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Fourier Growth of Communication Protocols for XOR Functions

Uma Girish∗ Makrand Sinha† Avishay Tal‡ Kewen Wu§

Abstract

The level-k ℓ1-Fourier weight of a Boolean function refers to the sum of absolute values of
its level-k Fourier coefficients. Fourier growth refers to the growth of these weights as k grows.
It has been extensively studied for various computational models, and bounds on the Fourier
growth, even for the first few levels, have proven useful in learning theory, circuit lower bounds,
pseudorandomness, and quantum-classical separations.

In this work, we investigate the Fourier growth of certain functions that naturally arise from
communication protocols for XOR functions (partial functions evaluated on the bitwise XOR of
the inputs x and y to Alice and Bob). If a protocol C computes an XOR function, then C(x, y) is
a function of the parity x⊕y. This motivates us to analyze the XOR-fiber of the communication
protocol C, defined as h(z) := Ex,y[C(x,y)|x⊕ y = z].

We present improved Fourier growth bounds for the XOR-fibers of randomized protocols that
communicate d bits. For the first level, we show a tight O(

√
d) bound and obtain a new coin

theorem, as well as an alternative proof for the tight randomized communication lower bound
for the Gap-Hamming problem. For the second level, we show an d3/2 · polylog(n) bound,
which improves the previous O(d2) bound by Girish, Raz, and Tal (ITCS 2021) and implies a
polynomial improvement on the randomized communication lower bound for the XOR-lift of
the Forrelation problem, which extends the quantum-classical gap for this problem.

Our analysis is based on a new way of adaptively partitioning a relatively large set in Gaussian
space to control its moments in all directions. We achieve this via martingale arguments and
allowing protocols to transmit real values. We also show a connection between Fourier growth
and lifting theorems with constant-sized gadgets as a potential approach to prove optimal bounds
for the second level and beyond.
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1 Introduction

The Fourier spectrum of Boolean functions and their various properties have played an important
role in many areas of mathematics and theoretical computer science. In this work, we study a
notion called ℓ1-Fourier growth, which captures the scaling of the sum of absolute values of the
level-k Fourier coefficients of a function. In a nutshell, functions with small Fourier growth cannot
aggregate many weak signals in the input to obtain a considerable effect on the output. In contrast,
the Majority function, which can amplify weak biases, is an example of a Boolean function with
extremely high Fourier growth.

To formally define Fourier growth, we recall that every Boolean function f : {±1}n → [−1, 1]
can be uniquely represented as a multilinear polynomial

f(x) =
∑

S⊆[n]

f̂(S) ·
∏

i∈S
xi

where the coefficients of the polynomial f̂(S) ∈ R are called the Fourier coefficients of f , and they
satisfy f̂(S) = E[f(x) ·∏i∈S xi] for a uniformly random x ∈ {±1}n. The level-k ℓ1-Fourier growth
of f is the sum of the absolute values of its level-k Fourier coefficients,

L1,k(f) :=
∑

S⊆[n]:|S|=k

∣∣∣f̂(S)
∣∣∣ .

The study of Fourier growth dates back to the work of Mansour [Man95] who used it in the
context of learning algorithms. Since then, several works have shown that upper bounds on the
Fourier growth, even for the first few Fourier levels, have applications to pseudorandomness, circuit
complexity, and quantum-classical separations. For example:

• A bound on the level-one Fourier growth is sufficient to control the advantage of distinguishing
biased coins from unbiased ones [Agr20].

• A bound on the level-two Fourier growth already gives pseudorandom generators [CHLT18],
oracle separations between BQP and PH [RT19, Wu22], and separations between efficient
quantum communication and randomized classical communication [GRT21].

Meanwhile, Fourier growth bounds have been extensively studied and established for various com-
putational models, including small-width DNFs/CNFs [Man95], AC0 circuits [Tal17], low-sensitivity
Boolean functions [GSTW16], small-width branching programs [RSV13, SVW17, CHRT18, LPV22],
small-depth decision trees [OS07, Tal20, SSW21], functions related to small-cost communication
protocols [GRZ21, GRT21], low-degree GF(2) polynomials [CHHL19, CHLT18, BIJ+21], product
tests [Lee19], small-depth parity decision trees [BTW15, GTW21], low-degree bounded functions
[IRR+21], and more.

For any Boolean function f with outputs in [−1, 1], the level-k Fourier growth L1,k(f) is at most√(n
k

)
. However, for many natural classes of Boolean functions, this bound is far from tight and not

good enough for applications. Establishing better bounds require exploring structural properties of
the specific class of functions in question. Even for low Fourier levels, this can be highly non-trivial
and tight bounds remain elusive in many cases. For example, for degree-d GF(2) polynomials (which
well-approximate AC

0[⊕] when we set d = polylog(n) [Raz87, Smo87]), while we know a level-one
bound of L1,1(f) ≤ O(d) due to [CHLT18], the current best bound for levels k ≥ 2 is roughly 2O(dk)

[CHHL19], whereas the conjectured bound is dO(k). Validating such a bound, even for the second
level k = 2, will imply unconditional pseudorandom generators of polylogarithmic seed length for
AC

0[⊕] [CHLT18], a longstanding open problem in circuit complexity and pseudorandomness.
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XOR Functions. In this work, we study the Fourier growth of certain functions that nat-
urally arise from communication protocols for XOR-lifted functions, also referred to as XOR
functions. XOR functions are an important and well-studied class of functions in communica-
tion complexity with connections to the log-rank conjecture and quantum versus classical separa-
tions [MO10, HHL18, TWXZ13, SZ08, Zha14].

In this setting, Alice gets an input x ∈ {±1}n and Bob gets an input y ∈ {±1}n and they wish
to compute f(x ⊙ y) where f is some partial Boolean function and x ⊙ y is in the domain of f .
Here, x⊙ y denotes the pointwise product of x and y. Given any communication protocol C that
computes an XOR function exactly, the output C(x, y) of the protocol depends only on the parity
x⊙ y, whenever f is defined on x⊙ y. This gives a natural motivation to analyze the XOR-fiber of
a communication protocol defined below. We note that a similar notion first appeared in an earlier
work of Raz [Raz95].

Definition 1.1. Let C : {±1}n × {±1}n → {±1} be any deterministic communication protocol.
The XOR-fiber of the communication protocol C is the function h : {±1}n → [−1, 1] defined at
z ∈ {±1}n as

h(z) = E
x,y∼ν

[C(x,y) | x⊙ y = z],

where ⊙ is the entrywise product and ν is the uniform distribution over {±1}n.

We remark that XOR-fiber is the “inverse” of XOR-lift of a function: If C computes the XOR
function of f , then the XOR-fiber h of C is equal to f on the domain of f .

In this work, we investigate the Fourier growth of XOR-fibers of small-cost communication
protocols and apply these bounds in several contexts. Before stating our results, we first discuss
several related works.

Related Works. Showing optimal Fourier growth bounds for XOR-fibers is a complex under-
taking in general and a first step towards this end is to obtain optimal Fourier growth bounds for
parity decision trees. This is because a parity decision tree for a Boolean function f naturally
gives rise to a structured communication protocol for the XOR-function corresponding to f . This
protocol perfectly simulates the parity decision tree by having Alice and Bob exchange one bit each
to simulate a parity query. Moreover, the XOR-fiber of this protocol exactly computes the parity
decision tree. As such, parity decision trees can be seen as a special case of communication pro-
tocols, and Fourier growth bounds on XOR-fibers of communication protocols immediately imply
Fourier growth bounds on parity decision trees.

Fourier growth bounds for decision trees and parity decision trees are well-studied. It is
not too difficult to obtain a level-k bound of O(d)k for parity decision trees of depth d, how-
ever, obtaining improved bounds is significantly more challenging. For decision trees of depth
d (which form a subclass of parity decision trees of depth d), O’Donnell and Servedio [OS07]
proved a tight bound of O(

√
d) on the level-one Fourier growth. By inductive tree decompositions,

Tal [Tal20] obtained bounds for the higher levels of the form L1,k(f) ≤
√
dk ·O(log(n))k−1. This

was later sharpened by Sherstov, Storozhenko, and Wu [SSW21] to the asymptotically tight bound

of L1,k(f) ≤
√(d

k

)
·O(log(n))k−1 using a more sophisticated layered partitioning strategy on the

tree.
When it comes to parity decision trees, despite all the similarities, the structural decomposition

approach does not seem to carry over due to the correlations between the parity queries. For parity
decision trees of depth d, Blais, Tan, and Wan [BTW15] proved a tight level-one bound of O(

√
d).

For higher levels, Girish, Tal, and Wu [GTW21] showed that L1,k(f) ≤
√

dk · O(k log(n))2k. These
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works imply almost tight Fourier growth bounds on the XOR-fibers of structured protocols that
arise from simulating decision trees or parity decision trees.

For the case of XOR-fibers of arbitrary deterministic/randomized communication protocols
(which do not necessarily simulate parity decision trees or decision trees), Girish, Raz, and Tal
[GRT21] showed an O(dk) Fourier growth1 for level-k. For level-one and level-two, these bounds
are O(d) and O(d2) respectively and are sub-optimal — as mentioned previously, such weaker
bounds for parity decision trees are easy to obtain, while obtaining optimal bounds (for parity
decision trees) of O(

√
d) for level one and d · polylog(n) for level two already requires sophisticated

ideas.
The bounds in [GRT21] follow by analyzing the Fourier growth of XOR-fibers of communication

rectangles of measure ≈ 2−d and then adding up the contributions from all the leaf rectangles
induced by the protocol. Such a per-rectangle-based approach cannot give better bounds than the
ones in [GRT21], while they also conjectured that the optimal Fourier growth of XOR-fibers of
arbitrary protocols should match the growth for parity decision trees.

Showing the above is a challenging task even for the first two Fourier levels. The difficulty arises
primarily since in the absence of a per-rectangle-based argument, one has to crucially leverage
cancellations between different rectangles induced by the communication protocol. In the simpler
case of parity decision trees (or protocols that exchange parities), such cancellations are leveraged
in [GTW21] by ensuring k-wise independence at each node of the tree — this can be achieved by
adding extra parity queries. In a general protocol, the parties can send arbitrary partial information
about their inputs and correlate the coordinates in complicated ways that such methods break down.
This is one of the key difficulties we face in this paper.

1.1 Main Results

We prove new and improved bounds on the Fourier growth of the XOR-fibers associated with
small-cost protocols for levels k = 1 and k = 2.

Theorem 1.2. Let C : {±1}n × {±1}n → {±1} be a deterministic communication protocol with
at most d bits of communication. Let h be its XOR-fiber as in Definition 1.1. Then, L1,1(h) =

O
(√

d
)
.

Theorem 1.3. Let C : {±1}n×{±1}n → {±1} be a deterministic protocol communicating at most
d bits. Let h be its XOR-fiber as in Definition 1.1. Then, L1,2(h) = O

(
d3/2 log3(n)

)
.

Our bounds in Theorems 1.2 and 1.3 extend directly to randomized communication protocols.
This is because L1,k is convex and any randomized protocol is a convex combination of deterministic
protocols with the same cost. Moreover, we can use Fourier growth reductions, as described in
Subsection 1.2.3, to demonstrate that these bounds apply to general constant-sized gadgets g and
the corresponding g-fiber.

Our level-one and level-two bounds improve previous bounds in [GRT21] by polynomial factors.
Additionally, our level-one bound is tight since a deterministic protocol with d+1 bits of communica-
tion can compute the majority vote of x1·y1, . . . , xd·yd, which corresponds to h(z) = MAJ(z1, . . . , zd)
with L1,1(h) = Θ(

√
d). Furthermore, as we discuss later in Subsection 1.2, level-one and level-two

bounds are already sufficient for many interesting applications.
In terms of techniques, our analysis presents a key new idea that enables us to exploit can-

cellations between different rectangles induced by the protocol. This idea involves using a novel

1Technically, [GRT21] only proved a level-two bound (as it suffices for their analysis), but a level-k bound follows
easily from their proof approach, as noted by [GRZ21]
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process to adaptively partition a relatively large set in Gaussian space, which enables us to control
its k-wise moments in all directions — this can be thought of as a spectral notion of almost k-wise
independence. We achieve this by utilizing martingale arguments and allowing protocols to trans-
mit real values rather than just discrete bits. This notion and procedure may be of independent
interest. See Section 2 for a detailed discussion.

1.2 Applications and Connections

Our main theorem has applications to XOR functions, and in more generality to functions lifted
with constant-sized gadgets. In this setting, there is a simple gadget g : Σ × Σ → {±1} and a
Boolean function f defined on inputs z ∈ {±1}n. The lifted function f ◦ g is defined on n pairs
of symbols (x1, y1), . . . , (xn, yn) ∈ Σ × Σ such that (f ◦ g)(x, y) = f(g(x1, y1), . . . , g(xn, yn)). The
function f ◦ g naturally defines a communication problem where Alice is given x = (x1, . . . , xn),
Bob is given y = (y1, . . . , yn), and they are asked to compute (f ◦ g)(x, y).

Since XOR functions are functions lifted with the XOR gadget, our main theorem implies lower
bounds on the communication complexity of specific XOR functions. Additionally, we also show
connections between XOR-lifting and lifting with any constant-sized gadget. Next, we describe
these lower bounds and connections, with further context.

1.2.1 The Coin Problem and the Gap-Hamming Problem

The coin problem studies the advantage that a class of Boolean functions has in distinguishing
biased coins from unbiased ones. More formally, let F be a class of n-variate Boolean functions.
Let ρ ∈ [−1, 1] and π⊗n

ρ denote the product distribution over {±1}n where each coordinate has
expectation ρ. The Coin Problem asks what is the maximum advantage that functions in F have
in distinguishing π⊗n

ρ from the uniform distribution π⊗n
0 .

This quantity essentially captures how well F can approximate threshold functions, and in
particular, the majority function. The coin problem has been studied for various models of compu-
tation including branching programs [BV10], AC0 and AC

0[⊕] circuits [CGR14, LSS+19], product
tests [LV18], and more. Recently, Agrawal [Agr20] showed that the coin problem is closely related
to the level-one Fourier growth of functions in F.

Lemma 1.4 ([Agr20, Lemma 3.2]). Assume that F is closed under restrictions and satisfies
L1,1(f) ≤ t for all f ∈ F. Then, for all ρ ∈ (−1, 1) and f ∈ F,

∣∣∣∣∣ E
z∼π⊗n

ρ

[f(z)]− E
z∼π⊗n

0

[f(z)]

∣∣∣∣∣ ≤ ln
(

1
1−|ρ|

)
· t.

Note that communication protocols of small cost are closed under restrictions, so are their

XOR-fibers (see [GRT21, Lemma 5.5]). By noting that ln
(

1
1−|ρ|

)
≈ |ρ| for small values of ρ, we

obtain the following corollary.2 We also remark that, using the Fourier growth reductions (see
Subsection 1.2.3), Theorem 1.5 can be established for general gadgets of small size.

Theorem 1.5. Let h be the XOR-fiber of a protocol with total communication d. Then for all ρ,

∣∣∣∣∣ E
z∼π⊗n

ρ

[h(z)] − E
z∼π⊗n

0

[h(z)]

∣∣∣∣∣ ≤ O
(
|ρ| ·
√
d
)
.

2Here we also use the fact that the upper bound O(|ρ| ·
√
d) is vacuous for large enough ρ as it is larger than 1.
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In particular, consider the following distinguishing task: Alice and Bob either receive two
uniformly random strings in {±1}n or they receive two uniformly random strings in {±1}n con-
ditioned on their XOR distributed according to π⊗n

ρ for ρ = 1/
√
n (the latter is often referred to

as ρ-correlated strings). Theorem 1.5 implies that any protocol communicating o(n) bits cannot
distinguish these two distributions with constant advantage. This is essentially a communication
lower bound for the well-known Gap-Hamming Problem.

The Gap-Hamming Problem. In the Gap-Hamming Problem, Alice and Bob receive strings
x, y ∈ {±1}n respectively and they want to distinguish if 〈x, y〉 ≤ −√n or 〈x, y〉 ≥ √n.

This is essentially the XOR-lift of the Coin Problem with ρ = ±1/
√
n because the distribution

of (x, y) conditioned on x⊙y ∼ π⊗n
ρ with ρ = −1/

√
n and ρ = 1/

√
n is mostly supported on the Yes

and No instances of Gap-Hamming respectively. Thus immediately from Theorem 1.5, we derive
a new proof for the Ω(n) lower bound on the communication complexity of the Gap-Hamming
Problem. The proof is deferred to Appendix A.

Theorem 1.6. The randomized communication complexity of the Gap-Hamming Problem is Ω(n).

We note that there are various different proofs [CR12, She12, Vid12, RY22] that obtain the above
lower bound but the perspective taken here is perhaps conceptually simpler: (1) Gap-Hamming is
essentially the XOR-lift of the Gap-Majority function, and (2) any function that approximates the
Gap-Majority function must have large level-one Fourier growth, whereas XOR-fibers of small-cost
protocols have small Fourier growth.

1.2.2 Quantum versus Classical Communication Separation via Lifting

One natural approach to proving quantum versus classical separations in communication complex-
ity is via lifting: Consider a function f separating quantum and classical query complexity and lift it
using a gadget g. Naturally, an algorithm computing f with few queries to z can be translated into
a communication protocol computing f ◦g where we replace each query to a bit zi with a short con-
versation that allows the calculation of zi = g(xi, yi). Göös, Pitassi, and Watson [GPW20] showed
that for randomized query/communication complexity and for various gadgets, this is essentially
the best possible. Such results are referred to as lifting theorems.

Lifting theorems apply to different models of computation, such as deterministic decision
trees [RM99, GPW15], randomized decision trees [GPW20, CFK+19], and more. A beautiful line
of work shows how to “lift” many lower bounds in the query model to the communication model
[RM99, GPW15, GLM+15, Göö15, dRNV16, HHL18, WYY17, CKLM19, KMR17, SZ09, She11,
RS10, RPRC16, GKPW19, LRS15]. For quantum query complexity, only one direction (consid-
ered the “easier” direction) is known: Any quantum query algorithm for f can be translated to a
communication protocol for f ◦ g with a small logarithmic overhead [BCW98]. It remains widely
open whether the other direction holds as well. However, this query-to-communication direction for
quantum, combined with the communication-to-query direction for classical, is already sufficient
for lifting quantum versus classical separations from the query model to the communication model.

One drawback of this approach to proving communication complexity separations is that the
state-of-the-art lifting results [CFK+19, LMM+22] work for gadgets with alphabet size at least n
(recall that n denotes f ’s input length) and it is a significant challenge to reduce the alphabet size
to O(1) or even polylog(n). These large gadgets will usually result in larger overheads in terms of
communication rounds, communication bits, and computations for both parties. As demonstrated
next, lifting with simpler gadgets like XOR allows for a simpler quantum protocol for the lifted
problem.
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Lifting Forrelation with XOR. The Forrelation function introduced by [Aar10] is defined as
follows: on input x = (x1, x2) ∈ {±1}n where n is a power of 2,

Forr(x) =
2

n
〈Hx1, x2〉 ,

where H denotes the (n/2) × (n/2) (unitary) Hadamard matrix.
Girish, Raz, and Tal [GRT21] studied the XOR-lift of the Forrelation problem and obtained

new separations between quantum and randomized communication protocols. In more detail, they
considered the partial function3 Forr ◦ XOR: {±1}n × {±1}n → {±1} defined as

Forr ◦ XOR(x, y) =

{
1 Forr(x⊙ y) ≥ 1

200 ln(n/2) ,

−1 Forr(x⊙ y) ≤ 1
400 ln(n/2) ,

and showed that if Alice and Bob use a randomized communication protocol, then they must
communicate at least Ω̃(n1/4) bits to compute Forr ◦XOR; while it can be solved by two entangled
parties in the quantum simultaneous message passing model with a polylog(n)-qubit communication
protocol and additionally the parties can be implemented with efficient quantum circuits.

The lower bound in [GRT21] was obtained from a second level Fourier growth bound (higher
levels are not needed) on the XOR-fiber of classical communication protocols. Our level-two bound
strengthens their bound and immediately gives an improved communication lower bound.

Theorem 1.7. The randomized communication complexity of Forr ◦XOR is Ω̃(n1/3).

Theorem 1.7 above gives an polylog(n) versus Ω̃(n1/3) separation between the above quantum
communication model and the randomized two-party communication model, improving upon the
polylog(n) versus Ω̃(n1/4) separation from [GRT21]. We emphasize that our separations are for
players with efficient quantum running time, where the only prior separation was shown by the
aforementioned work [GRT21]. Such efficiency features can also benefit real-world implementations
to demonstrate quantum advantage in experiments; for instance, one such proposal was introduced
recently by Aaronson, Buhrman, and Kretschmer [ABK23]. Without the efficiency assumption, a
better polylog(n) versus Ω̃(

√
n) separation is known [Gav20] (see [GRT21, Section 1.1] for a more

detailed comparison). Optimal Fourier growth bounds of d ·polylog(n) for level two, which we state
later in Conjecture 1.8, would also imply such a separation with XOR-lift of Forrelation.

Lifting k-Fold Forrelation with XOR. k-Fold Forrelation [AA18] is a generalization of the
Forrelation problem and was originally conjectured to be a candidate that exhibits a maximal
separation between quantum and classical query complexity. In a recent work, [BS21] showed that
the randomized query complexity of k-Fold Forrelation is Ω̃(n1−1/k), confirming this conjecture, and
a similar separation was proven in [SSW21] for variants of k-Fold Forrelation. These separations,
together with lifting theorems with the inner product gadget [CFK+19], imply an O(k log(n)) vs
Ω̃(n1−1/k) separation between two-party quantum and classical communication complexity, where
additionally, the number of rounds4 in the two-party quantum protocol is 2 · ⌈k/2⌉.

Replacing the inner product gadget with the XOR gadget above would yield an improved
quantum-classical communication separation where the gadget is simpler and the number of rounds

3We are overloading the notation here: technically, Forr ◦ XOR is the XOR-lift of the partial boolean function
which on input x outputs 1 if Forr(x) is large and −1 if Forr(x) is small.

4We remark that for k = 2, this is exactly the XOR-lift of the Forrelation problem and can even be computed in
the quantum simultaneous model, as shown in [GRT21].
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required by the quantum protocol to achieve the same quantitative separation is reduced by half.
Bansal and Sinha [BS21] showed that for any computational model, small Fourier growth for the first
O(k2)-levels implies hardness of k-Fold Forrelation in that particular model. Thus, in conjunction
with their results, to prove the above XOR lifting result for the k-Fold Forrelation problem, it
suffices to prove the following Fourier growth bounds for XOR-fibers.

Conjecture 1.8. Let C : {±1}n × {±1}n → {±1} be a deterministic communication protocol with
at most d bits of communication. Let h be its XOR-fiber as in Definition 1.1. Then for all k ∈ N,
we have that L1,k(h) ≤ (

√
d · poly(k, log(n)))k.

Note that these bounds are consistent with the Fourier growth of parity decision trees (or
protocols that only send parities) as shown in [GTW21].

We prove the above conjecture for the case k = 1 and make progress for the case k = 2. While
our techniques can be extended to higher levels in a straightforward manner, the bounds obtained
are farther from the conjectured ones. Thus, we decided to defer dealing with higher levels to future
work as we believe one needs to first prove the optimal bound for level k = 2.

In the next subsection, we give another motivation to study the above conjecture by showing a
connection to lifting theorems for constant-sized gadgets.

1.2.3 General Gadgets and Fourier Growth from Lifting

Our main results are Fourier growth bounds for XOR-fibers, which corresponds to XOR-lifts of
functions. To complement this, we show that similar bounds hold for general lifted functions.

