graph

1We are only aware of the recent notion of graph functionality [AAL21] as a possible candidate; see Sec. 5.5.
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classes of bounded treewidth are extended to the setting of classes of bounded clique-width
– serves as an inspiration in attempts of lifting the results of Sparsity theory from the sparse
(monotone) setting to the dense (hereditary) setting. It is expected that the fundamental
notions of Sparsity theory – bounded expansion and nowhere denseness – should extend
to more general tameness conditions for graph classes that are possibly dense, similarly as
treewidth extends to clique-width. However, currently, even the most fundamental questions
remain unanswered: What is the dense analogue of degeneracy? Of generalized coloring
numbers? The pursuit after such notions has been a driving factor, and a major open problem
in the area (see Related Work below). To date, no such combinatorial notions, with compelling
evidence of their utility, have been proposed.

The recent and already very successful Twin-width theory, developed by Bonnet, Thomassé,
and coauthors [BKTW20, BGK+

21, BGOdM+
22, BCK+

22], provides a robust tameness con-
dition for graph classes that are not necessarily sparse, classes of bounded twin-width. Those
include many studied sparse graph classes, such as classes that exclude a fixed minor, as well
as dense graph classes, such as unit interval graphs, proper hereditary classes of permutation
graphs, or posets of bounded width. However, some very simple classes of bounded expan-
sion, such as the class of subcubic graphs (with maximum degree three), have unbounded
twin-width. Thus, the scopes of Twin-width theory and Sparsity theory are incomparable.
This motivates the quest of finding a unified theory that encompasses both Sparsity theory
and Twin-width theory, and provides a common framework for studying the fundamental
notions of the two theories.

Both Sparsity theory and Twin-width theory have found multiple combinatorial and algo-
rithmic applications, and the same is expected of a theory unifying the two. As a concrete ap-
plication, and a motivation for our pursuit, the sought theory is expected ultimately to resolve
one of the central open problems in structural and algorithmic graph theory – of characteriz-
ing those hereditary graph classes for which the model-checking problem is fixed-parameter
tractable [Gro07, Sec. 8.2] [GKS17, Sec. 9].

It is conjectured2 (see [war16, GHO+
20]) that first-order model-checking is fixed-parameter

tractable on a hereditary graph class C if and only if C is monadically dependent (also called
monadically NIP). This notion, formulated in logical terms, originates in model theory, and
was introduced by Shelah [She86] (see also Braunfeld and Laskowski [BL21]) in his momen-
tous classification program of logical theories. Intuitively, a hereditary class C is monadically
dependent if for any fixed first-order formula φ(x, y), there is some graph H that cannot be
represented in any graph G ∈ C, using the formula φ(x, y) to define the edges of H in G.

Conjecture 1.1. Let C be a hereditary class of graphs. Then the model-checking problem for first-order
logic is fixed-parameter tractable on C if and only if C is monadically dependent.

Monadically dependent graph classes include all the graph classes mentioned above, and
are considered (see [AA14, BL21, NdMP+

21, GPT22]) to be the dense counterpart of nowhere
dense classes, as expressed e.g. by Conjecture 1.1. For instance, nowhere dense classes
are exactly those monadically dependent classes that exclude some biclique as a subgraph
[NdMP+

21]. However, to date, no combinatorial characterization of monadically dependent
graph classes – akin to the multiple characterizations of nowhere dense classes – is known.
As a consequence, in general, monadically dependent classes are currently beyond the reach
of algorithmic methods.

Contribution We propose a new family of graph parameters, called flip-width of radius r,
for r ∈ N∪ {∞}, that are based on new flipper games. Those games are similar to the Cops and
Robber game considered by Seymour and Thomas to characterize treewidth, in their classic

2The conjecture has been circulating in the community since around 2016. As far as we know, it has first been stated
explicitly during the open problem session of [war16]. There, dependent (or NIP) classes were considered instead of
monadically dependent classes, but those two notions coincide for hereditary classes, by a result of Braunfeld and
Laskowski [BL22].
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Figure 1: Properties of graph classes, and implications among them. Each property in the lower row,
restricted to monotone graph classes, yields the property above it. The properties marked [∗] are
introduced in this paper. In this figure, almost bounded flip-width could be replaced by monadically
dependent [She86]; we conjecture that those properties are equivalent.

paper [ST93]. Variants of our game can be used to characterize all the aforementioned pa-
rameters: treewidth, degeneracy, and generalized coloring numbers used in the context of
sparse classes, as well as clique-width and twin-width in the context of dense graph classes.
More importantly, they provide generalizations of degeneracy, and of generalized coloring
numbers, to the setting of graphs that are not necessarily sparse, and offer a compelling dense
counterpart of classes of bounded expansion – called classes of bounded flip-width – and of
nowhere dense classes – called classes of almost bounded flip-width. Classes of bounded flip-
width include classes of bounded expansion as well as classes of bounded twin-width, and
provide a unified framework for understanding those fundamental notions (see Figure 1.)
We conjecture, and confirm in many special cases, that classes of almost bounded flip-width
coincide with monadically dependent classes. If true, this would give a combinatorial, quanti-
tative characterization of monadic dependence, analogous to the characterization of nowhere
dense classes in terms of generalized coloring numbers. Moreover, we verify that classes of
almost bounded flip-width include most known examples of hereditary graph classes that are
known to have a fixed-parameter tractable model-checking problem (we could not confirm
this only for classes with structurally bounded local cliquewidth).

On a high level, the main contribution of this paper is to lay new foundations of a theory
of structurally tractable graph classes, extending Sparsity theory to the dense setting, and
unifying it with Twin-width theory. In this paper, we define the fundamental notions of our
theory, and provide overwhelming evidence that they are the sought generalizations of the
fundamental notions of Sparsity theory to the dense setting. This evidence is provided by
multiple results, demonstrating that various central concepts of structural graph theory can
be uniformly explained in terms of our notions. In the next section, we present an overview
of our main results.

2 Overview

In this section, we give a high-level overview of the main results of this paper. These results
are discussed systematically in greater detail, with many illuminating examples and proof
sketches, in the following sections. Many of the statements recounted in this section are sim-
plified versions of the more precise statements given in the next sections. The full statement
of each result is referenced in parentheses. All relevant notions are defined in Section 3.

Cop-width Our starting point is the – apparently new – observation that classes with
bounded expansion can be characterized in terms of a variant of the Cops and Robber game
considered by Seymour and Thomas [ST93]. Recall that in this game, k cops and a robber are
occupying the vertices of a graph. In each round, some of the cops move to new positions
in helicopters – that is, not necessarily along edges in the graph – whereas the robber may
traverse any path in the graph which avoids the vertices occupied by the cops that remain on
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ground. The minimal number k of cops needed to capture the robber is equal to one plus the
treewidth of the graph.

In Section 4 we consider a variant of the Cops and Robber game, in which the robber runs
at speed r, for some fixed r ∈ N∪ {∞}: they may traverse a path of length at most r that does
not run through a cop. We call the parameter r the radius of the game, while the number of
cops is called the width of the game. The radius-r cop-width of G, denoted copwidthr(G), is the
least number k such that k cops win the game with radius r.

Thus, we obtain a family of graph parameters, one for each r ∈ N ∪ {∞}. As we observe,
variants of the above game characterize the graph parameters mentioned earlier: treewidth
(for r = ∞), degeneracy (for r = 1), and generalized coloring numbers (for 1 ⩽ r < ∞).
Namely, the result of Seymour and Thomas can be phrased as follows.

Theorem 2.1 ([ST93]). For every graph G,

copwidth∞(G) = treewidth(G) + 1.

On the other extreme, for radius r = 1, we have the following:

Theorem 2.2 (Thm. 4.4). For every graph G,

copwidth1(G) = degeneracy(G) + 1.

For higher radii, we prove a correspondence of the cop-width parameters with general-
ized coloring numbers. Recall that a graph class has bounded expansion if and only if each
generalized coloring number is bounded by a constant on all graphs from the class.

Theorem 2.3 (Cor. 4.6). A graph class C has bounded expansion if and only if copwidthr(C) < ∞
for every fixed r ∈ N.

Here and later on, for a graph parameter f and graph class C, we denote the supremum
of f (G), for G ∈ C, by f (C). In Theorem 2.2, we show that a witness to having degeneracy
d – an ordering of the vertices such that every vertex has at most d vertices before it – yields
a winning strategy for the Cops to win the game of width d + 1 and radius 1, in which the
Cops move to the current position of the robber and all neighbors before it, thus forcing the
robber to move upwards in the order. Conversely, a witness to having degeneracy larger than
d – a set U of vertices such that every vertex in U has more than d neighbors in U – yields
a winning strategy for the robber, allowing him to always remain in the set U. Similarly, to
prove Theorem 2.3, we consider the Cops and Robber game for higher radii 1 ⩽ r < ∞, and
rely on central duality theorems of Sparsity theory, which describe combinatorial obstructions
to having a small weak coloring number, in terms of a dense shallow minor [NO08]. We show that
a witness to having a small weak coloring number yields a winning strategy for the Cops,
while a dense shallow minor yields a winning strategy for the Robber in the Cops and Robber
game of a fixed, finite radius. Those observations are analogues to the central duality result
of Seymour and Thomas [ST93], which shows that a witness to having small treewidth yields
a winning strategy for the Cops, while the dual obstruction to small treewidth, called a haven
or bramble, yields a winning strategy for the Robber in the Cops and Robber game of infinite
radius.

Parallel to Theorem 2.3, we obtain a characterization of nowhere dense classes:

Theorem 2.4 (Cor. 4.7). A hereditary graph class C is nowhere dense if and only if for every fixed
radius r ∈ N and ε > 0, and for all n-vertex graphs G ∈ C, we have that copwidthr(G) ⩽ O(nε).

As is made apparent by the results above (and discussed in Section 4) the cop-width
parameters capture a substantial part of the fundamental notions of Sparsity theory. However,
being monotone under edge removals, they are only suited to the study of sparse graphs.
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Flip-width In Section 5, we introduce a variant of the Cops and Robber game that is
suited for dense graphs, dubbed the flipper game. This is similar to the recent develop-
ment [GHN+

12, GMM+
23], where in some contexts, it is shown that vertex removals in

sparse graphs correspond to flips in dense graphs, and a different variant of the flipper game
is considered (see Related work below).

Flipping a pair of sets X, Y ⊆ V(G) in a graph G results in the graph G′ obtained from G
by inverting the adjacency of every pair (x, y) of vertices with x ∈ X and y ∈ Y: every such
pair that is adjacent in G becomes non-adjacent in G′, and vice-versa. A k-flip of a graph G
is obtained by partitioning V(G) into k parts, and then performing flips between some pairs
X, Y of parts of the partition (possibly with X = Y).

To motivate the flipper game, observe that in the Cops and Robber game of width k,
we may think of the Cops as isolating at most k vertices, instead of placing the Cops on
those vertices, where isolating a vertex amounts to (temporarily) removing all edges that are
incident to it. Isolating a single vertex v in a graph G can be achieved by performing a 3-flip
of G: partition the vertices into {v}, the set of neighbors of v, and the remaining vertices,
and flip the first two sets. Similarly, a graph G obtained by isolating k vertices v1, . . . , vk is a
(k + 2k)-flip of G, by taking the common refinement of the partitions used for isolating each
vertex vi separately. In the flipper game defined below, we will allow one player to perform
flips, significantly extending their power comparing to the cops in the Cops and Robber game.

The flipper game of radius r and width k on a graph G is a game played by two players,
flipper and runner, proceeds as follows. Initially, the runner picks any vertex v0 of G. In the ith
round, the flipper announces a k-flip Gi of the original graph G. The runner can move from
their previous position vi−1 to a new position vi, by traversing a path of length at most r in
the previous k-flip Gi−1 of G (where G0 = G). The game is won by the flipper if the runner’s
new position vi is isolated in the announced k-flip Gi.

The flip-width of radius r of a graph G, denoted fwr(G), is the smallest number k for which
the flipper has a winning strategy in the game described above. We say that a graph class C
has bounded flip-width if fwr(C) < ∞ for all r ∈ N.

Note that if H is an induced subgraph of G then fwr(H) ⩽ fwr(G), for all r. In particular,
a graph class C has bounded flip-width if and only if its hereditary closure – consisting of all
induced subgraphs of graphs in C – has bounded flip-width.

As we argue below, the flip-width parameters are the sought dense analogues of the gen-
eralized coloring numbers, while classes of bounded flip-width are the dense analogues of
classes of bounded expansion. Additionally, we show that variants of the flipper game can
be used to uniformly characterize several among the most important graph parameters stud-
ied in structural graph theory: degeneracy, treewidth, and generalized coloring numbers, as
well as clique-width and twin-width. For the first time, this provides a common perspec-
tive on parameters such as degeneracy and twin-width, or generalized coloring numbers and
clique-width – all of which can be seen as representations of winning strategies in the flipper
game. This common perspective also allows to view in a unified way various key combina-
torial notions representing obstructions – namely havens or brambles studied in the context of
treewidth [ST93], well-linked sets studied in the context of clique-width [iOS06], dense shallow
minors studied in the context of bounded expansion classes [NO08], or rich divisions studied
in the context of twin-width [BGOdM+

22]. Those notions lie at the core of duality theorems
for the related parameters, and also have important algorithmic applications. As we will see,
those notions can be seen as representations of winning strategies for the runner in the flipper
game.

We now give a summary of our results concerning flip-width.

Relating flip-width to other notions We start with comparing classes of bounded flip-
width with the fundamental notions of Sparsity theory and Twin-width theory.

First, regarding the sparse graph parameters – degeneracy, treewidth, and generalized
coloring numbers – we show that those correspond to the parameters fw1, fw∞ and fwr, for
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1 ⩽ r < ∞, when considering weakly sparse graph classes. A graph class is weakly sparse if it
excludes some fixed biclique as a subgraph.

Theorem 2.5. Let C be a graph class. Then:

1. (Thm. 6.1) C has bounded degeneracy if and only if C is weakly sparse and fw1(C) < ∞,
2. (Cor. 6.2) C has bounded treewidth if and only if C is weakly sparse and fw∞(C) < ∞,
3. (Thm. 6.3) C has bounded expansion if and only if C is weakly sparse and C has bounded flip-

width.

This shows that the flipper game of radius r is a sensible generalization of the Cops
and Robber game of radius r discussed earlier, since we already know that the above no-
tions (degeneracy, treewidth, bounded expansion) can be characterized in terms of the latter
game. This fact only gives the rightwards implications in the above statements. To prove
the converse implications, we rely on characterizations of Kt,t-free graphs with small degener-
acy/treewidth/expansion in terms of forbidden induced subgraphs. Such induced subgraphs
can be exploited by the runner to win the flipper game.

We then move to studying the flip-width parameters in graph classes that are not neces-
sarily sparse. As a first case study, we verify that the flipper game with radius ∞ corresponds
to clique-width, similarly as the Cops and Robber game corresponds to treewidth. Namely,
we prove:

Theorem 2.6 (Thm. 5.17). A class C of graphs has bounded clique-width if and only if fw∞(C) < ∞.

This gives the first, to our knowledge, game characterization of classes of bounded clique-
width, analogous to the classic characterization of treewidth by Seymour and Thomas. To
prove the rightwards implication, we view a clique-width expression (used to construct a
graph of bounded clique-width) as a description of a winning strategy for the flipper in the
radius-∞ flipper game. For the converse implication, again we show that obstructions for
bounded clique-width – called well-linked sets – yield winning strategies for the runner.

As clique-width is the dense analogue of treewidth, Theorem 2.6 is another indication that
our flipper game is an adequate generalization of the Cops and Robber game for the study
of dense graph classes. In Section 7 we provide further evidence of this, by demonstrating
that another crucial graph parameter studied in the context of dense graphs, twin-width, can
be characterized in terms of flip-width. First, we show that classes of bounded flip-width
include all classes of bounded twin-width. Those include, for example, the class of unit
interval graphs, or every proper hereditary class of permutation graphs.

Theorem 2.7 (Thm. 7.1). Every class of bounded twin-width has bounded flip-width.

The proof of this result views contraction sequences, which are recursive decompositions of
graphs of bounded twin-width, as strategies for the flipper in the flipper game.

By the results above, classes of bounded flip-width include all classes with bounded ex-
pansion as well as classes of bounded twin-width. As those two notions are incomparable,
classes of bounded flip-width strictly extend each of them. In particular, the converse to
Theorem 2.7 fails.

To characterize twin-width using flip-width, we naturally extend the flip-width parameters
to arbitrary structures equipped with one or more binary relation, such as ordered graphs –
graphs equipped with a total order. We prove that for classes of ordered graphs, bounded
flip-width and bounded twin-width coincide:

Theorem 2.8 (Thm. 7.3). A class of ordered graphs has bounded twin-width if and only if it has
bounded flip-width.

The rightwards implication follows from Theorem 2.7. To prove the converse, we view the
combinatorial obstructions to small twin-width, called rich divisions [BGOdM+

22], as descrip-
tions of winning strategies for the runner in the flipper game.

It is known [BGOdM+
22] that a class of graphs has bounded twin-width if and only if

it can be obtained from a class of ordered graphs of bounded twin-width, by forgetting the
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order. Thus, classes of bounded twin-width are exactly classes of ordered graphs of bounded
flip-width, with the order forgotten.

Reassuming, variants of our flipper game capture degeneracy, treewidth, bounded expan-
sion, clique-width, and twin-width, all of which are of central importance in structural and
algorithmic graph theory. Moreover, structural results can be employed to describe winning
strategies for the flipper, while the dual combinatorial obstructions can be used to obtain
strategies for the runner.

Closure properties Another main contribution of this paper are results showing that
classes of bounded flip-width enjoy good closure properties, in particular, closure under first-
order interpretations (and more generally, transductions, see Theorem 8.2). More precisely,
for a first-order formula φ(x, y) and graph G, define the graph φ(G) with vertices V(G)
and edges uv with u ̸= w, such that φ(u, v) ∨ φ(v, u) holds in G. For a graph class C, let
φ(C) := {φ(G) | G ∈ C}. For example, if φ(x, y) is the formula ∃z.E(x, z) ∧ E(z, y) (where E
denotes adjacency), then φ(G) is the square of G. In Section 8, we prove the following.

Theorem 2.9 (Thm. 8.2). Let φ(x, y) be a first-order formula and C be a graph class. If C has bounded
flip-width then φ(C) has bounded flip-width.

This generalizes a prior analogous result for classes of bounded twin-width [BKTW20]
and a result concerning classes of bounded expansion. Also, this result provides further ex-
amples of classes of bounded flip-width, for instance, classes of structurally bounded expansion
[GKN+

20], that is, classes of the form φ(C), where C has bounded expansion and φ(x, y) is
a first-order formula. Moreover, Theorem 2.9 implies that classes of bounded flip-width are
monadically dependent, a notion that conjecturally delimits the tractability frontier for the
model checking problem (see Conjecture 1.1).

The proof of Theorem 2.9 uses a tool from finite model theory – namely, locality of first-
order logic – that has so far been used mostly in the context of sparse graph classes, but more
recently has also been successfully applied in the context of dense graph classes [BKTW20,
BDG+

22, DMS23].

Approximation Determining the exact flip-width of radius r of a given graph G seems
computationally difficult (the naive approach is exponential in the size of G). As our next
contribution, in Section 9, we obtain a slicewise polynomial (XP) algorithm that approximates
the flip-width of a given graph G, which runs in time polynomial in the size of G, when the
flip-width is considered fixed.

Theorem 2.10 (Thm. 9.7). There is a constant C > 0 and an algorithm that, given as inputs an n-
vertex graph G and numbers r, k ∈ N, runs in time nO(k) · 2O(2k), and either concludes that fwr(G) ⩽
2k, or concludes that fw5r(G) ⩾ C · k1/3.

Note that no XP algorithm approximating twin-width is known. This suggests that flip-
width might be easier to approximate than twin-width, even if it defines a more general
notion.

To prove Theorem 2.10, we define a variant of the flipper game, called the definable flipper
game, in which the partitions used by the Cops for defining flips are definable: they partition
the vertex set according to their adjacency in a set of vertices of bounded size. The advantage
of this game variant is that it has polynomially many (in terms of the graph size) possible
configurations, as opposed to the flipper game, which has exponentially many configurations.
Although not every k-flip of a graph G can be defined by using a partition definable using a
vertex set of bounded size, we prove that nevertheless the graph parameters defined by the
definable flipper game can still be bounded in terms of the flip-width parameters. The proof
uses tools from Vapnik-Chervonenkis theory.
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Almost bounded flip-width As our final contribution, in Section 10 we introduce and
study classes of almost bounded flip-width, as a candidate dense counterpart of nowhere
dense classes. A graph class C has almost bounded flip-width if for every ε > 0 and r ∈ N,
we have fwr(G) ⩽ Or,ε(nε) for every n-vertex graph G which is an induced subgraph of a
graph in C. Thus, every class of bounded flip-width has almost bounded flip-width, but the
converse does not hold.

We provide substantial evidence that classes of almost bounded flip-width coincide with
monadically dependent classes (cf. Conjecture 1.1), and also that the model checking problem
is fixed-parameter tractable for those classes. This is corroborated by the following results,
which examine this notion in special cases.

First, in the setting of weakly sparse classes, we prove:

Theorem 2.11 (Thm. 10.9). Let C be a weakly sparse graph class. The following conditions are
equivalent:

1. C has almost bounded flip-width,

2. C is nowhere dense,

3. C is monadically dependent.

The equivalence of the second and third conditions was known; the new result is the
equivalence with the first condition.

In the setting of classes of ordered graphs, we prove an analogous statement, with nowhere
denseness replaced by bounded twin-width. Moreover, in this case, almost bounded flip-
width collapses to bounded flip-width. This collapse is, ultimately, a consequence of the
Marcus-Tardos theorem/Stanley-Wilf conjecture [MT04] from enumerative combinatorics.

Theorem 2.12 (Thm. 10.17). Let C be a class of ordered graphs. The following conditions are equiva-
lent:

1. C has almost bounded flip-width,

2. C has bounded flip-width,

3. C has bounded twin-width,

4. C is monadically dependent.

The equivalence of conditions 3,4 was known previously [BGOdM+
22], and their equiva-

lence with condition 2 is by Theorem 2.8. The implication 2→3 is immediate. We prove the
implication 1→3 using another characterisation from [BGOdM+

22].

In particular, in the two settings considered in the theorems above, the model checking
problem is fixed-parameter tractable, by the results of [GKS17] and [BGOdM+

22], respectively.

We now move to a more general setting than that of weakly sparse classes, namely of
stable classes. A class C is edge-stable if there is a number k such that no graph G ∈ C con-
tains vertices a1, . . . , ak, b1, . . . , bk such that E(ai, bj) ⇐⇒ i ⩽ j for i, j ∈ {1, . . . , k} (see
Fig. 2). Edge-stable, monadically dependent graph classes coincide with monadically stable
classes [BS85, NdMP+

21], an important subfamily of monadically dependent classes. Exam-
ples include all structurally nowhere dense classes, that is, classes of the form φ(C), for some
first-order formula φ(x, y) and nowhere dense class C. It is conjectured [NdMP+

21, Con-
jecture 6.1] that all monadically stable graph classes are structurally nowhere dense. By a
recent result [DMS23], the model-checking problem is fixed-parameter tractable for all struc-
turally nowhere dense classes, thus significantly extending the result of [GKS17] concerning
model-checking on nowhere dense classes. We prove the following.

Theorem 2.13 (Thm. 10.12). Every structurally nowhere dense class has almost bounded flip-width.

In the proof, we use the recent description of structurally nowhere dense classes [DGK+
22a],

which provides certain treelike decompositions for such classes, that can be used to produce
a winning strategy for the flipper. As a weak converse, we prove:
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Theorem 2.14 (Thm. 10.15). Every edge-stable class of almost bounded flip-width is monadically
stable.

The proof relies on a recent characterization of obstructions to monadic stability [GMM+
23],

which can be used to produce a winning strategy for the runner.
In particular, if all monadically stable classes are structurally nowhere dense as conjectured

in [NdMP+
21], the two results imply that among edge-stable graph classes, almost bounded

flip-width coincides with monadic stability (and thus with monadic dependence). Further-
more, by the result of [DMS23], the conjecture would imply fixed-parameter tractability for
all edge-stable classes of almost bounded flip-width.

Those results provide substantial evidence indicating that classes of almost bounded flip-
width form the dense counterpart of nowhere dense classes, that they coincide with monad-
ically dependent classes, and that they admit fixed-parameter tractable model-checking. In
fact, almost all3 hereditary graph classes having fixed-parameter tractable model-checking
that we are aware of [GKS17, BKTW20, DMS23, BCK+

22], have almost bounded flip-width.
Based on this, we believe that classes of almost bounded flip-width will play a key role in
combinatorial and algorithmic approaches to the analysis of monadically dependent classes.

Additionally, in Theorem 10.21 we prove that every hereditary class of almost bounded
twin-width (that is, class whose n-vertex graphs have twin-width no(1)) has almost bounded
flip-width.

We supplement our results with a discussion, in Section 11, providing evidence for various
stated conjectures, and outline a potential approach towards an algorithmic and combinatorial
understanding of the classes introduced in this paper.

Related work Our flipper game is inspired by the paper [GMM+
23]. There, another game

based on performing flips is introduced, and is also called flipper game. We consider both
games to be variants of a broader family of a flipper games, similarly as there are many
variants of the Cops and Robber game. As far as we know, only two variants of the flipper
game have been considered so far, but we anticipate that more variants might emerge. To
distinguish the two variants, we may call the variant introduced in this paper the open flipper
game, and the variant from [GMM+

23] the confined flipper game of bounded duration. The latter
game is an analogue of the splitter game, which characterizes nowhere dense classes [GKS17].
Similarly, the flipper game from [GMM+

23] characterizes monadically stable graph classes,
a strict subset of monadically dependent classes. It differs from the open flipper game in
two major ways. Firstly, the duration of the game is bounded, whereas in our variant, it is
unbounded. Furthermore, in each round of the confined flipper game, the fugitive is confined
to the radius-r ball around his present position in the current flip of the graph in all future
rounds, not just the next round as in the open game. The confined flipper game of bounded
duration is used in [GMM+

23] to characterize monadically stable classes, which are incom-
parable with classes of bounded flip-width, and are likely to be strictly contained in classes
of almost bounded flip-width (see Section 10).

There are multiple variations of the Cops and Robber game, and some of them are similar
to the one considered above for sparse graphs. In some of those variants, the robber has
bounded speed, as in our games. See [FKL12, FGK+

10, AM15] and [FT08] for a survey. The
cop-width parameters that we study for sparse graphs are closely related to the parameters
studied in [RT08] and [LPPT20], which are defined in terms of a similar game, as we discuss
in Section 4 and in Appendix A.1.

Some attempts at defining graph classes that are dense analogues of classes of bounded ex-
pansion were made in [KPS17, GKN+

18, NORS21, NdMP+
21, GPT22, BNdMS22b]. In [KPS17,

NORS21, NdMP+
21], the property of having low rankwidth covers is proposed as the dense

analogue of bounded expansion. However, this notion does not include4 classes of bounded

3One exception are classes with structurally bounded local clique-width [BDG+
22], which are tractable and monad-

ically dependent, but we do not know whether they have almost bounded flip-width.
4An example was provided by Jakub Gajarský (private communication)
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twin-width, and it is not known whether this notion is closed under transductions. It has
been proved recently that those classes are monadically dependent [BNdMS22a]. In [GPT22,
Section 4] and [BNdMS22b, Section 8], an attempt at formalizing an abstract notion of a dense
analogue of classes with bounded expansion was made, but those papers do not propose any
workable combinatorial definition.

Acknowledgement I am very indebted to Édouard Bonnet, Jan Dreier, Jakub Gajarský,
Rose McCarty, Michał Pilipczuk, Wojtek Przybyszewski, and Marek Sokołowski, for numer-
ous stimulating discussions on topics closely related to this paper. Special thanks go to Pierre
Ohlmann, who has read a first draft of this paper and helped improve it.

Organization The organization of this paper is as follows. Results marked with (∗) are
proved in the Appendix.

Section 3 introduces some standard notation, and recalls some basic notions and results,
e.g. from Sparsity theory and Vapnik-Chervonenkis theory.

In Section 4 we introduce the cop-width parameters, and demonstrate they characterize
degeneracy, treewidth, and generalized coloring numbers. Using those parameters, we char-
acterize classes of bounded expansion and nowhere dense classes.

In Section 5 we introduce our two main notions: the flip-width parameters, and classes of
bounded flip-width. We give many examples, and derive some combinatorial properties. We
show that radius-∞ flip-width is equivalent to clique-width.

In Section 6 we study the behavior of the flip-width parameters in the case of Kt,t-free
graphs. We show that radius-one flip-width corresponds to degeneracy, and that for higher
radii, the flip-width parameters correspond to the generalized coloring numbers. Conse-
quently, a weakly sparse graph class has bounded flip-width if and only if it has bounded
expansion.

In Section 7 we study the relationship between twin-width and flip-width. We prove that
every class of bounded twin-width has bounded flip-width. We also prove that for classes of
ordered graphs, bounded flip-width and bounded twin-width are equivalent.

In Section 8 we prove that classes of bounded flip-width are preserved by first-order trans-
ductions.

In Section 9 we introduce a definable variant of flip-width, and prove its equivalence with
flip-width. As a consequence, we get a slicewise polynomial (XP) approximation algorithm
for the flip-width parameters.

In Section 10 we introduce our third main notion, classes of almost bounded flip-width.
We prove that they contain all structurally nowhere dense classes, and study their relationship
with monadically stable and monadically dependent classes.

Finally, in Section 11, we discuss possible directions of further research, conjectures and
questions.
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3 Preliminaries

We introduce basic notation in Section 3.1. In Section 3.2 we recount the fundamental notions
of Sparsity theory. In Section 3.3 we recall the notion of Vapnik-Chervonenkis dimension of
a set system, of a graph, and of a binary relation. In Section 3.4 we recall basic notions from
logic (structures, formulas), and a result characterizing nowhere dense classes in terms of the
VC-dimension of certain set systems.

3.1 Notation

N = {0, . . .} denotes the set of nonnegative integers. For two sets A and B their symmetric
difference is denoted A△B := (A − B) ∪ (B − A). We write O(n) (resp. Ω(n)) to denote a
value that is bounded from above (resp. from below) by c · n + d, for some reals c, d with
c > 0. Sometimes we write Op(n) (resp. Ωp(n)), where p is a list of parameters, to indicate
that the constants c and d above depend on the parameters p. For a function f : N → R, we
write o( f (n)) to denote a function g : N → R with limn→∞

g(n)
f (n) = 0.

