
ar
X

iv
:2

30
1.

13
54

1v
2

 [
cs

.D
S]

 1
9

Se
p

20
23

Singular Value Approximation and

Sparsifying Random Walks on Directed Graphs

AmirMahdi Ahmadinejad

Amazon∗

ahmadi@alumni.stanford.edu

John Peebles

Apple

peebles@apple.com

Edward Pyne†

MIT

epyne@mit.edu

Aaron Sidford‡

Stanford University

sidford@stanford.edu

Salil Vadhan§

Harvard University

salil vadhan@harvard.edu

September 21, 2023

Abstract

In this paper, we introduce a new, spectral notion of approximation between directed
graphs, which we call singular value (SV) approximation. SV-approximation is stronger than
previous notions of spectral approximation considered in the literature, including spectral ap-
proximation of Laplacians for undirected graphs [ST04], standard approximation for directed
graphs [CKP+17], and unit-circle (UC) approximation for directed graphs [AKM+20]. Further,
SV approximation enjoys several useful properties not possessed by previous notions of approx-
imation, e.g., it is preserved under products of random-walk matrices and bounded matrices.

We provide a nearly linear-time algorithm for SV-sparsifying (and hence UC-sparsifying)
Eulerian directed graphs, as well as ℓ-step random walks on such graphs, for any ℓ ≤ poly(n).
Combined with the Eulerian scaling algorithms of [CKK+18], given an arbitrary (not neces-
sarily Eulerian) directed graph and a set S of vertices, we can approximate the stationary
probability mass of the (S, Sc) cut in an ℓ-step random walk to within a multiplicative error of
1/ polylog(n) and an additive error of 1/poly(n) in nearly linear time. As a starting point for
these results, we provide a simple black-box reduction from SV-sparsifying Eulerian directed
graphs to SV-sparsifying undirected graphs; such a directed-to-undirected reduction was not
known for previous notions of spectral approximation.

∗The work was started prior to joining Amazon and does not relate to Amazon
†Supported by an Akamai Presidential Fellowship.
‡Supported by a Microsoft Research Faculty Fellowship, NSF CAREER Award CCF-1844855, NSF Grant CCF-

1955039, a PayPal research award, and a Sloan Research Fellowship.
§Supported by a Simons Investigator Award.

http://arxiv.org/abs/2301.13541v2

Contents

1 Introduction 2

1.1 Singular-Value Approximation . 5
1.2 Comparison to Previous Notions of Approximation 6
1.3 Properties of SV Approximation . 9
1.4 Algorithmic Results . 11
1.5 Open Problems . 13
1.6 Roadmap . 13

2 Preliminaries 14

3 Singular Value Approximation 14

3.1 Matrix Approximation . 14
3.2 Equivalent Definitions of SV Approximation . 16
3.3 Comparison to Prior Notions of Approximation . 18
3.4 Properties of SV Approximation . 18

4 Sparsification 20

4.1 Cycle and Expander Decompositions . 22
4.2 Sparsifying Bipartite Expanders . 23
4.3 Sparsifying a Constant Fraction of Edges . 25
4.4 Nearly Linear-Sized Sparsifers . 26
4.5 Derandomized Square Sparsification . 27
4.6 Sparsification of Eulerian Walks . 28
4.7 Sparsification of Directed Random Walks . 32

5 Squaring-based Solver for Normal Directed Laplacian Systems 34

A SV Approximation Proofs 42

A.1 Equivalences . 43
A.2 Properties . 47
A.3 Separations . 51

B Singular Values Facts 55

C Stationary Distribution Facts 57

1

1 Introduction

Random walks on graphs play a central role in theoretical computer science. In algorithm de-
sign, they have found a wide range of applications including, maximum flow [CKM+11, LRS13,
KLOS14, vdBGJ+22, vdBLL+21], sampling random spanning trees [KM09,MST15], and cluster-
ing and partitioning [AM85, KVV04, ACL06, OSV12]. Correspondingly, new algorithmic results
on efficiently accessing properties of random walks have the potential for broad implications. In
particular, in complexity theory, such algorithms have attracted attention as a promising approach
to derandomizing space-bounded computation [SZ99,Rei08,RTV06,AKM+20].

In this paper we consider the well-studied problem of estimating the ℓ-step random walk on a
directed graph. Given a strongly connected, weighted, directed graph G = (V,E,w), its associated
random walk matrix W ∈ R

V×V , and an integer ℓ > 0, we seek to approximate key properties of
the ℓ-step random walk, Wℓ, more efficiently than we could computing Wℓ explicitly. For example,
we may wish to estimate individual entries of Wℓ, the conductance or cut probabilities of subsets
of vertices, or (expected) hitting times between pairs of vertices.

In recent years, graph sparsification has emerged as a powerful approach for efficiently solving
such problems. When the graph is undirected, we look for spectral sparsifiers of the Laplacian
L = D − A, where D is the diagonal matrix of degrees and A is the adjacency matrix. It is
known that for all ǫ ∈ (0, 1), that there exist ǫ-spectral sparsifiers with sparsity Õ(|V |ǫ−2); that is,
a Laplacian matrix L̃ with Õ(|V |ǫ−2) non-zero entries such that

(1− ǫ)x⊤Lx ≤ x⊤L̃x ≤ (1 + ǫ)x⊤Lx for all x ∈ R
V . (1)

Spectral sparsifiers can be computed in nearly linear time [ST04, SS08, BSS12, PS14]. Nor-
malizing such a sparsifier L̃ by D−1/2 on both sides, we obtain a spectral approximation of the
normalized Laplacian D−1/2LD−1/2, which directly gives information about random walks because
it is equivalent (up to a change of basis) to the random-walk Laplacian, LD−1 = I −W. Indeed,
from any spectral sparsifier L̃ satisfying Equation (1), we can approximate any desired cut (S, Sc)
in the original graph in nearly linear time by evaluating x⊤L̃x for x equal to the indicator vector of
S. Furthermore, there are nearly linear-time algorithms for computing sparse ǫ-spectral sparsifiers
corresponding to the ℓ-step random walk, i.e., sparsifiers of the weighted graph whose random-walk
Laplacian is I−Wℓ, for any polynomial length ℓ [CCL+15,MRSV21].

Obtaining analogous results for sparsifying I−Wℓ for directed graphs has been more challeng-
ing. For a directed graph, we consider the directed Laplacian [CKP+16] L = Dout − A⊤ where
Dout is the associated diagonal matrix of out-degrees and A⊤ is the transpose of the associated
weighted adjacency matrix, A. In comparison to their symmetric counterparts for undirected
graphs, nearly linear-time sparsification algorithms (which approximate more than the associated
undirected graph) were developedl more recently [CKP+17,CGP+18] and have yet to be extended
to handle long random walks. Here we describe challenges in sparsifying I−Wℓ for directed graphs.

Unknown Stationary Distribution. While the kernel of an undirected Laplacian matrix is the
all ones vector, computing the kernel of a directed Laplacian matrix L corresponds to computing
the stationary distribution π of the random walk on the directed graph (LD−1

outπ = 0). Without
explicitly knowing the kernel, it is not known how to efficiently perform any kind of useful sparsifica-
tion or approximately solve linear systems in L. This difficulty was overcome in [CKP+16,AJSS19]
which provide reductions from solving general directed Laplacian systems to the case where the
graph is Eulerian, meaning that every vertex has the same in-degree as out-degree. In Eulerian
graphs, the stationary distribution is simply proportional to the vertex degrees and the all ones
vector is both the left and right kernels of the associated directed Laplacian.

2

Defining Approximation. Undirected Laplacians L are symmetric and positive semidefinite
(PSD), i.e., x⊤Lx ≥ 0 for all x. This leads to the natural Spielman–Teng [ST04] definition of
multiplicative approximation given in Equation (1). That is, we say that L̃ is an ε-approximation
of L if (1 − ǫ)L � L̃ � (1 + ǫ)L, where � is the Löwner order on PSD matrices. However,
even though Laplacians of directed graphs are potentially asymmetric, the quadratic form x⊤Lx
depends only on a symmetrization of the Laplacian (x⊤Lx = x⊤((L+L⊤)/2)x). Consequently, the
quadratic form discards key information about the associated directed graph (e.g. the quadratic
form of a directed cycle and an undirected cycle are the same). Thus, defining approximation for
directed graphs (even Eulerian ones) is more challenging than for undirected graphs and a more
complex notion of approximation was introduced in [CKP+16]. This additional complexity requires
designing new sparsification algorithms that take into account the directedness of the graph.

Preservation under Powering. Even for undirected graphs, the standard definition of spectral
approximation in Equation (1) is not preserved under powering. That is, I− W̃ ≈ I−W does not

imply that I − W̃2 ≈ I −W2. Indeed, in graphs that are bipartite (and connected), I −W2 has
a two-dimensional kernel, corresponding to the ±1 eigenvalues of W, whereas I −W has only a
one-dimensional kernel. Standard spectral approximation requires perfect preservation of the kernel
of I −W, but not of I −W2. Graphs that are nearly bipartite (i.e., where W has an eigenvalue
near −1) can also experience a large loss in quality of approximation when squaring.

Cheng et al. [CCL+15] addressed this issue by (implicitly) strengthening spectral approximation

to require that I + W̃ ≈ I + W in addition to I − W̃ ≈ I −W. This notion of approximation
enabled algorithms for sparsifying I −Wℓ for undirected graphs in randomized near-linear time
[CCL+15, MRSV21] and deterministic logspace [MRSV21, DMVZ20]. For directed graphs, the
problem comes not just from bipartiteness, but general periodic structures (e.g. a directed cycle),
which giveW complex eigenvalues on or near the unit circle. This led Ahmadenijad et al. [AKM+20]

to propose the notion of unit-circle (UC) approximation, which amounts to requiring that I− zW̃
approximate I−zW for all complex numbers z of magnitude 1, with respect to the standard notion
of approximation for directed graphs proposed in [CKP+16]. UC approximation has the property
that it is preserved under taking arbitrary powers, with no loss in the approximation error. As
such, sparsification techniques for UC and stronger notions must exactly preserve periodicity.

Preservation of Periodic Structures. Sparsifying directed graphs under UC approximation
is more challenging due to the need to preserve periodic structures in the graph, which can be
easily lost or introduced by common sparsification techniques such as random sampling [SS08] or
patching to fix degrees. Thus in [AKM+20], it was only shown how to partially sparsify the square

of a graph; that is obtain a graph with random-walk matrix W̃2 such that I−W̃2 UC-approximates

I−W2, but has fewer edges than the true square W2. Still, the number of edges in W̃2 is larger
than in W by at least a constant factor, so if we iterate to obtain a sparse approximation of Wℓ,
the number of edges will grow by a factor of clog ℓ = poly(ℓ) and our approximations will quickly
become dense. This was affordable in the deterministic logspace algorithms of [AKM+20], but is
not in our setting of nearly linear time.

Our Work

In this paper we provide several tools for overcoming these challenges, advancing both algorithmic
and structural tools regarding graphs sparsification. First, we introduce a new notion of directed
graph approximation called singular value (SV) approximation. We then show that that this notion

3

of approximation strictly strengthens unit-circle approximation and show that it has a number of
desirable properties, such as preservation under not only powers but arbitrary products of random-
walk matrices, and implying approximation of stationary probabilities of all cuts. Then we provide
an efficient near linear-time randomized algorithm for computing nearly linear-sized SV-sparsifiers
for arbitrary Eulerian directed graphs; this implies the first proof that nearly linear-sized UC-
sparsifiers exist for Eulerian directed graphs. As a starting point for this result, we provide a
simple reduction from SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs;
no such reduction was known for the previous, weaker forms of spectral approximation of directed
graphs, and shows that SV approximation is a significant strengthening even for undirected graphs.

Combined with the Eulerian scaling algorithms of [CKK+18], we obtain an algorithm for ap-
proximating the stationary probabilities of cuts (as well as “uncuts”) in random walks on arbitrary
directed graphs, which we define as follows:

Definition 1.1 (Cut values). For a strongly connected, weighted digraph G on n vertices, let µ
be the unique stationary distribution of the random walk on G, and let µedge be the stationary
distribution on edges (i, j) of G (i.e., pick i according to µ and j by following an edge from i
proportional to its weight). For subsets S and T of vertices, define:

• CutG(S, T) = Pr(i,j)∼µedge
[i ∈ S, j ∈ T],

• CutG(S) = CutG(S, S
c) = (CutG(S, S

c) + CutG(S
c, S))/2, and

• UncutG(S) = (CutG(S, S) + CutG(S
c, Sc))/2.

If G has random-walk matrix W, we may write CutW and UncutW instead of CutG and UncutG.

Definition 1.2 (Powering). For a weighted digraph G with adjacency matrix A, out-degree matrix
Dout, and random-walk matrix W = AD−1

out, we write Gℓ for the weighted digraph with adjacency
matrix (AD−1

out)
ℓ ·Dout (and thus out-degree matrix Dout and random-walk matrix Wℓ).

With these definitions, the main application of our SV sparsification results is the following:

Theorem 1.3 (informal, see Theorem 4.27). There is a randomized algorithm that, given a strongly
connected n-node m-edge directed graph G with integer edge weights in [1, U], a walk length ℓ, an
error parameter ε > 0, and lower bound s on the minimum stationary probability of the random walk
on G, runs in time O((m+ nε−2) · poly(log(Uℓ/s)) and outputs an O(nε−2 · poly(log(Uℓ/s)))-edge
graph H such that for every two sets S, T of vertices, we have:

|CutH(S, T)− CutGℓ(S, T)| ≤ ε

2
·
√

min {CutGℓ(S),UncutGℓ(S)} ·min {CutGℓ(T),UncutGℓ(T)}.

In particular:
(1− ε) · CutGℓ(S) ≤ CutH(S) ≤ (1 + ε) · CutGℓ(S),

and
(1− ε) ·UncutGℓ(S) ≤ UncutH(S) ≤ (1 + ε) · UncutGℓ(S).

Note that when U, ℓ ≤ poly(n), s ≥ 1/poly(n), and ε ≥ 1/poly(log n), our algorithm runs in
time Õ(m). For comparison, note that, given a set S, we can estimate the cut value for S using
random walks in time roughly Õ(ℓ/(ε2CutG(S))), which is slower when ℓ/CutG(S) is m1+Ω(1).
(Note that CutG(S) can be as small as 1/m.)

It is also worth comparing to the following approaches that yield high-precision estimates (i.e.
replacing multiplicative error ε with polynomially small additive error):

4

• Use matrix powering via repeated squaring to compute Wℓ. This takes time nω · log(ℓ), where
ω is the matrix multiplication exponent. This is slower than our algorithm assuming ω > 2
or m ≤ n2−Ω(1).

• Use the algorithm of [CKK+18] to obtain a high-precision estimate of the stationary distri-
bution µ of G in time Õ(m), and then use repeated matrix-vector multiplication to compute
Wℓµ. This takes time Õ(mℓ), so is slower than our algorithm except when ℓ = polylog(n).

• Use the algorithm of Ahmadenijad et al. [AKM+20]. This also gives high-precision estimates
of Wℓ, and does so in nearly logarithmic space, but the running time is superpolynomial. A
running time of Ω(m · ℓ) seems inherent in the approach as it works by reducing to solving a
directed Laplacian system of size m · ℓ.

It remains an interesting open problem to estimate any desired entry of Wℓ to high precision in
nearly linear time.

Other Work on SV Approximation. The definition of SV approximation and some of our re-
sults on it (obtained in collaboration between Jack Murtagh and the authors) were first presented in
the first author’s PhD thesis [Ahm20] in August 2020. Independently, Kelley [Kel21] used a variant
of SV approximation to present an alternative proof of a result of [HPV21], who used unit-circle
approximation to prove that the Impagliazzo-Nisan–Wigderson pseudorandom generator [INW94]
fools permutation branching programs. Golowich and Vadhan [GV22] used SV approximation and
some of our results (presented in the aforementioned thesis) to prove new pseudorandomness prop-
erties of expander walks against permutation branching programs. Most recently, Chen, Lyu, Tal,
and Wu [CLTW22] have used a form of SV approximation to present alternative proofs of the
results of [AKM+20,PV21].

1.1 Singular-Value Approximation

In this paper, we present a stronger and more robust notion for addressing the challenge of defining
approximation between directed graphs. Specifically, we introduce a novel definition of approxima-
tion for asymmetric matrices, which we call singular-value approximation (or SV approximation).

For simplicity in the rest of this introduction, we focus on the case of regular directed graphs,
i.e. directed graphs where for some value d ≥ 0, every vertex has in-degree d and out-degree d. (In
the case of digraphs with non-negative edge weights, we obtain the in- and out-degrees by summing
the in-coming or out-going edge weights at each vertex.) However, all of our results generalize to
Eulerian digraphs and some generalize to wider classes of complex matrices.

To introduce SV approximation, let A be the adjacency matrix of a d-regular digraph, i.e.,
A is a non-negative real matrix where every row and column sum equals d. Then the (in- and
out-) degree matrix is simply dI. Dividing by d, it is equivalent to study approximation of the
random-walk matrix W = A/d, which is doubly stochastic, and has degree matrix I.

Definition 1.4 (SV approximation for doubly stochastic matrices). For doubly stochastic matrices

W, W̃ ∈ R
n×n we say that W̃ is an ε-singular-value (SV) approximation of W, written W̃

sv≈ε W,
if for all “test vectors” x, y ∈ R

n, we have
∣∣∣x⊤(W̃ −W)y

∣∣∣ ≤ ε

4
·
[
x⊤(I−WW⊤)x+ y⊤(I−W⊤W)y

]
. (2)

This formulation of SV-approximation is one of several equivalent formulations we provide later
in the paper (Lemma 3.7). We can equivalently define SV approximation between doubly stochastic

5

matrices by requiring Equation (2) to hold for all complex test vectors x, y ∈ C
n. SV-approximation

can also be defined equivalently by replacing condition (2) with

∣∣∣x⊤(W̃ −W)y
∣∣∣ ≤ ε

4
·
√

[x⊤(I −WW⊤)x] · [y⊤(I −W⊤W)y]. (3)

These two formulations, (2) and (3), differ only in using the geometric mean or the arithmetic mean
of the terms involving x and y on the right-hand side. The formulation in terms of the geometric
mean implies the one in terms of the arithmetic mean (since the geometric mean is no larger than
the arithmetic mean); the converse follows by optimizing over scalar multiples of x and y (as was
done in e.g. [CKP+17,AKM+20]). Both formulations can be rewritten more simply by noting that

x⊤(I −WW⊤)x = ‖x‖2 − ‖x⊤W‖2 and y⊤(I−W⊤W)y = ‖y‖2 − ‖Wy‖2,

but the description in terms of quadratic forms will be more convenient for comparison with previous
notions of approximation. In Section 3, we provide more general definitions of SV approximation
which also apply to unnormalized directed Laplacians and even to complex matrices.

We prove that SV approximation is strictly stronger than previous notions of spectral approxi-
mation considered in the literature, even for undirected graphs, and enjoys several useful properties
not possessed by the previous notions. Most notably, there is a simple black-box reduction from
SV-sparsifying Eulerian directed graphs to SV-sparsifying undirected graphs; no such reduction is
known for prior notions of asymmetric spectral approximation.

Furthermore, we give efficient algorithms for working with SV approximation. These include
nearly linear-time algorithms for SV-sparsifying undirected and hence also Eulerian directed graphs
(Theorem 1.11), as well as random-walk polynomials of directed graphs (Theorem 1.11). We also
show that a simple repeated-squaring and sparsification algorithm for solving Laplacian systems also
works for Eulerian digraphs whose random-walk matrix is normal (i.e., unitarily diagonalizable), if
we use SV-sparsification at each step (Theorem 1.12). Prior Laplacian solvers for Eulerian graphs
are more complex. We elaborate on these results in the next several subsections.

1.2 Comparison to Previous Notions of Approximation

Let us compare Definition 1.4 to previous definitions of approximation.

Undirected spectral approximation. Let’s start with the undirected case, where W = W⊤.
In this case, it can be shown that we can without loss of generality restrict Definition 1.4 to x = y,

obtaining the following: W̃
sv≈ε W requires that for all x ∈ R

n,
∣∣∣x⊤(W̃ −W)x

∣∣∣ ≤ ε

2
·
[
x⊤(I −W2)x

]
. (4)

In contrast, the standard definition of spectral approximation (introduced by Spielman and Teng [ST04]),

which we denote by W̃ ≈ε W, is equivalent to requiring that for all x ∈ R
n, we have

∣∣∣x⊤(W̃ −W)x
∣∣∣ ≤ ε ·

[
x⊤(I−W)x

]
. (5)

To compare inequalities (4) and (5), we write x =
∑

i civi, where v1, . . . , vn is an orthonormal
eigenbasis for W with associated eigenvalues λ1, . . . , λn. Since W is stochastic, |λi| ≤ 1 for all
i ∈ [n], the right-hand side of SV inequality (4) becomes

ε

2
·
∑

i∈[n]
c2i · (1− λ2

i),

6

whereas the right-hand side of ST inequality (5) becomes

ε ·
∑

i∈[n]
c2i · (1 − λi).

Since each |λi| ≤ 1, the fact that SV approximation implies ST approximation then follows from

(1− λ2
i) = (1− λi)(1 + λi) ≤ 2(1− λi).

However, we also see that inequality (4) can be much stronger than inequality (5) when W has
eigenvalues λi close to -1 (e.g. in a bipartite graph with poor expansion) because then 1 − λ2

i is

close to 0, but 1−λi is bigger than 2. More generally, inequality (4) requires that W̃ approximates
W very well on every test vector x that is concentrated on the eigenvectors whose eigenvalues
have magnitude close to 1, whereas inequality (5) only requires close approximation on the (signed)
eigenvalues that are close to 1.

