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The Vector Balancing Constant for Zonotopes

Laurel Heck* Victor Reis† Thomas Rothvoss‡

Abstract

The vector balancing constant vb(K ,Q) of two symmetric convex bod-
ies K ,Q is the minimum r ≥ 0 so that any number of vectors from K can
be balanced into an r -scaling of Q . A question raised by Schechtman is
whether for any zonotope K ⊆ R

d one has vb(K ,K ) .
p

d . Intuitively, this
asks whether a natural geometric generalization of Spencer’s Theorem (for
which K = B d

∞) holds. We prove that for any zonotope K ⊆ R
d one has

vb(K ,K ).
p

d log log log d . Our main technical contribution is a tight lower
bound on the Gaussian measure of any section of a normalized zonotope,
generalizing Vaaler’s Theorem for cubes. We also prove that for two dif-
ferent normalized zonotopes K and Q one has vb(K ,Q) .

√
d log d . All the

bounds are constructive and the corresponding colorings can be computed
in polynomial time.

1 Introduction

Discrepancy theory is a subfield of combinatorics where one is given a set system
(X ,F ) with a ground set X and a family of sets F ⊆ 2X , and the goal is to find the
coloring that minimizes the maximum imbalance, i.e.

disc(F ) = min
x∈{−1,1}X

max
S∈F

∣∣∣
∑

j∈S

x j

∣∣∣.

A slightly more general linear-algebraic view is that one is given a matrix A ∈
[−1,1]d×n and its discrepancy is defined as minx∈{−1,1}n ‖Ax‖∞. The best known
result in this area is certainly Spencer’s Theorem [Spe85] which states that for
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any n ≤ d one has disc(A) ≤ O(
√

n log( 2d
n

)). The challenging aspect of that The-
orem is that — say for n = d — a uniform random coloring x ∼ {−1,1}n will only
give a Θ(

√
n logn) bound. Instead, Spencer [Spe85] applied the partial coloring

method which had been first used by Beck [Bec81].
The original proofs of the partial coloring method are based on the pigeon-

hole principle and are non-constructive. The first polynomial time algorithm to
actually find the coloring guaranteed by Spencer [Spe85] is due to Bansal [Ban10],
followed by a sequence of algorithms [LM12, Rot14, LRR16, ES18] that either
work in more general settings or are simpler.

Discrepancy theory is an extensively studied topic with many applications in
mathematics and computer science. To give two concrete examples, Nikolov,
Talwar and Zhang [NTZ13] showed a connection between differential privacy
and hereditary discrepancy, and the best known approximation algorithm for
Bin Packing uses a discrepancy-based rounding [HR17]. Other applications can
be found in data structure lower bounds, communication complexity and pseu-
dorandomness; we refer to the book of Chazelle [Cha00] for a more detailed ac-
count. The seminal result of Batson, Spielman and Srivastava [BSS09] on the
existence of linear-size spectral sparsifiers for graphs can also be interpreted as a
discrepancy-theoretic result, see [RR20] for details.

For the purpose of this paper, it will be convenient to introduce more gen-
eral notation. For two symmetric convex bodies K ,Q ⊆ R

d we define the vector

balancing constant vb(K ,Q) as the smallest number r ≥ 0 so that for any vectors
u1, . . . ,un ∈ K one can find signs x ∈ {−1,1}n so that the signed sum x1u1 + ·· · +
xnun is in rQ. We also denote vbn(K ,Q) as the same quantity where we fix the
number of vectors to be n. For example, Spencer’s Theorem [Spe85] can then be

rephrased as vb(B d
∞,B d

∞) =Θ(
p

d) and as vbn(B d
∞,B d

∞) =Θ(
√

n log( 2d
n

)) for n ≤ d .

Here we denote B d
p as the d-dimensional unit ball of the norm ‖·‖p . Moreover for

a Euclidean ball one can easily prove that vb(B d
2 ,B d

2 ) =Θ(
p

d) and for the ℓ1-ball
we have vb(B d

1 ,B d
1 ) =Θ(d).

While Spencer’s Theorem itself is tight, at least three candidate generaliza-
tions have been suggested in the literature — all three are unsolved so far.