Graphs are finite, undirected and without self-loops. The set of vertices of a graph G is
denoted V(G), and the set of edges of G is denoted E(G). An edge joining u and v is denoted
uv. In particular, uv = vu and u ̸= v for all uv ∈ E(G). We write |G| for the number of vertices
of G. For a vertex v of a graph G the (open) neighborhood of v in G is NG(v) := {u | uv ∈ E(G)},
denoted N(v) if G is understood from the context. The set of vertices at distance at most r
from v in G is denoted Br

G(v).
A graph H is a subgraph of G if H is obtained by removing vertices and/or edges from

G, and is an induced subgraph of G if H is obtained by removing vertices from G, alongside
with the edges incident to them. The subgraph of G induced by a set of vertices X ⊆ V(G)
is the graph G[X] with vertices X and edges uv ∈ E(G) with u, v ∈ X. For X, Y ⊆ V(G),
the bipartite graph semi-induced by X and Y in a graph G has parts X and Y and edges xy
such that x ∈ X, y ∈ Y and xy ∈ E(G). Note that X and Y need not be disjoint in G; in this
case, G[X, Y] contains two copies of every vertex in X ∩ Y. Two sets X, Y are complete in G if
G[X, Y] is the complete bipartite graph, and anti-complete in G if G[X, Y] has no edges, and
homogeneous if they are either complete or anti-complete. Kt denotes the complete graph on t
vertices, and Ks,t denotes the complete bipartite graph with parts of sizes s and t.

A graph class C is a set of graphs. A class C is hereditary if it is closed under taking induced
subgraphs. The hereditary closure of a class C is the class of all induced subgraphs of graphs
from C. C is weakly sparse if there is some t ∈ N such that every G ∈ C excludes the biclique
Kt,t as a subgraph. A graph parameter is a function f assigning reals to graphs, which is
invariant under graph isomorphism. For a graph class C and graph parameter f , denote
f (C) := supG∈C f (G), with f (C) = ∞ if f is unbounded on C. Say that f is bounded in terms of
g if there is a function α : R → R such that f (G) ⩽ α(g(G)) for all graphs G. Two functions f
and g are functionally equivalent if each of them is bounded in terms of the other.

A k-colored graph is a graph G equipped with a function assigning a color from {1, . . . , k}
to each vertex of G. A class Ĉ of k-colored graphs is a k-coloring of a graph class C, if for every
colored graph in Ĉ, the underlying uncolored graph belongs to C, and for every graph G ∈ C,
some k-coloring of G belongs to Ĉ.

3.2 Sparsity theory

We briefly recall the fundamental notions of Sparsity theory. See [NdM12] for more back-
ground.

A graph G is d-degenerate if there is a total order on the vertices of G such that every vertex
has at most d neighbors before it in the order. The degeneracy of G is the least d such that G is
d-degenerate.
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An exact r-subdivision of a graph G is the graph obtained by replacing every edge of G
by a path of length r + 1. If every edge is replaced by a path of length at most r + 1, the
resulting graph is called a ⩽r-subdivision of G. For a graph G, let ∇̃r(G) denote the maximum
average degree, 2|E(H)|/|V(H)|, of all graphs H whose ⩽r-subdivision is a subgraph of
G (called shallow topological minors of G at depth r). Note that degeneracy(G) ⩽ ∇̃0(G) ⩽
2 · degeneracy(G).

Definition 3.1. A graph class C has bounded expansion if for every r ⩾ 1 we have ∇̃r(C) < ∞.

Example 3.2. Classes of bounded expansion include many well-studied sparse classes: the class
of planar graphs, every class of bounded maximum degree, classes of bounded tree-width,
classes that exclude a fixed (topological) minor.

The weak coloring and admissibility numbers are two families of graph parameters that
generalize the degeneracy number to higher radii r ⩾ 1, and are defined as follows. The
r-weak coloring number of a graph G, denoted wcolr(G), is the smallest number k with the
following property: There is a total order < on the vertices of G such that for every vertex v,
there are at most k vertices w with w < v that are weakly r-reachable from v: there is a path
of length at most r from v to w, in which w is the <-smallest vertex. On the other hand, the
r-admissibility of a graph G, denoted admr(G), is the smallest number k with the following
property: There is a total order < on V(G) such that for every v ∈ V(G) one cannot find more
than k paths of length at most r that start at v, end in some vertex w < v, and such that any
two of the paths share only v as a common vertex.

Both parameters are of central importance in Sparsity theory. It is known that wcolr(G) is
bounded in terms of admr(G), and vice versa [Dvo13, Lemma 6]. More specifically, we have
the following.

Fact 3.3. For all graphs G and r ⩾ 1 we have

admr(G) ⩽ wcolr(G) ⩽ O(admr(G))r. (1)

The fundamental notion of Sparsity theory can be characterized using weak coloring num-
bers as follows:

Fact 3.4 ([Zhu09]). A class C of graphs has bounded expansion if and only if wcolr(C) < ∞ for every
r ∈ N.

By (1), we could replace wcolr(C) by admr(C) in this characterization.
We use the following inequalities.

Fact 3.5. For all graphs G and r ⩾ 1 we have

∇̃r−1(G)/2 < admr(G) ⩽ 6
(
∇̃r−1(G)

)3 . (2)

Proof. The upper bound below is [GKR+
18, Theorem 3.1]. We prove the lower bound. Sup-

pose G contains an ⩽(r − 1)-subdivision of a graph with average degree s. Then G contains
an ⩽(r − 1)-subdivision of a graph H with minimum degree larger than s/2. Let U ⊆ V(G)
consist of the principal vertices, corresponding to the vertices of H. Then for every vertex
u ∈ U there are more than s/2 paths of length r that start at u, end at vertices of U, and are
vertex-disjoint apart from u. The set U witnesses that admr(G) > s/2.

We now move to nowhere dense classes.

Definition 3.6. A graph class C is nowhere dense if for every r ⩾ 1 there is some n ⩾ 1 such that
for all G ∈ C, no ⩽r-subdivision of Kn is contained as a subgraph of G ∈ C.

It is immediate that every class with bounded expansion is nowhere dense, and there exist
nowhere dense classes which do not have bounded expansion.

One of the central results of Sparsity theory is the following characterization of nowhere
dense classes (recall that |G| is the number of vertices of G).
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Fact 3.7. A hereditary graph class C is nowhere dense if and only if for every r ⩾ 1 and ε > 0 there is
a constant nr,ε such that wcolr(G) < |G|ε for every G ∈ C with |G| > nr,ε.

The condition in Fact 3.7 can be equivalently phrased as follows: for every r ⩾ 1 and ε > 0,
wcolr(G) ⩽ Or,ε(|G|ε) for every G ∈ C. This can be written more concisely as wcolr(G) ⩽
|G|o(1).

This fundamental result opens the door for multiple algorithmic applications of nowhere
denseness, thanks to the existence of efficient algorithms approximating weak coloring num-
bers. In particular, the model-checking result [GKS17] relies on Fact 3.7.

3.3 Vapnik-Chervonenkis dimension

An important parameter measuring the complexity of graphs, and more generally, of set
systems, is the Vapnik-Chervonenkis dimension, or VC-dimension.

A set system is a pair (X,F ) with F ⊆ 2X . Its VC-dimension is the maximal size of a
subset Y ⊆ X such that {Y ∩ F | F ∈ F} = 2Y.We recall the fundamental Sauer-Shelah-Perles
lemma [Sau72, She72].

Lemma 3.8 (Sauer-Shelah-Perles lemma). Let (X,F ) be a set system of VC-dimension d. Then
|F | ⩽ O(|X|d).

The VC-dimension of a graph G, denoted VCdim(G), is defined as the VC-dimension of
the set system (V(G), {N(v) | v ∈ V(G)}). More explicitly, VCdim(G) is the maximal size of
a subset X ⊆ V(G) such that {N(v) ∩ X | v ∈ V(G)} = 2X .

For a binary relation R ⊆ V × W, and elements a ∈ V and b ∈ W, denote R⃗(a) := {w ∈
W | (a, w) ∈ R} and ⃗R(b) := {v ∈ V | (v, b) ∈ R}. The VC-dimension of R is the maximum of
the VC-dimensions of the two set systems

(V, {R⃗(a) | a ∈ V}) and (W, { ⃗R(b) | b ∈ W}).

3.4 Logic

In this paper, we only consider binary signatures, that is signatures Σ consisting of unary
relation symbols, binary relation symbols, and unary function symbols. Fix a binary signature
Σ. A Σ-structure B consists of a set of vertices V(B), and is equipped with interpretations for
each of the symbols in Σ, as unary relations, binary relations, and unary functions on V(B),
respectively. The number of vertices of B is denoted |B|. A graph G is seen as a structure over
the signature Σ consisting of one binary relation E, which is interpreted as adjacency in G.

Terms are defined inductively, as either a variable symbol, or a function symbol applied to a
term, e.g. x and f (g(y)) are terms if f , g are function symbols and x, y are a variable symbols.
A quantifier-free formula over the signature Σ is a boolean combination of atomic formulas of
the form U(t(x)), or t(x) = t′(y), or R(t(x), t′(y)), where U ∈ Σ is a unary relation, R ∈ Σ is
a binary relation, and t(x) and t′(y) are terms.

A first-order formula is built inductively: every atomic formula is a first-order formula, and
if φ, ψ are first-order formulas and x is a variable, then so are φ ∨ ψ, ¬φ, and ∃x.φ. The
notation φ ∧ ψ, φ → ψ, and ∀x.ψ is used as syntactic sugar. The quantifier rank of a formula φ
is the maximal nesting of quantifiers in it.

We may write φ(x1, . . . , xk) to indicate that the free-variables of φ are contained in {x1, . . . , xk}.
For a formula φ(x1, . . . , xk), structure A and elements a1, . . . , ak of A, we write A |= φ(a1, . . . , ak)
to denote that the valuation of the variables x1 7→ a1, . . . , xk 7→ ak satisfies the formula φ in A.

Say that a Σ-formula φ(x, y) is symmetric if G |= φ(u, v) ↔ φ(v, u) holds for every Σ-
structure G and elements u, v of G.

The Gaifman graph of a Σ-structure B is the graph with vertices V(B) and edges uv with
u ̸= v such that (u, v) ∈ R or (v, u) ∈ R for some binary relation R ∈ Σ, or f (u) = v or
f (v) = u for some unary function f ∈ Σ.
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Dependence Let φ(x̄; ȳ) be a first-order formula, whose set of free variables is partitioned
into two disjoint sets x̄ and ȳ. For a structure H define the binary relation Rφ

H ⊆ V(H)x̄ ×
V(H)ȳ as

Rφ
H = {(ū, v̄) ∈ V(H)x̄ × V(H)ȳ | H |= φ(ū; v̄)}.

Say that a class C of Σ-structures is dependent, or NIP [SS71, Adl08] if for every first-order
formula φ(x̄; ȳ) there is some kφ ⩾ 1 such that for every H ∈ C the binary relation Rφ

H has VC-
dimension at most kφ. This is equivalent to saying that for every first-order formula φ(x̄; ȳ),
there is some bipartite graph Gφ, such that for all H ∈ C, the bipartite graph with parts V(H)x̄,
V(H)ȳ and edges (ū, v̄) such that H |= φ(ū; v̄), does not contain Gφ as an induced subgraph.

The following fact is a due to Podewski and Ziegler [PZ78] (see also [AA14] and [PST18]).

Fact 3.9. Every nowhere dense graph class C is dependent. Conversely, every monotone, dependent
graph class C is nowhere dense.

Hereditary, dependent graph classes are much more general than nowhere dense classes.
The study of those classes is the main motivation of this paper. A closely related notion, of
a monadically dependent class, is discussed in Section 10. Monadically dependent classes are
dependent, but in general, the converse implication does not hold. However, as shown by
Braunfeld and Laskowski [BL22], for hereditary classes, the two notions coincide.

4 Cop-width

We start with defining and analyzing the Cops and Robber game with finite radius, and the
related cop-width parameters. To define the game, we invoke the original description of the
Cops and Robber game by Seymour and Thomas [ST93]: “The robber stands on a vertex of the
graph, and can at any time run at great speed to any other vertex along a path of the graph.
He is not permitted to run through a cop, however. There are k cops, each of whom at any
time either stands on a vertex or is in a helicopter (that is, is temporarily removed from the
game). The objective of the player controlling the movement of the cops is to land a cop via
helicopters on the vertex occupied by the robber, and the robber’s objective is to elude capture.
(The point of the helicopters is that cops are not constrained to move along paths of the graph
– they move from vertex to vertex arbitrarily.) The robber can see the helicopter approaching
its landing spot and may run to a new vertex before the helicopter actually lands.”

Seymour and Thomas proved that the least number of cops needed to catch a robber on a
graph G is equal to one plus the treewidth of G. To this end, they proved a min-max theorem:
either the cops have a winning strategy of a particularly simple, monotone form, which can
be described by a tree decomposition of the graph, or otherwise, the robber has a winning
strategy of a particularly simple form, called a haven.

In our variant of the game the robber runs at speed r, for some fixed r ∈ N∪ {∞}. That is,
in each round, after the cops have taken off in their helicopters to their new positions, which
are known to the robber, and before the helicopters have landed, the robber may traverse a
path of length at most r that does not run through a cop that remains on the ground (he may
also stay put). We call this game the Cops and Robber game with radius r and width k, if there
are k cops, and the robber can run at speed r.

Definition 4.1. The radius-r cop-width of G, denoted copwidthr(G), is the least number k such
that the cops win the Cops and Robber game with radius r and width k.

Note that there is a graph parameter called the cop-number of a graph [AF84], which is
equal to the number of cops needed to catch the robber in a game where the cops and the
robber move at speed one in each turn. It could seem that copwidth1(G) is upper bounded
by the cop-number of G. However, there is a crucial difference with our notion: the cops do
not announce their moves in advance. So for instance, every graph with a universal vertex (a
vertex adjacent to all other vertices) has cop-number equal to one (such graphs are called cop-
win graphs). On the other hand, copwidth1(G) can be arbitrarily large on such graphs. Indeed,
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it is easy to see that for each r ∈ N ∪ {∞}, the parameter copwidthr(G) is monotone with
respect to the subgraph relation: if H is a subgraph of G then copwidthr(H) ⩽ copwidthr(G).

Example 4.2. Let G be a graph with maximum degree d. Then copwidthr(G) < dr+1, for all
r ∈ N. To see this, consider the following strategy for the cops: if the robber is initially placed
on a vertex v, direct the cops to all (less than dr+1) vertices that are at distance at mo st r from
v. Before the cops land at those locations, the robber traverses a path of length at most v to
one of those vertices, and is caught by the landing cop.
Example 4.3. Let T be a rooted tree. Then G has tree-width at most one, so by the Seymour-
Thomas result, copwidth∞(G) ⩽ 2. The strategy with two cops is as follows. In the first
round, land one cop on the root of the tree, leaving the other cop in his helicopter. In each
subsequent round, direct the cop that is further from the robber, to the child of the other cop’s
position which is closest to the robber’s position. With this strategy, in round i the robber will
be at distance at least i from the root, so they will be caught after at most as many rounds as
the height of T.

We start with comparing the most fundamental parameter of Sparsity theory, degeneracy,
with the cop-width parameter for radius 1.

Theorem 4.4. For every graph G,

copwidth1(G) = degeneracy(G) + 1.

The simple proof of this fact relies on the fundamental duality result concerning degener-
acy: for every d ∈ N, every graph G is either d-degenerate, or it has a subgraph H in which
every vertex has degree larger than d. This duality theorem is nothing else than a min-max
theorem for the radius-1 Cops and Robber game, quite analogous to the min-max theorem
in the eponymous paper of Seymour and Thomas. Indeed, a d-degeneracy order can now be
viewed as a compact representation of a winning strategy for the cops involving d + 1 cops,
in the Cops and Robber game with radius 1: when robber is on a vertex v, place d + 1 cops
on v and the neighbors of v before v. Then the robber needs to move rightwards in the order,
and eventually loses. This proves copwidth1(G) ⩽ degeneracy(G) + 1. Dually, a subgraph H
of G whose all vertices have degree larger than d, can be seen as a haven for the robber: they
can forever evade d-cops by always moving to an unoccupied vertex of H (or remaining in
place). This proves copwidth1(G) ⩾ degeneracy(G) + 1, thus proving Theorem 4.4.

Next we observe that for higher radii r, the parameter copwidthr(G) is closely related
to the generalized coloring numbers: the weak coloring number wcolr(G) and the admissi-
bility numbers admr(G) (see Section 3.2). Recall (see Fact 3.3) that the two parameters are
functionally equivalent, and that admr(G) ⩾ ∇̃r−1(G).

We prove the following:

Theorem 4.5. For r ∈ N,

admr(G) + 1 ⩽ copwidthr(G) ⩽ wcol2r(G) + 1.

In particular, by Fact 3.4, this gives the first, arguably very natural, characterization of
classes with bounded expansion, in terms of a game:

Corollary 4.6. A graph class C has bounded expansion if and only if for every r ∈ N we have that
copwidthr(C) < ∞.

Thus, all the classes C from Example 3.2 satisfy copwidthr(C) < ∞, for all r ∈ N. Similarly,
by Fact 3.7 we get a new characterization of nowhere dense classes.

Corollary 4.7. A hereditary graph class C is nowhere dense if and only if for every r ∈ N and ε > 0
we have that copwidthr(G) ⩽ Or,ε(|G|ε) for G ∈ C.

Proof of Thm. 4.5. Fix a total order on G that minimises the maximum size of a weak reacha-
bility set with radius 2r, so that every vertex v ∈ V(G) weakly 2r-reaches at most wcol2r(G)
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vertices. The following yields a winning strategy for the cops: if the robber is at a vertex v,
then the cops are placed on v and the vertices w < v that are 2r-weakly reachable from v.
To see that this strategy is winning for the cops, consider the paths π1, π2, . . . in G, where πi
is the path of length at most r along which robber traversed from his ith position vi to his
(i + 1)-st position vi+1. If mi denotes the <-minimal vertex of the path πi, then we have that
mi+1 > mi. Otherwise, mi+1 is 2r-weakly reachable from vi (as witnessed by the path πi; πi+1,
truncated at mi+1), so at the time the robber traversed the path πi+1, the vertex mi+1 that was
occupied by a cop, which is impossible. Therefore, we have m1 < m2 < . . ., so the cops win
after at most |G| rounds. This gives the upper bound in Theorem 4.5.

For the lower bound, we use the well-known (and straightforward) min-max characteriza-
tion of admissibility: a graph G has r-admissibility number at least d if there is a set of vertices
X ⊆ V(G) such that for every vertex v ∈ X there is a set of d paths of length at most r that
start at v and end in some vertex of X − v, such that any two paths only share v as a common
vertex.

A set X ⊆ V(G) that witnesses that admr(G) ⩾ d can be used as a haven for the robber, to
elude d cops forever, similarly as in the case of degeneracy. If the robber is occupying a vertex
v in X and the cops are moving to a set S of at most d new positions, then either v /∈ S, or
there is some path from v to a vertex in X − S of length ⩽ r, and the robber moves along this
path. This proves copwidthr(G) ⩾ d + 1.

We believe that the proof of Theorem 4.5 sheds a new light on the fundamental notions of
Sparsity theory: the total order that appears in the definition of the weak coloring number can
be viewed as a compact representation of a (very particular) winning strategy for the cops in
the Cops and Robber game, whereas an obstruction to admissibility – as a winning strategy
for the robber. Therefore, the equivalence of the weak coloring numbers and the admissibility
numbers can again be seen as a min-max theorem for the Cops and Robber game with finite
radius.

Note that Theorem 4.5 does not give an exact min-max theorem, as there is a gap between
the upper and lower bounds. We can get a family of parameters based on another variant
of the cops and robber game, which does admit an exact min-max theorem. In this game, in
each round first the cops move to some k vertices of the graph, and then the robber moves via
a path of length at most r, that does not run through a cop, and loses if no such path exists.
See Appendix A.1 for more details. This family of parameters again characterizes classes
with bounded expansion, and does admit an exact min-max theorem that exhibits a duality
between total orders describing winning strategies for the cops, and havens for the robber.
Those parameters essentially appear5 in the work [RT08, LPPT20]. However, the paper does
not relate those notions with generalized coloring numbers, and with classes of bounded
expansion. Curiously, the limit version of those parameters, for radius r = ∞, does not
correspond to treewidth, but to a notion called ∞-admissibility [Dvo12]. Classes with bounded
∞-admissibility are characterized as clique-sums of graphs of almost bounded degree [Dvo12,
Cor. 5 and Thm. 6]. Despite the appealing properties of the parameters based on this variant
of the cops and robber game, they seem to be less suited for our purposes, of generalizing to
dense graphs.

To summarize, our new cop-width parameters exactly characterize treewidth (for r = ∞),
degeneracy (for r = 1), classes of bounded expansion, and nowhere dense classes. This cap-
tures an appreciable fragment of the theory of sparse graphs, while offering a new perspective
on the fundamental graph parameters used for measuring sparsity, and the dualities between

5The paper [RT08] considers a variant of the game in which the robber is lazy, that is, does not move unless a cop
is placed at his location, whereas the [LPPT20] considers a variant where the cops occupy edges instead of vertices,
and the robber never remains put.
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them. We have

degeneracy(G) + 1 = copwidth1(G) ⩽ copwidth2(G)

⩽ . . . ⩽ copwidth∞(G) = treewidth(G) + 1,

so for a class C of graphs, if any of those parameters is bounded by a constant, then C has
bounded degeneracy by Theorem 4.4. So those parameters are only well suited to the study
of sparse graphs: every class C for which either of those parameters is bounded, is sparse, in
the sense of having a bound on the edge density |E(G)|/|V(G)| for all graphs G in the class.
Moreover, copwidthr is monotone with respect to the subgraph relation: if H is a subgraph of
G, then copwidthr(H) ⩽ copwidthr(G).

5 Flip-width

To lift the Cops and Robber game to the setting of dense graphs, we enhance the power of
the cops. Now, instead of placing cops on at most k vertices of the graph, which can be
alternatively seen as removing at most k vertices, or isolating them, one player can perform
flips on subsets of the graph G. For a fixed graph G, applying a flip between a pair of sets of
vertices A, B ⊆ V(G) results in the graph obtained from G by inverting the adjacency between
any pair of vertices a, b with a ∈ A and b ∈ B. For example, applying a flip between V(G)
and V(G) in G results in the complement of G. And if v is a vertex of G, then applying a
flip between {v} and the neighborhood N(v) of v has the same effect as isolating v, that is,
removing all the edges adjacent to v in G. If G is a graph and P is a partition of its vertex
set, then call a graph G′ a P-flip of G if G′ can be obtained from G by performing a sequence
of flips between pairs of parts A, B ∈ P (possibly with A = B). Since flips are involutive and
commute with each other, such a sequence of flips can be specified by a set of at most (|P|+1

2 )
unordered pairs of elements of P . Finally, call G′ a k-flip of G, if G′ is a P-flip of G, for some
partition P of V(G) with |P| ⩽ k.
Remark 5.1. There are many other, functionally equivalent, ways to measure the complexity of
a k-flip (also called a perturbation) G′ of G. For example, say that G′ is a k-sequential-flip of G
if G′ is obtained from G by applying a sequence of flips between k pairs of arbitrary subsets
of V(G). If G′ is a k-sequential-flip of G then G′ is a 22k-flip of G, and conversely, if G′ is a
k-flip of G, then G′ is a (k+1

2 )-sequential-flip of G. We could also require that flips are only
applied to pairs of the form (A, A); this would lead to a functionally equivalent parameter,
as flipping a pair (A, B) can be obtained by flipping three pairs: (A ∪ B, A ∪ B), (A, A) and
(B, B). Other, functionally equivalent measures of the complexity of a flip G′ of a graph G can
be defined by considering the graph G′△G with vertices V(G) and edges E(G′)△E(G). Note
that G′ is a k-flip of G if and only if G′△G is a k-flip of the edgeless graph on V(G). This is
equivalent to G△G′ having neighborhood diversity [Lam12] k. The rank of the adjacency matrix
of G△G′ over a fixed finite field, see [NiO20, DK06] leads to a further, functionally equivalent
complexity measure of a flip.

Flipper game We now come to the central notions of this paper. The flipper game with
radius r ∈ N ∪ {∞} and width k ∈ N, k ⩾ 1, is played on a graph G by two players, flipper
and runner. In each round i of the game, a k-flip Gi of G is declared by the flipper, and the
new position vi ∈ V(G) is selected by the runner, as follows. Initially, G0 = G and v0 is a
vertex of G chosen by the runner. In round i > 0, the flipper announces a new k-flip Gi of G,
that will be put into effect momentarily. The runner, knowing Gi, moves to a new vertex vi
by following a path of length at most r from vi−1 to vi in the previous graph Gi−1. The game
terminates when the runner is trapped, that is, when vi is isolated in Gi.

Definition 5.2. Fix r ∈ N ∪ {∞}. The radius-r flip-width of a graph G, denoted fwr(G), is the
smallest number k ∈ N such that the flipper has a winning strategy in the flipper game of radius r and
width k on G.
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Definition 5.3. A class C of graphs has bounded flip-width if fwr(C) < ∞ for every r ∈ N. More
explicitly: for every radius r ∈ N there is some cr ∈ N such that fwr(G) < cr for all G ∈ C.

Remark 5.4. The cop-width parameters considered in Section 4 are functionally equivalent
(more precisely, each parameter can be bounded from above by a linear function of the other)
to parameters defined by a variant of the flipper game, call it the isolation game, which is played
as the flipper game, but each graph Gi announced by the flipper/cops is obtained from G by
isolating at most k vertices in G (see Lemma A.4). The difference between the isolation game
and the Cops and Robber game is that in the Cops and Robber game, the runner/robber
can move through a vertex from which a cop has just departed by a helicopter, while in the
isolation game, they cannot.

We now argue that the flip-width parameters are bounded in terms of the corresponding
cop-width parameters.

Lemma 5.5. For every r ∈ N ∪ {∞} and graph G, we have

fwr(G) ⩽ copwidthr(G) + 2copwidthr(G). (3)

Proof. The main observation is that isolating a set S of at most k vertices in G can be achieved
by performing a (k + 2k)-flip: consider the partition PS that partitions S into singletons and
V(G)− S according to the neighborhood in S, and flip {s} with every class of the partition
that is complete to {s}. Note that |PS| ⩽ k + 2k. Now, if the cops have a winning strategy in
the Cops and Robber game of radius r and width k on a graph G, we can use this strategy in
the flipper game of radius r and width k + 2k, as follows: whenever the cops announce a new
set S of positions of the cops in the Cops and Robber game, in the flipper game, the flipper
announces the graph G′ with the vertices in S isolated, which is a (k + 2k)-flip of G. It is easy
to verify that if the cops win in the Cops and Robber game, then, playing according to the
above strategy, the flipper also wins in the flipper game. Inequality (3) follows.

The following gives an improved bound. Note that if copwidth1(G) ⩽ t then G excludes
Kt,t as a subgraph, by Theorem 4.4 and the fact that Kt,t is not (t − 1)-degenerate. From
this, one can bound the size of the partition PS considered above by kt (see Lemma B.3), and
obtain:

Theorem 5.6. Fix r ∈ N ∪ {∞}. Let G be a graph and let t be the smallest number such that G
excludes Kt,t as a subgraph; in particular t ⩽ copwidth1(G) ⩽ copwidthr(G). If t ⩾ 3 then

fwr(G) ⩽ copwidthr(G)t,

and if t = 2 then
fwr(G) ⩽ O(copwidthr(G)t).

In particular, every class C with bounded expansion has bounded flip-width.

Whereas the cop-width parameters are monotone with respect to the subgraph relation,
the flip-width parameters are monotone with respect to the induced subgraph relation. This
is expressed by the following, immediate lemma.

Lemma 5.7. Fix r ∈ N ∪ {∞}. If H is an induced subgraph of G, then fwr(H) ⩽ fwr(G). In
particular, a class C has bounded flip-width if and only if its hereditary closure has bounded flip-width.

5.1 Examples

We start by giving some example classes of bounded flip-width. By Theorem 5.6, every class
of bounded expansion has bounded flip-width, see Example 3.2 for some specific classes.
Unlike cop-width, flip-width is not limited to sparse graphs, and is geared towards the study
of dense graphs.
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Figure 2: A half-graph of order 6.

Example 5.8. If Ḡ is the complement of G and r ∈ N ∪ {∞}, then fwr(Ḡ) = fwr(G), since any
k-flip of G is also a k-flip of Ḡ (just complement the set of flipped pairs). Therefore, if C is
a class with bounded expansion, then the class C̄ := {Ḡ | G ∈ C}, has bounded flip-width,
and if C has bounded treewidth, then fw∞(C̄) = fw∞(C) < ∞. In particular, as every edgeless
graph G has fw∞(G) = 1, it follows that every clique G also has fw∞(G) = 1.
Example 5.9. Consider the half-graph Hn of order n, as depicted in Figure 2. We show that
fw∞(Hn) ⩽ 4. Observe that applying a flip between {a1, . . . , ai−1} and {bi, . . . , bn} breaks the
half-graph into two connected components (each being a half-graph). Additionally flipping
{ai} and {bi, . . . , bn} makes ai and bi isolated. The strategy of the flipper is to perform the
above two flips in the ith round, thus pushing the runner rightwards in each round. To
perform those flips, partition V(Hn) into four parts: {1, . . . , ai−1}, {ai}, {bi, . . . , bn}, and the
rest.
Example 5.10. The comparability graph G of a rooted tree T is the graph with vertices V(T),
where two vertices are adjacent if and only if one is an ancestor of the other in T. Generalizing
half-graphs, those graphs also have fw∞(G) ⩽ 4. The strategy of the flipper is, in round i,
to consider the node ui at depth i in the tree, that is the ancestor of the current position of
the runner, and to isolate ui, and remove all edges between the descendants of ui and the
ancestors of ui. This can be done by partitioning V(G) into four parts: {ui}, the ancestors of
ui, the descendants of ui, and the rest.
Example 5.11. Fix r ∈ N ∪ {∞}. If G1, . . . , Gm are graphs and G is their disjoint union, then
the following inequality holds:

fwr(G) ⩽ max
1⩽i⩽m

(fwr(Gi)) + 1.

The +1 comes from the fact that a partition P of V(Gi) into k parts induces a partition of V(G)
into k + 1 parts, namely the k parts of P , and V(G)− V(Gi). Thus, if the flipper is hiding in
the graph Gi, the runner may translate a winning strategy on Gi of width k := fwr(Gi), into a
winning strategy on G of width k + 1.