We remark that another way of ensuring W̃ preserves unit singular values is to replace W2

in the SV inequality (4) with the matrix |W| where we replace all eigenvalues of W with their
absolute value rather than their square,1 so that we have:

x⊤(I− |W|)x =
∑

i∈[n]
c2i · (1− |λi|).

Using |W| instead of W2 results in an equivalent definition up to a factor of 2 in ε, and W2

turns out to be convenient to work with.2 This viewpoint also explains why we stop at W2 in the
definition and don’t explicitly use higher powers; it is simply a convenient proxy for |W|, which
captures all powers. Indeed, for all k ∈ N

I−W2 � 2 · (1− |W|) � 2 ·
(
I−Wk

)
.

Directed spectral approximation. Turning to previous notions of spectral approximation
for directed graphs, standard approximation [CKP+17] generalizes the definition of Spielman and

Teng [ST04] by saying W̃ ≈ε W if for all x, y ∈ R
n

∣∣∣x⊤(W̃ −W)y
∣∣∣ ≤ ε

2
·
[
x⊤(I−W)x+ y⊤(I−W)y

]
. (6)

Equivalently, we can require that for all x, y ∈ R
n,

∣∣∣x⊤(W̃ −W)y
∣∣∣ ≤ ε ·

√
[x⊤(I−W)x] · [y⊤(I−W)y]. (7)

It can be shown that for undirected graphs, standard approximation is equivalent to the condition
of Equation 5, so we will also refer to it as standard approximation.

The use of different left and right test vectors x and y on the left-hand side is crucial for capturing
the asymmetric information in W̃ and W. As before, if x or y is concentrated on eigenvectors of
W whose eigenvalues are close to 1, then the right-hand side of ST inequality (7) is close to 0

and W̃ must approximate W very well. However, like the standard undirected ST inequality (5),
not much is required on eigenvalues near -1. Moreover, asymmetric matrices can have eigenvalues

1Another way of describing |W| is as the psd square root of the psd matrix W
2.

2|W| = (W2)1/2, i.e., |W| is the PSD square root of W2. In Definition 1.4, we could similarly replace WW
⊤

and W
⊤
W with their PSD square roots and obtain a definition that is equivalent up to a factor of 2 in ε.

7

that are not real and are equal to or close to complex numbers of magnitude 1. For example, the
eigenvalues of a directed n-cycle are the complex n’th roots of unity.

To address this issue, unit-circle (UC) approximation [AKM+20], written W̃
◦≈ε W, requires

that for all complex test vectors x, y ∈ C
n, we have

∣∣∣x∗(W̃ −W)y
∣∣∣ ≤ ε

2
·
[
‖x‖2 + ‖y‖2 − |x∗Wx+ y∗Wy|

]
. (8)

That is, we take the complex magnitude of the terms involving W on the right-hand side of ST
inequality (6). That way, if x and y are concentrated on eigenvectors of W that have eigenvalue

near some complex number µ of magnitude 1, we require that W̃ approximates W very well.
For example, consider the case where W is normal, i.e., has an orthonormal basis of complex
eigenvectors v1, . . . , vn and with corresponding complex eigenvalues λ1, . . . , λn. Then if we write
x =

∑
i civi and y =

∑
i divi, the right-hand side of UC inequality (8) becomes:

ε

2
·
∑

i∈[n]
(|ci|2 + |di|2)−

∣∣∣∣∣∣

∑

i∈[n]
(|ci|2 + |di|2) · λi

∣∣∣∣∣∣
. (9)

If x and y are concentrated on eigenvalues λi ≈ µ where |µ| = 1, then this expression will be close
to 0. Unit-circle approximation has valuable properties not enjoyed by standard approximation, in
particular being preserved under powering: If W̃ is an ε-UC approximation of W, then for every
positive integer k, W̃k is an O(ε)-UC approximation of Wk; note that the quality of approximation
does not degrade with k. This property was crucial for the results of [AKM+20].

However, UC approximation has two limitations compared to SV approximation. First, UC
expression (9) is only small if x and/or y is concentrated on eigenvalues that are all close to the
same point µ on the complex unit circle. Even in the undirected case, if x and y are mixtures of
eigenvectors with eigenvalue close to 1 and eigenvalue close to -1, then there will be cancellations in
the second term of UC expression (9) and the result will not be small. Second, some properties of
asymmetric matrices are more directly captured by singular values than eigenvalues, since singular
values treat the domain and codomain as distinct. For example, the second-largest singular value
of W equals 1 if and only if there is a probability distribution π on vertices that does not mix at
all in one step (i.e., ‖Wπ− u‖ = ‖π− u‖, where u = ~1/n and π 6= u), but the latter can hold even
when all nontrivial eigenvalues have magnitude strictly smaller than 1.3

To see how SV approximation addresses these limitations, let σ1, . . . , σn ≥ 0 be the singu-
lar values of W, let u1, u2, . . . , un ∈ C

n the corresponding left-singular vectors of W, and let
v1, . . . , vn ∈ C

n the corresponding right-singular vectors. If we write x =
∑

i ciui and y =
∑

i divi,
then the right-hand side of SV inequality (2) becomes:

ε

4
·


∑

i∈[n]
(|ci|2 + |di|2) · (1− σ2

i)


 . (10)

Consequently, SV-approximation requires high-quality approximation if x is concentrated on left-
singular vectors of singular value close to 1 and/or y is concentrated on right-singular vectors of
singular value close to 1. (For the “or” interpretation, use the formulation of SV approximation in
terms of inequality (3).) To compare with UC expression (9), let us consider what happens with a
normal matrix, where ui = vi and σi = |λi|. In this case, SV expression (10) amounts to bringing

3For instance, consider a directed graph on {1, 2, 3, 4} with edges {(1, 2), (1, 2), (2, 3), (2, 4), (4, 1), (3, 1), (3, 4), (4, 3)}.
A walk started on vertex 1 will not mix at all after the first step.

8

the absolute value of UC expression (9) inside the summation (and squaring, which only makes a
factor of 2 difference), to avoid cancellations between eigenvalues of different phases.

Furthermore, for non-normal matrices, SV approximation retains the asymmetry of W even
on the right-hand side, by always using x on the left of W (thus relating to its decomposition
into left singular vectors) and y on the right of W (thus relating to its decomposition into right
singular vectors). Indeed, this feature allows us to even extend the definition of SV approximation
to non-square matrices. (See Section 3.)

Following the above intuitions, we prove that SV approximation is indeed strictly stronger than
the previous notions of approximation, even for undirected graphs:

Theorem 1.5. For all doubly stochastic matrices W and W̃, if W̃
svn≈ ε W, then W̃

◦≈ε W (and

hence W̃ ≈ε W). On the other hand, for every n ∈ N there exist random walk matrices W̃,W for

n-node undirected graphs such that W̃
◦≈O(1/

√
n) W, but it is not the case that W̃

svn≈ .3 W.

Since UC approximation implies standard approximation, we likewise separate SV from standard
approximation. Finally, we note that our separation implies that several useful properties enjoyed
by SV approximation, such as preservation under products (Proposition 3.13), are not satisfied by
UC approximation.

1.3 Properties of SV Approximation

SV approximation enjoys a number of novel properties not known to be possessed by previous
notions of spectral approximation. Most striking is the fact that directed approximation reduces
to undirected approximation. To formulate this, we define the symmetric lift of a matrix:

Definition 1.6. Given W ∈ C
m×n, let the symmetric lift of W be defined as

slift (W)
def
=

[
0n×n W∗

W 0m×m

]
.

Graph theoretically, the symmetric lift of W is the following standard operation: Given our
directed graph G on n vertices with random-walk matrix W, we lift G to an undirected bipartite
graph H with n vertices on each side, where we connect left-vertex i to right-vertex j if there is a
directed edge from i to j in G. Then slift (W) is the random-walk matrix of H.

Theorem 1.7. Let W and W̃ be doubly stochastic matrices. Then W
sv≈ε W̃ if and only if

slift
(
W̃
)

sv≈ε slift (W).

Thus, for the first time (as far as we know), sparsification of directed graphs reduces directly to
sparsification of undirected graphs. It would be very interesting to obtain a similar reduction for
other algorithmic problems in spectral graph theory, such as solving Laplacian systems.

Another novel property of SV approximation is that it is preserved under products:

Theorem 1.8. Let W1, . . . ,Wk and W̃1, . . . ,W̃k be doubly stochastic matrices such that W̃i
sv≈εWi

for each i ∈ [k]. Then W̃1W̃2 · · ·W̃k
sv≈ε+O(ε2) W1W2 · · ·Wk.

Notably the approximation error does not grow with the number k of matrices being multiplied.
This property does not hold for UC approximation, only the weaker property of preservation under
powering, i.e., W1 = W2 = · · · = Wk and W̃1 = W̃2 = · · · = W̃k.

In addition, SV approximation is preserved under multiplication on the left and right by ar-
bitrary matrices of bounded spectral norm. Indeed, it can be seen as the “closure” of standard
approximation under this operation (up to a factor of 2).

9

Theorem 1.9. The following hold for all doubly stochastic matrices W and W̃:

1. If W̃
sv≈ε W then for all complex matrices U and V of spectral norm at most 1, we have

UW̃V
sv≈ε UWV, and hence UW̃V ≈ε UWV.

2. If for all complex matrices U and V of spectral norm at most 1, we have UW̃V ≈ε UWV

then W̃
sv≈2ε W.

Since UWV and UW̃V need not be doubly stochastic matrices, Theorem 1.9 uses the gener-
alization of SV approximation to more general matrices, which can be found in Section 3.

Recall that standard spectral sparsifiers [ST04] are also cut sparsifiers [BK00]. That is, if G̃ is
an ε-approximation of G, then for every set S of vertices, the weight of the cut S in G̃ is within a
(1± ε) factor of the weight of S in G. Indeed, if we take the test vector x to be the characteristic
vector of the set S in inequality (5), we obtain

∣∣Cut
G̃
(S)− CutG(S)

∣∣ ≤ ε · CutG(S), (11)

where Cut(·) is as in Definition 1.1.
Similarly, we can obtain a combinatorial consequence of SV approximation, by taking x to be

a characteristic vector of a set S of vertices and taking y to be a characteristic vector of a set T of
vertices. This yields:

Proposition 1.10. Let W̃ and W be doubly stochastic n×n matrices and suppose that W̃
sv≈εW.

Then for every two subsets S, T ⊆ [n], we have

∣∣Cut
W̃
(S, T)− CutW(S, T)

∣∣ ≤ ε

2
·
√

CutWW⊤(S) · CutW⊤W(T).

Note that W⊤W (resp., WW⊤) is the transition matrix for the forward-backward walk (resp.
backward-forward walk), namely where we take one step using a forward edge of the graph followed
by one step using a backward edge.

Let us interpret Proposition 1.10. First, consider the case that W = J, the matrix with every
entry equal to 1/n (the random-walk matrix for the complete graph with self-loops). Then the
distribution µedge on pairs (i, j) in the definition of CutW (Definition 1.1) has i and j as uniform
and independent vertices, and the same is true for CutWW⊤ and CutW⊤W. Thus, Proposition 1.10
says: ∣∣Cut

W̃
(S, T)− µ(S) · µ(T)

∣∣ ≤ ε

2
·
√

µ(S) · (1− µ(S)) · µ(T) · (1− µ(T)),

where µ(S) = |S|/n and µ(T) = |T |/n are the stationary probabilities of S and T , respectively.
This amounts to a restatement of the Expander Mixing Lemma (cf., [Vad12, Lemma 4.15]); indeed

W̃
sv≈ε J if and only if W̃ is a spectral expander with all nontrivial singular values at most ε/2.
Next, let’s consider the case that T = Sc. Since CutWW⊤(S) = CutWW⊤(Sc), SV approxima-

tion implies that:

∣∣Cut
W̃
(S)− CutW(S)

∣∣ ≤ ε

2
·
√

CutWW⊤(S) · CutW⊤W(S) (12)

We claim that (12) is stronger than the standard notion of a cut approximator (11). Indeed, it
can be shown that

CutWW⊤(S) ≤ 2 · CutW(S),

10

and similarly for CutW⊤W(T). The reason is that if a backward-forward walk crosses between S
and Sc, then it must cross between S and Sc in either the first step or in the second step. Similar
reasoning shows that

CutWW⊤(S) ≤ 2 · UncutW(S),

and similarly for CutW⊤W(T). Thus SV approximation also implies:

∣∣Uncut
G̃
(S)−UncutG(S)

∣∣ ≤ ε · UncutG(S), (13)

Thus, we conclude that an SV-approximator not only approximates every cut to within a small
additive error that is scaled by the weight of the cut edges (as in (11)), but also scaled by the
weight of the uncut edges.

1.4 Algorithmic Results

Even though SV approximation is stronger than previously considered notions of spectral approx-
imation, we show that it still admits sparsification:

Theorem 1.11. There is a randomized nearly-linear time algorithm that given a regular directed
graph G with n vertices and m edges, integer edge weights in [0, U], and random-walk matrix W,
and ε > 0, whp outputs a weighted graph G̃ with at most O(nε−2 · poly(log(nU))) edges such that

its random-walk matrix W̃ satisfies W̃
sv≈ε W.

A more general theorem that also applies to Eulerian digraphs is stated in the main body of
the paper (Theorem 4.17). Prior to this work, it was open whether or not even UC-sparsifiers
with O(n · poly(log n, 1/ε)) edges existed for all unweighted regular digraphs. Instead, it was only
known how to UC-sparsify powers of a random walk matrix in such a way that the number of edges
increases by at most a polylogarithmic factor compared to the original graph (rather than decrease
the number of edges) [AKM+20].

By Theorem 1.7, it suffices to prove Theorem 1.11 for undirected bipartite graphs. We obtain
the latter via an undirected sparsification algorithms based on expander partitioning [ST04]. It
remains an open question whether algorithms based on edge sampling can yield SV approxima-
tion or unit circle approximation, even in undirected graphs. The standard approach to spectral
sparsification of undirected graphs via sampling, namely keeping each edge independently with
probability proportional to its effective resistance [SS08], does not work for SV or UC approxima-
tion. For example, this method does not exactly preserve degrees, which we show is necessary for
SV sparsification (Lemma 3.18).4

However, we remark that the work of Chu, Gao, Peng, Sawlani, and Wang [CGP+18] does
yield something closer to sparsification via degree preserving sampling for standard approxima-
tion [CKP+17] but not unit circle approximation. They show that if one has a directed graph and
decomposes it into short “cycles” without regard for the direction of the edges on the cycle, then
one can sparsify by randomly eliminating either the clockwise or counterclockwise edges on each
such cycle. We build on their procedure and use it to obtain SV sparsification (and hence, unit
circle) by showing that this technique obtains SV approximation, even if the cycles are not short,
as long as (a) all the cycles are within expanding subgraphs, and (b) the cycles alternate between
forward and backward edges. (Note that such alternating cycles in a directed graph correspond to
ordinary cycles in the undirected lift given by Theorem 1.7.)

4Unlike standard spectral approximation, degrees cannot be fixed just by adding self loops; indeed, self-loops ruin
bipartiteness and periodicity, which are properties that UC and SV approximation retain (as they are captured by
eigenvalues like -1 or other roots of unity).

11

Sparsity Approximation Time Subgraph? Citation

O(nε−2 logc n) Standard O(m logc n) No [CKP+17]

O(nε−2 logc n) Standard O(m1+o(1)) Yes [CGP+18,PY19]
O(nε−2 log4 n) Standard O(nm) Yes [CGP+18]

O(nε−2 log12 n) SV Existential Yes Corollary 4.13
O(nε−2 log20 n) SV O(m log7 n) Yes Corollary 4.12

Given Theorem 1.11, we obtain our algorithm for longer walks (Theorem 1.3) as follows:

1. First, we show that we can SV-sparsify the squares of random-walk matrices of Eulerian
digraphs; we follow the approach of [CKK+18] by locally sparsifying the bipartite complete
graphs that form around each vertex when squaring, and then applying Theorem 1.11 to
globally sparisfy further. We likewise show the “derandomized square” approach used in
[RV05,PS14,MRSV21,AKM+20] gives a square sparsifier.

2. Then we SV-sparsify arbitrary powers of 2 by repeatedly squaring and sparsifying, using the
fact that SV approximation is preserved under powering. During this process, we need to
ensure that the ratio between the largest and smallest edge weights remains bounded. We
do this by restricting to graphs that have second-largest singular value bounded away from 1
by 1/poly(nUℓ), which allows us to discard edge weights that get too small and make small
patches to preserve degrees. We can achieve this assumption on the second-largest singular
value by adding a small amount of laziness to our initial graph.

3. Then to sparsify arbitrary powers Wℓ, we can multiply sparsifiers for the powers of 2 appear-
ing in the binary representation of ℓ. For example, to get a sparsifier for W7, we multiply
sparsifiers for W4, W2, and W1, sparsifying and eliminating small edge weights again in
each product. The use of SV approximation plays an important role in the analysis of this
algorithm, because it has the property that the product of the approximations of the powers
still approximates the product of the true powers (Theorem 1.8).

4. Given Theorem 1.11, we obtain Theorem 1.3 for general directed graphs by using [CKK+18] to
compute a high-precision estimate of the stationary distribution, which allows us to construct
an Eulerian graph whose random-walk matrix closely approximates that of the original graph.
SV-sparsifying the ℓ’th power of the Eulerian graph gives us a graph all of whose Cut and
Uncut values approximate the ℓ’th power of our input graph. The use of [CKK+18] to
estimate the stationary distribution and the introduction of laziness to W both incur a small
additive error δ, but we can absorb that into ε by setting δ = 1/poly(nU/s) and observing
that CutGℓ(S) and UncutGℓ(S) are at least 1/poly(nU/s) (if nonzero).

Our final contribution concerns algorithms for solving directed Laplacian systems. The recursive
identities used for solving undirected Laplacian systems, while behaving nicely with respect to PSD
approximation, do not behave as nicely with respect to the previous approximation definitions for
directed graphs. This led to different, more sophisticated recursions with a more involved analysis
of the error [CKP+17,CKK+18,AKM+20,KMG22]. We make progress towards simplifying the re-
cursion and analysis of solving directed Laplacian linear systems in the following way. We show that
a simpler recursion, a variant of the one used by Peng and Spielman [PS14] (Equation (15) below),
and a simpler analysis suffice if the directed Laplacian is normal (i.e., unitarily diagonalizable) and
we perform all sparsification with respect to SV approximation. Note that this result is the only
result in our paper that relies on a normality assumption; the aforementioned sparsification results
hold for all Eulerian directed graphs.

12

Theorem 1.12. For a doubly stochastic normal matrix W ∈ R
n×n with ‖W‖ ≤ 1, let W =

W0, . . . ,Wk−1 be a sequence of matrices such that for ε ≤ 1/4k we have

Wi
sv≈ǫ W

2
i−1 ∀0 < i < k, (14)

and

Pi =
1

2
[I+ (I +Wi)Pi+1(I+Wi)] ∀0 ≤ i < k (15)

defining the Peng-Spielman squaring recursion.

Then, for a matrix Pk, such that
∥∥∥(I−W2k)

1
2

[
Pk − (I−W2k)+

]
(I −W2k)

1
2

∥∥∥ ≤ O(kǫ), we have

‖P0(I−W)− I‖
B
=
∥∥∥(I−W)

1
2

[
P0 − (I−W)+

]
(I−W)

1
2

∥∥∥ ≤ O(k2ǫ) (16)

where B = ((I −W)1/2)∗(I −W)1/2.

Theorem 1.12 says that that we can compute a good preconditioner P0 for the Laplacian I−W

(eq. 16) by repeatedly computing SV-approximate squares (eq. 14) and use the simple recurrence
(eq. 15, starting with a preconditioner Pk for a sufficiently large power of W. Generally, Pk is easy

to obtain for a large enough k = O(log n) since W2k is well-approximated by a complete graph
(assuming the original graph is connected and aperiodic).

1.5 Open Problems

One open problem is to determine whether or not it is possible to obtain linear-sized sparsifiers.
Recall that undirected graphs have sparsifiers with respect to standard spectral approximation that
have only O(n/ε2) nonzero edge weights [BSS12]. If this result could be extended to obtain linear-
sized SV-sparsifiers of undirected graphs, we would also have linear-sized sparsifiers for directed
graphs by Theorem 1.7, which would be a new result even for standard approximation [CKP+17].

1.6 Roadmap

The rest of the paper is organized as follows:

• Section 2 gives definitions we use throughout the paper.

• Section 3 defines SV-approximation and provides several equivalent characterizations of it
which are useful when analyzing algorithms and also interesting in their own right. These
results immediately imply a reduction from the directed to undirected case for SV approxi-
mation.

• Section 4 gives a direct SV sparsification algorithm based on sparsifying alternating cycles
within expanders, and shows that the derandomized square gives SV square sparsifiers, and
shows how to sparsify powers of random walk matrices with respect to SV approximation.

• Section 5 gives our simpler algorithm and analysis for solving Laplacian linear systems when
the matrix is unitarily diagonalizable (normal).

• In Appendix A, we prove equivalences, properties, and separations, including several deferred
proofs from the body of the paper.

13

2 Preliminaries

We begin by providing notation and definitions that we will use throughout the paper.