The Beck-Fiala Conjecture. Suppose we have a set system (X ,F ) in which ev-
ery element is in at most t sets. Beck and Fiala [BF81] proved using a linear-
algebraic argument that in this case the discrepancy is bounded by 2t and they
state the conjecture that the correct dependence should be O(

p
t ). The same

proof of [BF81] also shows that vb(B d
1 ,B d

∞) ≤ 2. However, the Beck-Fiala Conjec-

ture is wide open and the best known bounds are O(
√

t logn) [Ban98, BDGL18]
and 2t − log∗(t ) [Buk16]. In fact, Komlós Conjecture of vb(B d

2 ,B d
∞) ≤O(1) is even
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more general; here the best known bound is vb(B d
2 ,B d

∞) ≤O(
√

log(d)) [Ban98].

The Matrix Spencer Conjecture. A conjecture popularized by Zouzias [Zou12]
and Meka [Mek14] claims that for any symmetric matrices A1, . . . , An ∈R

n×n with
all eigenvalues in [−1,1], there are signs x ∈ {−1,1}n so that the maximum sin-
gular value of

∑n
i=1 xi Ai is at most O(

p
n). Using standard matrix concentra-

tion bounds, one can prove that a random coloring attains a value of at most
O(

√
n logn). Moreover, one can prove the conjectured upper bound of O(

p
n)

under the additional assumption that the matrices are block-diagonal with con-
stant size blocks [DJR22], or have rank O(

p
n) [HRS22]. Based on recent progress

on matrix concentration, it is possible to obtain the same under the weaker con-
dition that they have rank at most n

log3(n)
[BJM22].

The vector balancing constant of zonotopes. A zonotope is defined as the lin-
ear image of a cube. If A ∈ R

m×d is a matrix with m ≥ d , we can write a d-
dimensional zonotope in the form K = {

∑m
i=1 yi Ai | y ∈ [−1,1]m} = A⊤B m

∞ ⊆ R
d .

Note that m is the number of segments of the zonotope. The cube B d
∞ is triv-

ially a zonotope, and it is known that for every p ≥ 2, the ball B n
p is the limit of

a sequence of zonotopes, called a zonoid [BLM89]. Schechtman [Sch07] raised
the question whether it is true that for any zonotope K ⊆ R

d one has vb(K ,K ) .p
d where we write A . B if A ≤ C ·B for a universal constant C > 0. The best

known bound of vb(K ,K ).
√

d loglogd is a direct consequence of Spencer’s the-
orem and the fact that zonotopes can be sparsified up to a constant factor with
only O(d logd) segments [Tal90]. An affirmative answer to Schechtman’s ques-
tion would follow from an O(d) bound, or equivalently whether an ℓ1-analogue
of [BSS09] is true. We defer to Section 6 for details.

1.1 Our contributions

Our main result is an almost-proof of Schechtman’s conjecture (falling short only
by a logloglogd term).

Theorem 1. For any zonotope K ⊆ R
d one has vb(K ,K ) .

p
d logloglogd. More-

over, for any v1, . . . , vn ∈K one can find in randomized polynomial time a coloring

x ∈ {−1,1}n with ‖
∑n

i=1 xi vi‖K .
p

d logloglogd.

The claim is invariant under linear transformations to K and so it will be use-
ful to place K in a normalized position. For this sake, we make the following
definition:

3



Definition 2. A matrix A ∈ R
m×d is called approximately regular if the following

holds:

(i) The columns A1, . . . , Ad are orthonormal.

(ii) The rows satisfy ‖Ai‖2 ≤ 2
√

d
m

for all i = 1, . . . ,m.

Then we call a zonotope K ⊆ R
d normalized if there exists a matrix A ∈ R

m×d

that is approximately regular so that K =
√

d
m

A⊤B m
∞. We choose the scaling so

that any cube B d
∞ is indeed normalized and zonotopes with any number of seg-

ments are comparable to B d
∞ in terms of volume and radius.

Our main technical contribution is a tight lower bound for the Gaussian mea-
sure of sections of any normalized zonotope.

Theorem 3. For any normalized zonotope K ⊆ R
d , any subspace H ⊆ R

d with

n := dim(H) and any t ≥ 1, one has γH (t ·C ·K ∩H) ≥ exp(−e−t2/2 ·n) where C > 0
is a universal constant.

In order to prove Theorem 3, we show that a normalized zonotope can be de-
composed into Θ( m

d
) many smaller zonotopes with Θ(d) many segments each.