It follows that if C has bounded flip-width, then the class of disjoint unions of graphs from
C has bounded flip-width.

A modular partition of a graph G is a partition P of V(G) such that any two distinct parts
are homogeneous in G. The quotient graph G/P has as vertices the parts of P , and as edges
pairs of distinct parts that are complete in G. An extension of the idea in Example 5.11 yields
the following.

Lemma 5.12 (∗). Let G be a graph and P be its modular partition. Then

fwr(G) ⩽ max
(

fwr(G/P), max
A∈P

fwr(G[A]) + 2
)

.

The strategy for the flipper on G first follows the strategy on G/P , where each k-flip of
G/P is lifted naturally to a k-flip of G. Once a part A ∈ P is isolated in the game on G/P ,
the strategy on G[A] is used. The +2 in the statement is due to the fact that every partition
Q of A into k parts induces a partition of G into k + 2 parts: the k parts of Q, the (common)
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set of neighbors of vertices in A outside of A, and the rest. See Appendix C for details. In
particular, if G is the lexicographic product of two graphs H and K (obtained by blowing up
each node of H to a copy of K) then fwr(G) ⩽ max(fwr(H), fwr(K) + 2).

The substitution closure of a class of graphs C is the smallest class C∗ containing C such
that if G is a graph with a modular partition P into modules A satisfying G[A] ∈ C∗, and
G/P ∈ C, then G ∈ C∗. Intuitively, a graph in C∗ can be obtained from a single vertex by
repeatedly blowing up vertices to graphs from C.

Using similar ideas as in Lemma 5.12, we prove Lemma 5.13.

Lemma 5.13 (∗). For every r ∈ N ∪ {∞} and graph class C, we have

fwr(C∗) ⩽ fwr(C) + 2.

In particular, if C has bounded flip-width, then C∗ has bounded flip-width.

Example 5.14. The substitution closure C∗ of the class C of subcubic graphs (graphs with
maximum degree 3) has bounded flip-width. This follows from Example 4.2, Theorem 5.6,
and Lemma 5.13. This class not among the classes that were previously known to be tame:
C∗ has unbounded twin-width as already C has unbounded twin-width [BGK+

21], and C∗ is
not edge-stable, in particular it is not monadically stable nor structurally nowhere dense (see
Section 10 for definitions).

More examples are given in the following sections: they include classes of bounded clique-
width (see Section 5.3), classes of bounded twin-width (see Section 7), and interpretations of
classes of bounded expansion (see Section 8).

5.2 Hideouts

We have already seen several examples of classes of bounded flip-width. To give examples of
classes of unbounded flip-width, we need a tool for proving lower bounds. We now introduce
the notion of a hideout, which is a set of vertices allowing the runner to evade the flipper
indefinitely, thus allowing to prove lower bounds on fwr(G). In Section 5.4 we use this notion
to prove some combinatorial properties of graphs with bounded flip-width. In particular, it
will follow easily that every graph of radius-one flip-width at most k has a pair of vertices
whose neighborhoods differ in at most 2k vertices.

Although we will use hideouts on several occasions to prove lower bounds on flip-width,
we do not know whether the existence of hideouts is a necessary condition for having large
flip-width. This is stated as Question 11.3 in Section 11.

Definition 5.15. Fix k, d ⩾ 1 and r ∈ N ∪ {∞}. A (r, k, d)-hideout in a graph G is a set of vertices
U ⊆ V(G) with |U| > d, satisfying the following property. For every k-flip G′ of G,

|
{

v ∈ U : |Br
G′(v) ∩ U| ⩽ d

}
| ⩽ d, (4)

that is, there are at most d vertices v ∈ U such that there are at most d vertices u ∈ U that are
connected with v by a path of length at most r in G′.

We will show that in the flipper game with radius r and width k, a runner can hide
infinitely in a (r, k, d)-hideout. Intuitively, when a k-flip G′ of G is announced, the runner will
want to avoid all vertices v ∈ U with |Br

G′(v) ∩ U| ⩽ d. The condition in a hideout guarantees
that there are at most d such vertices. This will allow the runner to always move to some
vertex with |Br

G′(v) ∩ U| > d.

Lemma 5.16. Fix k ⩾ 1 and r ∈ N ∪ {∞}. If a graph G has a (r, k, d)-hideout U for some d ⩾ 1,
then fwr(G) > k.

Proof. Let U ⊆ V(G) be a (r, k, d)-hideout. We describe a strategy for the runner in the
flipper game on G with radius r and width k, which allows to elude the flipper indefinitely.
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The strategy is as follows: when the flipper announces a k-flip G′ of G, the runner moves
to some vertex v ∈ U such that |Br

G′(v) ∩ U| > d. In the first move, pick any v ∈ U with
|Br

G(v) ∩ U| > d. Such a vertex exists, by (4) applied to G′ = G, since |U| > d.
We show it is always possible to make a move as described in the strategy. Suppose at

some point in the game, the current position v of the runner is such that

|Br
P(v) ∩ U| > d. (5)

where P is the previous k-flip of G announced by the flipper (in the first round, P = G), and
that the flipper now announces the next k-flip N of G. Since U is a (r, k, d)-hideout, the set
X ⊆ U of vertices w ∈ U such that |Br

N(w)∩U| ⩽ d satisfies |X| ⩽ d. By (5), Br
P(v) contains at

least one vertex v′ ∈ U − X. The runner moves from v to v′ along a path of length at most r in
P. As v′ ∈ U − X, the invariant is maintained. Therefore, playing according to this strategy,
the runner can elude the flipper indefinitely, so fwr(G) > k.

5.3 Flip-width with infinite radius

As a simple case study, we first analyze the parameter fw∞. Recall that its sparse analogue,
copwidth∞, corresponds to treewidth. We show that fw∞ is functionally equivalent to the
clique-width and rank-width parameters. Those parameters extend treewidth to the setting
of dense graphs, and are recalled later below. To the best of our knowledge, our result is the
first characterization of graph classes of bounded clique-width, in terms of a game6, analogous
to the game characterization of treewidth.

Theorem 5.17 (∗). For every graph G, we have

rankwidth(G) ⩽ 3 fw∞(G) + 1 ⩽ O(2rankwidth(G)).

In particular, a graph class C has bounded rank-width if and only if fw∞(C) < ∞.

The rank-width parameter is functionally equivalent to clique-width, and is often more
convenient to work with. We will only use rank-width. Rank-width and clique-width are
functionally equivalent, as expressed below [iOS06, Prop. 6.3]:

rankwidth(G) ⩽ cliquewidth(G) < 2rankwidth(G)+1.

A graph G has rank-width at most k if there is a tree T whose leaves are the vertices of G,
and inner nodes have degree at most 3, such that for every edge e of the tree, the bipartition
A ⊎ B of the leaves of T into the leaves on either side of e, has cut-rank at most k. The cut-rank
of a bipartition A ⊎ B of the vertex set of a graph G, denoted rkG(A, B), is defined as the rank,
over the two-element field, of the 0, 1-matrix with rows A, columns B, where the entry at row
a ∈ A and column b ∈ B is 1 if ab ∈ E(G) and 0 otherwise.

The upper bound in Theorem 5.17 is a generalization of the bound in Example 5.10, where
it is shown that comparability graphs of trees have fw∞(G) ⩽ 4. We briefly sketch the argu-
ment now.

Note that a 0, 1-matrix of rank at most k over the two-element field has at most 2k distinct
rows and at most 2k distinct columns. It follows that if G is a graph and V(G) = A ⊎ B is a
bipartition of its vertex sets with cut-rank rkG(A, B) ⩽ k, then A and B can be partitioned as
A = A1 ⊎ · · · ⊎ Ap and B = B1 ⊎ · · · ⊎ Bq with p, q ⩽ 2k, so that Ai and Bj are complete in G.
This implies that there is a 2k+1-flip G′ of G which has no edges with one endpoint in A and
one endpoint in B.

Therefore, if G is a graph of rank-width k, then there is a subcubic tree T with leaves V(G)
such that for every edge e of T, if V(G) = A⊎ B is the bi-partition induced by e (into the leaves
on either side of e), then there is a 2k+1-flip G′ of G which has no edges with one endpoint

6The radius-∞ flipper game arose in a private discussion in 2018 with Michał Pilipczuk.
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in A and one endpoint in B. Moreover, for every inner node v of T (of degree at most three),
there is a O(2k)-flip G′ of G such that for any two vertices a, b ∈ V(G), if a and b are in the
same connected component of G′, then a and b are connected in T by a path that avoids v.
This flip can be used by the flipper in their winning strategy, to restrain the runner to the
leaves of smaller and smaller subtrees of T, similarly as in Example 5.10. See Appendix D for
details.

The lower bound relies on the following result characterizing obstructions to having small
rank-width.

A set U of vertices of G is well-linked if for every bipartition A ⊎ B of V(G), the cut-rank of
A ⊎ B satisfies rkG(A, B) ⩾ min(|A ∩ U|, |B ∩ U|). Oum and Seymour [iOS06, Theorem 5.2]
prove the following:

Fact 5.18 ([iOS06]). Every graph of rank-width greater than k contains a well-linked set of size k.

Using this, the lower bound in Theorem 5.17 follows from the next lemma, which is proved
in Appendix D. The proof is due to Rose McCarty (private communication).

Lemma 5.19 (∗). Fix a graph G and number k ∈ N. Every well-linked set U with |U| > 3k is a
(∞, k, k)-hideout.

This implies the lower bound in Theorem 5.17 as follows. Suppose rankwidth(G) > 3k + 1
for some k ∈ N. By Fact 5.18, G contains a well-linked set U of size 3k + 1. By Lemma 5.19,
U is a (∞, k, k)-hideout. By Lemma 5.16, fw∞(G) > k. By contrapositive, this shows that if
fw∞(G) = k then rankwidth(G) ⩽ 3k + 1 = 3 fw∞(G) + 1.

5.4 Radius-one flip-width

We move to the study of finite radii, which are our main focus, starting with the first pa-
rameter, fw1. We have seen that its sparse analogue, copwidth1, corresponds precisely to
degeneracy (plus one), which is a very well-understood parameter, with many good algo-
rithmic and combinatorial properties. The parameter fw1 enjoys many useful combinatorial
properties, relating it to near-twins, and to the VC-dimension.

Near-twins We prove a first combinatorial property of graphs with small fw1(G), namely
that such graphs have near-twins. This has several consequences. Say that two vertices u, v of
a graph G are δ-near-twins if |N(u)△N(v)| ⩽ δ, where △ denotes the symmetric difference.
We show that every graph G with fw1(G) ⩽ k has a pair of 2k-near-twins. More generally, we
prove:

Lemma 5.20. Let b, k ∈ N and let G be a graph with fw1(G) ⩽ k and |G| > bk. Then G contains a
set of at least b + 1 vertices which are mutual 2bk-near-twins.

Proof. Assume that G has no set containing b + 1 mutual 2bk-near-twins. We prove that V(G)
is a (1, k, bk)-hideout in G, which implies that fw1(G) > k by Lemma 5.16.

Let G′ be a k-flip of G and let B be the set of vertices of degree at most bk in G′. We show
that |B| ⩽ bk, proving that V(G) is a (1, k, bk)-hideout in G.

Suppose that |B| > bk. Let P be a partition with |P| ⩽ k such that G′ is a P-flip of G. As
|B| > bk, there is a set B0 ⊆ B with |B0| > b, such that B0 is contained in one part of P . Any
two vertices of B0 are 2bk-near-twins in G′, as they both have degree at most bk in G′. Since
B0 is contained in a single part of P , it follows that any two vertices of B0 are 2bk-near-twins
in G, too. But |B0| > b, so this contradicts the assumption. Hence, |B| ⩽ bk.

A bipartite variant of Lemma 5.20, with a very similar proof, is as follows. Recall that if
X, Y ⊆ V(G) are two sets of vertices of a graph G then G[X, Y] denotes the bipartite graph
semi-induced by X and Y in G.
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Lemma 5.21 (∗). Let b, k ∈ N and let G be a graph with fw1(G) ⩽ k. Then for every two sets
X, Y ⊆ V(G) with |X|, |Y| > bk, there is a subset of X or a subset of Y consisting of b + 1 mutual
2bk-near-twins in G[X, Y].

Setting b := 1 in Lemma 5.20 we get:

Corollary 5.22. Let G be a graph with fw1(G) ⩽ k and |G| > k. Then G has a pair of 2k-near-twins.

We can now verify that there exist graphs G with arbitrarily large fw1(G). It is well known
that there exist graphs of arbitrarily large girth and minimum degree.

Corollary 5.23. A graph G with girth larger than 4 and minimum degree larger than k has fw1(G) >
k. Therefore, there exist graphs G with arbitrarily large fw1(G).

Proof. Any two distinct vertices u and v have at most one common neighbor, so |N(u)△N(v)| >
2k, so G has no pair of 2k-near-twins, hence fw1(G) > k by Corollary 5.22.

VC dimension We now show that the VC-dimension of a graph G is bounded in terms
of fw1(G). Set systems and graphs of bounded VC-dimension have many useful properties,
and we use one of them later for studying classes of bounded flip-width. We also consider a
related parameter, called 2VC-dimension [BT15], and denoted 2VCdim(G). This is the maximal
size of a set X ⊆ V(G) such that for every two distinct a, b ∈ X there is a vertex c ∈ V(G)
with NG(c) ∩ X = {a, b}. Clearly, VCdim(G) ⩽ 2VCdim(G). We prove the following.

Theorem 5.24 (∗). For every graph G we have

VCdim(G) ⩽ 8 fw1(G), (6)
2VCdim(G) ⩽ 8 fw2(G) + 2 (7)

Note that 2VCdim cannot be bounded in terms of fw1, only in terms of fw2, as wit-
nessed by 1-subdivided cliques, which are 2-degenerate, and hence (by Theorem 5.6 and The-
orem 4.4), have bounded fw1, and clearly have unbounded fw2. Furthermore, graphs of girth
larger than 4 have VC-dimension at most two, but have arbitrarily large fw1 by Corollary 5.23.
Hence, fw1 is not bounded in terms of VCdim(G).

Inequality (6) in Theorem 5.24 follows from Lemma 5.21 (for b = 1) and the following.

Lemma 5.25 (∗). Let G be a graph with VCdim(G) ⩾ 2m, for some m. Then there are two sets X, Y
such that the bipartite graph G[X, Y] contains no pair of (2m−1 − 1)-near-twins in either of the parts
X, Y.

In the proof, the sets X and Y are two copies of the m-dimensional vector space over the
two-element field, with edges connecting vectors with a nonzero dot product. See Appendix
E.1 for details.

We prove inequality (7) in Corollary 6.8 later. From Lemma 5.25 and Lemma 5.21 (for
b = 1) we conclude the following.

Corollary 5.26. Let G be a graph with VCdim(G) ⩾ d. Then G contains an induced subgraph H
with O(d) vertices and with fw1(H) ⩾ d/8.

Corollary 5.27. If C is a hereditary class of graphs such that fw1(G) ⩽ o(|G|) for G ∈ C, then
VCdim(C) < ∞.

Proof. If VCdim(C) = ∞ then for every d there is a graph G ∈ C with VCdim(G) ⩾ d, and by
Corollary 5.26 there is H ∈ C with O(d) vertices and fw1(H) = Ω(d). Since this holds for all
d ∈ N, it cannot be that fw1(G) ⩽ o(|G|) for all G ∈ C.
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5.5 Relationship of radius-one flip-width with other graph parameters

In this section, we compare radius-one flip-width with existing graph parameters. First, we
mention that in Section 6.1 we show that for graphs G that exclude a fixed biclique Kt,t as a
subgraph, we have that fw1(G) is functionally equivalent to the degeneracy of G. However,
unlike degeneracy, fw1 is bounded for some graphs that contain arbitrarily large cliques or
bicliques. Thus, fw1(G) may be thought of as a dense extension of degeneracy. Two other
graph parameters – symmetric difference and functionality – which could serve a similar role,
are discussed below.

For a graph G, define the symmetric difference of G, denoted sd(G), as the least number
k ∈ N, such that every induced subgraph H of G contains a pair u, v of k-near-twins. Classes
C with sd(C) < ∞ are called classes with bounded symmetric difference. For example, if G has
degeneracy k, then sd(G) ⩽ 2k. In particular, every graph class with bounded degeneracy has
bounded symmetric difference.

Since fw1 is monotone under taking induced subgraphs, Corollary 5.22 implies that sd(G) ⩽
2 fw1(G) for every graph G. Hence, every graph class C with fw1(C) < ∞ has bounded sym-
metric difference. We do not know whether the converse implication holds.

A more general graph parameter, called graph functionality and denoted fun(G), is defined
in [AAL21]. The following is a rephrasing of the original definition.

Say that a vertex v ∈ V(G) is a function of a set S ⊆ V(G) of vertices, with s /∈ S, if for
every w ∈ V(G)− (S ∪ {v}), the adjacency of w and v in G depends only on N(w) ∩ S. For
instance, if v is a k-near-twin of u, then v is a function of {u} ∪ (N(v)△N(u))− {v}. Define
fun(G) as the least number k such that every induced subgraph H of G has a vertex v that is
a function of at most k other vertices of H.

Clearly, fun(G) ⩽ sd(G) + 1 holds for every graph G, so classes of bounded symmetric
difference have bounded functionality. The converse implication is false, as witnessed by
the class of permutation graphs [AAL21, Sec. 2.4], which have bounded functionality and
unbounded symmetric difference.

Classes of bounded functionality have bounded VC-dimension, as shown in [AAL21, Thm.
8]. However, no effective bound is known (see [AAL21, Open problem 4]).

It follows from [ACLZ15, Thm. 2] that every hereditary graph class of bounded function-
ality is at most factorial – contains at most 2O(n log n) labelled graphs on n vertices. In fact,
every class that is at most factorial has bounded VC-dimension (see [AAL21, Sec. 3]).

Figure 3 summarizes the relationships among the discussed properties of graph classes.

bounded
radius-one
flip-width

bounded
symmetric
difference

bounded
functionality

at most
factorial

bounded
VC-dimension

Figure 3: Properties of graph classes and implications among them.

6 Flip-width in weakly sparse classes

We have seen in Theorem 5.6 radius-one flip-width is upper bounded in terms of degeneracy,
and radius-r flip-width is upper bounded in terms of generalized coloring numbers. In this
section, we provide bounds in the other direction, in weakly sparse classes. It follows that for
weakly sparse classes, having bounded flip-width is equivalent to having bounded expansion.

6.1 Radius-one flip-width and degeneracy

As fw1 is bounded in terms of copwidth1, which is equivalent to degeneracy by Theorem 4.4,
it follows that every class of bounded degeneracy has bounded fw1. Clearly, every class of
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degeneracy bounded by t is weakly sparse, as it excludes Kt+1,t+1 as a subgraph. We show
that for weakly sparse classes, bounded degeneracy is equivalent to having bounded fw1.

Theorem 6.1. If G is a graph that avoids Kt,t as a subgraph, then

degeneracy(G)/(2t2) < fw1(G) ⩽ (degeneracy(G) + 1)t. (8)

As a consequence, if C is a weakly sparse class of graphs then fw1(C) < ∞ if and only if C has bounded
degeneracy.

Proof. The second inequality is by Theorem 5.6 and Theorem 4.4. To prove the first inequality,
we show that degeneracy(G) < 2kt2, where k := fw1(G).

Recall that G is d-degenerate if and only if every induced subgraph of G contains a vertex
of degree at most d. Therefore, to prove degeneracy(G) < 2kt2 it is enough to show that
G contains some vertex of degree less than 2kt2 (since the same holds for every induced
subgraph H of G, as fw1(H) ⩽ fw1(G) ⩽ k).

Setting b := t − 1 in Lemma 5.20 we get that G contains a set U of t mutual 2k(t − 1)-
near-twins. Pick any v ∈ U. Then all u ∈ U are 2k(t − 1)-near-twins of v, so |N(v)△N(u)| ⩽
2k(t − 1) for all u ∈ U.

We show that |N(v)| < 2k(t − 1)2 + 2t. Suppose that |N(v)| ⩾ 2k(t − 1)2 + 2t. Then the
set W :=

⋂
u∈U N(u) has at least 2t elements, and so W − U has at least t elements. As every

u ∈ U is adjacent to every w ∈ W and U and W are disjoint, we have a copy of Kt,t as a
subgraph of G, a contradiction. Hence, |N(v)| < 2k(t − 1)2 + 2t < 2kt2.

6.2 Radius-r flip-width and generalized coloring numbers

We have seen that every weakly sparse class C has bounded degeneracy if and only if fw1(C) <
∞. It is known that a weakly sparse class C has bounded clique-width if and only if C has
bounded tree-width, as clique-width and treewidth are functionally equivalent in weakly
sparse classes [GW00]. This proves the following.

Corollary 6.2. A graph class C has bounded treewidth if and only if C is weakly sparse and fw∞(C) < ∞.

A general theme in structural graph theory is that a dense graph parameter is often func-
tionally equivalent to its sparse counterpart in weakly sparse classes. We now show that for
weakly sparse classes, bounded flip-width is indeed equivalent to bounded expansion:

Theorem 6.3. A class C has bounded expansion if and only if C is weakly sparse and has bounded
flip-width.

We prove a more precise result, from which Theorem 6.3 follows.

Theorem 6.4. For every r ⩾ 1 and graph G we have

∇̃r−1(G) ⩽ O(r · fwr(G) · degeneracy(G))36.

We first show how Theorem 6.4 implies Theorem 6.3.

Proof of Theorem 6.3. For the forward direction, assume C has bounded expansion. Then C has
bounded flip-width by Theorem 5.6. Also, as remarked before Theorem 5.6, every class with
bounded expansion is weakly sparse.

Conversely, suppose C is weakly sparse and has bounded flip-width. In particular, fw1(C) <
∞, and by Theorem 6.1, C has degeneracy bounded by some constant d. By Theorem 6.4, for all
r ⩾ 1 we have that ∇̃r−1(C) ⩽ O(r · fwr(C) · d)36 < ∞. Hence, C has bounded expansion.

In the remainder of Section 6.2 we prove Theorem 6.4. Our proof relies on a result of
Dvořák [Dvo18], extending a result of Kühn and Osthus [KO04], which we now recall.

An exact r-subdivision of a graph G is the graph obtained by replacing every edge of G by
a path of length r + 1. If every edge is replaced by a path of length at most r + 1, the resulting
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graph is an ⩽r-subdivision of G. For a graph G, let ∇̃e
r(G) denote the maximum average degree

of all graphs H whose exact r-subdivision is an induced subgraph of G.
The following is [Dvo18, Lemma 9].

Lemma 6.5. For every r, k, d ⩾ 1 there is a number s = s(r, k, d) ⩽ O(rdk)12 such that for every
graph G, if ∇̃0(G) ⩽ d and ∇̃e

r(G) < k, then ∇̃r(G) < ∇̃r−1(G) + s.

An easy induction on r yields the following.

Corollary 6.6. For every r, d ⩾ 1 and d-degenerate graph G,

∇̃r(G) ⩽ O(dr ·
r

∑
t=1

∇̃e
t(G))12.

It is well known that every graph of average degree at least d contains a subgraph with
minimum degree at least d/2. The following proposition yields Theorem 6.4, using Corol-
lary 6.6 and Fact 3.5.

Proposition 6.7 (∗). Fix r ⩾ 2, k ⩾ 1. Let G be the exact (r − 1)-subdivision of some graph H with
minimum degree at least 2rk. Then fwr(G) > k.

Proposition 6.7 is proved in Appendix F, by showing that the vertices of G that correspond
to the vertices of H (those of degree larger than 2) form a (r, k, k)-hideout in G. We now show
how this proves Theorem 6.4.

Proof of Theorem 6.4. Denote k = fwr(G). Since fwr(G) is monotone in r, by Proposition 6.7,
for all t < r, the graph G does not contain an induced t-subdivision of a graph of minimum
degree at least 2rk. Hence, ∇̃e

t(G) ⩽ 4rk for all t < r.
If G is d-degenerate then by Corollary 6.6 we have:

∇̃r−1(G) ⩽ O(dr ∑
1⩽t<r

∇̃e
t(G))12 ⩽ O(dr3k)12 ⩽ O(drk)36,

as required.

Proposition 6.7 easily implies the following corollary (see Appendix B.3 for a proof), yield-
ing inequality (7) in Theorem 5.24.

Corollary 6.8 (∗). If G is the exact 1-subdivision of an n-clique, then fw2(G) > (n − 1)/4. Further-
more, for every graph G, 2VCdim(G) ⩽ 8 fw2(G) + 2.

Hence, weakly sparse classes of bounded flip-width, being exactly the classes with bounded
expansion, are by know very well-understood and characterized in multiple ways. For in-
stance, the model checking problem for first-order logic is fixed-parameter tractable for such
classes, by the result of Dvořák, Král, and Thomas [DKT13].

7 Flip-width of ordered graphs and twin-width

Let us return to dense graph classes, which are our main focus. As follows from Theorem 5.17,
radius-∞ flip-width is functionally equivalent to clique-width, so classes of bounded clique-
width are examples of dense graph classes of bounded flip-width. In this section we show
that classes of bounded twin-width have bounded flip-width, but the converse does not hold.
To characterize twin-width in terms of flip-width, we study flip-width of graphs equipped
with a total order. We start with recalling the definition of twin-width.

An uncontraction sequence of a graph G is a sequence P1, . . . ,Pn of partitions of V(G) that
starts with the partition P1 with one part, ends with the partition of V(G) into singletons,
and such that every partition Pi+1, for i < n, is obtained from the previous partition Pi by
splitting one of the parts into two. The red graph of a partition P is the graph whose nodes
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are the parts of P , with red edges connecting two distinct nodes A, B ∈ P if A and B are not
homogeneous in G. A graph has twin-width at most d if it has an uncontraction sequence
such that at every time i, the red graph of the partition Pi has maximum degree at most d.

First, we prove that fwr(G) is bounded in terms of r and the twin-width tww(G) of G. For
a graph G, define the shatter function of G, denoted πG : N → N, as follows:

πG(n) := max
X⊆V(G),|X|⩽n

|{N(v) ∩ X | v ∈ V(G)}|.

Theorem 7.1 (∗). Fix r ∈ N. For every graph G of twin-width d we have:

fwr(G) ⩽ πG(dO(r)) ⩽ 2d · dO(r).

In particular, every class of bounded twin-width has bounded flip-width.

In the proof, the flipper uses an uncontraction sequence in order to vanquish the runner
by constraining them, in round i to some ball of radius r in the red-graph of the partition Pi.
In round i = n, as every ball of radius r in the red graph of Pn comprises a single vertex of
G, the runner is trapped. The second inequality in Theorem 7.1 follows immediately from the
upper bound [BFLP24] on πG(n) in a graph of twin-width d. See Appendix G for details.

Therefore, bounded twin-width implies bounded flip-width, but the converse does not
hold: the class of subcubic graphs has bounded expansion, and hence bounded flip-width,
but does not have bounded twin-width [BGK+

21]. So can twin-width be exactly characterized
in terms of flip-width?

The twin-width parameter is defined not only for graphs, but also for structures equipped
with one or more binary relations. As argued in [BGOdM+

22], twin-width may – and perhaps
even should – be seen as a parameter of ordered graphs, rather than graphs. An ordered graph
G = (V, E,<) is equipped with a (symmetric, irreflexive) edge relation E and a total order
relation <. Every graph can be equipped with some total order without increasing the twin-
width, so we may assume the order is present (also such an order can be easily computed
from an uncontraction sequence, but the problem of finding it efficiently given the graph G
only, remains open). Similarly as twin-width, the notion of flip-width extends to structures
with several binary relations, as defined below. This, in particular implies a notion of flip-
width for ordered graphs, but in the case of ordered graphs, we also given an alternative,
more convenient definition.

Flip-width of binary structures Fix a signature Σ consisting of several binary relations.
For a Σ-structure A and partition P of V(A), a P-flip of A is specified by a Σ-structure F with
domain P . Applying the flip F results in a Σ-structure A′ with domain V(A) and relations

RA′ := RA △
⋃

(P,Q)∈RF

P × Q,

for each binary relation symbol R ∈ Σ. A k-flip of A is any structure A′ obtained in this way,
for some partition P with |P| ⩽ k. Using this notion of a k-flip, the flipper game and the
flip-width parameters fwr(A) are defined just as for graphs (see Appendix B.4 for details),
where in each round, the runner can traverse at most r edges of the Gaifman graph of the
previously announced k-flip. Theorem 7.1 holds also in the case when G is a binary structure,
rather than a graph, with the same proof.

Ordered flip-width In the case of ordered graphs, it is convenient to work with the fol-
lowing variant of flip-width which takes into account that one of the binary relations is a total
order. Fix an ordered graph G = (V, E,<). A k-cut-flip of G is a triple G′ = (V, E′, S), where
(V, E′) is a (usual) graph that is a k-flip of the graph (V, E), and S ⊆ V is a set with |S| ⩽ k.
Intuitively, the runner will be able to instantaneously move between any two points that are
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not separated by an element of S. Let ∼S denote the equivalence relation on S such that
u ∼S v if and only if u = v or u < v and there is no s ∈ S with u ⩽ s ⩽ v. The weighted graph
associated to G′ = (V, E′, S) is the graph with vertices V and edges uv such that uv ∈ E′ or
u ∼S v, where each edge uv with u ∼′ v has weight 0, and the remaining edges have weight
1. Fix a radius r ∈ N∪ {∞}, a width parameter k, and an ordered graph G = (V, E,<). In the
ordered flipper game with radius r and width k on an ordered graph G = (V, E,<), in round i,
the flipper announces a k-cut-flip Gi = (V, E′, S) of the ordered graph G = (V, E,<), and the
runner moves from his previous position vi−1 to a new position vi by following a path of total
weight at most r in the weighted graph associated with the previous k-cut-flip Gi−1 (in round
i = 1, as the flipper announces G1, the runner picks v1 ∈ V arbitrarily). The flipper wins if
vi is isolated in the weighted graph associated to Gi, that is, there is no w ̸= v with vw ∈ E′

or v ∼′ w. The radius-r ordered flip-width of an ordered graph G = (V, E,<), denoted fw<
r (G),

is the smallest number k such that the flipper has a winning strategy in the ordered flipper
game with radius r and width k on G.

For an ordered graph G = (V, E,<), the parameter fw<
r (G) relates to the flip-width of G,

treated as a binary structure, as follows (see Appendix G.2).

Lemma 7.2 (∗). Fix r ∈ N ∪ {∞} and an ordered graph G = (V, E,<). Then√
fwr(G) + 1 ⩽ f w<

r (G) + 1 ⩽ fw3r+2(G) + 1.