Let g : Σ × Σ → {±1} be a gadget and C : Σn × Σn → {±1} be a communication protocol.
Define the g-fiber of C, denoted by C↓g : {±1}n → [−1, 1], as

C↓g(z) = E [C(x,y) | g(xi,yi) = zi, ∀i] ,

where x and y are uniform over Σ. We use L1,k(g, d) to denote the upper bound of the level-k
Fourier growth for the g-fibers of protocols with at most d bits of communication. Using this
notation, the XOR-fiber of C is simply C↓XOR, and our main results Theorems 1.2 and 1.3 can be
rephrased as

L1,1(XOR, d) ≤ O
(√

d
)

and L1,2(XOR, d) ≤ O
(
d3/2 log3(n)

)
.

In Section 7, we relate L1,k(g, d) to L1,k(XOR, d), and the main takeaway is, in the study of
Fourier growth bounds, constant-sized gadgets are all equivalent.

Theorem 1.9 (Informal, see Theorem 7.5 and Theorem 7.6). Let g : Σ×Σ→ {±1} be a “balanced”
gadget. Then

|Σ|−k · L1,k(XOR, d) ≤ L1,k(g, d) ≤ |Σ|k · L1,k(XOR, d).

Theorem 1.9 also proposes a different approach towards Conjecture 1.8: it suffices to establish
tight Fourier growth bound for g-fibers for some constant-sized (actually, polylogarithmic size
suffices) gadget g, and then apply the reduction. The benefit of switching to a different gadget is
that we can perhaps first prove a lifting theorem, and then appeal to the known Fourier growth
bounds of (randomized) decision trees [Tal20, SSW21]. See Subsection 8.1 for detail.

As mentioned earlier, lifting theorems show how to simulate communication protocols of cost
d for lifted functions with decision trees of depth at most O(d) (see e.g., [GPW20]). A problem
at the frontier of this fruitful line of work has been establishing lifting theorems for decision trees
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with constant-sized gadgets. Note that the XOR gadget itself cannot have such a generic lifting
result: Indeed, the parity function serves as a counterexample. Nevertheless, it is speculative that
some larger gadget works, which suffices for our purposes.5 On the other hand, for lifting from
parity decision trees, we do know an XOR-lifting theorem [HHL18]. However, it only holds for
deterministic communication protocols and has a sextic blowup in the cost.

Thus, one can see Conjecture 1.8 as either a further motivation for establishing lifting results for
decision trees with constant-sized gadgets, or as a necessary milestone before proving such lifting
results.

1.2.4 Pseudorandomness for Communication Protocols

We say G : {±1}ℓ → {±1}n × {±1}n is a pseudorandom generator (PRG) for a (randomized)
communication protocol C : {±1}n × {±1}n → [−1, 1] with error ε and seed length ℓ if

∣∣∣∣ E
x,y∼ν

[C(x,y)] − E
r∼{±1}ℓ

[C(G(r))]

∣∣∣∣ ≤ ε.

[INW94] showed that for the class of protocols sending at most d communication bits, there exists
an explicit PRG of error 2−d and seed length n + O(d) from expander graphs. Note that the
overhead n is inevitable even if the protocol is only sending one bit, since it can depend arbitrarily
on Alice/Bob’s input.

Combining Conjecture 1.8 and the PRG construction from [CHHL19, Theorem 4.5], we would
obtain a completely different explicit PRG for this class with error ε and seed length n + d ·
polylog(n/ε).

Paper Organization. An overview of our proofs is given in Section 2. In Section 3 we define
necessary notation and recall useful inequalities. Section 4 explains a way to associate the Fourier
growth to a martingale process. The proof of level-one bound (Theorem 1.2) is given in Section 5,
and the level-two bound (Theorem 1.3) in Section 6. The Fourier growth reductions between general
gadgets are presented in Section 7. The future directions are discussed in Section 8. Missing proofs
can be found in the appendix.

2 Proof Overview

We first briefly outline the proof strategy, which consists of three main components:

• First, we show that the level-one bound can be characterized as the expected absolute value
of a martingale defined as follows: Consider the random walk induced on the protocol tree
when Alice and Bob are given inputs x and y uniformly from {±1}n. Let X(t) ×Y (t) be the
rectangle associated with the random walk at time t. The martingale process tracks the inner
product

〈
µ(X(t)), µ(Y (t))

〉
where µ(X(t)) = E

[
x
∣∣x ∈X(t)

]
and µ(Y (t)) = E

[
y
∣∣y ∈ Y (t)

]

are Alice’s and Bob’s center of masses.

• Second, to bound the value of the martingale, it is necessary to ensure that neither X(t)

nor Y (t) become excessively elongated in any direction during the protocol execution. To
measure the length of X(t) in a particular direction θ ∈ Sn−1, we calculate the variance
Var

[
〈x, θ〉

∣∣x ∈X(t)
]
, i.e. the variance of a uniformly random x ∈ X(t) in the direction θ.

5In terms of the separations between quantum and classical communication, even restricted lifting results for the
specific outer function being the Forrelation function would suffice.
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If the set is not elongated in any direction, this can be thought of as a spectral notion of
almost pairwise independence. Such a notion also generalizes to almost k-wise independence
by considering higher moments.

To achieve the property that the sets are not elongated, one of the main novel ideas in our
paper is to modify the original protocol to a new one that incorporates additional cleanup
steps where the parties communicate real values 〈x, θ〉. Through these communication steps,
the sets X(t) and Y (t) are recursively divided into affine slices along problematic directions.

• Last, one needs to show that the number of cleanup steps are small in order to bound the
value of the martingale for the new protocol. This is the most involved part of our proof and
requires considerable effort because the cleanup steps are real-valued and adaptively depend
on the entire history, including the previous real values communicated.

The strategy outlined above also generalizes to level-two Fourier growth by considering higher
moments and sending values of quadratic forms in the inputs. We also remark that since we view
the sets X(t) and Y (t) above as embedded in Rn and allow the protocol to send real values, it is
more natural for us to work in Gaussian space by doing a standard transformation. The rotational
invariance of the Gaussian space also seems to be essential for us to obtain optimal level-one bound
without losing additional polylogarithmic factors.

We now elaborate on the above components in detail and also highlight the differences between
the level-one and level-two settings. For conciseness, in the following overview we use f . g to
denote f = O(g) and f & g to denote f = Ω(g) where O and Ω only hide absolute constants.

2.1 Level-One Fourier Growth

The level-one Fourier growth of the XOR-fiber h is given by

L1,1(h) =

n∑

i=1

∣∣∣ĥ({i})
∣∣∣ =

n∑

i=1

∣∣∣ E
z∼ν

[h(z)zi]
∣∣∣ =

n∑

i=1

∣∣∣∣ E
x,y∼ν

[C(x,y)xiyi]

∣∣∣∣ .

To bound the above, it suffices to bound
∑n

i=1 ηi ·E[C(x,y)xiyi] for any sign vector η ∈ {±1}n.
Here for simplicity we assume ηi ≡ 1 and the probability of reaching every leaf is ≈ 2−d.

A Martingale Perspective. To evaluate the quantity
∑n

i=1 E[C(x,y)xiyi], consider a random
leaf ℓ of the protocol and let Xℓ × Yℓ be the corresponding rectangle. Since the leaf determines
the answer of the protocol, denoted by C(ℓ), the quantity above equals

n∑

i=1

E
ℓ

[C(ℓ) · E[xi |x ∈Xℓ] · E[yi |y ∈ Yℓ]] = E
ℓ
[C(ℓ) · 〈µ(Xℓ), µ(Yℓ)〉] ≤ E

ℓ
[| 〈µ(Xℓ), µ(Yℓ)〉 |],

where µ(Xℓ) = E [x |x ∈Xℓ] and µ(Yℓ) = E [y |y ∈ Yℓ] are the center of masses of the rectangle.
Our goal is to bound the magnitude of the random variable z = 〈µ(Xℓ), µ(Yℓ)〉.

We shall show that Eℓ[|z|] .
√
d. Note that |z| can be as large as d in the worst case — for

instance if the first d coordinates of Xℓ and Yℓ are fixed to the same value — thus we cannot argue
for each leaf separately.

To analyze it for a random leaf, we first characterize the above as a martingale process using
the tree structure of the protocol. The martingale process is defined as

(
z(t)
)
t

where z(t) :=〈
µ(X(t)), µ(Y (t))

〉
tracks the inner product between the center of masses µ(X(t)) and µ(Y (t)) of the
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current rectangle X(t)×Y (t) at step t. Denote the martingale differences by ∆z(t+1) = z(t+1)−z(t)

and note that if in the tth step Alice sends a message, then

∆z(t+1) =
〈

∆µ(X(t+1)), µ(Y (t+1))
〉
,

where ∆µ(X(t+1)) = µ(X(t+1)) − µ(X(t)) is the change in Alice’s center of mass. A similar
expression holds if Bob sends a message. Then it suffices to bound the expected quadratic variation
(see Section 3) since

(
E

[∣∣∣z(d)
∣∣∣
])2
≤ E

[(
z(d)

)2]
= E

[
d−1∑

t=0

(
∆z(t+1)

)2
]
, (2.1)

where the equality holds due to the martingale property: E
[
∆z(t+1)

∣∣ z(1), . . . z(t)
]

= 0.
To obtain the desired bound, we need to bound the expected quadratic variation by O(d). Note

that it could be the case that a single ∆z(t+1) scales like
√
d. For instance, if Bob first announces

his first d coordinates, y1, . . . , yd, and then Alice sends a majority of x1 · y1, . . . , xd · yd, then in the
last step Alice’s center of mass µ(X(t+1)) changes by ≈ 1/

√
d in each of the first d coordinates,

and the inner product with Bob’s center of mass changes by ≈
√
d in a single step.

Such cases make it difficult to directly control the individual step sizes of the martingale and
we will only be able to obtain an amortized bound. It turns out, as we explain later, that such an
amortized bound on the martingale can be obtained if Alice and Bob’s sets are not elongated in any
direction. Therefore, we will transform the original protocol into a clean protocol by introducing
real communication steps that slice the elongated directions. For this, it will be convenient to work
in Gaussian space which also turns out to be essential in proving the optimal O(

√
d) bound.

Protocols in Gaussian Space. A communication protocol in Gaussian space takes as inputs
x,y ∈ Rn where x,y are independently sampled from the Gaussian distribution γn. One can embed
the original Boolean protocol in the Gaussian space by running the protocol on the uniformly
distributed Boolean inputs sgn(x) and sgn(y) where sgn(·) takes the sign of each coordinate. Note
that any node of the protocol tree in the Gaussian space corresponds to a rectangle X × Y where
X,Y ⊆ Rn. Abusing the notation and defining their Gaussian centers of masses as µ(X) =
Ex∼γn [x |x ∈ X] and µ(Y ) = Ey∼γn [y |y ∈ Y ], one can associate the same martingale (z(t))t with
the protocol in the Gaussian space:

z(t) =
〈
µ(X(t)), µ(Y (t))

〉
.

It turns out that bounding the quadratic variation of this martingale suffices to give a bound on
L1,2(h) (see Section 4), so we will stick to the Gaussian setting. We now describe the ideas behind
the cleanup process so that the step sizes can be controlled more easily.

Cleanup with Real Communication. The cleanup protocol runs the original protocol inter-
spersed with some cleanup steps where Alice and Bob send real values. As outlined before, one
of the goals of these cleanup steps is to ensure that the sets are not elongated in any direction, in
order to control the martingale steps. In more detail, recall that we want to control

E

[
(∆z(t+1))2

∣∣∣z(1), . . . ,z(t)
]

= E

[〈
∆µ(X(t+1)), µ(Y (t+1))

〉2 ∣∣∣∣ z(1), . . . ,z(t)

]

in the tth step where Alice speaks. There are two key underlying ideas for the cleanup steps:
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• Gram-Schmidt Orthogonalization: At each round, if the current rectangle is X × Y ,
before Alice sends the actual message, she sends the inner product 〈x, µ(Y )〉 between her
input and Bob’s current center of mass µ(Y ). This partitions Alice’s set X into affine slices
orthogonal to Bob’s current center of mass µ(Y ). Thus the change in Alice’s center of mass
in later rounds is orthogonal to µ(Y ) since it only takes place inside the affine slice.

Recall that the martingale z(t) is the inner product of Alice and Bob’s center of masses, and
Bob’s center of mass does not change when Alice speaks. The original communication steps
now do not contribute to the martingale and only the steps where the inner products are
revealed do. In particular, if tprev < t are two consecutive times where Alice revealed the
inner product, then the change in Alice’s center of mass is orthogonal to change in Bob’s
center of mass between time tprev and t. Thus, conditioned on the rectangle X(t)×Y (t) fixed
by the messages until time t, we have, by Jensen’s inequality,

E

[
(∆z(t+1))2

∣∣∣X(t),Y (t)
]

= E

[〈
∆µ(X(t+1)), µ(Y (t))− µ(Y (tprev))

〉2 ∣∣∣∣X(t),Y (t)

]

≤ E

[〈
x− µ(X(t)), µ(Y (t))− µ(Y (tprev))

〉2 ∣∣∣∣X(t),Y (t)

]
. (2.2)

Note that the quantity on the right-hand side above is of the form 〈x− E[x], v〉. In other
words, it is the variance of the random vector x along direction v. To maintain a bound on
this quantity, we introduce the notion of “not being elongated in any direction”.

• Not elongated in any direction: We define the following notion to capture the fact that
the random vector is not elongated in any direction: we say that a mean-zero random vector
x′ = x− E[x] in Rn is λ-pairwise clean, if for every v ∈ Rn,

E

[〈
x′, v

〉2] ≤ λ · ‖v‖2, (2.3)

or equivalently, the operator norm of the covariance matrix E[x′x′⊤] is at most λ. This can
be considered a spectral notion of almost pairwise independence, since the pairwise moments
are well-behaved in every direction.

If the input distribution conditioned on Alice’s set X(t) is O(1)-pairwise clean, we say that her
set is pairwise clean. Based on the above ideas, after Alice sends the initial message, if her set
is not yet clean, she partitions it recursively by taking affine slices and transmitting real values.
More precisely, while there is direction θ ∈ Sn−1 violating (2.3), Alice does a cleanup of her set
by sending the inner product 〈x, θ〉. This direction is known to Bob as it only depends on Alice’s
current space. In addition, this cleanup does not contribute to the martingale in the future because
the inner product along this direction is fixed now.

The resulting protocol is pairwise clean in the sense that at each step6, Alice’s current set is
pairwise clean. Similar arguments work for Bob.

Let d be the total number of communication rounds including all the cleanup steps. Then, by
the above argument, and denoting by (τm)m and (τ ′

m)m the indices of the inner product steps for
Alice and Bob, we can ultimately bound

E

[
(z(d))2

]
. E

[∑

m

∥∥∥µ(X(τm))− µ(X(τm−1))
∥∥∥
2

+
∥∥∥µ(Y (τ ′

m))− µ(Y (τ ′
m−1))

∥∥∥
2
]

6We remark that the sets are only clean at intermediate steps where a cleanup phase ends, but we show that
because of the orthogonalization step, the other steps do not contribute to the value of the martingale.
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= E

[∥∥∥µ(X(d))
∥∥∥
2

+
∥∥∥µ(Y (d))

∥∥∥
2
]
, (2.4)

where again, the last equality follows from the martingale property. The right hand side above can
be bounded by the expected number of communication rounds E[d] using the level-one inequality
(see Theorem 3.1) — this inequality bounds the Euclidean norm of the center of mass of a set in
terms of its Gaussian measure.

Expected Number of Cleanup steps. Since the original communication only consists of d
rounds, the analysis essentially reduces to bounding the expected number of cleanup steps by O(d),
which is technically the most involved part of the proof.

It is implicit in the previous works on the Gap-Hamming Problem [CR12, Vid12] that large sets
are not elongated in many directions: if a set X ⊆ Rn has Gaussian measure ≈ 2−d, then for a
random vector x sampled from X, there are at most m . d orthogonal directions θ1, . . . , θm such
that E[〈x′, θi〉2] & 1 where x′ = x−E[x]. This is a consequence of the fact that the expectation of
q =

∑m
i=1 〈x′, θi〉2 can be bounded by O(d) provided that X has measure ≈ 2−d.

The above argument suggests that maybe we can clean up the set X along these O(d) bad
orthogonal directions. However this is not enough for our purposes: after taking an affine slice,
the set may not be clean in a direction where it was clean before. Moreover, since the parties take
turns to send messages and clean up, the bad directions will also depend on the entire history of
the protocol, including the previous real and Boolean communication. This adaptivity makes the
analysis more delicate and to prove the optimal bound we crucially utilize the rotational symmetry
of the Gaussian distribution. Indeed, the fact that a large set is not elongated in many directions
also holds even when we replace the Gaussian distribution with the uniform distribution on {±1}n,
but it is unclear how to obtain an optimal level-one bound using the latter.

In the final protocol, since the parties only send Boolean bits and linear forms of their inputs,
conditioned on the history of the martingale, one can still say what the distribution of the next
cleanup 〈x, θ〉 looks like, as the Gaussian distribution is well-behaved under linear projections. We
then use martingale concentration and stopping time arguments to show that the expected number
of cleanup steps is indeed bounded by O(d) even if the cleanup is adaptive.

We make two remarks in passing: First, we can also prove the optimal level-one bound using
information-theoretic ideas but they do not seem to generalize to the level-two setting, so we adopt
the alternative concentration-based approach here and they are similar in spirit. Second, it is
possible from our proof approach (in particular, the approach for level two described next) to
derive a weaker upper bound of

√
d · polylog(n) for the level one while directly working with the

uniform distribution on the hypercube.

2.2 Level-Two Fourier Growth

We start by noting that the level-two Fourier growth of the XOR-fiber h is given by

L1,2(h) =
∑

i 6=j

∣∣∣ĥ({i, j})
∣∣∣ =

∑

i 6=j

∣∣∣ E
z∼ν

[h(z)zizj ]
∣∣∣ =

∑

i 6=j

∣∣∣∣ E
x,y∼ν

[C(x,y)xixjyiyj]

∣∣∣∣ .

To bound the above, it suffices to bound
∑

i 6=j ηij · E[C(x,y)xixjyiyj ] for any symmetric sign
matrix (ηij). For this proof overview, we assume for simplicity that ηij ≡ 1.
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Martingales and Gram-Schmidt Orthogonalization. Similar to the case of level one, the
level-two Fourier growth also has a martingale formulation. In particular, let X(t) and Y (t) be

Alice and Bob’s sets at time t as before and define σ(X(t)) = E

[
x

•

⊗ x

∣∣∣x ∈X(t)
]
, σ(Y (t)) =

E

[
y

•

⊗ y

∣∣∣y ∈ Y (t)
]

to be the n×n matrices that represent the level-two center of masses of the two

sets. Here x
•

⊗y denotes the tensor product x⊗y with the diagonal zeroed out.7 To bound the level-
two Fourier growth, it suffices to bound the expected quadratic variation of the martingale

(
z(t)
)
t

defined by taking the inner product of the level-two center of masses z(t) :=
〈
σ(X(t)), σ(Y (t))

〉

where 〈·, ·〉 is the inner product of two matrices viewed as vectors.
To this end, we again move to Gaussian space where the inputs x, y ∈ Rn and transform the

protocol to a clean protocol. First, we need an analog of the Gram-Schmidt orthogonalization step

— this is achieved in a natural way by Alice sending inner product
〈
x

•

⊗ x, σ(Y (t))
〉

with Bob’s

level-two center of mass, and Bob does the same. Note that Alice and Bob are now exchanging
values of quadratic polynomials in their inputs. Thus, to control the step sizes, we now need to
control the second moment of quadratic forms which naturally motivates the following spectral
analogue of 4-wise independence.

4-wise Cleanup with Quadratic Forms. We say a random vector x is 4-wise clean with
parameter λ if the operator norm of the n2 × n2 covariance matrix

E

[(
x

•

⊗ x− E

[
x

•

⊗ x
]) (

x
•

⊗ x− E

[
x

•

⊗ x
])⊤]

is at most λ where we view x
•

⊗ x − E[x
•

⊗ x] as an n2-dimensional vector. This is equivalent to

saying that for any quadratic form
〈
M,x

•

⊗ x
〉

,

E

[〈
M,x

•

⊗ x− E

[
x

•

⊗ x
]〉2]

≤ λ ‖M‖2 , (2.5)

where ‖M‖ denotes the Euclidean norm of M when viewed as a vector. Thus, this allows us to
control the second moment of any quadratic polynomial (and in particular, fourth moments of linear
functions). We note that one can generalize the above spectral notion to k-wise independence in

the natural way by looking at the covariance matrix of the tensor x
•

⊗k.
We say a set is 4-wise clean with parameter λ if (2.5) is preserved for all M with zero diagonal8.

Combined with this notion, one can define the cleanup in an analogous way to the level-one cleanup:

While there exists some M ∈ Rn×n violating (2.5), Alice sends the quadratic form
〈
x

•

⊗ x,M
〉

to

Bob until her set is 4-wise clean with parameter λ.

Cleanup Analysis via Hanson-Wright Inequalities. The crux of the proof is to bound the
number of cleanup steps which, together with a similar analysis as in the level-one case, gives us the
desired bound. We show that m . d cleanup steps suffice in expectation to make the sets 4-wise
clean for λ ≤ d · polylog(n). Analogous to (2.1) and (2.4), this gives a bound of d3 · polylog(n) on
the expected quadratic variation and implies L1,2(h) ≤ d3/2 · polylog(n).

7Here x
•

⊗ y is an n× n matrix. We will also interchangeably view n× n matrices as n2-length vectors.
8The requirement of zero diagonal is for analysis purposes only and can be assumed without loss of generality

since x
•

⊗ x is zero diagonal anyway.
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Since the parties send values of quadratic forms now, the analysis here is significantly more
involved compared to the level-one case, even after moving to the Gaussian setting, where one
could previously use the fact that the Gaussian distribution behaves nicely under linear projections.
We rely on a powerful generalization of the Hanson-Wright inequality to a Banach-space-valued
setting due to Adamczak, Lata la, and Meller [ALM20]. This inequality gives a tail bound for
sum of squares of quadratic forms: In particular if M1, . . . ,Mm are matrices with zero diagonal
which form an orthonormal set when viewed as n2 dimensional vectors, then the random variable

q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
satisfies Prx∼γn [q ≥ t] ≤ e−Ω(

√
t) for any t & m2 (see Theorem 3.3 for a

precise statement). We remark that this tail bound relies on the orthogonality of the quadratic
forms and is much sharper than, for example, the bound obtained from hypercontractivity or other
standard polynomial concentration inequalities.

In our setting, the matrices are being chosen adaptively. In addition, the parties are sending

quadratic forms in their inputs, and the distribution of the next
〈
x

•

⊗ x,M
〉

conditioned on the

history is hard to determine, unlike the level-one case. To handle this, we replace the real commu-
nication with Boolean communication of finite precision ±1/poly(n). This means that whenever
Alice wants to perform cleanup 〈x⊗ x,M〉 for some M known to both parties, she sends only
O(log(n)) bits. On the one hand, this modification is similar enough to the cleanup protocol with
real messages so that most of the argument carries through. On the other hand, now the protocol
is completely discrete, which allows us to condition on any particular transcript.

For intuition, assume we fix a transcript of L = d+O(m log(n)) bits which has gone through m
cleanups. Typically, this transcript should capture ≈ 2−L of the probability mass. More crucially,
the matrices M1, . . . ,Mm for the cleanups are also fixed along the transcript, and one can apply the

aforementioned Hanson-Wright inequality on q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
. Combining the two facts

together, we can apply the non-adaptive tail bound above and then condition on obtaining such
typical transcript. This shows E[q] ≤ d2 · polylog(n). However, each quadratic form comes from a
violation of (2.5) and contributes at least λ to q in expectation. This implies that E[q] ≥ λ ·m and
by taking λ = d · polylog(n), we derive that the number of cleanup steps m . d. This shows that
the level-two Fourier growth is O((m + d) ·

√
λ) = d3/2 · polylog(n) completing the proof.