This decomposition requires an iterative application of the Kadison-Singer the-
orem by Marcus, Spielman and Srivastava [MSS15]. Then we prove the state-
ment of Theorem 3 for such simpler zonotopes and derive the lower bound on
γH (t ·C ·K ∩H) by using log-concavity of the Gaussian measure.

We can also use Theorem 3 to show how to balance vectors between different
normalized zonotopes:

Theorem 4. For any normalized zonotopes K ,Q ⊆R
d one has vb(K ,Q) .

√
d logd.

Moreover, for any v1, . . . , vn ∈ K one can find in randomized polynomial time a col-

oring x ∈ {−1,1}n such that ‖
∑n

i=1 xi vi‖Q .
√

d · log min{d ,n} .

2 Preliminaries

We review a few facts that we rely on later.

Probability. By γn we denote the (standard) Gaussian density 1
(2π)n/2 e−‖x‖2

2/2.

For the corresponding distribution we will write N (0, In). For a subspace F ⊆ R
n

we write IF ∈R
n×n as the identity on the subspace; in particular IF =

∑dim(F )
i=1 ui uT

i

where u1, . . . ,udim(F ) is any orthonormal basis of F . A strip is a symmetric convex
body of the form P = {x ∈R

n : | 〈a, x〉 | ≤ 1} with a ∈R
n .
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Theorem 5 (Šidák-Khatri). For any two symmetric convex bodies P,Q ⊆R
n where

at least one is a strip, one has γn(P ∩Q) ≥ γn(P ) ·γn(Q).

More recently, Royen [Roy14] proved that this is indeed true for any pair of
symmetric convex bodies, but the weaker result suffices for us.

Lemma 6. For any symmetric convex body K and any subspace H ⊆ R
n one has

γH (K ∩H) ≥ γn(K ).

We will use the following convenient estimate on the Gaussian measure of a
strip:

Lemma 7. For any a ∈R
n with ‖a‖2 ≤ 1 and t ≥ 1 one has

Pr
y∼N(0,In )

[| 〈a, y〉 | ≤ t ] ≥ exp(−e−t2/2 · ‖a‖2
2).

The following comparison inequality (see e.g. Ledoux and Talagrand [LT11])
will also be useful:

Lemma 8. Let K be a symmetric convex body and let 0 ¹ A ¹ B. Then

Pr
y∼N(0,A)

[y ∈ K ] ≥ Pr
y∼N(0,B)

[y ∈K ].

We prove these lemmas in Appendix B. The following lemma allows us to dis-
miss constant scaling factors, see [Tko15]:

Lemma 9. Let K ⊂ R
n be a measurable set and B be an Euclidean ball centered

at the origin such that γn(K ) = γn(B). Then γn(tK ) ≥ γn(tB) for all t ∈ [0,1]. In

particular, if γn(C1 ·K ) ≥ e−C1n for some constant C1 ≥ 1 then also γn(K ) ≥ e−C2n

for some C2 :=C2(C1) > 0.

Discrepancy theory. First we give a full statement of Spencer’s theorem that we
mentioned earlier:

Theorem 10 (Spencer’s Theorem [Spe85, LM12]). For any A ∈ [−1,1]m×n with

m ≥ n there are polynomial time computable signs x ∈ {−1,1}n so that ‖Ax‖∞ .√
n log( 2m

n
). More generally, for any shift x0 ∈ [−1,1]n , there is a polynomial time

computable x ∈R
n so that x +x0 ∈ {−1,1}n and ‖A(x +x0)‖∞ .

√
n log( 2m

n
).

To be exact, the first algorithm giving a bound of O(
p

n log( 2m
n

)) is due to
Bansal [Ban10] and the tight algorithmic bound is due to Lovett and Meka [LM12].

We say that a vector x ∈ R
n is a good partial coloring if x ∈ [−1,1]n with |{ j ∈

[n] : x j ∈ {−1,1}}| ≥ n/2. We will need a connection between good partial color-
ings and Gaussian measure lower bounds.
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Theorem 11 ([RR22], special case of Theorem 6). For anyα> 0, there is a constant

c := c(α) > 0 and a randomized polynomial time algorithm that for a symmetric

convex body K ⊆R
n , a 2n/3-dimensional subspace F ⊆R

n with γF (K ∩F ) ≥ e−αn

and a shift y ∈ (−1,1)n , finds x ∈ c ·K ∩F so that x + y is a good partial coloring.