Equivalence of flip-width and twin-width for ordered graphs We now prove the
main result of Section 7, which says that for ordered graphs G = (V, E,<), the parameters
tww(G) and fw<

1 (G) are functionally equivalent. In other words, a class of ordered graphs
has bounded twin-width if and only if it has bounded radius-one ordered flip-width.

Theorem 7.3. The following conditions are equivalent for a class C of ordered graphs:

1. C has bounded twin-width,

2. C has bounded flip-width, that is, fwr(C) < ∞ for every r ∈ N,

3. C has bounded radius-five flip-width (as a class of binary structures), that is, fw5(C) < ∞,

4. C has bounded ordered flip-width, that is, fw<
r (C) < ∞ for every r ∈ N,

5. C has bounded radius-one ordered flip-width, that is, fw<
1 (C) < ∞.

So for ordered graphs, among the parameters fw<
r , only the parameters fw<

∞ (characteriz-
ing bounded clique-width) and fw<

1 (characterizing bounded twin-width) are relevant, since
it follows that fw<

r (G) is bounded in terms of fw<
1 (G) and r, for every r ∈ N and ordered

graph G.
We obtain the following characterization of twin-width of usual, unordered graphs, in

terms of flip-width. Recall that every graph G can be equipped with some total order without
increasing the twin-width, and conversely, forgetting a total order of an ordered graph does
not increase the twin-width.

Corollary 7.4. A class C of graphs has bounded twin-width if and only if every graph in C can be
equipped with a total order, so that the resulting class of ordered graphs has bounded flip-width.

Proof of Theorem 7.3. The implication 1→2 is by Theorem 7.1 (stated for binary structures); the
implications 2→3 and 4→5 are immediate; the implications 2→4 and 3→5 are by Lemma 7.2.
It remains to prove the implication 5→1. This is done in Lemma 7.5 below, which proves that
for ordered graphs, twin-width is bounded in terms of fw<

1 .

We show that ordered graphs of large twin-width have large fw<
1 . To this end, we use a

core result of [BGOdM+
22], which states that an ordered graph has large twin-width if and

only if it contains a k-rich division, for a large number k. A k-rich division of an ordered graph
G is a pair of partitions L,R of V(G), whose parts are intervals with respect to the order, such
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that for every interval A ∈ L and k intervals B1, . . . , Bk ∈ R, there are at least k vertices in A
with pairwise distinct neighborhoods in V(G)− (B1 ∪ · · · ∪ Bk), and symmetrically, for every
interval B ∈ R and k intervals A1, . . . , Ak ∈ L, there are at least k vertices in B with pairwise
distinct neighborhoods in V(G)− (A1 ∪ · · · ∪ Ak). It is shown in [BGOdM+

22, Theorem 21]
that if G has no k-rich division, then tww(G) ⩽ 2O(k2). We now show that a (k + 1)-rich
division can be employed by the runner to evade the flipper in the ordered flipper game
of radius 1 and width k. The following lemma immediately yields the implication 4→1 in
Theorem 7.3, and finishes its proof.

Lemma 7.5. Let G be an ordered graph with fw<
1 (G) ⩽ k. Then G does not have a (k + 1)-rich

division L,R. In particular, tww(G) ⩽ 2O(k2).

Proof. Suppose G has a (k + 1)-rich division L,R. We show that fw<
1 (G) > k, by describing a

winning strategy for the runner in the ordered flipper game with radius one and width k.
The strategy is as follows: in round i, when the flipper announces a new k-cut-flip Gi =

(V, Ei, Si) of G, the runner always moves to any reachable vertex in one of the parts of L (in
even-numbered rounds) or of R (in odd-numbered rounds) that does not contain any element
of Si. We show that the runner can always reach such a vertex vi from his previous position
vi−1, by following a path of weight 1 in the previous k-cut-flip Gi−1 of G.

By inductive assumption, suppose that vi−1 belongs to a part A of L or R that does not
contain any element of Si−1. Suppose, by symmetry, that A is a part of L. Since |Si| ⩽ k, there
are at most k parts of R that contain some element of Si; denote those parts by B1, . . . , Bk.
By the condition of a (k + 1)-rich division there are k + 1 vertices in A with pairwise distinct
neighborhoods in B := V(G) − (B1 ∪ · · · ∪ Bk). Then in the previous k-cut-flip Gi−1 of G,
there is an edge joining some vertex a ∈ A with some vertex b ∈ B. Indeed, let P denote the
partition of V(G) underlying the flip Gi−1 of G, with |P| ⩽ k. By the pigeonhole principle,
two vertices a1, a2 of A with distinct neighborhoods in B, ie. NG(a1) ∩ B ̸= NG(a2) ∩ B belong
to the same part of P . Therefore also NGi−1(a1)∩ B ̸= NGi−1(a2)∩ B, so one of those sets must
be nonempty.

Thus, there is a ∈ A and b ∈ B such that ab ∈ E(Gi−1). The runner thus moves to b, by the
path vi−1 − a′ − b of weight 1 in Gi−1, maintaining the invariant.

Reassuming, the duality result of [BGOdM+
22] proving the equivalence of unbounded

twin-width and having k-rich divisions for all k, can be seen as a min-max theorem for the
flipper game of radius 1, for ordered graphs. Moreover, we now see that degeneracy and
twin-width are two flip sides of the same coin: fw1(G) corresponds to the degeneracy of G
for weakly sparse graphs (see Theorem 4.4 and Theorem 6.3), and fw<

1 (G) corresponds to
the twin-width of G for ordered graphs (see Theorem 7.3). Similarly, classes of bounded flip-
width coincide with classes of bounded expansion in the weakly sparse case, and with classes
of bounded twin-width in the ordered case. Both of those cases is by now well-understood
from an algorithmic, combinatorial, and logical perspective. In particular, the model checking
problem for first-order logic is fixed-parameter tractable in each of the two special cases.

8 Closure under transductions

As we have seen, classes of bounded flip-width include all classes of bounded expansion and
all classes of bounded twin-width, and characterize those notions in the weakly sparse and
totally ordered settings. We argue that classes of bounded flip-width enjoy many good closure
properties. For instance, if two classes C and D have bounded flip-width, then their union
C ∪ D also has bounded flip-width. Other such properties include: closure under disjoint
unions (see Example 5.11), and closure under substitution (see Lemma 5.13).

An entire family of closure properties is provided by the notion of first-order interpretations
or transductions. As a very special instance, we saw in Example 5.8 that if C has bounded flip-
width, then the class of edge-complements of graphs from C also has bounded flip-width.
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What about, say, the class of squares of graphs from C? (The square of a graph G has vertices
V(G) and edges uv such that u and v have a common neighbor in G.) We show that this class
also has bounded flip-width, and a similar result holds for every operation that can be defined
by a first-order formula, as we now describe. We phrase our result in greater generality for
colored graphs. This result has multiple corollaries, and generalizes previous results.

8.1 Preservation of flip-width under transductions

We start with defining interpretations and transductions, and then state the main result of
this section.

Colored graphs Recall that a c-colored graph is a graph together with an assignment of
colors from {1, . . . , c} to its vertices. For a c-colored graph G, its radius-r flip-width fwr(G), for
r ∈ N ∪ {∞}, is defined as the same parameter for the underlying uncolored graph. Say that
a class C of c-colored graphs has bounded flip-width if the underlying class of uncolored graphs
has bounded flip-width. A c-colored graph is seen as a structure over the signature consisting
of the binary relation E(x, y) denoting adjacency, as well as unary predicates C1(x), . . . , Cc(x)
denoting the respective colors.

Interpretations The following notion is a special case of a (simple, domain-preserving)
first-order interpretation. Let G be a c-colored graph and φ(x, y) be a first-order formula in
the signature of c-colored graphs. Define the graph φ(G) with vertices V(G) and edges uv
such that u ̸= v and φ(u, v) ∨ φ(v, u) holds in G. For a class C of c-colored graphs, denote
φ(C) := {φ(G) | G ∈ C}. The class φ(C) is called an interpretation of C, via φ. For example,
for the formula φ(x, y) = ¬E(x, y) and a graph G, the graph φ(G) is the complement Ḡ of G.
And for the formula φ(x, y) = ∃z.[E(x, z) ∧ E(z, y)], the graph φ(G) is the square of G.

Transductions Say that a graph class C transduces a graph class D, or that D is a transduction
of C, if there is some c ⩾ 1 and class Ĉ of c-colored graphs which is a c-coloring of C, and
some first-order formula φ(x, y) in the signature of c-colored graphs, such that every graph
in D is an induced subgraph of some graph in φ(Ĉ) (that is, D is contained in the hereditary
closure of φ(Ĉ)).
Example 8.1. Let C be the class of all half-graphs (see Figure 2), where the half-graph Hn of
order n has vertices a1, . . . , an and b1, . . . , bn, and edges aibj for 1 ⩽ i < j ⩽ n. We show that C
transduces the class D consisting of disjoint unions of cliques.

We use two colors. Let Ĉ be the class of all 2-colored half-graphs. Consider the formula
φ(x, y) expressing that there is no vertex of color 2 which is adjacent to one of x, y, and not
the other:

φ(x, y) ≡ ∀z.C2(z) → (E(x, z) ↔ E(y, z)).

We argue that the hereditary closure of φ(Ĉ) contains D, implying that D transduces in C.
Let F ∈ D be a disjoint union of cliques. Let 1, . . . , n be the vertices of F, for some n ⩾ 0,

and assume that every connected component of F consists of consecutive vertices in the usual
order 1 < . . . < n. Consider the half-graph Hn with vertices a1, . . . , an and b1, . . . , bn, and color
a vertex bi with color 2 if i is the largest element of its connected component in F, and with
color 1 otherwise. Now, for all 1 ⩽ i, j ⩽ n, Hn |= φ(ai, aj) if and only if i and j are adjacent in
F. Hence, φ(Hn)[{a1, . . . , an}] is isomorphic to F, and therefore F is an induced subgraph of
some graph in φ(Ĉ).

Transductions and flip-width We prove the following theorem.
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Theorem 8.2 (∗). Fix q ⩾ 0. There is a computable function Tq : N → N with the following property.
Fix numbers r, c ⩾ 1 and a first-order formula φ(x, y) of quantifier rank q in the signature of c-colored
graphs. Set r′ := 2q · r. Then for every c-colored graph G we have

fwr(φ(G)) ⩽ Tq(fwr′(G) · c). (9)

In particular, if C has bounded flip-width, then φ(C) has bounded flip-width. Moreover, T0(k) = k for
every k.

Before discussing the proof of Theorem 8.2, we discuss its consequences.
The following is an immediate consequence of Theorem 8.2, and the fact that radius-r

flip-width is monotone with respect to induced subgraphs.

Corollary 8.3. If a class C has bounded flip-width and transduces a class D, then D has bounded
flip-width.

Since the class of all graphs has unbounded flip-width by Corollary 5.23, we get the fol-
lowing.

Corollary 8.4. If C is a class of bounded flip-width, then C does not transduce the class of all graphs.

In the language of model theory, Corollary 8.4 says that classes of bounded flip-width are
monadically dependent, see Section 10. In the phrasing of [GPT22, BNdMS22b], Corollary 8.3
says that classes of bounded flip-width form a transduction ideal. By Theorem 6.3, the weakly
sparse classes in this transduction ideal are exactly the classes of bounded expansion. There-
fore, this transduction ideal is contained in the dense analogue of bounded expansion classes
[GPT22].

A graph class has structurally bounded expansion [GKN+
20] if it is a transduction of a class

with bounded expansion. Corollary 8.3 immediately implies that those classes have bounded
flip-width.

Corollary 8.5. Every class of structurally bounded expansion has bounded flip-width.

We remark that an extension of Theorem 8.2 and of Corollary 8.3 also hold, with the same
proof (but a slightly different bound in (9)), for input structures over a binary signature Σ,
rather than graphs G, and where instead of one formula φ(x, y) defining a new edge relation
of the output graph, we have a tuple of formulas φ̄ = (φ1(x, y), . . . , φk(x, y)) defining k binary
relations of the output structure φ̄(G) with domain V(G) and ith relation Ri, for i = 1, . . . , k,
interpreted as

Ri := {(a, b) | a, b ∈ V(G), G |= φi(a, b)}.

We then obtain that if C is a class of Σ-structures of bounded flip-width (see Sec. 7 and
Appendix B.4), then the class φ̄(C) := {φ̄(G) | G ∈ C} also has bounded flip-width.

This implies (using Corollary 7.4) the result of [BKTW20], that transductions preserve
classes of bounded twin-width.

Corollary 8.6 ([BKTW20]). If C has bounded twin-width and φ(x, y) is a first-order formula, then
φ(C) has bounded twin-width.

Indeed, let C be a class of bounded twin-width and φ(x, y) a symmetric formula in the
signature of graphs. By Corollary 7.4 there is a class Ĉ of ordered graphs of bounded flip-
width such that C is obtained from Ĉ by forgetting the order. Let φ̄ be the pair consisting of
the formula φ(x, y) and the formula x < y defining the order. Then φ̄(Ĉ) is a class of ordered
graphs which has bounded flip-width, since Ĉ has bounded flip-width. Moreover, the graph
class φ(C) is obtained from the class of ordered graphs φ̄(Ĉ) by forgetting the order. Hence,
φ(C) has bounded twin-width, by Corollary 7.4.

Together with Theorem 6.3, Corollary 8.3 implies the following consequence of [GKN+
18].

Corollary 8.7. Every weakly sparse class with structurally bounded expansion has bounded expansion.
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The proof of Theorem 8.2, which is sketched below, relies on locality of first-order logic,
a central notion for analysing first-order formulas on sparse graphs [See96], which, in some
form, also plays a key role in understanding first-order formulas on classes of bounded twin-
width [BKTW20, GPPT22]. The function Tq(k), although computable, is astronomical:

Tq(k) := 22..
.2

m

︸ ︷︷ ︸
height q

where m is the number of distinct k-colored graphs with vertex set {1, . . . , q + 1}. However,
for q = 0 we have T0(k) = k, so the bound (9) becomes fwr(φ(G)) ⩽ c · fwr(G) in the case
when φ(x, y) is a quantifier-free formula and G is a c-colored graph with underlying graph
G0.

CMSO transductions and radius-∞ flip-width For the case of radius r = ∞, we prove
that classes C with fw∞(C) < ∞ are preserved under transductions expressed in the more
powerful logic called CMSO. We remark that this result is known for classes of bounded
clique-width, so our result follows from Theorem 5.17, which states that C has bounded
clique-width if and only if fw∞(C) < ∞. However, we provide a separate proof here, as
it is very analogous to the proof of Theorem 8.2, and nicely illustrates the parallels between
the bounded flip-width case, and the limit case of bounded radius-∞ flip-width. We also
show how the closure under CMSO transductions can be used to obtain an alternative proof
of Theorem 5.17. Let us first define the logic, and state the result.

Counting Monadic Second Order Logic (CMSO) is the extension of first-order logic, where
apart from first-order quantifiers ∃x, ∀x, that range over vertices x of a graph, we have second-
order quantifers ∃X, ∀X, that range over sets X of vertices of the graph. We additionally have
the atomic predicate x ∈ X that allows to check whether a given vertex belongs to a given
set, and the divisibility predicates divk(X), for k ⩾ 1, where divk(X) holds for a given set of
vertices X if and only if |X| is divisible by k. The usual constructs of first-order logic (boolean
connectives and relation symbols, such as adjacency in a graph) are also included.

CMSO is able to express non-local properties. For instance, the formula

φ(x, y) = ¬∃X. [(x ∈ X) ∧ (y ̸∈ Y) ∧ ∀z.∀t. [(z ∈ X) ∧ E(z, t) → (t ∈ X)]]

expresses that x and y lie in the same connected component. Still, CMSO enjoys property sim-
ilar to locality of first-order logic, called compositionality (or a Feferman-Vaught-Mostowski
type result), which is an analogue of locality for the radius r = ∞. Using this instead of
locality, with the same proof as in Theorem 8.2, we get the following.

Theorem 8.8 (∗). Let C be a class of c-colored graphs of bounded ∞-flip-width and let φ(x, y) be a
formula of CMSO. Then φ(C) has bounded ∞-flip-width.

Say that a class C CMSO-transduces a class D, or that D is a CMSO-transduction of C, if
there is a c-coloring Ĉ of C, for some c ⩾ 1, and some CMSO formula φ(x, y) in the signature
of c-colored graphs, such that every graph in D is an induced subgraph of some graph in
φ(Ĉ) (that is, D is contained in the hereditary closure of φ(Ĉ)).

Corollary 8.9. If C is a class with fw∞(C) < ∞ that CMSO-transduces a class D, then fw∞(D) < ∞.

We now show that, together with a result of Courcelle and Oum, Corollary 8.9 yields
an alternative proof of the backwards implication in Theorem 5.17, that classes of bounded
radius-∞ flip-width have bounded clique-width.

Courcelle and Oum [CiO07, Corollary 7.5] proved the following result7.

7In fact, they proved an equivalent statement, but with ‘all square grids’ instead of ‘all graphs’. However, it is easy
to see that the class of all square grids CMSO-transduces the class of all graphs, and transductions can be composed.
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Theorem 8.10. Every graph class of unbounded clique-width CMSO-transduces the class of all graphs.

In particular, as the class of all graphs has unbounded radius-one flip-width by Corol-
lary 5.23, it follows from Corollary 8.9 and Theorem 8.10 that every class C of unbounded
clique-width has fw∞(C) = ∞, proving the backward implication in Theorem 5.17.

8.2 Transferring strategies

Before giving the details about the proof of Theorem 8.2, we define a tool that will be also
useful in other contexts. The following notion allows to transfer a winning strategy of the
flipper from a graph G to a graph H. Let G and H be two graphs with V(H) ⊆ V(G). Fix
rG, rH ∈ N ∪ {∞} and k, ℓ ∈ N. Suppose furthermore that the following are given:

• a mapping F that maps each k-flip G′ of G to an ℓ-flip H′ = F(G′) of H,

• a strategy of the flipper in the game on the graph G with radius rG and width k.

This induces the following strategy of the flipper in the flipper game of radius rH and width
ℓ on the graph H; call this game the H-game. Consider a play of this game the H-game.
Simultaneously, initiate the G-game on G, with radius rG and width k, in which we will copy
runner’s moves from the H-game. Whenever the flipper announces a k-flip G′ of G in the
G-game, then in the H-game the flipper announces the ℓ-flip H′ = F(G′) of H. Whenever the
runner moves to a vertex v in the H-game, we also move the runner to v in the H-game. Note
that this move might not be a valid move in the H-game. In this case, the flipper continues
the G-game by playing arbitrarily (e.g. always announcing G as the next flip) until the end of
the game. We say the resulting strategy of the flipper (in the G-game) is transferred from the
considered strategy in the H-game, according to the mapping F.

The following lemma gives a condition which implies that if the original strategy on G is
winning, then the transferred strategy on H is winning.

Lemma 8.11. Fix r ∈ N ∪ {∞} and k, ℓ, s ⩾ 1. Let H, G be two graphs with V(H) ⊆ V(G).
Suppose that for all k ⩾ 1 and every k-flip G′ of G there is some ℓ-flip H′ = F(G′) of H, such that

distG′(u, v) ⩽ s for all uv ∈ E(H′). (10)

Then transferring a winning strategy of the flipper from the flipper game on G with radius rs and
width k, according to the mapping F, results in a winning strategy of the flipper in the flipper game on
H with radius r and width ℓ. In particular,

fwrs(G) ⩽ k implies fwr(H) ⩽ ℓ.

In the case r = ∞, the conclusion reads “fw∞(G) ⩽ k implies fw∞(H) ⩽ ℓ”. Moreover we
can then replace ⩽ s by < ∞ in (10), since for s := |V(G)| we have that distG′(u, v) ⩽ s ⇐⇒
distG′(u, v) < ∞. We state this explicitly below.

Corollary 8.12. Fix k, ℓ ⩾ 1. Let H, G be two graphs with V(H) ⊆ V(G). Suppose that for all k ⩾ 1
and every k-flip G′ of G there is some ℓ-flip H′ = F(G′) of H, such that

distG′(u, v) < ∞ for all uv ∈ E(H′). (11)

Then
fw∞(G) ⩽ k implies fw∞(H) ⩽ ℓ.

Proof of Lemma 8.11. Consider a play in the flipper game on H of radius r and width ℓ, accord-
ing to the strategy transferred from G, as described above. Suppose that, in some round, G′ is
the announced flip in the G-game and H′ = F(G′) is the announced flip in the H-game, and
that v is the new vertex chosen by the runner in the H-game. By (10), the following holds:

Br
H′(v) ⊆ Brs

G′(v).
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In the case r = ∞, each side of the inclusion should be interpreted as the connected component
of v in the appropriate graph.

In particular, in the next round, every valid move of runner in the H-game will also be a
valid move of runner in the G-game (this is trivially satisfied in the first round), and if runner
is trapped in the G-game, that is, |Brs

G′(v)| = 1, then also |Br
H′(v)| = 1, so he is also trapped in

the H-game. Thus, this describes a winning strategy for the flipper in the flipper game on H
with radius r and width ℓ. In particular, fwr(H) ⩽ ℓ.

8.3 Proof of Theorem 8.2

We now sketch the proof of Theorem 8.2. The details are presented in Appendix H, along
with the proof of Theorem 8.8.

For simplicity, we assume the case c = 1, that is, when the considered graphs G have no
colors. The general case proceeds analogously.

Our aim is to transfer a winning strategy of the flipper from G to H = φ(G) (with appro-
priate radii), by applying Lemma 8.11. So for every flip G′ of G we need to produce a flip
φ(G)′ of φ(G) such that adjacent vertices in φ(G)′ are not too far in G′. We first show how
to achieve this in the case when G′ = G, using locality, a well known tool from finite model
theory, which we now recall.

Locality Fix a number s ∈ N. Say that a formula φ(x, y) is s-local, if for any graph G there
is a labelling of the vertices of G using a bounded number of labels (depending only on φ,
and not on G) such that for any two vertices u, v of G with distG(u, v) > s, whether or not
G |= φ(u, v) depends only on the label of u and the label of v. It is well-known (and follows
for instance from Gaifman’s locality theorem) that every formula φ(x, y) of first-order logic is
s-local for some radius s depending only on the quantifier rank q of φ. Namely, one can take
s := 2q. The label assigned to a vertex v of G as above, is essentially the set of formulas α(x)
of quantifier rank at most q, such that α(v) holds in G. The number of such formulas, up to
equivalence, is finite, and is bounded by Tq(1), where Tq is the function described above.

Flipping φ(G) We now show how to obtain a flip φ(G)′ of φ(G) such that vertices that are
adjacent in φ(G)′ are not too far in G. Let P be the partition of V(G) = V(φ(G)) such that
two vertices of G are in the same part if they get the same label. In particular, |P| ⩽ Tq(1).
Now, in the graph φ(G) flip a pair of parts A, B of P if and only if there is a pair of vertices
u ∈ A and v ∈ B, such that distG(u, v) > s and G |= φ(u, v), equivalently, uv ∈ E(φ(G)). The
statement above implies that whether or not we flip A and B, does not depend on the choice
of u ∈ A and v ∈ B such that distG(u, v) > s. This yields a P-flip of φ(G), which we denote
φ(G)′. Then the following holds for all u, v ∈ V(G):

uv ∈ E(φ(G)′) implies distG(u, v) ⩽ s.

We now generalize the above reasoning to the case when G′ is a k-flip of G. Again, the
goal is to construct a flip φ(G)′ of φ(G) such that vertices that are adjacent in φ(G)′ are not
too far in G′.

We treat G′ as a k-colored graph, by adding colors that mark parts of the partition that is
used to produce the k-flip G′ of G. The key observation is that we can write a formula φ′(x, y)
that makes use of those colors, and such that

G′ |= φ′(u, v) ⇐⇒ G |= φ(u, v) for all u, v ∈ V(G).

This is because we can write a formula ε(x, y) such that G′ |= ε(u, v) if and only if G |= E(u, v)
(the formula ε(x, y) checks the colors of x and y, whether x and y are adjacent in G′, and
inverts the flip). The formula φ′(u, v) is obtained by replacing each atomic formula E(z, t)
with ε(z, t). In particular, φ′ has the same quantifier rank as φ, and is therefore also s-local.
Applying the same argumentation as above, but this time to the formula φ′ and the k-colored
graph G′, we obtain a P-flip φ(G)′ such that the following holds for all u, v ∈ V(G):
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uv ∈ E(φ(G)′) implies distG′(u, v) ⩽ s.

Moreover, the size of P can be bounded by a number ℓ depending on the formula φ and
the number k. Since this holds for every k-flip G′ of G, we can now apply Lemma 8.11 and
conclude that fwr(φ(G)) ⩽ ℓ.

9 Definable flip-width

Determining the flip-width of radius r of a given graph G seems computationally difficult.
The space of all configurations in the flipper game of radius r and width k (consisting of a
k-flip of G and the runner’s position) has size exponential in |G|, and the naive algorithm for
determining whether fwr(G) ⩽ k, which explores the space of all configurations, therefore
runs in time exponential in |G|. We expect that for possible algorithmic applications, an
algorithm which approximates fwr(G), instead of computing it exactly, should suffice. This
is what happens in the case of weak coloring numbers, and of twin-width, where such an
approximation algorithm is not known in general, but is known in various special cases.

In this section, we introduce the definable flipper game of radius r and width k, in which the
moves allowed for the flipper are parameterized by tuples of vertices of the graph, rather than
by partitions of the vertex set. Among other things, this reduces (comparing to the flipper
game) the number of configurations, and the computational complexity of determining the
definable flip-width of a given graph. The main result of this section is Theorem 9.4 that says
that the definable flip-width at radius r can be bounded in terms of the flip-width at radius
5r. This allows to obtain, in Theorem 9.7, an algorithm for approximating flip-width, which
runs in time |G|O(k) · Ok(1), where k is the flip-width. We use tools related to VC-dimension
to accomplish this.

Atomic types and definable flips Let S be a set of vertices of a graph G. Consider the
partition P of V(G) such that two vertices u, v ∈ V(G) are in the same part if N(u) ∩ S =

N(v)∩ S. The equivalence classes of the partition P are called S-types. In particular, |P| ⩽ 2|S|.
Say that a graph G′ is an S-definable flip of G if G′ is a P-flip of G, where P is the partition

of V(G) into S-types. Say that G′ is a k-definable flip of G, if G′ is an S-definable flip of G for
some S ⊆ V(G) with |S| ⩽ k.

Note that a k-definable flip of G is a 2k-flip of G. However, there is no function f such every
k-flip of a graph G is a f (k)-definable flip of G. For instance, the graph Gn obtained from an
n-clique Kn by adding n isolated vertices, is a 2-flip of K2n, but is not an (n − 1)-definable flip
of K2n.

Definable flipper game Fix r ∈ N ∪ {∞}. The definable flipper game of radius r and width k
is defined in the same way as the flipper game of radius r, but now in each round the flipper
is allowed to announce a k-definable flip G′ of G, rather than a k-flip of G.

Definition 9.1. Fix r ∈ N ∪ {∞}. The radius-r definable flip-width of a graph G, denoted
dfwr(G), is the smallest number k such that the flipper has a winning strategy in the definable flipper
game of radius r and width k on G.

As every k-definable flip of G is a 2k-flip of G, it follows that for every r ∈ N ∪ {∞} and
graph G we have:

fwr(G) ⩽ 2dfwr(G). (12)

One advantage of the definable version of the flipper game is that it has far fewer config-
urations than the original flipper game. As there are only O(|G|k+1 · 24k

) configurations in
the definable flipper game of width k, we get that it can be decided in time |G|O(k) · 2O(2k)

whether a given graph G has dfwr(G) ⩽ k (see Appendix B.5 for a proof).
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Lemma 9.2 (∗). There is an algorithm that, given a graph G and numbers k ∈ N and r ∈ N ∪ {∞},
determines whether dfwr(G) ⩽ k in time nO(k) · 2O(2k).

The following lemma is an immediate consequence of the Sauer-Shelah-Perles lemma
(Lemma 3.8).

Lemma 9.3 (∗). Fix r ∈ N ∪ {∞}. For every graph G we have:

fwr(G) ⩽ O(dfwr(G)VCdim(G)). (13)

The following is the main result of Section 9. It says that the definable flip-width can
be bounded in terms of the flip-width, at the cost of increasing the radius. Below, 5 · ∞ is
interpreted as ∞.

Theorem 9.4. Fix r ∈ N ∪ {∞}. For every graph G we have:

dfwr(G) ⩽ O(fw5r(G)3). (14)

We prove Theorem 9.4 below. We first observe some consequences. The bounds (12) and
(14) give the following.

Corollary 9.5. The following conditions are equivalent for a graph class C:

1. C has bounded flip-width, that is, fwr(C) < ∞ for all r ⩾ 1,

2. dfwr(C) < ∞ for all r ⩾ 1.

Similarly, for the case r = ∞, using Theorem 5.17 we get the following characterization of
classes of bounded clique-width in terms of the definable flipper game with radius ∞:

Corollary 9.6. The following conditions are equivalent for a graph class C:

1. C has bounded clique-width,

2. dfw∞(C) < ∞.

Finally, we get an algorithm for approximating the flip-width of a given graph. The algo-
rithm is an approximation algorithm: unlike the algorithm in Lemma 9.2, it does not allow to
exactly determine whether the radius-r flip-width of a given graph G is smaller than a given
number k. Rather, it recognises one of two, non-exclusive, cases: whether fwr(G) is small
comparing to k, and whether fw5r(G) is large comparing to k. Note that there is a gap in
the radii, r and 5r. The running time of the algorithm is Ok(1) · nO(k), which is called an XP
algorithm (parameterized by k) in the language of parameterized complexity.

Theorem 9.7. There is a constant C > 0 and an algorithm that inputs a graph G and numbers
r, k ∈ N, runs in time nO(k) · 2O(2k), and either concludes that fwr(G) ⩽ 2k, or concludes that
fw5r(G) ⩾ C · k1/3.

Proof. The algorithm tests whether dfwr(G) ⩽ k in time nO(k) · 2O(2k), using Lemma 9.2. If
dfwr(G) ⩽ k it concludes that fwr(G) ⩽ 2k, by (12). If dfwr(G) > k, it concludes that
fw5r(G) ⩾ Ck1/3 by (14), where C > 0 is some fixed constant.

Proof of Theorem 9.4 We now turn to the proof of Theorem 9.4. We use a result concerning
graphs of small VC-dimension. Recall that VCdim(G) ⩽ O(fw1(G)) by Theorem 5.24. The fol-
lowing result from [BDG+

22], relies on the (p, q)-theorem of Alon-Kleitman-Matoušek [Mat04]
(see Appendix E.2 and Appendix E.3).

