
Handling Correlated Rounding Error via Preclustering:

A 1.73-approximation for Correlation Clustering

Vincent Cohen-Addad
Google Research

cohenaddad@google.com

Euiwoong Lee∗

University of Michigan
euiwoong@umich.edu

Shi Li
Nanjing University
shili@nju.edu.cn

Alantha Newman
Université Grenoble Alpes

alantha.newman@grenoble-inp.fr

Abstract

We consider the classic Correlation Clustering problem: Given a complete graph where edges are
labelled either + or −, the goal is to find a partition of the vertices that minimizes the number of the
+edges across parts plus the number of the −edges within parts. Recently, Cohen-Addad, Lee and
Newman [CLN22] presented a 1.994-approximation algorithm for the problem using the Sherali-Adams
hierarchy, hence breaking through the integrality gap of 2 for the classic linear program and improving
upon the 2.06-approximation of Chawla, Makarychev, Schramm and Yaroslavtsev [CMSY15].

We significantly improve the state-of-the-art by providing a 1.73-approximation for the problem.
Our approach introduces a preclustering of Correlation Clustering instances that allows us to essentially
ignore the error arising from the correlated rounding used by [CLN22]. This additional power simplifies the
previous algorithm and analysis. More importantly, it enables a new set-based rounding that complements
the previous roundings. A combination of these two rounding algorithms yields the improved bound.

∗Supported in part by NSF grant CCF-2236669 and Google.

ar
X

iv
:2

30
9.

17
24

3v
1

 [
cs

.D
S]

 2
9

Se
p

20
23

1 Introduction

Clustering is a classic problem in unsupervised machine learning and data mining. Given a set of data
elements and pairwise similarity information between the elements, the goal of clustering is to find a partition
of the data elements such that elements in the same clusters are pairwise similar while elements in different
clusters are pairwise dissimilar. Introduced by Bansal, Blum and Chawla [BBC04], Correlation Clustering
has become one of the most widely studied formulations for clustering. The input of the problem consists
of a complete graph (V,E+ ⊎ E−), where E+ ⊎ E− =

(
V
2

)
, E+ representing the so-called positive edges

and E− the so-called negative edges. The goal is to find a partition of the vertex set so as to minimize
the number of unsatisfied edges, namely the number of the negative edges uv where u and v are in the
same cluster plus the number of the positive edges uv where u and v are in different clusters. Here, the
vertex set represents the elements to cluster while positive edges represent pairs of similar elements and
negative edges pairs of dissimilar elements. The above formulation is very basic and has thus led the
Correlation Clustering problem to encompass a variety of applications from finding clustering ensembles
[BGU13], duplicate detection [ARS09], community mining [CSX12], disambiguation tasks [KCMNT08], to
automated labelling [AHK+09, CKP08] and many more.

The problem is known to be NP-hard, and so the focus has been on designing approximation algorithms
for the problem. In their seminal paper, Bansal, Blum and Chawla [BBC04] gave an O(1)-approximation
algorithm for the problem, which was later improved by Charikar, Guruswami and Wirth [CGW05] to a 4-
approximation, obtained by rounding the natural linear program (LP) relaxation for the problem. Charikar,
Guruswami and Wirth [CGW05] also showed that the problem is APX-Hard. Soon after, Ailon, Charikar
and Newman [ACN08] introduced an influential pivot-based algorithm, that leads to a combinatorial 3-
approximation and a LP-based 2.5-approximation. The pivot-based algorithms continue to inspire new
results for Correlation Clustering in different settings (see Section 1.3 for more details). Ten years after the
results of [ACN08], Chawla, Makarychev, Schramm and Yaroslavtsev [CMSY15] further improved the LP
rounding scheme and obtained a 2.06-approximation, nearly matching the LP integrality gap of 2. Since
the best known approximation results have been obtained through LP rounding techniques and the LP has
an integrality gap of 2, this bound seemed to be an important roadblock in the direction of getting better
approximation bounds. Recently, Cohen-Addad, Lee and Newman [CLN22] broke through this barrier
using O(1/ε2) rounds of the Sherali-Adams hierarchy on top of the standard LP and rounding the resulting
fractional solution to obtain a (1.994 + ε)-approximation algorithm.

The result of [CLN22] shows the importance of hierarchies to decrease the approximation ratio for the
problem. In fact, for a large constant number of rounds of the Sherali-Adams hierarchy, we do not know
a lower bound on the integrality gap of the resulting LP, which may even perhaps yield optimal results
under P ̸=NP or the Unique Games Conjecture. Presumably, the approximation ratio of (1.994+ε) obtained
through rounding the Sherali-Adams relaxation does not reflect the actual power of the hierarchies, but
rather the limitations of the current rounding approaches and of their analysis. Thus, to improve over the
(1.994 + ε)-approximation one might have to go beyond the pivot-based rounding framework introduced by
[ACN08], further developed by [CMSY15] and [CLN22], which has been the only known way of obtaining a
better than 3-approximation for the problem for the last 15 years. This is what we propose in this paper.

1.1 Our Results

We present a drastic improvement over the result of Cohen-Addad, Lee and Newman [CLN22] by showing a
(1.73 + ε)-approximation to the problem using the Sherali-Adams hierarchy.

Theorem 1. (Main Result) For any ε > 0, there exists a (1.73+ε)-approximation algorithm for Correlation
Clustering with running time nO(1/poly(ε)).

In addition to the above bound, our contributions are the following. Our new result departs from previous
work in several ways:

1. We provide a preclustering step that identifies pairs of vertices that “clearly” belong to the same
cluster/do not belong to the same cluster in an optimum solution. This is achieved by computing a

group of vertices whose contribution to the objective function in an optimum solution is tiny compared
to the number of incident +edges, and results in a preclustering where the number of “undecided”
pairs can be upper bounded in terms of the cost of the optimal clustering; we hence get a useful lower
bound on the cost contribution of the remaining instance.

2. Equipped with this, we provide a new set-based rounding approach inspired by the work of Kleinberg
and Tardos [KT02] for the Uniform Metric Labeling problem. To the best of our knowledge, it is the
first application of the ideas from [KT02] to Correlation Clustering. The original work [KT02], when
adapted to Correlation Clustering, creates a variable yS for each S ⊆ V that can possibly become a
cluster and sample a set with probability proportional to yS ’s (hence the name set-based).

Of course, it is impossible to create a variable for each subset, and we therefore need to use the power
of the Sherali-Adams hierarchy and the correlated rounding technique introduced by Raghavendra and
Tan [RT12] to extend this approach to output arbitrary-size subsets when needed. This comes at a
price: there is an additive rounding error proportional to the total number of vertices squared, which
is prohibitive when the optimal value is o(n2). However, this is where the preclustering step comes
to the rescue; we use the correlated rounding only for the “undecided pairs” whose number is small
compared to opt, so that this additive rounding error is negligible.

3. This way of handling error from the correlated rounding also provides a refined analysis of the Cohen-
Addad, Lee and Newman [CLN22] rounding, which combines the classical pivot-based rounding with
the correlated rounding. As their main technical complications arise from the rounding error, our
preclustering step considerably simplifies their analysis. While following the same triangle-based anal-
ysis of [CLN22], we introduce a new edge-by-edge charging argument that helps this algorithm nicely
complement the set-based rounding above.

4. In the final step, we combine the two above rounding approaches to show that the bad cases for one
type of edges (E+ or E−) are the good cases of the other; our combined rounding gives the desired
bound of 1.73 + ε.

We next present a more detailed overview of the techniques.

1.2 Our Techniques

To understand in more details our contribution and the new techniques introduced, we need to provide a
brief summary of the previous approaches. We first recall the classic LP relaxation (whose integrality gap
is known to be in [2, 2.06]). There is a variable xuv for each pair of vertices whose intended value is 1 if u, v
are not in the same cluster and 0 otherwise. The goal is thus to minimize

∑
uv∈E+ xuv +

∑
uv∈E−(1− xuv),

under the classic triangle inequality constraint: ∀u, v, w, xuv ≤ xuw + xwv.
To obtain the 2.5-approximation algorithm, Ailon, Charikar and Newman [ACN08] designed a pivot-

based rounding method that proceeds as follows: (1) Pick a random vertex p, called the pivot, and create the
cluster containing p; and (2) Recurse on the rest of the instance (the vertices not in the cluster). This hence
builds the clustering in a sequential manner. Once we commit to this scheme, the main design question that
remains is how to construct the cluster containing the pivot. The solution of [ACN08] was to go over all the
other vertices and for each other vertex u place it in the cluster of the pivot p with probability (1 − xpu),
independently of the other random decisions made for the other vertices.

This was further improved by Chawla, Makarychev, Schramm and Yaroslavtsev [CMSY15] who kept the
same scheme but provided a better rounding approach: For +edges, they replaced the probability (1− xpu)
with a new rounding function f+ to apply to the quantity (1−xpu) yielding the probability of incorporating
u in p’s cluster. Similar to the analysis of [ACN08], the analysis of the rounding scheme was triangle-based:
The analysis is a charging scheme that charges the cost paid by each pair u, v to the triangle p, u, v where p
is the pivot which decided edge u, v. Then the crux of the analysis is to show that for any triangle p, u, v,
the charge is bounded compared to the LP cost.

The approach of [CLN22], while using the same pivot-based rounding and triangle-based analysis, intro-
duces two twists. The first twist is the usage of correlated rounding based on the Sherali-Adams hierarchy.

2

Namely, given a pivot p, the set of +neighbors of p that join the cluster of p is chosen in a correlated manner,
using the techniques of Raghavendra and Tan [RT12]. Concretely, the Sherali-Adams hierarchy provides
variables of the form yS for any constant-sized set of vertices S that indicates the probability that all the
vertices in S are in the same cluster.1 Given a pivot p, the correlated rounding then allows to sample in such
a way that the probability that u, v join the cluster of p is ypuv ± ε, where ε is an arbitrarily small constant.
An important issue is that this additive ε error is in some cases not a relative error (think of (u, v) ∈ E+

and xuv = 0). Dealing with these additive errors is one of the most technical parts of the contribution of
[CLN22] and perhaps a limitation to getting an improved approximation ratio (e.g., special attention must
be paid to edges with values close to 0 and 1 in both the algorithm and in the analysis). This first twist
allows to bring the approximation ratio down to 2 but not further; the ratio of some of the triangles is 2. To
bypass this bound, the second twist in the approach is to use the properties of the Sherali-Adams hierarchy
to argue that one cannot pack too many bad triangles without creating some good triangles (for which the
ratio is smaller than 2), hence bringing down the ratio to (1.994 + ε) via a charging argument. We next
describe how we go beyond previous work.

The High-Level Approach The governing high-level intuition for what we are trying to achieve is this.
Given a pivot vertex p, the key property of the correlated rounding (see Lemma 22 for a restatement) ensures
that we can sample a set C from a set of vertices S both being of arbitrary size (importantly not necessarily
constant) such that pairs u, v ends up in S with probability ypuv on average, up to losing an additive ε|S|2
error in the cost. This is one of the key properties of the Sherali-Adams hierarchy that can be used to obtain
approximation schemes for dense CSPs, in particular Dense Max-Cut [dlVKM07, YZ14]. In light of the
previous approaches, this is a very desirable property: We could repeatedly construct a cluster using this
tool and the error would only be coming from the fact that the clusters are constructed sequentially.

The main issue we need to face with the above plan of attack is that the additive error of ε|S|2, which
we pay when we create a cluster C, may end up being much larger than the cost of the optimum solution.
In fact, an optimum solution may have cost zero. So our goal is the following: (1) precluster the instance
so that the cost of the optimal solution becomes relatively large compared to the size of the “unsure part”,
and (2) use correlated rounding only for the unsure part of the instance so that the error from the correlated
rounding is negligible.

A New Preclustering Our first conceptual contribution is a preclustering of the instance that aims at
identifying “clear clusters”. More concretely, our goal is to make sure that if we apply the correlated rounding
to create a cluster of size s, then we can accommodate an additive cost of εs2. Thus, consider the clusters
of the optimum (integral) solution; when is the cost contribution of such a cluster S significantly smaller
than s2, say εs2? For this to happen, it must be that the number of −edges internal to S is small compared
to

(
s
2

)
and that the number +edges with exactly one endpoint in S is also much smaller than

(
s
2

)
. This

cluster is thus almost a clique with tiny +edge-expansion; we formalize this through the notion of an atom
in Section 3.

This means that for a very large fraction of the pairs u, v of vertices in an atomic cluster S, the
+neighborhood of u and v are nearly identical (up to a tiny fraction). This is exactly what the notion of agree-
ment introduced by Cohen-Addad, Lattanzi, Mitrovic, Norouzi-Fard, Parotsidis and Tarnawski [CLM+21]
(see Definition 10) was designed for. Indeed, in this work, the authors presented a massively-parallel constant
factor approximation algorithm. The constant obtained there is larger than 500, but the key idea is that it
is enough to identify the atoms, since all the other clusters C pay a cost of at least ε

∑
u∈C du, where du is

the number of +neighbors of u, and therefore making all the remaining vertices singleton clusters would be
enough to get an O(1/ε)-approximation.