We will also need a theorem of Banaszczyk [Ban98] (whose algorithmic ver-
sion is due to [BDGL18]).

Theorem 12 (Banaszczyk’s Theorem). Let K ⊆ R
d be a convex set with γd (K ) ≥ 1

2
and let v1, . . . , vn ∈ B d

2 . Then there is a randomized polynomial time algorithm

to compute signs x ∈ {−1,1}n so that
∑n

j=1 x j v j ∈ C K where C > 0 is a universal

constant.

For many decades, the Kadison-Singer problem was an open question in op-
erator theory. It was finally resolved in 2015:

Theorem 13 (Marcus, Spielman, Srivastava [MSS15]). Let v1, . . . , vm ∈ R
n so that∑m

i=1 vi v⊤
i
= Id and let ε> 0 so that ‖vi‖2

2 ≤ ε for all i ∈ [m]. Then there is a parti-

tion [m] = S1∪̇S2 so that for both j ∈ {1,2} one has

∥∥∥
∑

i∈S j

vi v⊤
i −

1

2
Id

∥∥∥
op

≤ 3
p
ε

In the definition of vb(K ,Q), there is no upper bound on the number of vec-
tors to be balanced. But it is well-known that up to a constant factor, the worst-
case is attained for d many vectors. Let

vbn(K ,Q) := inf
{

r ≥ 0 | ∀u1, . . . ,un ∈K : ∃x ∈ {−1,1}n :
n∑

j=1
x j v j ∈ rQ

}

be the vector balancing variant with n vectors, so that vb(K ,Q) := supn∈N vbn(K ,Q).

Theorem 14 ([LSV86]). For any symmetric convex K ,Q ⊆R
d , vb(K ,Q) ≤ 2·vbd (K ,Q).

The reduction underlying the inequality is algorithmic as well.

Zonotopes. A substantial amount of work in the literature has been done on the
question of how one can sparsify an arbitrary zonotope with another zonotope
that has fewer segments, while losing only a constant factor approximation. The
first bound of O(d 2) [Sch87] was improved to O(d log3 d) [BLM89]. We highlight
the current best known bound:

Theorem 15 (Talagrand [Tal90]). For any zonotope K ⊆R
d and 0 < ε≤ 1

2 , there is

a zonotope Q with at most O( d
ε2 logd) segments so that Q ⊆ K ⊆ (1+ε)Q.

6



We refer to the approach of Cohen and Peng [CP15] for an elementary expo-
sition of the O(d logd) bound.

Finally, we justify why it suffices to consider normalized zonotopes:

Lemma 16. For any full-dimensional zonotope K = A⊤B m
∞ ⊆ R

d , there is a nor-

malized zonotope K̃ and an invertible linear map T so that 4
5 K̃ ⊆ T (K ) ⊆ K̃ . In

particular, 4
5 vb(K̃ , K̃ ) ≤ vb(K ,K ) ≤ 5

4 vb(K̃ , K̃ ).

We show the argument in Appendix A.

Lemma 17. Any normalized zonotope K ⊆R
d satisfies K ⊆

p
dB d

2 .

Proof. We write K =
√

d
m

A⊤B m
∞ where A ∈ R

m×d . Note that A⊤A = Id by or-

thonormality of the columns of A and so ‖A‖op = ‖A⊤A‖1/2
op = 1. By definition,

for any x ∈K there is a y ∈B m
∞ with x =

√
d
m

A⊤y , so that

‖x‖2 =

√
d

m
‖A⊤y‖2 ≤

√
d

m
‖A⊤‖op · ‖y‖2 ≤

p
d .

3 Sections of normalized zonotopes

In this section we prove Theorem 3, showing that all sections of zonotopes are
large. To be be more precise, we prove the following more general measure lower
bound:

Theorem 18. For any normalized zonotope K ⊆ R
d , any subspace H ⊆ R

d with

n := dim(H) and any t ≥ 1, one has γH (t ·C ·K ∩H) ≥ exp(−e−t2/2 ·n) where C > 0
is a universal constant.

In the most basic form where K = B d
∞ is a cube and t = 1, the statement is

similar to a result of Vaaler [Vaa79] who proved that VolH (K ∩ H) ≥ 2n for any
n-dimensional subspace H ⊆ R

d ; though the geometry of a zonotope is more
complex and the proof strategy is rather different.