Complex Numbers. Let C denote the set of complex numbers. For z
def
= a+bi ∈ C, let z∗

def
= a−bi

and ℜ[z] def
= a and ℑ[z] def

= b. Define the magnitude of z as |z| def=
√
z∗z.

Matrix Notation. For x ∈ C
n we let diag(x) ∈ C

n×n denote the diagonal matrix with [diag(x)]i,i =
xi for all i ∈ [n]. For complex matrix M that is not necessarily square, we write M∗ to denote
the conjugate transpose of M and M+ to denote the Moore-Penrose pseudoinverse of M. We let
lker(M) and rker(M) be the left and right kernels of M respectively. We say M ∈ C

n×n is Hermi-
tian if M∗ = M. M is positive semidefinite (PSD) if it is Hermitian and for every vector x ∈ C

n,
we have x∗Mx ≥ 0. M is normal if M∗M = MM∗. For a square matrix M, let SM = (M+M∗)/2
denote its symmeterization. Note that SM is Hermitian, and if M is a scalar then SM = ℜ[M].
Given any M ∈ C

n×n and subsets S, T ⊂ [n], we let MS,T ∈ C
S×T be the submatrix of M with

rows specified by S and columns specified by T . We let Sc def
= [n] \ S be the complement of S.

Schur Complements. Given an n× n matrix M and S ⊂ [n], we define the Schur Complement
of M onto S as

SCS(M) = MSc,Sc −MSc,SM
+
S,SMS,Sc .

Eigenvalues and Singular Values. For a symmetric matrix A with nonnegative entries, let
λi(A) denote the ith largest eigenvalue of A. For a matrix A, let σi(A)

def
= λi(A

∗A). Given

an undirected graph G with adjacency matrix A and degree matrix D
def
= diag(A~1), let λ(G)

def
=

λ2(D
+/2AD+/2).

Norms. Throughout we use ‖ · ‖ to denote the spectral norm, where for any A ∈ C
n×m,

‖A‖ def
= sup

x∈Cm\{~0}

‖Ax‖
‖x‖ .

Löwner Order. Given Hermitian A,B ∈ C
n×n we write A � B if B−A is PSD, i.e., for every

x ∈ C
n we have x∗Ax ≤ x∗Bx.

3 Singular Value Approximation

In this section we formally define the notions of approximation we work with throughout the paper
(Section 3.1), provide a number of equivalent definitions of SV approximation (Section 3.2), and
give key properties of SV approximation (Section 3.4). All proofs in this section are deferred to
their analogous subsection in Appendix A.

3.1 Matrix Approximation

First we define a general notion of matrix approximation with respect to arbitrary PSD matrices
(Definition 3.1). This definition and the equivalences are a generalization of those established in
[CKP+17].

14

Intuitively, we say that a matrix Ã is an ǫ-approximation of A with respect to error matrices E
and F if we can bound the bilinear form of their difference, i.e., x∗(Ã−A)y, by the quadratic forms
of x with E and y with F, i.e., x∗Ex and y∗Fy. We use the term error matrix here to distinguish
this notion of approximation from standard approximation (Definition 3.3) which we define later.

Definition 3.1 (Matrix approximation). Let A, Ã ∈ C
m×n, and let E ∈ C

m×m,F ∈ C
n×n be PSD

matrices. For ε ≥ 0, we say that Ã is an ε-approximation of A with respect to error matrices E

and F if any of the following equivalent conditions hold:

1.
∣∣∣x∗(Ã−A)y

∣∣∣ ≤ ε
2 (x

∗Ex+ y∗Fy) for all x ∈ C
m, y ∈ C

n

2.
∣∣∣x∗(Ã−A)y

∣∣∣ ≤ ε ·
√
x∗Ex · √y∗Fy for all x ∈ C

m, y ∈ C
n

3.
∥∥∥E+/2(Ã−A)F+/2

∥∥∥ ≤ ε, lker(Ã−A) ⊇ ker(E), and rker(Ã−A) ⊇ ker(F).

If E = F, we say that Ã is an ε-approximation of A with respect to error matrix E.

In the following Lemma 3.2 we specialize and simplify the equivalences presented in Defini-
tion 3.1 to Hermitian matrices.

Lemma 3.2 (Hermitian matrix approximation). Let A, Ã ∈ C
m×m be Hermitian matrices and let

E ∈ C
m×m be a PSD matrix. Then the following are equivalent conditions.

1. Ã is an ε-approximation of A with respect to error matrix E.

2. For all x ∈ C
m we have

∣∣∣x∗(Ã−A)x
∣∣∣ ≤ ε · (x∗Ex).

3. −εE � Ã−A � εE.

Next, for matrices A, Ã,D ∈ C
m×m we define a natural notion of approximation between

D−A and D− Ã which we call standard approximation (Definition 3.3). The choice of this name
is because when A and Ã are adjacency matrices of undirected graphs with the same degrees,
standard approximation coincides with spectral approximation of the Laplacian matrices of the
associated graphs. Further, when A and Ã are adjacency matrices of directed Eulerian digraphs
with the same degrees then standard approximation coincides with ǫ-approximation from [CKP+17].
Standard approximation generalizes these two cases in a natural way even when D, which we call
a degree matrix, is not diagonal (as it was in these two cases and as we will often choose it to
be). We use the term degree matrix to emphasize when we are using standard approximation
(Definition 3.3) and its variants rather than (Definition 3.1).

We now present a series of definitions and equivalences and properties. For clarity, the reader
can initially think of the case that D = I and A = W is a doubly stochastic matrix.

Definition 3.3 (Standard approximation). Let A, Ã ∈ C
m×m and D ∈ C

m×m be a PSD matrix.
For ε ≥ 0, we say Ã is a standard ε-approximation of A with respect to degree matrix D if E =
D− SA is PSD and Ã is an ε-approximation of A with respect to error matrix E.5

5Recall by Section 2 that SA

def

= (A+A
∗)/2.

15

With matrix approximation and standard approximation established, we can now define unit-
circle (UC) approximation and singular-value (SV) approximation. UC approximation as we present
it here, is a generalization of UC approximation as it was introduced for random walk matrices
in [AKM+20]. As discussed in the introduction, SV approximation is a new notion of approximation
introduced in this paper; it has a number of natural desirable properties and facilitates our results
on sparsification (Section 4) and linear system solving (Section 5).

Definition 3.4 (UC approximation). Let A, Ã ∈ C
m×m and D ∈ C

m×m be PSD. For ε ≥ 0, we
say Ã is a unit-circle (UC) ε-approximation of A with respect to degree matrix D if for every z ∈ C

with |z| = 1, zÃ is a standard ε-approximation of zA with respect to degree matrix D. If this

holds, we write Ã
◦≈ε A with respect to D. We omit “respect to D” when D = I.

Note that for doubly stochastic matrices W̃,W, the above definition (with D = I) corresponds
to requiring for every z ∈ C and x, y ∈ C

n,

∣∣∣x∗(zW̃ − zW)y
∣∣∣ ≤ ε

2

(
‖x‖2 + ‖y‖2 − x∗zWx− y∗zWy

)
. (17)

Optimizing over z in (17) implies Equation (8).

Definition 3.5 (SV approximation). Let A, Ã ∈ C
m×n and let Din ∈ C

m×m and Dout ∈ C
n×n be

PSD matrices. For ε ≥ 0, we say Ã is a ε-singular-value (SV) approximation of A with respect to
degree matrices Din and Dout, if

1. ker(Din) ⊆ lker(A), and ker(Dout) ⊆ rker(A),

2. E = Din −AD+
outA

∗ and F = Dout −A∗D+
inA are PSD, and

3. Ã is an ε/2-approximation of A with respect to error matrices E and F.

If this holds, we write Ã
Din,Dout≈ε A. If A ∈ R

n×m
≥0 and Din = diag(A~1n), Dout = diag(~1⊤mA), then

we write Ã
sv≈ε A. If Din = Im and Dout = In, then we write Ã

svn≈ ε A, which we call normalized

SV approximation. If m = n and Din = Dout = D, then we write Ã
D≈ε A.

Note that normalized SV approximation does not require the relevant matrices to be non-

negative, whereas Ã
sv≈ε A is only defined for real non-negative matrices (such as the adjacency

matrices of graphs). The maximally general definition captures both cases, so we will prove prop-
erties with respect to this notion and note their implications for the specialized notions.

3.2 Equivalent Definitions of SV Approximation

Here we give several equivalent formulations of SV approximation. We first give conditions under
which the error matrices E and F in the definition of SV approximation are PSD.

Lemma 3.6 (Conditions for SV approximation to be defined). Let A, Ã ∈ C
m×n, and let Din ∈

C
m×m and Dout ∈ C

n×n be PSD matrices such that ker(Din) ⊆ lker(A) and ker(Dout) ⊆ rker(A).
Then the following are equivalent:

1. σmax(D
+/2
in AD

+/2
out) ≤ 1.

2. Din −AD+
outA

∗ is PSD.

16

3. Dout −A∗D+
inA is PSD.

4. For some scalar z ∈ C with |z| = 1,

[
Din zA
z∗A∗ Dout

]
is PSD.

5. For every scalar z ∈ C with |z| ≤ 1,

[
Din zA
z∗A∗ Dout

]
is PSD.

Suppose further that Din = diag(din) and Din = diag(dout) for din ∈ R
m
≥0, dout ∈ R

n
≥0. Then

Condition 1 below implies Condition 2 below, which implies Conditions 1–5 above.

1. A is nonnegative, dout = A~1n, din = ~1⊤mA.

2. For all i ∈ [n], (dout)i ≥
∑

j |Ai,j |, and for all j ∈ [m], (din)j ≥
∑

i |Ai,j|.

Next we give several equivalent definitions of SV approximation.

Lemma 3.7 (Equivalent formulations of SV approximation). Let A, Ã ∈ C
m×n and let Din ∈

C
m×m and Dout ∈ C

n×n be PSD matrices. Then the following are equivalent

1. Ã
Din,Dout≈ε A.

2. slift
(
Ã
)

D≈ε slift
(
B̃
)
, where

slift
(
Ã
)
=

[
0m×m A

A∗ 0n×n

]
, slift (A) =

[
0m×m Ã

Ã∗ 0n×n

]
, D =

[
Din 0m×n

0n×m Dout

]
.

3. For some scalar z ∈ C with |z| = 1, C̃ is ε/2-approximation of C with respect to error matrix
E, where

C =

[
0m×m zA
0n×m 0n×n

]
, C̃ =

[
0m×m zÃ
0n×m 0n×n

]
, E =

[
Din zA
z∗A∗ Dout

]

4. Item 3 holds for every z ∈ C such that |z| ≤ 1.

Each formulation of SV approximation in Lemma 3.7 has useful properties. Item 2 implies that
SV approximation between directed graphs is equivalent to a natural related statement between
undirected graphs, which we use for sparsification (See Section 4). A version of Item 2 is not
known to hold for prior definitions of approximation between directed graphs, such as standard
approximation and unit circle approximation. Item 3 and Item 4 have an error matrix E that
is linear in A, Din, and Dout, which enables short proofs of properties such as summability. In
addition, Item 3 and Item 4 characterize SV approximation of A in terms of ε-approximation of
the “asymmetric lift” of A with respect to its symmetrization. This enables us to leverage results
developed for ε-approximation, such as preservation under Schur complements (Theorem A.2).

We next note the relation between SV and normalized SV approximation.

Lemma 3.8. Let A, Ã ∈ C
m×n, and let Din ∈ C

m×m and Dout ∈ C
n×n be PSD matrices such that

ker(Din) ⊆ lker(A), and ker(Dout) ⊆ rker(A). Let N = D
+/2
in AD

+/2
out and Ñ = D

+/2
in ÃD

+/2
out Then

Ã
Din,Dout≈ε A if and only if Ñ

svn≈ ε N.

17

Note that if A is nonnegative and Din = diag(A~1n), Dout = diag(~1⊤mA), then N and Ñ are the
normalized adjacency matrices of A and Ã. Furthermore, when A, Ã are the adjacency matrices of
regular digraphs, then N and Ñ are the random-walk matrices of A and Ã respectively. If instead
A and Ã are the adjacency matrices of Eulerian digraphs, we obtain that N and Ñ are similar to
the random-walk matrices of A and Ã.

Normalized SV approximation is implied by standard ǫ/2-approximation with respect to the
original degree matrix holding for all unitary multiples of the adjacency matrix.

Theorem 3.9 (Unitary transformation characterization of SV-approximation). For Ñ,N ∈ C
n×n,

we have that Ñ
svn≈ ε N if for every pair of unitary matrices U,V, UÑV is a standard ε/2-

approximation of UNV with respect to degree matrix I. Moreover, if Ñ
svn≈ ε N then for every

pair of matrices U,V satisfying ‖U‖ ≤ 1, ‖V‖ ≤ 1, we have that UÑV
svn≈ ε UNV, and hence

UÑV is a standard ε-approximation of UNV with respect to degree matrix I.

3.3 Comparison to Prior Notions of Approximation

First, we show that SV approximation implies unit-circle approximation:

Lemma 3.10. If A, Ã ∈ C
n×n with Ã

D≈ε A then Ã
◦≈ε A with respect to degree matrix D.

We show that SV approximation can be separated arbitrarily from UC approximation, even for
undirected graphs and symmetric 2× 2 matrices.

Proposition 3.11.

1. There is c > 0 such that for all n ∈ N, there are random walk matrices of undirected graphs

M̃,M ∈ R
n×n such that M̃

◦≈1/c
√
n M, yet M̃ is not a .3-normalized SV approximation of

M.

2. For every α, ε ∈ (0, 1), there are symmetric matrices W,W̃ ∈ R
2×2 with ‖W‖, ‖W̃‖ ≤ 1 such

that W̃
◦≈ε W but W̃ is not an ε-normalized SV approximation of W for any ε′ < ε√

1−α2
.

In prior work, ([AKM+20, Proposition 4.1]), it was also shown that UC approximation can be
arbitrary separated from standard approximation, even for undirected graphs.

Proposition 3.12 ([AKM+20]). For every ǫ ∈ (0, 1), there exist undirected regular graphs with

random walk matrices W̃,W such that W̃ is an ε-approximation of W with respect to I−W but

W̃
◦≈c W does not hold for every c ∈ N.

Further, since UC approximation trivially implies standard approximation (as was also argued
in [AKM+20]) we see that SV approximation can be viewed of a strengthening of both UC and
standard approximation.

3.4 Properties of SV Approximation

We now show that SV approximation enjoys several properties that are provably not enjoyed by
prior notions of approximation. We summarize these differences in the following lemma:

Proposition 3.13. SV approximation is preserved under multiplication by permutation matrices
(Corollary 3.14), embedding into arbitrary block matrices (Lemma 3.15), and products (Lemma 3.17).
None of these properties hold for UC approximation.

18

SV approximation between adjacency matrices is preserved under multiplication on each side
of the adjacency matrix by (possibly different) permutations:

Corollary 3.14 (SV preservation under multiplication by permutation matrices). Let A, Ã ∈
C
m×n
≥0 and suppose Ã

Din,Dout≈ε A. Let U,V be arbitrary permutation matrices. Then UÃV
D

′

in,D
′
out≈ε

UAV where D′
in = UDinU

∗ and D′
out = V∗DoutV. Consequently, if Ã

sv≈εA, then UÃV
sv≈εUAV

and if Ã
svn≈ ε A then UÃV

svn≈ ε UAV.

A corollary of Corollary 3.14 is that SV approximation is preserved under embedding in a
block matrix. In particular, it shows the stronger fact that approximation is preserved even if we
use a different block structure for rows and columns (i.e., we are not embedding into principal
submatrices). In contrast, unit circle approximation is only known to be preserved when the
embedding pattern is a block pattern given by the directed cycle; i.e., tensoring the adjacency
matrix with that of the directed cycle.

Lemma 3.15 (SV preservation under arbitrary lifting). Let A, Ã ∈ C
m×n be matrices such that

Ã
Din,Dout≈ε A. Then for all integers i, j, k, ℓ ≥ 0



0i×j 0i×n 0i×k

0m×j Ã 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 D′

in,D
′
out≈ε



0i×j 0i×n 0i×k

0m×j A 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 .

Where

D′
in =



0i×i 0i×n 0i×ℓ

0n×i Din 0n×ℓ

0ℓ×i 0ℓ×n 0ℓ×ℓ


 , D′

out =



0j×j 0j×m 0j×k

0m×j Din 0m×k

0k×j 0k×m 0k×k


 .

Consequently, if Ã
sv≈ε A then



0i×j 0i×n 0i×k

0m×j Ã 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 sv≈ε



0i×j 0i×n 0i×k

0m×j A 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 .

By taking sums of different such liftings, one can obtain approximation for arbitrary tensorings:

if Ã
sv≈εA, for any M ∈ {0, 1}i×j , we have Ã⊗M

sv≈εA⊗M. A special case of this is concatenation:

Corollary 3.16 (SV preservation under concatenation). Let A1,A2Ã1, Ã2 ∈ C
m×n be matrices

such that Ã1
sv≈ε A1 and Ã2

sv≈ε A2 then
[
Ã1 Ã2

]
sv≈ε

[
A1 A2

]
.

Another corollary is that SV approximation is preserved under products of different walk ma-
trices with essentially no loss in the approximation quality. In contrast, the closest property known
to be achieved by definitions of approximation considered in prior work is that unit circle approxi-
mation is preserved with no loss under only powers of the same walk matrix.

Lemma 3.17 (SV preservation under products). Let (Ni)i∈[ℓ], (Ñi)i∈[ℓ] ∈ C
n×n be such that for

every i, Ñi
svn≈ ε Ni. Then Ñℓ · · · Ñ2Ñ1

svn≈ ε+O(ǫ2) Nℓ · · ·N2N1.

A useful application of this result is to sparsifying powers of a walk matrix of an Eulerian
digraph (Theorem 4.17).

Finally, we show that SV approximation does satisfy useful properties known for other notions
of approximation. SV approximation between digraphs requires exact preservation of the degrees:

19

Lemma 3.18. If Ã
sv≈ε A, then Ã~1 = A~1 and Ã⊤~1 = A⊤~1.

SV sparsification is additive. We note that the analgous statement for normalized SV approxi-
mation is that it is preserved under convex combinations.

Lemma 3.19. If Ãi

(Din)i,(Dout)i≈ε Ai for all i ∈ [k], letting Din
def
=
∑

i∈[k](Din)i and Dout
def
=

∑
i∈[k](Dout)i, then

∑
i∈[k] Ãi

Din,Dout≈ε
∑

i∈[k]Ai. Consequently, if Ãi
sv≈ε Ai for every i, then

∑
i∈[k] Ãi

sv≈ε
∑

i∈[k]Ai.

SV approximation satisfies an approximate triangle inequality:

Lemma 3.20. If A3
Din,Dout≈δ A2 and A2

Din,Dout≈ε A1 then A3
Din,Dout≈ε+δ+εδA1. Consequently, if A3

sv≈δA2

and A2
sv≈εA1 then A3

sv≈ε+δ+εδA1, and if A3
svn≈ δA2 and A2

svn≈ εA1 then A3
svn≈ ε+δ+εδA1. Moreover,

if for δ ∈ (0, 1/2) and A0, . . . ,Aℓ we have Ai
sv≈δ/2ℓ Ai−1 for every i, then Aℓ

sv≈δ A0. Moreover, the
equivalent claim holds for normalized SV approximation.

A regular undirected graph SV approximates the complete graph with error equal to its expan-
sion.

Lemma 3.21. Let G be a strongly connected, d-regular directed multigraph on n vertices with
adjacency matrix A and let J ∈ R

n×n be a matrix with 1/n in every entry (i.e., J is the walk
matrix of the complete graph with a self loop on every vertex). Then λ(G) ≤ 1− λ/2 if and only if

A/d
svn≈ λ J.

4 Sparsification

Given the Laplacian of an Eulerian directed graph, we wish to compute a sparsifier with respect
to SV approximation. In this section, we show how to solve a more general problem of sparsi-
fiying a non-negative rectangular matrix A ∈ R

m×n
≥0 with respect to SV approximation. Further,

in Section 4.5 we show how to construct square sparsifiers via the derandomized square, and in
Section 4.6 we show how to sparsify powers of walk matrices. We first give an informal overview
of our approach.

We give a series of reductions that reduce this problem to degree- and bipartition-preserving
sparsification of expander graphs with respect to ε-approximation. By Lemma 3.7 (Item 2), to
SV-sparsify (possibly directed) A, it suffices to SV-sparsity the undirected bipartite lift

[
0 A⊤

A 0

]

with respect to SV approximation. In particular, given a symmetric matrix satisfying slift
(
Ã
)

sv≈ε

slift (A), we have by Lemma 3.7 that Ã
sv≈ε A. Thus, any symmetric bipartition-preserving SV

sparsifier of undirected graphs immediately gives an SV sparsifier for Eulerian digraphs. In fact,
every SV sparsifier of undirected graphs must be bipartition-preserving, and an asymmetric spar-
sifier can be used to read off sparsifiers of the underlying directed graphs. For a formal statement
of this stronger claim, see Lemma A.5.

We show (Lemma 4.3) that for undirected bipartite expanders, degree- and bipartition-preserving
approximation with respect to D implies SV approximation.