Lemma 9.8 (∗). Fix k, d ∈ N. Let V be a set equipped with:

• a binary relation E ⊆ V × V of VC-dimension at most d,

• a pseudometric dist : V × V → R⩾0 ∪ {∞} (that is, a function satisfying the triangle inequal-
ity),
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• and a partition P of size at most k,

such that E(u, v) depends only on the P-class of u and the P-class of v whenever dist(u, v) > 1.
Then there is a set S ⊆ V of size O(dk2), such that E(u, v) depends only on the S-types of u and of v,
whenever dist(u, v) > 5.

We reformulate Lemma 9.8 in terms of flips, as follows.

Corollary 9.9. Let G be a graph and d = VCdim(G), and let G′ be a k-flip of G. Then there is a
O(dk2)-definable flip H′ of G such that

distG′(u, v) ⩽ 5 for all u, v ∈ E(H′) (15)

Proof. Apply Lemma 9.8 to V = V(G), E = E(G), dist : V × V → N ∪ {∞} denoting the
shortest path metric in G′, and the partition P with |P| ⩽ k such that G′ is a P-flip of G.
Note that for any two vertices u, v ∈ V, whether or not uv ∈ E(G) holds, can be determined
basing only on the P-class of u, the P-class of v, and on the information whether uv ∈ E(G′)
holds. In particular, uv ∈ E(G) depends only on the P-class of u and the P-class of v, for all
u, v ∈ V that are not adjacent in G′, equivalently, with dist(u, v) > 1. Hence, the assumption
of Lemma 9.8 is satisfied.

Let S with |S| ⩽ O(dk2) be as in the conclusion of the lemma, so that whether or not
uv ∈ E(G), depends only on the S-type of u and the S-type of v, for all u, v ∈ V with
dist(u, v) > 5.

Let PS denote the partition of V(G) into S-types. Let H′ be the PS-flip of G that flips
between two S-types A and B if and only if there are some u ∈ A, v ∈ B with dist(u, v) > 5
and uv ∈ E(G). The conclusion follows.

Theorem 9.4 easily follows from Corollary 9.9.

Proof of Theorem 9.4. Let G be a graph and let k = fw5r(G). In particular, by Theorem 5.24,
we have that VCdim(G) ⩽ O(k). By Corollary 9.9 applied to H := G, the assumptions of
Lemma 8.11 are satisfied, where the ℓ-flip H′ of H = G, for ℓ = 2O(k3) is a O(k3)-definable
flip, as provided by Corollary 9.9. By transferring the winning strategy of the flipper in the
flipper game of radius 5r and width k on G, according to this mapping G′ 7→ H′, we get a
strategy for the flipper in flipper game of radius r on G, which uses only O(dk2)-definable
flips. By Lemma 8.11, this yields a winning strategy of the flipper that will use only O(k3)-
definable flips. Hence, dfwr(G) ⩽ O(k3).

10 Almost bounded flip-width

Recall from Fact 3.7 that a hereditary graph class C is nowhere dense if and only if for every
r ⩾ 1 and G ∈ C we have wcolr(G) = |G|o(1). Inspired by this characterization, we extend the
notion of bounded flip-width as follows.

Definition 10.1. A graph class C has almost bounded flip-width if for every r ⩾ 1 and real ε > 0
we have fwr(G) ⩽ Oε,r(|G|ε) for every graph G in the hereditary closure of C.

Note that we consider all graphs G from the hereditary closure of C. Otherwise, the class
consisting of every graph G with 2|G| isolated vertices added to it, would have almost bounded
flip-width, while according to the above definition, it does not. Indeed, we have the following
lemma, which is an immediate consequence of Lemma 5.26.

Lemma 10.2. Every graph class with almost bounded flip-width has bounded VC-dimension.

Clearly, every class with bounded flip-width has almost bounded flip-width. As we con-
jecture (see Conjecture 10.7), classes of almost bounded flip-width coincide with monadi-
cally dependent classes (see definition below), analogously to the characterization of nowhere
dense classes in Fact 3.7.
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In this section, we provide some evidence towards this conjecture. In Theorem 10.9, we
prove that a weakly sparse class has almost bounded flip-width if and only if it is nowhere
dense, if and only if it is monadically dependent. In Theorem 10.12 we prove that structurally
nowhere dense classes have almost bounded flip-width. In Theorem 10.15 we prove that edge-
stable classes of almost bounded flip-width are monadically dependent. In Theorem 10.17 we
prove that classes of ordered graphs of almost bounded flip-width coincide with classes of
bounded twin-width, and with classes of bounded flip-width. We start with recalling the
discussed notions.

10.1 Monadic dependence and monadic stability

The following notion, due to Shelah [She86] (see also [BL21]), originates in model theory.

Definition 10.3. A graph class C is monadically dependent (or monadically NIP) if and only if it
does not transduce the class of all graphs.

Monadically dependent classes have recently attracted attention in areas of structural and
algorithmic graph theory [AA14, NdMP+

21, BGOdM+
22, GPT22], as it is conjectured (see

Conjecture 1.1) that monadically dependent classes are precisely those for which model check-
ing first-order logic is fixed-parameter tractable.

Monadically dependent classes include all nowhere dense classes, and in fact, among
weakly sparse classes, they provide an exact characterization:

Fact 10.4 (Consequence of [Dvo18]+[AA14]). Let C be a weakly sparse graph class. Then C is
nowhere dense if and only if C is monadically dependent.

Monadically dependent classes also include all classes of bounded flip-width, by Corol-
lary 8.4.

An important subfamily of monadically dependent classes consists of monadically stable
classes. A graph class is monadically stable if it does not transduce the class of all half-graphs
(see Fig. 2). A graph class is edge-stable if it excludes some half-graph as a semi-induced
bipartite graph. More precisely, there is k ⩾ 1 such that there do not exist G ∈ C and vertices
a1, . . . , ak, b1, . . . , bk of G such that aibj ∈ E(G) ⇐⇒ i < j for all i, j ∈ {1, . . . , k}.

The following result is proved in [NdMP+
21, Theorem 1.3], see also [BL22, Theorem 3.20].

Fact 10.5. Let C be an edge-stable graph class. Then C is monadically stable if and only if it is
monadically dependent.

Monadically stable classes include all nowhere dense classes [AA14], as well as trans-
ductions of nowhere dense classes, called structurally nowhere dense classes. It is not known
whether all monadically stable classes are structurally nowhere dense (this has been conjec-
tured in [NdMP+

21, Conjecture 6.1]). The class of half-graphs is clearly not monadically
stable, and has bounded (linear) clique-width. Hence, monadically stable classes are incom-
parable with classes of bounded clique-width. They are also incomparable with classes of
bounded flip-width, as witnessed by the class of half-graphs on one side, and any nowhere
dense class which does not have bounded expansion on the other side.

Monadic dependence can be defined not only for graph classes, but for arbitrary classes of
structures, e.g. classes of ordered graphs. A class of ordered graphs is monadically dependent
if it does not transduce the class of all graphs, where now the transduction may involve the
edge relation symbol, as well as the total order < (and the color predicates). The following
result is proved in [BGOdM+

22].

Fact 10.6. Let C be a class of ordered graphs. Then C is monadically dependent if and only if C has
bounded twin-width.

In this section, we study classes of almost bounded flip-width in the three settings dis-
cussed above: of weakly sparse classes, of edge-stable classes, and of classes of ordered
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graphs. We show that in the first and last settings, those classes coincide with monadically de-
pendent classes, and that in the edge-stable case they also coincide, assuming all monadically
stable classes are structurally nowhere dense.

We conjecture that the property of having almost bounded flip-width coincides exactly
with monadic dependence.

Conjecture 10.7. A graph class has almost bounded flip-width if and only if it is monadically depen-
dent.

Currently, we are able to prove neither of the two implications in this conjecture. However,
in the rest of Section 10, we provide evidence towards this conjecture, by confirming it in
restricted settings.

Another conjecture that is supported by the evidence presented below, predicts a collapse
result: that a bound o(n1/2) on the flip-width parameters implies a bound o(nε), for every
fixed ε > 0.

Conjecture 10.8. The following conditions are equivalent for a hereditary graph class C:
1. C has almost bounded flip-width, that is, for every fixed r ∈ N and ε > 0 we have that fwr(G) =

o(|G|ε) holds for all G ∈ C,
2. for every fixed r ∈ N we have that fwr(G) = o(|G|1/2) holds for all G ∈ C.

A similar collapse occurs in the sparse case [NdM12].

10.2 Weakly sparse classes of almost bounded flip-width

Analogously to Theorem 6.3, which characterizes classes with bounded expansion as exactly
the weakly sparse classes of bounded flip-width, we get a characterization of nowhere dense
classes in terms of almost bounded flip-width.

Theorem 10.9. Let C be a weakly sparse graph class. Then the following conditions are equivalent:
1. C is nowhere dense,
2. C has almost bounded flip-width,
3. C is monadically dependent.

The equivalence of the first and last condition is by Fact 10.4, so we only prove the equiv-
alence of the first two.

Proof. We first show that every nowhere dense class has almost bounded flip-width. Every
nowhere dense class C is weakly sparse, so excludes some Kt,t as a subgraph. By Theorem 5.6,
Theorem 4.5, and the forward implication in Fact 3.7, we have that fwr(G) ⩽ Or,ε(ntε) for
every n-vertex graph G ∈ C. Since this holds for every ε > 0 and t is fixed, the conclusion
follows by rescaling ε.

Conversely, suppose that C has almost bounded flip-width, and excludes Kt,t as a sub-
graph. Without loss of generality, we may assume that C is hereditary. We have fw1(G) ⩽
Oε(nε) for every n-vertex graph G ∈ C, and by Theorem 6.1, degeneracy(G) ⩽ Oε(nε · 2t2) ⩽
Oε(nε). By Theorem 6.4, for every r ⩾ 1 and ε > 0 we have

∇̃r−1(G) ⩽ (r · fwr(G) ·degeneracy(G))O(1) ⩽ (r ·Or,ε(|G|ε) ·Oε(|G|ε))O(1) ⩽ Or,ε(|G|O(ε)),

for all G ∈ C. By Facts 3.3 and 3.5 we have wcolr(G) ⩽ Or,ε(|G|O(ε)) for every r ⩾ 1 and graph
G ∈ C. Therefore, C is nowhere dense, by the backwards implication in Fact 3.7.

As there exist nowhere dense classes of unbounded degeneracy, we get the following.

Corollary 10.10. There is a class that has almost bounded flip-width, but does not have bounded
flip-width.

By taking the substitution closure (see Section 5.1) of the class from the corollary above,
we obtain a class which has almost bounded flip-width (by Lemma 5.13), but is not nowhere
dense (not even edge-stable), and has unbounded flip-width.
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10.3 Structurally nowhere dense classes

We are unable to determine whether classes of almost bounded flip-width are closed under
transductions. Observe that the bound fwr(φ(G)) ⩽ Tq(fwr′(G)) in Theorem 8.2 is not poly-
nomial in fwr′(G). It is, however, linear in the case when φ is a quantifier-free formula φ(x, y),
so we get the following.

Corollary 10.11. Let C be a class of k-colored colored graphs of almost bounded flip-width, and let
φ(x, y) be a quantifier-free formula. Then the class φ(C) has almost bounded flip-width.

Even though we do not know whether classes of almost bounded flip-width are closed
under transductions, we confirm that structurally nowhere dense classes (transductions of
nowhere dense classes) have almost bounded flip-width.

Theorem 10.12. Every structurally nowhere dense class has almost bounded flip-width.

To prove Theorem 10.12, we use the main result of [DGK+
22a], which essentially implies

that for every structurally nowhere dense class C there is an almost nowhere dense class B of
structures equipped with functions, and a quantifier-free formula φ(x, y) involving function
symbols, such that C ⊆ φ(B). This is made precise below.

Say that a class C of graphs is almost nowhere dense if for every r ⩾ 1 and ε > 0 we have
wcolr(G) ⩽ Or,ε(|G|ε), for all G ∈ C. Crucially, C does not need to be hereditary, otherwise
this notion would coincide with nowhere denseness by Fact 3.7.

Fix a signature Σ consisting of unary relation symbols, binary relation symbols, and unary
function symbols. The VC-dimension of a Σ-structure B, denoted VCdim(B), is the maximum
of the VC-dimensions of the binary relations of B (see Section 3.3). Here, the functions of B
are ignored.

The following result, apart from the ‘moreover’ part, is a straightforward consequence of
[DGK+

22a, Theorem 3]. It says that every structurally nowhere dense class C interprets in an
almost nowhere dense class B of structures, via a quantifier-free interpretation using a unary
function symbol. Additionally, every G ∈ C interprets in some B ∈ B with |B| ⩽ O(|G|).
Moreover, the binary relations of the binary structures in B have bounded VC-dimension,
which will be important in the next lemma, for controlling the bounds on the flip-width of G.

Theorem 10.13 (∗). Let C be a structurally nowhere dense graph class. There is a signature Σ
consisting of unary and binary relation symbols and one function symbol, a class B of Σ-structures
which is almost nowhere dense, and a quantifier-free symmetric formula φ(x, y) with the following
property. For every graph G ∈ C there is some B ∈ B with |B| ⩽ O(|G|), such that G is an induced
subgraph of φ(B). Moreover, VCdim(B) < ∞.

The ‘moreover’ part is shown by analysing the construction from [DGK+
22a] (see [DGK+

22b]
for the full version), and observing that the constructed quasi-bushes interpret (via a d-
dimensional interpretation, for some fixed d) in graphs from a nowhere dense classes, and
thus have bounded VC-dimension by the results of [AA14].

The following lemma is extends the ideas used in the proof of Theorem 8.2, specifically,
of the special case of quantifier-free interpretations considered in Corollary 10.11. The lemma
considers quantifier-free interpretations that use function symbols, and says that under some
technical conditions, such interpretations map graphs of small cop-width to graphs of small
flip-width.

Lemma 10.14 (∗). Let Σ be a signature consisting of unary and binary relation symbols, and unary
function symbols. Fix k, r ⩾ 0, and a symmetric quantifier-free Σ-formula φ(x, y). There are numbers
p ⩽ Oφ(k) and r′ ⩽ Oφ(r) such that the following holds. Let B be a Σ-structure with VCdim(B) ⩽ k
and GB be its Gaifman graph. Then

fwr(φ(B)) ⩽ O(copwidthr′(GB))
p.
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The key insight is that a bound k on the VC-dimension implies that if the cops in the
Cops and Robber game on G occupy a set S of vertices of a graph G, then, by the Sauer-
Shelah-Perles lemma (Lemma 3.8), the partition of V(G) into S-types has size O(|S|k), and
this partition is used by the flipper in the flipper game.

The two statements above are proved in Appendix I. Theorem 10.12 follows, as we now
show.

Proof of Theorem 10.12. Let C be a structurally nowhere dense class. Without loss of generality,
C is hereditary. Let B and φ(x, y) be as in Theorem 10.13, and k ∈ N be such that VCdim(B) <
k for B ∈ B.

Let G ∈ C and B ∈ B be such that G is an induced subgraph of φ(B) and |B| ⩽ O(|G|),
and let GB be the Gaifman graph of B. Let p and r′ be as in Lemma 10.14. Fix ε > 0. Then we
have:

fwr(G) ⩽ fwr(φ(B)) ⩽ O(copwidthr′(GB))
p ⩽ Or′ ,ε(|B|εp) ⩽ Or′ ,ε(|G|εp).

Since r′ depends only on r and φ, and p is a constant, and ε > 0 is arbitrary, this proves that
C has almost bounded flip-width.

10.4 Edge-stable classes of almost bounded flip-width

Conjecture 10.7 predicts that a graph class has almost bounded flip-width if and only if it
is monadically dependent. Currently, we are able to prove neither of the two implications.
However, we prove the forward implication under the assumption that C is edge-stable (that
is, excludes some half-graph as a semi-induced bipartite graph).

Theorem 10.15. Let C be an edge-stable, hereditary graph class such that for all r ∈ N,

fwr(G) = o(|G|1/2) for G ∈ C.

Then C is monadically stable. In particular, every edge-stable, hereditary graph class of almost bounded
flip-width is monadically stable.

As far as we know, every monadically stable class might be structurally nowhere dense.
This is conjectured in [NdMP+

21, Conjecture 6.1]. If this were true, then Theorem 10.15

and Theorem 10.12 would imply that among edge-stable graph classes, almost bounded flip-
width coincides with monadically stable class (and thus with monadically dependent classes,
by Fact 10.5). Moreover, this would imply a collapse result, confirming Conjecture 10.8.

To prove Theorem 10.15, we use the following result of [GMM+
23, Thm. 1.4].

Fact 10.16 ([GMM+
23]). Let C be a hereditary, edge-stable class of graphs. If C is not monadically

stable then there are r, k ⩾ 1, a k-coloring Ĉ of C and a quantifier-free formula φ(x, y) such that φ(Ĉ)
contains the exact r-subdivision of every graph.

Proof of Theorem 10.15. Let C be a hereditary, edge-stable graph class, such that for every fixed
r ∈ N, we have that fwr(G) = o(|G|1/2) holds for all G ∈ C. We prove that C is monadically
stable. Suppose otherwise. Let r, k, Ĉ and φ(x, y) be as in Fact 10.16.

Pick a number n ⩾ 1. Let K(r)
n denote the exact r-subdivision of the clique Kn. Then

fwr+1(K
(r)
n ) ⩾ Ωr(n) by Proposition 6.7. By Fact 10.16, there is some Gn ∈ Ĉ such that φ(Gn)

is isomorphic to K(r)
n . In particular, |V(Gn)| = |V(K(r)

n )| ⩽ O(rn2).
As φ is quantifier-free and involves k colors, by Theorem 8.2, we have fwr+1(φ(Gn)) ⩽

k · fwr+1(Gn), and altogether:

Ωr(n) ⩽ fwr+1(K
(r)
n ) ⩽ fwr+1(φ(Gn)) ⩽ k · fwr+1(Gn) = o((n2)1/2) ⩽ o(n),

which is impossible. Hence, C is monadically stable.
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10.5 Classes of ordered graphs of almost bounded flip-width

Recall that flip-width is defined for arbitrary binary relational structures (see Appendix B.4),
and there is a variant of flip-width tailored to ordered graphs, defined in Section 7. It follows
from Lemma 7.2, that a class C of ordered graphs has almost bounded flip-width if and only
if for every r, we have fw<

r (C) < ∞.
In this section, we prove that for hereditary classes of ordered graphs, almost bounded

flip-width coincides with bounded twin-width, as well as with bounded flip-width (by The-
orem 7.3). Moreover, in the setting of ordered graphs, a very strong form of the collapse
predicted by Conjecture 10.8, holds: from o(n1/2) all the way down to O(1) (as opposed to
just no(1), as predicted by the conjecture). This total collapse is, ultimately, a consequence of
the Marcus-Tardos theorem/Stanley-Wilf conjecture.

Theorem 10.17. The following conditions are equivalent for a hereditary class C of ordered graphs:

1. C is monadically dependent,

2. C has bounded twin-width,

3. C has bounded flip-width,

4. C has almost bounded flip-width,

5. fw<
1 (G) = o(|G|1/2) for all G ∈ C.

The equivalence 1↔2 is proved in [BGOdM+
22]. The equivalence 2↔3 is by Theorem 7.3.

The implications 3→4 and 4→5 are immediate. We prove the implication 5→2. For this, we
use the following consequence of the main result of [BGOdM+

22], which itself is a manifes-
tation of the Marcus-Tardos theorem/Stanley-Wilf conjecture [MT04].

Figure 4: An s-pattern A, B of order n2 for n = 4 and s ∈ {=, ̸=,⩽l ,⩾l ,⩽r,⩾r}, represented as incidence
matrices of G[A, B]. The origin is at the lower-left corner and black entries denote incidence.

Denote [n] := {1, . . . , n}. Fix a symbol s ∈ {=, ̸=,⩽l ,⩾l ,⩽r,⩾r} and let G = (V, E,<) be
an ordered graph and A, B ⊆ V(G). Say that A and B form a s-pattern of order n2 if |A| =
|B| = n2, and the following condition holds (see Fig. 4). Let α : [n]2 → A and β : [n]2 → B
be order-preserving bijections, where [n]2 is ordered by the lexicographic order <lex, while A
and B are ordered by <. Then for (i, j), (i′, j′) ∈ [n]2, we have that α(i, j)β(i′, j′) ∈ E if and
only if the following condition holds:

• (i, j) = (j′, i′), if s is =,

• (i, j) ̸= (j′, i′), if s is ̸=,

• (j, i) ⩽lex (i′, j′), if s is ⩽l ,

• (j, i) ⩾lex (i′, j′), if s is ⩾l ,
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• (i, j) ⩽lex (j′, i′), if s is ⩽r,

• (i, j) ⩾lex (j′, i′), if s is ⩾r.

Fact 10.18 ([BGOdM+
22]). Let C be a class of ordered graphs of unbounded twin-width. Then there

is s ∈ {=, ̸=,⩽l ,⩾l ,⩽r,⩾r} such that for every n ⩾ 1, there is some graph G ∈ C and sets A and B
that form an s-pattern of order n2.

Proof. Follows from [BGOdM+
21, Lemma 40], by considering the (s, σ)-matching (in their

notation), where σ is the permutation of [n]2 (ordered lexicographically) such that σ((i, j)) =
(j, i) for (i, j) ∈ [n]2.

Recall the definition of an n-rich division in an ordered graph G, and that the existence of
such a division implies fw<

1 (G) ⩾ n (see Lemma 7.5 and definition before it).

Lemma 10.19. Let n be even, and G be an ordered graph containing an s-pattern of order n2. Then G
has an n

2 -rich division. In particular, fw<
1 (G) ⩾ n/2.

Proof. Let A and B form an s-pattern of order n2. Let L = {I1, . . . , In} be the partition of
V(G) into n intervals, with respect to the order of G restricted to A, each containing exactly
n elements of A. Similarly, let R = {J1, . . . , Jn} be the partition of V(G) into n intervals, each
containing exactly n elements of B. We show that L and R form an n

2 -rich division of G.
Let Ii be an interval of L and pick a family R′ ⊆ R of n/2 intervals of R. Let {j1, . . . , jn/2}

be the indices of the n/2 intervals Jj in R′ and let J be their union. We show that there are n/2
vertices in A ∩ Ii with pairwise distinct neighborhoods in B ∩ J. This (by symmetry) implies
that L and R form and n

2 -rich division of G.
Let α and β be as in the definition of an s-pattern of order n2. Then, for p, q ∈ [n/2] we

have that α(i, jp) ∈ A ∩ Ii and β(jq, i) ∈ B ∩ J. Furthermore, α(i, jp)β(jq, i) ∈ E(G) if and only
if:

• p = q, if s is =,

• p ̸= q, if s is ̸=,

• p ⩽ q, if s is ⩽l or ⩽r,

• p ⩾ q, if s is ⩾l or ⩾r.

In any case, the vertices α(i, j1), . . . , α(i, jn/2) ∈ A ∩ Ii have distinct neighborhoods in B ∩ J.
This (and a symmetric argument, exchanging the roles of L and R) demonstrates that L and
R form an n

2 -rich division. By Lemma 7.5, we have that fw<
1 (G) ⩾ n/2.

Proof of Theorem 10.17. As argued, it remains to prove the implication 5→2. Let C be a hered-
itary class of ordered graphs with unbounded twin-width. We prove that there are infinitely
many ordered graphs G ∈ C with fw<

1 (G) ⩾ Ω(|G|)1/2, which contradicts condition 5.
Let s ∈ {=, ̸=,⩽l ,⩾l ,⩽r,⩾r} be as in Fact 10.18.
Fix an even n ⩾ 2. By Fact 10.18 there is an ordered graph Gn ∈ C and sets A, B ⊆ V(Gn)

of size n2, that form an s-pattern of order n2 in G. As C is hereditary, we may assume that
V(Gn) = A ∪ B, so in particular |Gn| ⩽ 2n2. By Lemma 10.19, fw<

1 (Gn) ⩾ n/2. Altogether,
we have that

fw<
1 (Gn) ⩾

1
2
(|Gn|/2)1/2 = Ω(|Gn|1/2).

Since Gn ∈ C for all even n ⩾ 2, it cannot be that fw<
1 (G) ⩽ o(|G|)1/2 holds for all G ∈ C.

Summary In Section 10 we have defined graph classes of almost bounded flip-width. We
conjecture that they coincide with monadically dependent graph classes. We provide the fol-
lowing evidence towards this conjecture. We have shown that, when restricted to weakly
sparse graph classes, almost bounded flip-width coincides with nowhere denseness, and with
monadic dependence. And when restricted to edge-stable graph classes, almost bounded
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flip-width generalizes structurally nowhere denseness, and is generalized by monadic stabil-
ity. As it is conjectured that structurally nowhere dense classes coincide with monadically
stable classes, this would imply that for edge-stable graph classes, almost bounded flip-width
coincides with monadic stability, and with monadic dependence. We have shown that for
classes of ordered graphs, almost bounded flip-width coincides with bounded flip-width, and
with bounded twin-width, and therefore, with monadic dependence.

In all the special cases studied above – of weakly sparse graph classes, of edge-stable
graph classes, and of classes of ordered graphs – the model-checking problem is known to be
fixed-parameter tractable [GKS17, DMS23, BGOdM+

22] (in the edge-stable case, this assumes
that monadic stability coincides with structural nowhere denseness). We therefore obtain the
following corollary.

Corollary 10.20. Let C be a class of almost bounded flip-width that is either weakly sparse, or is a class
of ordered graphs, or is structurally nowhere dense. Then the model checking problem for first-order
logic is fpt on C.

We remark that, up to best of our knowledge, all hereditary graph classes for which the
model-checking problem is currently known to be fixed-parameter tractable – apart from one
family of examples – have almost bounded flip-width. Those includes the listed cases above,
as well as some classes of bounded twin-width [BCK+

22, GT23]. However, we do not know
whether classes of structurally bounded local clique-width [BDG+

22] have almost bounded flip-
width (they are monadically dependent, and have tractable model-checking).

10.6 Almost bounded twin-width

Say that a graph class C has almost bounded twin-width if for every ε > 0 we have

tww(G) ⩽ OC,ε(nε) for every n-vertex graph G ∈ C.

We prove the following.

Theorem 10.21. Every hereditary class of almost bounded twin-width has alomost bounded flip-width.

We first show that classes of almost bounded twin-width have bounded VC-dimension,
and in fact, bounded 2-VC-dimension.

Lemma 10.22. Every graph of twin-width d has 2-VC-dimension at most O(d2).

Proof. This follows by inspecting the proof of [BGK+
22, Prop.6.2] (in the case k = 1) which

implies that if the 1-subdivision of Km has twin-width at most d, then m − 1 ⩽ (d + 1)2.
Exactly the same proof shows that in fact, if G has 2-VC-dimension m and twin-width at most
d, then m − 1 ⩽ (d + 1)2, which yields the conclusion.

Corollary 10.23. Let C be a hereditary class of almost bounded twin-width. Then C has bounded
2-VC-dimension.

Proof. Suppose C has unbounded 2-VC-dimension. As C is hereditary, it follows that for every
m ∈ N there is a graph Gm ∈ C such that:

• Gm has 2-VC-dimension (at least) m,

• Gm has at most m(m + 1)/2 vertices.

By Lemma 10.22,

tww(Gm) ⩾ Ω(
√

m) ⩾ Ω( 4
√
|V(Gm)|).

It follows that C does not have almost bounded twin-width.

Corollary 10.24. Let C be a hereditary class of almost bounded twin-width. Then there is a constant
c such that for every G ∈ C and n ∈ N we have πG(n) ⩽ nc.
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Proof. As the 2-VC-dimension of a graph G is at least as large as the VC-dimension, from
Corollary 10.23 it follows that C has bounded VC-dimension. The conclusion follows from
the Sauer-Shelah-Perles Lemma (Lem. 3.8).

We are ready to prove Theorem 10.21.

Proof of Thm. 10.21. Let C be a hereditary class of almost bounded twin-width. Let c be the
constant from Corollary 10.24, so that πG(n) ⩽ nc for every G ∈ C and n ∈ N. Fix ε > 0 and
r ∈ N. As C has almost bounded twin-width, for very n-vertex graph G ∈ C we have that:

tww(G) ⩽ OC,ε,r(nε/(rc)).

By Theorem 7.1 we have that:

fwr(G) ⩽ πG(tww(G)O(r)) ⩽ O(tww(G))O(rc) ⩽ OC,ε,r(nO(ε)).

The conclusion follows by rescaling ε proportionally to the constant in the O(ε) notation
(which is a universal constant originating from the exponent O(r) from Theorem 7.1).

11 Discussion

In this section, we discuss some conjectured relationships between various notions defined in
this paper, and other known notions. We speculate on possible routes towards proving some
conjectures.

11.1 Obstructions to small flip-width

The results of this paper strongly suggest that the flip-width parameters are the sought dense
analogues of generalized coloring numbers, that classes of bounded flip-width are the sought
dense analogues of classes with bounded expansion, and almost bounded flip-width is a
dense counterpart of nowhere dense classes. What is currently missing to complete this
picture, is an analogue of the key result of Sparsity theory, which is a min-max theorem that
relates, on one hand, explicit descriptions of winning strategies of the robber, and on the other
hand, explicit descriptions of winning strategies for the cops in the Cops and Robber game
(see Section 4). In the sparse case, the former are obstructions to having small r-admissibility
numbers, or (by Fact 3.5), ⩽r-subdivisions of graphs with large minimum degree. Finding
an analogous notion in the dense case seems to be a major challenge. It seems plausible
that finding such notions is related to the question of efficiently approximating the flip-width
parameters. This goal can be formalized as follows.

Goal 11.1. Obtain an fpt approximation algorithm for radius-r flip-width: an algorithm running in
time f (r, k) · nc, for some constant c and function f : N × N → N, which given an n-vertex graph G
and numbers r, k, either concludes that fwr(G) > k, or that fwr(G) < f (r, k).

A first step in this direction is achieved by Theorem 9.7, which achieves an XP approxima-
tion algorithm, rather than an fpt algorithm.

A related, but less concrete goal is the following.

Goal 11.2. Describe explicit forbidden weak obstructions at depth r and density ℓ, such that
there are functions f , g : N×N → N such that for all r, ℓ ⩾ 1, every graph G with fwr(G) ⩾ f (r, ℓ)
contains such an obstruction of density ℓ as an induced subgraph, and conversely, no graph G which
contains such an obstruction of density g(r, ℓ) as an induced subgraph satisfies fwr(G) ⩾ ℓ.