3.1 A first direct lower bound

We begin with a simple estimate on the Gaussian measure of the section of a

zonotope where we drop the scalar of
√

d
m

. Hence this bound will be tight if the
number of segments is close to d but rather loose otherwise. We denote ΠH as
the orthogonal projection into a subspace H .

7



Lemma 19. Let K := A⊤B m
∞ ⊆ R

d be a zonotope where A ∈ R
m×d is a matrix with

orthonormal columns. Then for any subspace H ⊆ R
d with n := dim(H) and any

t ≥ 1 one has γH (t ·K ∩H) ≥ exp(−e−t2/2 ·n).

Proof. Let U ∈ R
d×n be a matrix with orthonormal columns U 1, . . . ,U n spanning

H . Then if we draw y ∼ N (0, In), U y is indeed a standard Gaussian in the sub-
space H . By assumption,

∑m
i=1 Ai A⊤

i
= Id , and this can be used to write any out-

come of the random process as

U y =
n∑

j=1
y j IdU j =

m∑

i=1
Ai

n∑

j=1
y j 〈Ai ,U j 〉 =

m∑

i=1
Ai 〈y,U⊤Ai 〉 . (1)

Here one should think of U⊤Ai ∈R
n as the coordinates of ΠH (Ai ) in terms of the

basis U of H . From the expression in (1) we can draw the following conclusion:
Claim I. For any y ∈R

n and s > 0 one has (| 〈y,U⊤Ai 〉 | ≤ s ∀i ∈ [m]) ⇒U y ∈ sK .

Then Claim I gives a simple sufficient (but in general not necessary) condition
for U y to lie in the zonotope K . Next, we can see that

m∑

i=1
‖U⊤Ai‖2

2 =
m∑

i=1
Tr

[
UU⊤Ai A⊤

i

]
= Tr[UU⊤] = n

Then we can use Claim I and the inequality of Šidák-Khatri to lower bound the
Gaussian measure by

γH (t ·K ∩H) = Pr
y∼N(0,In )

[U y ∈ t ·K ]

≥ Pr
y∼N(0,In )

[
| 〈U⊤Ai , y〉 | ≤ t ∀i ∈ [m]

]

Lem 5
≥

m∏

i=1
Pr

y∼N(0,In )

[
| 〈U⊤Ai , y〉 | ≤ t

]

Lem 7
≥

m∏

i=1
exp

(
−e−t2/2‖U⊤Ai‖2

2

)

= exp
(
−e−t2/2

m∑

i=1
‖U⊤Ai‖2

2

)
= exp

(
−e t2/2n

)

Here we have used that ‖U⊤Ai‖2 ≤ ‖Ai‖2 ≤ 1 which follows by the orthonormal-
ity of the columns of A.

It is somewhat unfortunate that Claim I shown above requires that
∑m

i=1 Ai A⊤
i

is exactly the identity and an approximation is not enough. But we can fix this by
a rescaling argument:

8



Lemma 20. Let K = A⊤B m
∞ ⊆R

d be a zonotope where A ∈R
m×d is a matrix so that∑m

i=1 Ai A⊤
i
º αId for some α > 0. Then for any n-dimensional subspace H ⊆ R

d

and any t ≥ 1 one has γH ( tp
α
·K ∩H) ≥ exp

(
−e−t2/2 ·n

)
.

Proof. Scaling K by 1p
α

is equivalent to scaling
∑m

i=1 Ai A⊤
i

by 1
α , hence we may

assume that indeed α= 1. Abbreviate M :=
∑m

i=1 Ai A⊤
i
º Id which is a symmetric

positive definite matrix. Consider the matrix Ã ∈ R
m×d with rescaled rows Ãi :=

M−1/2 Ai , so that
∑m

i=1 Ãi Ã⊤
i
= Id . Let K̃ := Ã⊤B m

∞ = M−1/2(K ) and H̃ := M−1/2(H)
be the rescaled zonotope and subspace. Let U 1, . . . ,U n be an orthonormal basis
of H . Then with Ũ = M−1/2U , Ũ 1, . . . ,Ũ n will be the basis of H̃ , but it will not
be orthogonal in general. However, for y ∼ N (0, In) one has Cov(Ũ y) = ŨŨ⊤ =
M−1/2UU⊤M−1/2 ¹ IH̃ . Then

Pr
y∼N(0,Id )

[U y ∈ tK ] = Pr
y∼N(0,Id )

[Ũ y ∈ t K̃ ]
Lem 8
≥ Pr

y∼N(0,I H̃ )
[y ∈ t K̃ ]

Lem 19
≥ exp

(
−e−t2/2n

)
.