We thus re-use the Algorithm 1 of [CLM+21] and show that it correctly identifies the atoms. [CLM+21]
then showed that there exists a (1+ ε)-approximate solution C∗, such that each non-singleton cluster output
by the Algorithm 1 of [CLM+21], now referred to as an atom, is fully contained within one cluster of C∗. This

1In which case, yuv = 1− xuv .

3

immediately allows us to treat each atom as a single (weighted) vertex, or in other words enforce xuv = 0
for all pairs u, v in the same atom.

The next key step is that for each vertex u, we can identify a set of so-called admissible edges, which
induce a neighborhood N ′

u of size at most du/ε
O(1). We then show that there exists a near-optimum solution

such that if u, v is not an atomic or an admissible pair, then u and v are not in the same cluster. For such
pairs u, v, we can immediately set xuv = 1 in the LP, because we know in advance that they must be placed
in separate clusters. This immediately reduces the uncertainty of the fractional LP solution: for any vertex
u, the number of pairs u, v for which the LP can have a fractional value (i.e., a value not in {0, 1}) is at most
the number of admissible pairs which we show through a delicate argument is at most

∑
u∈V du/ε

O(1).
The final step of the preclustering is then to show that the cost of an integral solution under the above

constraints is at least εO(1) times the number of admissible pairs. Combined with the above argument, we
can show that this enables the use of correlated rounding while only losing an overall (1 + ε) multiplicative
approximation, which is crucial because both of our rounding algorithms below use the correlated rounding.

We believe that this preclustering will be of particular interest to future work on improving the approxi-
mation ratio given that it provides a much more structured instance and it remains completely independent
from the rounding process.

A New Set-Based Rounding Our other major contribution is the following set-based rounding, whose

performance complements the previous ones [ACN08, CMSY15, CLN22]. Namely, give a solution x ∈ [0, 1](
V
2)

to some LP relaxation, our goal is to obtain (as stated in Theorem 7) a clustering C with

cost(C) ≤
∑

vw∈E+

2xvw

1 + xvw
+

∑
vw∈E−

1− xvw

1 + xvw
+ O(ε) · |Eadm|,

where cost(C) is the cost of the clustering C. The set Eadm refers to the set of admissible edges defined in
the preclustering.

To achieve this we use the ideas from the 2-approximation algorithm for the Uniform Metric Labeling
problem by Kleinberg and Tardos [KT02]. Consider a special case of the Correlation Clustering problem
where we are promised that the optimum clustering has maximum cluster size t = O(1). Then, in our LP,
we could simply have a variable zS for every set S of size at most t, indicating if S is a cluster or not. For
every v ∈ V , we have

∑
S∋v zS = 1. In each iteration of the rounding algorithm, we randomly choose a set

S with probability to zS/Z, where Z :=
∑

S zS . So an edge vw is decided with probability 1+xvw

Z . For an

edge vw ∈ E+, it incurs a cost with probability 2xvw

Z ; for an edge vw ∈ E−, the probability is 1−xvw

Z . This

gives expected cost of 2xvw

1+xvw
and 1−xvw

1+xvw
for + and −edges vw respectively, proving the inequality.

The most prominent challenge is thus to enable this approach to work beyond the assumption that the
optimum clusters have constant size. This may seem impossible at first since if such a technique existed in
general graph partitioning, this would provide an approximation bound that would yield a result believed to
be unlikely (e.g., a 2-approximation for Minimum Bisection). Thus, we need to exploit the particularities of
the Correlation Clustering problem. To achieve this, we first enrich the program with variables of the form
ysS , for all s ∈ [n], and subset S of 1/εO(1) vertices. Here ysS aims at representing the number of clusters of
size s containing S as a subset, and should be in {0, 1} in an integral solution when S ̸= ∅. Then, yS now
represents the number of clusters (of various sizes) containing S as a subset, and should also be in {0, 1} in
an integral solution. It thus indicates whether S is a subset of a cluster.

We next show that this is enough to achieve the above bound. To do so, we provide the following rounding
approach: We first sample a size s based on the ys∅ probabilities, then a pivot a that will go in a cluster
of size s based on the ysa probabilities (correcting for the fact that we are aiming to build a cluster of size
s), and then use the correlated rounding to complete the cluster. We show, perhaps surprisingly, that this
is enough to achieve the bounds offered by the approach of [KT02], at the price of an extra additive error
incurred by the correlated rounding, which, as we show, results in an additive O(ε) · |Eadm| additive error.
This error is tolerable thanks to the preclustering step.

4

A Refined and Cleaner Analysis of the Pivot-Based Rounding This preclustering immediately
makes the analysis of [CLN22] rounding much simpler. All the corner cases that required a lot of work to
handle the additive error can be removed: The concepts of short and long edges (edges uv for which xuv was
close to 0 or 1) can be completely forgotten and the rounding can be simplified. In fact, [CLN22] proposed
a simpler and better so-called “ideal” analysis of their rounding if the additive error ε can be assumed to
be 0 (which of course cannot be achieved with o(n) rounds of Sherali-Adams) and our preclustering allows
to immediately recover this ideal analysis, modulo a simple cleaning step to handle the atoms. This yields
a very simple 2-approximation rounding scheme.

We then refine the bound obtained by [CLN22] to express it as a per-edge approximation. Concretely,
we show that the output clustering C satisfies the following guarantees (as stated in Theorem 8):

cost(C) ≤
∑

vw∈E+

min{1.515 + xvw, 2} · xvw + 2
∑

vw∈E−

(1− xvw) + O(ε) · |Eadm|.

Combining Two Roundings The two above bounds are simply combined as follows: We round the LP
with the pivot-based rounding of [CLN22] with some carefully chosen probability and the new rounding
approach with the remaining probability; for intuition, note that −edges have a 1-approximation in the first
rounding and 2 in the second rounding, while +edges with small x value have a 2-approximation in the first
rounding but close to a 1.5-approximation in the second. Therefore, by appropriately combining the two
roundings, we can show that every edge has a 1.73-approximation in expectation. The preclustering ensures
that the additive O(ε) · |Eadm| terms are only an O(poly(ε)) fraction of the optimum cost and can thus be
ignored.

Round-or-Cut Framework In order to perform the set-based rounding and pivot-based rounding simul-
taneously, our overall algorithmic framework after the preclustering uses the round-or-cut paradigm. In a

typical rounding algorithm, we are given a metric x ∈ [0, 1](
|V |
2) over V along with some auxiliary variables,

obtained from solving an LP relaxation. We then round x into some integral clustering with a small cost.
This structure works for the pivot based rounding algorithm: we randomly generate a cluster C according to
the algorithm, remove C, focus on the LP relaxation restricted to V \C (i.e., we reduce the LP solution), and
repeat until we clustered all vertices in V . However, the adaptive feature of our set-based rounding algorithm,
which solves an LP extending x in every iteration, makes this one-shot strategy hard to implement.

Instead, we design a rounding algorithm with violation detection (Theorem 5). In the algorithm, we

are given the core vector x ∈ [0, 1](
|V |
2) only. The algorithm proceeds in iterations. In each iteration, we

try extend x to a vector (x, y) with the auxiliary variables y, which depend on the remaining set V ′ of
vertices. If the extension is successful, then we can proceed with the iteration by constructing the cluster
C and removing C. Otherwise, we find a hyperplane that separates x from the convex hull of all integral
clusterings, and return it. The well-known property of the ellipsoid algorithm [GLS12] will ensure that we
will eventually find a desired clustering.

1.3 Further Related Work

The Correlation Clustering problem has also been studied in the weighted case, where each pair of vertices
has an associated weight and unsatisfied edges contribute a cost proportional to their weight to the objective.
Unfortunately, this version of the problem is equivalent to the Multicut problem in terms of approximation
guarantee and so an O(log n)-approximation is known [DEFI06] and improving this bound significantly
would be a major breakthrough. Moreover, no polynomial-time constant factor approximation algorithm
exists assuming the Unique Game Conjecture [CKK+06].

The maximization version of the problem, where the goal is to maximize the number of satisfied edges,
has also been studied. A PTAS for the problem was given by Bansal, Blum and Chawla [BBC04], and
a .77-approximation for the weighted case was given by Charikar, Guruswami and Wirth [CGW05] and
Swamy [Swa04].

5

In the unweighted case, a PTAS exists when the number of clusters is a fixed constant [GG06, KS09].
A lot of work has also been devoted to the minimization version of Correlation Clustering in other compu-
tation models: online [MSS10, LMV+21, CLMP22], more practical settings, and in particular distributed
or parallel [CDK14, ACG+15, CLM+21, PPO+15, CCMU21, Vel22, VGW18], differential-privacy [BEK21,
Liu22, CFL+22]. Related to our results is the work of Cohen-Addad, Lattanzi, Mitrovic, Norouzi-Fard,
Parotsidis and Tarnawski [CLM+21] whose approach is useful to our preprocessing step, see also the work
of Assadi and Wang [AW22]. The above works have been improved by Behnezhad, Charikar, Ma, and
Tan [BCMT22, BCMT23] by showing how to extend the combinatorial pivot approach to the distributed
or streaming settings. Note that recently, connections between metric embeddings into ultrametric have
been established and Correlation Clustering plays a central role in the current best known approximation
algorithms [CDK+21, CFLM22]. In fact, our new bound (marginally) improves the constant factor approx-
imation of Cohen-Addad, Das, Kipouridis, Parotsidis and Thorup [CDK+21].

2 Overall Framework

In this section, we present our overall framework to achieve a (1.73 + ε)-approximation algorithm. On
the way, we will also introduce our main technical results for the preclustering (Theorem 4), the set-based
rounding (Theorem 7), and the pivot-based rounding (Theorem 8), which will be proved in Section 3, 4,
and 5 respectively. We begin with some definitions related to our preclustering step.

Definition 2. Given a Correlation Clustering instance (V,E+ ∪ E−), a preclustered instance is defined by
a pair (K, Eadm), where K is a family of disjoint subsets of V (not necessarily a partition), and Eadm ⊆

(
V
2

)
is a set of pairs such that for every uv ∈ Eadm, at least one of u and v is not in

⋃
K∈K K.

Each set K ∈ K is called an atom. We use VK :=
⋃

K∈K K to denote the set of all vertices in atoms. A
pair (u, v) between two vertices u, v in a same K ∈ K is called an atomic edge. A pair that is neither an
atomic nor an admissible edge is called a non-admissible edge.

Therefore, in a preclustered instance, the set
(
V
2

)
is partitioned into atomic, admissible and non-admissible

edges. By the definition of Eadm, a pair (u, v) between two different atoms is non-admissible.

Definition 3. Given a preclustered instance (K, Eadm) for some Correlation Clustering instance (V,E+ ∪
E−), a partition C of V (also called a clustering) is called good with respect to (K, Eadm) if

• u and v are in the same set (or cluster) in C for an atomic edge (u, v), and

• u and v are not in the same set (or cluster) in C for a non-admissible edge (u, v).

That is, a good clustering can not break an atom, or join a non-admissible pair. As a result, two atoms
can not be in the same cluster as the edges between them are non-admissible. The main theorem we prove
for our preclustering step in Section 3 is the following:

Theorem 4. (Preclustering) For any sufficiently small δ > 0, there exists a polynomial-time algorithm that,
given a Correlation Clustering instance (V,E+ ∪ E−) with the optimal value opt0, produces a preclustered
instance (K, Eadm) such that

• there exists a good clustering whose cost is at most (1 + δ)opt0, and

• |Eadm| ≤ O(opt0/δ
12).

We remark that, after the preclustering, the benchmark clustering we are comparing to is a good clus-
tering, but our algorithm does not need to find a good clustering. For example, the clustering we construct
might join a non-admissible pair, or two atoms. But we guarantee that an atom will not be broken by the
clustering.

Given the desired error parameter ε0 > 0 for the overall approximation factor in Theorem 1, let δ := ε0/4,
ε := Θ(δ12ε0) = Θ(ε130) and perform the preclustering with parameter δ (let opt be the cost of the best good

6

clustering with respect to the preclustering). Then, producing a clustering C whose cost (denoted as cost(C))
is at most 1.73opt + ε|Eadm| guarantees that

cost(C) ≤ 1.73opt + ε|Eadm| ≤ 1.73(1 + δ)opt +O(ε/δ12)opt0 ≤ (1.73 + ε0)opt0.

Therefore, given a preclustered instance (V,E+ ∪ E−) together with (K, Eadm), it suffices to compute a
clustering C with cost(C) ≤ 1.73opt + ε|Eadm|.