Note that if we could take λ = polylog(n) while having the same number of cleanup steps
m = d · polylog(n), then we would obtain an optimal level-two bound of d · polylog(n). However,
it is not clear how to use current approach to show this. In Subsection 8.2, we identify examples
showing the tightness of our current analysis and also discuss potential ways to circumvent the
obstacles within.

We remark that by replacing the Hanson-Wright inequality with its higher-degree variants and
performing level-k cleanups, we can analyze level-k Fourier growth in the similar way. However,
since the first two levels already suffice for our applications and we believe that our level-two bound
can be further improved, we do not make the effort of generalizing it to higher levels here.

3 Preliminaries

Notation. Throughout, log(·) and ln(·) denote logarithms with base 2 and e respectively. We
use N = {0, 1, 2, . . .} to denote the set of natural numbers including 0. For n ∈ N, we write [n] to
denote the set {1, 2, . . . , n}. We use the standard O(·),Ω(·),Θ(·) notation, and emphasize that in
this paper they only hide universal constants that do not depend on any parameter.

We write ⊙ to denote the entrywise product for vectors and matrices: in particular, for any
x, y ∈ Rn, we define x ⊙ y ∈ Rn to be a vector where (x ⊙ y)i = xiyi for i ∈ [n] and similarly
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for any X,Y ∈ Rn×m, we define X ⊙ Y ∈ Rn×m to be a matrix where (X ⊙ Y )ij = XijYij for

i ∈ [n], j ∈ [m]. We use
•

⊗ to denote a tensor with zeros on the diagonal, i.e., for any x ∈ Rn, x
•

⊗ x

is a n× n matrix where
(
x

•

⊗ x
)
ij

= xixj if i 6= j and zero if i = j.

For a vector x ∈ Rn, we use ‖x‖ to denote its Euclidean norm. Similarly, for a matrix X ∈ Rn×n,
we use ‖X‖ to denote its Euclidean norm viewing the matrix X as an n2-dimensional vector. For
nonzero x ∈ Rn or X ∈ Rn×n, we define unit(x) ∈ Rn or unit(X) ∈ Rn×n as the unit vector along
direction x and X respectively: unit(x) = x/ ‖x‖ and unit(X) = X/ ‖X‖. We write Sn−1 for the
unit sphere in Rn, and write Sn×n−1 for the unit sphere in Rn×n where additionally the diagonal
entries of the n × n matrices are zero. We use 〈x, y〉 to denote the inner product between vectors
x, y ∈ Rn and 〈X,Y 〉 to denote the inner product between matrices X,Y ∈ Rn×n viewing them as
n2-dimensional vectors.

Probability. A probability space is a triple (Ω,F, ξ) where Ω is the sample space, F is a σ-algebra
which describes the measurable sets (or events) in the probability space, and ξ is a probability
measure. We use x ∼ ξ to denote a random sample distributed according to ξ and Ex∼ξ[f(x)] to
denote the expectation of a function f under the measure ξ. For any event S ∈ F, we use ξ(S)
to denote the measure of S under ξ. We say an event S holds almost surely if ξ(S) = 1, i.e., the
exceptions to the event have measure zero. For a measurable event E ∈ F, we write F ∩ {E} to
denote the intersection of the sigma-algebra F and the sigma-algebra generated by E.

We use νn to denote the uniform probability measure over {±1}n and γn to denote the n-
dimensional standard Gaussian measure in Rn. We say a random variable x ∈ Rn is a standard
Gaussian in Rn if its probability distribution is γn. We will drop the subscript if the dimension
is clear from context. We will also need lower dimensional Gaussian measures: given a linear
subspace V of dimension k, there is a k-dimensional standard Gaussian measure on it, which we
denote by γV . For any measurable subset S ⊆ Rn, we define its ambient space to be the smallest
affine subspace V + t that contains it where V is a linear subspace of Rn and t ∈ Rn. The relative
Gaussian measure of S denoted by γrel(S) is then defined to be the Gaussian measure of the set
S − t under γV .

Martingales. Given a sequence of real-valued random variables x1,x2, . . . ,xn in a probability
space (Ω,F, ξ) and a function f(x1, . . . ,xn) satisfying E [|f(x1, . . . ,xn)|] < ∞, the sequence of
random variables z(t) = E

[
f(x1, . . . ,xn)

∣∣F(t−1)
]

is called the Doob martingale where F(t−1) is the
σ-algebra generated by x1, . . . ,xt−1 which should be viewed as a record of the randomness of the
process until time t− 1. The sequence (F(t))t is called a filtration. A sequence of random variables
(z(t))t is called predictable (or adapted) with respect to F(t) if z(t) is F(t)-measurable for every t,
meaning that it is determined by the randomness in F(t).

A discrete random variable τ ∈ N is called a stopping time with respect to the filtration (F(t))t
if the event {τ = t} ∈ F(t) for all t ∈ N, or in words, whether the event τ = t occurs is determined
by the history of the process until time t. All stopping times considered in this paper will be finite.
The sigma-algebra F(τ ) which contains all events that imply the stopping condition is defined as the
set of all events E such that E∩{τ = t} ∈ F(t) for all t ∈ N. We also note if one takes an increasing
sequence of stopping times (τm)m then the process defined by (z(τm))m is also a martingale.

Let ∆z(t) := z(t) − z(t−1) be the martingale differences. Note that E
[
∆z(t)

∣∣F(t−1)
]

= 0 and
thus

E

[(
z(t)
)2]

= E



(

n∑

t=1

∆z(t)

)2

 = E

[
n∑

t=1

(
∆z(t)

)2
]
, (3.1)
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where the cross terms disappear upon taking expectation. In other words, the martingale differences
are orthogonal under taking expectations. The right hand side above is the expected quadratic
variation of the martingale

(
z(t)
)
t
. If the sequence (z(t))t is vector-valued (resp., matrix-valued)

and satisfies E
[
∆z(t)

∣∣F(t−1)
]

= 0 where 0 is zero vector (resp., matrix), then we say it is a

vector-valued (resp., matrix-valued) martingale with respect to (F(t))t. Since each coordinate of a
vector or matrix-valued martingale is itself a real-valued martingale, vector-valued or matrix-valued
martingale differences are also orthogonal under Euclidean norms:

E

[∥∥∥z(t)
∥∥∥
2
]

= E



∥∥∥∥∥

n∑

t=1

∆z(t)

∥∥∥∥∥

2

 = E

[
n∑

t=1

∥∥∥∆z(t)
∥∥∥
2
]
. (3.2)

Useful Inequalities. We will use the well-known level-k inequality [Tal96, KKL88] (see e.g.,
[O’D14, Level-k Inequalities]). A statement in the Gaussian setting can be found in, e.g., [EM22,
Lemma 2.2]. We remark that we will only use the case for k = 1 and k = 2 here which we state
below.9

Below we write 1A for the indicator function of a set and xS =
∏

i∈S xi for a monomial.

Theorem 3.1 (Level-k Inequality). Let k ∈ {1, 2}. Assume A ⊆ Rn is measurable and µ :=
Ex∼γ [1A(x)]. Then, we have

∑

|S|=k

(
E

x∼γ
[1A(x)xS ]

)2

≤ 2e2µ2 · lnk(e/µ).

In particular, if µ is non-zero, dividing both sides by µ2, we get the following more convenient
form for k ∈ {1, 2}:

∑

|S|=k

(
E

x∼γ
[xS |x ∈ A]

)2

≤ 2e2 · lnk(e/µ).

We also make use of the following standard concentration inequality for sums of squares of inde-
pendent standard Gaussians (see [Ver18]).

Fact 3.2. Let m ∈ N be arbitrary. For any r ≥ 2m, we have Prx∼γm

[∑m
i=1 x

2
i ≥ r

]
≤ e−r/4.

We also need a concentration inequality for sums of squares of orthogonal quadratic forms over
Gaussian random variables. In particular, we prove the following inequality which follows from a
generalization of the Hanson-Wright inequality to a Banach space-valued setting [ALM20, Theorem
6]. Since, we only need a special case that is easier to prove, we include a self-contained proof using
the Gaussian isoperimetric inequality in Appendix B following [ALM20, Proposition 23].

Theorem 3.3. Let m ∈ N be arbitrary. Let M1, . . . ,Mm be n×n real matrices where each Mi has
zero diagonal, 〈Mi,Mi〉 = 1 and 〈Mi,Mj〉 = 0 for i 6= j. Then for any r ≥ 98m, we have

Pr
x∼γn

[
m∑

i=1

〈
x

•

⊗ x,Mi

〉2
≥ r

]
≤ exp

{
−Ω

(
r

m +
√
r

)}
.

We remark that the tail bound above holds more generally for sub-Gaussian random variables
x (see [ALM20]).

9Our Theorem 3.1 is slightly different from the references, where they additionally require µ ≤ 1/e. By Parseval’s
identity, the left hand side is always at most one. Therefore we use a slightly worse bound for the right hand side to
allow for the whole range of µ.
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4 Fourier Growth via Martingales in Gaussian Space

In this section, we reduce the question of bounding the level-one and level-two Fourier growth to
bounding the expected quadratic variation of certain martingales. To analyze these martingales
and to prove the optimal bound for the level-one setting, it seems to be crucial to work in the
Gaussian setting, so first we give a generic transformation from Boolean to Gaussian. We shall also
additionally allow protocols that communicate real numbers to make the analysis easier.

4.1 Communication Protocols in Gaussian Space

Let C : {±1}n × {±1}n → {±1} be a communication protocol with total communication d and h
be its XOR-fiber defined in Definition 1.1.

We embed the protocol in the Gaussian space by allowing Alice’s and Bob’s inputs, x and
y respectively, to be real vectors in Rn — the new protocol C̃ runs the original protocol C with
Boolean inputs sgn(x) and sgn(y) where sgn(v) = (sgn(v1), . . . , sgn(vn)) denotes the sign function
applied pointwise to each coordinate for a vector v ∈ Rn. The behavior of the communication
protocol C̃ can be defined arbitrarily if any coordinate of sgn(x) or sgn(y) is zero since such points
have zero measure under the standard n-dimensional Gaussian measure γn.

This translation from the Boolean hypercube to the Gaussian space preserves the measure of
sets: for any subset S ⊆ {±1}n, we have νn(S) = γn({x ∈ Rn | sgn(x) ∈ S}) where νn is the uniform
measure over {±1}n. Moreover, up to some normalizing factor, the Fourier coefficients of h can
also be computed by looking at Gaussian inputs. In particular, denoting by xS =

∏
i∈S xi for a

subset S ⊆ [n], we have the following fact.

Fact 4.1. For all S ⊆ [n], we have Ez∼νn [h(z)zS ] = (π/2)|S| Ex,y∼γn

[
C̃(x,y)xSyS

]
.

Proof. Note that for x ∼ γn, the random variable sgn(x) is distributed as νn. Thus, by the

definition of the XOR-fiber h and the protocol C̃, we have

E
z∼νn

[h(z)zS ] = E
x,y∼γn

[
C(sgn(x), sgn(y)) ·

∏

i∈S
sgn(xi) · sgn(yi)

]

= (π/2)|S| E
x,y∼γn

[
C(sgn(x), sgn(y)) ·

∏

i∈S
xi · yi

]

= (π/2)|S| E
x,y∼γn

[
C̃(x,y)xSyS

]
,

where the second line follows since the expected value of a standard Gaussian in R conditioned on

its sign being fixed to η is
√

2
π · η by the following calculation:

E
xi∼γ

[xi | sgn(xi) = η] = η ·
∫ ∞

0

√
2

π
· r · e−r2/2dr =

√
2

π
· η.

Remark 4.2. We remark that instead of the Gaussian distribution above, one can work with any
distribution where the coordinates are i.i.d. and symmetric around zero. In particular, if ξ is a
symmetric probability measure on the real line, and x,y are independently drawn vectors in Rn

where each coordinate is i.i.d. sampled from ξ, then Ez∼νn [h(z)zS ] = c
|S|
ξ Ex,y∼ξ⊗n

[
C̃(x,y)xSyS

]

where cξ = (Exi∼ξ[|xi|])−2. In the case of level-two we will need to work with the truncated
Gaussian distribution where each coordinate is sampled independently from the one dimensional
standard Gaussian conditioned on being in some interval [−T, T ] for T = Ω(1) in which case cξ is
upper bounded by a universal constant.
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4.2 Generalized Communication Protocols

In the protocol C̃ defined above, Alice and Bob’s inputs x and y are real vectors in Rn, but in each
round they still exchange a single bit based on sgn(x) and sgn(y). In order to bound the Fourier
growth, it will be more convenient for us to define a notion of generalized communication protocols
where parties are also allowed to send real numbers with arbitrary precision in each round. To
define this formally, we place certain restrictions on the real communication in the protocol. More
formally, in a generalized communication protocol, in each round a player with input z ∈ Rn can
either send:

(i) a bit in {0, 1} which is purely a function of the Boolean input sgn(z) and the previous Boolean
messages, or

(ii) a real number that is a measurable function of z and the previous (real or Boolean) messages.

The depth of a generalized communication protocol is defined to be the maximum number of
rounds of communication.

Note that a generalized protocol also generates a “protocol tree” where if in a round a real
number is sent, the “children” of that particular “node” are indexed by all possible values in R.
A “transcript” of the protocol can be defined in an analogous way. The set of inputs that reach
a particular node of this generalized protocol tree still form a rectangle X × Y where X,Y ⊆ Rn.
We say that a generalized protocol C is equivalent to the protocol C̃ if C(x, y) = C̃(x, y) for every
x, y ∈ Rn except on a measure zero set.

We will be interested in random walks on such generalized protocol trees when the inputs x and
y are sampled from a product measure ξx× ξy on Rn×Rn and the parties send messages according
to the protocol to reach a “leaf”. The random variables corresponding to the messages until any
time t generate a filtration (F(t))t — this filtration can be thought of as specifying a particular node
of the generalized protocol at depth t (equivalently, a partial transcript of the protocol till time t)
that was sampled by the process. In this case, conditioned on any event in F(t), (e.g., any realization
of the transcript till time t), almost surely the conditional probability measure on the inputs x,y

is some product measure on ξ
(t)
x × ξ

(t)
y supported on a rectangle X(t)×Y (t) where X(t),Y (t) ⊆ Rn.

We shall refer to the random variable X(t)×Y (t) as the current rectangle determined by F(t). Since
we will be working with product measures on inputs x,y, the reader can think of conditioning on
the filtration F(t) as essentially conditioning on the inputs being in the rectangle X(t) × Y (t) or
equivalently a partial transcript till time t.

4.3 Fourier Growth via Martingales

We will now relate Fourier growth to the quadratic variation of a martingale. Towards this end,
we first note that in light of Fact 4.1, the level-k Fourier growth of the XOR-fiber h of the original
communication protocol is given by

L1,k(h) =
∑

S⊆[n]
|S|=k

∣∣∣∣ E
z∼νn

[h(z)zS ]

∣∣∣∣ = (π/2)k
∑

S⊆[n]
|S|=k

∣∣∣∣ E
x,y∼γn

[C(x,y)xSyS]

∣∣∣∣

= (π/2)k max
(ηS)|S|=k

∑

S⊆[n]
|S|=k

ηS E
x,y∼γn

[
C(x,y)xSyS

]
, (4.1)

where C is any generalized protocol that is equivalent to C̃ and ηS ∈ {±1}.
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We now express the right hand side above as an inner product. Let ℓ be a random leaf of the
generalized protocol tree C induced by taking x,y ∼ γn and let Xℓ × Yℓ be the corresponding
rectangle in the generalized protocol tree. Then,

∑

S⊆[n],|S|=k

ηS E
x,y∼γn

[
C(x,y)xSyS

]
= E

ℓ


 E
x,y∼γ


 ∑

S⊆[n],|S|=k

ηS · C(x,y)xSyS

∣∣∣∣∣∣
(x,y) ∈Xℓ × Yℓ






= E
ℓ


C(ℓ) E

x,y∼γ


 ∑

S⊆[n],|S|=k

ηS · xSyS

∣∣∣∣∣∣
(x,y) ∈Xℓ × Yℓ






≤ E
ℓ



∣∣∣∣∣∣

∑

S⊆[n],|S|=k

ηS E [xS |x ∈Xℓ] · E [yS |y ∈ Yℓ]

∣∣∣∣∣∣


 , (4.2)

where the second line follows since ℓ is a leaf and determines the answer and the third line follows
since x and y are independent conditioned on being in the rectangle Xℓ × Yℓ.

Thus, specializing (4.2) to the level-one (k = 1) and level-two cases (k = 2), from (4.1) we get
that

L1,1(h) ≤ π

2
·max

η
E
ℓ

[ ∣∣∣∣∣
n∑

i=1

ηi · E [xi |x ∈Xℓ] · E [yi |y ∈ Yℓ]

∣∣∣∣∣

]
,

L1,2(h) ≤ π2

4
·max

η
E
ℓ



∣∣∣∣∣∣

n∑

i,j=1

ηij · E [xij |x ∈Xℓ] · E [yij |y ∈ Yℓ]

∣∣∣∣∣∣


 ,

where for L1,1 we optimize over η ∈ {±1}n and for L1,2 we optimize over η being an n×n symmetric
matrix with zeros on the diagonals and ±1 entries otherwise.

To make the above more compact, we respectively define µ(X) ∈ Rn and σ(X) ∈ Rn×n to be
the level-one and level-two centers of mass of a set X ⊆ Rn:

µ(X) = E
x∼γn

[x |x ∈ X] and σ(X) = E
x∼γn

[
x

•

⊗ x

∣∣∣x ∈ X
]
. (4.3)

Then, upper bounding the constants in the above inequality (π/2 and π2/4) by 4, we get

L1,1(h) ≤ 4 ·max
η

E
ℓ

[|〈µ(Xℓ), η ⊙ µ(Yℓ)〉|] ,

L1,2(h) ≤ 4 ·max
η

E
ℓ

[|〈σ(Xℓ), η ⊙ σ(Yℓ)〉|] ,
(4.4)

where η is understood to be the same as before.
Moving forward, we fix an arbitrary η for both cases k ∈ {1, 2} and define a martingale process(

z
(t)
k

)
t

that captures the right hand side above. For this we note that a generalized communication

protocol, where Alice’s and Bob’s inputs are sampled from the Gaussian distribution, naturally
induces a discrete-time random walk on the corresponding (generalized) protocol tree where at
time t we are at a node at depth t with the corresponding rectangle X(t) × Y (t). Then, we have
the following proposition.

Proposition 4.3. µ(X(t)) and µ(Y (t)) are vector-valued martingales taking values in Rn and
σ(X(t)) and σ(Y (t)) are matrix-valued martingales taking values in Rn×n.
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Note that if in the tth round Alice speaks, then µ(Y (t)) and σ(Y (t)) do not change and similarly
if Bob speaks, then µ(X(t)) and σ(X(t)) do not change. The above proposition implies that the
real-valued processes

z
(t)
1 =

〈
µ(X(t)), η ⊙ µ(Y (t))

〉
and z

(t)
2 =

〈
σ(X(t)), η ⊙ σ(Y (t))

〉
, (4.5)

each form a Doob martingale with respect to the natural filtration induced by the random walk
on the protocol tree. Note that taking a random walk on the tree until we hit a leaf generates
the marginal distribution on ℓ given in (4.4). Let d be the stopping time when this martingale
hits a leaf and stops (i.e., the depth of the random leaf). Thus, by the orthogonality of martingale

differences ∆z
(t)
k = z

(t)
k − z

(t−1)
k from (3.1), we get that for k ∈ {1, 2}, one can upper bound the

Fourier growth in terms of expected quadratic variation of the above martingales:

Proposition 4.4. For k ∈ {1, 2}, 1
4 ·L1,k(h) ≤ maxη

√
E

[(
z
(d)
k

)2]
= maxη

√
E

[∑d
t=1

(
∆z

(t)
k

)2]
.

The martingale implicitly depends on η as used in (4.4) and hence the maximum. Moreover,
the martingale also depends on the underlying generalized communication protocol C. In the next
two sections, we will show that after transforming the original communication protocol into “clean”

protocols, the expected quadratic variations of (z
(t)
1 )t and (z

(t)
2 )t are O(d) and O(d3) · polylog(n)

respectively. This will then imply our main theorems.

Remark 4.5. Note that Proposition 4.3 still holds even if the input distribution is not the Gaussian
distribution, but some other product probability measure on the inputs x,y. This also implies that

z
(t)
k for k ∈ {1, 2} is a martingale. In particular, for the level-two case, we will need to use a

truncated Gaussian distribution. In light of Remark 4.2, Proposition 4.4 still suffices for us with
a different constant instead of 1/4. We also remark that we shall also need to truncate the real
messages being used in the protocol for the level-two case to a finite precision, so the generalized
protocols for the level-two case only have Boolean communication. However, to obtain the optimal
level-one bound allowing generalized protocols that communicate real values seems to be crucial.

5 Level-One Fourier Growth

In this section, we will give a proof of Theorem 1.2 that L1,1(h) = O(
√
d). We start with a d-

round communication protocol C̃ over the Gaussian space as defined in Subsection 4.1. Given the
discussion in the previous section and Proposition 4.4, our task ultimately reduces to bounding the
expected quadratic variation of the martingale that results from the protocol C. For example, one
can simply take C = C̃, but, as discussed in Section 2, the individual step sizes of this martingale
can be quite large in the worst-case and it is not so easy to leverage cancellations here to bound
the quadratic variation by O(d).

So, we first define a generalized communication protocol C that is equivalent to the original
protocol C̃ but has additional “cleanup” rounds where Alice and Bob reveal certain linear forms
of their inputs so that their sets are pairwise clean in the sense described in the overview. These
cleanup steps allow us to keep track of the quadratic variation more easily.
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5.1 Pairwise Clean Protocols

To define a clean protocol, we first define the notion of a pairwise clean set. Let X ⊆ Rn. We say
that the set X is pairwise clean in a direction a ∈ Sn−1 with parameter λ if

E
x∼γ

[
〈x− µ(X), a〉2

∣∣∣x ∈ X
]
≤ λ, (5.1)

where we recall that µ(X) = Ex∼γ [x |x ∈ X] is the level-one center of mass of X.
The above condition implies that for a random vector x sampled from γ conditioned on X,

its variance along the direction a is bounded by λ. We say that the set X is pairwise clean (with
parameter λ) if it is clean in every direction a ∈ Sn−1. Equivalently, the operator norm of the
covariance matrix of the random vector x is bounded by λ.

We call a generalized communication protocol pairwise clean with parameter λ if at the start
of a new “phase” of the protocol, the corresponding rectangle X × Y satisfies that both X and
Y are pairwise clean. Starting from a communication protocol C̃ in the Gaussian space, we will
transform it into a pairwise clean protocol C by proceeding from top to bottom and adding certain
Gram-Schmidt orthogonalization and cleanup steps.

In particular, consider an intermediate node in the protocol tree of C̃. Before Alice sends her
bit as in the original protocol C̃, she first performs an orthogonalization step by revealing the inner-
product between her input and Bob’s current level-one center of mass. After this, she sends her
bit according to the original protocol and afterwards she repeatedly cleans her current set X by
revealing 〈x, a〉 ∈ R while X is not clean along the direction a orthogonal to previous directions.
Once X becomes clean, they proceed to the next round. We now describe this formally.