3.2 Decomposition of normalized zonotopes

The next step in our proof strategy is to decompose the rows of an approximately
regular matrix A ∈ R

m×d into Θ( m
d

) many blocks J ⊆ [m] so that
∑

i∈J Ai A⊤
i
º

Ω( d
m

) · Id . For this purpose, we formulate a slight variant of Theorem 13.

Lemma 21. Let v1, . . . , vm ∈ R
d be vectors with

∑m
i=1 vi v⊤

i
º L · Id for some L > 0

and let ε := maxi=1,...,m ‖vi‖2
2. Then there is a partition [m] = S1∪̇S2 so that

∑

i∈S j

vi v⊤
i º

(L

2
−3

p
Lε

)
Id ∀ j ∈ {1,2}

Proof. Abbreviate M :=
∑m

i=1 vi v⊤
i

which is a PSD matrix with M º L · Id . Define

v ′
i

:= M−1/2vi . Then
∑m

i=1 v ′
i
(v ′

i
)⊤ = M−1/2

(∑m
i=1 vi v⊤

i

)
M−1/2 = Id . We set ε′ := ε

L

and verify that for all i one has ‖v ′
i
‖2

2 = v⊤
i

M−1vi ≤ v⊤
i

( 1
L

Id )vi =
‖vi ‖2

2
L

≤ ε′. Then
we apply Theorem 13 to the vectors {v ′

i
}i∈[m] and obtain a partition [m] = S1∪̇S2

so that for j ∈ {1,2} one has

M−1/2
( ∑

i∈S j

vi v⊤
i

)
M−1/2 =

∑

i∈S j

v ′
i (v ′

i )⊤
Thm 13
º

(1

2
−3

p
ε/L

)
Id ,

and using the fact that A º B =⇒ M1/2 AM1/2 º M1/2B M1/2, we conclude

∑

i∈S j

vi v⊤
i º

(1

2
−3

p
ε/L

)
M1/2Id M1/2 º

(L

2
−3

p
Lε

)
Id .
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Now to the main lemma of this section where we decompose an approxi-
mately regular matrix by iteratively applying Lemma 21.

Lemma 22. There is a universal constant C > 0 so that the following holds. Let

A ∈ R
m×d be an approximately regular matrix. Then there are disjoint subsets

J1∪̇ · · · ∪̇Jk ⊆ [m] with k ≥ m
Cd

and |Jℓ| ≤C d and
∑

i∈Jℓ
Ai A⊤

i
º 1

Ck
Id for all ℓ ∈ [k].

Proof. If m
d
≤ C we may set k = 1 and J1 = [m], so assume m ≥ C d . Set ε := 4 d

m

so that ‖Ai‖2
2 ≤ ε for all i ∈ [m]. Let t ∈ N be a parameter that we choose later.

For s ∈ {0, . . . , t } we will obtain partitionsPs of the row indices starting with P0 :=
{[m]} so that Ps+1 is a refinement of Ps and moreover |Ps | = 2s . More precisely,
in each iteration s ∈ {0, . . . , t −1} and for each S ∈Ps , we apply Lemma 21 to the
vectors {Ai }i∈S ; if S = S1∪̇S2 is the obtained partition, then we add {S1,S2} toPs+1.
We first analyze the corresponding eigenvalue lower bound. Define Ls := 2−s −
15

p
2−sε.

Claim. If 2t ≤ m
Cd

for a large enough constant C > 0, then for all s ∈ {0, . . . , t } one

has
∑

i∈S Ai A⊤
i
º Ls Id for all S ∈Ps .

Proof of Claim. Clearly Ls ≤ 2−s all s ≥ 0. We will prove the claim by induction
on s. For s = 0 one has P0 = {[m]} and the claim is true as L0 ≤ 1. Now consider
an iteration s ∈ {0, . . . , t − 1} and suppose S ∈ Ps is split into S = S1∪̇S2. Then∑

i∈S j
Ai A⊤

i
º ( Ls

2 −3
p

Lsε)Id for both j ∈ {1,2}. This is at least Ls+1 as:

Ls

2
−3

√
Lsε

Ls≤2−s

≥
Ls

2
−3

p
2−sε≥ 2−(s+1)−

15

2

p
2−sε−3

p
2−sε≥ 2−(s+1)−15

√
2−(s+1)ε.