Our algorithm proceeds via the round-or-cut framework. Every clustering corresponds to a 0/1-valued
metric over V , where the distance between u and v indicates if u and v are cut in the clustering or not.

We let P ⊆ [0, 1](
V
2) denote the convex hull of the metrics for all good clusterings. The central piece of the

algorithm for the proof of Theorem 1 is a rounding algorithm A with violation detection. Formally, we prove
the following theorem:

Theorem 5. Given a metric x ∈ [0, 1](
V
2) over V , for which any two vertices in a same atom have distance

0, and the two end points of any non-admissible edge have distance 1, and ε > 0, there is an nO(1/ε4) time
algorithm A that outputs one of the following two things:

• a clustering for the instance whose cost is at most 1.73 · cost(x) + ε|Eadm|,

• a hyperplane separating x and P (i.e., a vector w ∈ R(
V
2) and b ∈ R such that wTx′ ≥ b for every

x′ ∈ P, but wTx < b). Sometimes we also simply call the (w, b) pair separating x and P a separation
plane for x.

It is well known [GLS12] that once we have the algorithm A in Theorem 5, we can combine it with
the ellipsoid method to find the desired approximate solution for the preclustered instance in polynomial
time, which proves Theorem 1, with a final running time of nO(1/ε4) = nO(1/ε520). By enumeration or binary
search, we assume we are given the value of opt, and our goal is to find a clustering with cost at most
1.73opt + ε|Eadm|. Let P ′ := P ∩ {x : cost(x) ≤ opt} be the convex hull of good clusterings of cost at
most opt. P ′ is non-empty since there exists a good clustering of cost at most opt. Then we take an
ellipsoid containing the P ′. In every iteration, we take the center x of the ellipsoid, and run the algorithm
in Theorem 5 over this x. If the algorithm returns a clustering, then the cost of the clustering is at most
1.73opt + ε|Eadm| and we are done. Otherwise, it returns a hyperplane separating x and P ′, which breaks
the ellipsoid into two parts, one containing x, and the other containing P ′. We define a new ellipsoid that
contains the latter part, and repeat. Since P ′ is nonempty, the algorithm will successfully output a desired
clustering in polynomial number of iterations. Thus our goal in this section becomes to prove Theorem 5.

A useful tool is the following lemma that shows we can try to extend x to any domain. Suppose D is any

domain of variables, and Q ⊆ [0, 1](
V
2) × RD is a polytope such that the projection of Q to coordinates in(

V
2

)
contains P. If x is also in the projection, namely if we have (x, y) ∈ Q for some y ∈ [0, 1]D, then we can

successfully extend x to (x, y) and use y in our rounding algorithm. Otherwise, we can output a separation
plane for x using the following lemma:

Lemma 6. Suppose x is not in the projection of Q; namely for every y ∈ RD, we have (x, y) /∈ Q. Then in
time polynomial in the description of Q, we can find a separation plane (w, b) for x.

Proof. Consider the LP (A,A′)

(
x
y

)
≤ c that defines the polytope Q, where x corresponds to variables in

(
V
2

)
and y corresponds to variables in D, and the number of columns of A is the same as the number of rows of x.
Now suppose for a fixed x, the LP is infeasible. That is, the LP A′y ≤ c−Ax (with variables y) is infeasible.
By LP duality, we can find a vector u with non-negative entries such that uTA′ = 0 and uT (c− Ax) = −1.
On the other hand, for every x′ that is in the projection of Q, we have uT (c−Ax′) ≥ 0: There exists some y

with (A,A′)

(
x′

y

)
≤ c, which is equivalent to A′y ≤ c− Ax′, which implies 0 = uTA′y ≤ uT (c− Ax′). This

gives us a separation plane between x and P. Moreover, the plane can be found in time polynomial in the
size of the LP for Q.

7

In the algorithm that proves Theorem 5, we generate two clusterings using two different procedures (set-
based rounding and pivot-based rounding) and output the better of the two clusterings. The properties of
the two procedures are described in the following theorems. In both theorems, the input is the same as that
from Theorem 5.

Theorem 7. (Set-based Rounding) There is an nO(1/ε4)-time procedure Aset that either outputs a separation
plane for x, or a clustering C such that

cost(C) ≤
∑

vw∈E+

2xvw

1 + xvw
+

∑
vw∈E−

1− xvw

1 + xvw
+ ε · |Eadm|.

Theorem 8. (Pivot-based Rounding) There is an nO(1/ε2)-time procedure Apivot that either outputs a sep-
aration plane for x or a clustering C such that

cost(C) ≤
∑

vw∈E+

min{1.515 + xvw, 2} · xvw + 2
∑

vw∈E−

(1− xvw) + ε · |Eadm|.

It is simple to show that combining the two procedures proves Theorem 5.

Proof of Theorem 5. Suppose that given x ∈ [0, 1](
V
2), both Aset and Apivot return a solution C1 and C2

respectively; otherwise a separation plane is found.
Consider the cost of C1 times 0.42 plus the cost of C2 times 0.58. Then the approximation ratio for any

+edge is at most

max
x∈[0,1]

(
0.42

2

1 + x
+ 0.58min(1.515 + x, 2)

)
≤ 1.7257, (1)

and the ratio for −edge is at most 0.42 · 1 + 0.58 · 2 = 1.58. Therefore, the cost of the better one is at most
1.73cost(x) + ε|Eadm| ≤ 1.73opt + ε|Eadm|.

To see the ratio for +edges, notice that we only need to consider two x values: x = 0 and x = 2−1.515 =
0.485. The function inside max(·) in (1) is decreasing for x ∈ [0.485, 1] and convex for x ∈ [0, 0.485].

Theorem 7 and 8 will be proved in Section 4 and 5 respectively.

3 Preclustering

In this section, we show how to find a preclustered instance and prove Theorem 4. Given a Correlation
Clustering instance I = (V,E+ ∪ E−) on a set of vertices V , we let G = (V,E+) be the graph of +edges,
and dv and Nv be respectively the degree and neighbor set of v in G. For reasons that we will note later
on, we assume that each vertex has a self-loop +edge. (Note that this does not affect the cost of clustering,
as a self-loop is never cut by a clustering.) This assumption implies that v ∈ Nv, and we have dv = |Nv|.
Moreover, the number of +neighbors of v equals dv. Notice that without loss of generality, we can assume
that each vertex v in the input instance has at least one proper +neighbor (i.e., dv ≥ 2); otherwise, we would
clearly put that vertex in its own (singleton) cluster and solve the remaining instance. Let εq < 10−8 be a
fixed constant, and let ε =

√
εq.

The goal of this section is to prove the following theorem.

Theorem 9. Given a Correlation Clustering instance G, we can in polynomial time construct a preclustered
instance (K, Eadm) with the following two properties:

• cost(C∗(K,Eadm)) is at most (1 + ε) times the cost of the optimum clustering for G,

• cost(C∗(K,Eadm)) is at least (ε6q/2) · |Eadm| = εa|Eadm|,
where C∗(K,Eadm) denotes a good (but unknown) clustering for (K, Eadm) of minimum cost.

8

Note that Theorem 4 immediately follows from Theorem 9 by letting ε =
√
εq ← δ. For the rest of the

section, we prove Theorem 9 by describing a procedure that takes a Correlation Clustering instance and
outputs a preclustered instance.

Atomic Subpartitioning Our algorithm is similar to the algorithm of [CLM+21] and relies on the notion
of weak agreement. Informally, we say that u and v are in agreement when their neighborhoods are almost
identical, up to a tiny fraction of the neighbors. We expect u and v to be treated similarly in a target optimal
solution: either u and v are in the same cluster, or both form singleton clusters.

Our algorithms are parameterized by two constants β, λ that will be determined later.

Definition 10 (Weak Agreement [CLM+21]). Two vertices u and v are in i-weak agreement if |Nu△Nv| <
iβ ·max{|Nu|, |Nv|}, where Nu△Nv denotes the symmetric difference between Nu and Nv. If u and v are in
1-weak agreement, we also say that u and v are in agreement.

Remark 1. As noted earlier, we assume that each vertex has a self-loop +edge, because we follow the
assumptions of [CLM+21].

[CLM+21] then provide Algorithm 1, which we apply with β := εq and λ := εq.

Algorithm 1 Atomic-Preclustering(G) – Algorithm 1 in [CLM+21]

1: Discard all +edges whose endpoints are not in agreement.
2: Call a vertex light if it has lost more than a λ-fraction of its +neighbors in the previous step. Otherwise

call it heavy.
3: Discard all +edges between two light vertices.
4: Let G̃ be the sparsified graph on the remaining +edges. Let C1, . . . , Ck be the connected components of

G̃; each Ci with |Ci| ≥ 2 is defined as an atom. Any pair u, v such that u and v are in the same atom is
an atomic pair (or edge).

We will make use of the following structural lemmas.

Lemma 11 (Lemma 3.4 in full version (arXiv) of [CLM+21]). Let β = λ = εq < 1/100 in Algorithm 1. Let

C be a connected component of G̃ of size at least 2, then for each vertex u in C, we have that the number of
+neighbors of u in C is at least (1− 9εq)|C|.

Lemma 12 (Lemma 3.3 in full version (arXiv) of [CLM+21]). Let β = λ = εq < 1/100 in Algorithm 1.
Then, for any u, v in the same atom, we have that if u or v is heavy, then u and v are in 4-weak agreement.
Moreover, for any atom K, the hop-distance in K between any two vertices of K is at most 4.

Lemma 13 (Fact 3.2 of [CLM+21], second bullet). Let k ∈ {2, 3, 4, 5} and v1, . . . , vk ∈ V be a sequence
of vertices such that vi is in agreement with vi+1 for i ∈ {1, . . . , k − 1}. Then v1 and vk are in k-weak
agreement.

One of our key lemmas is based on Lemma 3.5 of the full arXiv version of [CLM+21].

Lemma 14 (Atom Structure in Preclustering). There exists an optimum solution C1 for I such that for any
atom K, there exists a cluster C ∈ C1 containing K.

Proof. Consider an atom K. By the description of Algorithm 1, there is a heavy vertex v in K, because
K contains at least one edge and edges with two light endpoints have been removed. Since v is heavy, a
(1 − εq)-fraction of its +neighbors are also in K. Moreover by Lemma 12, every other vertex u ∈ K is in
4-agreement with v. The vertex v has at most εq|K| +neighbors outgoing from K. By 4-agreement, for every
other vertex u ∈ K, u has at most 36εq|K| +neighbors outgoing from K (by the choice of εq). Moreover, by
Lemma 11, u has at most 9εq|K| −neighbors in K.

Now, fix an optimum solution C and assume toward contradiction that there exists C1, . . . , Cℓ ∈ C, where
ℓ > 1, such that Ci∩K ̸= ∅ for all i. Recall that each vertex u ∈ K has at most 36εq|K| + neighbors outside

9

of K and so for each Ci, |Ci \ K| ≤ 73εq|K| since otherwise the number of −edges between Ci \ K and
Ci ∩K outnumbers the number of +edges and the clustering where Ci is replaced with Ci \K and Ci ∩K
has cheaper cost.

Similar to the proof of Lemma 3.5 in [CLM+21], we consider two different cases, either there exists a
cluster C∗ of size larger than (1− 200εq)|K| or all the clusters have size at most (1− 200εq)|K|.

In the first case, observe that by the above discussion, C∗ contains at least (1 − 273εq)|K| vertices of
K and so for each Ci ̸= C∗, we have that |Ci ∩K| ≤ 273εq|K|. Since each vertex v ∈ Ci ∩K has at least
(1 − 9εq)|K| + neighbors in K, we have that it has at least (1 − 282εq)|K| + neighbors in C∗. Moreover,
since |C∗| ≤ (1 + 73εq)|K| by the above discussion, the cost of moving v from Ci to C∗ is at most 619εq|K|
while the saving is at least (1− 282εq)|K| and since εq < 1/1000, the change induces a positive saving and
so a contradiction to the fact that the solution is optimal.

We thus turn to the second case where all the clusters C1, . . . , Cℓ have size at most (1 − 200εq)|K|. By
Lemma 11, each vertex v ∈ Ci∩K has at least (1−9εq)|K|−|Ci| ≥ (1−9εq)|K|−(1−200εq)|K| = 191εq|K| +
neighbors in K \Ci. Hence C separates at least 191|K|2εq/2 +edges. On the other hand, consider modifying
C by removing all the vertices in K from their current clusters and creating a cluster consisting only of
K. The new clustering will be saving at least 191|K|2εq/2 (by the above computation) while paying an
additional 10|K|2εq cost for the internal - edges and an additional 36εq|K|2 cost for the outgoing + edges.
Since 46εq|K|2 < 191|K|2εq/2, we have that the resulting clustering is of cheaper cost, a contradiction that
concludes the proof.