One attempt at formalizing what we mean by “explicit”, is by requiring that the following
holds: for every fixed r there is a formula φr(x, y) (possibly involving colors) and a function
fr : N → N such that if G is is a forbidden weak obstruction at depth r and density at least
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fr(ℓ) then there is some k-coloring of G such that φr(G) contains an r-subdivision of a graph
with minimum degree at least ℓ as an induced subgraph.

The following question suggests a path towards achieving Goal 11.2.

Question 11.3. Fix r ⩾ 1. Is it the case that fwr(C) < ∞ if and only if there is a k ∈ N such that no
graph G ∈ C contains a (r, k, k)-hideout (see Definition 5.15)?

Hideouts are not induced subgraphs, as posited in Goal 11.2, but this could serve as a
starting point.

The following notions are defined in [GPT21]. A transduction ideal is a property of graph
classes that is preserved under first-order transductions: if a class C has the considered prop-
erty, and D transduces in C, then D has the property, too. The dense analogue of bounded
expansion is the largest transduction ideal such that all weakly sparse classes that belong to it
have bounded expansion.

By Corollary 8.3, classes of bounded flip-width form a transduction ideal, and by Theo-
rem 6.3, they are contained in the dense analogue of bounded expansion. We conjecture that
bounded flip-width is exactly the dense analogue of bounded expansion, according to the
above definition. This is equivalently stated as follows.

Conjecture 11.4. Let C be a class that does not have bounded flip-width. Then C transduces a weakly
sparse class D which does not have bounded expansion.

A road towards proving Conjecture 11.4 is through Goal 11.2. Indeed, if C contains ob-
structions at a fixed depth r ⩾ 1 and of arbitrarily large density ℓ, then according to the
requirement given below Goal 11.2, C transduces a class D which contains r-subdivisions of
arbitrarily dense graphs, and therefore D does not have bounded expansion.

11.2 Model checking

Recall that Conjecture 1.1 predicts that for a hereditary class C, first-order model-checking is
fixed-parameter tractable (fpt) on C if and only if C is monadically dependent. Both impli-
cations are open. We now discuss approaching the backward implication, giving the upper
bound: that model-checking is fpt on every monadically dependent graph class.

The question whether the model checking problem is fpt on every class C of graphs that
has bounded twin-width, remains open. (The result of [BKTW20] says that this is the case,
if the input graph G is given together with its contraction sequence. In some special cases
[BGOdM+

22, BCK+
22, GT23], such a contraction sequence can be efficiently computed.) As

bounded twin-width implies bounded flip-width, we do not know whether the model check-
ing problem is fpt on every class C of graphs that has bounded flip-width. However, we
believe that approximating the radius-r flip-width of a given graph G, might be easier than
approximating its twin-width. This is indicated for example by Theorem 9.7, which gives an
XP approximation algorithm for flip-width, while no such algorithm for twin-width is known.
Still, an analogue of the model-checking result of [BKTW20] is missing, and is posed as the
following goal.

Goal 11.5. Devise an efficient representation of winning strategies for the flipper such that for a fixed
formula φ there is a number r, such that given an efficient representation of a winning strategy for the
flipper in the radius-r flipper game on a given graph G, one can efficiently check whether φ holds in G.

In particular, Goal 11.5 combined with Goal 11.1 could allow to solve the model-checking
problem on classes of bounded flip-width (and also on classes of bounded twin-width, over-
coming the lack of an fpt approximation algorithm for twin-width).

An extension of Goal 11.5 to monadically dependent classes, with the hope of confirm-
ing Conjecture 1.1, could lead through Conjecture 10.7, which characterizes the hereditary
monadically dependent classes as those with almost bounded flip-width. This, however, re-
mains very speculative, and most likely requiring further insights, on top of the ones needed
to achieve Goal 11.5 and to solve Conjecture 10.7.
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11.3 Stable classes of bounded flip-width

It is conjectured [GPT21, Conjecture 6] that the edge-stable classes in the dense analogue of
bounded expansion have structurally bounded expansion, i.e., are transductions of classes
with bounded expansion. As classes of bounded flip-width are contained in the dense ana-
logue of bounded expansion, this would imply the following.

Conjecture 11.6. Every edge-stable class with bounded flip-width has structurally bounded expansion.

Conjecture 11.6 would generalize the main result of [GPT22, GPT21], which states that
every edge-stable class of bounded twin-width has structurally bounded expansion. The
conjunction of Conjecture 11.4 and Conjecture 11.6 implies the following duality statement
for edge-stable graph classes.

Conjecture 11.7. For every edge-stable graph class C, either C is a transduction of a class with bounded
expansion, or C transduces a weakly sparse class with unbounded expansion.

Conjecture 11.4 and Conjecture 11.6 imply Conjecture 11.7: If C is not monadically stable,
then C is not monadically dependent (by Fact 10.5), and hence transduces every weakly sparse
class of graphs. If C is monadically stable and has unbounded flip-width, then C transduces
a weakly sparse class that does not have bounded expansion by Conjecture 11.4. Finally, if C
is monadically stable and has bounded flip-width, then C transduces in a class of bounded
expansion, by Conjecture 11.6.

11.4 Restrictions of the flipper game

Restricted classes of bounded flip-width can be defined by imposing additional constraints
on the flipper game. We consider the following restrictions 8 on the strategy of the flipper in
the flipper game. We say that the strategy of the flipper is:

blind if their move does not depend on the current position of the runner (but may depend
on the graph and on the round number);

positional if their move is only based on the current position of the runner (and not on the
past moves, nor the round number);

of bounded depth if there is a bound ℓ such that the flipper wins within ℓ rounds;
branching-blind if in each round move, the flipper proposes a partition P of the vertex

set, and bases his move only on the part of P which is occupied by the runner, and
furthermore, ensure that the runner will remain in that part until the end of the game.

Each of those variants of the game defines a variant of the flip-width parameter, and the re-
lated classes. Thus, a class C has bounded X flip-width, for X ∈ {blind, branching blind, positional},
if for every radius r, there is a k such that the flipper wins the flipper game of radius r and
width k on every graph G ∈ C, using a strategy with property X. Similarly, C has bounded
flip-depth if for every r ∈ N there are k, ℓ such that for every G ∈ C, the flipper has a strategy
in the flipper game of radius r and width k, that wins in at most ℓ rounds.

We may also consider the limit case of the above games, for r = ∞, thus defining classes
with blind ∞-flip-width, positional ∞-flip-width, ∞-flip-depth, branching-blind ∞-flip-width, analo-
gously as above.

It turns out that these notions relate to notions and conjectures that have been studied
earlier, as we discuss below. We start with the following observation.

Proposition 11.8. All the above properties are preserved under first-order transductions, and under
CMSO transductions for the ∞ variants.

Proposition 11.8 follows by observing that in the proof of Theorem 8.2 and Theorem 8.8,
the strategy on φ(G) is obtained by transferring a winning strategy from G (see Section 8.2).
And transferring a strategy with one of the listed properties, results in a strategy with the
same property.

8I thank Rose McCarty and Pierre Ohlmann for suggesting the positional and bounded depth variants.
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Infinite radius In the limit case of radius ∞, the picture is quite well-understood, thanks
to the following.

Theorem 11.9. Let C be a class of graphs. Then:

1. C has branching-blind ∞-flip-width if and only if C has bounded clique-width;

2. C has blind ∞-flip-width if and only if C has bounded linear clique-width;

3. C has bounded positional ∞-flip-width, if and only if C has bounded ∞-flip-depth, if and only if
C has bounded shrubdepth.

A class C has bounded shrubdepth [GHN+
12] if and only if it transduces in a class of trees

of depth bounded by a constant.

Sketch of proof. (1). For the forward implication, observe that the strategy presented in the
proof of Theorem 5.17 (see Appendix D) is branching blind. For the backward implication,
note that if C has unbounded clique-width then by Theorem 5.17 it has unbounded flip-width,
so in particular, it has unbounded branching-blind flip-width.

(2). For the forward implication, observe that the strategy presented in Example 5.9, for
half-graphs, is blind. Therefore, the class of half-graphs has bounded blind flip-width. It is
well-known that every class C of bounded linear clique-width is a CMSO transduction of the
class of half-graphs (or of the class of finite total orders). By Proposition 11.8, C has bounded
blind flip-width.

Conversely, if a class C has unbounded linear clique-width, then it CMSO transduces the
class of all trees (this follows from [HJMW20, DT17] and from [CiO07]). One can prove that
the class of trees does not have bounded blind ∞-flip-width. Again by Proposition 11.8, this
implies that C has unbounded blind ∞-flip-width.

(3). First observe that in a tree of depth at most d, the flipper has a positional winning strat-
egy in the radius-∞ flipper game, that wins in at most d rounds (this is essentially the same
as the strategy in Example 4.3). Hence, every class D of trees of depth bounded by a constant
has bounded positional ∞-flip-width, and bounded ∞-flip-depth. By Proposition 11.8, the
same holds for every class that transduces in D, hence for all classes of bounded shrubdepth.

Conversely, if a class C has unbounded shrubdepth, then it CMSO-transduces the class of
all paths, by [KMOW21]. One can prove that the class of all paths does not have bounded
positional ∞-flip-width, and does not have bounded ∞-flip-depth. Proposition 11.8 implies
that C has unbounded positional ∞-flip-width, and unbounded ∞-flip-depth.

Blind case We now move the case of classes of bounded blind flip-depth. We start with
some examples.
Example 11.10. Classes of bounded blind flip-width include classes of bounded pathwidth,
and more generally, classes of bounded linear rank-width (or linear clique-width), by Theo-
rem 11.9.
Example 11.11. On the other hand, the strategies described in Example 4.3 and in Example 5.10,
for trees and for comparability graphs of trees, respectively, are not blind. One can show that
those classes do not have bounded blind flip-width. A more general statement is given below.

Conjecture 11.12. A class C has bounded blind flip-width if and only if C has bounded linear clique-
width.

As bounded linear clique-width is equivalent to bounded blind ∞-flip-width by Theo-
rem 11.9, Conjecture 11.12 states that bounded blind flip-width collapses to bounded blind
∞-flip-width.

Branching-blind case We now discuss the branching-blind case. By Theorem 11.9, every
class of bounded clique-width has bounded branching-blind flip-width.

50



Conjecture 11.13. A class C has bounded branching-blind flip-width if and only if C has bounded
clique-width.

As bounded clique-width is equivalent to bounded branching-blind ∞-flip-width by Theo-
rem 11.9, Conjecture 11.13 states that bounded branching-blind flip-width collapses to bounded
branching-blind ∞-flip-width.

Positional case Let us now look at some examples related to bounded positional flip-width.
Example 11.14. Every class with bounded expansion has bounded positional flip-width. This
follows from the proof of the upper bound in Theorem 4.5, as the cops’ strategy in the radius-r
Cops and Robber game is to occupy (or isolate) the vertices that are 2r-weakly reachable from
the vertex that is currently occupied by the robber. Clearly, this is a positional strategy.

By Proposition 11.8 we get the following.

Corollary 11.15. Every class with structurally bounded expansion has bounded positional flip-width.

On the other hand, we have:
Example 11.16. Half-graphs have unbounded positional flip-width.

It follows that every class C with bounded positional flip-width is edge-stable. Since C is
also monadically dependent by Corollary 8.4, and every monadically dependent, edge-stable
class is monadically stable by Fact 10.5, we get the following.

Corollary 11.17. Every class with bounded positional flip-width is monadically stable.

Conjecture 11.6 would therefore imply the following characterization of classes with bounded
positional flip-width.

Conjecture 11.18. A class C has bounded positional flip-width if and only if C has structurally
bounded expansion.

Bounded flip-depth Finally, we look at classes of bounded flip-depth.
Example 11.19. Classes of bounded degree have bounded flip-depth, as seen in Example 4.2.
Also, classes of bounded treedepth, or more generally, classes of bounded shrubdepth, have
bounded flip-depth.

A class of examples combining the above is provided by the following notion. Fix d, h ⩾ 1.
A hybrid tree of depth h and degree d is a graph G that can be obtained from a rooted tree T
of depth h by:

• first adding some edges connecting siblings in T, in such a way that every vertex is
adjacent in G to at most d of its siblings in T,

• afterwards, taking a subgraph of the resulting graph.

Proposition 11.20. Fix d, h ⩾ 1. The class Hd,h of hybrid trees of depth h and degree d has bounded
flip-depth.

The following is a consequence of Simon’s factorisation theorem [Sim90]. We omit the
details.

Theorem 11.21. Every class C of bounded pathwidth, and more generally, every stable class of bounded
linear clique-width, transduces in H2,h, for some fixed h.

Corollary 11.22. Every class of bounded pathwidth, and more generally, every stable class of bounded
linear clique-width has bounded flip-depth.

We now pose two conjectures characterizing classes of bounded flip-depth in complemen-
tary ways.

Define the tree-rank of a graph class C as the largest number d ∈ N such that C transduces
the class of all forests of depth d, or ∞ if the largest such number does not exist. Note that
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classes of rank d ∈ N are in particular monadically dependent, in fact, monadically stable,
since the class of half-graphs transduces every class of forests of bounded depth.

Next, the following conjecture relates the above notion to bounded flip-depth.

Conjecture 11.23. A class C has bounded flip-depth if and only if C has rank <d, for some d ∈ N.

We finish with the following conjecture, relating classes of bounded flip-width with the
complexity of the model-checking problem for first-order logic.

Say that a graph class C has non-uniform elementary-fpt first-order model-checking if there
are numbers h, c ⩾ 1 such that for every first-order formula φ of length k there is an algorithm
which determines if a given n-vertex graph G ∈ C satisfies φ in time at most

22..
.2

k

︸ ︷︷ ︸
height h

·nc.

In the uniform variant, there is a single algorithm, which inputs φ and G ∈ C, and has the
above running time.

It is known [DGKS07] that every class of bounded degree has uniform elementary-fpt
model-checking. Furthermore, the class of trees does not have uniform elementary-fpt model-
checking, unless AW[∗]=FPT, by a result of Frick and Grohe [FG04] (see also [DGKS07]), and
the class of colored linear orders does not have uniform elementary-fpt model-checking unless
P=NP, also by Frick and Grohe.

Together with Michał Pilipczuk, we pose the following.

Conjecture 11.24. A class C of graphs has non-uniform elementary-fpt first-order model-checking if
and only if C does not transduce the class of forests of depth d, for some d ⩾ 1.

Together with Conjecture 11.23, this would characterize classes with non-uniform elementary-
fpt first-order model-checking precisely as those with bounded flip-depth.
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Appendix A Variants of the cop-width parameter

A.1 A variant without announced moves

Fix parameters k, r ∈ N, and consider the variant of the Cops and Robber game in which there
are k cops, and a robber with speed r. In each round of this game, first the cops pick a set A of
k chosen vertices of the graph, and then the robber may either stay in his last position v – but
only if v ̸∈ A – or moves to any vertex u via a path v = v0, . . . , vi = u of length 1 ⩽ i ⩽ r such
that v1, . . . , vi /∈ A. If they cannot do so, the cops win the game, and if the robber can evade
the cops forever, then the robber wins. Denote the smallest number k for which the cops have
a winning strategy on a graph G by copwidth′

r(G).
Those parameters essentially appear in the work [RT08, LPPT20]. The paper [RT08] con-

siders a variant of the game in which the robber is lazy, that is, does not move unless a cop
is placed at his location, whereas the [LPPT20] considers a variant where the cops occupy
edges instead of vertices, and the robber never remains put. Analogues of the next notion and
lemma also appear in those papers.

Call a set U of vertices of a graph G a (k, r)-hideout if for every v ∈ U and set A ⊆
V(G)− {v} with |A| < k, there is some path from v to U − {v} of length at most r in G − A.

Lemma A.1. Fix numbers k, r ∈ N and a graph G. The following conditions are equivalent:

1. copwidth′
r(G) ⩽ k,

2. G has no (k, r)-hideout,
3. there is a total order on V(G) such that for every v ∈ V there is some set A ⊆ V(G)− {v} with

|A| < k such that there is no path of length ⩽r from v to any vertex w < v in G − A.

Proof. (1→2) We show that if U is a (k, r)-hideout in G, then there is a winning strategy for
the robber in the game of radius r and width k corresponding to the copwidth′

r parameter.
As a first move, the robber picks an arbitrary vertex v ∈ U, and we show that they may
always remain in the set U. In each round, when the cops place the cops on a set A of at
most k vertices, then robber stays put if his current position v is not in A, and otherwise, as
|A −{v}| < k, the robber moves to any vertex u ∈ U − A that is connected by a path of length
at most r from v in G − A.

(2→3) Suppose that G has no (k, r)-hideout. Start with U = V(G) and w̄ being the empty
sequence. As long as U is nonempty, pick any vertex u ∈ U such that there is some set
A ⊆ V(G)− {v} with |A| < k such that there is no path of length ⩽r from v to any vertex
w ∈ U in G − A. Such a vertex exists, since U is not a (k, s)-hideout. Remove u from U and
prepend it to w̄, and repeat. Once U becomes empty, the sequence w̄ gives a total order on
V(G) satisfying the required condition.

(3→1) We show how to turn a total order as in condition (3) into a winning strategy for the
cops in the Cops and Robber game of radius r and width w. When the robber is occupying
a vertex v, the cops pick any set A ⊆ V(G)− {v} with |A| < k such that there is no path of
lenght ⩽r from v to any vertex w < v, and place the cops on all the vertices of A ∪ {v}. Then
the robber needs to move right in the order, so eventually they will lose.

We now relate the parameter copwidth′
r to generalized coloring numbers. The r-strong

coloring number of a graph G, denoted scolr(G) is the smallest number k with the following
property. There is a total order < on V(G) such that every for vertex v, there are at most k
vertices w < v that can be reached from v by a path π of length at most r, such that u > w for
all internal vertices u of π. Clearly, admr(G) ⩽ scolr(G) ⩽ wcolr(G).

Lemma A.2. For every r ∈ N and graph G the following inequalities hold:

admr(G) + 1 ⩽ copwidth′
r(G) ⩽ scolr(G) + 1.

Proof. We prove the first inequality, by showing that admr(G) ⩾ k− 1 implies copwidth′
r(G) >

k. Indeed, by admr(G) ⩾ k − 1 there is a set U ⊆ V(G) such that for every v ∈ U there are k
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paths of length at most r from v to U − v, which are vertex-disjoint apart from v. In particular,
no set A ⊆ V(G)−{v} with |A| < k hits all of those k paths. Hence, U is a (k, r)-hideout, and
copwidth′

r(G) > k by Lemma A.1.
For the second inequality, suppose scolr(G) ⩽ k and let < be a total order witnessing it.

Then condition 3 of Lemma A.1 holds.

Also note that copwidth′
r(G) ⩽ copwidthr(G), since a winning strategy in the game cor-

responding to copwidthr is also a winning strategy in the game corresponding to copwidth′
r.

By Lemma A.2, we have the following.

Corollary A.3. The following conditions are equivalent for a graph class C:

1. C has bounded expansion,

2. copwidthr(C) < ∞, for every r ∈ N,

3. copwidth′
r(C) < ∞, for every r ∈ N.

A.2 Isolation game

Consider the following variant of the flipper game. The isolation-width game with radius
r ∈ N ∪ {∞} and width k ∈ N, k ⩾ 1, is played on a graph G. In round i of the game we
have a set Si ⊆ V(G) with |Si| ⩽ k, which are the new positions of the cops declared by the
cops, and the current position vi ∈ V(G) of the robber. Initially, S0 = ∅ and v0 is a vertex of
G chosen by the robber. In round i > 0, the cops announce a set Si ⊆ V(G) of next positions
of the cops with |Si| ⩽ k, that will be put into effect momentarily. The robber, knowing Si,
moves to a new vertex vi by following a path of length at most r from vi−1 to vi that avoids the
previous cop positions Si−1. The game terminates when vi ∈ Si. Write iwr(G) for the smallest
number k such that the cops have a winning strategy in the isolation game with radius r and
width k.

Lemma A.4.
iwr(G) ⩽ copwidthr(G) ⩽ 2 iwr(G).

Proof sketch. A winning strategy in the Cops and Robber game of radius r and width k can be
translated into a winning strategy in the isolation game of radius r and width k: when in the
Cops and Robber game the cops are directed to their new set of positions X, in the isolation
game the cops define X as their next positions. In particular, |X| ⩽ k, and a response of the
robber in the isolation game is a valid response in the Cops and Robber game.

Conversely, a winning strategy in the isolation game of radius r and width k can be trans-
lated into a winning strategy in the Cops and Robber game of radius r and width 2k: when in
the isolation game the cops declare the new set X of cops positions and Y is the previous set
of positions, in the Cops and Robber game the cops define X ∪ Y as the next positions of the
cops. In particular, |X ∪ Y| ⩽ 2k, and a response of the robber in the Cops and Robber game
is a valid response in the isolation game.

Appendix B Flip-width

B.1 Bipartite variants

Let G be a bipartite graph. We define the parameter bfwr(G) analogously to fwr(G), but the
flips played by the flipper are now bipartite flips: flips between two subsets of opposite parts
of G. We only consider partitions of V(G) that refine the bipartition of V(G), and measure its
size by the maximum, over the two parts of G, of the number of parts of P that are contained
in it. By definition, we have the following.

Lemma B.1. Let G be a bipartite graph and r ∈ N ∪ ∞. Then fwr(G) ⩽ 2 bfwr(G).
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Let G be a graph and X, Y ⊆ V(G), and let G[X, Y] be the bipartite graph semi-induced by
X and Y in G, with parts X and Y and edges xy such that x ∈ X, y ∈ Y, xy ∈ E(G).

Lemma B.2. Let G be a graph and X, Y ⊆ V(G), Then bfwr(G[X, Y]) ⩽ fwr(G).

Proof. We convert a winning strategy for the flipper on G to a winning strategy on H :=
G[X, Y]. If the flipper plays a k-partite flip G′ of G, and P is the corresponding partition of
V(G), then consider the bi-partition Q of X ⊎ Y Q := {P ∩ X, P ∩ Y | P ∈ P}, and the Q-flip
H′ of H, in which two parts of R, S ∈ Q are flipped if and only if the two unique parts of
A, B ∈ P such that A ∩ X = R and B ∩ Y = S, are flipped in the P-flip producing G′ from
G. The key property of this construction is that any path in H′, starting at some vertex u and
ending at a vertex v, determines a path in G′ of the same length, starting at (a copy of) u and
ending at (a copy of) v. In particular, if the runner moves to a vertex v′ along a path of length
at most r in the previous flip of H, then this induces a path of length at most r in the previous
flip of G. Hence, if the flipper wins in G, then they also win in H.

B.2 Excluding a Kt,t

Lemma B.3. Fix t > 1 and a graph G that excludes Kt,t as a subgraph. Let S ⊆ V(G) and let PS
be the partition of V(G) that partitions S into singletons and vertices in v ∈ V(G)− S according to
N(v) ∩ S. Then |PS| ⩽ |S|t if t ⩾ 3, and |PS| ⩽ O(|S|t) if t ⩾ 2.

Proof. Fix a set S ⊆ V(G) and let s = |S|.
To every vertex v ∈ V(G) with |N(v) ∩ S| ⩾ t assign any set A ⊆ N(v) ∩ S with |A| = t.

Then every set A ⊆ S with |A| = t is assigned to at most t − 1 vertices v, since otherwise
we have a Kt,t as a subgraph of G. It follows that {N(v) ∩ S | v ∈ V(G), |N(v) ∩ S| ⩾ t} has
at most (t − 1) · (s

t) elements. On the other hand, {N(v) ∩ S | v ∈ V(G), |N(v) ∩ S| < t} has
at most st−1 elements. Altogether, {N(v) ∩ S | v ∈ V(G)} ⊎ S, which is in bijection with the
partition PS of V(G), has at most st elements for t ⩾ 3 and O(st) elements for t = 2.

B.3 2VC-dimension

Corollary (6.8). If G is the exact 1-subdivision of an n-clique, then fw2(G) > (n − 1)/4. Further-
more, for every graph G, 2VCdim(G) ⩽ 8 fw2(G) + 2.

Proof. The first part follows immediately from Proposition 6.7, for r = 2 and k = (n − 1)/4.
We prove the second part. Let V = V(G), and consider the bipartite graph G[V, V]. Suppose
2VCdim(G) ⩾ k. Then G[V, V] contains the 1-subdivision of Kk as an induced subgraph. By
the first part of Corollary 6.8, we have that fw2(G[V, V]) > (k − 1)/4. By Lemma B.1, we
have bfwr(G[V, V]) ⩾ fwr(G[V, V])/2 > (k − 1)/8, and by Lemma B.2, we have fwr(G) ⩾
bfwr(G[V, V]) > (k − 1)/8.

B.4 Flip-width of binary structures

We extend the definition of flip-width to structures equipped with one or more binary rela-
tions. To this end, we extend the notion of flips as follows. Let R ⊆ V ×V be a binary relation
on a set V, and let (A, B) be a pair of subsets of V. The relation R′ ⊆ V × V obtained from R
by flipping the pair (A, B) (now the order of the pair matters) is defined as R′ := R△(A × B),
where △ is the symmetric difference. We will apply such flips in the context of binary rela-
tional structures, as defined below.

Fix a binary relational signature Σ, that is, a signature consisting of unary and binary
relation symbols only (see Section 3.4). Let B be a Σ-structure and P be a partition of V(G).
A P-flip is an operation which is specified by a Σ-structure F with vertex set P . Applying this
operation to B results in the Σ-structure B′ with V(B′) = V(B) and relations

RB′ := RB △
⋃

(P,Q)∈RF

P × Q,
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for each binary relation symbol R ∈ Σ. The unary relation symbols are interpreted in B′ in
the same way as in B. By slight abuse of language, we sometimes call the structure B′ a P-flip
of B.

For k ⩾ 1, a k-flip of B is a Σ-structure B′ which is a P-flip of B, for some partition P of
V(B) with |P| ⩽ k.

Fix r ∈ N ∪ {∞}. We now define the flipper game of radius r and width k on a Σ-structure
B similarly as in the case of graphs, with the following differences: in each round, the flipper
announces a k-flip B′ of B, whereas the runner moves along a path of length at most r in the
Gaifman graph of the k-flip of B that was announced in the previous round (and B in the first
round). The radius-r flip-width of B, denoted fwr(B) is the smallest k such that the flipper
wins the flipper game of radius r and width k on B.

Graphs are viewed as structures over the signature Σ consisting of a single binary relation
symbol E, interpreted in a given graph G as the (symmetric, irreflexive) adjacency relation.
Note that in principle, applying a P-flip F to a graph G can result in a Σ-structure G′ in which
the binary relation is no longer symmetric. This is the case when the binary relation of F is
not symmetric. However, for the flipper, it never pays off to apply such flips, since the runner
moves in the Gaifman graph of the resulting structure, so the directions of the edges are of
no relevance to the runner. Hence, fwr(G) is the same when G is regarded as a graph, or as a
binary structure.
Example B.4. Let B = (V,<) be a totally ordered set, viewed as a structure over the signature
Σ = {<}. Let P be a partition of V into k sets that are intervals with respect to <, and let
I1, . . . , Ik denote those intervals in increasing order. Consider the P-flip of B specified by the
Σ-structure F with vertices P , with <F= {(Ii, Ij) | 1 ⩽ i < j ⩽ k}. Applying the flip F results
in the Σ-structure B′ = (V,<′), where a <′ b if and only if a < b and a and b belong to the
same part of P .

Now consider the P-flip of B specified by the Σ-structure F′ with vertices P , with <F=
{(Ii, Ij) | 1 ⩽ i ⩽ j ⩽ k} (so we also flip pairs (Ii, Ii)). Applying the flip F′ results in the
Σ-structure B′ = (V,<′), where a <′ b if and only if a ⩾ b and a and b belong to the same
part of P (so in each part, the order is reversed and becomes reflexive).
Example B.5. The radius-∞ flip-width of a totally ordered set B = ({1, . . . , n},<) is at most
three. The strategy is similar as in Example 5.9, but now in the ith round, the flipper ap-
plies the 3-flip F of B as in the previous example, for the partition P of V into the intervals
{1, . . . , i}, {i}, {i + 1, . . . , n}, removing all relations between distinct intervals.

B.5 Definable flip-width

We prove Lemma 9.2.

Lemma (9.2). There is an algorithm that, given a graph G and numbers k ∈ N and r ∈ N ∪ {∞},
determines whether dfwr(G) ⩽ k in time nO(k) · 2O(2k).

Proof. Fix k, r, and a graph G. A configuration in the definable flipper game with radius r
consists of:

• a set S ⊆ V(G) of size at most k, specifying the partition P played by the flipper,

• a P-flip of G,

• the current position of the robber.

The set of all configurations has size O(nk+1 · 24k
), and the winner of the game can be com-

puted using a fixpoint computation running in time polynomial in nk+1 · 24k
.

Lemma (9.3). Fix r ∈ N ∪ {∞}. For every graph G we have:

fwr(G) ⩽ O(dfwr(G)VCdim(G)). (16)
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Proof. Let G be a graph and let d = VCdim(G) and let k = dfwr(G). Consider a set S ⊆ V(G)
with |S| ⩽ k. Then the set system (S, {N(v) ∩ S | v ∈ V(G)}) has VC-dimension at most d.
By the Sauer-Shelah-Perles lemma, we have that {N(v) ∩ S | v ∈ V(G)} has O(|S|d) = O(kd)
elements.

It follows that every k-definable flip of G is a O(kd)-flip of G. Since dfwr(G) ⩽ k it follows
that fwr(G) = O(kd).

Appendix C Modular partition and substitution closure

A set of vertices X ⊆ V(G) in a graph X is a module if all vertices in X have the same neighbors
outside of X. Note that in a modular partition, all the parts of the partition are modules.

Lemma (5.12). Let G be a graph and P be its modular partition. Then

fwr(G) ⩽ max
(

fwr(G/P), max
A∈P

fwr(G[A]) + 2
)

.

Proof sketch for Lemma 5.12. The strategy of the flipper is as follows. First, use a strategy of
width ℓ = fwr(G/P) on G/P . Each ℓ-flip G′ of G/P induces an ℓ-flip Ĝ of G. Playing
according to this strategy, the runner eventually reaches a vertex A ∈ V(G/P) = P that is
isolated in the current flip G′ of G/P . The corresponding play in G leads to a ℓ-flip Ĝ of G
such that the current vertex v of the runner is in A, and there are no edges joining A and
V(G)− A in Ĝ.

Since A is a module in G, the graph GA obtained from G by removing all edges with one
endpoint in A and one endpoint in V(G) − A, can be obtained from G by flipping A and
N(A)− A. The flipper now announces the graph GA, and the robber is still confined to A.