20

From this, we can construct SV sparsifiers (Theorem 4.11) by computing an expander decom-
position of the bipartite lift, then sparsifying the relevant subgraphs in a suitable way. While we
can use existing techniques to obtain this (with worse log factors), we also develop a new sparsifica-
tion approach based on cycle decompositions. We show that in a bipartite expander, decomposing
edges indicent to high-degree vertices into edge-disjoint cycles, then taking the odd or even edges
of each cycle with probability 1/2 produces a sparsifier with high probability. This sparsification
procedure automatically preserves degrees and bipartitions, which we require to lift approximation
with respect to D to SV approximation. Prior work [CGP+18] showed an equivalent result in
general Eulerian digraphs, except they required the cycles to be short, resulting in almost-linear
runtime [CGP+18,PY19].

For convenience, we define notation for the adjacency and degree matrices of graphs:

Definition 4.1. For the remainder of the section, for a weighted undirected graph G we let AG

denote the adjacency matrix of G and DG
def
= AG~1 denote the degree matrix. As such, an ε-SV

sparsifier of G is a graph H such that AH
sv≈ε AG.

First, we show that for undirected expanders, degree- and bipartition-preserving sparsification
with respect to the degree matrix implies sparsification with respect to SV approximation.

Definition 4.2 (Bipartiteness). We say A ∈ R
n×n
≥0 is bipartite with bipartition S, T ⊆ [n] if S

and T partition V and AS,S = 0S×S and AT,T = 0T×T . Given a graph G with adjacency matrix
A, we say that a sparsifier H is bipartition-preserving if for every bipartition S, T in G, we have
HS,S = 0S×S and HT,T = 0T×T (where the statement is vacuously satisfied if G is not bipartite).

In the following lemma we show that for non-negative matrices that are bipartite with the same
bipartition, SV approximation is implied by approximation with respect to the error matrix D

(Definition 3.1), up to a loss in the condition number.

Lemma 4.3 (From diagonal approximation to SV approximation). Suppose that symmetric Ã ∈
R
n×n
≥0 is a degree and bipartition-preserving ǫ/2-approximation of symmetric bipartite A ∈ R

n×n
≥0

with respect to error matrix D
def
= diag(A~1) = diag(A⊤~1). Then Ã

sv≈γ A for γ
def
= ε

λ2 where

λ
def
= 1− λ2(D

+/2AD+/2).

Proof. Recall by Lemma 3.7 that it suffices to show that Ã is an ε/2-approximation of A with

respect to E
def
= D−AD+A. First, we have

E � (D−A)D+(D+A) � 0.

Furthermore by Lemma 3.2 and the assumption that Ã is an ε/2-approximation of A with respect
to D we have

−ε/2 ·D � A− Ã � ε/2 ·D.

By assumption that A has expansion λ and is bipartite (and hence its spectrum is symmetric), we
have

(D−A)+ � 1

λ
D+, (D+A)+ � 1

λ
D+.

Furthermore, as A is the adjacency matrix of an undirected graph the only singular values of A of
magnitude 1 can be −1 and 1. Thus since Ã matches degrees exactly and preserves bipartitions

21

we have that ker(A− Ã) ⊇ ker(E). Thus we have

∥∥∥E+/2(A− Ã)E+/2
∥∥∥ ≤

∥∥∥(D+A)+/2D1/2(D−A)+/2(A− Ã)(D−A)+/2D1/2(D+A)+/2
∥∥∥

≤ 1

λ

∥∥∥D+/2D1/2(D−A)+/2(A− Ã)(D−A)+/2D1/2D+/2
∥∥∥

≤ 1

λ

∥∥∥(D−A)+/2(A− Ã)(D−A)+/2
∥∥∥

≤ 1

λ2

∥∥∥D+/2(A− Ã)D+/2
∥∥∥ ≤ ε

λ2
.

4.1 Cycle and Expander Decompositions

We give a new analysis of degree-preserving expander sparsification.
Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [CGP+18] constructed sparsifiers for Eulerian

digraphs, which we now discuss. They decomposed the low-importance edges of a graph into a
series of edge-disjoint cycles C1, . . . , Ct. Then for each cycle, they chose a random orientation
(clockwise or counterclockwise) and kept every edge in this orientation, and upweighted these by a
factor of two. One can see that this procedure gives a subgraph and maintains Eulerianness. They
bounded the impact of a single such sample in terms of the length of the cycle, and by giving a
sophisticated algorithm for decomposing a graph into many short cycles concluded an almost-linear
time sparsifier for standard approximation.

We follow this approach but make two modifications. First, we require the cycles to be Forward-
Backward (FB), where we always alternate between clockwise and counterclockwise edges (and all
cycles are of even length). This ensures that we exactly preserve degrees, not just Eulerianness,
which is essential for SV approximation. We take advantage of the reduction from directed to
undirected SV sparsification to perform this decomposition in the undirected bipartite lift, where
undirected cycles correspond to alternating cycles in the original graph. Our second modification
is to prove a bound on the importance of the cycles that is independent of their length, as long as
the cycles lie inside an expander. This enables us to use a simple linear time algorithm for finding
the decomposition.

We first recall the standard procedure that enables us to efficiently decompose an undirected
graph into a union of (potentially long) FB cycles.

Lemma 4.4. Given an unweighted undirected graph G = (V,E), the algorithm CycleDecomp re-
turns a collection of edge-disjoint cycles C1, . . . , CT ⊆ E in time O(|E|+ |V |) such that at most n
edges are not contained in some cycle.

Proof. The runtime and the fact that the cycles are edge disjoint is direct from the description.
Then note that for every edge (u, v) that we add to Eex (and remove from E) we must create an
isolated vertex v. But this can happen at most n times, so we are done.

Furthermore, we recall the definition of an expander partition:

Definition 4.5. Given φ, γ and an undirected graph G, a (φ, γ)-expander partition of G is a
partition V1, . . . , Vt such that at most γ ·m edges cross between partitions and for every i ∈ [t],
λ(G[Vi]) ≤ 1− φ.

We will use algorithms for expander decomposition as a key subroutine in our sparsifier. We re-
quire a small constant fraction of edges to lie between clusters, and thus state the algorithms fixing

22

Algorithm 1: CycleDecomp (G = (V,E)), G undirected

1 Initialize Eex, C = {}.
2 for v ∈ V do

3 while Greedily construct a non-backtracking path v = u0, u1, . . . , uk in an arbitrary
fashion and mark visited vertices. do

4 if uk has no neighbors other than uk−1 then

5 Add Eex ← Eex ∪ {(uk−1, uk)} and remove (uk−1, uk) from E.
6 Continue search from uk−1.

7 end

8 if uk = uk′ for some k′ < k − 1 then

9 Let C ← C ∪ (uk′ , uk′+1, . . . , uk−1) and let
E ← E \ {(uk′ , uk′+1), (uk′+1, uk′+2), . . . , (uk−1, uk)}.

10 Continue search from uk.

11 end

12 end

13 end

14 return C, Eex

γ = 1/16 such that m/16 edges cross subgraphs. In particular, given an algorithm ExpanderDe-

comp computing a (Φ,m/16) expander decomposition, let T(ExpanderDecomp,m) be its run-
time (on graphs with m edges) and Φ(ExpanderDecomp) = Φ. We recall the best known nearly-
linear expander partitioning algorithm, as well as the (optimal) existential result:

Theorem 4.6 ([ADK22]). There is an algorithm ExpanderDecomp(G) running in randomized
time T(ExpanderDecomp,m) = O(m log7m) that computes a (Φ = log−4m, 1/16) expander
decomposition of G with high probability.

Theorem 4.7 ([ST04]). There exists a (Φ = log−2 m, 1/16) expander decomposition of G.

4.2 Sparsifying Bipartite Expanders

The core of our algorithm is a way to sparsify bipartite, unweighted expanders in a degree- and
bipartition- preserving way.

The algorithm decomposes the graph into a series of edge-disjoint cycles, then takes either
twice the odd or twice the even edges with probability 1/2. In the case that the undirected graph
corresponds to the bipartite lift of an Eulerian digraph G, this precisely corresponds to decomposing
G into a union of Forward-Backward cycles and taking the forward or backward edges for each cycle.
We bound the error in terms of the degree matrix D. This is tolerable as we apply this procedure
inside expanders, so by Lemma 4.3 we can transform this into an SV approximation guarantee with
polylog(n) loss in approximation quality.

Lemma 4.8. There is a constant c > 0 such that given δ ∈ (0, 1) and an unweighted, undirected
bipartite graph G with m edges, SparsifyCycleUnweighted returns in time O(m) a graph H
with edge weights in {1, 2} such that with high probability AH is a δ-approximation of AG with re-
spect to error matrix DG, and H has at most max{cnδ−2 log n, (7/8)m} edges and exactly preserves
degrees and bipartiteness.

To prove correctness, we recall a result on matrix concentration of Tropp:

23

Algorithm 2: SparsifyCycleUnweighted (δ,G = (V,E))

1 if δ <
√

cn log n/m then return G ;

2 Let dlow
def
= m

2n .
3 Let Elow be the edges adjacent to vertices v with d(v) ≤ dlow.
4 Let Eex, (C1, . . . , Ct) =CycleDecomp (V,E \ Elow).
5 Initialize H = (V,Eex ∪ E \Elow).
6 for i = 1, . . . , t do
7 Let (a1, b1), (b1, a2), . . . , (bk, a1) = Ci.
8 Choose b← 0, 1 uniformly at random.
9 if b = 0 then H ← H ∪ {2 · (ai, bi)}i∈[k]; // Add with weight 2

10 else H ← H ∪ {2 · (bi, ai+1)}i∈[k] ;
11 end

12 return H

Lemma 4.9 ([Tro12]). Let {Xi} be d × d random PSD matrices such that E[
∑

i Xi] � X. For
δ ≤ 1,

Pr

[
∑

i

Xi − E

[
∑

i

Xi

]
� δX

]
≤ 1−d·eδ2/3R, Pr

[
∑

i

Xi − E

[
∑

i

Xi

]
� −δX

]
≤ 1−d·eδ2/3R,

provided that R ≥
∥∥X+/2XiX

+/2
∥∥ almost surely.

Using this matrix concentration result, we can prove the theorem.

Proof of Lemma 4.8. First, note that if we do not sparsify G at all we have cnδ−2 log n < m and
hence the sparsity requirement is already satisfied. Subsequently we assume this is not the case.

Recall Elow is the set of edges adjacent to a vertex with degree at most dlow = (m/2n), and
observe that there are at most dlow · n ≤ m/2 such edges. Further recall C1, . . . , Ct are the cycles
found by CycleDecomp applied to E \ Elow. By assumption that G is bipartite, all such cycles
are of even length.

Let Xi
def
= D̃i−Ãi be the random variable of the Laplacian of the ith sampled cycle and observe

0 � Xi � 2ICi . Furthermore, let X
def
= DG � 0. We have

E

[
∑

i

Xi

]
=

⊤∑

i=1

LCi � X.

Furthermore, for every i ∈ [t] we have

∥∥∥X+/2XiX
+/2
∥∥∥ ≤ 2

∥∥∥D+/2ICiD
+/2
∥∥∥ ≤ 4n

m

where the final step follows from all cycles being exclusively incident to vertices with degree at
least m/2n. Thus, we apply Lemma 4.9 with {Xi}i∈[t], R = 4n/m, X = X and δ = δ/c. Letting
DC −AC be the random graph obtained by the cycle sampling procedure, with high probability
we have

−δDG � (DC −AC)−
t∑

i=1

(DCi −ACi) � δDG.

24

By adding the non-random components to we obtain

−δDG � AH −AG � δDG

and thus AH is an δ-approximation of AG with respect to DG with high probability.
Furthermore, by Lemma 4.4 at least m/2−n ≥ m/4 edges are included in the cycles C1, . . . , Ct,

and hence H has at most 7m/8 edges under the assumption that m ≥ cn, and H preserves degrees
and bipartiteness by construction.

4.3 Sparsifying a Constant Fraction of Edges

We then construct our routine for sparsifying a graph with respect to SV approximation. At each
iteration, we decrease the number of edges by a constant factor. We first bucket edges into powers
of two, then apply SparsifyCycleUnweighted .

Lemma 4.10. Given ε > 0 and b ∈ N and an undirected bipartite graph G with m edges, each with
weight in {1, 2, 22, . . . , 2b}, SparsifyCycle returns a graph H with

O
(
b · nε−2Φ−4 log n

)
+

15

16
m

edges where Φ = Φ(ExpanderDecomp), each with weight in {1, 2, 22, . . . , 2b+1}, such that with

high probability AH
sv≈ε AG. Moreover, SparsifyCycle runs in randomized time O(m + bn +

T(ExpanderDecomp,m))).

Algorithm 3: SparsifyCycle (ε, b,G = (V,E))

1 Let δ = ε−1Φ2.
2 Initialize H = (V, ∅).
3 for i = 0, . . . , b do

4 Initialize (unweighted) Gi as G restricted to edges with weight 2i.

5 Let Vi,1, . . . , Vi,t, Eex
def
=ExpanderDecomp(Gi).

6 Let H ← H ∪ 2i ·Eex.
7 for j ∈ 1, . . . , t do

8 Let Hi,j
def
=SparsifyCycleUnweighted (δ,Gi[Vi,j])

9 Let H ← H ∪ 2i ·Hi,j.

10 end

11 end

12 return H

Proof. Let G0, . . . , Gb be the unweighted bipartite graphs where Gi contains an edge (u, v) if there
is an equivalent edge with weight 2i. Thus, observe that

b∑

i=0

2i · (DGi −AGi) = DG −AG

and it suffices to sparsify unweighted bipartite graphs. Furthermore let mi
def
= |E(Gi)| and observe∑

imi = m.

25

Next, for every i observe that ExpanderDecomp computes a decomposition Vi,1, . . . , Vi,t

such that letting Gi,j
def
= Gi[Vi,j] we have λ(Gi,j) ≤ 1 − Φ, and at most mi/16 edges do not lie

in one of these subgraphs. Let ni,j
def
= |Gi,j | and observe

∑
j ni,j ≤ n and let mi,j

def
= |E(Gi,j)|

and observe
∑

j mi,j ≤ mi. By Lemma 4.8, we have that for every i, j, AHi,j is a degree and
bipartition-preserving δ-approximation of AGi,j with respect to DGi,j with high probability, and
thus by Lemma 4.3

AHi,j

sv≈δ·Φ−2 AGi,j .

Thus by Lemma 3.19 we have

AH
sv≈δ·Φ−2 AG

and so by our choice of δ = εΦ2 we obtain the desired approximation.
We now analyze the number of edges. The number of edges not placed into a subgraph Gi,j is

at most
b∑

i=1

mi

16
=

m

16
.

By Lemma 4.8 the number of edges in the sparsified graphs is at most

b∑

i=1

t∑

j=1

max{cni,jδ
−2 log n,

7

8
mi,j} ≤

b∑

i=1

t∑

j=1

(
cni,jδ

−2 log n+
7

8
mi,j

)

= O
(
bnε−2Φ−4 log n

)
+

7

8

b∑

i=1

t∑

j=1

mi,j

= O
(
bnε−2Φ−4 log n

)
+

7

8
m

and hence the total number of edges is bounded as desired. Finally, we analyze the time. We
can compute every Gi with a single pass through the edge list, so the total work is bounded by∑

i

∑
j O(mi,j +ni,j)+

∑b
i=1 T(ExpanderDecomp,mi) = O(m+ bn+ T(ExpanderDecomp,m))

as claimed.

4.4 Nearly Linear-Sized Sparsifers

We now apply our routine for sparsifying a constant fraction of edges in the natural recursive way.

Theorem 4.11. Given ε ∈ (0, 1) and an undirected bipartite graph G with m edges with integer
edge weights in [1, U], SparsifyGraph returns a graph H with

O
(
log(nU) · nε−2Φ−4 log3 n

)

edges where Φ = Φ(ExpanderDecomp), such that with high probability AH
sv≈ε AG. Moreover,

SparsifyGraph runs in time O(m+ nb+ T(ExpanderDecomp,m log(U))).

Proof. First observe that in Phase 1 of the algorithm, we obtain H0 such that H0 has at most mb
edges (recalling b = ⌈log(U)⌉) and each edge has weight {1, 2, 22, . . . , 2b}, and AH0

= AG. Then in
each phase we obtain Hj such that

AHj

sv≈ε/2 logn AHj−1

26

Algorithm 4: SparsifyGraph (ε,G = (V,E))

1 Initialize H0 = (V, ∅).
2 Let b

def
= ⌈log(U)⌉.

3 for i = 0, . . . , b do

4 for (u, v) ∈ E do

5 Let 〈wG(u, v)〉 be the binary expansion of wG(u, v).
6 if 〈wG(u, v)〉i = 1 then Add (u, v) to H0 with weight 2i.;

7 end

8 end

9 for j = 1, . . . , t
def
= O(log n) do

10 Let Hj ←SparsifyCycle (ε/2 log n, b+ j,Hj−1).
11 end

12 return Ht

with high probability by Lemma 4.10. Then applying Lemma 3.20 we obtain

AHt

sv≈ε AG

with high probability as desired. We next analyze the sparsity. Observe that the final edge weights
are bounded by 2b+t = poly(nU) and hence the final sparsity is

O
(
(b+ t)nε−2Φ−4 log3 n

)
= O

(
log(nU)nε−2Φ−4 log3 n

)
.

Finally, we analyze the time complexity. Our initial call has mb edges and thus runs in time
O(mb+ bn + T(ExpanderDecomp,mb)) by Lemma 4.10, and all subsequent calls are to sparsify
graphs with a constant factor fewer edges, so the time is dominated by the initial term.

By plugging in the algorithmic (Theorem 4.6) and existential (Theorem 4.6) results for expander
partitions, we obtain our sparsifier routines:

Corollary 4.12. Given ε ∈ (0, 1) and an undirected bipartite graph G with m edges with integer
edge weights in [1, U], there is a randomized algorithm that returns a graph H with

O
(
log(nU) · nε−2 log19 n

)

edges such that with high probability AH
sv≈εAG. Moreover, the algorithm runs in time O(log(U)m log7 m).

Corollary 4.13. Given ε ∈ (0, 1) and an undirected bipartite graph G with m edges with integer
edge weights in [1, U], there is a graph H with

O
(
log(nU) · nε−2 log11 n

)

edges such that AH
sv≈ε AG.

4.5 Derandomized Square Sparsification

Here we show that the derandomized square of Rozenman and Vadhan [RV05] gives an SV sparsi-
fication of the square graph. We first explain the derandomized square. Given a d-regular graph

27

G, the squaring operation can be though of as placing a d× d complete graph between the in- and
out-neighbors of every vertex v. The derandomized square replaces this complete graph with an
expander. As an expander approximates the complete graph, this sparsification operation produces
an approximate square.

We first formally define the derandomized square.

Definition 4.14. Given a d-regular graph G = ([n], E) with neighbor function ΓG : [n]× [d]→ [n]
and c-regular graph H = ([d], E′) with neighbor function ΓH : [d] × [c] → [d], the derandomized
square of G with respect to H, denoted G s○H, is the dc-regular graph on n vertices with neighbor
function

ΓG s○H(v, (i, j)) = ΓG(ΓG(v, i),ΓH (i, j)).

Prior analyses of the derandomized square have shown that it improves expansion approximately
as well as the true square [RV05] and that it produces unit-circle square sparsifiers [AKM+20]. We
strengthen the latter conclusion to SV square sparsifiers.

Lemma 4.15. Let G = (V,E) be a d-regular directed multigraph with random walk matrix W. Let

H be a c-regular expander on d vertices with λ(H) ≤ 1 − ǫ and let W̃ be the adjacency matrix of
G s○H. Then

W̃
svn≈ ε W

2.

Proof. Let WH be the random walk matrix corresponding to H, and J ∈ R
d×d be the random walk

matrix of a complete graph with self loops. By Lemmas 3.15 and 3.21 we have

In ⊗WH
sv≈ε In ⊗ J. (18)

Let F be an nd×nd edge-rotation permutation matrix such that F((v, j), (u, i)) = 1 if the ith edge
leaving u is the jth edge entering v. It is straight-forward to verify that

W2 = Q⊤F(I⊗ J)FQ

and
W̃ = Q⊤F(I⊗WH)FQ

where Q
def
= I ⊗ 1d√

d
is an nd × n matrix. Now note that ‖F‖ ≤ 1 and ‖Q‖ ≤ 1 and thus

‖FQ‖, ‖Q⊤F‖ ≤ 1. Thus by Theorem 3.9, and Equation (18) we have

W̃
sv≈ǫ W

2.

4.6 Sparsification of Eulerian Walks

We give the first nearly-linear time algorithm for sparsifying random walk polynomials of Eulerian
digraphs with second singular value bounded away from 1. In particular, given an Eulerian digraph
W ∈ R

n×n
≥0 with second singular value bounded away from 1, we compute a sparse graph such

that the walk matrix W̃ approximates Wℓ with respect to SV approximation. For this result, we
crucially require that SV approximation is preserved under products, a feature that is not obtained
by prior notions of approximation.

Definition 4.16. Given a strongly connected Eulerian digraphG, we let σ(G) = σ2(D
−1/2
G AGD

−1/2)
and refer to this as the second normalized singular value of G.

28

Theorem 4.17. Given ℓ ∈ N and ε > 0 and an Eulerian digraph G = (A,D) where σ(G) ≤ 1−1/τ
with m edges with integer edge weights in [1, U], SparsifyPower returns in time Õ(m log(U) +
nε−2 polylog(τUℓ)) an Eulerian digraph H = (AH ,D) with Õ(nε−2 polylog(τUℓ)) edges with inte-
ger edge weights in [1,poly(n, τ, U, ℓ, 1/ε)] such that

D+/2AHD+/2 svn≈ ε (D
+/2AD+/2)ℓ.

To prove these, we first recall the square sparsification algorithm implicit in the work of Cohen
et al. [CKP+17].