Admissibility A pair (u, v) is degree-similar if εqdv ≤ du ≤ dv/εq. Let K be the set of atoms output by
Algorithm 1. A pair (u, v) is admissible if (1) either u or v belongs to V \VK, and (2) it is degree-similar, and
(3) the number of common neighbors that are degree-similar to both u and v is at least εq ·min{du, dv}. We

let Eadm be the set of all admissible pairs in
(
V
2

)
. This finishes the description of our preclustered instance

(K, Eadm). To this end, we let G′ = (V,E′) be the graph containing the set of atomic and admissible edges,
and for every v ∈ V , let N ′

v and d′v be the neighbor set and degree of v in G′.

Lemma 15. The following two properties hold for (K, Eadm):

(i) for every v ∈ V , we have d′v ≤ 2ε−3
q · dv, and

(ii) for every uv ∈ E′, we have du ≤ 2ε−1
q · dv.

Proof. We consider an arbitrary vertex u. Let us first analyse the number of edges u, v that are admissible
edges. By the definition of an admissible pair, we have that du ≤ ε−1

q dv for an admissible edge uv ∈ E′.
Next we show that for any u, d′u ≤ du/ε

3
q. Let Du be the set of neighbors of u in G that are degree similar

to u. Each vertex v such that (u, v) is an admissible pair is connected to at least εq · min{du, dv} ≥ ε2qdu
vertices in Du. Moreover, each vertex w ∈ Du has degree dw ≤ du/εq by definition of degree-similar. Hence,
by using a counting argument, we conclude that the total number of vertices v such that uv is in Eadm is at
most |Du|(du/εq)/(ε2qdu) ≤ du/ε

3
q. This yields the desired bounds for any vertex u that does not belong to

an atom.
To finish the analysis, we need to analyze the number of atomic edges attached to any vertex u in an

atom and show that a pair of vertices u, v in the same atom satisfies du ≤ 2ε−1
q · dv. By Lemma 12 and

Lemma 13, we have that u is in 8-weak agreement with any element of K so we have that du ≤ 2dv · ε−1
q by

our choice of εq, as desired. Moreover, consider a heavy vertex v′ in K (there must exist one by definition).
The fact v remained heavy implies that K contains at least a (1 − εq) fraction of the +neighbors of v′,
and Lemma 11 implies that the degree of v′ is at least (1 − O(εq))|K|. Since any other vertex is in 4-weak
agreement with v′, we have that the degree of any vertex u ∈ K is (1±O(εq))|K| and so d′u ≤ 2ε−3

q · du.

We now want to prove Theorem 9 for an preclustered instance (K, Eadm). We start with the following
lemma.

Lemma 16. Let K be the set of atoms output by Algorithm 1. There exists a good clustering C2 of I with
cost at most (1 + ε) times the optimum solution of I such that

10

1. For any vertex v that belongs to a non-singleton cluster C ∈ C2, we have that v has at least (1+ε)|C|/2
+neighbors in C.

2. For any vertex v that belongs to a non-singleton cluster C ∈ C2, we have that |C| ≥ εdv.

Proof. Start from C1 as per Lemma 14 and modify it as follows. For any cluster C ∈ C1, let K(C) be the
set of atoms K such that K ∩ C ̸= ∅ (note that by Lemma 14, if K ∩ C ̸= ∅, then K ⊆ C). For any cluster

C ∈ C1, if the number of −edges within C is at least (1 − 10ε)
(|C|

2

)
/2, then make each K ∈ K(C) a cluster

by itself and each non-atom vertex v ∈ C a singleton cluster. This increases the cost by a factor of at most
(1 + 10ε)/(1 − 10ε). Secondly, if the number of +edges outgoing from the cluster is at least |C|2/ε, then
make all the non-atom vertices of C singleton clusters and each K ∈ K(C) a cluster by itself, and charge the
cost of |C|2 for the operation to the outgoing +edges); each edge across clusters of C1 each gets a charge of
O(ε) (ε for each endpoint). Let C′1 be the resulting solution which has cost at most (1 + ε) times the cost of
C1 by the above argument.

We next apply the following iterative procedure to C′1: As long as there exists a vertex v in a non-singleton
cluster C such that either Event (1): v has less than (1 + ε)|C|/2 neighbors in C, or Event (2): |C| < εdv,
we proceed as follows:

• Individual case If v is not in an atom, we make v a singleton.

• Atom case Otherwise v belongs to an atom, we remove the whole atom K containing v from C and
make it a cluster on its own.

We first argue that the procedure outputs a clustering that satisfies the conditions of the lemma. The
only way the two items can be violated is by an atom (since otherwise, the problematic vertex would be
made a singleton). We thus argue that atoms satisfy the two properties. By Lemma 11 and ε < 1 − 18εq,
each atom satisfies the first bullet. We then argue that each atom K is such that for any vertex v ∈ K,
εdv < |K|. This follows from the fact that each atom K contains a heavy vertex u that is thus in agreement
with a (1 − εq) fraction of its neighbors that hence join the atom; it follows that |K| > (1 − εq)du > εdu.
For the the other vertices, v is in 4-weak agreement with u, and so the property holds. It follows that when
the procedure stops, the solution obtained satisfies the constraints of the theorem.

We then need to account for the cost increase. We first make the following observation: Any non-singleton
cluster C ∈ C′1 (and so of C1) cannot lose more than (1−ε)|C| vertices because of Event (1) and |C|/2 vertices
because of Event (2). Indeed, if it loses more than (1− ε)|C| vertices because of Event (1), then that implies
that the total number of −edges internal to C was already larger than (1 − 10ε)|C|(|C| − 1)/4 and should
not have been in C′1. Moreover, if it loses more than |C|/2 vertices because of Event (2), that means that
the number of +edges outgoing C was at least |C|2/(2ε) and should not have been in C′1.

We can now analyse the cost increase due to Event (2). In the individual case, namely when a single
vertex v is placed in a singleton cluster, we have that v has at least |C|(1 − ε)/(2ε) +neighbors outside its
cluster in C′1 and so the cost can be charged (with an individual edge charge of 2ε) to these +edges. In the
atom case, namely when an entire atom K is placed in a single cluster, we have that there exists a vertex
v in K with at least (|C| − 1)/(2ε) +neighbors outside its cluster in C′1. Moreover, each vertex u ∈ K is
in at most 5-weak-agreement (by Lemmas 12 and 13 and so has at least (1− 2ε)(|C| − 1)/(2ε) +neighbors
outside its cluster in C′1 and so the cost of moving the atom outside of C can be charged to the +neighbors
of the atom that are not in the cluster of the atom in C′1, with a charge of 2ε/(1− 2ε) per individual edge.
Therefore, the cost of Event (2) can be charged to the +edges paid in C′1, each edge receiving a charge of
O(ε).

It thus remains to bound the cost incurred by Event (1). Consider the atom case, namely the case where
an entire atom K is moved out of a cluster and creates a cluster on its own. In this case, we have that
there is a vertex u ∈ K which is adjacent to less than a (1 + ε)|C|/2 fraction of its current cluster C and
assume that εdu ≤ |C| since otherwise this is an Event (2) case. Note that in this case, since εdu ≤ |C| and
by Lemma 12 that for any vertex u ∈ K, |Nu△Nv| < 4εq · max{|Nu|, |Nv|} and so each vertex u ∈ K is
adjacent to less than (1 + 5ε)|C|/2 vertices in C. This implies that whenever a vertex v is moved out of its
cluster in the procedure, it is adjacent to at most (1+5ε)|C|/2 vertices in C and so has at least (1−5ε)|C|/2
−neighbors in C. We thus charge the cost of moving v outside of C, which is at most (1 + 5ε)|C|/2, to the

11

cost v was paying in C′1 by placing a charge of O(ε) on each −neighbor of v in C. This account for the change
in cost since each −neighbor of v in C was contributing one to the objective and is now contributing 0. Note
that in this way, each −edge that contributes to the objective in C′1 is charged at most once: when one of
its endpoints is moved out of the cluster and cannot be charged later in the procedure since the endpoints
remain in different clusters.

We can now turn to the proof of Theorem 9.

Proof of Theorem 9. We consider the solution C2 from Lemma 16 and the pair (K, Eadm). It is easy to see
that (K, Eadm) can be computed in polynomial time.

Lemma 16 already shows that the cost of C2 is within a (1+ ε) factor of the optimum cost and so it only
remains to show that C2 is a good clustering for (K, Eadm) and that its cost is at least εa · |Eadm|.

Let us first argue that C2 is a good clustering for (K, Eadm), namely that

• For every atom K ∈ K, we have K ⊆ C for some C ∈ C2.
• For every non-admissible edge uv, u and v are not in the same cluster in C2.
Note that the first bullet is satisfied by C2 by Lemma 16. It thus remains to show that the second bullet is

satisfied. By Lemma 16, pairs of vertices in the same cluster are degree-similar and moreover, for any vertex
v that belongs to a non-singleton cluster C ∈ C2, we have that v has at least (1 + ε)|C|/2 +neighbors in C
that are degree-similar. This implies that any pair of vertices u, v that are in the same cluster C ∈ C2 has
at least ε|C| common neighbors that are degree similar, and by Lemma 16, ε|C| ≥ εq ·min{du, dv}. Thus,
either u, v is a pair of vertices in the same atom (hence (u, v) ∈ E′) or it is admissible (and so (u, v) ∈ E′

too) as desired.
We now turn to providing a lower bound on the cost. We say that a vertex v is a high-contributor if its

contribution to the cost is at least ε2qdv. Thus, any vertex that is not a high-contributor must be adjacent
to a (1 − ε2q)-fraction of its cluster and have at most ε2qdv +neighbors outside of its cluster. It follows that
+neighbors that are not high-contributors and that are in the same cluster are in agreement. Next, define a
cluster C to be a high-contributor cluster if the total number of outgoing +edges (i.e., +edges with exactly
one endpoint in C) is at least ε4q|C|2 or the total number of internal −edges (−edges with both endpoints in
C) is at least ε4q |C|2.

Next, consider a non-high-contributor cluster C; it must be that the number of non-high-contributor
vertices in C is at least (1− ε2q)|C|.Thus, since each non-high-contributor vertex in C is adjacent to at least
(1− ε2q)|C| vertices in C and in agreement with the other non-high-contributor vertices, we have that each
non-high-contributor vertex is heavy, and so all the non-high-contributor vertices of C are in the same atom.

We can thus rewrite a lower bound on the cost of the solution C3 as∑
high-contributor cluster C

ε2q|C|2 +
∑

non high-contributor cluster C

∑
high-contributor vertex v∈C

ε2qdv

∑
high-contributor cluster C

ε2q|C|2 ≥
∑

high-contributor cluster C

ε2q
∑
v∈C

|C|

≥
∑

high-contributor clusterC

ε2q
∑
v∈C

εdv

≥
∑

high-contributor cluster C

∑
v∈C

ε3qdv,

where the second inequality follows from the second bullet of Lemma 16.
So we have that the total contributions of vertices is at least:∑
non high-contributor cluster C

∑
v∈C\K

ε3qdv +
∑

high-contributor cluster C

∑
v∈C

ε3qdv +
∑

Singletons

dv/2 ≥
∑

v∈V \VK

ε3qdv

12

It follows that the cost of solution C3 is at least ε3q
∑

v∈V \VK
dv, as claimed (where εq = ε2).

By Lemma 15, we have∑
v∈V \VK

ε3qdv ≥
∑

v∈V \VK

ε3q(d
′
vε

3
q)/2 ≥

∑
v∈V \VK

ε6qd
′
v/2 ≥ ε6q/2 · |Eadm|.

4 Set-Based Rounding Procedure

In this section, we prove Theorem 7, by giving the set-based rounding algorithm Aset. We repeat the theorem
below:

Theorem 7. (Set-based Rounding) There is an nO(1/ε4)-time procedure Aset that either outputs a separation
plane for x, or a clustering C such that

cost(C) ≤
∑

vw∈E+

2xvw

1 + xvw
+

∑
vw∈E−

1− xvw

1 + xvw
+ ε · |Eadm|.

Recall that we are given a Correlation Clustering instance (V,E+∪E−), a preclustered instance (K, Eadm),

and a metric x ∈ [0, 1](
V
2) satisfying the properties in Theorem 5. The output is either a separation plane

between x and P, or a clustering C. Recall that P is the convex hull of the metrics of all good-clusterings
for (K, Eadm).

Throughout the section, we use Nadm(u) to denote the set of admissible edges incident to u, dadm(v) to
denote its size, and Eadm(A,B) for two disjoint subsets A and B to denote the set of admissible edges between
A and B. It is good to keep in mind the algorithm for the O(1)-sized cluster case from the introduction, as
it will serve as a baseline for our more general algorithm.