Now, we use a winning the strategy of the flipper in the graph G[A], of width k =
fwr(G[A]). Whenever in the game on G[A] the flipper announces a k-flip G′ of G[A], in
the game on G the flipper announces the graph Ĝ such that Ĝ[A] = G′[A], Ĝ[V(G)− A] =

G[V(G) − A], and there are no edges joining A and V(G) − A in Ĝ. The graph Ĝ is a
(k + 2)-flip of G, where the partition partitions A into k parts, according to the partition
of G[A] used in the k-flip G′ of G[A], and partitions V(G)− A into two parts, N(A)− A and
V(G)− (N(A) ∪ A). It follows that playing according to this strategy, the flipper wins, once
the flipper wins in the game on G[A].

Lemma (5.13). Fix r ∈ N ∪ {∞} For every r ∈ N ∪ {∞} and graph class C, we have

fwr(C∗) ⩽ fwr(C) + 2.

In particular, if C has bounded flip-width, then C∗ has bounded flip-width.

The idea is to use the winning strategy on the class C, and confine the runner to L(w), for
deeper and deeper nodes of w, similarly as in the strategy given Example 4.3 for the Cops
and Robber game on trees.

Proof sketch for Lemma 5.13. Suppose fwr(C) ⩽ k. Let G ∈ C∗. Note that G has a modular
partition P such that G/P ∈ C∗ and each part A of P induces a graph G[A] ∈ C∗, or is a
singleton. By repeatedly applying the argument as in the proof of Lemma 5.12, we conclude
that fwr(G) ⩽ k + 2.

Appendix D Flip-width with infinite radius

The following yields the upper bound in Theorem 5.17.
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Lemma D.1. For every graph G with rankwidth(G) = k,

fw∞(G) ⩽ O(2k).

Proof. We prove that every class C of bounded clique-width has bounded flip-width at radius-
∞. The other implication was shown in Section 5.3.

Fix a number k and let C be a class of graphs of rank-width at most k. Then for every
G ∈ C there is a rooted binary tree T with leaves V(G), such that for every node w of T the
set Lw of leaves that are descendants of w induces at most 2k distinct neighborhoods over its
complement V(G)− Lw, and conversely, V(G)− Lw induces at most 2k distinct neighborhoods
in Lw.

We present a strategy for the flipper, for radius r = ∞. The flipper keeps track of a node
wi of T, maintaining the invariant that in round i, wi is at distance exactly i from the root, and
Ai ⊆ Lwi , where Ai denotes the set of possible next moves of the runner.

Initially, w0 is the root, and A0 = V(G), so the invariant is satisfied.
We now describe the flipper’s strategy that maintains the invariant. Suppose we are in

round i. If wi is a leaf then the flipper wins, since Ai ⊆ {wi} by the invariant. Otherwise,
partition V(G) into three parts:

• B0 – the leaves of T below the left child of wi−1,

• B1 – the leaves of T below the right child of wi−1,

• B2 – the remaining leaves of T.

For j = 0, 1, 2, let Qj be the partition of the set Bj into equivalence classes of the relation
of having equal neighborhoods in V(G) − Bj. Then |Qj| ⩽ O(2k), for j = 0, 1, 2. Define
the partition Pi := Q0 ∪ Q1 ∪ Q2. Then there is a Pi-flip Gi of G such that for any edge
uv ∈ E(Gi), the vertices u and v belong to the same part of the partition {B0, B1, B2}. The
flipper plays the partition Pi and the flip Gi.

Suppose the runner responds by moving to a vertex ci ∈ Ai−1. Since Ai−1 consists of
descendants of wi−1 by the invariant, it follows that either ci ∈ B0 or ci ∈ B1. Therefore, the
set Ai, which is defined as the connected component of ci in Gi, is either contained in B0, or
in B1. In the first case, define wi as the left child of wi−1, and in the latter case, as the right
child of wi−1. Thus, the invariant is maintained.

Since T is a finite tree, after at most |T| rounds wi is a leaf, and then flipper wins.

We now prove Lemma 5.19, completing the proof of the lower bound in Theorem 5.17.
First, a lemma.

Lemma D.2. Let G be a graph and A ⊎ B a bipartition of V(G) with rkG(A, B) > k. Then for every
k-flip G′ of G there is some edge ab ∈ E(G′) with a ∈ A and b ∈ B.

Proof. Let G′ be a k-flip of G. Denote by H the graph with vertices V(G) and edges E(G)△E(G′).
Since G′ is a k-flip of G, it follows that H is a k-flip of the edgeless graph, and thus rkH(A, B) ⩽
k. Since E(G) = E(G′)△E(H), we have that

rkG(A, B) ⩽ rkG′(A, B) + rkH(A, B), (17)

as the rank of the sum of two matrices is at most the sum of the ranks. If there are no edges
ab ∈ E(G′) with a ∈ A, b ∈ B, then we have rkG′(A, B) = 0, and therefore rkG(A, B) ⩽ k by
(17).

Lemma (5.19). Fix a graph G and number k ∈ N. Every well-linked set U with |U| > 3k is a
(∞, k, k)-hideout.

Proof. Let G′ be a k-flip of G. For a vertex v ∈ U, let U(v) ⊆ U denote the set of vertices
w ∈ U that are reachable from v by a path in G′ (including v). We show that there are at most
k vertices v ∈ U with |U(v)| ⩽ k, proving that U is a (∞, k, k)-hideout.
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Suppose otherwise: that there are k + 1 such distinct vertices v1, . . . , vk+1 ∈ U. Let i be the
smallest number such that |U(v1) ∪ · · · ∪ U(vi)| > k. Then 2 ⩽ i ⩽ k + 1. Let U′ = U(v1) ∪
· · · ∪ U(vi). Then k < |U′| ⩽ 2k, where the second inequality holds because |U(vi)| ⩽ k and
|U(v1) ∪ · · · ∪ U(vi−1)| ⩽ k by minimality of i. Since |U| > 3k, we have that |U − U′| > k and
|U′| > k. Let A ⊆ V(G) be the union of the connected components of G′ that intersect U′, and
let B = V(G)− A. Then there is no edge in G′ with one endpoint in A and one endpoint in B.
As A ∩U = U′ and B ∩U = U −U′ have both size greater than k, we have that rkG(A, B) > k
as U is well-linked. By Lemma D.2, there is an edge of G′ with one endpoint in A and one
endpoint in B, a contradiction.

Appendix E VC-dimension

E.1 Bounding VC-dimension in terms of radius-one flip-width

By a similar argument as in Lemma 5.20, we prove the following (see Appendix B.1 for the
definition of bipartite flip-width, bfw).

Lemma (5.21). Let b, k ∈ N and let G be a bipartite graph with bfw1(G) ⩽ k. Then G contains more
than b mutual 2bk-near-twins contained in a single part of G.

To prove Theorem 5.24, we show that every bipartite graph of sufficiently large VC-
dimension contains an induced subgraph with no k-near-twins. First we construct such bi-
partite graphs. For a number m ∈ N let Zm

2 denote the m-dimensional vector space over the
two-element field Z2, and for v, w ∈ Zm

2 denote v · w = ∑m
i=1 vi · wi mod 2.

Lemma E.1. Fix a number m ∈ N and consider the bipartite graph H whose parts are two copies of
Zm

2 , with edges vw such that v · w ̸= 0. Then H has no (2m−1 − 1)-near-twins in either part.

Proof. Denote the two copies of Zm
2 with V and V∗, and write v∗ for the copy of a vector v ∈ V

in V∗. We claim that for all u, v ∈ V we have |NH(u)△NH(v)| = 2m−1. Indeed,

NH(u)△NH(v) = {w∗ | w ∈ V, w · u ̸= w · v}
= {w∗ | w ∈ V, w · (u − v) ̸= 0}.

Since {w ∈ V | w · (u − v) ̸= 0} has 2m−1 elements, so does NH(u)△NH(v).
By a dual argument, |NH(u∗)△NH(v∗)| = 2m−1 for all u∗, v∗ ∈ Y. Therefore, Hm has no

pair of (2m−1 − 1)-near-twins in either part.

Lemma (5.25). Let G be a graph with VCdim(G) ⩾ 2m, for some m. Then there are two sets X, Y
such that the bipartite graph G[X, Y] contains no pair of (2m−1 − 1)-near-twins in either of the parts
X, Y.

Proof. Let X be a subset of V(G) of size 2m that is shattered by {N(v) | v ∈ V(G)}.
Arbitrarily identify the elements of X with the elements of Zm

2 . Denote v⊥ := {u ∈ X |
u · v = 0} ⊆ X. Since X is shattered in G, for every v ∈ X there is a vertex v∗ ∈ V(G) such
that N(v∗) ∩ X = v⊥. Denote Y := {v∗ | v ∈ X}. The function v 7→ v∗ is then a bijection
between X and Y, and for v, w ∈ X, v is adjacent to w∗ in G if and only if v · w ̸= 0. Therefore,
G[X, Y] is isomorphic to the graph from Lemma E.1, and the conclusion follows.

Proof of Theorem 5.24. We show that if VCdim(G) ⩾ 2m, then fw1(G) > 2m−2. Assume
VCdim(G) ⩾ 2m, and let G[X, Y] be as in Lemma 5.25. By Lemma 5.21 (setting b = 1),
this implies that bfw1(H) > 2m−2. By Lemma B.2, fw1(G) > 2m−2.
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E.2 Duality result

We reprove a duality result which is a corollary of the (p, q)-theorem of Alon-Kleitman-
Matoušek [Mat04, Theorem 4]. We present a self-contained proof, to analyze the bounds.
Our presentation is based on a proof by Simon [Sim15, Cor 6.3; Sec. 6.3].

Say that a binary relation E ⊆ A × B has a duality of order k, where k ∈ N, if at least one of
two cases holds:

• there is a set B′ ⊆ B, |B′| ⩽ k, such that for all a ∈ A there is some b ∈ B′ with (a, b) ∈ E,
or

• there is a set A′ ⊆ A, |A′| ⩽ k, such that for all b ∈ B there is some a ∈ A′ with (a, b) /∈ E.

Recall that the VC-dimension of a binary relation E is the maximum of the VC-dimension
of two set systems:

(B, {E⃗(a) | a ∈ A}) and (A, { ⃗E(b) | b ∈ B}).

Here’s the duality result.

Theorem E.2. Let E ⊆ A × B be a binary relation, with A, B finite. Then E has a duality of order
O(d), where d = VCdim(E).

The result follows from a combination of two classic results: the Vapnik-Chervonenkis
theorem, and von Neumann’s minimax theorem. We first state a corollary of von Neumann’s
minimax theorem (also of Farkas’ lemma, the Hahn-Banach theorem, or of the strong duality
theorem for linear programming).

Theorem E.3 (Minimax Theorem). Let E ⊆ A × B be a binary relation with A, B finite, and let
α ∈ R. Then exactly one of the following two cases holds:

1. there is some probability distribution ν on B such that ν(E⃗(a)) ⩾ α holds for all a ∈ A,

2. there is some probability distribution µ on A such that µ( ⃗E(b)) < α holds for all b ∈ B.

To formulate the VC-theorem, we introduce the following notions.
For a multiset S of elements of a set V and a set F ⊆ V, denote by AvS(F) the proportion

of elements of S (counted with multiplicities) that belong to F, that is

AvS(F) =
|S ∩ F|
|S| .

Let (V,F ) be a set system with V finite, µ a probability distribution on V, and ε > 0 a
real. We say that a set S is an ε-approximation of µ on F , if for every F ∈ F we have

|AvS(F)− µ(F)| ⩽ ε.

Theorem E.4 (VC-theorem). Let (V,F ) be a set system with V finite, and let d be its VC-dimension.
For every ε > 0 and probability distribution µ on V, there exists an ε-approximation S of µ on F with

|S| ⩽ O(d) · 1
ε2 log

(
1
ε

)
.

Proof of Theorem E.2. Set α := 1
2 and ε := 1

3 ; the point is that 0 < α ± ε < 1. Fix d ∈ N, and
let k be the number from the VC-theorem, with k ⩽ O(d) 1

ε2 log( 1
ε ) = O(d). By the Minimax

Theorem applied to α = 1
2 , one of the two cases below holds.

Case 1: There is some probability distribution ν on B such that ν(E⃗(a)) ⩾ 1
2 holds for all a ∈ A.

By the VC-theorem applied to ε = 1
3 , there is a multiset B′ ⊆ B with |B′| ⩽ k such that

|AvB′(E⃗(a))− ν(E⃗(a))| ⩽ 1
3 for all a ∈ A.
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Pick a ∈ A. Since ν(E⃗(a)) ⩾ 1
2 , we have that AvB′(E⃗(a)) > 0, so B′ ∩ E⃗(a) is nonempty.

Therefore, the first condition in the definition of a duality is satisfied.
Case 2: There is some probability distribution µ on A such that µ( ⃗E(b)) < 1

2 holds for all b ∈ B.
By the VC-theorem again, there is a multiset A′ ⊆ A with |A′| ⩽ k such that

|AvA′( ⃗E(b))− µ( ⃗E(b))| ⩽ 1
3 for all b ∈ B.

Pick b ∈ B. Since µ( ⃗E(b)) < 1
2 , we have that AvA′( ⃗E(b)) < 1, so A′ is not contained in ⃗E(b).

Therefore, the second condition in the definition of a duality is satisfied.

E.3 Definability result

The following result is proved in [BDG+
22, Thm. 3.5], up to a slight variation of the assump-

tions (see proof below).

Lemma (9.8). Fix k, d ∈ N. Let V be a set equipped with:

• a binary relation E ⊆ V × V of VC-dimension at most d,

• a pseudometric dist : V × V → R⩾0 ∪ {∞} (that is, a function satisfying the triangle inequal-
ity),

• and a partition P of size at most k,

such that E(u, v) depends only on the P-class of u and the P-class of v whenever dist(u, v) > 1.
Then there is a set S ⊆ V of size O(dk2), such that E(u, v) depends only on the S-types of u and of v,
whenever dist(u, v) > 5.

Proof. [BDG+
22, Thm. 3.5] prove the same statement, except that the assumption VCdim(E) ⩽ d

is replaced with: for every A, B ⊆ V, the relation E ∩ (A × B) has a duality of order d. By Theo-
rem E.2, this implies the formulation above.

Appendix F Exact subdivisions

We prove Proposition 6.7, which is repeated below.

Proposition (6.7). Fix r ⩾ 2, k ⩾ 1. Let G be the exact (r − 1)-subdivision of some graph H with
minimum degree at least 2rk. Then fwr(G) > k.

We first prove two lemmas.

Lemma F.1. Fix k, ℓ, m ⩾ 1. Let H be a bipartite graph with bipartition (L, R), in which every vertex
in L has degree at least ℓ, and any two distinct vertices in L have at most m common neighbors. Let
H′ be a k-flip of H. Then there is a set X ⊆ L with |X| ⩾ |L| − k, and a bijection π : X → X, such
that every v ∈ X is adjacent in H′ to at least ⌈ ℓ−m

2 ⌉ vertices in NH(π(v)).

Proof. Let P be the partition of V(G) with |P| ⩽ k such that H′ is a P-flip of H.
First consider the case when all the vertices of L are in one part A of P . Let W be the

union of the parts B of P that are not flipped with A in the flip that produces H′ from H.
Let X1 consist of those vertices v ∈ L such that |NH(v) ∩ W| ⩾ ℓ−m

2 , and let X2 consist of the
remaining vertices in L.

Every vertex in X1 is adjacent in H′ to at least ℓ−m
2 vertices in NH(v) (namely, to NH(v) ∩

W), so we can set π(v) = v for all v ∈ X1.
If v and v′ are two distinct vertices in X2, then NH′(v) ⊇ NH(v′) ∩ W and |NH(v′) ∩ W| ⩾

ℓ−m
2 . If |X2| ⩽ 1 then set X := X1 = L − X2, and let π : X → X be the identity on X. If

|X2| > 2, set X := L = X1 ∪ X2, and let π : X → X be a permutation that maps every vertex in
X1 to itself, and acts as a cyclic permutation on the vertices in X2. In any case, |X| ⩾ |L| − 1,
and every v ∈ X is adjacent in H′ to at least ⌈ ℓ−m

2 ⌉ neighbors of π(v).
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In the general case, partition L as L = L1 ⊎ . . . ⊎ Ls, for some s ⩽ k, following the partition
P restricted to L. For each 1 ⩽ i ⩽ s, let Hi = H[Li, R], and H′

i = H′[Li, R]; then H′
i is a

k-flip of Hi, and they fall into the special case considered above. Hence, for each 1 ⩽ i ⩽ s
there are set Xi ⊆ Li with |Li| ⩾ |Xi| − 1 and a bijection πi : Xi → Xi. Set X = X1 ⊎ . . . ⊎ Xs,
and let π : X → X be such that π(x) = πi(x) for x ∈ Xi. Then X and π satisfy the required
condition.

Applying Lemma F.1 in the case ℓ = 1 and m = 0, we get the following.

Corollary F.2. Fix k ⩾ 1. Let M be a matching between two sets L and R, and let M′ be a k-flip of
M. Then M′ contains, as a subgraph, a matching between all but k vertices of L, and a set of vertices
of R of the same size.

For r, ℓ ⩾ 1, let Gr,ℓ denote the union of ℓ paths, each of length r (and with r + 1 vertices),
and in each path, call one of the vertices of degree one a source, and the other one a target. By
an easy induction on r ⩾ 1, Corollary F.2 gives the following.

Lemma F.3. Fix k, r, ℓ ⩾ 1. If G′ is a k-flip of Gr,ℓ, then at least ℓ − rk target vertices of Gr,ℓ are
joined by a path of length r in G′ with some source vertex.

Proof of Proposition 6.7. Fix r ⩾ 2 and let G be an exact (r − 1)-subdivision of some graph H
with minimum degree at least 2rk. We aim to prove that fwr(G) > k. Let P ⊆ V(G) denote the
set of principal vertices of G, that is, vertices of degree larger than two; those vertices correspond
to the vertices of H. We show that P forms a (r, k, k)-hideout in G. By Lemma 5.16, this implies
that fwr(G) > k.

Let R = NG(P) =
⋃

v∈P NG(v) denote the set of neighbors of the principal vertices in
G. Note that R and P are disjoint, as r ⩾ 2. Then G[P, R] is a bipartite graph in which every
vertex in P has at least 2rk neighbors in R, and any two vertices in P have at most one common
neighbor in R (in fact, no common neighbors if r ⩾ 2). For each v ∈ P, there is an induced
subgraph Gv of G that is isomorphic to Gr−1,ℓ, for some ℓ ⩾ 2rk with the source vertices equal
to NG(v), and where each target vertex is a principal vertex.

Let G′ be a k-flip of G. Call a principal vertex v ∈ P good if there is some w ∈ P such that if
v is adjacent in G′ to at least rk elements of NG(w), and call v bad otherwise. We show that (1)
there are at most k bad vertices, and (2) every good vertex has more than k principal vertices
in its r-neighborhood in G′. It follows that the principal vertices form a (r, k, k)-hideout in G.

(1) Apply Lemma F.1 to the bipartite graph G[P, R] and to G′[P, R], which is a k-flip of F.
Since every vertex in P has degree at least 2rk, and any two distinct vertices in L have at most
one common neighbor, and ⌈(2rk − 1)/2⌉ = rk, there are at most k bad principal vertices by
Lemma F.1.

(2) Let v ∈ P be a good principal vertex, and let w ∈ P be such that some set A of rk vertices
of NG(w) are adjacent to v in G′. Consider the subgraph K of Gw, consisting of vertex-disjoint
paths of length r − 1 in G joining the vertices of A with rk principal vertices. In particular, K
is isomorphic to Gr−1,rk. Let K′ = G′[V(K)]; then K′ is a k-flip of K. By Lemma F.3, at least
rk − (r − 1)k = k principal vertices are joined by a path of length r − 1 in K′ with some vertex
in A. Those k principal vertices are therefore at distance at most r in G′ from v.

Appendix G Bounded twin-width

G.1 Bounding flip-width in terms of twin-width

We prove:

Theorem (7.1). Fix r ∈ N. For every graph G of twin-width d we have:

fwr(G) ⩽ πG(dO(r)) ⩽ 2d · dO(r). (18)

In particular, every class of bounded twin-width has bounded flip-width.
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The second inequality in (18) is immediate by the following result, proved in [BFLP24].

Theorem G.1. Let G be a graph of twin-width d ⩾ 1, and let A ⊆ V(G). Then we have:

|{N(v) ∩ A | v ∈ V(G)}| ⩽ 2d+O(log d) · |A|.

This result improves a previous result [BKR+
22, Prz23], which gave a doubly-exponential

dependency on d.

Proof. Fix an uncontraction sequence P1,P2, . . . ,Pn of G of red-degree d. For v ∈ V(G) and
1 ⩽ i ⩽ n let Bi

r(v) ⊆ Pi denote the ball of radius r in the red graph of Pi, around the part of
Pi containing v. In particular, |Bi

r(v)| ⩽ 2dr ⩽ Or,d(1).
We describe a strategy of the flipper that guarantees that the following invariant holds

after round i, for i = 1, 2, . . . , n:

Ai ⊆
⋃

Bi
r(ci), (19)

where ci is the runner’s position in round i, and Ai ⊆ V(G) is the set of possible positions the
runner can move to in round i + 1 of the game, that is, Ai is the ball of radius r around ci in
the graph Gi announced by the flipper in round i, with G1 = G and c1 being the initial vertex
of the runner.

Note that for i = n, the inclusion (19) implies that |An| = 1 as in Pn there are no red edges
and each part is a singleton. Therefore, the flipper wins the game after n rounds according
to this strategy. We need to show how the flipper can maintain the invariant (19), by playing
k-flips of G for some k bounded in terms of r and d.

Before describing the strategy, we make an observation that will be useful in the inductive
reasoning. It gives a description of a ball in the red graph of Pi−1, in terms of the red graph
of Pi. Below, for F ⊆ Pi, the set Bi

r(F ) ⊆ Pi denotes the set of parts of Pi that are at distance
at most r from some part in F in the red graph of Pi.

Claim G.1. Let 1 < i ⩽ n and let v ∈ V(G). Then there is a set F ⊆ Pi with |F | ⩽ d + 3, such
that Bi−1

r (v) ⊆ Bi
r(F ).

Proof. The family F consists of:

• the part of Pi that contains v,

• the parts A, B of Pi such that A ∪ B is a part of Pi−1,

• the parts in Pi that are not homogeneous towards A ∪ B in G.

It can be easily verified that F satisfies the statement of the claim.

We now describe flipper’s strategy. In the first round, we have G1 = G, and the invariant
(19) is trivially satisfied since P1 has just one part, and that part contains A1 = Br

G(c1),
regardless of the runner’s choice of c1.

Suppose that the invariant (19) is satisfied after round i − 1, for some 1 < i ⩽ n, so that
Ai−1 ⊆ ⋃

Bi−1
r (ci−1). We describe how the flipper should play to maintain invariant (19) after

round i. Apply Claim G.1 to v = ci−1, obtaining a family F ⊆ Pi with |F | ⩽ d + 3 such that
Bi−1

r (ci−1) ⊆ Bi
r(F ). In particular, Ai−1 ⊆ ⋃

Bi
r(F ).

Let R = V(G) − ⋃
Bi

2r(F ), and let R be the partition of R according to the equivalence
relation of having the same neighborhood in the set

⋃
Bi

2r−1(F ). Note that we are simultane-
ously considering balls around F with radii r, 2r − 1, and 2r.

Claim G.2. We have |R| ⩽ πG(2(d + 3)d2r−1), and every part P ∈ R is homogeneous towards all
parts in Bi

2r−1(F ).

Proof. The ball of radius 2r − 1 in the red graph of Pi around a part P consists of at most

1 + d + . . . + d2r−1 ⩽ 2d2r−1
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parts. As Bi
2r−1(F ) is a union of at most |F | ⩽ d + 3 many such balls, therefore,

|Bi
2r−1(F )| ⩽ 2(d + 3)d2r−1.

Pick a set X which contains one representative of each part in Bi
2r−1(F ). Then |X| ⩽

2(d + 3)d2r−1. Note that every part P ∈ Pi − Bi
2r(F ) is homogeneous towards every part

Q ∈ Bi
2r−1(F ). Therefore, the neighborhood of a vertex v ∈ R in

⋃
Bi

2r−1(F ) is completely
determined by N(v) ∩ X. By definition of πG, there are at most πG(2(d + 3)d2r−1) different
neighborhoods of vertices v ∈ R in X, so |R| ⩽ πG(2(d + 3)d2r−1).

Let P ′
i = Bi

2r(F ) ∪R. Then P ′
i is a partition of V(G). We have |Bi

2r(F )| ⩽ 2(d + 3) · d2r,
and it follows from Claim G.2 that

|P ′
i | ⩽ |Bi

2r(F )|+ |R| ⩽ 2(d + 3) · d2r + πG(2(d + 3)d2r−1) ⩽ O(d)2r+1 + πG(O(d)2r) (20)

⩽ πG(dO(r)). (21)

The flipper plays the P ′
i -flip Gi of G obtained by flipping any pair P, Q of distinct parts of

P ′
i such that the pair P, Q is complete in G.

Now, the runner makes his move, and picks a vertex ci ∈ Ai−1, and we set Ai := BGi
r (ci).

We now prove that the invariant (19) holds.

Claim G.3. BGi
r (ci) ⊆

⋃
Bi

r(ci).

Proof. Note that ci ∈ Ai−1 ⊆ ⋃
Bi

r(F ).
Let v ∈ BGi

r (ci) be a vertex at distance k from ci in Gi, for some 0 ⩽ k ⩽ r. We show by
induction on k that if A is the part of Pi that contains v, then A ∈ Bi

k(ci). For k = r, this
immediately yields the claim.

For k = 0 the statement holds trivially, so suppose that k > 0 and the statement holds for
k − 1. Let w be a vertex that is a neighbor of v and is at distance k − 1 from ci in Gi, and
let B be the part of Pi that contains w. By inductive assumption, B ∈ Bi

k−1(ci), and since
ci ∈

⋃
Bi

r(F ), it follows that B ∈ Bi
r+k(F ). As k < r, we have that B ∈ Bi

2r−1(F ).
Since A and B are connected by an edge in Gi, it must be the case that A and B are not

homogeneously connected in G. As B ∈ Bi
2r−1(F ), it cannot be that A ∈ R (since all parts in

R are homogeneous towards all parts in Bi
2r−1(F ) by Claim G.2), so A ∈ Bi

2r(F ). As A and
B are not homogeneously connected in G, A is a neighbor of B in the red graph of Pi. As
B ∈ Bi

k−1(ci), it follows that A ∈ Bi
k(ci), finishing the inductive step.

The invariant (19) now follows from Claim G.3. In particular, if the flipper continues
playing this way, at the end of round n we have that |An| = 1, so flipper wins.

As in every step, the flipper plays a P ′
i -flip, the first inequality in (18) follows by (20). By

Theorem G.1, we have

πG(dO(r)) ⩽ 2d+O(log d) · dO(r) ⩽ 2d · dO(r),

proving the second inequality in (18).

G.2 Ordered flip-width

We prove Lemma 7.2, repeated below.

Lemma (7.2). Fix r ∈ N ∪ {∞} and an ordered graph G = (V, E,<). Then√
fwr(G) + 1 ⩽ f w<

r (G) + 1 ⩽ fw3r+2(G) + 1.

We first study the effects of applying flips to a set equipped with a total order.

65



Lemma G.2. Let L = (V,<) be a total order and let L′ be a k-flip of L (as a binary structure). Then
there is a set S ⊆ V with |S| ⩽ k such that any two vertices of V − S with no vertex of S between
them are at distance at most 2 in the Gaifman graph of L′.

Proof. Let P be a partition of V with |P| ⩽ k such that L′ is a P-flip of L. Note that the parts
of P need not be convex in the order <; this is the main challenge here. Let S = {max(A) |
A ∈ P} be the set of <-maximal elements of each part of P . We claim that S satisfies the
required condition.

Observe first that each part A ∈ P forms a clique in the Gaifman graph of L′. Indeed,
the relation <′ of L′ restricted to A either coincides with <, if (A, A) is not flipped in the
P-flip producing L′ from L, or coincides with ⩾, if (A, A) is flipped. In any case, <′ is a total
relation on A.

Let a, b ∈ V − S be vertices belonging to different parts A, B of P , with no element of S
between a and b. We show that a and b are either adjacent, or have a common neighbor in the
Gaifman graph of L′. By symmetry, suppose that a < b. If the pair (A, B) is not flipped in the
P-flip producing L′ from L, then a <′ b in L′, so a and b are adjacent in the Gaifman graph of
L′.

Suppose that the pair (A, B) is flipped. Let ma := max(A). Then a < ma since ma ∈ S and
a /∈ S. As ma is not between a and b, we have that b < ma. Since (A, B) is flipped, we have
that ma <′ b in L′. Since a and ma are in the same part of A, they are adjacent in the Gaifman
graph of L′. Therefore, ma is a common neighbor of a and of b in the Gaifman graph of L′.

Corollary G.3. Let G = (V, E,<) be an ordered graph, and let G′ = (V, E′,<′) be a k-flip of G,
in the sense of binary structures. Then there is a k-cut-flip G′′ = (V, E′, S) of G, such that for all
u, v ∈ V, if u and v are connected by a path π of total weight at most r in G′′, then u and v are within
distance at most 3r + 2 in the Gaifman graph of G′.

Proof. Let L = (V,<) be the total order underlying G, and let G′ = (V, E′,<′) be a k-flip of G.
Then L′ := (V,<′) is a k-flip of L. Apply Lemma G.2, yielding a set S. Let G′′ := (V, E′, S).
Then G′′ is a k-cut-flip of G. We check that it satisfies the condition.

Every path of total weight 0 can be replaced by a path of length ⩽ 2 in the Gaifman graph
of G′, by Lemma G.2. A path of total weight r decomposes into at most r + 1 paths of total
weight 0 and at most r edges of weight 1. By replacing the paths of total weight 0 as above,
we get a path of length at most 3r + 2.

Proof of Lemma 7.2. Fix G = (V, E,<) and r.
To prove the second inequality, we show that if fw3r+2(G) ⩽ k (in the sense of binary

structures), then fw<
r (G) ⩽ k (in the sense of ordered graphs). This is done by transferring

the strategy (cf. Section 8.2), using Corollary G.3.
More precisely, suppose fw3r+2(G) ⩽ k, so the runner wins the flipper game on G, as a

binary structure, of radius 3r + 2 and width k. The flipper copy their winning strategy when
playing the radius-r ordered flipper game on G, as follows: Whenever the flipper announces
a k-flip G′ of G in the flipper game, then in the ordered flipper game, the flipper announces
the k-cut-flip G′′ = (V, E′, S) of G, as given by Corollary G.3. By an argument analogous to
Lemma 8.11, Corollary G.3 shows that this way, the flipper wins the ordered flipper game on
G as an ordered graph, so fw<

r (G) ⩽ k.