Construction of pairwise clean protocol C from C̃. We set λ = 100. The construction of
the new protocol is recursive and we first define some notation. Consider an intermediate node
of the new protocol C at depth t. We use the random variable X(t) ⊆ Rn (resp., Y (t) ⊆ Rn) to
denote the set of inputs of Alice (resp., Bob) reaching the node. If Alice reveals a linear form in
this step, we use a(t) ∈ Rn to denote the vector of the linear form; otherwise, we set a(t) to be the
all-zeroes vector. We define b(t) similarly for Bob. Throughout the protocol, we will abbreviate
u(t) = µ(X(t)) and v(t) = µ(Y (t)) for Alice’s and Bob’s current center of mass respectively.

1. At the beginning, Alice receives an input x ∈ Rn and Bob receives an input y ∈ Rn.

2. We initialize t← 0, X(0),Y (0) ← Rn, and a(0), b(0) ← 0n.

3. For each phase i = 1, 2, . . . , d: suppose we are starting the cleanup for a node at depth i in
the original protocol C̃ and suppose we are at a node of depth t in the new protocol C. If it
is Alice’s turn to speak in C̃:

(a) Orthogonalization by revealing the correlation with Bob’s center of mass.
Alice begins by revealing the inner product of her input x with Bob’s current (signed)
center of mass η ⊙ v(t). Since in the previous steps, she has already revealed the inner
product with Bob’s previous centers of mass, for technical reasons, we will only have
Alice announce the inner product with the component of η ⊙ v(t) that is orthogonal to
the previous directions along which Alice announced the inner product. More formally,
let a(t+1) be the component of η ⊙ v(t) that is orthonormal to all previous directions
a(1), . . . ,a(t), i.e.,

a(t+1) = unit
(
η ⊙ v(t) −∑t

τ=1

〈
η ⊙ v(t),a(τ)

〉
· a(τ)

)
.
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Alice computes c(t+1) ←
〈
x,a(t+1)

〉
and sends c(t+1) to Bob. Set b(t+1) ← 0n. Increment

t by 1 and go to step (b).

(b) Original communication. Alice sends the bit c(t+1) that she was supposed to send in

C̃ based on previous messages and the input x. Set a(t+1), b(t+1) ← 0n. Increment t by
1 and go to step (c).

(c) Cleanup steps. While there exists some direction a ∈ Sn−1 orthogonal to the previous
directions (i.e., satisfying

〈
a,a(τ)

〉
= 0 for all τ ∈ [t]) such that X(t) is not pairwise clean

in direction a, Alice computes c(t+1) ← 〈x, a〉 and sends this to Bob. Set a(t+1) ← a and
b(t+1) ← 0n. Increment t by 1. Repeat step (c) as long as X(t) is not pairwise clean;
otherwise increment i by 1 and go back to the for-loop in step 3 which starts the new
phase.

If it is Bob’s turn to speak, we define everything similarly with the role of x,a,X,v switched
with y, b,Y ,u.

4. Finally at the end of the protocol, the value C(x, y) is determined based on all the previous

communication and the corresponding output it defines in C̃.

We note some basic properties that directly follow from the description. First we note that the
steps 3(a), 3(b), and 3(c) always occur in sequence for each party and we refer to such a sequence
of steps as a phase for that party. Note that there are at most d phases. If a new phase starts at
time t, then the current rectangle X(t) × Y (t) is pairwise clean for both parties by construction.
Also, note that the non-zero vectors in the sequence (a(t))t (resp., (b(t))t) form an orthonormal
set. We also note that the Boolean communication in step 3(b) is solely determined by the original
protocol and hence only depends on the previous Boolean messages.

Lastly, each phase has one 3(a) and 3(b) step, followed by potentially many 3(c) steps. However,
the following claim shows that it is always finite.

Claim 5.1. Let ℓ be an arbitrary leaf of the protocol C and D(ℓ) be its depth. Then D(ℓ) ≤ 2n+2d.
Moreover, along this path there are at most 2d many steps 3(a) and 3(b).

Proof. We count the number of communication steps separately:

• Steps 3(a) and 3(b). Steps 3(a) and 3(b) occur once in every phase, thus at most d times.

• Step 3(c). For Alice, each time she communicates at step 3(c) a ∈ Rn, the direction is
orthogonal to all previous a(t)’s. Since the dimension of Rn is n, this happens at most n
times. Similar argument works for Bob.

Thus in total we have at most 2n + 2d steps.

We will eventually show that the expected depth of the protocol C is O(d) when x,y ∼ γn.

5.2 Bounding the Expected Quadratic Variation

Consider a random walk on the protocol tree generated by the new protocol C when the parties
are given independent inputs x,y ∼ γn. Consider the corresponding level-one martingale process
defined in (4.5). Formally, at time t the process is defined by

z
(t)
1 =

〈
u(t), η ⊙ v(t)

〉
,

where we recall that u(t) = µ(X(t)) and v(t) = µ(Y (t)) and η ∈ {±1}n is a fixed sign vector.
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The martingale process stops once it hits a leaf of the protocol C. Let d denote the (stopping)
time when this happens. Note that E[d] is exactly the expected depth of the protocol C. Then, in
light of Proposition 4.4, to prove Theorem 1.2, it suffices to prove the following.

Lemma 5.2. E

[∑d
t=1

(
∆z

(t)
1

)2]
= O(d).

We will prove this in two steps. We first show that the only change in the value of the martingale
occurs during the orthogonalization step 3(a). This is because in each phase, Alice’s change of center
of mass in steps 3(b) and 3(c) is always orthogonal to η⊙v(t) so they do not change the value of the

martingale z
(t)
1 as discussed in Section 2. Moreover, recalling (2.2), since Alice’s node was pairwise

clean just before Alice sent the message in step 3(a), the expected change E

[(
∆z

(t+1)
1

)2]
can be

bounded in terms of the squared norm of the change that occurred in u(t) between the current
round and the last round where Alice was in step 3(a). A similar argument works for Bob.

Formally, this is encapsulated by the next lemma for which we need some additional definition.
Let (F(t))t be the natural filtration induced by the random walk on the generalized protocol tree

with respect to which z
(t)
1 is a Doob martingale and also u(t),v(t) form vector-valued martingales

(recall Proposition 4.3). Note that F(t) fixes all the rectangles encountered during times 0, . . . , t

and thus for τ ≤ t, the random variables u(τ),v(τ),z
(τ)
1 are determined, in particular, they are

F(t)-measurable. Recalling that λ = 100 is the cleanup parameter, we then have the following.
Below we assume without any loss of generality that Alice speaks first and, in particular, we note
that Alice speaks in step 3(a) for the first time at time zero.

Lemma 5.3 (Step Size). Let 0 = τ1 < τ2 < · · · ≤ d be a sequence of stopping times with τm being
the index of the round where Alice speaks in step 3(a) for the mth time or d if there is no such
round. Then, for any integer m ≥ 2,

E

[(
∆z

(τm+1)
1

)2 ∣∣∣∣ F(τm)

]
≤ λ ·

∥∥∥v(τm) − v(τm−1)
∥∥∥
2
,

and moreover, for any t ∈ N, we have that

E

[(
∆z

(t+1)
1

)2 ∣∣∣∣ F(t), τm−1 < t < τm,Alice speaks at time t

]
= 0.

A similar statement also holds if Bob speaks where v is replaced by u and the sequence (τm) is
replaced by (τ ′

m) where τ ′
m is the index of the round where Bob speaks in step 3(a) for the mth time

or d if there is no such round.

In particular, we see that the steps 3(b) and 3(c) do not contribute to the quadratic variation
and only the steps 3(a) do. Also, since the first time Alice and Bob speak, they start in step 3(a),
we also note that u(τ1) and v(τ ′

1) are their initial centers of mass which are both zero.
We shall prove the above lemma in Subsection 5.3 and continue with the bound on the quadratic

variation here. Using Lemma 5.3, we have

E

[
d∑

t=1

(
∆z

(t)
1

)2
]
≤ λ · E


∑

m≥2

∥∥∥v(τm) − v(τm−1)
∥∥∥
2

+
∥∥∥u(τ ′

m) − u(τ ′
m−1)

∥∥∥
2


 .
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On the other hand, by the orthogonality of vector-valued martingale differences from (3.2), we have

E


∑

m≥2

∥∥∥v(τm) − v(τm−1)
∥∥∥
2


 = E

[∥∥∥v(d)
∥∥∥
2
]
.

A similar statement holds for (u(t))t. Therefore,

E

[
d∑

t=1

(
∆z

(t)
1

)2
]
≤ λ ·

(
E

[∥∥∥u(d)
∥∥∥
2
]

+ E

[∥∥∥v(d)
∥∥∥
2
])

. (5.2)

We prove the following in Subsection 5.4 to upper bound the quantity on the right hand side
above. Loosely speaking, by an application of level-one inequalities (see Theorem 3.1), the lemma
below ultimately boils down to a bound on the expected number of cleanup steps.

Lemma 5.4 (Final Center of Mass). E

[∥∥u(d)
∥∥2 +

∥∥v(d)
∥∥2
]

= O(d).

Since λ = 100, plugging in the bounds from the above into (5.2) readily implies Lemma 5.2.
Together with Proposition 4.4, this completes the proof of Theorem 1.2.

5.3 Bounds on Step Sizes (Proof of Lemma 5.3)

Let us abbreviate τ = τm. Observe that

E

[(
∆z

(τ+1)
1

)2 ∣∣∣∣F(τ )

]
= E

[〈
u(τ+1) − u(τ ), η ⊙ v(τ )

〉2 ∣∣∣∣F(τ )

]

= E

[〈
u(τ+1), η ⊙ v(τ )

〉2
−
〈
u(τ ), η ⊙ v(τ )

〉2 ∣∣∣∣F(τ )

]
, (5.3)

where the second line is due to (u(t))t being a vector-valued martingale and thus E
[
u(τ+1)

∣∣F(τ )
]

=

u(τ ).
We first consider the case that at time τ a new phase starts for Alice. By construction, this

means that the current rectangle X(τ )×Y (τ ) determined by F(τ ) is pairwise clean with parameter λ,
and since Alice is in step 3(a) at the start of a new phase, a(τ+1) is chosen to be the (normalized)
component of η ⊙ v(τ ) that is orthogonal to previous directions a(0), . . . ,a(τ ). Let β(τ+1) :=〈
η ⊙ v(τ ),a(τ+1)

〉
be the length of this component before normalization. Note that β(τ+1) is F(τ )-

measurable (i.e., it is determined by F(τ )).
We now claim that components of u(τ+1) and u(τ ) are the same along any of the previous

directions a(0), . . . ,a(τ ). So in (5.3), they cancel out and the only relevant quantity is the component
in the direction a(τ+1). This follows since, in all the previous steps t ≤ τ , Alice has already fixed
〈x,a(t)〉. This implies that for any X(τ ) and X(τ+1) that are determined by F(τ+1), the inner
product with all the previous a(0), . . . ,a(τ ) is fixed over the choice of x from both rectangles.
Formally, we have that for any x ∈X(τ ) and x′ ∈X(τ+1), it holds that 〈x,a(t)〉 = 〈x′,a(t)〉 for any
t ≤ τ . In particular, since u(τ ) = µ(X(τ )) and u(τ+1) = µ(X(τ+1)) are the corresponding centers
of mass, we have that 〈

u(τ+1),a(t)
〉

=
〈
u(τ ),a(t)

〉
for all t ≤ τ . (5.4)

This, together with (5.3) and recalling that β(τ+1) is determined by F(τ ), implies that

E

[(
∆z

(τ+1)
1

)2 ∣∣∣∣F(τ )

]
=
(
β(τ+1)

)2
· E
[〈

u(τ+1),a(τ+1)
〉2
−
〈
u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
. (5.5)

We now bound the term outside the expectation by the change in the center of mass v(·) and
the term inside the expectation by the fact that the set is pairwise clean.
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Term Outside the Expectation. Recall that a(τ+1) is chosen to be the (normalized) component
of η ⊙ v(τ ) that is orthogonal to the span of a(0), . . . ,a(τ ). Since η ⊙ v(τm−1) is in the span of
a(1), . . . ,a(τm−1+1) and τm−1 + 1 ≤ τ = τm, it is orthogonal to a(τ+1). Hence,

β(τ+1) =
〈
η ⊙ v(τ ),a(τ+1)

〉
=
〈
η ⊙

(
v(τ ) − v(τm−1)

)
,a(τ+1)

〉
.

Since a(τ+1) is a unit vector and each entry of η is in {±1}, this implies that

(
β(τ+1)

)2
≤
∥∥∥v(τ ) − v(τm−1)

∥∥∥
2
. (5.6)

Term Inside the Expectation. Since (u(τ)) is a vector-valued martingale with respect to F(τ),
and a(τ+1) is F(τ)-measurable (determined by F(τ)), we have that

E

[〈
u(τ+1),a(τ+1)

〉2
−
〈
u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
= E

[〈
u(τ+1) − u(τ),a(τ+1)

〉2 ∣∣∣∣F(τ)

]
.

Since Alice is in step 3(a), her message fixes
〈
x,a(τ+1)

〉
at time τ for every x ∈X(τ+1). Thus,

E

[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
= E

[〈
E

x∼γ

[
x

∣∣∣x ∈X(τ+1)
]
− u(τ),a(τ+1)

〉2
∣∣∣∣∣F

(τ )

]

= E

[
E

x∼γ

[〈
x− u(τ ),a(τ+1)

〉2 ∣∣∣∣x ∈X(τ+1)

] ∣∣∣∣F(τ )

]

= E

[〈
x− u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
, (5.7)

where the last line follows from the tower property of conditional expectation.
Recall that u(τ ) = µ(X(τ )) is the center of mass. Moreover, the unit vector a(τ+1) is determined

by F(τ) and also the conditional distribution of x conditioned on F(τ) is that of x ∼ γ conditioned
on x ∈ X(τ). Thus, using the fact that X(τ ) is pairwise clean since Alice is in step 3(a), the right
hand side in (5.7) is at most λ.

Final Bound. Substituting the above in (5.5), we have

E

[(
∆z

(τ+1)
1

)2 ∣∣∣∣F(τ )

]
≤ λ ·

(
β(τ+1)

)2
≤ λ ·

∥∥∥v(τ ) − v(τm−1)
∥∥∥
2
,

where the second inequality follows from (5.6). This completes the proof of the first statement.
For the moreover part, let us condition on the event τm−1 < t < τm where Alice speaks at

time t. Note that such t must all lie in the same phase of the protocol where Alice is the only one
speaking. So, Bob’s center of mass does not change from the time τm−1 till t, i.e., v(t+1) = v(τm−1).

Thus we have ∆z
(t+1)
1 =

〈
u(t+1) − u(t), η ⊙ v(τm−1)

〉
. Analogous to (5.4), the component of Alice’s

center of mass along the previous directions are fixed. Thus
〈
u(t+1),a(r)

〉
=
〈
u(t),a(r)

〉
for all r ≤ t.

Furthermore, by construction, η⊙v(τm−1) lies in the linear subspace spanned by a(0), . . . ,a(τm−1+1).

Therefore, since τm−1 + 1 ≤ t, it follows that ∆z
(t+1)
1 = 0.
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5.4 Expected Norm of Final Center of Mass (Proof of Lemma 5.4)

Let HA = H
(d)
A be the (random) linear subspace spanned by the vectors a(0), . . . ,a(d) and simi-

larly, let HB = H
(d)
B be the linear subspace spanned by the vectors b(0), . . . , b(d). For any linear

subspace V of Rn, we denote by ΠV and ΠV ⊥ the projectors on the subspace V and its orthogonal
complement V ⊥ respectively. Then, we have that

∥∥∥u(d)
∥∥∥
2

=
∥∥∥ΠHA

u(d)
∥∥∥
2

+
∥∥∥ΠH⊥

A
u(d)

∥∥∥
2

and
∥∥∥v(d)

∥∥∥
2

=
∥∥∥ΠHB

v(d)
∥∥∥
2

+
∥∥∥ΠH⊥

B
v(d)

∥∥∥
2
.

Note that the non-zero vectors in (a(t))t and (b(t))t form an orthonormal basis for the subspaces
HA and HB respectively. Moreover, for each t ≤ d, the inner product

〈
x,a(t)

〉
is fixed for every

x ∈ X(d) and the inner product
〈
y, b(t)

〉
is also fixed for every y ∈ Y (d) where X(d) × Y (d) is the

current rectangle determined by F(d). In particular, since u(d) is the center of mass of X(d), this
implies that

∥∥∥ΠHA
u(d)

∥∥∥
2

=
d∑

t=1

〈
u(d),a(t)

〉2
=

d∑

t=1

(
E

x∼γ

[〈
x,a(t)

〉 ∣∣∣x ∈X(d)
])2

=
d∑

t=1

E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣∣x ∈X(d)

]
,

where the second line follows from the inner product being fixed in X(d). Therefore, we have

∥∥∥u(d)
∥∥∥
2

=

d∑

t=1

E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣∣x ∈X(d)

]

︸ ︷︷ ︸
pA

+
∥∥∥ΠH⊥

A
u(d)

∥∥∥
2

︸ ︷︷ ︸
qA

.

In an analogous fashion,

∥∥∥v(d)
∥∥∥
2

=

d∑

t=1

E
y∼γ

[〈
y, b(t)

〉2 ∣∣∣∣y ∈ Y (d)

]

︸ ︷︷ ︸
pB

+
∥∥∥ΠH⊥

B
v(d)

∥∥∥
2

︸ ︷︷ ︸
qB

.

We next show that both E[pA + pB] and E[qA + qB ] are at most O(d). The former follows
from stopping time and concentration arguments laid out in the overview that there cannot be too

many orthogonal directions where E

[〈
x,a(t)

〉2]
is large. The latter follows from an application of

level-one inequalities.
We will bound the norm of the projection on the subspaces HA and HB, which corresponds to

the quantity E[pA+pB], in Subsection 5.4.1 and bound the norm of the projection on the orthogonal
subspaces H⊥

A and H⊥
B , which corresponds to the quantity E[qA + qB ], in Subsection 5.4.2.

5.4.1 Projection on the Subspaces HA and HB

We shall show that the expected norm of the final center of mass when projected on the subspaces
HA and HB is

E[pA + pB] = O(d).

Towards this end, define the random variable kt = kt(x,y) =
〈
x,a(t)

〉2
+
〈
y, b(t)

〉2
for each

t ∈ N. Note that the vectors a(t)’s are being chosen adaptively depending on the previous inner
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products
〈
x,a(τ)

〉
for τ < t, as well as the Boolean communication bits from step 3(b), thus they

are functions of x and y as well here. Observe that

E [pA + pB] = E

[
d∑

t=1

E

[
kt

∣∣∣F(d)
]]

= E
x,y∼γ

[
d∑

t=1

kt

]
.

We now divide the time sequence into successive intervals of different lengths r · 4d for r =
1, 2, . . .. Then we bound the expected sum of kt within each time interval by O(rd). We further
argue that the probability that the stopping time d lies in the r-th interval is at most 2 · 2−r. In
particular, for r ∈ N, letting interval Ir =

{(
r
2

)
· 4d + 1, . . . ,

(
r+1
2

)
· 4d
}

, which is of length 4dr, we
show the following.

Claim 5.5. For any r ∈ N, we have

E
x,y∼γ

[∑

t∈Ir
kt

∣∣∣∣∣d >

(
r

2

)
· 4d
]
≤ 20dr + 4 ln

(
1

Pr
[
d >

(
r
2

)
· 4d
]
)
.

We shall prove the above claim later since it is the most involved part of the proof. The previous
claim readily implies the following probability bounds.

Claim 5.6. For any r ∈ N, we have Pr
[
d >

(
r
2

)
· 4d
]
≤ 2 · 2−r.

Proof of Claim 5.6. We bound Pr
[
d >

(r
2

)
· 4d
]

by induction on r. The claim trivially holds for
r = 1.

Now we proceed to analyze the event d ≥
(r+1

2

)
· 4d. Observe that Claim 5.1 implies that there

are at most 2d many step 3(a) and 3(b) throughout the protocol. Thus if the event above occurs,
there are at least 4dr − 2d ≥ 2dr many time steps t ∈ Ir where the process is in step 3(c).

By the definition of the cleanup step, if X×Y is a rectangle determined10 by F(t−1)∩{d >
(r
2

)
·4d}

where the process is in step 3(c) and Alice speaks, then

E
x∼γ

[kt | (x,y) ∈ X × Y ] = E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣∣x ∈ X

]
≥ E

x∼γ

[〈
x− µ(X),a(t)

〉2 ∣∣∣∣x ∈ X

]
≥ λ,

where λ = 100 is the cleanup parameter and µ(X) = Ex∼γ [x | x ∈ X] is the center of mass. This is
because a(t) is chosen to be a unit vector in a direction where the current set (conditioned on the
history) is not pairwise clean. A similar statement holds if Bob speaks in step 3(c) for the random

variable
〈
y, b(t)

〉2
where y is sampled from γ conditioned on Y .

By the tower property of conditional expectation, the above implies that

100 · 2dr ·Pr
[
d >

(
r+1
2

)
· 4d

∣∣d >
(
r
2

)
· 4d
]
≤ E

[∑

t∈Ir
kt

∣∣∣∣∣d >
(
r
2

)
· 4d
]
.

Recall that Claim 5.5 implies that the right hand side is at most ≤ 20dr + 4 ln

(
1

Pr[d>
(r
2

)
·4d]

)
. We

consider two cases:

(i) if Pr[d >
(r
2

)
· 4d] ≤ 2−r, then clearly Pr[d >

(r+1
2

)
· 4d] ≤ 2−r as well as required;

10It suffices to consider such events since we have a product measure on X
(t) × Y

(t) conditioned on F
(t) and d is

a stopping time and is F(t)-measurable (i.e., determined by the randomness in F
(t)).
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(ii) otherwise Pr[d >
(r
2

)
·4d] ≥ 2−r and 20dr+4

(
1

Pr[d>
(r
2

)
·4d]

)
≤ 20dr+4r, then it follows that

Pr
[
d >

(r+1
2

)
· 4d

∣∣ d >
(r
2

)
· 4d
]
≤ 1/2,

and by induction this implies that Pr
[
d >

(r+1
2

)
· 4d
]
≤ 1/2 ·Pr

[
d >

(r
2

)
· 4d
]
≤ 2−r.

These claims imply that

E[pA + pB] ≤ E

[ ∞∑

r=0

1
[
d >

(r
2

)
· 4d
]
·
∑

t∈Ir
kt

]

=

∞∑

r=0

Pr[d >
(
r
2

)
· 4d] · E

[∑

t∈Ir
kt

∣∣∣∣∣d >
(
r
2

)
· 4d
]

≤
∞∑

r=0

(
21−r ·O(rd) + 4 ·Pr[d >

(r
2

)
· 4d] · ln

(
1

Pr

[
d>
(r
2

)
·4d

]

))

≤
∞∑

r=0

(
21−r · O(rd) + O

(
(r + 1)2−r

))
≤ O(d),

where the last line uses the fact that x ln(1/x) ≤ O((r + 1)2−r) for 0 ≤ x ≤ 2 · 2−r and r ∈ N. This
proves the desired bound on E[pA + pB] assuming Claim 5.5 which we prove next.

Proof of Claim 5.5. To prove the claim, we need to analyze the expectation of
∑

t∈Ir kt under x,y
sampled from γ conditioned on the event d ≥

(r
2

)
· 4d.

We first describe an equivalent way of sampling from this distribution which will be easier
for analysis. First, we recall that the definition of the cleanup protocol implies that the Boolean
communication in C is solely determined by the previous Boolean communication, since it is specified
by the original protocol C̃ (and thus C) before the cleanup.