4.1 Linear Program Relaxation

During the algorithm, we maintain the set V ′ of vertices that are not clustered yet, and let n′ = |V ′|; initially
we have V ′ = V . For (K, Eadm) and for each u ∈ V , we shall let Ku denote the atom containing u, if there is
one; otherwise let Ku = {u}. Let C∗ be any good clustering for (K, Eadm); in other words, the metric for C∗
is a vertex-point of P. Let C′∗ be the clustering C∗, restricted to V ′ and with empty clusters removed. We
shall define a clustering C̃ which will serve as the target clustering for our LP. The cluster C̃ is constructed
as follows:

1: let C̃ ← C′∗
2: while there exists some Ku in a cluster C ∈ C̃ with |Ku| < |C| < εdadm(u) + |Ku| do
3: C̃ ← C̃ \ {C} ∪ {Ku, C \Ku}

Note this procedure is only for analysis purpose and is not a part of our algorithm, as we do not know C∗
and C′∗.

Claim 17. The following statements are true for the clustering C̃:
(17a) For every u ∈ V ′, Ku is either a cluster, or in a cluster of size more than |Ku|+ ε · dadm(u).

(17b) The number of pairs in
(
V ′

2

)
cut in C̃ is at most that in C′∗ plus ε ·

∑
u∈V ′ dadm(u).

Proof. The first statement is straightforward. Whenever we break C into Ku and C \Ku in the procedure,
the cost increase is at most |Ku| · |C \Ku| ≤ |Ku| · εdadm(u) ≤ ε

∑
v∈Ku

dadm(v). We separate each Ku at
most once. Therefore, the second statement holds.

We then describe the LP relaxation, which depends on V ′. Suppose we have a good clustering C∗, where
C′∗ is the clustering C∗ restricted to V ′, and let C̃ be obtained as above. Let r = Θ(1

ε4), with a large enough
hidden constant inside Θ(·). In the LP, we have a variable ysS , for every s ∈ [n′], and S ⊆ V ′ of size at
most r, that denotes the number of clusters of size s in C̃ containing S as a subset. When S ̸= ∅, there is at

13

most one such cluster and thus ysS ∈ {0, 1} in an integral solution. For every S, let yS :=
∑

s y
s
S denote the

number of clusters (of any size) in C̃ containing S as a subset. If S ̸= ∅, then yS indicate if S is a subset of

a cluster in C̃ or not. For every uv ∈
(
V ′

2

)
, we have a variable x̃uv indicating if u and v are separated or not

in C̃.
For convenience, we shall use the following type of shorthand: ysu for ys{u}, y

s
uv for ys{u,v}, and ysSu for

ysS∪{u}. The LP is defined as in LP(2-11). In the description of the LP, we always have s ∈ [n′], u ∈ V ′

and uv ∈
(
V ′

2

)
. For convenience, we omit the restrictions. By default, any variable of the form yS or ysS has

|S| ≤ r; if not, we do not have the variable and the constraint involving it.

n′∑
s=1

ysS = yS ∀S (2)

yu = 1 ∀u (3)

yuv = 1− x̃uv ∀uv (4)

x̃uv ≥ xuv ∀uv (5)

1

s

∑
u

ysSu = ysS ∀s, S (6)

x̃uv = 0 ∀u, v in a same K ∈ K (7)∑
uv

(x̃uv − xuv) ≤ ε
∑
u

dadm(u) (8)

ysS = 0 if implied by (17a) (9)∑
T ′⊆T

(−1)|T
′|ysS∪T ′ ∈ [0, ysS] ∀s, S ∩ T = ∅ (10)

all variables are non-negative (11)

x̃ and y variables are the LP variables, and x variables are given as the input by Theorem 7. (2) gives the
definition of yS , (3) requires u to be contained in some cluster, and (4) gives the definition of x̃uv. (5) holds
as C̃ is a refinement of C′∗. (6) says if ysS = 1, then there are exactly s elements u ∈ V with ysSu = 1. (An
exception is when S = ∅; but the equality also holds). (8) follows from (17b) and (9) is by (17a). The left
side of (10) is the number of clusters of size s in C̃ containing S but does not contain any vertex in T . So the
inequality holds. This corresponds to a Sherali-Adams relaxation needed for the correlated rounding [RT12],
see Lemma 18. (11) is the non-negativity constraint.

If x ∈ P, then the above LP is feasible, as this holds for every vertex point x of P. On the other hand,
if the LP is infeasible, then we can use Lemma 6 to return a separation plane between x and P.

4.2 Rounding Algorithm

With the LP defined, we can then describe the rounding algorithm for Theorem 7. The pseudo-code is given
in Algorithm 2, and it calls Algorithm 3.

Algorithm 2 Set-Based Rounding Procedure

Input: A Correlation Clustering instance G, a preclustered instance (K, Eadm) for G, and a metric x ∈
[0, 1](

V
2) satisfying properties in Theorem 5, and ε > 0

Output: Either a separation plane for x, or an integral clustering C
1: V ′ ← V, C ← ∅
2: while V ′ ̸= ∅ do
3: try to solve LP(2-11) for the V ′ to obtain a vector (x̃, y)
4: if the LP is infeasible then
5: return a separation plane for x using Lemma 6
6: else
7: C ←set-based-cstr-clst(V ′, y), C ← C ∪ {C}, V ′ ← V ′ \ C
8: return C

Step 4 of Algorithm 3 uses the following correlated rounding from Raghavedra and Tan [RT12]. Note
that vertex v with y′v ∈ {0, 1} is trivially decided and we incur errors only for v with y′v ∈ (0, 1).

14

Algorithm 3 set-based-cstr-clst(V ′, y)

1: randomly choose a cardinality s, so that s is chosen with probability
ys
∅

y∅

2: randomly choose a vertex u ∈ V ′, such that u is chosen with probability
ys
u

sys
∅

3: define a vector y′ such that y′S =
ys
Su

ys
u

for every S ⊆ V of size at most r − 1

4: apply the Raghavendra-Tan correlated rounding technique over the fractional set y′ to construct the
cluster C ⊆ V ′ that does not break any atom, and return C

Lemma 18 ([RT12]). In Step 4 of Algorithm 3, let V ′
u := {v : y′v ∈ (0, 1)}. One can sample C ⊆ V ′ in time

nO(r) such that

• For each v ∈ V ′, Pr[v ∈ C] = y′uv.

• Eu,v∈V ′
u
[|Pr[v, w ∈ C]− y′uvw|] ≤ εr, where εr = O(1/

√
r).

Recall that r = Θ
(

1
ε4

)
. So by setting the constant appropriately, we can have εr = ε2.

4.3 Analysis of Error-Free Version of Algorithm 3

In this section, we analyze Algorithm 3 by ignoring the errors incurred by the RT procedure. We focus on
one execution of the algorithm with input V ′ and y. To do this formally, we define errsvw|u to be the error
generated by the procedure when we choose s as the size and u as the pivot:

errsvw|u :=

∣∣∣∣Pr [v, w ∈ C|s, u
]
− ysuvw

ysu

∣∣∣∣ ,∀vw ∈ (
V ′

2

)
,

and

errsvw :=
1

sys∅

∑
u∈V ′

ysu · errsvw|u and errvw :=
∑
s

ys∅
y∅
· errsvw.

as the error for vw conditioned on s, and the unconditioned error. Notice that all these quantities are
expectations, and thus deterministic. In our analysis, we shall leave the error terms in all inequalities, and
bound them in the next section.

Lemma 19. Given a vertex v ∈ V ′, the probability that v is clustered in the execution of set-based-cstr-clst
is exactly 1

y∅
.

Proof. The probability is∑
s

ys∅
y∅

∑
u∈V ′

ysu
sys∅
· y

s
uv

ysu
=

1

y∅

∑
s

1

s

∑
u∈V ′

ysuv =
1

y∅

∑
s

ysv =
1

y∅
yv =

1

y∅
.

The second equality is by (6). The third and the last inequalities are by (2) and (3) respectively.

Lemma 20. Focus on an edge vw ∈
(
V ′

2

)
.

1. The probability that vw is decided (i.e., one of v and w is in C) by the execution of set-based-cstr-clst
is at least 1

y∅
(1 + x̃vw)− errvw.

2. If vw ∈ E+, then the probability that vw is decided wrongly is at most 2
y∅
· x̃vw + errvw.

3. If vw ∈ E−, then the probability that vw is decided wrongly is at most 1
y∅
· (1− x̃vw) + errvw.

15

Proof. We focus on the first statement. The probability that vw is decided conditioned on s is at least∑
u∈V ′

ysu
sys∅
·
(

1

ysu
·
(
ysuv + ysuw − ysuvw

)
− errsvw|u

)
=

∑
u∈V ′

(
1

sys∅
· (ysuv + ysuw − ysuvw)−

ysu
sys∅
· errsvw|u

)
=

1

ys∅
(ysv + ysw − ysvw)− errsvw.

To see the second equality, we apply (6) with S = {v}, {w} and {v, w} respectively, and use the definition
of errsvw.

Deconditioning on s, we have that the probability vw is decided is at least∑
s

ys∅
y∅
·
(

1

ys∅
(ysv + ysw − ysvw)− errsvw

)
=

1

y∅

∑
s

(ysv + ysw − ysvw)− errvw

=
1

y∅
(1 + 1− yvw)− errvw =

1

y∅
(1 + x̃vw)− errvw.

The first equality used the definition of errvw. The third equality used that
∑

s y
s
v = yv = 1,

∑
s y

s
w = yw = 1

and
∑

s y
s
vw = yvw = 1− x̃vw.

The second and third statements can be proved similarly. When vw ∈ E+, the probability that vw
is wrongly decided conditioned on s and u is at most 1

ys
u
(ysuv + ysuw − ysuvw) + errsvw|u; when vw ∈ E−,

this is at most
ys
uvw

ys
u

+ errsvw|u. Following the calculations, the two unconditioned probabilities are at most
1
y∅
(1 + 1− 2yvw) + errvw = 1

y∅
· 2x̃vw + errvw and 1

y∅
· yvw + errvw = 1

y∅
· (1− x̃vw) + errvw.

Therefore, if we ignore the error terms, and the difference between x̃vw’s and xvw’s, the algorithm exactly
simulates the KT-rounding algorithm for the bounded-cluster size case. By (8), the difference between x̃
and x is small. In the next section, we shall bound the errors.

4.4 Handing the Errors

In this section, we handle the errors. Again recall that we focus on one execution of the set-based-cstr-clst
procedure, with input V ′ and vector y, which defines the vector x̃. The key lemma we prove is the following:

Lemma 21. ∑
vw∈(V

′
2)

errvw ≤ ε · E
[∣∣∣{uw ∈ (

V ′

2

)
∩ Eadm : uw decided}

∣∣∣] . (12)

Proof. Through the proof, we assume u, v, w are all in V ′, vw and uw are in
(
V ′

2

)
. We bound the sum of

errors conditioned on s:∑
vw

errsvw =
∑
vw

1

sys∅
·
∑
u∈V ′

ysu · errsvw|u =
1

sys∅

∑
u∈V ′

ysu ·
∑
vw

errsvw|u.

Fix some s ∈ [n′], u ∈ V ′, and we now bound
∑

vw errsvw|u. If s = |Ku|, then C will be Ku and no errors will

be created. (Notice that in this case the LP constraints will imply that ysuv = 0 for every v /∈ Ku.) So, we
assume s > |Ku|. By (9), we have that s > |Ku| + ε · dadm(u), since otherwise we shall ysu = 0. Finally, by

16

Lemma 18,
∑

vw errsvw|u ≤ εr|Nadm(u) ∩ V ′|2, and recall that εr = ε2. Therefore,∑
vw

errsvw|u ≤ εr · |Nadm(u) ∩ V ′|2 ≤ εr
ε
· |Nadm(u) ∩ V ′| · (s− |Ku|)

= ε · |Nadm(u) ∩ V ′| ·
∑

v∈Nadm(u)∩V ′

ysuv
ysu

= ε ·
∑

v,w∈Nadm(u)∩V ′

ysuv
ysu

.

So we have∑
vw

errsvw ≤
1

sys∅

∑
u∈V ′

ysu ·
∑

v,w∈Nadm(u)∩V ′

ε · y
s
uv

ysu
≤ ε · 1

sys∅
·

∑
u∈V ′,v,w∈Nadm(u)∩V ′

ysuv.

Now we consider the right side of (12). The expectation of the quantity conditioned on s is at least

ε ·
∑
v∈V ′

ysv
sys∅

∑
u∈Nadm(v)∩V ′,w∈Nadm(u)

ysuv
ysv

= ε · 1

sys∅
·

∑
u∈V ′,v,w∈Nadm(u)∩V ′

ysuv.

This is at least
∑

vw errsvw. Taking all s into consideration gives us (12).