Theorem 4.18 (Implicit in [CKP+17]). Given an Eulerian weighted digraph G with Laplacian
D −AG, let G

2 be the graph with Laplacian D −AGD
+AG. Let U denote the Laplacian of the

undirected graph corresponding to (AG2 +A⊤
G2)/2. Then SparsifySquare of [CKP+17] produces

in time Õ(m), a weighted graph H with the following properties:

1. H has the same weighted in- and out- degree sequences as those of G2.

2. H has Õ(m/ε2) nonzero edges.

3. AH is an ǫ/2-approximation of AGD
−1AG with respect to SD−AGD+AG

.

We can use a block embedding and Theorem 4.18 to obtain a nearly-linear time algorithm for
sparsifying products with respect to SV approximation.

Lemma 4.19. Given ε > 0 and Eulerian digraphs G1, G2 each with at most m edges with matching
degree matrix D, where each edge has integer weight in [1, U], SparsifyProduct returns an
Eulerian digraph H with Õ(m/ε2) edges such that with high probability

AH
sv≈ε AG2

D+AG1

Moreover, SparsifyProduct runs in time Õ(m/ε2).

Algorithm 5: SparsifyProduct(ε,G1, G2)

1 Let G be the graph with AG =




0 0 0

AG1
0 0

0 AG2
0




2 Let H ← [SparsifySquare(ε/3, G)]3,1 .
3 return H

Proof. We first analyze correctness. Note by Theorem 4.18 we have that



0 0 0

0 0 0

AH0
0 0


 is an ε/6-approximation of




0 0 0

0 0 0

AG2
D+AG1

0 0


 with respect to R

where

R =




D 0 −(AG2
D+AG1

)⊤

0 0 0

−AG2
D+AG1

0 D




This is precisely Item 3 of Lemma 3.7, so we conclude AH
sv≈ε AG2

D+AG1
.

29

Finally, we require an algorithm that removes very small edge weights. This is not trivial, as
we must do so in a way that exactly preserves degrees for SV approximation to hold.

Lemma 4.20. There is an algorithm FixEdgeWeights such that the following holds. Let G be
an Eulerian digraph with m edges where the degree matrix DG can be represented as a subset sum
of {1, . . . , 2b}. Then for t ∈ N, FixEdgeWeights(t,G) outputs in time O(mb) a graph H such
that:

• Ht has m+ 2n edges and is Eulerian and DH = DG.

• Edge weights in H can be represented as a subset sum of {2−t, . . . , 1, . . . , 2b}.

• ‖AH −AG‖ ≤ 2n · 2−t.

Proof. First, let ⌊G⌋ be the graph where all edge weights are rounded down to a multiple of 2−t.
Observe that this satisfies

‖A⌊G⌋ −AG‖ ≤ n · 2−t.

Furthermore, note that each vertex v has an in-degree shortfall equal to sin(v) = Dv,v−
∑

u(A⌊G⌋)v,u.
Note that sin(v) ≥ 0 since we only remove weight from edges. This can be expressed as a sub-
set sum of {2−t, . . . , 1, . . . , 2b} as all numbers in the summand can be. An equivalent statement
holds for the out-degree shortfall. Furthermore, the total in- and out- degree shortfalls must be
equal, since every truncation contributes to both sums. Thus, by greedily matching in- shortfalls
to out- shortfalls, we obtain the desired graph H. It is easy to see this satisfies the approximation
claim.

We are now prepared to state our algorithm for sparsifying an arbitrary power of an Eulerian
digraph.

Algorithm 6: SparsifyPower(ε,G, ℓ)

1 Let t
def
= ⌈log ℓ⌉.

2 Let 〈ℓ〉 be the binary expansion of ℓ.

3 Let l
def
= O(log(nUℓ/γε)).

4 Let G1
def
= SparsifyGraph (ε/2, G).

5 for i = 2, . . . , t do

6 Let Pi
def
= SparsifyProduct(ε/t,Gi−1, Gi−1).

7 Let Hi
def
= FixEdgeWeights(l, Pi).

8 Let Gi
def
= SparsifyGraph (ε/t,Hi).

9 if 〈ℓ〉t−i = 1 then

10 Let Pi ← SparsifyProduct(ε/t,Gi−1, G1).
11 Let Hi ← FixEdgeWeights(l, Pi).
12 Let Gi ← SparsifyGraph (ε/t,Hi).

13 end

14 end

15 return Gt

We are now prepared to prove the result:

30

Theorem 4.17. Given ℓ ∈ N and ε > 0 and an Eulerian digraph G = (A,D) where σ(G) ≤ 1−1/τ
with m edges with integer edge weights in [1, U], SparsifyPower returns in time Õ(m log(U) +
nε−2 polylog(τUℓ)) an Eulerian digraph H = (AH ,D) with Õ(nε−2 polylog(τUℓ)) edges with inte-
ger edge weights in [1,poly(n, τ, U, ℓ, 1/ε)] such that

D+/2AHD+/2 svn≈ ε (D
+/2AD+/2)ℓ.

Proof. We first show the approximation guarantee. Note that by the guarantees of Lemma 4.19
and Corollary 4.12 and Lemma 4.20, for every i,

D
def
= DPi = DHi = DGi = DG.

Let NPi

def
= D+/2A

+/2
Pi

D+/2 and NHi

def
= D+/2A

+/2
Hi

D+/2 and NGi

def
= D+/2A

+/2
Gi

D+/2. The proof
of correctness does not change if we assume ℓ = 2t for some t (and hence the if condition in the
main loop never occurs), so we analyze it assuming this for simplicity. The fact that this does
not matter follows from the fact that SV approximation is preserved under arbitrary products, not
merely powers (Lemma 3.17).

We first argue that the singular value of all graphs we sparsify remain bounded below 1.

Claim 4.21. For every i, σ(Hi), σ(Pi), σ(Gi) ≤ 1− 1/O(τ).

Proof. We show the claim via induction. By assumption, we have σ(G) = 1− 1/τ . By Lemma B.4
we have σ(G1) ≤ 1− (1 + ε/t)/τ . Subsequently, assume that σ(Gi−1) ≤ 1− (1 + 2ε/t)2(i−1)/τ .

• By Lemma B.1 we have σ(G2
i−1) ≤ σ(Gi−1) ≤ 1− (1 + 2ε/t)2(i−1)/τ .

• By Lemma B.4 we have σ(Pi) ≤ 1− (1 + ε/t)(1 + 2ε/t)2(i−1)/τ .

• By Lemma B.3 we have σ(Hi) ≤ 1− (1 + ε/t)(1 + 2ε/t)2(i−1)/τ + 1/poly(τ).

• By Lemma B.4 we have σ(Gi) ≤ 1− (1 + 2ε/t)2i/τ

So the claim follows assuming ε ≤ 1/c′ for constant c′.

We now show that SV approximation is preserved at every step of the loop. Fixing i and Gi−1:

1. By Lemma 4.19 we have that NPi

svn≈ ε/3t N
2
Gi−1

.

2. By Lemma 4.20 we have ‖AHi−APi‖ ≤ 2n2−l, so AHi is a 2n2−l ≤ ε/poly(τ) approximation

of APi with respect to D. Taking the bipartite lift,

[
0 A⊤

Hi

AHi 0

]
is a degree- and bipartition-

preserving ε/poly(τ)-approximation of

[
0 A⊤

Pi

APi 0

]
with respect to

[
D 0

0 D

]
(where we use

that Pi is not itself bipartite to ensure that the lift of Hi preserves all bipartitions). Thus by
Lemma 4.3 (using that the bipartite lift has normalized second eigenvalue at least 1/O(τ) by

Claim 4.21) and Lemma 3.7, we have that NHi

sv≈ε/3t NPi .

3. By Corollary 4.12, NGi

svn≈ ε/3t NHi .

31

Applying Lemma 3.20 we obtain NGi

svn≈ ε/t N
2
Gi−1

for every i. Therefore by Lemma 3.17,

NGt

svn≈ ε/t

(
NGi−1

)2 svn≈ ε/t . . . (NG2
)2

t−1 svn≈ ε/t (NG1
)2

t

and so we conclude by Lemma 3.20 (and taking ε← ε/10).
To analyze the time, note that by Lemma 4.20 we always call SparsifyGraph on graphs

with (up to rescaling) integer edge weights in [1,poly(τUnℓ/ε)], and by Theorem 4.18 Pi (and
thus Hi) has Õ(nε−2 polylog(Uτℓ/ε)) edges, so we obtain the desired runtime and sparsity by
Corollary 4.12.

4.7 Sparsification of Directed Random Walks

We first recall the definition of the statioary distribution for an arbitrary directed graph:

Definition 4.22 ([CKP+16]). Given a strongly-connected directed graph G with Laplacian D−A,
there exists a vector ~s, which we refer to as the stationary distribution or stationary vector, with
‖s‖1 = 1 and S := diag(~s), which refer to as the stationary matrix, such that the following equivalent
conditions hold:

1. AD−1~s = ~s

2. (D−A)D−1S is an Eulerian Laplacian.

We then state the main theorem:

Theorem 4.23. There is a randomized algorithm SparsifyScaledPower satisfying the follow-
ing. The algorithm takes as input ℓ ∈ N and ε, δ > 0 and a strongly connected directed graph G
with:

• m edges with integer edge weights in [1, U],

• minimum statationary probability at least s,

and let R = Uℓ/sδ. Then SparsifyScaledPower returns in time Õ
((
m+ nε−2

)
polylog(R)

)

an Eulerian digraph H = (DH ,AH) with Õ(nε−2 polylog(R)) edges with integer edge weights in
[1,poly(R)] such that

AH
sv≈ε B

where B is δ/n-entrywise close to (AD−1)ℓS = WℓS where A,D,S are the adjacency, degree,
and stationary matrix of G respectively. In particular, |CutB(S, T) − CutGℓ(S, T)| ≤ δ for every
S, T ⊆ [n].

To obtain this result, we recall that we can find the stationary distribution of an arbitrary
directed graph in nearly linear time.

Lemma 4.24 (Lemma 53 [CKP+16]). Given δ > 0, there is a randomized algorithm Find-

Close that, given a directed graph G with weak mixing time6 T and minimum stationary prob-
ability s, returns (D̃, Ã, S̃) in time Õ(m polylog(nT/sδ)), where S̃ is the stationary matrix of Ã.
Moreover, ‖Ã−AG‖ ≤ δ.

We use this primitive to find an Eulerian rescaling of the lazified random walk of G.

6The mixing time of the 1/2-lazy random walk.

32

Proof of Theorem 4.23. We first claim that we can compute an approximate rescaling. Let T be
the weak mixing time of G, and note we have T ≤ poly(U/s) (where we use that 1/s ≥ n). Note
that (D−A)D−1S is an Eulerian Laplacian with edge weights in [s/U, 1] and weak mixing time at
most T . Now let

(D̃, Ã, S̃) := FindClose(G, ρ)

for ρ to be chosen later. We have that

L̃ := (D̃− Ã)D̃−1S̃ = S̃− ÃD̃−1S̃

is an Eulerian Laplacian, and moreover (taking ρ← ρ/n):

‖D̃−D‖ ≤ ρ, ‖Ã−A‖ ≤ ρ, and ‖S̃− S‖ ≤ ρ.

In particular, choosing ρ sufficiently small compared to U/s we have that L̃ has weak mixing time
at most poly(T). Now let

M̃ := (1− γ)Ñ+ γI

where Ñ = S̃−1/2(ÃD̃−1S̃)S̃−1/2, for γ to be chosen later. By Lemma B.5 we have

σ(M̃) ≤ 1− 1/poly(TU/sγ).

Moreover, M̃ is the normalized adjacency matrix of an Eulerian graph with adjacency and degree

matrix B and DH , i.e., B = D
1/2
H M̃D

1/2
H . By Theorem 4.17 we can compute in the specified time

bound a graph H with adjacency AH such that

D
−1/2
H AHD

−1/2
H

svn≈ ε D
−1/2
H BD

−1/2
H = M̃ℓ.

Claim 4.25. DH is δ · s close to S.

Proof. We have ‖DH −S‖ ≤ ‖DH − D̃‖+ ‖D̃−S‖ ≤ γ+ ρ and hence taking γ and ρ small relative
to δ · s this holds.

Claim 4.26. B is δ close to (AD−1)S.

Proof. We have

‖B− (AD−1)S‖ ≤ ‖S−1/2BS−1/2 − S−1/2(AD−1)S1/2‖ ‖S‖ ≤ 1

≤ δ + ‖M̃ℓ − S−1/2(AD−1)ℓS1/2‖ Claim 4.25

= δ + ‖M̃ℓ − (S−1/2(AD−1S)S−1/2)ℓ‖
≤ δ + ‖M̃ℓ − Ñℓ‖+ ‖Ñℓ − (S−1/2(AD−1S)S−1/2)ℓ‖
= δ + ‖((1 − γ)Ñ+ γI)ℓ − Ñℓ‖+ δ/2 ≤ O(δ).

where the second to last inequality follows from making ρ small relative to δ/s, and we conclude
by taking δ ← δ/cn.

Thus, we have the desired approximation statement. Finally, for arbitrary S, T , we have

|CutB(S, T)− CutGℓ(S, T)| = |~1TB~1S −~1TW
ℓS~1S | ≤ δ.

33

We can then state the implication in terms of cut sparsification.

Theorem 4.27. There is a randomized algorithm EstimateCut satisfying the following. Fix
ℓ ∈ N, ε > 0, and a strongly connected directed graph G with m edges and integer edge weights
in [1, U], and s ≤ πmin(G), and let R = Uℓ/s. Then EstimateCut returns a graph H with
Õ(nε−2 polylog(R)) edges in time

Õ
((
m+ nε−2

)
polylog(R)

)

such that the following holds. For every S, T ⊂ [n]:

|CutH(S, T)− CutGℓ(S, T)| ≤ ε ·
√

min {CutGℓ(S),UncutGℓ(S)} ·min {CutGℓ(T),UncutGℓ(T)}.

Proof. Apply Theorem 4.23 with ε = ε and δ = ε · (s/2U)3/2n, so that we obtain (AH ,DH) in the
claimed time bound. We now prove the cut approximation property. Fix arbitrary S, T ⊂ [n], and
recall that CutH(S, T) = ~1⊤TAH~1S/|S|. Recall that by Theorem 4.23 we have

D
−1/2
H AHD

−1/2
H

svn≈ ε D
−1/2
H BD

−1/2
H .

Set
x⊤ := ~1⊤ScD

1/2
H , y := D

1/2
H

~1S

and apply the definition of SV approximation:

∣∣∣CutH(S, T)−~1⊤T (BD−1
H)DH

~1S

∣∣∣

≤ ε

√
~1⊤TD

1/2
H (I−D

−1/2
H (BD−1

H)(B⊤D−1
H)D

1/2
H)D

1/2
H

~1T

·
√
~1⊤SD

1/2
H (I−D

−1/2
H (B⊤D−1

H)(BD−1
H)D

1/2
H)D

1/2
H

~1S

= ε ·
√

CutBTB(S) ·
√

CutBTB(T)

≤ 2ε ·
√
min{CutB(S),UncutB(S)} ·

√
min{CutB(T),UncutB(T)} := ε · err(B,S, T)

where the final line follows as CutBTB(S) ≤ 2·CutB(S) and CutBTB(S) ≤ 2UncutB(S) and likewise
for T . Finally, delete all edges from H with weight less than δ. Applying Theorem 4.23, we obtain

|CutH(S, T)− CutGℓ(S, T)| ≤ 2δ · n+ ε · err(B,S, T).

as all cut values in B are within δ of cut values in Gℓ by Theorem 4.23.
By Proposition C.3, err(Gℓ, S, T) is either 0 or at least (s/2U)3. In the latter case, we have

2δ · n + ε · err(B,S, T) ≤ 2ε · err(B,S, T) by choice of δ. In the former case, as |err(B,S, T) −
err(Gℓ, S, T)| ≤ δ and |CutB(S, T)− CutGℓ(S, T)| ≤ δ, it must have been the case that the (S, T)
cut in (pre-deletion) H consisted entirely of edges of weight at most δ. Thus, deleting these edges
brings CutH(S, T) to zero, so we again obtain approximation with no additive loss.

5 Squaring-based Solver for Normal Directed Laplacian Systems

In [PS14], Peng and Speilman proposed a squaring-based parallel algorithm for computing an
approximate pseudo-inverse (preconditioner) of a Laplacian matrix. A key ingredient of their

34

algorithm is the following recursion, which we refer to as the Peng-Spielman squaring recursion
(PS-recursion), for inverting I−W when ‖W‖ < 1.7

(I−W)−1 =
1

2

[
I+ (I+W)(I −W2)−1(I+W)

]
(19)

Leveraging the PS-recursion a natural appproach to find an approximate inverse of I −W,
is to compute a sparse matrix W̃ such that I − W̃ ≈ I −W2, and then compute the inverse of
I−W̃ recursively. [PS14] showed that for symmetric Laplacians, using spectral approximation this
recursion can be leveraged to produce a constant preconditioner with logarithmic depth.

Here we prove that the same algorithm gives approximate pre-conditioner for I −W if W is
normal but not necessarily symmetric and the square approximations are normalized SV approx-
imations. We think Theorem 5.2 gives hope that a similar approach can expand the proof to
non-normal matrices. If proved, this will result in simple but space and time efficient algorithms
for solving directed Laplacian systems. For example, this could simplify the space efficient solver
introduced in [AKM+20] which in turn is used to estimate random walk probabilities to a high
precision.

Below we give the main theorem which formally defines the PS-recursion and states the main
result of this section. This theorem uses a generalization of the spectral norm to a (semi-)norm
induced by a PSD matrix, which we first define.

Definition 5.1. Given PSD F ∈ C
n×n, we let ‖ · ‖F be the (semi)norm on vectors where ‖x‖F def

=√
x∗Fx, and define the matrix norm ‖A‖F def

= supx∈Cn\{~0}
‖Ax‖F
‖x‖F .

Theorem 5.2. For a normal matrix W ∈ C
n×n with ‖W‖ ≤ 1, let W = W0, . . . ,Wk−1 be a

sequence of matrices such that for all i ∈ [k − 1] we have Wi
svn≈ ǫ W

2
i−1 for ε ≤ 1/(4k). Define

Pi
def
=

1

2
[I+ (I+Wi)Pi+1(I+Wi)] for all 0 ≤ i < k

where Pk is a matrix such that
∥∥∥(I−W2k)

1
2

[
Pk − (I−W2k)+

]
(I−W2k)

1
2

∥∥∥ ≤ O(kǫ) .

Then for B
def
= ((I −W)1/2)∗(I−W)1/2

‖P0(I−W)− I‖
B
=
∥∥∥(I −W)

1
2

[
P0 − (I−W)+

]
(I−W)

1
2

∥∥∥ ≤ O(k2ǫ) . (20)

Note that in the above statement, the square root of I−W is well defined by the assumption
that W is normal. In the case of non-normal matrices, which is outside the scope of this paper,
one can consider the Maclaurin series for (1− z)1/2 to work with (I−W)1/2.

We do not give a full algorithm for solving systems defined by Theorem 5.2 as the main purpose
is to show that the error analysis of the squaring algorithm can be expanded to normal asymmetric
matrices, and we already know space and time efficient algorithms [CKK+18,AKM+20] for solving
a larger class of matrices which includes non-normal W’s. However, one can still get an actual
squaring based solver from Theorem 5.2. For example, for a normal W corresponding to a random
walk matrix of an Eulerian digraph one can carry the same steps in [AKM+20] by setting k =

O(log n) and Pk = I − ~1~1⊤

n to get an actual squaring based solver using Theorem 5.2 and the
derandomized square sparsification described in Section 4.5.

We prove the statement of the theorem, following a few helper lemmas. First, we show the error
of Wi’s approximating W2i ’s grows additively.

7Technically the recursion was introduced for symmetric W.

35

Lemma 5.3. Let Wi be defined as in Theorem 5.2. Then Wi
svn≈ 2iǫ W

2i for all for i ∈ [k].

Proof. Recall that Wj
svn≈ ε W

2
j−1 for every j. Thus, by Lemma 3.17 we have for every j ≤ i,

(Wj)
2i−j svn≈ ε+O(ε2) (Wj−1)

2i−j+1

.

The result then follows from Lemma 3.20.

Next we give a general technical tool regarding normal matrices.

Lemma 5.4. For a normal matrix V with ‖V‖ ≤ 1

‖(I +V)
1
2 ‖ ≤

√
2 (21)

and if Ṽ
svn≈ δ V then ∥∥∥(I−V)

1
2 (Ṽ −V)((I −V2)+)

1
2

∥∥∥ ≤ O(δ). (22)

Proof. Note that since V is normal, we can write it as V = UDU∗ where U is unitary and D is
diagonal and ‖D‖ ≤ 1. Then it is easy to see

‖(I +V)
1
2 ‖ = ‖U(I +D)

1
2U∗‖ = ‖(I +D)

1
2 ‖ ≤

√
2. (23)

To prove (22), given the SV approximation definition, for unit vectors x, y we have,

∣∣∣x∗(I−V)
1
2 (Ṽ −V)((I −V2)+)

1
2 y
∣∣∣ ≤ δ

2
· x∗(I−V)

1
2 (I−VV∗)(I −V∗)

1
2x

+
δ

2
· y∗((I− (V∗)2)+)

1
2 (I −V∗V)((I −V2)+)

1
2 y

We bound each term on the right hand side separately. Since V is normal we can prove bounds on
the norm of (I−V)

1
2 (I−VV∗)(I −V∗)

1
2 and ((I− (V∗)2)+)

1
2 (I−V∗V)((I −V2)+)

1
2 by looking

at complex numbers. Note that for z ∈ C and |z| ≤ 1,

|(1− z)
1
2 (1− z · z∗)2(1− z∗)

1
2 | = |1− z| · (1− |z|2) ≤ 2,

thus ‖(I −V)
1
2 (I−VV∗)(I −V∗)

1
2‖ ≤ 2. Next,

∣∣∣(1− z∗2)−
1
2 (1− z · z∗)2(1− z2)−

1
2

∣∣∣ = 1− |z|2
|1− z2| ≤ 1

because 1− |z|2 ≤ |1− z2| by triangle inequality. Thus,

‖((I − (V∗)2)+)
1
2 (I−V∗V)((I −V2)+)

1
2 ‖ ≤ 1.