Let us fix any Boolean string c ∈ {0, 1}∗ that is a valid Boolean transcript in the original

communication protocol C̃. This defines a rectangle Xc × Yc ⊆ Rn × Rn consisting of all pairs
of inputs to Alice and Bob that result in the Boolean transcript c in C̃. If we sample x,y ∼ γ
conditioned on d >

(r
2

)
· 4d and output the unique (Xc,Yc) such that (x,y) ∈Xc × Yc, we obtain

a distribution on rectangles. We use γ(Xc×Yc |d >
(
r
2

)
· 4d) to denote the probability of obtaining

Xc × Yc by this sampling process so that
∑

c γ(Xc × Yc |d >
(
r
2

)
· 4d) = 1.

Now consider the following two-stage sampling process. First, we sample a rectangle Xc ×
Yc according to the above distribution, and then we sample the inputs x,y sampled from γn
conditioned on the event that {(x,y) ∈ Xc × Yc} ∧ {d >

(r
2

)
· 4d}. We shall show the following

claim for any rectangle Xc × Yc that could be sampled in the first step.

Claim 5.7. Ex,y∼γ

[∑
t∈Ir kt

∣∣d > 4d
(r
2

)
, (x,y) ∈ Xc × Yc

]
≤ 12dr+4 ln

(
1

Pr[d>4d
(r
2

)
,(x,y)∈Xc×Yc]

)
.

Assuming the above, and taking an expectation over Xc × Yc drawn with probability γ(Xc ×
Yc |d >

(r
2

)
· 4d), we immediately obtain Claim 5.5:

E
x,y∼γ

[∑

t∈Ir
kt

∣∣∣∣∣d >
(
r
2

)
· 4d
]

≤ 12dr + 4 ·
∑

c∈{0,1}∗,|c|≤d

γ(Xc × Yc|d >
(
r
2

)
· 4d) ·

(
ln

(
1

γ(Xc×Yc|d>(r2)·4d)

)
+ ln

(
1

Pr[d>(r2)·4d]

))
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≤ 12dr + 4 · ln(3d) + 4 · ln
(

1
Pr[d>(r2)·4d]

)
(by concavity of ln(·))

≤ 20dr + 4 · ln
(

1
Pr[d>(r2)·4d]

)
.

To complete the proof, we now prove Claim 5.7.

Proof of Claim 5.7. Fix any c such that γ(Xc×Yc |d >
(
r
2

)
·4d) > 0. We will bound the expectation

of the quantity
∑

t∈Ir kt =
∑

t∈Ir
〈
x,a(t)

〉2
+
〈
y, b(t)

〉2
where x,y are sampled from γn conditioned

on the event that {(x,y) ∈ Xc × Yc} ∧ {d >
(r
2

)
· 4d}. Note that a(t), b(t),d are functions of the

previous messages of the protocol and hence also the inputs x,y. Once we condition on the above
event, the Boolean communication is also fixed to be c.

To analyze the above conditioning, we first do a thought experiment and consider a different
protocol that takes standard Gaussian inputs (without any conditioning) and show a tail bound
for the random variable

∑
t∈Ir kt for this new protocol. In the last step, we will use it to compute

the expectation we ultimately want.

Protocol Cc. The protocol Cc always communicates according to the fixed transcript c in a
Boolean communication step and otherwise according to the cleanup protocol C on any input x, y.
Consider the random walk on this new protocol tree where the inputs x,y ∼ γ (without any
conditioning). Let (G(t))t be the associated filtration of the new protocol Cc which can be identified
with the collection of all partial transcripts till time t. Note that the vectors a(t) and b(t) in this new
protocol are determined only by the previous real communication since the Boolean communication
is fixed to c. This also implies that the vectors a(t) and b(t) form a predictable sequence with respect
to the filtration (G(t))t. Moreover, by the definition of the protocol the next non-zero vector a(·)

is chosen to be a unit vector orthogonal to the previously chosen a(·)’s and the same holds for the
vectors b(·).

We denote by k
(c)
t the random variable that captures kt for the protocol Cc, i.e., k

(c)
t =〈

x,a(t)
〉2

+
〈
y, b(t)

〉2
for x,y ∼ γ and a(t), b(t) defined by the protocol Cc. Observe that if

(x,y) ∈ Xc × Yc then k
(c)
t = kt.

Consider the behavior of the protocol Cc at some fixed time t. The nice thing about the protocol
Cc is that conditioned on all previous real messages for τ < t, both x and y are standard Gaussian
distributions on an affine subspace of Rn (defined by the previous messages). Then, at time t,
since a(t) is orthogonal to the directions used in all previous real messages, it follows that the
distribution of

〈
x,a(t)

〉
conditioned on any event in G(t−1) is an independent standard Gaussian

for every t if a(t) is non-zero. The same holds for
〈
y, b(t)

〉
as well. This last fact uses that the

projection of a multi-variate standard Gaussian γn in orthonormal directions yields independent
real-valued standard Gaussians.

This implies that each new
〈
x,a(t)

〉2
and

〈
y, b(t)

〉2
is an independent chi-squared random

variable conditioned on the history (up to depth
(
r
2

)
· 4d) of the random walk. Therefore, Fact 3.2

implies that

Pr
x,y∼γ

[∑

t∈Ir
k
(c)
t (x,y) ≥ 2|Ir|+ s

∣∣∣∣∣G
((r2)·4d)

]
≤ e−s/4.

Since |Ir| ≤ 4dr, we have Prx,y∼γ

[∑
t∈Ir k

(c)
t (x,y) ≥ 8dr + s

]
≤ e−s/4.
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Computing the Original Expectation. Let us compare the probability of the above tail event
in the original protocol C where inputs x,y are sampled from γ conditioned on the event that
{(x,y) ∈ Xc × Yc} ∧ {d >

(r
2

)
· 4d}. We can write

Pr
(x,y)∼γ

[∑

t∈Ir
kt(x,y) ≥ 8dr + s

∣∣∣∣∣d >
(r
2

)
· 4d, (x,y) ∈ Xc × Yc

]
(5.8)

=
Prx,y∼γ

[∑
t∈Ir kt(x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
]

Prx,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
] .

We then bound the numerator by

Pr
x,y∼γ

[∑

t∈Ir
kt(x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
]

= Pr
x,y∼γ

[∑

t∈Ir
k
(c)
t (x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >

(r
2

)
· 4d
]

(if (x,y) ∈ Xc × Yc then k
(c)
t = kt)

≤ Pr
x,y∼γ

[∑

t∈Ir
k
(c)
t (x,y) ≥ 8dr + s

]
≤ e−s/4.

Note that the inequality gives us an exponential tail on (5.8):

(5.8) ≤ e−s/4 ·
(

Pr
x,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(
r

2

)
· 4d
])−1

.

We can now integrate the above inequality to get an upper bound on the expected value of
∑

t∈Ir kt

under the distribution of interest. In particular, since for any non-negative random variable w, the
following holds for any parameter α ≥ 0:

E[w] =

∫ +∞

0
Pr[w ≥ z]dz ≤ α +

∫ +∞

α
Pr[w ≥ z]dz = α +

∫ +∞

0
Pr[w ≥ α + z]dz,

we derive the following by taking α = 8dr + 4 ln

(
1

Prx,y∼γ[(x,y)∈Xc×Yc,d>(r2)·4d]

)
:

E
(x,y)∼γ

[∑

i∈Ir
kt(x,y)

∣∣∣∣∣ d >
(r
2

)
· 4d, (x,y) ∈ Xc × Yc

]

≤ α +

∫ +∞

0
e−z/4dz = α + 4

≤ 12dr + 4 ln

(
1

Prx,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(r
2

)
· 4d
]
)
.

This completes the proof of Claim 5.7.
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5.4.2 Projection on the Orthogonal Subspaces H⊥
A and H⊥

B

We shall show that the expected norm of the final center of mass when projected on the subspaces
H⊥

A and H⊥
B is

E[qA + qB ] = O(d).

Recall that qA =
∥∥∥ΠH⊥

A
u(d)

∥∥∥
2

where HA is the (random) linear subspace spanned by the

orthonormal set of vectors a(0), . . . ,a(d) and H⊥
A its orthogonal complement. Moreover, the vectors

a(t) are determined by the previous Boolean and real communication. A similar statement holds
for qB and the vectors b(t) as well.

The proof will follow in two steps. We will first show that one can bound the norm of the
projection ΠH⊥

A
u(d), which turns out to be the Gaussian center of mass of a set that lives in the

subspace H⊥
A , in terms of the logarithm of the inverse relative measure with respect to the subspace.

Note that the Gaussian measure here is the Gaussian measure γH⊥
A

on the subspace H⊥
A . The case

for ΠH⊥
B
u(d) will be similar. The second step will use information theory-esque convexity argument

to show that on average the logarithm of the inverse relative measure is small.
For the first part, we observe that if we sample x,y ∼ γ and take a random walk on this protocol

tree, we obtain a probability measure over transcripts which includes both real and Boolean values.
Recall that the Boolean transcript is determined by the original protocol and only depends on
the previous Boolean communication and the real transcript is sandwiched between the Boolean
communication. Let ℓ = (c, r) denote the random variable representing the full transcript of the
generalized protocol where c is the Boolean communication and r is the real communication. For
any given transcript ℓ, let Xℓ × Yℓ denote the corresponding rectangle consists of inputs reaching
the leaf, and let Xc×Yc (for Xc,Yc ⊆ Rn) denote the rectangle consisting of all pairs of inputs to
Alice and Bob that result in the Boolean transcript c. Note that the real communication r together
with c fixes the subspaces HA and HB and particular affine shifts sA and sB of those subspaces
depending on the value of the inner products determined by the full transcript. In particular, the
rectangle Xℓ × Yℓ consistent with the full transcript ℓ = (c, r) is given by Xℓ = Xc ∩ (HA + sA)
and Yℓ = Yc ∩ (HB + sB), i.e., taking (random) affine slices of the original sets.

Note that u(d) and v(d) are distributed as the center of masses of the final rectangle Xℓ × Yℓ,
and thus is suffices to look at the rectangles for the rest of the argument. Since Xℓ (resp., Yℓ) lies
in some affine shift of H⊥

A (resp., H⊥
B ), defining the relative center of mass for a set A that lives

in the ambient linear subspace V , as µV (A) = Ex∼γV [x | x ∈ A] where the Gaussian measure γV
is on the subspace V , it follows that

E [qA + qB ] = E

[∥∥∥ΠH⊥
A
u(d)

∥∥∥
2

+
∥∥∥ΠH⊥

A
u(d)

∥∥∥
2
]

= E
ℓ

[
‖µH⊥

A
(ΠH⊥

A
Xℓ)‖2 + ‖µH⊥

B
(ΠH⊥

B
Yℓ)‖2

]
.

Recalling that γrel is the Gaussian measure of a set relative to its ambient space, we will show:

Claim 5.8. ‖µH⊥
A

(ΠH⊥
A
Xℓ)‖2 ≤ 2e2 ln

(
e

γrel (Xℓ)

)
and ‖µH⊥

B
(ΠH⊥

B
Yℓ)‖2 ≤ 2e2 ln

(
e

γrel (Yℓ)

)
.

Note that we can ignore the case when γrel(Xℓ) is zero above, since we will eventually take an
expectation over ℓ and almost surely this measure is non-zero.

Using the previous claim,

E [qA + qB ] = E

[∥∥∥ΠH⊥
A
u(d)

∥∥∥
2

+
∥∥∥ΠH⊥

A
u(d)

∥∥∥
2
]
≤ 2e2 · E

ℓ

[
ln

(
e

γrel (Xℓ × Yℓ)

)]
.
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For the second step of the proof, we show the next claim which relies on convexity arguments
to bound the right hand side above by O(d). This is similar in spirit to chain-style arguments from
information theory.

Claim 5.9. Eℓ

[
ln

(
e

γrel (Xℓ × Yℓ)

)]
= O(d).

This gives us the final bound E [qA + qB ] = O(d) assuming the claims which we now prove.

Proof of Claim 5.8. We can bound the norm of the above projection by an application of the
Gaussian level-one inequality (Theorem 3.1), which, by rotational symmetry, implies that if A is a
subset of a linear subspace V with non-zero measure, then

‖µV (A)‖2 ≤ 2e2 ln

(
e

γV (A)

)
, (5.9)

where recall that µV (A) = Ex∼γV [x | x ∈ A] is the center of mass with respect to the Gaussian
measure γV on the subspace V .

If we run the generalized protocol on x,y ∼ γ and condition on getting the full transcript ℓ,
the conditional probability measure on ΠH⊥

A
x is that of the Gaussian measure γH⊥

A
conditioned

on x ∈Xℓ − sA and ΠH⊥
A
y is that of the Gaussian measure γH⊥

B
conditioned on y ∈ Yℓ − sB and

they are independent. This follows from the fact that so far the parties have fixed inner products
along a basis for the orthogonal subspaces HA and HB and the fact the projection of a standard
Gaussian on orthogonal subspaces are independent.

Thus, applying (5.9), we have

‖µH⊥
A

(ΠH⊥
A
Xℓ)‖2 ≤ 2e2 ln

(
e

γH⊥
A

(Xℓ − sA)

)
= 2e2 ln

(
e

γrel(Xℓ)

)
,

where the last line follows since HA + sA is the ambient space for Xℓ (this holds almost surely)
and γrel(S) = γV (S − t) if V + t is the ambient space of S. A similar argument proves the bound
on ‖µH⊥

B
(ΠH⊥

B
Yℓ)‖2.

Proof of Claim 5.9. For this claim, it will be convenient to consider a different generalized protocol
C′ that generates the same distribution on the leaves ℓ. In particular, since the Boolean messages
in the generalized protocol C only depend on the previous Boolean messages, one can first send
all the Boolean messages c, and then send all the real messages r choosing them according to the
protocol C depending on the previous real messages and the (partial) Boolean transcript. Note
that the protocol C′ generates the same distribution on the leaves ℓ when the inputs x,y ∼ γn. In
particular, the real communication only partitions 11 each rectangles Xc × Yc that corresponds to
the Boolean transcript c into affine slices.

For rest of the claim, we now work with the protocol C′ where the Boolean communication
happens first. To prove the claim, we condition on a Boolean transcript c = c and by induction
show that

E
r

[
ln

(
e

γrel(X(c,r) × Y(c,r))

) ∣∣∣∣ c = c

]
≤ ln

(
e

γrel(Xc × Yc)

)
, (5.10)

11We remark that this protocol C′ suffices for proving this claim since we are looking only at the leaves. However,
unlike Lemma 5.3, directly bounding the expected quadratic variation of the martingale corresponding to the protocol
C
′ is difficult.
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where (c, r) is the full transcript and Xc × Yc is the rectangle containing all the inputs such that
Boolean transcript is c. Note that γrel(Xc×Yc) is the probability of obtaining the Boolean transcript
c since the ambient space of Xc and Yc is Rn.

Then, taking expectation over the Boolean transcript c,

E
ℓ

[
ln

(
e

γrel(Xℓ × Yℓ)

)]
≤ E

c

[
ln

(
e

γrel(Xc × Yc)

)]

=
∑

c∈{0,1}∗,|c|≤d

Pr[c = c] ln

(
e

Pr[c = c]

)

≤ ln(2e · 2d) = O(d),

where the last line follows from concavity.

Induction. To complete the proof, we now show (5.10) by induction. For this, let us look at an
intermediate step t in C′ where the Boolean communication is fixed to c and Alice and Bob have
exchanged some real messages r<t := r1, . . . , rt−1. Let the current rectangle be X(c,r<t) × Y(c,r<t)

and it is Alice’s turn to speak. Note that X(c,r<t) and Y(c,r<t) live in some affine subspaces at this

point and in the current round, Alice sends the inner product of her input x with a vector a(t)

that is determined by the previous messages and orthogonal to the ambient space of X(c,r<t). At
this step, Bob’s set Y(c,r<t) does not change at all. We shall show that in each step, the log of the
inverse of the relative measure of the current rectangle does not increase on average over the next
message:

E
r≤t

[
ln

(
e

γrel(X(c,r≤t))

)∣∣∣∣∣ c = c, r<t = r<t

]
≤ ln

(
e

γrel(X(c,r<t))

)
, (5.11)

and an analogous statement holds when Bob speaks. Taking an expectation over r<t, the above
directly applies (5.10) by a straightforward backward induction:

E
r≤t

[
ln

(
e

γrel(X(c,r≤t) × Y(c,r≤t))

)∣∣∣∣∣ c = c

]
≤ E

r<t

[
ln

(
e

γrel(X(c,r<t) × Y(c,r<t))

) ∣∣∣∣ c = c

]

≤ · · · ≤ ln

(
e

γrel(Xc × Yc)

)
.

To see (5.11), let us write X := X(c,r<t) for Alice’s current set. Recall that since we have fixed the

history, Alice has fixed inner product with some orthogonal directions a(1), . . . , a(t−1) and she has
decided on the next direction a := a(t) along which she will send the next inner product. Thus, X
lives in some fixed affine subspace V ⊥+s where V is the span of a(1), . . . , a(t−1) and the next message
r := rt = 〈x, a〉. Moreover, conditioned on the history till this point, the conditional probability
distribution on Alice’s input x ∈ Rn can be described as follows: the projections corresponding to
the non-zero vectors in the sequence a(1), . . . , a(t−1), i.e., the inner products

〈
x, a(τ)

〉
where a(τ) 6= 0

for τ < t, are fixed according to the shift s, while the distribution on the orthogonal complement
V ⊥ is that of the Gaussian measure γV ⊥ on the subspace V ⊥ after conditioning on the event that
x ∈ X − s (which lives in V ⊥). This uses that projections of a standard n-dimensional Gaussian
in orthogonal directions are independent.

Let k be the dimension of V where k < n. Then, by doing a linear transformation, we may
assume that V ⊥ = Rn−k (and thus X ⊆ Rn−k and the shift s fixes the coordinates n−k+1 through
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n) and a = e1, i.e., in the current message Alice reveals the first coordinate of x ∈ Rn−k where x is
sampled from γn−k conditioned on x ∈ X. In this case, γrel in the left hand side of (5.11) is exactly
γrel(X ∩ {x1 = r}) if Alice sends r as the message, while for the right hand side of (5.11), we have
γrel(X) = γn−k(X). Denoting by dµx1 the probability density function of x1, our statement boils
down to showing

∫

R

ln

(
e

γrel(X ∩ {x1 = r})

)
dµx1(r) ≤ ln

(
e

γn−k(X)

)
.

We show the above by explicitly writing the probability density function dµx1. Denote by
dγn−k(x1, . . . , xn−k) the standard Gaussian density function12 in Rn−k. The density function of the
random vector x sampled from γn−k conditioned on x ∈ X, is given γn−k(X)−1 ·dγn−k(x1, . . . , xn−k)
for x ∈ X and zero outside. Thus, we have

dµx1(r) =

∫
X∩{x1=r} dγn−k(x1, . . . , xn−k)

γn−k(X)

= dγ1(r) ·
∫
X∩{x1=r} dγn−k−1(x2, . . . , xn−k)

γn−k(X)
= dγ1(r) · γrel(X ∩ {x1 = r})

γn−k(X)
.

Then, by concavity, the left hand side of (5.11) is exactly given by

∫

R

ln

(
e

γrel(X ∩ {x1 = r})

)
dµx1(r) ≤ ln

(∫

R

e

γrel(X ∩ {x1 = r})dµx1(r)

)

= ln

(
e

γn−k(X)

∫

R

dγ1(r)

)
= ln

(
e

γn−k(X)

)
.

6 Level-Two Fourier Growth

In this section, we prove Theorem 1.3 that L1,2(h) = O
(
d3/2 log3(n)

)
. Similar to the proof of level-

one bound Theorem 1.2, we start with a d-round communication protocol C̃ over the Gaussian
space as defined in Section 4. Note that C̃ in turn comes from the original Boolean communication
protocol C. Thus in the following we assume without loss of generality d ≤ n.

Given the discussion in Subsection 4.3, to bound the second-level Fourier growth, one can
attempt to bound the expected quadratic variation of the martingale that results from the protocol
C directly, but similar to the case of level-one it is hard to leverage cancellations here to prove the
bound we aim for. So, starting from C̃, we will define a communication protocol C that computes
the same function as C̃, but satisfies some additional “clean” property where it is easier to control
the quadratic variation. This new protocol will differ from C̃ in two ways. Firstly, the protocol C will
consist of additional “cleanup steps” where Alice and Bob reveal certain quadratic forms of their
input. Secondly, the protocol C will send the real value of the quadratic form with certain precision.
Note that this protocol will not involve sending real messages at all, instead, any potential real
messages will be truncated to a few bits of precision and be sent as Boolean messages.

We emphasize that the main difference in the protocol C from the corresponding level-one
variant comes from the precision control, which is not needed there due to the fact that Gaussian
distribution remains a (lower-dimensional) Gaussian under linear projections. For technical reasons
we shall also need to analyze the martingale under a truncated Gaussian distribution, where all

12Explicitly dγm(x1, . . . , xm) =
∏m

i=1 dγ1(xi) where dγ1(r) =
1√
2π

e−r2/2 is the density function for one-dimensional
standard Gaussian.
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coordinates are bounded in some large interval [−T, T ]. This intuitively doesn’t incur a noticeable
difference on the distribution since it is highly unlikely that coordinates drawn from Gaussian
distribution will be outside such intervals and recalling Remark 4.2 and Proposition 4.4, it still
suffices to analyze the corresponding martingale under the truncated Gaussian distribution.

We next define the notion of a 4-wise clean protocol.

6.1 4-Wise Clean Protocols

Consider an intermediate node in the protocol and let X ⊆ Rn refer to the set of Alice’s inputs
reaching this node. We denote by Sn×n−1 the set of all matrices in Rn×n with zero diagonal and
unit norm (when viewed as n2-dimensional vectors). For a parameter λ > 0, we say that the set X
is 4-wise clean in a direction a ∈ Sn×n−1 if

E
x∼γ

[〈
x

•

⊗ x− σ(X), a
〉2 ∣∣∣∣x ∈ X

]
< λ,

where we recall that σ(X) = Ex∼γ

[
x

•

⊗ x

∣∣∣x ∈ X
]

is the level-two center of mass of X under the

Gaussian measure. We say that the set X is 4-wise clean if it is 4-wise clean in every direction a.
Our new protocol will consist of the original protocol, interspersed by cleaning steps. Once Alice

sends her bit as in the original protocol, she cleans X by revealing
〈
x

•

⊗ x, a
〉

with a few bits of

precision while there exists direction a ∈ Sn×n−1 such that X not clean in direction a. Once X
becomes clean, Alice proceeds to the next round and Bob does an analogous cleanup. We now
describe this formally.

Communication with Finite Precision. Let positive integer L be a precision parameter that
we will use for truncation. In our new communication protocol, we will send real numbers with
precision 2−L. This is formalized as the truncL(z) function defined at z ∈ R as

truncL(z) =
⌊
z · 2L

⌋
/2L.

Construct C from C̃. As described before, C will consist of the original protocol along with
extra steps where Alice or Bob reveal the (approximate) value of a quadratic form on their input.
Consider an intermediate node of this new protocol at depth t. We always use the random variable
X(t) (resp., Y (t)) to denote the set of inputs of Alice (resp., Bob) reaching the node. If Alice is
revealing a quadratic form in this step, we use a(t) to denote the matrix of the quadratic form
revealed at this node, otherwise set a(t) to be the all-zeroes matrix. We define b(t) similarly for
Bob. Throughout the protocol, we will always set u(t) and v(t) to denote σ(X(t)) and σ(Y (t))
respectively.

Recall that λ > 0 is the parameter for cleanup to be optimized later. Since we will now send real
numbers (with certain precision) as bit-strings, their magnitudes should also be well controlled to
guarantee bounded message length. This is managed by a parameter T > 0 and we will restrict the
inputs to the parties in C to come from the box [−T, T ]n. Note that, by Gaussian concentration,

T = Θ
(√

log(n)
)

suffices.