Wrapping Up Now we finish the proof of Theorem 7. Focus on one execution of set-based-cstr-clst. We
define the following three types of budgets:

• When an edge vw ∈
(
V ′

2

)
is decided in the procedure, we get an LP budget of 2xvw

1+xvw
from vw if vw is

a +edge, and 1−xvw

1+xvw
if it is a −edge. This is the budget coming from the cost of x.

• If additionally vw is an admissible edge, we get an error budget of ε from vw. This will be used to
cover the errors incurred by the RT rounding procedure.

• Finally a vertex v is clustered in the procedure, we get a difference budget of 2ε · dadm(v). This will be
used to cover the difference between x̃ and x.

If an edge vw ∈
(
V ′

2

)
is wrongly decided, we pay a cost of 1. For a +edge vw ∈

(
V ′

2

)
,

Pr[vw wrongly decided] ≤ 1

y∅
· 2x̃vw + errvw =

1

y∅
· (2xvw + 2(x̃vw − xvw)) + errvw

= E[LP budget from vw] +
2(x̃vw − xvw)

y∅
+ errvw.

Similarly, for a −edge vw ∈
(
V ′

2

)
, we have

Pr[vw wrongly decided] ≤ E[LP budget from vw] + errvw.

Summing up the inequalities over all edges vw ∈
(
V ′

2

)
, we have that in the execution of set-based-cstr-clst,

E[cost incurred] ≤ E
[
LP budget from

(
V ′

2

)]
+

2

y∅

∑
vw

(x̃vw − xvw) +
∑
vw

errvw

≤ E
[
LP budget from

(
V ′

2

)]
+

2

y∅
· ε

∑
u∈V ′

dadm(u) + E
[
error budget from

(
V ′

2

)
∩ Eadm

]
= E [all 3 types of budget we get] .

17

The second inequality is by (8), and Lemma 21. To see the last equality, notice that every u is clustered
with probability exactly 1

y∅
by Lemma 19.

The procedure can be derandomized by enumerating s, u and the random seeds used in Raghavendra-Tan
rounding procedure.2 So, we can guarantee that in every execution of set-based-cstr-clst, the cost incurred
is at most the budget we get, including the LP, error and difference budgets. So, considering the whole
Algorithm 2, the cost of the clustering is at most the total budget we get. For every edge vw ∈

(
V
2

)
, we only

get the LP and error budget once from vw. For every vertex v ∈ V , we only get the error budget once from
v. Therefore, the total budget we get is∑
vw∈E+

2xvw

1 + xvw
+

∑
vw∈E−

1− xvw

1 + xvw
+ ε|Eadm|+ 2ε

∑
u∈V

dadm(u) ≤
∑

vw∈E+

2xvw

1 + xvw
+

∑
vw∈E−

1− xvw

1 + xvw
+O(ε) · |Eadm|.

We rescale ε so that the additive term becomes ε|Eadm|. This finishes the proof of Theorem 7.

5 Pivot-Based Rounding Procedure

In this section, we present our pivot-based rounding algorithm Apivot and prove its guarantee restated below.

Theorem 8. (Pivot-based Rounding) There is an nO(1/ε2)-time procedure Apivot that either outputs a
separation plane for x or a clustering C such that

cost(C) ≤
∑

vw∈E+

min{1.515 + xvw, 2} · xvw + 2
∑

vw∈E−

(1− xvw) + ε · |Eadm|.

In this section, a singleton vertex in V \ VK will be treated almost like an atom, so the term atom will
also refer to (the singleton set of) such a vertex. Let K′ := K ∪ (∪v∈V \VK{{v}}) be the set of atoms. We
will also assume that two vertices in the same atom have exactly the same neighbors in Eadm. This can be
ensured by, for every triple uvw with u, v in the same atom and vw ∈ Eadm, uw /∈ Eadm, removing vw from
Eadm; any good clustering cannot put v and w in the same cluster, so it is safe to remove it.

5.1 Relaxation and Algorithm

Given x ∈ [0, 1](
V
2), for some constant r = O(1/ε2), we use the following LP. For a set S ⊆ V , yS indicates

whether S is a subset of a cluster in an optimal solution. We also add the constraint that xuv = 1 − yuv,
which will ensure that yuv = 1 if u and v are in the same atom and yuv = 0 if uv is non-admissible.

Apart from the constraints imposed by x, this is a weaker version of r-rounds of the Sherali-Adams
relaxation introduced by [CLN22]. We present this relaxation to present a smaller set of constraints used in
our algorithm (e.g., this relaxation also works with the rounding algorithm of [CLN22]) and be consistent
with the LP introduced in Section 4. In particular, apart from the constraint (16) used in the triangle
analysis (its LHS indicates the event all u, v, w are in different clusters; see Section 5.4), it is a simpler
version of the LP used in Section 4 that does not distinguish sets of different sizes and does not involve
additional variables x̃.

2We remark that the derandomization step is necessary due to our round-or-cut paradigm. Since we can not control weather
the future iterations will succeed or fail (i.e., return a separation plane), we could not guarantee that the expected cost we pay
is the expected budget we get, conditioned on that the algorithm succeeds.

18

yuv = 1− xuv ∀uv ∈
(
V

2

)
(13)

yu = 1 ∀u ∈ V (14)∑
T ′⊆T

(−1)|T
′|yS∪T ′ ∈ [0, yS] ∀S ∩ T = ∅, |S ∪ T | ≤ r (15)

1−
(
yvw + ywu + yuv − 2yuvw

)
≥ 0 ∀u, v, w ∈ V (16)

y ≥ 0. (17)

Any integral good clustering with respect to (K, Eadm) yields a feasible solution to the above LP. Therefore,
if the above LP is not feasible for the given x, it implies that x is not a convex combination of good clustering,
and by Lemma 6, the algorithm can yields a hyperplane separating x from the convex hull of good clusterings.

For the rest of the section, we assume that y is an optimal solution for the above relaxation in the initial
graph. The rounding algorithm is given in Algorithm 4. Let N+(v) and N+

adm(v) denote the neighbors of v
with respect to E+ and E+ ∩ Eadm respectively. N−(v) and N−

adm(v) are defined similarly.

Algorithm 4 Pivot-based Rounding

Input: A Correlation Clustering instance G = (V,E+ ∪ E−), a preclustered instance (K, Eadm) for G, and

a metric x ∈ [0, 1](
V
2) satisfying properties in Theorem 5

Output: Either a separation plane for x, or an integral clustering C
1: Run the above LP to obtain a feasible solution y. If not feasible, return a separation plane for x
2: C ← ∅
3: while V ̸= ∅ do
4: S ← Cleanup(V) (Algorithm 5)
5: if S ̸= ∅ then
6: C ← C ∪ {S}, V ← V \ S, continue
7: Pick a pivot p ∈ V uniformly at random
8: for v ∈ N−(p) do
9: Add v independently to S− with probability ypv

10: Let K be the atom containing p
11: Sample S+ ⊆ N+

adm(p) from the correlated rounding procedure (Lemma 22)
12: S ← S− ∪ S+ ∪K, C ← C ∪ {S}, V ← V \ S
13: return C

The cleanup subroutine is described in Algorithm 5. Let E+(V,K) be the set of +edges incident on K.
Its meaning will be more clear after we introduce the setup for the analysis using budgets in Section 5.2.

Algorithm 5 Cleanup(V)

1: for each atom K ∈ K′ do
2: Let ALGK be the cost of removing K as a single cluster, which is the number of −edges inside K

plus the number of +edges between K and V \K.
3: Let ∆K be the decrease in the budget if we remove K from V ; formally, ∆′ :=

(
∑

uv∈E+(K,V) min(1.515+xuv, 2)xuv)+ (
∑

uv∈E−(K,V) 2(1−xuv))+ ε · |{uv ∈ Eadm : u ∈ K or v ∈ K}|.
4: If ∆K ≥ ALGK , return K

5: return ∅

Algorithm 4 also uses the correlated rounding procedure of Raghavendra and Tan [RT12], adapted for
Correlation Clustering in [CLN22]. The guarantee of the correlated rounding is as follows.

19

Lemma 22. In Step 11 of Algorithm 4, one can sample S+ ⊆ N+
adm(p) in time nO(r) such that

• For each v ∈ N+
adm(p), Pr[v ∈ S+] = ypv.

• Eu,v∈N+
adm(p)[|Pr[u, v ∈ S+]− ypuv|] ≤ εr, where εr = O(1/

√
r).

Even though we present the algorithm as a randomized algorithm, a standard derandomization using
conditional expectations will deterministically yield a clustering whose cost is as good as the expected
value [CLN22].

5.2 Setup for Analysis

Our high-level setup of the analysis follows from [CLN22], which in turn is based on [ACN08] and [CMSY15],
with a slight change that instead of the total LP value remaining in the current instance, we consider a more
general budget remaining in the current instance, which already incorporates the approximation ratio. For
each uv ∈ E+, give the budget of min(1.515+xuv, 2)xuv, and for each uv ∈ E−, give the budget of 2(1−xuv)
(call them the LP budget). Furthermore, for each uv ∈ Eadm, give an additional budget of ε (call it the error
budget). Then it is clear that the total initial budget is exactly the desired upper bound on the (expected)
cost of the clustering (the RHS of Theorem 8).

Consider the t-th iteration of Algorithm 4 with the vertex set Vt and suppose that the algorithm obtains
the cluster S in this iteration by building it from a random pivot p (instead of using the cleanup). Let
costrp(u, v) be the probability that uv is violated in the rounding algorithm when p is the pivot, and ∆r

p(u, v)
be the total budget of uv (LP and error budget combined) times the probability that uv disappears (i.e.,
Pr[S ∩ {u, v} ≠ ∅]). The superscript r stands for (actual) rounding.

We call a set of three distinct vertices a triangle. A set of two vertices is called a degenerate triangle.
For triangle uvw, let costr(u, v, w) = costru(v, w) + costrv(u,w) + costrw(u, v) and ∆r(u, v, w) = ∆r

u(v, w) +
∆r

v(u,w) + ∆r
w(u, v). For degenerate triangle uv, let costr(u, v) = costru(u, v) + costrv(u, v) and ∆r(u, v) =

∆r
u(u, v) + ∆r

v(u, v). Let

ALGt := E
u∈V

∑
vw∈(Vt

2)

costru(v, w)

be the expected cost incurred by this iteration, and

∆t := E
u∈V

∑
vw∈(Vt

2)

∆r
u(v, w)

be the expected amount of the budget removed by this iteration. If we could show that ALGt ≤ ∆t for all
t, we will get an upper bound on the total cost ALG as

E[ALG] = E[
R∑

t=0

ALGt] ≤ E[
R∑

t=0

∆t] = Φ

where Φ is the initial budget and R is the number of the iterations.
Notice that, even when the cluster S is chosen from the cleanup step, ALGt and ∆t can be still defined as

the incurred cost and removed budget respectively, and the design of the cleanup step (Algorithm 5) exactly
ensures that we remove S when ALGt ≤ ∆t deterministically.

Therefore, in order to prove Theorem 8, it suffices to consider one iteration where S is built from a
random pivot p. For the rest of Section 5, let us omit the subscript t denoting the iteration. We prove
ALG ≤ ∆, which is equivalent to showing∑

uvw∈(V3)

costr(u, v, w) +
∑

uv∈(V2)

costr(u, v) ≤
∑

uvw∈(V3)

∆r(u, v, w) +
∑

uv∈(V2)

∆r(u, v). (18)

20

Recall that a triangle is + + + if it has three +edges and + + −, + − −, − − − triangles are defined
similarly. For a degenerate triangle uv, costru(u, v) and ∆r

u(u, v) depend only on xuv and the sign of uv.
Even for a triangle uvw, the values of costru(v, w) and ∆r

u(v, w) only depend on xuv, xuw, xvw and the signs
and admissibilities of the edges unless both uv and uw are admissible +edges; v and w are added to S
independently with the probabilities depending on xuv and xuw respectively. When both uv and uw are
admissible +edges, then they are rounded using Lemma 22, and Pr[v, w ∈ S+|u is pivot] must be, ideally,
exactly equal to yuvw, but Lemma 22 only gives an approximate guarantee amortized over the vertices in
N+

adm(u).
We define the following idealized quantities costi(·) and ∆i(·). (The superscript i stands for ideal.)

Intuitively, costi(·) and ∆i(·) are defined assuming that the correlated rounding for admissible +edges are
perfect, and we do not consider the error budget for ∆. Formally, costiu(·), costi(·),∆i

u(·),∆i(·) are defined
identically to costiu(·), costi(·), ∆i

u(·), ∆i(·) respectively, assuming that in Step 11 of Algorithm 4, the
condition (2) is replaced by Pr[u, v ∈ S+|p is pivot] = ypuv for every p ∈ V , u, v ∈ N+

adm(p) and the error
budget of ε is not accounted in ∆’s. With this assumption, note that for every triangle uvw both costi(u, v, w)
and ∆i(u, v, w) depend only on the signs of the edges and the Sherali-Adams solution induced by uvw (i.e.,
yuvw, yuv, yvw, ywu). Then one can show that costi(T) ≤ ∆i(T) for any triangle T . The proof of the following
lemma appears in Section 5.4.