Completing the proof that,

∣∣∣x∗(I−V)
1
2 (Ṽ −V)((I −V2)+)

1
2 y
∣∣∣ ≤ 3

2
· δ.

Leveraging these tools we give the central lemma towards proving Theorem 5.2 and conclude
by proving Theorem 5.2.

36

Lemma 5.5. For ǫ and Pi’s defined as in Theorem 5.2,
∥∥∥(I−W2i)

1
2

[
Pi − (I −W2i)+

]
(I−W2i)

1
2

∥∥∥ ≤ ǫi (24)

where ǫi = (1 +O(i · ǫ))ǫi+1 +O(i · ǫ) for 0 ≤ i < k and ǫk = O(k · ǫ).
Proof. We prove the statement by backward induction. Note that the statement is true for i = k
by the assumption about Pk in Theorem 5.2. Let

Qi =
1

2

[
I+ (I+Wi)(I−W2i+1

)+(I+Wi)
]
,

Ri =
1

2

[
I+ (I+Wi)(I −W2i+1

)+(I+W2i)
]
,

Si =
1

2

[
I+ (I+W2i)(I −W2i+1

)+(I+W2i)
]
= (I−W2i)+.

Then by triangle inequality we have,

‖(I−W2i)
1
2

[
Pi − (I −W2i)+

]
(I−W2i)

1
2 ‖ ≤ ‖(I −W2i)

1
2 (Pi −Qi)(I−W2i)

1
2‖ (25)

+ ‖(I −W2i)
1
2 (Qi −Ri)(I−W2i)

1
2‖ (26)

+ ‖(I −W2i)
1
2 (Ri − Si)(I −W2i)

1
2 ‖. (27)

Next, we bound each term separately. For (25), we have
∥∥∥(I−W2i)

1
2 (Pi −Qi)(I −W2i)

1
2

∥∥∥

=
1

2

∥∥∥(I−W2i)
1
2 (I+Wi)

(
Pi+1 − (I−W2i+1

)+
)
(I+Wi)(I−W2i)

1
2

∥∥∥

≤ 1

2

∥∥∥(I−W2i)
1
2 (I+Wi)((I−W2i+1

)
1
2)+
∥∥∥

·
∥∥∥(I−W2i+1

)
1
2

(
Pi+1 − (I−W2i+1

)+
)
(I−W2i+1

)
1
2

∥∥∥

·
∥∥∥((I−W2i+1

)
1
2)+(I+Wi)(I −W2i)

1
2

∥∥∥ .

Note that the middle term above satisfies
∥∥∥(I−W2i+1

)
1
2

(
Pi+1 − (I−W2i+1

)+
)
(I−W2i+1

)
1
2

∥∥∥ ≤ ǫi+1

by the induction hypothesis. Next, we bound the first and third terms similarly:
∥∥∥∥∥
(I−W2i)

1
2 (I+Wi)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥ ≤
∥∥∥∥∥
(I−W2i)

1
2 (I+W2i)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥+ (28)

∥∥∥∥∥
(I−W2i)

1
2 (Wi −W2i)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥
≤ 1 +O(i · ǫ)

as

∥∥∥∥
(I−W

2i)
1
2 (I+W

2i)((I−W
2i+1

)
1
2)+√

2

∥∥∥∥ ≤ 1 by Equation (21) in Lemma 5.4 and

∥∥∥∥
(I−W

2i)
1
2 (Wi−W

2i)((I−W
2i+1

)
1
2)+√

2

∥∥∥∥ ≤
O(i · ǫ) by Lemma 5.3 and Equation (22) in Lemma 5.4. Combining all the above,

∥∥∥(I−W2i)
1
2 (Pi −Qi)(I −W2i)

1
2

∥∥∥ ≤ (1 +O(i · ǫ))2ǫi+1,

37

giving the bound for (25). Next, for (26), we have
∥∥∥(I −W2i)

1
2 (Qi −Ri)(I −W2i)

1
2

∥∥∥ =

1

2

∥∥∥(I−W2i)
1
2 (I+Wi)(I −W2i+1

)+(Wi −W2i)(I−W2i)
1
2

∥∥∥ ≤
∥∥∥∥∥
(I −W2i)

1
2 (I+Wi)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥ ·
∥∥∥∥∥
((I −W2i+1

)
1
2)+(Wi −W2i)(I −W2i)

1
2√

2

∥∥∥∥∥

We can get bounds for the two terms above similar to (28). Thus we get,
∥∥∥(I −W2i)

1
2 (Qi −Ri)(I −W2i)

1
2

∥∥∥ ≤
∥∥∥∥∥
(I −W2i)

1
2 (I+Wi)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥ ·
∥∥∥∥∥
((I −W2i+1

)
1
2)+(Wi −W2i)(I −W2i)

1
2√

2

∥∥∥∥∥ ≤

(1 +O(i · ǫ)) ·O(i · ǫ) ≤ O(i · ǫ).

Finally, for (27), we have

‖(I −W2i)
1
2 (Ri − Si)(I −W2i)

1
2 ‖ =

1

2

∥∥∥(I−W2i)
1
2 (Wi −W2i)(I−W2i+1

)+(I+W2i)(I −W2i)
1
2

∥∥∥ ≤
∥∥∥∥∥
(I−W2i)

1
2 (Wi −W2i)((I −W2i+1

)
1
2)+√

2

∥∥∥∥∥ ·
∥∥∥∥∥
((I −W2i+1

)
1
2)+(I+W2i)(I−W2i)

1
2√

2

∥∥∥∥∥

Further, similar to the earlier upper bounds, we have

∥∥∥∥
(I−W

2i)
1
2 (Wi−W

2i)((I−W
2i+1

)
1
2)+√

2

∥∥∥∥ ≤ O(i · ǫ)

and

∥∥∥∥
((I−W2i+1

)
1
2)+(I+W2i)(I−W2i)

1
2√

2

∥∥∥∥ ≤ 1. Thus

‖(I −W2i)
1
2 (Ri − Si)(I−W2i)

1
2‖ ≤ O(i · ǫ).

Proof of Theorem 5.2. For ǫ < 1
k2
, we can solve for ǫ0 from ǫi = (1 + O(i · ǫ))ǫi+1 + O(i · ǫ) in

Lemma 5.5 and get ǫ0 = O(ǫ · k2). To complete the proof, we show

‖P0(I −W) − I‖B = ‖(I−W)
1
2

[
P0 − (I−W)+

]
(I−W)

1
2‖.

Note that,

‖(I−W)
1
2

[
P0 − (I−W)+

]
(I−W)

1
2‖

= ‖(I−W)1/2 [P0(I−W)− I] (I−W)+/2‖

=

∥∥∥∥
[
(I−W)∗/2(I−W)1/2

]1/2
[P0(I−W)− I]

[
(I−W)+/2((I −W)∗)+/2

]1/2∥∥∥∥

=

∥∥∥∥
[
(I−W)∗/2(I−W)1/2

]1/2
[P0(I−W)− I]

[
(I−W)∗/2(I−W)1/2

]+/2
∥∥∥∥

= ‖P0(I−W)− I‖B
where we used Lemma B.6.

38

Acknowledgements

We thank Jack Murtagh for his helpful collaboration at the early stage of research on this research
and we thank Jonathan Kelner for helpful conversations at various stages of work on this project.

References

[ACL06] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local graph partitioning using
pagerank vectors. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings,
pages 475–486. IEEE Computer Society, 2006.

[ADK22] Daniel Agassy, Dani Dorfman, and Haim Kaplan. Expander decomposition with fewer
inter-cluster edges using a spectral cut player. CoRR, abs/2205.10301, 2022.

[Ahm20] AmirMahdi Ahmadinejad. Computing Stationary Distributions: Perron Vectors, Ran-
dom Walks, and Ride-Sharing Competition. Stanford University, 2020.

[AJSS19] AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford.
Perron-frobenius theory in nearly linear time: Positive eigenvectors, m-matrices, graph
kernels, and other applications. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, Jan-
uary 6-9, 2019, pages 1387–1404. SIAM, 2019.

[AKM+20] AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil P. Vadhan. High-precision estimation of random walks in small
space. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
1295–1306. IEEE, 2020.

[AM85] Noga Alon and V. D. Milman. lambda1, isoperimetric inequalities for graphs, and
superconcentrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.

[BK00] András A. Benczúr and David R. Karger. Augmenting undirected edge connectivity

in õ(n2) time. J. Algorithms, 37(1):2–36, 2000.

[BSS12] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan
sparsifiers. SIAM J. Comput., 41(6):1704–1721, 2012.

[CCL+15] Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral
sparsification of random-walk matrix polynomials. CoRR, abs/1502.03496, 2015.

[CGP+18] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junx-
ing Wang. Graph sparsification, spectral sketches, and faster resistance computation,
via short cycle decompositions. In Mikkel Thorup, editor, 59th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 361–372. IEEE Computer Society, 2018.

[CKK+18] Michael B. Cohen, Jonathan A. Kelner, Rasmus Kyng, John Peebles, Richard Peng,
Anup B. Rao, and Aaron Sidford. Solving directed laplacian systems in nearly-linear
time through sparse LU factorizations. In Mikkel Thorup, editor, 59th IEEE Annual

39

Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, pages 898–909. IEEE Computer Society, 2018.

[CKM+11] Paul F. Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 273–282. ACM, 2011.

[CKP+16] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Aaron Sidford,
and Adrian Vladu. Faster algorithms for computing the stationary distribution, sim-
ulating random walks, and more. In Irit Dinur, editor, IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 583–592. IEEE Computer Society, 2016.

[CKP+17] Michael B. Cohen, Jonathan A. Kelner, John Peebles, Richard Peng, Anup B. Rao,
Aaron Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains
and new spectral primitives for directed graphs. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 410–419. ACM, 2017.

[CLTW22] Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. Personal communication,
November 2022.

[DMVZ20] Dean Doron, Jack Murtagh, Salil P. Vadhan, and David Zuckerman. Spectral spar-
sification via bounded-independence sampling. In Artur Czumaj, Anuj Dawar, and
Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 39:1–39:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020.

[GV22] Louis Golowich and Salil Vadhan. Pseudorandomness of expander random walks for
symmetric functions and permutation branching programs. In Anindya De, editor,
Proceedings of the 37th Computational Complexity Conference (CCC ‘22), volume 234
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
Full version posted as ECCC TR22-024.

[HPV21] William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for
unbounded-width permutation branching programs. In James R. Lee, editor, 12th
Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8,
2021, Virtual Conference, volume 185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 356–364. ACM, 1994.

[Kel21] Zander Kelley. An alternative proof that inw fools permutation programs. Unpub-
lished manuscript, February 2021.

40

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multi-
commodity generalizations. In Chandra Chekuri, editor, Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 217–226. SIAM, 2014.

[KM09] Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning
trees. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 13–21. IEEE Computer
Society, 2009.

[KMG22] Rasmus Kyng, Simon Meierhans, and Maximilian Probst Gutenberg. Derandomizing
directed random walks in almost-linear time. CoRR, abs/2208.10959, 2022.

[KVV04] Ravi Kannan, Santosh S. Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497–515, 2004.

[LRS13] Yin Tat Lee, Satish Rao, and Nikhil Srivastava. A new approach to computing maxi-
mum flows using electrical flows. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 755–764. ACM, 2013.

[MRSV21] Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Deterministic
approximation of random walks in small space. Theory Comput., 17:1–35, 2021.

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of ran-
dom spanning trees and the effective resistance metric. In Piotr Indyk, editor, Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 2019–2036. SIAM, 2015.

[OSV12] Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the
exponential, the lanczos method and an õ(m)-time spectral algorithm for balanced
separator. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 1141–1160. ACM, 2012.

[PS14] Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. STOC, 2014.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom
Generators (Extended Abstract). In Proceedings of the 36th Annual Computational
Complexity Conference (CCC), pages 33:1–33:15, 2021.

[PY19] Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost lin-
ear time. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
89:1–89:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24,
2008.

41

[RTV06] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Pseudorandom walks on regular
digraphs and the RL vs. L problem. In Jon M. Kleinberg, editor, Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May
21-23, 2006, pages 457–466. ACM, 2006.

[RV05] Eyal Rozenman and Salil P. Vadhan. Derandomized squaring of graphs. In Chandra
Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approxima-
tion, Randomization and Combinatorial Optimization, Algorithms and Techniques,
8th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization
and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceed-
ings, volume 3624 of Lecture Notes in Computer Science, pages 436–447. Springer,
2005.

[SS08] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 563–568. ACM, 2008.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 81–90. ACM, 2004.

[SZ99] Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). J. Comput.
Syst. Sci., 58(2):376–403, 1999.

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of randommatrices. Found. Comput.
Math., 12(4):389–434, 2012.

[Vad12] Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–
336, 2012.

[vdBGJ+22] Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P. Liu, Richard
Peng, and Aaron Sidford. Faster maxflow via improved dynamic spectral vertex sparsi-
fiers. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
543–556. ACM, 2022.

[vdBLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and l1-regression in nearly linear
time for dense instances. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 859–869. ACM, 2021.

A SV Approximation Proofs

In this section we provide proofs of equivalences for definitions related to SV-approximation (Ap-
pendix A.1), properties of SV-approximation (Appendix A.2), and separations of SV-approximation
from other notions of approximation (Appendix A.3).

We recall results useful in the proofs:

42

Fact A.1 ([CKP+17]). Let A ∈ C
n×n be a Hermitian matrix and I ⊂ [n] be arbitrary. Then A is

PSD if and only if AI,I is PSD and SCI(A) is PSD.

We require a result that matrix approximation is approximately preserved under Schur comple-
ments:

Theorem A.2 (Theorem 4.8 [AKM+20]). Given N, Ñ ∈ C
n×n such that ‖N‖ ≤ 1, suppose Ñ is

an ε-approximation of N with respect to SN. Then for F ⊂ [n] such that IF,F −NF,F is invertible,
we have that IF c − SCF (I− Ñ) is an ε+O(ε2) approximation of IF c − SCF (I−N) with respect to
SIFc−SCF (I−N).

We also prove a useful property of matri approximation:

Lemma A.3 (Manipulating matrix approximation). Let A, Ã ∈ C
m×n, let E ∈ C

m×m,F ∈ C
n×n

be PSD and Hermitian, and assume that A is an ε-approximation of Ã with respect to error matrices
E and F, for some ε ≥ 0.

1. For U ∈ C
m′×m, V ∈ C

n×n′

, UÃV is an ε-approximation of UAV with respect to error
matrices E′ and F′, where E′ = UEU∗ and F′ = V∗FV.

2. For PSD Hermitian E′ ∈ C
m×m and F′ ∈ C

n×n a with E � cE′ and F � cF′ for a constant
c ≥ 0, then Ã is a cε-approximation of A with respect to error matrices E′ and F′.

Proof.

1. For arbitrary x ∈ C
m and y ∈ C

n the definition of ε-approximation implies,
∣∣∣x∗(UÃV −UAV)y

∣∣∣ =
∣∣∣x∗U(Ã−A)Vy

∣∣∣ ≤ ε

2
(x∗UEU∗x+ y∗V∗FVy) .

2. For arbitrary x ∈ C
m, y ∈ C

n,
∣∣∣x∗(Ã−A)y

∣∣∣ ≤ ε

2
(x∗Ex+ y∗Fy) ≤ cε

2

(
x∗E′x+ y∗F′y

)
.

A.1 Equivalences

Lemma 3.6 (Conditions for SV approximation to be defined). Let A, Ã ∈ C
m×n, and let Din ∈

C
m×m and Dout ∈ C

n×n be PSD matrices such that ker(Din) ⊆ lker(A) and ker(Dout) ⊆ rker(A).
Then the following are equivalent:

1. σmax(D
+/2
in AD

+/2
out) ≤ 1.

2. Din −AD+
outA

∗ is PSD.

3. Dout −A∗D+
inA is PSD.

4. For some scalar z ∈ C with |z| = 1,

[
Din zA
z∗A∗ Dout

]
is PSD.

5. For every scalar z ∈ C with |z| ≤ 1,

[
Din zA
z∗A∗ Dout

]
is PSD.

Suppose further that Din = diag(din) and Din = diag(dout) for din ∈ R
m
≥0, dout ∈ R

n
≥0. Then

Condition 1 below implies Condition 2 below, which implies Conditions 1–5 above.

43

1. A is nonnegative, dout = A~1n, din = ~1⊤mA.

2. For all i ∈ [n], (dout)i ≥
∑

j |Ai,j |, and for all j ∈ [m], (din)j ≥
∑

i |Ai,j|.

Proof. We first show Conditions 1− 5 are equivalent.

1→ 3 Condition 1 implies for all y, y∗D+/2
out A

∗D+
inAD

+/2
out y ≤ y∗y and letting y ← D

1/2
outy and using

that ker(Dout) ⊆ ker(A) implies Condition 3.

3 → 1 Condition 3 implies for all y we have y∗A∗D+
inAy ≤ y∗Douty and taking y ← D

+/2
out y we have

y∗D+/2
out A

∗D+
inAD

+/2
out y ≤ y∗ΠDouty ≤ y∗y which implies Condition 1.

3→ 5 Letting z with |z| ≤ 1 be arbitrary, we have that by Condition 3 Din − z∗A∗D+
outzA =

Din −A∗D+
outA � 0, and since Din � 0 we apply Fact A.1 and conclude Condition 5. An

analogous argument shows 2→ 5. The fact that Fact A.1 is an equivalence then implies 5→2
and 5→3.

5 → 4 Immediate.

4 → 2 By Fact A.1 and the fact that z∗z = 1 we have Din − z∗A∗D+
outzA = Din −A∗D+

outA � 0.

We next show the latter set of conditions.

1→2 For all i ∈ [n] we have [dout]i =
∑

j Ai,j =
∑

j |Ai,j|.

2 → 5 We use that a Hermitian matrix that is diagonally dominant is positive semidefinite. We have

(Din)i,i ≥
∑

j |zAi,j| and (Dout)i,i ≥
∑

j |z∗A∗
j,i| so

[
Din A

A∗ Dout

]
is diagonally dominant and

thus PSD.

Lemma 3.7 (Equivalent formulations of SV approximation). Let A, Ã ∈ C
m×n and let Din ∈

C
m×m and Dout ∈ C

n×n be PSD matrices. Then the following are equivalent

1. Ã
Din,Dout≈ε A.

2. slift
(
Ã
)

D≈ε slift
(
B̃
)
, where

slift
(
Ã
)
=

[
0m×m A

A∗ 0n×n

]
, slift (A) =

[
0m×m Ã

Ã∗ 0n×n

]
, D =

[
Din 0m×n

0n×m Dout

]
.

3. For some scalar z ∈ C with |z| = 1, C̃ is ε/2-approximation of C with respect to error matrix
E, where

C =

[
0m×m zA
0n×m 0n×n

]
, C̃ =

[
0m×m zÃ
0n×m 0n×n

]
, E =

[
Din zA
z∗A∗ Dout

]

4. Item 3 holds for every z ∈ C such that |z| ≤ 1.

Proof. We prove 1 ⇐⇒ 2 and 1→ 4→ 3→ 1.

44

1 ⇐⇒ 2 Suppose Item 1 holds. Then for arbitrary test vectors x =

[
x1
x2

]
, y =

[
y1
y2

]
where x1, y1 ∈ C

m

and x2, y2 ∈ C
n we have

∣∣∣x∗(B− B̃)y
∣∣∣ ≤

∣∣∣x∗1(A− Ã)y2

∣∣∣+
∣∣∣x∗2(A∗ − Ã∗)y1

∣∣∣

≤ ε

4

(
x∗1Dinx1 + y∗2Douty2 + x∗1AD+

outA
∗x1 + y∗2A

∗D+
inAy2

)

+
ε

4

(
x∗2Doutx2 + y∗1Diny1 + x∗2A

∗D+
inAx2 + y∗1AD+

outA
∗y1
)

=
ε

4

(
x∗Dx+ y∗Dy + x∗BD−1B∗x+ y∗B∗D−1By

)
.

Furthermore, ker(D) ⊆ lker(B), ker(D) ⊆ rker(B) and D − BD+B � 0 by Item 5 of
Lemma 3.6. In the other direction, we obtain 2 → 1 by considering the set of test vectors[
x1
0n

]
and

[
0m

y2

]
.

1→ 4: Fix arbitrary z with |z| ≤ 1. We have that E � 0 by Item 5 of Lemma 3.6. Then for arbitrary

test vectors x =

[
x1
x2

]
, y =

[
y1
y2

]
, let x′ =

[
x1
x′2

]
, y′ =

[
y1
y′2

]
where

x′2 = argminv∈Cn

[
x∗1 v∗

] [Din zA
z∗A∗ Dout

] [
x1
v

]
, y′1 = argminv∈Cm

[
y∗2 v∗

] [Dout z∗A∗

zA Din

] [
y2
v

]
.