1. At the beginning, Alice receives an input x ∈ [−T, T ]n and Bob receives an input y ∈ [−T, T ]n.

2. We initialize t← 0, X(0),Y (0) ← [−T, T ]n, and a(0), b(0) ← 0n×n.
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3. For each phase i = 1, 2, . . . , d: suppose we are starting the cleanup for a node at depth i in
the original protocol C̃ and suppose we are at a node of depth t in the new protocol C. If it
is Alice’s turn to speak in C̃:

(a) Orthogonalization by revealing the correlation with Bob’s center of mass.
Alice begins by revealing the inner product of her input x with Bob’s current (signed)
level-two center of mass η ⊙ v(t). Since in the previous steps, she has already revealed
the inner product with Bob’s previous centers of mass, for technical reasons, we will
only have Alice announce the inner product with the component of η ⊙ v(t) that is
orthogonal to the previous directions along which Alice announced the inner product.
More formally, let a(t+1) be the component of η ⊙ v(t) that is orthonormal to the span
of the previous directions a(τ) for τ ≤ t, i.e.,

a(t+1) = unit
(
η ⊙ v(t) −∑t

τ=1

〈
η ⊙ v(t),a(τ)

〉
· a(τ)

)
.

Alice computes c(t+1) ← truncL

(〈
x

•

⊗ x,a(t+1)
〉)

and sends c(t+1) to Bob. Set b(t+1) ←
0n×n. Increment t by 1 and go to step (b).

(b) Original communication. Alice sends the bit c(t+1) that she was supposed to send in

C̃ based on previous messages and x. Set a(t+1), b(t+1) ← 0n×n. Increment t by 1 and
go to step (c).

(c) Cleanup steps. While there exists some direction a ∈ Sn×n−1 orthogonal to previous
directions, i.e.,

〈
a,a(τ)

〉
= 0 for all τ ≤ t, and X(t) is not 4-wise clean in direction a,

Alice computes c(t+1) ← truncL

(〈
x

•

⊗ x, a
〉)

and sends c(t+1) to Bob. Set a(t+1) ← a

and b(t+1) ← 0n×n. Increment t by 1. Repeat step (c) while X(t) is not 4-wise clean;
otherwise, increment i by 1 and go back to the for-loop in step 3 which starts a new
phase.

If it is Bob’s turn to speak, we define everything similarly with the role of x,a,X,u switched
with y, b,Y ,v.

4. Finally at the end of the protocol, the value C(x, y) is determined based on all the previous

communication and the corresponding output it defines in C̃.

Remark 6.1. Note that by construction, the non-zero matrices among a(1),a(2), . . . form an or-
thonormal set when viewed as n2-dimensional vectors (similarly for b(1), b(2), . . .) and moreover,
their diagonals are zero. Lastly, a(t) and b(t) are known to both Alice and Bob as they are canoni-
cally determined by previous messages.

We remark that the steps 3(a), 3(b), and 3(c) always occur in sequence for each party and we
refer to such a sequence of steps as a phase for that party. Note that there are at most d phases. If
a new phase starts at time t, then the current rectangle X(t)×Y (t) is 4-wise clean for both parties
by construction.

Now we formalize a few useful properties regarding the communication protocol C. The first

fact below follows since each u(t) is an expectation of x
•

⊗ x over some distribution and x
•

⊗ x has
zero diagonal.

Fact 6.2. u(0) = v(0) = 0n×n and each u(t),v(t) has zero diagonal.

The following follows from tail bounds for the univariate standard normal distribution.
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Fact 6.3. Let γ∗ = γ(X(0)) · γ(Y (0)). Then γ∗ ≥ 1−O
(
n · e−T 2/2

)
.

The next fact says that when a node fixes a quadratic form with 2−L precision, for any two
inputs that reach this node, the quadratic forms differ by at most 2−L.

Fact 6.4. In step 3(a) and 3(c), any x, x′ ∈X(t+1) satisfies
∣∣∣
〈
x

•

⊗ x,a(t+1)
〉
−
〈
x′

•

⊗ x′,a(t+1)
〉∣∣∣ <

2−L. Similarly any y, y′ ∈ Y (t+1) satisfies
∣∣∣
〈
y

•

⊗ y, b(t+1)
〉
−
〈
y′

•

⊗ y′, b(t+1)
〉∣∣∣ < 2−L.

The next claim bounds the maximum attainable norms for Alice and Bob’s level-two center of
masses at any point in the protocol. This uses the fact that the inputs come from the truncated
Gaussian distribution.

Claim 6.5.
∥∥u(t)

∥∥ =
∥∥η ⊙ u(t)

∥∥ < nT and
∥∥v(t)

∥∥ =
∥∥η ⊙ v(t)

∥∥ < nT for all possible t and u(t),v(t)

throughout the communication.

Proof. Since η is a matrix with zero diagonal and {±1} entries off diagonal and u(t) also has zero
diagonal,

∥∥u(t)
∥∥ =

∥∥η ⊙ u(t)
∥∥. In addition, since X(t) ⊆X(0) = [−T, T ]n, we have

∥∥∥u(t)
∥∥∥ ≤ E

x∼γ

[∥∥∥
(
x

•

⊗ x
)∥∥∥
∣∣∣x ∈X(t)

]
≤
√

(n2 − n) · T 2 < nT.

A similar analysis works for v(t).

The next claim gives a bound on the length of any message in the protocol C.

Claim 6.6. For any x ∈X(0) and y ∈ Y (0), any message in C(x, y) consists of at most L+log(Tn)
many bits.

Proof. Assume without loss of generality it is Alice’s turn to speak. On step 3(b) she sends one

bits. On steps 3(a) and 3(c), she computes truncL(〈x
•

⊗ x, a〉) for some a ∈ Sn×n−1 and send the
result. Since ∣∣∣

〈
x

•

⊗ x, a
〉∣∣∣ ≤

∥∥∥x
•

⊗ x
∥∥∥ · ‖a‖ ≤

√
(n2 − n) · T 2 < nT,

and the message is a multiple of 2−L that means truncL yields a message with L + log(nT ) many
bits.

The last claim bounds the maximum depth of the new protocol C.

Claim 6.7. Let ℓ be an arbitrary leaf of the protocol C and D(ℓ) be its depth. Then D(ℓ) ≤ 2n2.
Moreover, along this path there are at most n2 − n many non-zero a(t) and at most n2 − n many
non-zero b(t) for t ∈ {1, . . . ,D(ℓ)}.

Proof. We count the number of communication steps separately:

• Steps 3(a) and 3(b). Steps 3(a) and 3(b) occur once in every phase, thus at most d times.

• Step 3(c). For Alice, each time she communicates at step 3(c), the direction a ∈ Sn×n−1 is
non-zero and orthogonal to all previous a(t)’s. Since the dimension of Sn×n−1 is n2 − n, this
happens at most n2 − n times. Similar argument works for Bob.

Thus in total we have at most 2(n2 − n) + 2d ≤ 2n2 steps.

We will eventually show that, with suitable choice of λ, T, L, typically D(ℓ) is at most d ·
polylog(n).
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6.2 Bounding the Expected Quadratic Variation

Consider the martingale process defined in (4.5) from a random walk on the protocol tree generated
by C where the inputs x,y are sampled from γn conditioned on being in the bounded cube [−T, T ]n.
Recall that Proposition 4.3 still holds (see Remark 4.5).

Formally, at time t the process is defined by

z
(t)
2 =

〈
u(t), η ⊙ v(t)

〉
,

where we recall that u(t) = σ(X(t)) and v(t) = σ(Y (t))) and η is a fixed sign matrix with a zero
diagonal. The martingale process stops once it hits a leaf of C. Let d denote the (stopping) time
when this happens. Note that E[d] is exactly the expected depth of the protocol C.

In light of Remark 4.2 and Proposition 4.4, to prove Theorem 1.3, it suffices to prove the fol-
lowing.

Lemma 6.8. E

[∑d
t=1

(
∆z

(t)
2

)2]
= O

(
d3 log6(n)

)
.

Lemma 6.8 is proved in three steps. We first show that essentially the only change in the value
of the martingale is the orthogonalization step 3(a). The reason is the same as the level-one bound:
Alice’s messages sent in step 3(b) and 3(c) are always near-orthogonal to Bob’s current level-two

center of mass, thus they do not change the value of the martingale z
(t)
2 much. Moreover, by

level-two analog of (2.2), since Alice’s current node was clean just before Alice sent the message

in step 3(a), the expected change E

[(
∆z

(t+1)
2

)2]
can be bounded in terms of the squared norm

of the change that occurred in u(t) (or v(t)) between the current round and the last round where
Alice was in step 3(a). Similar argument works for Bob.

Formally, this is encapsulated by the next lemma for which we need some additional definitions.
Let (F(t))t denote the natural filtration induced by the random walk on the generalized protocol tree

with respect to which z
(t)
2 is a Doob martingale and also u(t),v(t) form vector-valued martingales

(recall Proposition 4.3). Note that F(t) fixes all the rectangles encountered during times 0, . . . , t

and thus for τ ≤ t, the random variables u(τ),v(τ),z
(τ)
2 are determined, in particular, they are

F(t)-measurable. Recalling that λ is the cleanup parameter to be optimized later, we then have the
following. Below we assume without any loss of generality that Alice speaks first and, in particular,
we note that Alice speaks in step 3(a) for the first time at time zero when both Alice and Bob’s
center of masses are at zero: u(0) = v(0) = 0.

Lemma 6.9 (Step Size). Let 0 = τ1 < τ2 < · · · ≤ d be a sequence of stopping times with τm being
the index of the round where Alice speaks in step 3(a) for the mth time or d if there is no such
round. Then, for any integer m ≥ 2,

E

[(
∆z

(τm+1)
2

)2 ∣∣∣∣F(τm)

]
≤ λ ·

∥∥∥v(τm) − v(τm−1)
∥∥∥
2

+ 16n7T 3 · 2−L.

and moreover, for any t ∈ N, we have that

E

[(
∆z

(t+1)
2

)2 ∣∣∣∣F(t), τm−1 < t < τm,Alice speaks at time t

]
≤ 4n6T 2 · 2−2L

A similar statement also holds if Bob speaks where v is replaced by u and the sequence (τm) is
replaced by (τ ′

m) where τ ′
m is the index of the round where Bob speaks in step 3(a) for the mth time

or d if there is no such round.
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We indeed see that, if L = Ω(log(n)) and T = O(
√

log(n)), then poly(T, n) · 2−L = o(1), and
steps 3(b) and 3(c) do not contribute much to the quadratic variation and only the steps 3(a) do.
Also, since the first time Alice and Bob speak, they start in step 3(a), we also note that u(τ1) and
v(τ ′

1) are their initial centers of mass which are both zero.
We shall prove the above lemma in Subsection 6.3 and continue with the bound on the quadratic

variation here. Using the bounds on the step sizes from Lemma 6.9,

E

[
d∑

t=1

(
∆z

(t)
2

)2
]
≤ λ · E


∑

m≥2

∥∥∥v(τm) − v(τm−1)
∥∥∥
2

+
∥∥∥u(τ ′

m) − u(τ ′
m−1)

∥∥∥
2


+ 16n7T 3 · 2−L · E[d]

≤ λ · E


∑

m≥2

∥∥∥v(τm) − v(τm−1)
∥∥∥
2

+
∥∥∥u(τ ′

m) − u(τ ′
m−1)

∥∥∥
2


+ 16n7T 3 · 2−L · 2n2.

(by Claim 6.7)

On the other hand, using the orthogonality of vector-valued martingale differences from (3.2),

E


∑

m≥2

∥∥∥v(τm) − v(τm−1)
∥∥∥
2


 = E

[∥∥∥v(d)
∥∥∥
2
]
.

A similar statement holds for (u(t)) as well. Therefore,

E

[
d∑

t=1

(
∆z

(t)
2

)2
]
≤ λ ·

(
E

[∥∥∥u(d)
∥∥∥
2
]

+ E

[∥∥∥v(d)
∥∥∥
2
])

+ 64n9T 3 · 2−L. (6.1)

Then in Subsection 6.4 we will apply level-two inequalities (see Theorem 3.1) to convert the

bounding E

[∥∥u(d)
∥∥2 +

∥∥v(d)
∥∥2
]

into bounding the second moment E[d2]. This reduction is for-

malized as Lemma 6.10 below and its proof is similar to [GRT21, Claim 1].
For each leaf ℓ, let γ(ℓ) = γ(X(D(ℓ))) · γ(Y (D(ℓ))) be the Gaussian measure of the rectangle at

ℓ. Recall γ∗ = γ(X(0))× γ(Y (0)).

Lemma 6.10. E

[∥∥u(d)
∥∥2 +

∥∥v(d)
∥∥2
]
≤ O

(
1
γ∗ + L2 E[d2]

)
.

Finally, in Subsection 6.5, we bound the second moment E[d2] for a suitable choice of parame-
ters.

Lemma 6.11. It holds that E[d2] = O(d2) and γ∗ ≥ 3
4 for L = Θ(log(n)), T = Θ(

√
log(n)), and

λ = Θ(d log4(n)).

Given Lemmas 6.10 and 6.11,the proof of Lemma 6.8 naturally follows.

Proof of Lemma 6.8. With the parameters chosen in Lemma 6.11, we have

E

[
d∑

t=1

(
∆z

(t)
2

)2
]
≤ O(d log4(n)) ·

(
E

[∥∥∥u(d)
∥∥∥
2
]

+ E

[∥∥∥v(d)
∥∥∥
2
])

+ 1 (by (6.1))

≤ O(d log4(n)) ·
(
1 + log2(n) · E[d2]

)
+ 1 (by Lemma 6.10)

≤ O(d log4(n)) ·
(
1 + log2(n) · d2

)
+ 1 (by Lemma 6.11)

= O(d3 log6(n)).
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Remark 6.12. Note that our proof for level-two Fourier growth actually holds for a slightly more
general setting, where Alice and Bob are allowed to send O(L) = O(log(n)) bits during each original
communication round. This can be viewed as balancing the length of the messages in step 3(b)
with step 3(a) and step 3(c).

Since one can always convert a d-round 1-bit communication protocol into a 2d
log log(n) -round

log(n)-bit communication protocol, we obtain a slightly better level-two Fourier growth bound of

O

(
d3/2 log3(n)

(log log(n))3/2

)
.

The conversion is done by Alice (resp., Bob) enumerating the next log log(n)/2 bits from Bob (resp.,
Alice), and providing the corresponding log log(n)/2 bits responses for each possibility.

It is also possible to improve the log3(n) factor to log2(n) by varying the cleanup parameter
λ with depth. For example, for depth in the interval [4rd, 4(r + 1)d], one could pick λr = Θ(d ·
log2(n) · r2). Since our focus is mostly on improving the polynomial dependence in d where there
is still room for improvement, we do not make an effort here to improve the polylog terms.

6.3 Bounds on Step Sizes (Proof of Lemma 6.9)

Let us abbreviate τ = τm and note that at time τ a new phase starts for Alice. By construction, this
means that the current rectangle X(τ )×Y (τ ) determined by F(τ ) is 4-wise clean with parameter λ,
and since Alice is in step 3(a) at the start of a new phase, a(τ+1) is chosen to be the (normalized)
component of η ⊙ v(τ ) that is orthogonal to previous directions a(1), . . . ,a(τ ).

For each r = 1, . . . , τ + 1, let β(r) :=
〈
η ⊙ v(τ ),a(r)

〉
be the length of η ⊙ v(τ ) along direction

a(r). Each β(r) is F(τ )-measurable (i.e., it is determined by F(τ )) and η⊙v(τ ) =
∑

r≤τ+1 β
(r) ·a(r).

In this case, we have

E

[(
∆z

(τ+1)
2

)2 ∣∣∣∣F(τ )

]
= E

[〈
u(τ+1) − u(τ ), η ⊙ v(τ )

〉2 ∣∣∣∣F(τ )

]

= E



(

τ+1∑

r=1

β(r) ·
〈
u(τ+1) − u(τ ),a(r)

〉)2
∣∣∣∣∣∣
F(τ )


 . (6.2)

Similar to the level-one proof, the components of u(τ+1) and u(τ ) are roughly the same along
any of the previous directions a(1), . . . ,a(τ ) and so they almost cancel out and the major quantity
is in the direction a(τ+1). This follows since, in all the previous steps r ≤ τ , Alice has already fixed〈
x

•

⊗ x,a(r)
〉

with precision 2−L. This implies that for any X(τ ) and X(τ+1) that are determined

by F(τ+1), the inner product with all the previous a(1), . . . ,a(τ ) is fixed with precision 2−L over
the choice of x. Formally, by Fact 6.4, we have that for any x ∈ X(τ ) and x′ ∈ X(τ+1), it holds

that
∣∣∣
〈
x

•

⊗ x,a(r)
〉
−
〈
x′

•

⊗ x′,a(r)
〉∣∣∣ ≤ 2−L for all r ≤ τ . In particular, since u(τ ) = σ(X(τ )) and

u(τ+1) = σ(X(τ+1)) are the corresponding centers of mass, we have that

∣∣∣
〈
u(τ+1) − u(τ ),a(r)

〉∣∣∣ ≤ 2−L for all r ≤ τ . (6.3)

On the other hand, since X(τ+1) ⊆ X(τ ) ⊆ X(0) = [−T, T ]n and a(τ+1) is a unit direction, we
have ∣∣∣

〈
u(τ+1) − u(τ ),a(τ+1)

〉∣∣∣ ≤
∥∥∥u(τ+1) − u(τ )

∥∥∥ ≤ 2nT. (6.4)
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Similarly, noting that η is a sign matrix, we can bound

∣∣∣β(r)
∣∣∣ =

∣∣∣
〈
η ⊙ v(τ ),a(r)

〉∣∣∣ ≤
∥∥∥η ⊙ v(τ )

∥∥∥ ≤
∥∥∥v(τ )

∥∥∥ ≤ nT for all r ≤ τ + 1. (6.5)

Expanding the square in (6.2) and plugging these estimates to each one of the (τ + 1)2 terms gives

E

[(
∆z

(τ+1)
2

)2 ∣∣∣∣F(τ )

]
≤ E

[(
β(τ+1)

)2 〈
u(τ+1) − u(τ ),a(τ+1)

〉2
+ ((τ + 1)2 − 1) · 2(nT )3

2L

∣∣∣∣F(τ )

]

≤
(
β(τ+1)

)2
E

[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
+ 12n7T 3 · 2−L, (6.6)

where the second line follows from Claim 6.7.
We now bound the term outside the expectation by the change in the center of mass v(·) and

the term inside the expectation by the fact that the set is 4-wise clean.

Term Outside the Expectation. Recall that a(τ+1) is chosen to be the (normalized) component
of η ⊙ v(τ ) that is orthogonal to the span of a(1), . . . ,a(τ ). Since η ⊙ v(τm−1) is in the span of
a(1), . . . ,a(τm−1+1) and τm−1 + 1 ≤ τ = τm, it is orthogonal to a(τ+1). Hence

β(τ+1) =
〈
η ⊙ v(τ ),a(τ+1)

〉
=
〈
η ⊙

(
v(τ ) − v(τm−1)

)
,a(τ+1)

〉
.

Since a(τ+1) is a unit direction and η is a sign matrix, this implies that

(
β(τ+1)

)2
≤
∥∥∥v(τ ) − v(τm−1)

∥∥∥
2
. (6.7)

Term Inside the Expectation. Recall that Alice is in step 3(a), she sends
〈
x

•

⊗ x,a(τ+1)
〉

with

precision 2−L at time τ , and thus the same inner product with a(τ+1) is fixed with precision 2−L

for every point in X(τ+1) determined by F(τ+1). Thus

〈
u(τ+1),a(τ+1)

〉2
=

(
E

x∼γ

[〈
x

•

⊗ x,a(τ+1)
〉 ∣∣∣x ∈X(τ+1)

])2

=

(〈
x

•

⊗ x,a(τ+1)
〉

+ E
x∼γ

[
εx

∣∣∣x ∈X(τ+1)
])2

(|εx| ≤ 2−L is the truncation error by Fact 6.4)

≤
〈
x

•

⊗ x,a(τ+1)
〉2

+ 2−2L + 21−L ·
∣∣∣
〈
x

•

⊗ x,a(τ+1)
〉∣∣∣

≤
〈
x

•

⊗ x,a(τ+1)
〉2

+ nT · 22−L, (6.8)

where the last line follows from
∣∣∣
〈
x

•

⊗ x,a(τ+1)
〉∣∣∣ ≤

∥∥∥x
•

⊗ x
∥∥∥ and x ∈X(0) = [−T, T ]n.

Final Bound. Since (u(r))r is a matrix-valued martingale and thus E
[
u(τ+1)

∣∣F(τ )
]

= u(τ ), we
have

E

[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
= E

[〈
u(τ+1),a(τ+1)

〉2
−
〈
u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
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Then by (6.8), we upper bound the right hand side by

nT · 22−L + E
x∼γ

[〈
x

•

⊗ x,a(τ+1)
〉2
−
〈
u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
.

Since X(τ ) is 4-wise clean with parameter λ, it can be bounded by nT · 22−L + λ:

E

[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
≤ nT · 22−L + λ (6.9)

Putting everything together, we have

E

[(
∆z

(τ+1)
2

)2 ∣∣∣∣F(τ )

]
≤
(
β(τ+1)

)2
E

[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣∣F(τ )

]
+ 12n7T 3 · 2−L (by (6.6))

≤
(
β(τ+1)

)2
·
(
nT · 22−L + λ

)
+ 12n7T 3 · 2−L (by (6.9))

≤ λ ·
(
β(τ+1)

)2
+ n3T 3 · 22−L + 12n7T 3 · 2−L (by (6.5))

≤ λ ·
∥∥∥v(τ ) − v(τm−1)

∥∥∥
2

+ n3T 3 · 22−L + 12n7T 3 · 2−L (by (6.7))

≤ λ ·
∥∥∥v(τ ) − v(τm−1)

∥∥∥
2

+ 16n7T 3 · 2−L.

This completes the proof of the first statement in the lemma.
For the moreover part, let us condition on the event τm−1 < t < τm where Alice speaks at

time t. Note that such t must all lie in the same phase of the protocol where Alice is the only one
speaking. So, Bob’s center of mass does not change from the time τm−1 till t, i.e., v(t+1) = v(τm−1).
Thus we have

∆z
(t+1)
2 =

〈
u(t+1) − u(t), η ⊙ v(τm−1)

〉
. (6.10)

Analogous to (6.3), the component of Alice’s center of mass along the previous directions are fixed
with precision 2−L. Thus by Fact 6.4,

∣∣∣
〈
u(t+1) − u(t),a(r)

〉∣∣∣ ≤ 2−L for all r ≤ t. (6.11)

Furthermore, by construction, η ⊙ v(τm−1) lies in the space spanned by a(1), . . . ,a(τm−1+1). Note
that τm−1 + 1 ≤ t. Similar to the previous analysis, for each r = 1, . . . , t, let β(r) :=

〈
η ⊙ v(t),a(r)

〉

be the length of η ⊙ v(t) along direction a(r). Then (6.5) also holds here. Therefore

∣∣∣∆z
(t+1)
2

∣∣∣ =

∣∣∣∣∣
t∑

r=1

β(r) ·
〈
u(t+1) − u(t),a(r)

〉∣∣∣∣∣ (by (6.10))

≤
t∑

r=1

∣∣∣β(r)
∣∣∣ ·
∣∣∣
〈
u(t+1) − u(t),a(r)

〉∣∣∣ ≤
t∑

r=1

nT · 2−L (by (6.5) and (6.11))

≤ 2n3T · 2−L. (by Claim 6.7)

6.4 Conversion to Second Moment Bounds of the Depth (Proof of Lemma 6.10)

Recall γ∗ = γ(X(0))× γ(Y (0)) and γ(ℓ) = γ(X(D(ℓ))) · γ(Y (D(ℓ))) for each leaf ℓ. The goal of this
subsection is to prove Lemma 6.10.