Lemma 23. For any triangle T , costi(T) ≤ ∆i(T).

5.3 Incorporating Errors

This subsection shows how to incorporate errors and finishes the proof of Theorem 8 assuming Lemma 23.
To prove the theorem, as explained in Section 5.2, it suffices to show that E[ALG] ≤ E[∆] in one iteration
where Cleanup(V) returns ∅ and Algorithm 4 proceeds by choosing a random pivot p.

When p is chosen as a pivot, let N+
adm(p) be the set of vertices connected to p via an admissible +edge.

By Lemma 22, compared to the ideal case, ALG is increased by at most εr ·
(|N+

adm(p)|
2

)
. The main challenge

is to show that this can be compensated by the increase in ∆ due to the additional error budget ε for each
admissible edge.

Let errvw|u be εr when both uv and uw are admissible + edges and 0 otherwise. Recall that εr = O(1/
√
r)

be the error parameter from Lemma 22. Similarly, ∆′
u(v, w) := (1 −min(xuv, xuw))ε is an lower bound on

the expected error budget decrease from if vw if it is admissible, and 0 otherwise. (It is an lower bound
because when u is the pivot, since our rounding algorithm satisfies Pr[v ∈ S] = yuv for all v, vw will be
removed with probability at least 1−min(xuv, xuw).) By letting

ALGi :=
∑

u∈V,vw∈(V2)

costiu(v, w) and ALG′ :=
∑

u∈V,vw∈(V2)

errvw|u

and
∆i :=

∑
u∈V,vw∈(V2)

∆i
u(v, w) and ∆′ :=

∑
u∈V,vw∈(V2)

∆′
u(v, w).

we have that
|V | ·ALG ≤ ALGi +ALG′

and
|V | ·∆ ≥ ∆i +∆′.

Since Lemma 23 shows that ALGi ≤ ∆i, it suffices to show that ALG′ ≤ ∆′.
We prove it on an atom-by-atom basis. Fix an atom K ∈ K′ (again, it might be a singleton outside VK).

Let N be the set of their admissible neighbors. Recall that if every vertex in K has exactly the same set of

21

neighbors with respect to Eadm. Let E′ = K ×N be the set of pairs between them (all admissible), which
is partitioned into E′

+ and E′
−. Then K’s contribution to ALG′ is

ALG′
K :=

∑
u∈K,vw∈(N2):uv,uw∈E′

+

εr ≤ |K||N |2εr,

such that
∑

K∈K′ ALG′
K = ALG′. We can also define K’s contribution to ∆′ as

∆′
K :=

∑
u∈N,vw∈E′

∆′
u(v, w) =

∑
u∈N,vw∈E′

(1−min(xuv, xuw))ε,

so that
∑

K∈K′ ∆′
K ≤ 2∆′. (For each triple uvw, ∆′

u(v, w) is counted at most twice, for atoms containing v
or w.) Therefore, it suffices to argue that 2ALG′

K ≤ ∆′
K .

We use the fact that K was not removed as a single cluster from the cleanup stage, which means that

ALGK = |E− ∩
(
K

2

)
|+ |E+ ∩ (K × (V \K))|

≥ ∆K =
∑

uv∈(E+∩(K×V))

min{1.515 + xuv, 2} · xuv +
∑

uv∈(E−∩(K×V))

2(1− xuv) + ε|E′|.

Note that for each e ∈ E− ∩
(
K
2

)
, it is an atomic edge with xe = 0, so it contributes exactly 1 to ALGK

and at least 1 to ∆K . Similarly, for each e ∈ (E+ ∩ (K × V)) \E′
+, it is a non-admissible edge with xe = 1,

so it contributes exactly 1 to ALGK and at least 1 to ∆K . Then, by only considering edges in E′, one can
conclude that

|E′
+| ≥

∑
uv∈E′

+

min{1.515 + xuv, 2} · xuv +
∑

uv∈E′
−

2(1− xuv) + ε|E′|,

which implies that |E′
+| ≥ ε|E′| and |E′

+| ≥
∑

uv∈E′
+
1.5xuv, so that Euv∈E′

+
[xuv] ≤ 2/3 and Euv∈E′ [xuv] ≤

1− ε/3. Then one can lower bound ∆′
K as

∆′
K =

∑
u∈N,vw∈E′

ε(1−min(xuv, xuw)) ≥
∑

w∈N,u∈N,v∈K

ε(1− xuv) = |N |
∑

uv∈E′

ε(1− xuv) ≥ |N |2|K|(ε/3).

Therefore, by ensuring that εr ≤ ε/6, we can ensure that ALG′
K ≤ ∆′

K/2 for every K and ALG′ ≤ K ′

eventually.

5.4 Analysis of Error-Free Version

This subsection proves Lemma 23. Specifically, for every triangle abc, we prove

costia(b, c) + costib(c, a) + costic(a, b) ≤ ∆i
a(b, c) + ∆i

b(c, a) + ∆i
c(a, b). (19)

When two of a, b, c are the same vertex, it is easy to see that (19) is true [CLN22]. Therefore, we assume
that a, b, c are distinct vertices. We consider the four types of triangles according to the signs of their edges.
Recall the coefficient of the LP budget for a +edge e is f(xe) defined as f(x) = min(1.515 + x, 2), whereas
the coefficient for a −edge e is always 2. Also, note that given yab, ybc, yca, yabc, we can define ya|b = ya− yab
indicating the event a and b are separate (similarly for yb|c, yc|a), and ya|bc = ybc − yabc indicating the event
b, c are together but a is separate, and ya|b|c = 1− (yab+ ybc+ yca− 2yabc) indicating the event a, b, c are all
separate. By the constraint (16), all of them are nonnegative with yabc + ya|bc + yb|ca + yc|ab + ya|b|c = 1, so
they exactly define the probability distribution over partitions on {a, b, c}. (These variables were explicitly
defined in the Sherali-Adams relaxation of [CLN22].)

+++ triangles [CLN22] already proved that in their setting, the approximation ratio for +++ triangles
is at most 1.5. In our setting, as we have f(x) ≥ 1.5 for every x ∈ [0, 1], (19) holds.

22

−−− triangles For a −−− triangle abc, (19) holds even if we set the coefficients for −edges to 1 (instead
of 2):

left side of (19) = yabyac + yabybc + yacybc.

right side of (19) ≥ (yab + yac − yabyac)ybc + (yab + ybc − yabybc)yac + (yac + ybc − yacybc)yab

= 2(yabyac + yabybc + yacybc)− 3yabyacybc ≥ yabyac + yabybc + yacybc.

+−− triangles For a +−− triangle abc, we assume ab and ac are −edges and bc is the +edge. We show
that (19) holds even if we set the coefficient for bc to 1:

left side of (19) = yab + yac − 2yabyac + yabybc + yacybc = (2− xbc)(yab + yac)− 2yabyac.

right side of (19) ≥ (yab + yac − yabyac)xbc + 2(yab + ybc − yabybc)yac + 2(yac + ybc − yacybc)yab

= (yab + yac − yabyac)xbc + 2(1− xbc + yabxbc)yac + 2(1− xbc + yacxbc)yab

= (2− xbc)(yab + yac) + yabyacxbc.

So the left side is at most the right side.

+ + − triangles It remains to consider the + + − triangle case, which contributes to the bulk of the
analysis. Focus on a + + − triangle abc. We assume ab and ac are +edges, and bc is the −edge. The left
side of (19) is

yabc + yab + ybc − 2yabybc + yac + ybc − 2yacybc = yabc + yab + yac + 2ybc − 2(yab + yac)ybc.

The right side of (19) is

2(yab + yac − yabc)ybc + f(xac)(yab + ybc − yabybc)(1− yac) + f(xab)(yac + ybc − yacybc)(1− yab)

= f(xac)yab + f(xab)yac + (f(xab) + f(xa,c))ybc + (2− f(xab)− f(xac))(yab + yac)ybc

− (f(xab) + f(xac))yabyac(1− ybc)− 2yabcybc.

The right side of (19) minus the left side is

(f(xac)− 1)yab + (f(xab)− 1)yac + (f(xab) + f(xa,c)− 2)ybc + (4− f(xab)− f(xac))(yab + yac)ybc

− (f(xab) + f(xac))yabyac(1− ybc)− 2yabcybc − yabc. (20)

We need to prove that (20) is non-negative. We define yab|c = yab − yabc to indicate if ab are in the same
cluster that does not contain c; define ya|bc and yb|ac similarly. Define ya|b|c = 1− (yab + yac + ybc) + 2yabc
to indicate if a, b, c are in three different clusters; this is at least 0 by (16). So yab|c, yac|b, ya|bc, yabc and
ya|b|c indicate the 5 cases for the clustering status of a, b, c. They are non-negative reals summing up to 1.
Moreover, yab = yab|c + yabc, yac = yac|b + yabc and ybc = ya|bc + yabc.

First we show that moving mass from ya|bc to ya|b|c can only decrease (20). Notice that this operation
does not change yabc, yab, xab, yac and xac, and it decreases ybc. The derivative of (20) w.r.t ybc is at least
f(xab) + f(xac) − 2 + (f(xab) + f(xac))yabyac − 2yabc ≥ 1 + 3y2abc − 2yabc ≥ 0. Therefore, we can assume
ya|bc = 0, and thus ybc = yabc ≤ min{yab, yac}. (20) becomes

(f(xac)− 1)yab + (f(xab)− 1)yac + (f(xab) + f(xa,c)− 3)ybc + (4− f(xab)− f(xac))(yab + yac)ybc

− (f(xab) + f(xac))yabyac(1− ybc)− 2y2bc. (21)

It remains to prove that (21) is non-negative, under the condition that yab, yac, ybc ∈ [0, 1] and (yab +
yac − 1)+ ≤ ybc ≤ min{yab, yac}.

Fixing yab and yac, (21) is a quadratic function of ybc. So it is minimized when ybc = (yab + yac − 1)+ or
ybc = min{yab, yac}, as the coefficient for the quadratic term y2bc is −2. We consider three cases.

23

Figure 1: The function f(x) = min{1.515+x, 2} (the red line) and −1+4x−2x2

x2 (the blue line) over the interval
[0.45, 0.5].

Case 1: yab + yac ≤ 1 and ybc = 0. In this case, (21) becomes

(f(xac)− 1)yab + (f(xab)− 1)yac − (f(xab) + f(xac))yabyac. (22)

If both of yab and yac are at most 1/2, then xab ≥ 1/2 and xac ≥ 1/2. Thus f(xab) = f(xac) = 2. (22) is
yab + yac − 4yabyac ≥ 0, as yab ≥ 2yabyac and yac ≥ 2yabyac.

So, we assume exactly one of yab and yac is at least 1/2. Wlog, we assume yab < 1/2 ≤ yac. Thus
xac ≤ 1/2 < xab and f(xab) = 2. (22) becomes (f(xac)− 1)yab + yac − (2 + f(xac))yabyac. Fixing yac ≥ 1/2
and xac = 1− yac, the function is linear in yab. Thus it is minimized when yab = 0 or yab = 1− yac. In the
former case, (22) is yac > 0. In the latter case, it is

(f(x)− 1)x+ 1− x− (2 + f(x))x(1− x) = (x− x(1− x))f(x) + 1− 2x− 2x(1− x)

= x2f(x) + 1− 4x+ 2x2,

where x := xac = 1− yac = yab ∈ [0, 1/2]. The number 1.515 is chosen so that we have min{1.515 + x, 2} ≥
−1+4x−2x2

x2 for every x ∈ [0, 1/2]. See Figure 1. So in this case (21) is at least 0.

Case 2: yab + yac ≥ 1 and ybc = yab + yac − 1. We further divide this case into many sub-cases, which by
the symmetry between yab and yac, cover the whole Case 2.