Thus

x′∗
[
Din zA
z∗A∗ Dout

]
x′ = x∗1SC

([
Din zA
z∗A∗ Dout

])
x1, y′∗

[
Din zA
z∗A∗ Dout

]
y′ = y∗2SC

([
Dout z∗A∗

zA Din

])
y2.

Then we have
∣∣∣x∗(C̃−C)y

∣∣∣ =
∣∣∣(x1z∗)∗(Ã−A)(y2z)

∣∣∣

≤ ε

4

(
x∗1(Din − zAD+

outA
∗z∗)x1 + y∗2(Dout − z∗A∗D+

inAz)y2
)

=
ε

4

(
x∗1SC

([
Din z∗A∗

zA Dout

])
x1 + y∗2SC

([
Dout zA
z∗A∗ Din

])
y2

)

=
ε

4

(
x′∗
[
Din zA
z∗A∗ Dout

]
x′ + y′∗

[
Din zA
z∗A∗ Dout

]
y′
)

≤ ε

4
(x∗Ex+ y∗Ey) .

4→ 3 Immediate.

3→ 1 For arbitrary test vectors x1 ∈ C
m, y2 ∈ C

n, let x =

[
zx1
x2

]
, y =

[
y1
z∗y2

]
where

x2 = argminv∈Cn

[
z∗x∗1 v∗

] [Din zA
z∗A∗ Dout

] [
zx1
v

]
, y1 = argminv∈Cm

[
zy∗2 v∗

] [Dout z∗A∗

zA Din

] [
z∗y2
v

]

45

Then∣∣∣x∗1(Ã−A)y2

∣∣∣ =
∣∣∣x∗(C̃−C)x

∣∣∣

≤ ε

4
(x∗Ex+ y∗Ey)

=
ε

4

(
z∗x∗1SC

([
Din z∗A∗

zA Dout

])
x1z + zy∗2SC

([
Dout zA
z∗A∗ Din

])
z∗y2

)

=
ε

4

(
z∗x∗1(Din − zAD+

outA
∗z∗)zx1 + zy∗2(Dout − z∗A∗D+

inAz)z∗y2
)

=
ε

4

(
x∗1(Din −AD+

outA
∗)x1 + y∗2(Dout −A∗D+

inA)y2
)
.

Lemma 3.8. Let A, Ã ∈ C
m×n, and let Din ∈ C

m×m and Dout ∈ C
n×n be PSD matrices such that

ker(Din) ⊆ lker(A), and ker(Dout) ⊆ rker(A). Let N = D
+/2
in AD

+/2
out and Ñ = D

+/2
in ÃD

+/2
out Then

Ã
Din,Dout≈ε A if and only if Ñ

svn≈ ε N.

Proof. Suppose Ã
Din,Dout≈ε A, i.e., Ã is an ε/2-approximation of A with respect to

E = Din −AD+
outA

∗, F = Dout −AD+
inA

∗.

Applying Lemma A.3 with U = D
+/2
in ,V = D

+/2
out we obtain that Ñ is an ε/2-approximation of N

with respect to error matrices

D
+/2
in (Din −AD+

outA
∗)D+/2

in � I− (D
+/2
in AD

+/2
out)(D

+/2
out A

∗D+/2
in) = I−NN∗

and
D

+/2
out (Dout −A∗D+

inA)D
+/2
out � I− (D

+/2
out A

∗D+/2
in)(D

+/2
in AD

+/2
out) = I−N∗N

and hence we obtain that Ñ
svn≈ ε N. The other direction is analogous, and the kernel properties

follow as ker(Din) ⊆ lker(D
1/2
in D

+/2
in AD

+/2
out D

1/2
out) and ker(Dout) ⊆ rker(D

1/2
in D

+/2
in AD

+/2
out D

1/2
out).

Theorem 3.9 (Unitary transformation characterization of SV-approximation). For Ñ,N ∈ C
n×n,

we have that Ñ
svn≈ ε N if for every pair of unitary matrices U,V, UÑV is a standard ε/2-

approximation of UNV with respect to degree matrix I. Moreover, if Ñ
svn≈ ε N then for every

pair of matrices U,V satisfying ‖U‖ ≤ 1, ‖V‖ ≤ 1, we have that UÑV
svn≈ ε UNV, and hence

UÑV is a standard ε-approximation of UNV with respect to degree matrix I.

Proof.

• Suppose for every pair of unitary matrices U,V, we have for all x, y ∈ C
n that

|x∗(UÃV −UAV)y| ≤ ε

2
·
√

x∗(I− SUAV)x ·
√

y∗(I− SUAV)y.

We will pick u, v,U,V to depend on x, y and the result will follow immediately from invoking
the above equation with x, y ← u, v.

Set U = I, u = x/‖x‖, and v = Ay/‖Ay‖. Note that u∗v = (x∗Ay)/(‖x‖ · ‖y‖), so u and
v have the same angle between them as A∗x and y. Hence, there exists a unitary matrix V

such that Vu = A∗x/‖A∗x‖ and Vv = y/‖y‖. Substituting gives
∣∣∣x∗(Ã−A)y

∣∣∣
‖x‖‖y‖ ≤ ε

2
·
√

1− x∗(AA∗)x
‖x‖‖A∗x‖ ·

√
1− y∗(A∗A)y

‖y‖‖Ay‖ .

Applying ‖A∗‖ = ‖A‖ ≤ 1 gives the desired result.

46

• In the other direction, we start with Item 3 of Lemma 3.7 with z = 1 applied to the approxi-

mation statement Ñ
svn≈ ε N and apply Lemma A.3 with left and right hand side matrices

U′ ←
[
U 0

0 V∗

]
and V′ ←

[
U∗ 0

0 V

]

This results in the approximation statement that for the matrices given below, R, R̃ ǫ/2-
approximate each other with respect to E where

R =

[
0 UNV

0 0

]
R̃ =

[
0 UÑV

0 0

]
, and E =

[
UIU∗ UNV

(UNV)∗ V∗IV

]
�
[

I UNV

(UNV)∗ I

]
.

Hence, by Item 3 of Lemma 3.7 we conclude UNV
svn≈ ε UÑV.

Corollary 3.14 (SV preservation under multiplication by permutation matrices). Let A, Ã ∈
C
m×n
≥0 and suppose Ã

Din,Dout≈ε A. Let U,V be arbitrary permutation matrices. Then UÃV
D′

in,D
′
out≈ε

UAV where D′
in = UDinU

∗ and D′
out = V∗DoutV. Consequently, if Ã

sv≈εA, then UÃV
sv≈εUAV

and if Ã
svn≈ ε A then UÃV

svn≈ ε UAV.

We start with Item 3 of Lemma 3.7 with z = 1 applied to the approximation statement we are
given in the lemma statement and apply Lemma A.3 with left and right hand side matrices

U′ ←
[
U 0

0 V∗

]
and V′ ←

[
U∗ 0

0 V

]

This results in the approximation statement that for the matrices given below, R, R̃ ǫ/2-approximate
each other with respect to E where

R =

[
0 UAV

0 0

]
R̃ =

[
0 UÃV

0 0

]
, and E =

[
UDinU

∗ UAV

(UAV)∗ V∗DoutV

]
.

Hence, Item 3 of Lemma 3.7 is satisfied for SV approximation of UAV and UÃV with respect to
UDinU

∗ and V∗DoutV.
For the first “consequently” claim, observe that UAV~1 = UA~1 since V is a permutation.

Hence,
diag(UAV~1) = UDinU

∗.

A similar analysis shows
diag(~1⊤UAV) = V∗DinV.

the second statement follows from UU∗ = V∗V = I.

A.2 Properties

We prove that SV approximation implies standard approximation:

Lemma A.4. Let A, Ã ∈ C
n×n and suppose Ã

Din,Dout≈ε A. Then, Ã is an ε-approximation of A
with respect to E = Din −A, F = Dout −A∗.

Proof. This follows immediately from specializing Item 3 of Lemma 3.7 with z = −1 to test vectors

of the form

[
x
x

]
,

[
y
y

]

47

It likewise implies UC approximation:

Lemma 3.10. If A, Ã ∈ C
n×n with Ã

D≈ε A then Ã
◦≈ε A with respect to degree matrix D.

Proof. By Item 4 of Lemma 3.7 we have that for every pair of test vectors

[
x
x

]
,

[
y
y

]
and every unit

magnitude z, we have

∣∣∣x∗(zA− zÃ)y
∣∣∣ ≤ ε

4
· 2 (x∗Dx+ y∗Dy + ℜ(zx∗Ax+ zyAy∗))

Then choosing z to minimize ℜ(zx∗Ax+ zyAy∗), we obtain

∣∣∣x∗(A− Ã)y
∣∣∣ ≤ 2ε

4
(x∗Dx+ y∗Dy − |x∗Ax+ yAy∗|)

Which is precisely the condition for Ã
◦≈ε A with respect to D.

Lemma 3.15 (SV preservation under arbitrary lifting). Let A, Ã ∈ C
m×n be matrices such that

Ã
Din,Dout≈ε A. Then for all integers i, j, k, ℓ ≥ 0



0i×j 0i×n 0i×k

0m×j Ã 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 D′

in,D
′
out≈ε



0i×j 0i×n 0i×k

0m×j A 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 .

Where

D′
in =



0i×i 0i×n 0i×ℓ

0n×i Din 0n×ℓ

0ℓ×i 0ℓ×n 0ℓ×ℓ


 , D′

out =



0j×j 0j×m 0j×k

0m×j Din 0m×k

0k×j 0k×m 0k×k


 .

Consequently, if Ã
sv≈ε A then



0i×j 0i×n 0i×k

0m×j Ã 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 sv≈ε



0i×j 0i×n 0i×k

0m×j A 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 .

Proof. Observe by expanding the definition of SV approximation that it is preserved under em-
bedding into the first principal diagonal block of any larger matrix that is zeros elsewhere. That
is, [

Ã 0m×(j+k)

0(i+ℓ)×n 0(i+ℓ)×(j+k)

]
D

′

in,D
′
out≈ε

[
A 0m×(j+k)

0(i+ℓ)×n 0(i+ℓ)×(j+k)

]
(29)

where D′
in,D

′
out are the respective principle embeddings of the degree matrices.

Let U,V be permutation matrices such that

U

[
A 0m×(j+k)

0(i+ℓ)×n 0(i+ℓ)×(j+k)

]
V =



0i×j 0i×n 0i×k

0m×j A 0m×k

0ℓ×j 0ℓ×n 0ℓ×k


 .

It suffices to argue that we can apply this transformation to both sides of Equation (29) and have
the approximation still hold. This is implied by Corollary 3.14 with D′

in ← UD′
inU

∗ and D′
out ←

V∗DoutV. The “consequently” claim holds from inspecting the resulting block structure.

48

Lemma 3.17 (SV preservation under products). Let (Ni)i∈[ℓ], (Ñi)i∈[ℓ] ∈ C
n×n be such that for

every i, Ñi
svn≈ ε Ni. Then Ñℓ · · · Ñ2Ñ1

svn≈ ε+O(ǫ2) Nℓ · · ·N2N1.

Proof. Using preservation under lifting and sums (Lemmas 3.15 and 3.19) and that SV approx-
imation implies standard approximation for square matrices (Lemma A.4), we can obtain the
approximation statement that the matrices R, R̃ given below ǫ/2-standard-approximate each other
with respect to the symmetrization SR of the first one:

R =




I/2 Nℓ 0

0 I Nℓ−1
...

...
. . .

. . .
... I N1

0n×n 0 I/2




and R̃ =




I/2 Ñℓ 0

0 I Ñℓ−1
...

...
. . .

. . .
... I Ñ1

0n×n 0 I/2




.

Taking the Schur complement by eliminating the center n(l−1)×n(l−1) block gives the following
two matrices

R =

[
I/2 Nℓ · · ·N2N1

0n×n I/2

]
and R̃ =

[
I/2 Ñℓ · · · Ñ2Ñ1

0n×n I/2

]
.

And we obtain by Theorem A.2 that R̃ is an ǫ/2 +O(ǫ2)-approximation of R with respect to SR.
Hence, by Item 3 of Lemma 3.7, we have

Ñℓ · · · Ñ2Ñ1
svn≈ ε+O(ǫ2) Nℓ · · ·N2N1.

Lemma 3.18. If Ã
sv≈ε A, then Ã~1 = A~1 and Ã⊤~1 = A⊤~1.

Proof. Let x ← δx be an arbitrary test vector and let y = ~1. Then the approximation condition
implies

∣∣∣δx∗(Ã−A)~1
∣∣∣ ≤ ε

4

(
δ2x∗Doutx− δ2x∗AD+

inA
∗x+~1⊤Din~1−~1⊤A⊤D+

outA
~1
)

=
ε

4

(
δ2x∗Doutx− δ2x∗AD+

inA
∗x
)

and so taking δ → 0 we obtain that A~1 = Ã~1. An analogous argument setting x = ~1 shows that
~1⊤A = ~1⊤Ã.

Lemma 3.19. If Ãi

(Din)i,(Dout)i≈ε Ai for all i ∈ [k], letting Din
def
=
∑

i∈[k](Din)i and Dout
def
=

∑
i∈[k](Dout)i, then

∑
i∈[k] Ãi

Din,Dout≈ε
∑

i∈[k]Ai. Consequently, if Ãi
sv≈ε Ai for every i, then

∑
i∈[k] Ãi

sv≈ε
∑

i∈[k]Ai.

Proof. This follows immediately from Item 3 of Lemma 3.7 being linear over A and D. The
“consequently” claim follows immediately from noting


∑

i∈[k]
A


~1 =

∑

i∈[k]
(A~1) and


∑

i∈[k]
A⊤


~1 =

∑

i∈[k]
(A⊤~1).

49

Lemma 3.20. If A3
Din,Dout≈δ A2 and A2

Din,Dout≈ε A1 then A3
Din,Dout≈ε+δ+εδA1. Consequently, if A3

sv≈δA2

and A2
sv≈εA1 then A3

sv≈ε+δ+εδA1, and if A3
svn≈ δA2 and A2

svn≈ εA1 then A3
svn≈ ε+δ+εδA1. Moreover,

if for δ ∈ (0, 1/2) and A0, . . . ,Aℓ we have Ai
sv≈δ/2ℓ Ai−1 for every i, then Aℓ

sv≈δ A0. Moreover, the
equivalent claim holds for normalized SV approximation.

Proof. By Item 3 of Lemma 3.7 we have
[
Din A∗

2

A2 Dout

]
� (1 + ε)

[
Din A∗

1

A1 Dout

]
.

Thus for arbitrary x ∈ C
m, y ∈ C

n we have
∣∣∣∣x

∗
([

0 A3

0 0

]
−
[
0 A1

0 0

])
y

∣∣∣∣

≤
∣∣∣∣x

∗
([

0 A3

0 0

]
−
[
0 A2

0 0

])
y

∣∣∣∣+
∣∣∣∣x

∗
([

0 A2

0 0

]
−
[
0 A1

0 0

])
y

∣∣∣∣

≤ δ

4

(
x∗
[
Din A∗

2

A2 Dout

]
x+ y∗

[
Din A∗

2

A2 Dout

]
y

)
+

ε

4

(
x∗
[
Din A∗

1

A1 Dout

]
x+ y∗

[
Din A∗

1

A1 Dout

]
y

)

≤ δ(1 + ε)

4

(
x∗
[
Din A∗

1

A1 Dout

]
x+ y∗

[
Din A∗

1

A1 Dout

]
y

)
+

ε

4

(
x∗
[
Din A∗

1

A1 Dout

]
x+ y∗

[
Din A∗

1

A1 Dout

]
y

)

=
δ + ε+ εδ

4

(
x∗
[
Din A∗

1

A1 Dout

]
x+ y∗

[
Din A∗

1

A1 Dout

]
y

)

and so we conclude by Item 3 of Lemma 3.7. The first “consequently” claim follows from the fact
that by Lemma 3.18 we have A2~1 = A~1 and A⊤

2
~1 = A⊤

1
~1, and the second follows immediately.

For the “moreover” claim, we prove by induction on i that Ai
sv≈iδ/2ℓ+iδ2/ℓ A0, which suffices as

ℓδ/2ℓ + ℓδ2/ℓ ≤ δ. Assuming this holds for i, we have

Ai+1
sv≈δ/2ℓ Ai

sv≈iδ/2ℓ+iδ2/ℓ A0

and thus we have
Ai+1

sv≈(i+1)δ/2ℓ+γ A0

for

γ =
iδ2

ℓ
+

δ

2ℓ

(
iδ

2ℓ
+

iδ2

ℓ

)
≤ iδ2

ℓ
+ δ2/2ℓ+ δ3/2ℓ2 ≤ (i+ 1)δ2

ℓ

as desired. The proof for normalized SV approximation is essentially identical, so we omit it.

Lemma 3.21. Let G be a strongly connected, d-regular directed multigraph on n vertices with
adjacency matrix A and let J ∈ R

n×n be a matrix with 1/n in every entry (i.e., J is the walk
matrix of the complete graph with a self loop on every vertex). Then λ(G) ≤ 1− λ/2 if and only if

A/d
svn≈ λ J.

Proof. Note that by definition of A
svn≈ λ J,

|x∗(A/d − J)y| ≤ λ

4
(x∗(I− JJ∗)x+ y∗(I − J∗J)y)

=
λ

4
(x∗(I− J)x+ y∗(I− J)y)

50

Therefore, A/d
svn≈ λ J if and only if A/d

◦≈λ/2 J. By [AKM+20, Lemma 5.2] A/d
◦≈λ/2 J if and

only if λ(G) ≤ 1− λ/2, so the result follows.

We show a slightly stronger version of Item 2 of Lemma 3.7 for non-negative matrices, in that
we show SV sparsification of the bipartite lift of a graph implies SV sparsification of the undirlying
directed graph, even if the sparsifier is not promised to be bipartite-preserving, and even if the
sparsifier is not itself undirected.

Lemma A.5. Given non-negative A ∈ R
m×n
≥0 , suppose there is nonnegative Ã =

[
ÃF,F ÃF,F c

ÃF c,F ÃF c,F c

]

such that Ã
sv≈ε

[
0 A⊤

A 0

]
. Then

1. ÃF,F = 0 and ÃF c,F c = 0.

2. ÃF c,F
sv≈ε A and ÃF,F c

sv≈ε A
⊤.

Proof. Let Dout = diag(A~1) and Din = diag(~1⊤A) and observe ~1⊤Dout~1−~1⊤AD+
inA

~1 = ~1⊤Din~1−
~1⊤A⊤D+

outA
⊤~1 = 0.

1. Let x ∈ C
n be arbitrary, and consider the test vectors x′ = δ

[
x
0m

]
, y′ =

[
~1
~1

]
. Then from the

definition of SV approximation we obtain

∣∣∣δx⊤ÃF,F
~1 + δx∗ÃF,F c~1− δxA⊤~1

∣∣∣ =
∣∣∣∣x

′∗
([

0 A⊤

A 0

]
− Ã

)
y

∣∣∣∣

≤ ε

2
· δ2x∗(Dout −AD+

inA)x

and hence ÃF,F
~1 + xÃF,F c~1 = xA⊤~1 by taking δ → 0. Considering the test vectors x′ =

δ

[
x
0m

]
, y′′ =

[
~1

−~1

]
we likewise obtain xÃF,F~1− xÃF,F c~1 = −xA⊤~1 and hence xÃF,F~1 = 0.

By an analogous argument we obtain ÃF c,F c = 0.

2. For arbitrary x ∈ C
m, y ∈ C

n, apply the test vectors [0n, x], [y, 0m]. Then we obtain
∣∣∣x∗(A− ÃF c,F)y

∣∣∣ ≤ ε

2

(
x∗(D−AD+AT)x+ y∗(D−ATD+A)y

)

thus ÃF c,F
sv≈ε A and an analogous argument shows ÃF,F c

sv≈ε A
T .

A.3 Separations

We prove the two separations separately, where we first construct the undirected graph example
and later the arbitrary matrix example.

Proposition 3.11.

1. There is c > 0 such that for all n ∈ N, there are random walk matrices of undirected graphs

M̃,M ∈ R
n×n such that M̃

◦≈1/c
√
n M, yet M̃ is not a .3-normalized SV approximation of

M.

51

2. For every α, ε ∈ (0, 1), there are symmetric matrices W,W̃ ∈ R
2×2 with ‖W‖, ‖W̃‖ ≤ 1 such

that W̃
◦≈ε W but W̃ is not an ε-normalized SV approximation of W for any ε′ < ε√

1−α2
.

The proof of Item 1 proceeds by considering the symmetric lifts of lazy directed cycles:

Definition A.6 (Lazy Directed Cycle). For n ∈ N and δ ∈ [0, 1/2], let Cn,δ be the (1/2 + δ)-
lazy directed cycle on n vertices, i.e., the directed graph with V := {1, . . . , n}, directed edges
{(1, 2), . . . , (n − 1, n), (n, 1)} with weight (1/2 − δ), and directed edges {(i, i)}i∈[n] with weight
(1/2 + δ). Let Wn,δ be the random walk matrix of Cn,δ.

We first prove that the symmetric lifts of (1/2 + δ)-lazy directed cycles unit-circle approximate
the 1/2-lazy directed cycle with error proportional to δ.

Lemma A.7. For every n ∈ N and δ ∈ [0, 1/2], we have slift (Wn,δ)
◦≈δ slift (Wn,0).