We first note the following basic fact.
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Fact 6.13.
∑

ℓ γ(ℓ) = γ∗ and

Pr
x∼X(0) ,y∼Y (0)

[
C(x,y) reaches leaf ℓ

]
= γ(ℓ)/γ∗.

Now we apply Theorem 3.1 with k = 2 to relate the LHS of Lemma 6.10 with an entropy-type
bound.

Lemma 6.14. E

[∥∥u(d)
∥∥2 +

∥∥v(d)
∥∥2
]
≤ 4e2

γ∗
∑

ℓ γ(ℓ) · ln2
(

e
γ(ℓ)

)
.

Proof. Let ℓ be a fixed leaf and D = D(ℓ) be its depth. Note that this also fixes the rectangle
X(D)×Y (D) and thus the centers of mass u(D), v(D). Define the indicator function 1ℓ : R2n → {0, 1}
by

1ℓ(x, y) =

{
1 (x, y) ∈ X(D) × Y (D),

0 otherwise.

Then we have

∥∥∥u(D)
∥∥∥
2

+
∥∥∥v(D)

∥∥∥
2

=

∥∥∥∥ E
x∼γ

[
x

•

⊗ x

∣∣∣x ∈ X(D)
]∥∥∥∥

2

+

∥∥∥∥ E
y∼γ

[
y

•

⊗ y

∣∣∣y ∈ Y (D)
]∥∥∥∥

2

=
n∑

i,j=1
i 6=j

(
E

x∼γ

[
xixj

∣∣∣x ∈ X(D)
])2

+
n∑

i,j=1
i 6=j

(
E

y∼γ

[
yiyj

∣∣∣y ∈ Y (D)
])2

=

n∑

i,j=1
i 6=j

(
E

x,y∼γ

[
xixj

∣∣∣ (x,y) ∈ X(D) × Y (D)
])2

+

n∑

i,j=1
i 6=j

(
E

x,y∼γ

[
yiyj

∣∣∣ (x,y) ∈ X(D) × Y (D)
])2

=
2

γ(ℓ)2



∑

S∈([n]
2 )

(
E

x∼γ,y∼γ
[1ℓ(x,y)xS ]

)2

+
∑

S∈([n]
2 )

(
E

x∼γ,y∼γ
[1ℓ(x,y)yS ]

)2




≤ 2

γ(ℓ)2

∑

S∈([2n]
2 )

(
E

w∼γn×γn
[1ℓ(w)wS]

)2

≤ 2

γ(ℓ)2
· 2e2γ(ℓ)2 · ln2

(
e

γ(ℓ)

)
(by Theorem 3.1)

= 4e2 · ln2

(
e

γ(ℓ)

)
.

Therefore taking expectation over a random ℓ, by Fact 6.13, we have

E

[∥∥∥u(d)
∥∥∥
2

+
∥∥∥v(d)

∥∥∥
2
]
≤ 4e2 · E

ℓ

[
ln2

(
e

γ(ℓ)

)]
=

4e2

γ∗
∑

ℓ

γ(ℓ) · ln2

(
e

γ(ℓ)

)
.

Now in the next lemma, we bound the right hand side of Lemma 6.14 in terms of the second
moment of the depth, which immediately proves Lemma 6.10.

Lemma 6.15. Assume that Tn ≤ 2L. Then,
∑

ℓ γ(ℓ) · ln2 (e/γ(ℓ)) ≤ O(1 + γ∗ · L2 E[d2]).
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Proof. By Claim 6.6, and the assumption Tn ≤ 2L each message is of length at most L+log(Tn) ≤
2L. We divide ℓ into two cases based on γ(ℓ):

∑

ℓ:γ(ℓ)<2−3L·D(ℓ)

γ(ℓ) · ln2

(
e

γ(ℓ)

)

≤
∑

ℓ:γ(ℓ)<2−3L·D(ℓ)

2−3L·D(ℓ) · ln2
(
e · 23L·D(ℓ)

)
(x ln2(e/x) is increasing when 0 ≤ x ≤ 0.2)

≤
∞∑

t=1

2−3L·t · 2(9L2t2 + 1) · |{ℓ : D(ℓ) = t}| (since ln2(ab) ≤ 2 ln2(a) + 2 ln2(b))

≤
∞∑

t=1

2−3L·t · 2(9L2t2 + 1) · 2(2L)·t (each message is of length ≤ 2L)

≤
∞∑

t=1

2(9L2t2 + 1) · 2−Lt = O(1) (since L ≥ 2)

and

∑

ℓ:γ(ℓ)≥2−3L·D(ℓ)

γ(ℓ) · ln2

(
e

γ(ℓ)

)
≤

∑

ℓ:γ(ℓ)≥2−3L·D(ℓ)

γ(ℓ) · ln2
(
e · 23L·D(ℓ)

)

≤ 2 · 9L2
∑

ℓ

γ(ℓ)D(ℓ)2 + 2
∑

ℓ

γ(ℓ)

= 18L2γ∗ · E
ℓ

[
D(ℓ)2

]
+ 2

= 18L2γ∗ · E
[
d2
]

+ 2.

Adding up the two estimates above gives the desired bound.

6.5 Second Moment Bounds for the Depth (Proof of Lemma 6.11)

The final ingredient is an estimate for the second moment E[d2]. This subsection is devoted to this
goal and proving Lemma 6.11.

For messages ℓ′ = (c(1), . . . , c(t)), we define γ(ℓ′) = γ(X(t)) · γ(Y (t)) where X(t),Y (t) is de-
fined by the protocol using the messages ℓ′. Note that this definition is consistent with γ(ℓ) from
Subsection 6.4 for a leaf ℓ.

Lemma 6.16. There exists a universal constant α > 0 such that the following holds. Let 0 ≤ d1 <
d2 be two arbitrary integers with d2 − d1 ≥ 2d + 1. Let ℓ∗ = (c(1), . . . , c(d1)) be arbitrary messages
of the first d1 communication steps. Assume 2L ≥ 8n4T 2. Then

Pr [d ≥ d2 | ℓ∗] ≤ α · d22L2

λ · (d2 − d1 − 2d)
+

1

4
· 2−3L·d1

γ(ℓ∗)
.

Proof. Let x,y be sampled from γ conditioned on x ∈ X(0),y ∈ Y (0). Let ℓ be its corresponding
leaf in C and d be the depth of ℓ. By Claim 6.7, ℓ always has finite depth. We extend a(t) = b(t) =
0n×n and X(t) = X(d),Y (t) = Y (d) for all t > d. Then define

k(x,y) =

d2∑

t=d1+1

(〈
x

•

⊗ x,a(t)
〉2

+
〈
y

•

⊗ y, b(t)
〉2)

and K = E
x,y∼γ

[k(x,y) | ℓ∗] ,
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where a(·)’s and b(·)’s depend only on ℓ.13 Equivalently, we can write K as

K = E
x,y∼γ

[
k(x,y)

∣∣∣ (x,y) ∈ X(d1) × Y (d1)
]
,

where X(d1) and Y (d1) are fixed due to ℓ∗.
Observe that for any fixed t ≥ d1, X(t) × Y (t) induced by different ℓ, conditioned on ℓ∗, is a

disjoint partition of X(d1)×Y (d1). Therefore sampling x,y ∼ γ conditioned on (x,y) ∈ X(d1)×Y (d1)

is equivalent to

• first sample random messages ℓ′ = (c(d1+1), . . . , c(t)) conditioned on ℓ∗,

• then sample x,y ∼ γ conditioned on (x,y) ∈X(t) × Y (t) given ℓ′.

Note that we can further expand ℓ′ to a leaf ℓ as a full communication path, and obtain the following
equivalent sampling process:

• Sample a random leaf ℓ conditioned on ℓ∗.

• Sample x,y ∼ γ conditioned on (x,y) ∈X(t) × Y (t) defined by the first t messages of ℓ.

As a result, we have

K =

d2∑

t=d1+1

E
ℓ

[
E

x,y∼γ

[〈
x

•

⊗ x,a(t)
〉2

+
〈
y

•

⊗ y, b(t)
〉2 ∣∣∣∣ (x,y) ∈X(t) × Y (t)

] ∣∣∣∣ ℓ∗
]

= E
ℓ




d2∑

t=d1+1

E
x∼γ

[〈
x

•

⊗ x,a(t)
〉2 ∣∣∣∣x ∈X(t)

]
+ E

y∼γ

[〈
y

•

⊗ y, b(t)
〉2 ∣∣∣∣y ∈ Y (t)

] ∣∣∣∣∣∣
ℓ∗


 .

Observe that there are at most 2d many step 3(a) and 3(b) in ℓ. This means, if d ≥ d2, then from
the (d1 + 1)-th to the d2-th communication steps, there are at least d2− d1− 2d cleanup steps (i.e.,
step 3(c)), each of which contributes at least λ to K. Thus we can lower bound K by

K ≥ λ · (d2 − d1 − 2d) ·Pr [d ≥ d2 | ℓ∗] . (6.12)

On the other hand by Claim 6.7, there are at most n2 non-zero a(·)’s and at most n2 non-zero
b(·)’s in each communication path. Thus

k(x,y) ≤ n2 ·
(

max
x∈X(0)

∥∥∥x
•

⊗ x
∥∥∥
2

+ max
y∈Y (0)

∥∥∥y
•

⊗ y
∥∥∥
2
)

< 2n4T 2. (6.13)

We now obtain another upper bound using Theorem 3.3. Let ℓ = (c(1), . . . , c(d2)) extend ℓ∗ for
the next d2 − d1 messages.14 Then K = Eℓ

[
k(ℓ)

∣∣ ℓ∗
]

where k(ℓ) := Ex,y∼γ

[
k(x,y)

∣∣ ℓ
]
. Note that

ℓ fixes a(·)’s and b(·)’s in k(x,y). Therefore we use kℓ(x,y) to denote k(x,y) with the directions
a(·)’s and b(·)’s fixed by ℓ. We now continue the bound on k(ℓ):

k(ℓ) ≤
∞∑

t=0

Pr
x,y∼γ

[
kℓ(x,y) ≥ t

∣∣ ℓ
]

=
∞∑

t=0

Prx,y∼γ

[
kℓ(x,y) ≥ t, ℓ

]

Prx,y∼γ

[
ℓ
]

13Note that ℓ specifies all the communication messages, which allows us to simulate the protocol and obtain each
a
(·) and b

(·).
14If ℓ becomes a leaf before d2, then we can simply pad dummy messages to it.
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=

∞∑

t=0

min

{
1,

Prx,y∼γ

[
kℓ(x,y) ≥ t, ℓ

]

γ(ℓ)

}
(by the definition of γ(·))

≤
∞∑

t=0

min

{
1,

Prx,y∼γ

[
kℓ(x,y) ≥ t

]

γ(ℓ)

}
. (6.14)

We now analyze Prx,y∼γ

[
kℓ(x,y) ≥ t

]
using Theorem 3.3. Since a(t), b(t) cannot be non-zero

simultaneously, we rearrange the matrices and assume a(d1+1), . . . , a(d
′), b(d

′+1), . . . , b(d
′′) are the

only non-zero matrices where d′′ ≤ d2. Then

kℓ(x,y) =

d′∑

t=d1+1

〈
x

•

⊗ x, a(t)
〉2

+

d′′∑

t=d′+1

〈
y

•

⊗ y, b(t)
〉2

.

Note that a’s (resp., b’s) satisfy the condition in Theorem 3.3. Let 1/κ be the constant15 in Ω in
Theorem 3.3. Hence

Pr
[
kℓ(x,y) ≥ t

]
≤ Pr




d′∑

t=d1+1

〈
x

•

⊗ x, a(t)
〉2
≥ t/2


 + Pr

[
d′′∑

t=d′+1

〈
y

•

⊗ y, b(t)
〉2
≥ t/2

]

≤ 2 exp

{
−1

κ
· t/2

d′ − d1 +
√

t/2

}
+ 2 exp

{
−1

κ
· t/2

d′′ − d′ +
√

t/2

}

(by Theorem 3.3 and assuming t ≥ 196 ·max {d′ − d1, d
′′ − d′})

≤ 4 exp

{
−1

κ
· t/2

d2 − d1 +
√

t/2

}
. (since d1 ≤ d′ ≤ d′′ ≤ d2)

Thus for any t ≥ 196 · (d2 − d1) ≥ 196 ·max {d′ − d1, d
′′ − d′}, we have

Pr
[
kℓ(x,y) ≥ t

]
≤ 4 exp

{
−1

κ
· t/2

d2 − d1 +
√

t/2

}
. (6.15)

For γ(ℓ) ≥ 2−3L·d2 , we plug (6.15) into (6.14) and obtain

k(ℓ) ≤
196·(d2−d1)2∑

t=0

1 +
∑

t>196·(d2−d1)2

min

{
1, 23L·d2+1 · exp

{
−1

κ
· t/2

d2 − d1 +
√
t/2

}}
(by (6.15))

≤ 196 · (d2 − d1)
2 + 1 +

∑

t≥196·(d2−d1)2

min

{
1, 23L·d2+1 · e−

1
κ
· t/2

2
√

t/2

}

≤ 197 · d22 +
∑

t≥1

min

{
1, 23L·d2+1 · e−

√
t/2

2κ

}

≤ α · d22L2, (6.16)

where α is another universal constant. Now we have

K = E
ℓ

[
k(ℓ)

∣∣ ℓ∗
]

=
∑

ℓ

γ(ℓ)

γ(ℓ∗)
· k(ℓ) =

∑

ℓ:γ(ℓ)<2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) +

∑

ℓ:γ(ℓ)≥2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ),

15In particular κ = 56448 suffices from our proof in Appendix B.
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where the first summation can be bounded by

∑

ℓ:γ(ℓ)<2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) ≤ 2−3L·d1

γ(ℓ∗)
·
∑

ℓ

2−3L·(d2−d1) · n4T 2 (by (6.13))

≤ 2−3L·d1

γ(ℓ∗)
· 22L·(d2−d1) · 2−3L·(d2−d1) · n4T 2

(since ℓ∗ is fixed and each message is at most 2L bits)

=
2−3L·d1

γ(ℓ∗)
· 2n4T 2

2L
(since d2 − d1 ≥ 1)

and the second summation is bounded by

∑

ℓ:γ(ℓ)≥2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) ≤

∑

ℓ

γ(ℓ)

γ(ℓ∗)
· α · d22L2 = α · d22L2. (by (6.16))

Then combining (6.12), we have

λ · (d2 − d1 − 2d) ·Pr [d ≥ d2 | ℓ∗] ≤ α · d22L2 +
2−3L·d1

γ(ℓ∗)
· 2n4T 2

2L
.

Assume 2L ≥ 8n4T 2 and d2 − d1 ≥ 2d + 1. Then

Pr [d ≥ d2 | ℓ∗] ≤ α · d22L2

λ · (d2 − d1 − 2d)
+

1

4
· 2−3L·d1

γ(ℓ∗)
.

Corollary 6.17. Assume γ∗ ≥ 3/4, T ≤ n, L ≥ Θ(log(n)), and λ ≥ Θ(dL2 log2(n)). Then for
each k = 0, 1, . . . , 4 log(n), we have

Pr [d ≥ 4kd] ≤ 2−k +
k

n5
.

Proof. We prove the bound by induction on k. The base case k = 0 is trivial. For the inductive
case, let ℓ∗ be the first 4(k − 1)d communication messages. Then we bound

P :=
∑

ℓ∗:γ(ℓ∗)/γ∗<2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·Pr [d ≥ 4kd | ℓ∗]

and

Q :=
∑

ℓ∗:γ(ℓ∗)/γ∗≥2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·Pr [d ≥ 4kd | ℓ∗]

separately.
For P , observe that if k = 1 then ℓ∗ is root of the protocol, thus γ(ℓ∗) = γ∗ and P = 0. On the

other hand, if k ≥ 2, then

P ≤
∑

ℓ∗:γ(ℓ∗)/γ∗<2−3L·4(k−1)d

2−3L·4(k−1)d ≤
∑

ℓ∗
2−3L·4(k−1)d

≤ 22L·4(k−1)d · 2−3L·4(k−1)d (each communication message is at most 2L bits)

= 2−L·4(k−1)d ≤ n−5. (since k ≥ 2 and L ≥ Θ(log(n)))

47



Now we turn to Q. Applying Lemma 6.16 with ℓ∗ and d1 = 4(k − 1)d, d2 = 4kd, we have

Q ≤
∑

ℓ∗:γ(ℓ∗)/γ∗≥2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·
(

16α · k2d2L2

2dR
+

1

4
· 2−3L·4(k−1)d

γ(ℓ∗)

)

≤
∑

ℓ∗

γ(ℓ∗)

γ∗
·
(

8α · k2dL2

λ
+

1

4γ∗

)

= Pr [d ≥ 4(k − 1)d] ·
(

8α · k2dL2

λ
+

1

4γ∗

)

≤ Pr [d ≥ 4(k − 1)d] · 1

2
(since γ∗ ≥ 3/4 and λ ≥ Θ(dL2 log2(n)), k ≤ 4 log(n))

≤
(

2−(k−1) +
k − 1

n5

)
· 1

2
≤ 2−k +

k − 1

n5
. (by induction hypothesis)

By adding up P and Q, we complete the induction.

Given Corollary 6.17 and suitable choice of the parameters, we now prove the second moment
bound.

Proof of Lemma 6.11. With L = Θ(log(n)), T = Θ(
√

log(n)), and λ = Θ(d log4(n)), by Fact 6.3,
we have γ∗ ≥ 3/4. Therefore the second moment of d is

E[d2] ≤
4 log(n)∑

k=0

(4(k + 1)d)2 ·Pr [d ≥ 4kd] + Pr [d ≥ 16d log(n)] · (2n2)2 (by Claim 6.7)

≤
4 log(n)∑

k=0

(4(k + 1)d)2 ·
(

2−k +
k

n5

)
+

(
n−4 +

4 log(n)

n5

)
· (2n2)2 (by Corollary 6.17)

= O(d2).

7 Fourier Growth Reductions For General Gadgets

In this section, we show that Fourier growth bounds of communication protocols for general
(constant-sized) gadgets can be reduced to the bounds of XOR-fiber, and vice versa. This im-
plies that in the study of Fourier growth, they are all equivalent.

Let m1,m2 be two positive integers. Let g : {±1}m1 × {±1}m2 → {±1} be a gadget. Recall
that ν is the uniform distribution over {±1}n. We now use ν1, ν2, ν1, ν2 to denote the uniform
distributions over {±1}m1 , {±1}m2 , ({±1}m1)n, ({±1}m2)n respectively. We define the g-fiber of
communication protocols similar to the XOR-fiber:

Definition 7.1. For any randomized two-party protocol C : ({±1}m1)n × ({±1}m2)n → [−1, 1], its
g-fiber, denoted by C↓g : {±1}n → [−1, 1], is defined by

C↓g(z) = E
x∼ν1,y∼ν2

[C(x,y) | g(xi,yi) = zi, ∀i] ,

where the expectation is also over the internal randomness of C.

To compare the Fourier growth bounds between gadgets, we use L1,k(g, d,m1,m2, n) to denote
the upper bound of the level-k Fourier growth for the g-fiber of an arbitrary randomized communi-
cation protocol C : ({±1}m1)n × ({±1}m2)n → [−1, 1] with at most d bits of communication, where
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g : {±1}m1 × {±1}m2 → {±1} is the gadget. Since randomized protocols are convex combinations
of deterministic protocols of the same cost, using this notation, our main results Theorems 1.2
and 1.3 can be rephrased as

L1,1(XOR, d, 1, 1, n) ≤ O
(√

d
)

and L1,2(XOR, d, 1, 1, n) ≤ O
(
d3/2 log3(n)

)
.

For any set S ⊆ [m1], define xS =
∏

i∈S xi, and similarly for yT with T ⊆ [m2]. Similar to the
standard Fourier representation of Boolean functions, the gadget g, which is a two-party function,
also has Fourier representation:

g(x, y) =
∑

S⊆[m1],T⊆[m2]

ĝ(S, T ) · xSyT , where ĝ(S, T ) = E
x∼ν1,y∼ν2

[g(x,y) · xSyT ] .

For convenience, we will assume g satisfies the following assumption. It’s easy to see that the
XOR gadget satisfies it.

Assumption 7.2. ĝ(S, T ) = 0 if S = ∅ or T = ∅.
Remark 7.3. This assumption is equivalent to the fact that, restricted on any input to Alice’s
side, the remaining function on Bob’s side is balanced, and vice versa.

Even if g does not satisfy the assumption, then we can embed it inside a similar gadget
g′ : {±1}m1+1 × {±1}m2+1 → {±1}, where we XOR the last bit of Alice and the last bit of Bob to
the old gadget g applied to Alice’s first m1 bits and Bob’s first m2 bits, i.e.,

g′(x, y) = xm1+1ym2+1 · g(x≤m1 , y≤m2).

Then g′ satisfies the assumption and inherits most properties of g sufficient for studies in commu-
nication complexity tasks.

Now for a protocol C : ({±1}m1)n × ({±1}m2)n → [−1, 1], it is also a two-party function and
thus admitting similar Fourier representation. We view an input from ({±1}m1)n as indexed by
a tuple in [n] × [m1]. Therefore any subset of ({±1}m1)n is uniquely identified as

⋃
i∈[n] {i} × Si,

where each Si ⊆ [m1]. We use S[n] to denote (Si)i∈[n]. Thus the Fourier coefficients of C can be
written as

Ĉ(S[n], T [n]) := Ĉ


⋃

i∈[n]
{i} × Si,

⋃

i∈[n]
{i} × Ti


 ,

and the Fourier representation of C is

C(x, y) =
∑

S[n],J [n]

Ĉ(S[n], T [n]) ·
∏

i∈[n]
xi,Si ·

∏

j∈[n]
yj,Tj ,

where xi,S =
∏

j∈S xi,j and similar for yj,T .
Under this notation and assuming Assumption 7.2, we can effectively compute the Fourier

coefficients of any g-fiber.

Fact 7.4. Assume gadget g : {±1}m1 × {±1}m2 → {±1} satisfies Assumption 7.2. Then we have

Ĉ↓g(I) =
∑

SI ,T I

Si 6=∅,Ti 6=∅,∀i∈I

Ĉ(SI , T I) ·
∏

i∈I
ĝ(Si, Ti) for any I ⊆ [n],

where we use SI to denote S[n] with Sj fixed to ∅ for all j /∈ I.
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Proof. Observe that

Ĉ↓g(I) = E
z∼ν

[
C↓g(z) ·

∏

i∈I
zi

]

= E
z∼ν

[
E

x∼ν1,y∼ν2
[C(x,y) | g(xi,yi) = zi, ∀i] ·

∏

i∈I
zi

]

= E
z∼ν

[
E

x∼ν1,y∼ν2

[
C(x,y) ·

∏

i∈I
g(xi,yi)

∣∣∣∣∣ g(xi,yi) = zi, ∀i
]]

.

Since ĝ(∅, ∅) = 0 by Assumption 7.2, every pair (x, y) is sampled with the same probability under
the conditional distribution. Thus we get

Ĉ↓g(I) = E
x∼ν1,y∼ν2

[
C(x,y) ·

∏

i∈I
g(xi,yi)

]
.