For the first inequality, we show that if (V, E′, S) is a k-cut-flip of G, then there is a (k2 + 2k)-
flip G′ = (V, E′,<′) of G such for all distinct u, v ∈ V, if there is no s ∈ S with u ⩽ s ⩽ v
then u <′ v or v <′ u. Namely, consider the partition P of V with |P| ⩽ k such that (V, E′) is
a P-flip of (V, E), let Q be the partition of V that partitions S into singletons and V − S into
maximal <-intervals that are disjoint with S, and let R be the common refinement of Q and
R. Then |Q| ⩽ |P| · (|S|+ 1) + |S| ⩽ k(k + 1) + k = k2 + 2k. Define <′ so that u <′ v if and
only if u and v are in the same part of Q and u < v. Now, G′ = (V, E′,<′) is a Q-flip of G,
and has the desired properties.
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It follows that a winning strategy for the flipper in the ordered flipper game on G with
radius r and width k can be transferred into a winning strategy for the flipper in the flipper
game on G with radius r and width k2 + 2k = (k + 1)2 − 1, by replacing each k-cut-flip played
by the flipper by the (k2 + 2k)-flip G′ as above. Hence, fwr(G) ⩽ (fw<

r (G) + 1)2 − 1, proving
the first inequality.

Appendix H Closure under transductions

In this section, we show that bounded flip-width is preserved by first-order transductions,
and that bounded ∞-flip-width is preserved by CMSO transductions.

We work with c-colored graphs G. We consider formulas φ(x, y) of first-order logic, or
CMSO. The same arguments work to other logics with suitable locality properties.

Theorem (8.2). There is a computable function Tq : N → N with the following property. Fix a radius
r ⩾ 1 and a first-order formula φ(x, y) of quantifier rank q in the signature of c-colored graphs, for
some c ⩾ 0. Set r′ := 2q · r. Then for every c-colored graph G we have

fwr(φ(G)) ⩽ Tq(fwr′(G) · c).

In particular, if C has bounded flip-width, then φ(C) has bounded flip-width.

Say that a formula φ(x, y) is r-local, where r ∈ N, if the following condition holds: there
is a finite set Tφ of local types such that for every colored graph G each vertex v of G can
be labelled by an element ltp(v) ∈ Tφ in such a way that for any pair of vertices (a, b) with
distance larger than r in G, whether or not φ(a, b) holds in G depends only on ltp(a) and
ltp(b). More precisely, there is a binary relation Φ ⊆ Tφ × Tφ (which may depend on G) such
that for all vertices a, b with dist(a, b) > r,

G |= φ(a, b) ⇐⇒ (ltp(a), ltp(b)) ∈ Φ.

We say that φ(x, y) is ∞-local if the above condition holds, where instead of dist(a, b) > r
we require that a and b are in different connected components of the graph.

Fact H.1. Fix c ⩾ 0 and consider the signature of c-colored graphs. Every formula φ(x, y) of first-
order logic is 2q-local, where q is the quantifier rank of φ. The number |Tφ| of local types is at most

Tq(k) := 22..
.2

m

︸ ︷︷ ︸
height q

where m is the number of c-colored graphs with vertex set {1, . . . , q + 1}.

Fact H.2. In the setting of the previous fact, every formula φ(x, y) of CMSO is ∞-local. The number
|Tφ| is again bounded by a number T′

q(k) that is non-elementary in q.

Theorem 8.2 follows easily from the next lemma, using Lemma 8.11.

Lemma H.3. Fix k, c ⩾ 1, a first-order formula φ(x, y) of quantifier rank q, and let s = 2q and
ℓ = Tq(k · c), where Tq is the function from Fact H.1. Let G be a c-colored graph. For every k-flip G′

of the uncolored graph underlying G there is an ℓ-flip φ(G)′ of φ(G) such that:

distG′(u, v) ⩽ s for all uv ∈ E(φ(G)′). (22)

Proof. Let P = {A1, . . . , As} be the partition of V(G) with s ⩽ k, such that G′ is a P-flip of
G. Color the vertices of G′ using k · c colors [k]× [c] so that a vertex v has color (i, j) if and
only if v ∈ Ai and v has color j in G. Below, we treat G′ as a relational structure equipped
with the edge relation of G′, and k · c unary predicates marking the colors of G′. In particular,
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for i = 1, . . . , s we can write a quantifier-free formula Ai(x) such that Ai(v) holds in G′ if and
only if v ∈ Ai.

We now write a formula ψ(x, y) such that for all a, b ∈ V(G) we have

G′ |= ψ(a, b) ⇐⇒ G |= φ(a, b). (23)

The formula ψ(x, y) is obtained from φ(x, y) by replacing each atom E(z, t) by the quantifier-
free formula

ε(z, t) := E(z, t)△α(z, t) := (E(z, t) ∧ ¬α(z, t))
∨ (α(z, t) ∧ ¬(E(z, t))),

where α(z, t) is the disjunction of formulas Ai(z) ∧ Aj(t), for all pairs i, j ∈ [k] such that
the parts Ai and Aj are flipped in the P-flip G′ of G. In particular, ψ(x, y) is a formula of
quantifier rank q over the signature of graphs colored with k · c colors.

Hence, by Fact H.1, there is a labelling ltp : V(G) → Tψ, for some set of local types Tψ with
|Tψ| ⩽ Tq(k · c) = ℓ, and a binary relation Φ ⊆ Tψ × Tψ, such that

G′ |= ψ(a, b) ⇐⇒ (ltp(a), ltp(b)) ∈ Φ

for all pairs a, b ∈ V(G) with distance larger than s = 2q in G′. With (23) this implies that

G |= φ(a, b) ⇐⇒ (ltp(a), ltp(b)) ∈ Φ, (24)

for all pairs a, b ∈ V(G) with distance larger than s in G′.
Let Q be the partition of V(G) defined by ltp, with Q = {ltp−1(p) | p ∈ Tψ} − {∅}. In

particular, |Q| ⩽ ℓ. Construct the Q-flip φ(G)′ of φ(G) by flipping two parts ltp−1(p), ltp−1(q)
of Q whenever (p, q) ∈ Φ or (q, p) ∈ Φ. In particular, if a and b are adjacent in φ(G)′, then it
must be the case that distG′(a, b) ⩽ s by (24).

Proof of Theorem 8.2. Fix a formula φ(x, y) of quantifier rank q, and a c-colored graph H. Let
k = fwsr(G0), where H0 is the uncolored graph underlying H. Set s := 2q and ℓ := Tq(k ·
c). Denote G := φ(H). Then Lemma H.3 says that the assumptions of Lemma 8.11 hold.
Therefore, fwr(φ(H)) ⩽ ℓ = Tq(k · c), as required.

We now consider the case of CMSO-transductions.

Theorem (8.8). Let C be a class of bounded ∞-flip-width and let φ(x, y) be a formula of CMSO. Then
φ(C) has bounded ∞-flip-width.

The proof of Theorem 8.8 is the same as the proof of Theorem 8.2, with the difference that
the use of Lemma H.3 is replaced by Lemma H.4 below.

Lemma H.4. Fix k ⩾ 1, a CMSO formula φ(x, y) of quantifier rank q, and let ℓ = T′
q(k), where

T′
q(k) is the function from Fact H.2. For every k-flip G′ of a graph G there is an ℓ-flip φ(G)′ of φ(G)

such that

distG′(u, v) < ∞ for uv ∈ E(φ(G)′). (25)

In turn, the proof of Lemma H.4 is the same as the proof of Lemma H.3, with the difference
that the use of Fact H.1 is replaced by the use of Fact H.2.

Appendix I Structurally nowhere dense classes have almost
bounded flip-width

In this Appendix, we prove Theorem 10.13 and Lemma 10.14. Theorem 10.13 is proved in
Section I.1. Lemma 10.14 is proved in Section I.2. Theorem 10.12 is an immediate consequence
of those two results, as argued in Section 10.
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I.1 Proof of Theorem 10.13

In Section I.1 we prove Theorem 10.13, restated below.

Theorem (10.13). Let C be a structurally nowhere dense graph class. There is a signature Σ consisting
of unary and binary relation symbols and a unary function symbol, a class B of Σ-structures such that
the class of Gaifman graphs of the structures in B is almost nowhere dense, and a symmetric quantifier-
free formula φ(x, y), such that every G ∈ C is an induced subgraph of φ(B) for some B ∈ B with
|B| = O(|G|). Moreover, VCdim(B) < ∞.

The proof of Theorem I.1 is based on the proof of [DGK+
22a, Theorem 3] (see also

[DGK+
22b]), stated below.

A quasi-bush B is a rooted tree T equipped with:

• a set D of directed edges from the leaves of T to inner nodes of T, called pointers; every
leaf has a pointer to the root of T,

• a labelling function λ : Leaves(T) → Λ, where Λ is a finite set of labels,

• a labelling function λD : D → 2Λ.

A quasi-bush B defines a directed graph G(B) whose vertices are the leaves of T and directed
edges (u, v) such that u, v are distinct leaves of T, and the closest ancestor w of u such that
(v, w) ∈ D satisfies λ(u) ∈ λD((v, w)). In particular, for G(B) to be equal to an undirected
graph, we require that the directed edge relation of G(B) is symmetric.

Say that a class B of quasi-bushes is almost nowhere dense if the class of underlying
graphs (where we keep the edges of the tree T and turn the pointers in D into undirected
edges) form an almost nowhere dense graph class.

Theorem I.1. [DGK+
22a, Theorem 3] Let D be a structurally nowhere dense graph class. Then

there are d, ℓ ∈ N, and an almost nowhere dense class B of quasi-bushes, each of depth at most d and
using at most ℓ labels, such that for every G ∈ D there is some quasi-bush B ∈ B with G(B) = G.

We now prove Theorem 10.13.

Proof of Theorem 10.13. Fix d, ℓ as in Theorem I.1. Every quasi-bush B ∈ B may be viewed as a
Σ-structure, over a fixed signature Σ consisting of:

• a unary function, interpreted in B as the parent function of the tree, and mapping the
root to itself,

• ℓ unary relation symbols, interpreted in B as the labels of the leaves of T according to
the function λ : Leaves(T) → Λ, where |Λ| ⩽ ℓ,

• 2ℓ binary relation symbols DM, for M ⊆ Λ, where DM(u, v) holds for a leaf u and inner
node v and if and only if λD((u, v)) = M.

It is straightforward to construct a quantifier-free formula γ0(x, y) such that for every
B ∈ B and leaves u, v of B we have B |= γ0(u, v) if and only if the lowest ancestor w of
u such that (v, w) ∈ D satisfies λ(u) ∈ λD((v, w)). Let γ(x, y) be the symmetric formula
γ0(x, y) ∨ γ0(y, x). Then for every quasi-bush B ∈ B such that G(B) is an undirected graph
G, we have that G is the subgraph of γ(B) induced by the leaves of B.

By Theorem I.1, for every G ∈ D there is a quasi-bush B ∈ B such that G(B) = G, and
hence, G is the subgraph of γ(B) induced by the leaves of B. Since there is a tree T with
leaves V(G), depth at most d, and V(T) = V(B), it follows that |B| ⩽ d · |G| = O(|G|). The
class B is almost nowhere dense. This proves the statement of Theorem 10.13, apart from the
‘moreover’ part.

It remains to argue that the class B, viewed as Σ-structures as described above, has
bounded VC-dimension. Therefore, we need to show that each of the binary relations DM,
for M ⊆ Λ, has VC-dimension bounded by a constant independent of B ∈ B and of M ⊆ Λ.
To do this, we inspect how the set of pointers D and labeling function λD are defined in the
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construction in [DGK+
22b]. The key property of the construction, from which the bounds on

the VC-dimension follows, is encapsulated in the claim below.
Let B be as constructed in the proof of [DGK+

22b, Theorem 3].

Claim I.1. There is a nowhere dense graph class C and numbers s, q ⩾ 1 with the following property.
For every quasi-bush B ∈ B there is a graph G ∈ C with Leaves(B) = V(G), a function β : V(B) →
V(G)s, and for each M ∈ 2Λ a formula ψM(x0, x1, . . . , xs) of quantifier rank at most q, such that

(u, w) ∈ DM ⇐⇒ G |= ψM(u, β(w)) for all u, w ∈ V(B). (26)

We first show how Claim I.1 implies the bound on the VC-dimension of B.
Let ∆ be the set of all formulas ψ(x0, . . . , xs) of quantifier rank q, where q and s are as in

Claim I.1. Since ∆ is finite (up to equivalence), it follows from Fact 3.9 that there is a bound k
depending only on q, s and the class C such that for all G ∈ C and every formula ψ ∈ ∆, the
binary relation Rψ

G ⊆ V(G)× V(G)s (as considered in Fact 3.9) has VC-dimension at most k.
In particular, RψM

G has VC-dimension at most k, for all G ∈ C and ψM as in Claim I.1. Then
(26) is restated as follows:

(u, w) ∈ DM ⇐⇒ (u, β(w)) ∈ RψM
G for all u, w ∈ V(B).

It follows that DM has VC-dimension bounded by the VC-dimension of the binary relation
RψM

G , so at most k = Oq,s(1). Since q and s are independent of B ∈ B, the ‘moreover’ part of
Theorem 10.13 follows.

It therefore remains to analyse the construction from [DGK+
22b], and argue that Claim I.1

holds.
First, Theorem I.1 is proved (in [DGK+

22b]) in the special case when D = φ(C) for some
nowhere dense class C of colored graphs and first-order formula φ(x, y) involving color pred-
icates. This is done in [DGK+

22b, Theorem 28]. In general, in Theorem I.1, D is contained in
the hereditary closure of φ(C), rather than in φ(C) itself.

The general case is reduced to the special case at the end of Section 5 in [DGK+
22b], as

follows. It is shown that there is a coloring Ĉ of C (that is, a class of k-colored graphs for some
k ⩾ 1, where each underlying graph belongs to C), a formula φ̂(x, y), and constants c, d > 0,
such that for every G ∈ D there is some colored graph Ĥ ∈ Ĉ such that φ̂(Ĥ) contains G
as a subgraph induced by some set A ⊆ V(Ĥ), and moreover |Ĥ| ⩽ c|G|d. A quasi-bush B
is constructed for the graph φ̂(Ĥ) using the special case of Theorem I.1 applied to the class
φ̂(Ĉ). To get a quasi-bush B′ for G = φ̂(Ĥ)[A], the nodes of B that have no descendants in
A ⊆ Leaves(B) are removed. It is then argued that the class of quasi-bushes B′ obtained in this
way, for each G ∈ D, satisfies the conditions of Theorem I.1. For us here, it only matters that
B′ is a quasi-bush obtained from restricting the quasi-bush B as obtained in the special case of
Theorem I.1. It is immediate that the VC-dimension of B′ is bounded by the VC-dimension of
B, so it is enough to argue that the quasi-bushes constructed in the special case of Theorem I.1
have bounded VC-dimension.

We may therefore focus on analyzing the proof of the special case of Theorem I.1 (stated
as Theorem 28 in [DGK+

22b]) where it is assumed that D = φ(C) for some nowhere dense
class C of colored graphs and first-order formula φ(x, y). We argue that Claim I.1 holds in
this case.

Types Before analysing the construction, we recall the following notion. Fix the signature
Σ consisting of the edge relation symbol E and unary predicates corresponding to the colors
of the graphs in C. Fix q, m ⩾ 0. For a colored graph H and m-tuple v̄ ∈ V(H)m, the
quantifier rank q type of v̄, denoted tpq

H(v̄), is the of all first-order formulas φ(x1, . . . , xm) over
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the signature Σ of quantifier rank q such that H |= φ(v̄). Let Γm
q denote the set of all possible

quantifier rank q types of m tuples:

Γm
q := {tpq

H(v̄) | H – colored graph, v̄ ∈ V(H)m}.

The following fact is well known, and follows from the observation that up to equivalence,
there are finitely many formulas φ(x1, . . . , xm) of quantifier rank q.

Fact I.2. The set Γm
q is finite. For every type τ ∈ Γm

q there is a first-order formula, denoted τ(x1, . . . , xm),
such that for every colored graph H and tuple v̄ ∈ V(H)m, we have:

tpq
H(v̄) = τ ⇐⇒ H |= τ(v̄).

Analysis of the proof We now go through the proof of Theorem 28 in [DGK+
22b], that

is, Theorem I.1 in the case where D = φ(C) for some class C of colored graphs and first-order
formula φ(x, y). We argue that Claim I.1 holds.

For each graph G ∈ C, a quasi-bush B with G(B) = φ(G) is constructed as follows. First,
an r-separator quasi-bush T for G is constructed, for some number r depending on the quantifier
rank of φ(x, y). An r-separator quasi-bush is a tree T with leaves V(G), equipped with:

• a set D ⊆ V(T)× V(T) of pointers, where each pointer (u, w) points from some leaf u of
T to some inner node w of T (and each leaf points to the root), and

• a function α mapping each inner node v of T to a set α(v) ⊆ V(G) with the following
property. For every two leaves u, v of T, and node w which is the lowest ancestor of v
such that (v, w) ∈ D, the set α(w) is an r-separator between u and v in G, that is, every
path from u to v of length at most r in G passes through α(w).

Crucially (see Lemma 36 and second item in Lemma 33 in [DGK+
22b]), the size of the set

α(w) is bounded by a constant m (depending only on C and φ). Below, the set α(w) is treated
as a tuple of length at most m, by enumerating its elements according to any fixed order on
V(G).

Next, an r-separator quasi-bush T is converted into a quasi-bush B, by assigning a label
λ(v) ∈ Λ (where Λ is some finite set) to each leaf v of T, and a label λD((u, w)) ∈ 2Λ to
each pointer (u, w) ∈ D. For M ∈ 2Λ, let DM denote the set of pointers (u, w) ∈ D with
λD((u, w)) = M.

The following statement is immediate from the construction (Proof of Theorem 28 in
[DGK+

22b]): There is a number q (depending only on φ and C), such that the label λD((u, w))

of a pointer (u, w) ∈ D depends only on tpq
G(uα(w)), where α(w) is viewed as a tuple. Hence,

for every label M ∈ 2Λ, whether or not a pointer (u, w) ∈ D belongs to DM, depends only
on tpq

G(uα(w)). That means that for each M ∈ 2Λ there is a set ΦM ⊆ Γm+1
q such that for all

(u, w) ∈ D we have
(u, w) ∈ DM ⇐⇒ tpq

G(uα(w)) ∈ ΦM.

Let ψ0
M(x, ȳ) denote the disjunction of all formulas τ(x, ȳ) representing the types τ ∈ ΦM (as

described in Fact I.2). We conclude that the following claim holds.

Claim I.2. There is a number q depending only on C and φ such that the following holds. For every
M ∈ 2Λ there is a formula ψ0

M(x, ȳ) of quantifier rank q such that for every pointer (u, w) ∈ D we
have

(u, w) ∈ DM ⇐⇒ G |= ψ0
M(u, α(w)).

We also need to argue that the set D can be defined by a first-order formula, as made
precise below.

Claim I.3. There is a number t depending only on φ and C, a function δ : V(T) → V(G)t and a
first-order formula ψD(x0, . . . , xt), such that the following holds for all u, w ∈ V(B):

(u, w) ∈ D ⇐⇒ G |= ψD(u, δ(w)). (27)
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First, we show how Claim I.2 and Claim I.3 imply Claim I.1. From the two claims it follows
that for each M ∈ 2Λ and pair (u, w) ∈ V(T)× V(T) we have that

(u, w) ∈ DM ⇐⇒ G |= ψD(u, δ(w)) ∧ ψ0
M(u, α(w)).

For a node w of T, let β(w) be the concatenation of the tuples α(w) and δ(w). For M ∈ 2Λ

define
ψM(x, ȳ, z̄) := ψD(x, z̄) ∧ ψ0

M(x, ȳ).

Then for each pair (u, w) ∈ V(T)× V(T) we have that

(u, w) ∈ DM ⇐⇒ G |= ψM(u, β(w)).

This proves Claim I.1, assuming Claim I.2 and Claim I.3.

Claim I.3 is argued below, by analysing the construction the r-separator quasi-bush for G.
Definition 32 of [DGK+

22b] associates to each vertex v of G and number k ⩾ 0 two sets of
vertices of G, denoted Mk

r [v] and Sk
r [v]. Those sets are treated as tuples according to some

fixed enumeration of V(G). It is shown (see Lemma 36 of [DGK+
22b]) that those sets have

size bounded by some constant d. According to Definition 37 of [DGK+
22b], the nodes w of

the r-separator quasi-bush T are sets of the form Mk
r [v], for all v ∈ V(G) and all k ⩽ d. And

the pointers D of T are defined so that (u, Mk
r [v]) ∈ D, for v ∈ V(G) and k ⩾ 1, if and only if

Sk−1
r [v] does not r-separate u and v in G.

For a node w = Mk
r [v] of T, define δ(w) as the concatentation of the following tuples:

• v (where v is arbitrarily chosen so that Mk
r [v] = w),

• Sk−1
r [v], padded to a tuple of length d.

Let ψD(x, y, z̄) with |z̄| = d be a first-order formula expressing “z̄ does not r-separate x and
y.” Then, by definition of D, we have that for every pair u, w ∈ V(T) (27) holds. This proves
Claim I.3.

I.2 Quantifier-free interpretations with function symbols

In this section, we prove Lemma 10.14, which is repeated below.

Lemma (10.14). Let Σ be a signature consisting of unary and binary relation symbols, and unary
function symbols. Fix k, r ⩾ 0, and a symmetric quantifier-free Σ-formula φ(x, y). There are numbers
p = Oφ(k) and r′ = Oφ(r) such that the following holds. Let B be a Σ-structure of VC-dimension at
most k and GB be its Gaifman graph. Then

fwr(φ(B)) ⩽ O(copwidthr′(GB))
p.

In Section I.2, fix a signature Σ consisting of unary relation symbols, binary relation sym-
bols, and unary function symbols. All considered formulas are over this signature, and are
quantifier-free.

The depth of a term t(x) is the nesting of function symbols occurring in t, where the term x
has depth 0, f (x) has depth 1, etc. The depth of a quantifier-free formula is the maximal depth
of a term occurring in it. Note that there are Od(1) terms and atomic formulas of depth d.

We first prove the following lemma. For a set S ⊆ V(G) and two vertices u, v ∈ V(B), let
distS(u, v) denote the distance between u and v in the subgraph of the Gaifman graph of B
obtained by isolating S, that is, removing the edges incident to vertices in S.

Lemma I.3. Fix k, d ⩾ 0 and a quantifier-free Σ-formula φ(x, y) of depth at most d. Then there
is a number m = Od(k) such that for every Σ-structure B of VC-dimension at most k and set S ⊆
V(B) there is a set T of labels with |T| ⩽ Oφ(|S|m), a binary relation Φ ⊆ T × T, and a function
λ : V(B) → T, such that for all vertices u, v ∈ V(G) with distS(u, v) > 2d + 1 we have

B |= φ(u, v) ⇐⇒ (λ(u), λ(v)) ∈ Φ.
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Proof. Fix d ⩾ 0. For a vertex v ∈ V(B) and set of vertices S ⊆ V(G), define the atomic S-type
of depth d of v, denoted atpd(v/S), as the set of all pairs consisting of an atomic formula α(x, y)
of depth at most d and an element s ∈ S, such that α(v, s) holds in B. For a set S ⊆ V(G),
define

Td(S) := {atpd(v/S) | v ∈ V(G)}.

Claim I.4. Fix d, k ⩾ 0. There is a number m = Od(k) such that for every structure B with
k = VCdim(B) and set S ⊆ V(B) we have

|Td(S)| = O(|S|)m.

Proof. We first prove the claim in the case d = 0. We have that atp0(v/S) is determined by the
following data:

• the set of atomic formulas α(x) of depth 0 such that α(v) holds in G,

• the sets R(v; S) and and R(S; v), for each binary relation symbol R ∈ Σ,

• the set of elements s ∈ S such that s = v; this set is either empty, or a singleton.

There are O(1) formulas of depth 0, and for each binary relation symbol R ∈ Σ, we have

|{R(v; S) | v ∈ V(B)}| ⩽ O(|S|k)

and
|{R(S; v) | v ∈ V(B)}| ⩽ O(|S|k)

by the Sauer-Shelah-Perles lemma and the assumption that VCdim(B) ⩽ k. We get that
|Td(S)| ⩽ O(|S|2k|Σ|+1) = |S|O(k), since we consider Σ as fixed.

We now consider the case d > 0. Let S(d) denote the set of vertices that can be obtained in
B by applying a term t(x) of depth at most d to a vertex s ∈ S:

S(d) := {t(s) | s ∈ S, t(x) is a term of depth ⩽d}.

Then |S(d)| ⩽ Od(|S|), as there are Od(1) terms of depth at most d.
For a vertex v ∈ V(B), atpd(v/S) is uniquely determined by the tuple

(atp0(t(v)/S(d)))t(x)

where t(x) ranges over all terms of depth at most d. As there are Od(1) such terms t(v), and
|S(d)| ⩽ Od(|S|) the conclusion follows from the case d = 0 considered earlier.

Claim I.5. Fix d ⩾ 0, and let φ(x, y) be a quantifier-free formula of depth at most d. Fix a Σ-structure
B and a set S ⊆ V(B). For all vertices u, v ∈ V(B) with distS(u, v) > 2d + 1, whether or not φ(u, v)
holds in B, depends only on atpd(u/S) and atpd(v/S). More precisely, there is a binary relation
Φ ⊆ Td(S)× Td(S) such that for all vertices u, v ∈ V(B) with distS(u, v) > 2d + 1 we have

B |= φ(u, v) ⇐⇒ (atpd(u/S), atpd(v/S)) ∈ Φ.

Proof. It is enough to consider the case when φ(x, y) is an atomic formula, since if the state-
ment holds for two formulas φ(x, y) and ψ(x, y) of nesting depth at most d, then it also holds
for ¬φ(x, y) and for φ(x, y) ∨ ψ(x, y).

Thus assume that φ(x, y) is of the form

φ(x, y) ≡ R(t(x), t′(y)),

where R is either a binary relation symbol occurring in Σ, or is the equality relation, and t(x)
and t′(y) are two terms of depth at most d.

Fix two vertices u, v ∈ V(B) with distB(u, v) > 2d+ 1. We show how to determine whether
φ(u, v) holds in B, from the information contained in atpd(u/S) and atpd(v/S).
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Suppose first that there is a subterm t0(x) of t(x) such that t0(u) ∈ S. Note that whether
this is the case can be determined from tpd(u/S).

Let s = t0(u) ∈ S, and let t1(z) be a term such that t1(t0(x)) = t(x). In particular,
t(u) = t1(s). Then

B |= φ(u, v) ⇐⇒ B |= R(t1(s), t′(v)).

Since R(t1(x), t′(y)) is an atomic formula of depth at most d, whether or not R(t1(s), t′(v))
holds in B is determined by atpd(v/S). Hence, in this case, whether or not B |= φ(u, v), is
determined by atpd(v/S).

Similarly, if there is a subterm t′0(y) of t′(y) such that t′0(u) ∈ S, then whether or not B |=
φ(u, v), is determined by atpd(u/S). Moreover, whether this case holds can be determined
from tpd(u/S).

We show that if neither of the two cases holds, then B |= ¬φ(u, v). First, note that
distS(u, t(u)) ⩽ d, as witnessed by the path formed by u, f1(u), f2( f1(u)), . . . , t(u), where
t(x) = fd(. . . ( f1(x)) . . .). Similarly, distS(v, t′(v)) ⩽ d. Since distS(u, v) > 2d + 1, by the
triangle inequality we have distS(t(u), t′(v)) > 1. As t(u), t′(v) /∈ S, it follows that t(u) and
t′(v) are non-adjacent in the Gaifman graph of G. We conclude that B |= ¬R(t(u), t′(v)),
equivalently, B |= ¬φ(u, v).

The claim follows.

Lemma I.3 follows immediately from Claim I.4 and Claim I.5, by taking T = Td(S) and
λ(v) = atpd(v/S).

From Lemma I.3 we get the following.

Corollary I.4. Fix d, k ⩾ 0 and a symmetric quantifier-free Σ-formula φ(x, y) of depth at most d.
There is a number m = Od(k) with the following property. For every Σ-structure B of VC-dimension
at most k and set S ⊆ V(B) there is a Oφ(|S|m)-flip φ(B)′ of φ(B) such that for every vertex v ∈ V(B)
we have

distS(u, v) ⩽ 2d + 1 for u, v ∈ E(φ(B)′), (28)

where distS(·, ·) denotes the distance in the Gaifman graph of B with the vertices in S isolated.

Proof. Let λ : V(B) → T be the labelling from Lemma I.3. Let P be the partition of V(B) into
parts λ−1(a), for a ∈ T. Then |P| ⩽ |T| = Oφ(|S|m) for some m = Od(k). Define φ(B)′ as the
P-flip of φ(B), obtained by flipping two parts P, Q of P if and only if there are u ∈ P, v ∈ Q
such that distS(u, v) > 2d + 1 and B |= φ(u, v). By construction, if u and v are adjacent in
φ(B)′, then distS(u, v) ⩽ 2d + 1. The conclusion follows.

Lemma 10.14 now follows along the same lines as Theorem 8.2.

Proof of Lemma 10.14. Let m be as in Corollary I.4. We fix a winning strategy of the cops in the
Cops and Robber game of radius r′ := r(2d + 1) and width ℓ := copwidthr′(G), and transfer
this strategy to the flipper game of radius r and width O(ℓm) on φ(B), so that whenever
the cops announce a new set S ⊆ V(B) of vertices in the Cops and Robber game, then
in the flipper game the flipper announces the O(|S|m)-flip φ(B)′ of φ(B), as obtained by
Corollary I.4. It follows from (28) and Lemma 8.11 that this yields a winning strategy in the
flipper game. Hence, fwr(φ(B)) = O(ℓm).
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de Mendez, and Reshma Ramadurai. When trees grow low: Shrubs and fast
MSO1. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors,
Mathematical Foundations of Computer Science 2012 - 37th International Symposium,
MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume 7464 of
Lecture Notes in Computer Science, pages 419–430. Springer, 2012. doi:10.1007/
978-3-642-32589-2\_38.

[GHO+
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