• Case 2a: yab ≤ 0.515, yac ∈ (0.515, 0.69]. Then xab ≥ 0.485 and xac < 0.485. So, f(xab) = 2 and
f(xac) = 1.515 + xac = 2.515− yac. (21) equals

(1.515− yac)yab + yac + (1.515− yac)ybc + (yac − 0.485)(yab + yac)ybc

− (4.515− yac)yabyac(1− ybc)− 2y2bc. (23)

We fix yac. Consider the operation of increasing yab and ybc at rate 1 so as to keep ybc = yab + yac− 1.
(23) will increase at a ratio of

1.515− yac + 1.515− yac + (yac − 0.485)(yab + yac + ybc)− (4.515− yac)yac(1− ybc − yab)− 4ybc

= (3.03− 2yac) + (yac − 0.485)(2yab + 2yac − 1)− (4.515− yac)yac(2− 2yab − yac)− 4(yab + yac − 1)

= 7.515− 4.97yab − 17yac + 11.03yabyac + 8.515y2ac − 2yaby
2
ac − y3ac. (24)

We then show (24) is positive for yac ∈ (1/2, 0.69]. For a fixed yac, the quantity is a linear function
of yab, and the coefficient for the yab-term is −4.97 + 11.03yac − 2y2ac. This function is at least 0 for

24

yac ∈ [1/2, 1] as it is monotone increasing from ∞ to 11.03/4, and its value is positive when yac = 1/2.
Therefore (24) is minimized when yab is minimized; that is, ybc = 1− yac. In this case, (24) becomes

7.515− 4.97(1− yac)− 17yac + 11.03(1− yac)yac + 8.515y2ac − 2y2ac(1− yac)− y3ac

= 2.545− yac − 4.515y2ac + y3ac.

For yac ∈ [1/2, 0.69], the function is at least 0, which implies that (24) is at least 0.

So, the operation of decreasing yab and ybc at the same rate can only decrease the (23). Thus (23),
which is equal to (21), is minimized when yab = 1 − yac and ybc = 0. This is already considered in
Case 1.

• Case 2b: yab ≤ 0.515, yac ∈ [0.69, 1]. In this case, we shall simply use 1.5 for f(xa,c) and 2 for f(xab).
That is, (21) is lower bounded by

0.5yab + yac + 0.5ybc + 0.5(yab + yac)ybc − 3.5yabyac(1− ybc)− 2y2bc. (25)

Consider the operation of increasing yab and decreasing yac at the same rate. This does not change
yab + yac and ybc = yab + yac − 1. It increases yabyac. Then it is easy to see that the operation will
decrease the above quantity. So, the above quantity is minimized either when yab = 1/2 and yac ≥ 0.69,
or when yab < 1/2 and yac = 0.69 (we shall have yab ≥ 0.31 as we have yab + yac ≥ 1).

When yab = 1/2 and yac ≥ 0.69, we consider the operation of increasing yac and ybc at the same rate
to maintain ybc = yab+yac−1 = yac−1/2. (25) will increase at a rate of 1+0.5+0.5(yab+yac+ybc)−
3.5yab(1− ybc − yac)− 4ybc = 1.5 + 0.5 · 2yac − 1.75 · (1.5− 2yac)− 4(yac − 1/2) = 0.5yac + 0.875 > 0.
So, the operation of decreasing yac and ybc at the same rate will decrease (25). So, (25) is minimized
when yab = 1/2 and yac = 0.69. This will covered by the second case.

When yab < 1/2 and yac = 0.69, we consider the operation of increasing yab and ybc at the same rate,
so as to maintain ybc = yab+yac−1 = yab−0.31. (25) will increase at a rate of 0.5+0.5+0.5(yab+yac+
ybc)− 3.5yac(1− ybc− yab)− 4ybc = 1+0.5(2yab+0.69− 0.31)− 3.5 · 0.69(1.31− 2yab)− 4(yab− 0.31) =
1.83yab − 0.73365. This is negative when yab < 0.73365

1.83 and positive when yab > 0.73365
1.83 . So, (25) is

minimized when yab =
0.73365
1.83 ∈ [0.4, 0.401] and ybc = yab − 0.31 ∈ [0.09, 0.091]. In this case, (25) is at

least

0.5× 0.4 + 0.69 + 0.5 · 0.09 + 0.5 · 1.09 · 0.09− 3.5 · 0.401 · 0.69 · 0.91− 2 · 0.0912 ≥ 0.086 > 0.

So, we have proved that (25) is at least 0 in this case, which implies (21) is at least 0.

• Case 2c: yab ≥ 0.515, yac ≥ 0.515. Then xab ≤ 0.485 and xac ≤ 0.485. f(xa,b) ≥ 1.5 + xab = 2.5− yab,
and f(xac) ≥ 2.5− yac. (21) is lower bounded by

(1.5− yac)yab + (1.5− yab)yac + (2− yab − yac)ybc + (yab + yac − 1)(yab + yac)ybc

− (5− yab − yac)yabyac(1− ybc)− 2y2bc. (26)

Notice that (1.5 − yac)yab + (1.5 − yab)yac = 1.5(yab + yac) − 2yabyac. We fix the sum yab + yac and
ybc = yab + yac − 1 is fixed, while changing yabyac. The coefficient for yabyac is

−2− (5− yab − yac)(1− ybc) ≤ 0.

So (26) is minimized when yab = yac. Letting y = yab = yac ∈ [1/2, 1], and ybc = 2y − 1, (26) becomes

2(1.5− y)y + (2− 2y)(2y − 1) + (2y − 1)2 · 2y − (5− 2y) · y2 · (2− 2y)− 2(2y − 1)2

= −4y4 + 22y3 − 32y2 + 19y − 4.

This is monotone over y ∈ [1/2, 1] and so its minimum is 0, achieved at y = 1/2. So in this case, (21)
is at least 0.

25

Case 3: ybc = min{yab, yac}. We assume ybc = yab ≤ yac wlog. In this case, we can use the lower bound
1.5 for both f(xab) and f(xac). That is, (21) is at least

0.5yab + 0.5yac + (yab + yac)ybc − 3yabyac(1− ybc)− 2y2bc

= 0.5yab + 0.5yac + y2ab + yabyac − 3yabyac + 3y2abyac − 2y2ab

= 0.5yab + 0.5yac − y2ab − 2yabyac + 3y2abyac. (27)

Fix yab in (27). The coefficient for yac is 0.5− 2yab + 3y2ab, which is always non-negative. So the quantity is
minimized when yab = yac. Under this condition (27) becomes

yab − 3y2ab + 3y3ab = yab(1− 3yab + 3y2ab) ≥ 0, for every yab ≥ 0.

Therefore, (21) is non-negative in this case.
So, we have proved that (19) holds for all triangles abc.

Acknowledgements

Vincent Cohen-Addad, Euiwooong Lee, and Alantha Newman are grateful to Claire Mathieu and Farid
Arthaud for valuable discussions at an early stage of this project.

References

[ACG+15] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In Proceedings of the 32nd International Conference on
Machine Learning (ICML), pages 2237–2246, 2015. 6

[ACN08] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information: Rank-
ing and clustering. Journal of the ACM, 55(5):1–27, 2008. 1, 2, 4, 20

[AHK+09] Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis
Tsaparas. Generating labels from clicks. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 172–181, 2009. 1

[ARS09] Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with constraints using
dedupalog. In Proceedings of the 25th IEEE International Conference on Data Engineering
(ICDE), pages 952–963, 2009. 1

[AW22] Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering
via sparse-dense decompositions. In Proceedings of the 13th Conference on Innovations in
Theoretical Computer Science (ITCS), volume 215 of LIPIcs, pages 10:1–10:20, 2022. 6

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56(1):89–113, 2004. 1, 5

[BCMT22] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In Proceedings of 63rd Annual IEEE Symposium on
Foundations of Computer Science, (FOCS), pages 720–731, 2022. 6

[BCMT23] Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming
algorithms for correlation clustering. In Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 819–849, 2023. 6

[BEK21] Mark Bun, Marek Elias, and Janardhan Kulkarni. Differentially private correlation clustering.
In International Conference on Machine Learning (ICML), pages 1136–1146, 2021. 6

26

[BGU13] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and Information Systems, 35(1):1–32, 2013. 1

[CCMU21] Mélanie Cambus, Davin Choo, Havu Miikonen, and Jara Uitto. Massively parallel correla-
tion clustering in bounded arboricity graphs. In 35th International Symposium on Distributed
Computing (DISC), volume 209 of LIPIcs, pages 15:1–15:18, 2021. 6

[CDK14] Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar. Correlation clustering in Mapreduce. In
Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD), pages 641–650, 2014. 6

[CDK+21] Vincent Cohen-Addad, Debarati Das, Evangelos Kipouridis, Nikos Parotsidis, and Mikkel Tho-
rup. Fitting distances by tree metrics minimizing the total error within a constant factor. In
Proceedings of 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 468–479, 2021. 6

[CFL+22] Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-
Fard, Nikos Parotsidis, and Jakub Tarnawski. Near-optimal correlation clustering with privacy.
In Advances in Neural Information Processing Systems (Neurips), 2022. 6

[CFLM22] Vincent Cohen-Addad, Chenglin Fan, Euiwoong Lee, and Arnaud de Mesmay. Fitting metrics
and ultrametrics with minimum disagreements. In Proceedings of 63rd Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 301–311, 2022. 6

[CGW05] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005. 1, 5

[CKK+06] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114,
2006. 5

[CKP08] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to web-
page segmentation. In Proceedings of the 17th International conference on World Wide Web
(WWW), pages 377–386, 2008. 1

[CLM+21] Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos Parot-
sidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In Pro-
ceedings of the 38th International Conference on Machine Learning (ICML), pages 2069–2078,
2021. 3, 6, 9, 10

[CLMP22] Vincent Cohen-Addad, Silvio Lattanzi, Andreas Maggiori, and Nikos Parotsidis. Online and
consistent correlation clustering. In Proceedings of International Conference on Machine Learn-
ing (ICML), pages 4157–4179, 2022. 6

[CLN22] Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
Sherali-Adams. In Proceedings of 63rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 651–661, 2022. 1, 2, 3, 4, 5, 18, 19, 20, 22

[CMSY15] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Proceedings of the 47th annual ACM Symposium on Theory of Computing (STOC),
pages 219–228, 2015. 1, 2, 4, 20

[CSX12] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Advances in Neural
Information Processing Systems (Neurips), pages 2204–2212, 2012. 1

27

[DEFI06] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006. 5

[dlVKM07] Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relaxations
of maxcut. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 53–61, 2007. 3

[GG06] Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2:249–266, 2006. 6

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Combi-
natorial Optimization. Springer Science & Business Media, 2012. 5, 7

[KCMNT08] Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan. Web peo-
ple search via connection analysis. IEEE Transactions on Knowledge and Data Engineering,
20(11):1550–1565, 2008. 1

[KS09] Marek Karpinski and Warren Schudy. Linear time approximation schemes for the Gale-
Berlekamp game and related minimization problems. In Proceedings of the forty-first annual
ACM symposium on Theory of computing (STOC), pages 313–322, 2009. 6

[KT02] Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classification problems
with pairwise relationships: Metric labeling and Markov random fields. Journal of the ACM,
49(5):616–639, 2002. 2, 4

[Liu22] Daogao Liu. Better private algorithms for correlation clustering. CoRR, arXiv abs/2202.10747,
2022. 6

[LMV+21] Silvio Lattanzi, Benjamin Moseley, Sergei Vassilvitskii, Yuyan Wang, and Rudy Zhou. Robust
online correlation clustering. In Advances in Neural Information Processing Systems (Neurips),
pages 4688–4698, 2021. 6

[MSS10] Claire Mathieu, Ocan Sankur, and Warren Schudy. Online correlation clustering. In Proceedings
of 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pages
573–584, 2010. 6

[PPO+15] Xinghao Pan, Dimitris S. Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan Ramchan-
dran, and Michael I. Jordan. Parallel correlation clustering on big graphs. In Advances in
Neural Information Processing Systems (Neurips), pages 82–90, 2015. 6

[RT12] Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality constraints
using SDP hierarchies. In Proceedings of the 23d Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 373–387, 2012. 2, 3, 14, 15, 19

[Swa04] Chaitanya Swamy. Correlation clustering: Maximizing agreements via semidefinite program-
ming. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 526–527, 2004. 5

[Vel22] Nate Veldt. Correlation clustering via strong triadic closure labeling: Fast approximation
algorithms and practical lower bounds. In International Conference on Machine Learning
(ICML), pages 22060–22083, 2022. 6

[VGW18] Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Proceedings of the 2018 ACM World Wide Web Conference (WWW),
pages 439–448, 2018. 6

28

[YZ14] Yuichi Yoshida and Yuan Zhou. Approximation schemes via sherali-adams hierarchy for dense
constraint satisfaction problems and assignment problems. In Proceedings of the 5th Conference
on Innovations in Theoretical Computer Science (ITCS), pages 423–438, 2014. 3

29

	Introduction
	Our Results
	Our Techniques
	Further Related Work

	Overall Framework
	Preclustering
	Set-Based Rounding Procedure
	Linear Program Relaxation
	Rounding Algorithm
	Analysis of Error-Free Version of Algorithm 3
	Handing the Errors

	Pivot-Based Rounding Procedure
	Relaxation and Algorithm
	Setup for Analysis
	Incorporating Errors
	Analysis of Error-Free Version