Now we expand C and g in the Fourier basis and obtain

Ĉ↓g(I) = E
x∼ν1,y∼ν2




 ∑

S[n],T [n]

Ĉ(S[n], T [n])
∏

i∈[n]
xi,Si

∏

j∈[n]
yj,Tj


 ·

∏

i∈I


∑

Si,Ti

ĝ(Si, Ti)xi,Siyi,Ti






= E
x∼ν1,y∼ν2




 ∑

S[n],T [n]

Ĉ(S[n], T [n])
∏

i∈[n]
xi,Si

∏

j∈[n]
yj,Tj




∑

SI ,T I

∏

i∈I
ĝ(Si, Ti)xi,Siyi,Ti






=
∑

SI ,T I

Ĉ(SI , T I) ·
∏

i∈I
ĝ(Si, Ti)

=
∑

SI ,T I

Si 6=∅,Ti 6=∅,∀i∈I

Ĉ(SI , T I) ·
∏

i∈I
ĝ(Si, Ti), (by Assumption 7.2)

as desired.

Now we present the reduction from XOR-fiber to a general g-fiber.

Theorem 7.5. Assume gadget g : {±1}m1 × {±1}m2 → {±1} satisfies Assumption 7.2. Then

L1,k(XOR, d, 1, 1, n) ≤
(

max
S,T
|ĝ(S, T )|

)−k

· L1,k(g, d,m1,m2, n)

≤ 2(m1+m2)·k/2 · L1,k(g, d,m1,m2, n).

Proof. Let C : {±1}n × {±1}n → [−1, 1] be an arbitrary protocol of cost at most d. Then for a
fixed set I ⊆ [n], by Fact 7.4 applied to the XOR gadget, we have

Ĉ↓XOR(I) = Ĉ(1I , 1I). (7.1)

Let S ⊆ [m1] and T ⊆ [m2] maximize |ĝ(S, T )|. Since g satisfies Assumption 7.2, we know S and
T are not empty sets.

Now define a different protocol C′ : ({±1}m1)n×({±1}m2)n → [−1, 1] as follows: After receiving
input x, Alice computes x′i = xi,S for each block xi; and Bob computes similarly y′i = yi,T upon
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receiving input y. Then they execute the protocol C on x′ and y′. That is, C′(x, y) = C(x′, y′).
Therefore, for any I ⊆ [n] and SI , T I satisfying Si 6= ∅, Ti 6= ∅ for i ∈ I, we have

Ĉ′(SI , T I) =

{
Ĉ(1I , 1I) Si = S, Ti = T, ∀i ∈ I,

0 otherwise.

Then by (7.1) and Fact 7.4 applied to C′ with gadget g, we have

Ĉ′
↓g(I) = Ĉ(1I , 1I) · ĝ(S, T )|I| = Ĉ↓XOR(I) · ĝ(S, T )|I|.

Now summing over all I ⊆ [n] of size k, we have

L1,k(C↓XOR) =
∑

I⊆[n]:|I|=k

∣∣∣Ĉ↓XOR(I)
∣∣∣ = |ĝ(S, T )|−k ·

∑

I⊆[n]:|I|=k

∣∣∣Ĉ′
↓g(I)

∣∣∣ = |ĝ(S, T )|−k · L1,k(C′
↓g)

≤ |ĝ(S, T )|−k · L1,k(g, d,m1,m2, n). (since C′ has cost at most d)

Since C is arbitrary, this proves the first half of Theorem 7.5. To prove the second half, we use an
averaging argument and Parseval’s identity on g:

|ĝ(S, T )| ≥
√

2−m1−m2

∑

S′,T ′
ĝ(S′, T ′)2 =

√
2−m1−m2 .

Using similar analysis, we also have a reduction from a general g-fiber to XOR-fiber.

Theorem 7.6. Assume gadget g : {±1}m1 × {±1}m2 → {±1} satisfies Assumption 7.2. Then

L1,k(g, d,m1,m2, n) ≤


∑

S,T

|ĝ(S, T )|




k

· L1,k(XOR, d, 1, 1, n)

≤ 2(m1+m2)·k/2 · L1,k(XOR, d, 1, 1, n).

Proof. Let C : ({±1}m1)n × ({±1}m2)n → [−1, 1] be an arbitrary protocol of cost at most d. Then
for a fixed set I ⊆ [n], by Fact 7.4 applied to gadget g and using Assumption 7.2, we have

Ĉ↓g(I) =
∑

SI ,T I

Ĉ(SI , T I) ·
∏

i∈I
ĝ(Si, Ti).

Therefore

L1,k(C↓g) ≤
∑

I⊆[n]:|I|=k

∑

SI ,T I

∣∣∣Ĉ(SI , T I)
∣∣∣ ·
∣∣∣∣∣
∏

i∈I
ĝ(Si, Ti)

∣∣∣∣∣ .

Now let M =
∑

S,T |ĝ(S, T )|. Let ρ be a distribution over subsets of [m1] × [m2] and its
probability density function is defined as:

ρ(S, T ) = |ĝ(S, T )|/M.

Then we can rewrite L1,k(C↓g) as

L1,k(C↓g) ≤
∑

I⊆[n]:|I|=k

E
(SI ,T I)∼ρI

[∣∣∣Ĉ(SI ,T I)
∣∣∣ ·Mk

]
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= Mk · E
(S[n],T [n])∼ρ[n]


 ∑

I⊆[n]:|I|=k

∣∣∣Ĉ(SI ,T I)
∣∣∣


 . (7.2)

Now we fix an arbitrary (S[n], T [n]) sampled from ρ[n]. Note that Si and Ti are not empty by the
definition of ρ and Assumption 7.2. Then define a different protocol C′ : {±1}n×{±1}n → [−1, 1] as
follows: After receiving input x, Alice samples x′ ∈ ({±1}m1)n uniformly conditioned on x′i,Si

= xi
for all i ∈ [n]; and Bob samples similarly y′ ∈ ({±1}m2)n conditioned on y′i,Ti

= yi for all i ∈ [n].
Then they execute the protocol C on x′ and y′. That is, C′(x, y) = Ex′,y′ [C(x′,y′)]. Therefore, for
any I ⊆ [n], we have

Ĉ′(1I , 1I) = Ĉ(SI , T I).

By Fact 7.4 applied to C′ and the XOR gadget, we have

Ĉ′
↓XOR(I) = Ĉ′(1I , 1I) = Ĉ(SI , T I).

Since C′ has cost at most d, we have

∑

I⊆[n]:|I|=k

∣∣∣Ĉ(SI , T I)
∣∣∣ =

∑

I⊆[n]:|I|=k

∣∣∣Ĉ′
↓XOR(I)

∣∣∣ = L1,k(C′
↓XOR) ≤ L1,k(XOR, d, 1, 1, n).

Putting back to (7.2), we have

L1,k(C↓g) ≤Mk · L1,k(XOR, d, 1, 1, n),

which proves the first half of Theorem 7.6 since C is arbitrary. To prove the second half, we use
Cauchy-Schwarz inequality and Parseval’s identity on g:

M =
∑

S,T

|ĝ(S, T )| ≤
√

2m1+m2

∑

S,T

ĝ(S, T )2 =
√

2m1+m2 .

As a corollary, to study the Fourier growth bounds, we can switch between gadgets conveniently,
as long as the gadgets have small size.

Corollary 7.7. Assume gadgets g : {±1}m1 ×{±1}m2 → {±1} and g′ : {±1}m′
1 ×{±1}m′

2 → {±1}
satisfy Assumption 7.2. Then

L1,k(g, d,m1,m2, n) ≤ 2(m1+m2+m′
1+m′

2)·k/2 · L1,k(g′, d,m′
1,m

′
2, n).

8 Directions Towards Further Improvements

In this section we propose potential directions for further improving our second level bounds.
In Subsection 8.1, we show that better Fourier growth bounds can be obtained from strong lift-
ing theorems in a black-box way. This relies on the Fourier growth reductions in Section 7. In
Subsection 8.2, we examine the bottleneck in our analysis and identify major obstacles within.
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8.1 Better Lifting Theorems Imply Better Fourier Growth

Let f : {±1}n → {±1} be a Boolean function. Let g : {±1}m1 × {±1}m2 → {±1} be a gadget. A
lifting theorem connects the communication complexity of f ◦ g with the query complexity of f .
Some lifting theorems show that a low-cost communication protocol can be simulated by a low-cost
query algorithm.

To be more precise, let C : ({±1}m1)n × ({±1}m2)n → [−1, 1] be a randomized two-party
protocol. Recall Definition 7.1, the g-fiber of C, denoted C↓g(z) : {±1}n → [−1, 1], is defined by

C↓g(z) = E
x∼ν1,y∼ν2

[C(x,y) | g(xi,yi) = zi, ∀i] .

We say that g satisfies a strong lifting theorem if for all randomized protocols C of small communi-
cation bits, there is a randomized decision tree of small depth that approximates C↓g on each input
with error 1/poly(n) (see e.g., [GPW20]).

Theorem 8.1. Assume gadget g : {±1}m1×{±1}m2 → {±1} satisfies Assumption 7.2. Assume for
any randomized protocol C : ({±1}m1)n×({±1}m2)n → [−1, 1] with at most d bits of communication,
there exists a randomized decision tree T of depth at most D that approximates C↓g with pointwise
error at most 1/nk, i.e.,

|T(z)− C↓g(z)| ≤ n−k ∀z ∈ {±1}n.
Then, for any randomized protocol C′ : {±1}n ×{±1}n → [−1, 1] with at most d bits of commu-

nication, its XOR-fiber C′
↓XOR has level-k Fourier growth

L1,k(C′
↓XOR) ≤

(
max
S,T
|ĝ(S, T )|

)−k

·
√

Dk ·O (log(n))k−1

≤ 2(m1+m2)·k/2 ·
√
Dk · O (log(n))k−1.

As a simple corollary, we see that if the assumption of Theorem 8.1 holds with k = 2, D =
d · polylog(n), and a polylogarithmic-sized gadget g (i.e., 2m1 , 2m2 ≤ polylog(n)), then the second
level Fourier growth of the XOR-fiber of any randomized protocol of cost d is at most d ·polylog(n)
as desired.

We also remark that state-of-the-art lifting results hold with the gadget g being either:

• The inner product on m1 = m2 = O(log(n)) bits [CFK+19]. However, for such g the largest
Fourier coefficient squared is 1/poly(n), which yields a trivial bound in Theorem 8.1.

• The index function with m1 = poly(n), m2 = log(m1) [GPW20].16 In this case the largest
Fourier coefficient squared is 1/m2

1, which again yields a trivial bound in Theorem 8.1.
Nonetheless, even a polynomial improvement on m1, say m1 = n0.01, would give new non-
trivial bounds in Theorem 8.1 and in turn improves our lower bound on the XOR-lift of
Forrelation.

Proof of Theorem 8.1. Let C : ({±1}m1)n × ({±1}m2)n → [−1, 1] be a randomized protocol of cost
at most d. Then by assumption, C↓g can be approximated up to error 1/nk by a randomized
decision tree T of depth at most D. Thus any Fourier coefficient of C↓g and T differs by at most

16For deterministic lifting, a better bound m1 = O(n log(n)) is known [LMM+22], but it doesn’t suffice for our
reduction.
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1/nk. Therefore by the level-k Fourier growth bounds on randomized decision trees [Tal20, SSW21],
we have

L1,k(C↓g) ≤
∑

S⊆[n]:|S|=k

(
n−k +

∣∣∣T̂(S)
∣∣∣
)
≤
√
Dk · O(log(n))k−1.

Since C is arbitrary, the claimed bound for C′
↓XOR follows from Theorem 7.5.

8.2 Sums of Squares of Quadratic Forms for Pairwise Clean Sets

In our analysis for the level-two bound, we showed that one can transform a general protocol to a
4-wise clean protocol with parameter λ = d · polylog(n) by adding O(d) additional cleanup steps
in expectation. If one could show that with essentially the same number of steps, one could take
λ = polylog(n), then we would obtain the optimal level-two bound of d · polylog(n).

We recall that to bound the number of cleanup steps, we rely on a concentration inequality for
sums of squares of orthonormal quadratic forms (Theorem 3.3), which says that if M1, . . . ,Mm are
matrices with zero diagonal and form an orthonormal set when viewed as n2 dimensional vectors,

then the random variable q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
satisfies Prx∼γn [q ≥ t] ≤ e−Ω(

√
t) for any t & m2.

Using this tail bound for m = Θ(d) and conditioning on x ∈ X where X is an arbitrary subset of
Rn with Gaussian measure ≈ 2−d, we obtained a bound Ex∼γ [q | x ∈ X] . d2. This shows that

there can be at most O(d) such quadratic forms Mi’s where the value Ex∼γ

[〈
x

•

⊗ x,Mi

〉2 ∣∣∣∣x ∈ X

]

can be larger than d and hence, the reason we can only take λ ≈ d. We note that the argument
just described is for the non-adaptive setting, while in our case the Mi’s are also being chosen
adaptively, so additional work is needed.

The next example shows that the aforementioned statement is tight even in the non-adaptive
setting where the Mi’s are fixed: in particular, there is a set X of large measure and ≈ d such
orthonormal quadratic forms where the above expectation after conditioning on x ∈ X is Θ(d2).

Example 8.2. For 1 ≤ i < j ≤
√
d, let Mij = Eij for i < j where Eij denotes the n × n matrix

where only the (i, j) entry is one. Note that the matrices Mij form an orthonormal set and they all
have a zero diagonal. Let X =

{
x ∈ Rn

∣∣ |xi| & d1/4 for all i ≤ d1/2
}

. Then, the Gaussian measure

γ(X) = 2−Θ(d) but

E
x∼γ


 ∑

1≤i<j≤
√
d

〈
x

•

⊗ x,Mij

〉2
∣∣∣∣∣∣
x ∈ X


 = Θ(d2).

Note that the set X in the example above is not pairwise clean and for our application, one
can get around it by first ensuring that the protocol is pairwise clean and then proceeding with the
4-wise cleanup process. Motivated by this, we speculate that when the set is pairwise clean, then
the expected value of the sum of squares of orthonormal quadratic forms is much smaller unlike
the example above. Assuming such a statement and combining it with our ideas for handling the
adaptivity suggests a potential way of improving the level-two bounds.
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A Gap-Hamming Lower Bounds

As an immediate consequence of Theorem 1.5, we can derive optimal lower bounds against the
Gap-Hamming problem as in Theorem 1.6.

Proof of Theorem 1.6. Set ρ = 10/
√
n. Fix the randomness to be any r ∈ {0, 1}∗ and let Cr refer

to the deterministic protocol C with randomness fixed to r. Suppose d ≤ τ ·n for a sufficiently small
constant τ , we apply Theorem 1.5 on ρ as well as −ρ, and apply triangle inequality to conclude
that ∣∣∣∣∣ E

z∼π⊗n
ρ

[hr(z)]− E
z∼π⊗n

−ρ

[hr(z)]

∣∣∣∣∣ ≤ 2 · O
(√

d/n
)
< 1/9.

Let σρ be the distribution of (x,y) induced by sampling x ∼ π⊗n
0 and z ∼ π⊗n

ρ and letting

y = x⊙ z, similarly define σ−ρ but with z ∼ π⊗n
−ρ . We now expand hr(z) in terms of C(x, y), take

an expectation over r and apply triangle inequality to conclude that
∣∣∣∣ E
(x,y)∼σρ

[C(x,y)]− E
(x,y)∼σ−ρ

[C(x,y)]

∣∣∣∣ < 1/9. (A.1)
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Hoeffding’s inequality implies that for z ∼ π⊗n
ρ , we have

Pr

[∣∣∣∣∣
∑

i

zi − 10
√
n

∣∣∣∣∣ ≥ 5
√
n

]
≤ 2 exp

{
−2·(5√n)2

4n

}
< 1/18.

This implies that a random (x,y) ∼ σρ is a yes instance of the Gap-Hamming problem with
probability larger than 17/18. Let σ̃ρ denote σρ conditioned on Yes instances of the Gap-Hamming
problem. Similarly define σ̃−ρ to be σ−ρ conditioned on No instances of the Gap-Hamming problem.
Since C(x, y) has outputs in [−1, 1], we have

∣∣∣∣ E
(x,y)∼σρ

[C(x,y)] − E
(x,y)∼σ̃ρ

[C(x,y)]

∣∣∣∣ < 1/9

and ∣∣∣∣ E
(x,y)∼σ−ρ

[C(x,y)]− E
(x,y)∼σ̃−ρ

[C(x,y)]

∣∣∣∣ < 1/9.

This, along with (A.1) and triangle inequality, implies that

∣∣∣∣ E
(x,y)∼σ̃ρ

[C(x,y)]− E
(x,y)∼σ̃−ρ

[C(x,y)]

∣∣∣∣ < 1/3.

However, this contradicts the assumption that the protocol C solves the Gap-Hamming problem
with advantage at least 2/3.

B Concentration for Sum of Squares of Quadratic Forms

Here we prove Theorem 3.3. While it follows from [ALM20, Theorem 6] which is a Banach space-
valued version of the Hanson-Wright inequality, in our setting a weaker statement suffices, for which
we give a self-contained proof following [ALM20].

For any integer n ≥ 1, we use Bn = {x ∈ Rn | ‖x‖ ≤ 1} to denote the unit Euclidean ball in Rn.
For any two sets A,B ⊆ Rn, we define A + B = {x + y |x ∈ A, y ∈ B}. For any set A ∈ Rn and
any number t ∈ R, we define tA = {t · x |x ∈ A}. Let Φ: R→ [0, 1] be the cumulative distribution
function of the standard Gaussian distribution, i.e., Φ(a) = 1√

2π

∫ a
−∞ e−u2/2du.

Now we cite the famous Gaussian isoperimetric inequality [Bor75, ST78].

Theorem B.1 (Gaussian Isoperimetric Inequality). Let A ⊆ Rn be a measurable set and assume
γn(A) ≥ Φ(a) for some a ∈ R. Then for any t ≥ 0, we have γn(A + tBn) ≥ Φ(a + t).

In particular, if γn(A) ≥ 1/2, then we can pick a = 0 in Theorem B.1 and have

γn(A + tBn) ≥ Φ(t) ≥ 1− e−t2/2. (B.1)

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Note that the bound is trivial when m = 0. Thus from now on we assume
without loss of generality m ≥ 1.

For each x ∈ Rn, let Kx =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
. We first write Kx as a squared Euclidean norm

of a vector:

• For i ∈ [m], we view Mi as a length-n2 row vector.
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• Let M ∈ Rm×n2
be a matrix where the i-th row is Mi.

Therefore we have

Kx =
∥∥∥M(x

•

⊗ x)
∥∥∥
2

= ‖M(x⊗ x)‖2 , (B.2)

where ⊗ is the standard tensor product and the second equality follows since each Mi has zero
diagonal.

Define f(y) = ‖M(y ⊗ y)‖, g(y) = supz∈Sn−1 ‖M(z ⊗ y)‖, and h(y) = supz∈Sn−1 ‖M(y ⊗ z)‖.
Let F = Ey∼γn [f(y)], G = Ey∼γn [g(y)], and H = Ey∼γn [h(y)] be their mean. Define the set

A = {y ∈ R
n | f(y) < 6F, g(y) < 6G, and h(y) < 6H} .

By Markov’s inequality and union bound, we have the Gaussian measure of A is γn(A) ≥ 1/2.
Then by (B.1), we have

γn(A + tBn) ≥ 1− e−t2/2 holds for all t ≥ 0. (B.3)

Now for an arbitrary x ∈ A + tBn, we write x = y + tz where y ∈ A and z ∈ Bn. Then

‖M(x⊗ x)‖ ≤ ‖M(y ⊗ y)‖+ t · ‖M(y ⊗ z)‖+ t · ‖M(z ⊗ y)‖+ t2 · ‖M(z ⊗ z)‖
< 6F + 6t(G + H) + t2V,

where V = supz∈Sn−1 ‖M(z ⊗ z)‖. This, together with (B.2) and (B.3), implies

Pr
x∼γn

[
Kx ≥

(
6F + 6t(G + H) + t2V

)2] ≤ Pr
x∼γn

[x /∈ A + tBn] = 1− γn(A + tBn) ≤ e−t2/2. (B.4)

Now we calculate F,G,H, V in the following claim, the proof of which will be presented later.

Claim B.2. F ≤
√

2m, G,H ≤ √m, and V ≤ 1.

Plugging Claim B.2 into (B.4), we have

Pr
x∼γn

[
Kx ≥

(
6
√

2m + 12t
√
m + t2

)2]
≤ e−t2/2 holds for any t ≥ 0.

Now we set

t =
1

168

√
r

m +
√
r
≥ 0

and assume r ≥ 98m. Then 6
√

2m ≤ 6
7

√
r, 12t

√
m ≤ 1

14

√
r, and t2 ≤ 1

14

√
r. Therefore

Pr
x∼γn

[
m∑

i=1

〈
x

•

⊗ x,Mi

〉2
≥ r

]
= Pr

x∼γn
[Kx ≥ r] ≤ e−t2/2 = exp

{
− 1

56448
· r

m +
√
r

}
.

Finally we present the missing proof of Claim B.2.

Proof of Claim B.2. First we observe that rows of M are unit vectors, therefore

‖M‖ =
√
m. (B.5)

In addition, rows of M are orthogonal to each other, therefore the operator norm of M is

‖M‖op ≤ 1. (B.6)

We index the columns of M by [n]2 and let the column vectors of M be (bi,j)i,j∈[n]. Since rows
of M are flattened matrices with zero diagonal, we have

bi,i = 0m for all i ∈ [n]. (B.7)

Now we bound F,G,H, V separately.
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Bounding F . Observe that

F 2 =

(
E

y∼γn
[‖M(y ⊗ y)‖]

)2

≤ E
y∼γn

[
‖M(y ⊗ y)‖2

]
= E

y∼γn



∥∥∥∥∥∥
∑

i,j∈[n]
bi,jyiyj

∥∥∥∥∥∥

2
 (by convexity)

= E
y∼γn


 ∑

i,j,i′,j′∈[n]

〈
bi,j, bi′,j′

〉
yiyjyi′yj′


 =

∑

i,j∈[n]

(
‖bi,j‖2 + 〈bi,j, bj,i〉

)
(by (B.7))

≤
∑

i,j∈[n]

(
‖bi,j‖2 +

1

2

(
‖bi,j‖2 + ‖bj,i‖2

))
= 2

∑

i,j∈[n]
‖bi,j‖2

= 2 ‖M‖2 = 2m. (by (B.5))

Bounding G and H. Fix an arbitrary y ∈ Rn and we first simplify g(y). For each i ∈ [n], define
vector bi =

∑
j∈[n] bi,jyj and let B be the matrix with bi’s as column vectors. Then

g(y) = sup
z∈Sn−1

∥∥∥∥∥∥
∑

i,j∈[n]
bi,jziyj

∥∥∥∥∥∥
= sup

z∈Sn−1

∥∥∥∥∥∥
∑

i∈[n]
bizi

∥∥∥∥∥∥
= ‖B‖op ≤ ‖B‖ =

√√√√√
∑

i∈[n]

∥∥∥∥∥∥
∑

j∈[n]
bi,jyj

∥∥∥∥∥∥

2

. (B.8)

Now we bound G:

G2 =

(
E

y∼γn
[g(y)]

)2

≤ E
y∼γn

[
g(y)2

]
(by convexity)

≤ E
y∼γn


∑

i∈[n]

∥∥∥∥∥∥
∑

j∈[n]
bi,jyj

∥∥∥∥∥∥

2
 = E

y∼γn


∑

i∈[n]

∑

j,j′∈[n]

〈
bi,j, bi,j′

〉
yjyj′


 (by (B.8))

=
∑

i,j∈[n]
‖bi,j‖2 = ‖M‖2 = m. (by (B.5))

Similar argument works for H.

Bounding V . Note that for any z ∈ Sn−1, we have ‖z ⊗ z‖ = ‖z‖2 = 1. Thus, by (B.6), we have

V = sup
z∈Sn−1

‖M(z ⊗ z)‖ ≤ ‖M‖op ≤ 1.
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