Proof. Let M̃ := slift (Wn,δ) and M := slift (Wn,0). We have that ker(I −M) = span{~1} ⊆
ker(M− M̃) and ker(I +M) = span{u} ⊆ ker(M− M̃) where ui = (−1)i for i in [2n].

Let E1 be the edges in the lift corresponding to self-loops in the directed cycle, and let E2 be
the edges corresponding to non-self-loops in the directed cycle. Let Le be the Laplacian of edge e.

I−M =
∑

e∈E1

(1/2)Le +
∑

e∈E2

(1/2)Le, I− M̃ =
∑

e∈E1

(1/2 + δ)Le +
∑

e∈E2

(1/2 − δ)Le

and hence M̃−M =
∑

e∈E1∪E2
(±δ)Le and hence −2δ(I −M) � M̃−M � 2δ(I −M) and hence

by Lemma 3.2, M̃ is a 2δ-standard approximation of M. Moreover, we have by an analogous
argument that M̃ is a 2δ standard approximation of M with respect to I + M, and hence by
[AKM+20, Lemma 3.7] we have that M̃ is a δ-UC approximation of M.

However, we now prove that a sufficiently high power of Wk,ε is not an O(1)-standard approx-
imation of Wk,0, for ε = Ω(1/

√
k).

Lemma A.8. For every ε > 0, there is k = O(1/ε2) such that for every n ≥ 2k, we have that
Wk

n,ε is not a .95-standard approximation of Wk
n,0.

Proof. Let W := Wn,0 and W̃ := Wn,ε. Let d be a constant to be chosen later. Let k =
⌈(10 + d)2/ε2⌉. Let

S := {1, . . . , ⌈d
√
k⌉} and T := {⌊k/2 − d

√
k/2⌋, . . . , ⌈k/2 + d

√
k/1.9⌉}.

Let x := ~1T and y := ~1S .
Now observe that since W̃k is an ε0-standard approximation of Wk (where the value of ε0 will

be derived later),
∣∣∣xT (Wk − W̃k)y

∣∣∣ ≤ ε0
2
(xTUI−Wkx+ yTUI−Wky)

≤ ε0
2
(|S|+ |T |) ≤ ε0

2

√
k · (3 + d+ d/2 + d/1.9) ≤ (1.03)ε0d

√
k.

where we assume k and d are sufficiently large. Next,
∣∣∣xT (Wk − W̃k)y

∣∣∣

≥ |S|
∣∣∣∣Pri∈S

[k step walk goes from i to T in W]− Pr
i∈S

[k step walk goes from i to T in W̃]

∣∣∣∣

52

We then bound both terms, where we use that k ≤ n/2 so no walk can loop around the cycle, and
S and T have no overlap. For every i, let

Si :=
{⌊

k/2 − d
√
k/2− i

⌋
, . . . ,

⌈
k/2 + d

√
k/1.9 − i

⌉}

be the number of steps from starting vertex i such that the final walk vertex lies in T .

Pr
i∈S

[k step walk goes from i to T in W] = Ei∈S Pr [Bin(k, 1/2) ∈ Si]

≥ Pr
[
Bin(k, 1/2) ∈ [k/2 ± (.03)d

√
k]
]

≥ (1−O(1/d2)). (Chebyshev)

whereas

Pr
i∈S

[k step walk goes from i to T in W̃] = Ei∈S Pr[Bin(k, 1/2 − ε) ∈ Si]

≤ Pr[Bin(k, 1/2 − ε) ≥ k/2− d
√
k/2]

≤ .01

where the final step follows as the event holding implies a deviation of at least k/2−d
√
k/2−k/2+

kε = kε− d
√
k/2 ≥ 10

√
k, and so we can apply Chebyshev. Thus, letting d be sufficiently large we

derive
d
√
k(.99 − .01) ≤ (1.03)ε0d

√
k =⇒ ε0 ≥ .95.

We can then combine these two observations and prove the first separation.

Proof of Item 1. As we can prove the result for n′ = 2 · ⌊n/2⌋ and this does not affect the asymp-
totics, we assume without loss of generality that n is even.

Let W := Wn/2,0 and W̃ := Wn/2,ε for ε = Θ(1/
√
n) chosen such that applying Lemma A.8

with ε = ε results in a value of k such that n/2 ≥ 2k. Let M
def
= slift (W) and M̃

def
= slift

(
W̃
)
.

The fact that M̃
◦≈ε M follows from Lemma A.7. However, we claim that M̃ is not a .3-SV

approximation of M. Assuming for contradiction M̃
svn≈ .3 M, we obtain:

M̃
svn≈ .3 M =⇒ W̃

svn≈ .3 W (Item 2)

=⇒ W̃k svn≈ .8 W
k (Lemma 3.17)

=⇒ W̃k is a .8-standard approximation of Wk

which is a contradiction to Lemma A.8, so we have the desired separation.

Proof of Item 2. Given α, we define

W =

[
α 0
0 −α

]

and

W̃ = ·
[

α ε
√
1− α2

ε
√
1− α2 −α

]
.

We first show that W̃
◦≈ε W. Since both matrices are symmetric, suffices [AKM+20, Lemma 3.7]

to show the equivalent statement for PSD approximation between I−W̃, I−W and I+W̃, I+W,
i.e.,

(1− ε)(I −W) � I− W̃ � (1 + ε)(I −W)

53

(1− ε)(I +W) � I+ W̃ � (1 + ε)(I +W).

All four inequalities are implied by

[
ε(1− α) ε

√
1− α2

ε
√
1− α2 ε(1 + α)

]
� 0.

Using Fact A.1 this is equivalent to ε(1 − α) − ε(1 − α2)(1 + α)−1 ≥ 0 which holds with equality,

so W̃
◦≈ε W. Now assume that W̃

svn≈ ε′ W for some ε′. From the definition of SV approximation

applied to test vector z =

[
x
x

]
, we have

±(W̃ −W) � ε′
(
I−W2

)
= ε′(1− α2)I.

This is equivalent to

ǫ
√

1− α2 ≤ ε′(1− α2).

Thus for W̃
svn≈ ε W, a necessary condition is for ε′ ≥ ε√

1−α2
.

We then use these separations to prove that SV approximation enjoys properties not enjoyed
by prior notions:

Proposition 3.13. SV approximation is preserved under multiplication by permutation matrices
(Corollary 3.14), embedding into arbitrary block matrices (Lemma 3.15), and products (Lemma 3.17).
None of these properties hold for UC approximation.

Proof. All positive claims follow from the respective lemmas, so it remains to show these properties
do not hold for UC approximation. All such properties fail to hold from the observation that UC
approximation is not preserved under the asymmetric lift operation, as otherwise it would imply
SV approximation.

Formally, we have from Proposition 3.11 that for n ∈ N there exist W̃,W such that W̃
◦≈O(1/

√
n)

W yet W̃ is not a .3-SV approximation of W. Now let

M̃ :=

[
0 0

W̃ 0

]
,

[
0 0

W 0

]
.

Claim A.9. M̃ is not a .3-UC approximation of M.

Proof. Assume for contradiction M̃
◦≈.3 M. Then since UC approximation implies standard ap-

proximation, we have that M̃ is a .3-approximation of M with respect to UM. By Item 3, this

implies that W̃
svn≈ .3 W and hence M̃

◦≈.3 M by Lemma 3.10, which is a contradiction.

We can then use this to derive that all three properties do not hold. First, clearly this implies
that UC is not preserved under arbitrary embeddings. Second, it is easy to show that

Ã :=

[
W̃ 0

0 0

]
◦≈.3

[
W 0

0 0

]
=: A.

Let Π be the permutation such that ΠÃ = M̃ and ΠA = M. We have by the claim that applying

Π cannot preserve UC approximation, and since Π
◦≈0 Π we have that UC approximation is likewise

not preserved under products.

54

B Singular Values Facts

Lemma B.1. Let σi(·) denote the ith largest singular value. For any matrix A ∈ C
n×n and any

positive integer k,
σ2(A

k) ≤ σ2(A) · σ1(A)k−1.

Proof. By the variational characterization of singular values, we have

σ2(A
k) = min

v∈Cn
max
x⊥v

‖Akx‖
‖x‖ ≤ min

v∈Cn
max
x⊥v

‖Ak−1‖ · ‖Ax‖
‖x‖ ≤ ‖A‖k−1·min

v∈Cn
max
x⊥v

‖Ax‖
‖x‖ = σ2(A)·σ1(A)k−1.

Lemma B.2. Let σi(·) denote the ith largest singular value. For any matrix A,B ∈ C
n×n,

σ2(A+B) ≤ σ2(A) + σ1(B).

Furthermore, if A,B share a common right singular vector that achieves the maximum singular
value in each of them respectively, then

σ2(A+B) ≤ σ2(A) + σ2(B)

Proof. For the first part of the statement, by the variational characterization of singular values, we
have

σ2(A+B) = min
v∈Cn

max
x⊥v

‖(A+B)x‖
‖x‖ ≤ min

v∈Cn
max
x⊥v

‖Ax‖+ ‖Bx‖
‖x‖ ≤ min

v∈Cn
max
x⊥v

‖Ax‖
‖x‖ + ‖B‖.

For the second part of the statement, let v denote a common right singular vector of A,B that
respectively achieves the maximum singular value in each of them. Then we have

σ2(A+B) = min
v′∈Cn

max
x⊥v′

‖(A+B)x‖
‖x‖ ≤ max

x⊥v

‖(A+B)x‖
‖x‖

≤ max
x⊥v

‖Ax‖+ ‖Bx‖
‖x‖ ≤ max

x⊥v

‖Ax‖
‖x‖ +max

x⊥v

‖Bx‖
‖x‖ = σ2(A) + σ2(B).

The third part of the statement has essentially the same proof as the second.

We now use these properties to show that small perturbations preserve the smallest singular
value:

Lemma B.3. Let σ2(·) denote the second largest singular value. Let G be an Eulerian graph such

that σ2(D
−1/2
G AGD

−1/2) ≤ 1 − 1/γ. For every H such that DH = DG and ‖AH −AG‖ ≤ δ, we

have σ2(D
−1/2
H AHD

−1/2
H) ≤ 1− 1/γ + δ/dmin where dmin is the minimum diagonal entry of DG.

Proof. By lemma B.2,

σ2(D
−1/2
H AHD

−1/2
H) ≤ σ2(D

−1/2
G AGD

−1/2) + ‖D−1/2
G (AH −AG)D

−1/2‖
≤ 1− 1/γ + ‖D−1/2

G ‖2 · ‖AH −AG‖
= 1− 1/γ + δ/dmin.

55

Lemma B.4. Let A, Ã ∈ R
n×n be the adjacency matrices of Eulerian graphs with no isolated

vertices. Suppose Ã
sv≈ε A. Let D be their diagonal matrix of degrees. Then

1− σ2(D
−1/2ÃD−1/2) ≤ (1 + 2ε) · (1− σ2(D

−1/2AD−1/2)).

Proof. Define N = D−1/2AD−1/2 and Ñ = D−1/2ÃD−1/2.
It suffices to show

±(σ2(Ñ)− σ2(N)) ≤ σ2(Ñ−N) ≤ 2ε · (1− σ2(N)).

The first inequality follows from lemma B.2. For the second inequality, note that the definition of
SV approximation can be rewritten as for all x ∈ C

n,

‖(Ñ−N)x‖ ≤ ε · (1− ‖Nx‖2).

Note that Ñ,N have a common left and right eigenvector given by v = D1/2~1, and this achieves
their respective maximum singular values of 1.8 Hence, if we wish to maximize the LHS over all
unit vectors x, it suffices to maximize over all unit vectors x ⊥ v. Doing so, we obtain

‖Ñ−N‖ ≤ ε · (1− σ2(N)2) ≤ 2ε · (1− σ2(N))

where the last inequality is because ‖N‖ ≤ 1 ([CKP+17] lemma B.4).

Lemma B.5. Let σi(·) denote the ith largest singular value. Let A ∈ R
n×n be the adjacency matrix

of a strongly connected Eulerian graph G with diagonal degree matrix D and no isolated vertices.
Let N = D−1/2AD−1/2. Let λ denote the second largest eigenvalue of SN.9 Then we have

σ2((1− γ)N+ γI) ≤ 1− (1− λ)γ +O(γ2).

In particular, if A has weak mixing time T and all weights are in [1, U], then

σ2((1− γ)N+ γI) ≤ 1− 1/poly(nTU/γ).

Proof. Let v denote a singular vector of (1− γ)N+ γI corresponding to its second-largest singular
value. We then have

[σ2((1− γ)N+ γI)]2 = (1− γ)2v∗N∗Nv + 2γ(1− γ)v∗SNv + γ2

≤ (1− γ)2 + 2γ(1 − γ)λ+ γ2

≤ 1− 2(1− λ)γ +O(γ2).

In the above, we used the fact that ‖N‖ ≤ 1 ([CKP+17] lemma B.4).
To show the second part of the statement, define L = I − N. Note that L is related to

I − AD−1 by a change of basis with condition number poly(nU). We may assume the graph is
strongly connected as this is necessary for the weak mixing time to be finite. It suffices to prove

1

1− λ
≤ poly(n) · T.

8We know it corresponds to a singular value of 1 and this its not possible to have a singular value larger than 1
for this matrix ([CKP+17] lemma B.4).

9Here we mean largest according to the actual eigenvalues, not their magnitudes.

56

We do so by showing

1

1− λ
≤ poly(n) · T ≤ poly(n) · ‖S+

L
‖2 ≤ poly(n) · ‖L+‖2 ≤ poly(nT).

The first inequality is just the folklore result relating spectral gap to weak mixing time with an
O(log n)-factor loss. The second and fourth inequalities are from ([CKP+16] Theorem 21).

We now show the third inequality, that ‖S+
L
‖ ≤ poly(n) · ‖L+‖. We have

‖S+
L
‖ ≤ poly(n) · ‖(LTS+

L
L)+‖ = poly(n) · ‖SL+‖ ≤ poly(n) · (‖L+‖+ ‖LT+‖)/2 = poly(n) · ‖L+‖

where the first inequality in the line immediately above is a corollary of ([CKP+16] Lemma 13).

Lemma B.6. For matrices A,B ∈ C
n×n,

‖AB‖ = ‖(A∗A)1/2B‖, ‖BA‖ = ‖B(AA∗)1/2‖.

Proof. For any matrix M,

‖M‖ =
√

λmax(M∗M) = max
x∈Cm−{~0}

x∗M∗Mx

x∗x
.

Thus,

‖BA‖ = max
x∈Cm−{~0}

x∗B∗A∗ABx

x∗x
= max

x∈Cm−{~0}

x∗B∗(A∗A)1/2(A∗A)1/2Bx

x∗x
= ‖(A∗A)1/2B‖.

The other equality is proved similarly.

C Stationary Distribution Facts

We first define the stationary norm of a graph and prove some useful properties.

Definition C.1 (Stationary Distribution). Let G be a strongly connected directed graph, and let
π = π(G) be its unique stationary distribution. We have that π > 0 entrywise,

∑
v∈V πv = 1, and

letting W := AD−1 be the random walk matrix of G, we have Wπ = π. Let πmin = minv∈V πv > 0
be the minimum value in the stationary distribution.For a subset S ⊆ V , let vol(S) =

∑
v∈S πv be

the volume of the set under the stationary distribution.

Observe that for every probability distribution p, we have ‖Wp‖π ≤ ‖p‖π, as []

‖Wp‖2π =
∑

u∈V
πu

(
∑

v∈V
[W]uvpv

)2

≤
∑

u∈V
πu

(
∑

v∈V
[W]uvπ

−1
v

)(
∑

v∈V
πvp

2
v

)
= ‖p‖2π.

Claim C.2. Let G = (V,E) be a strongly connected graph. For every x ∈ R
V
≥0 and T ⊆ V , we

have 〈1T , x〉 ≤ ‖x‖π ·
√

vol(T).

Proof. By the Cauchy-Schwarz inequality

〈1T , x〉 =
∑

v

1v∈Txv =
∑

v

(xv/
√
πv)(1v∈T

√
πv) ≤ ‖x‖π ·

√
vol(T).

57

We now state the main proposition:

Proposition C.3. Let G be a strongly connected graph on n vertices V and edge weights in [1, U].
For every ℓ ∈ N and S, T ⊆ V with vol(S) + vol(T) ≥ 1 we have either CutGℓ(S, T) = 0 or
CutGℓ(S, T) ≥ (πmin/2U)3.

For ease of application, we state a corollary of this for (S, Sc) cuts and uncuts:

Corollary C.4. Let G be a strongly connected graph on n vertices V and edge weights in [1, U].
For every ℓ ∈ N and S ⊆ V , we have

CutGℓ(S) ∈ {0} ∪ [(πmin/2U)3, 1] and UncutGℓ(S) ∈ {0} ∪ [(πmin/2U)3, 1].

Proof. The first claim follows immediately from Proposition C.3 with S = S, T = Sc as vol(S) +
vol(Sc) = 1. The latter claim follows as UncutGℓ(S) = UncutGℓ(Sc), and either vol(S) ≥ 1/2 or
vol(Sc) ≥ 1/2. Without loss of generality assuming the former, and then the claim follows from
from Proposition C.3 with S = S, T = S.

We first prove that applying W to the stationary distribution restricted to a subset of vertices
either preserves the stationary norm, or decreases it by a non-negligible amount.

Lemma C.5. Let S ⊆ V be an arbitrary set of vertices, let p = π|S be the stationary distribution
restricted to S, and let p′ = Wp. Then either:

1. p′ = π|B for some B ⊆ V with vol(B) = vol(S).

2. ‖p′‖2π ≤ ‖p‖2π − π2
min/2U

2.

Note that it is not the case that the first case always implies B = S, as (for instance) we could
have S be one side of a bipartition and B be the other side.

Proof of Lemma C.5. First, note that p′ ≤ π entrywise as p′ = Wp = W(π|S) ≤ π. Let B =
supp(p′). We break into cases based on the size of vol(B):

1. We claim vol(B) < vol(S) can never occur. Assuming for contradiction we are in this case, we
have ‖p′‖1 =

∑
v∈B p′v ≤

∑
v∈B πv <

∑
v∈S πv = ‖p‖1. But this is impossible as ‖p′‖1 = ‖p‖1

as W preserves the sum of entries.

2. If vol(B) = vol(S), we have by the above argument that p′v = πv for every v ∈ B, so Item 1
holds.

3. Otherwise, vol(B) > vol(S), and so there is some edge (u, v) such that u /∈ S and v ∈ B, and
thus there is some v ∈ B where πmin/U ≤ p′v ≤ πv − πmin/U . Therefore,

p
′2
v

πv
≤ p

′2
v

p′v + πmin/U
≤ p′v −

p′v · πmin/U

2
≤ p′v − π2

min/2U
2

and so

‖p′‖2π =
∑

v∈B

(p′v)
2

πv
≤
∑

v∈B

(p′v)
2

(p′v)
− π2

min/2U
2 = ‖p‖2π − π2

min/2U
2

where the last line uses that
∑

v∈B p′v =
∑

v∈S pv = ‖p‖2π, so so Item 2 holds.

58

Proof of Proposition C.3. Let p0 = π|S be the stationary distribution restricted to S, and for every
i ∈ [ℓ] let pi = Wip0. By applying Lemma C.5 inductively (and using that ‖pi‖π ≤ ‖pi−1‖π) we
obtain that either one of the following two cases occurs:

1. We have pℓ = π|B for some B ⊆ V with vol(B) = vol(S). Then either B ∩ T = ∅ (in which
case the cut value is exactly 0) or there is some v ∈ B ∩ T (in which case the cut value is at
least pℓv = πv ≥ πmin).

2. We have ‖pℓ‖π ≤ ‖p0‖π − π2
min/2U

2. In this case,

Pr
(i,j)∼µedge(Gℓ)

[i ∈ S, j ∈ T c] = 〈1T c , pℓ〉

≤ ‖pℓ‖π ·
√

vol(T c) (Claim C.2)

≤ (‖p0‖π − π2
min/2U

2) ·
√

vol(T c)

≤ (
√

vol(S)− π2
min/2U

2)
√

vol(S) ≤ vol(S)− π
5/2
min/2U

2

where ‖p0‖π ≤
√

vol(S) follows as π ≤ ~1, and the third inequality uses that 1 ≤ vol(S) +
vol(T) = vol(S) + 1− vol(T c). Thus, we have

CutGℓ(S, T) = Pr
(i,j)∼µedge(Gℓ)

[i ∈ S, j ∈ T]

≥ Pr
i∼π

[i ∈ S]− Pr
(i,j)∼µedge(Gℓ)

[i ∈ S, j ∈ T c] ≥ (πmin/2U)3.

59

	Introduction
	Singular-Value Approximation
	Comparison to Previous Notions of Approximation
	Properties of SV Approximation
	Algorithmic Results
	Open Problems
	Roadmap

	Preliminaries
	Singular Value Approximation
	Matrix Approximation
	Equivalent Definitions of SV Approximation
	Comparison to Prior Notions of Approximation
	Properties of SV Approximation

	Sparsification
	Cycle and Expander Decompositions
	Sparsifying Bipartite Expanders
	Sparsifying a Constant Fraction of Edges
	Nearly Linear-Sized Sparsifers
	Derandomized Square Sparsification
	Sparsification of Eulerian Walks
	Sparsification of Directed Random Walks

	Squaring-based Solver for Normal Directed Laplacian Systems
	SV Approximation Proofs
	Equivalences
	Properties
	Separations

	Singular Values Facts
	Stationary Distribution Facts