Here we use 15/2+3≤ 15
p

2−1. This shows the claim.
For a large enough constant C , we pick t ∈ N so that m

2Cd
≤ 2t ≤ m

Cd
. Then

Lt ≥ Cd
m

−15
√

2Cd
m

·4 d
m

= d
m
· (C −15

p
8C ) ≥ C

2 · d
m

for C large enough. Moreover

we know that ES∼Pt
[|S|] = m

2t ≤ 2C d . Then by Markov’s inequality at least half the
sets S ∈Pt have at most 4C d indices. Those sets will satisfy the statement.

3.3 Proof of Theorem 3

Next we prove our main technical result, Theorem 3. Recall that a measure µ on
R

d is called log-concave if for all compact subsets S,T ⊆R
d and 0≤λ≤ 1 one has

µ(λS + (1−λ)T ) ≥µ(S)λ ·µ(T )1−λ

By induction one can verify that for any compact subsets S1, . . . ,Sk ⊆ R
d and

λ1, . . . ,λk ≥ 0 with
∑k

i=1λi = 1 we have µ(λ1S1 + ·· · +λk Sk) ≥
∏k

ℓ=1µ(Sℓ)λℓ . Also
recall that the Gaussian measure γd is indeed log-concave, see e.g. [AAGM15].
For a matrix A ∈R

m×d and indices J ⊆ [m] we denote A J ∈R
|J |×d as the submatrix

of A with rows in J .

10



Proof of Theorem 3. Let K ⊆ R
d be a normalized zonotope and let H ⊆ R

d be a

subspace with dimension n. Then we can write K =
√

d
m

A⊤B m
∞ where A ∈R

m×d is
approximately regular. We use Lemma 22 to obtain disjoint subsets J1∪̇ · · · ∪̇Jk ⊆
[m] with k ≥ m

Cd
so that

∑
i∈Jℓ Ai A⊤

i
º d

Cm
Id where C > 0 is a constant. Consider

the zonotope Kℓ :=
√

d
m

A⊤
Jℓ

B
|Jℓ|
∞ generated by the rows with indices in Jℓ. Then

we have K1+ . . .+Kk ⊆ K and (K1∩H)+ . . .+ (Kk ∩H) ⊆ K ∩H . Note that for each

ℓ ∈ [k] we have kKℓ ⊇
√

k
C

A⊤
Jℓ

B
|Jℓ|
∞ , so that

∑
i∈Jℓ(

√
k
C

Ai )(
√

k
C

Ai )⊤ º k
C
· d

Cm
Id º

1
C 3 Id . Then applying Lemma 20 with α := 1

C 3 we have

γH

(
tC 3/2kKℓ∩H

)
≥ exp

(
−e t2/2 ·n

)

for all t ≥ 1. Finally, using log-concavity of the Gaussian measure we obtain

γH

(
tC 3/2K ∩H

)
≥ γH

(
(tC 3/2K1 ∩H)+ . . .+ (tC 3/2Kk ∩H)

)

≥
k∏

ℓ=1

γH

(
tC 3/2 ·kKℓ∩H

)1/k ≥ exp
(
−e−t2/2 ·n

)
.

4 The vector balancing constant vb(K ,K )

Next, we show how to translate measure lower bounds for sections into an im-
proved bounds on the vector balancing constant.

4.1 Tight partial colorings for zonotopes

First we prove a generalization of the constant discrepancy partial coloring for
the Komlós setting:

Lemma 23. Let v1, . . . , vn ∈ B d
2 and let K ⊆ R

d be a symmetric convex body with

γH (K ∩H) ≥ e−αn for some α> 0 where H = span{v1, . . . , vn}. Then there is a ran-

domized polynomial time algorithm that given a shift y ∈ (−1,1)n finds a good

partial coloring x + y ∈ [−1,1]n with
∑n

j=1 x j v j ∈ cK where c := c(α) is a constant.

Proof. Let Z ∼
∑n

j=1 z j v j where zi ∼ N (0,1) are i.i.d. Gaussians so that E[Z Z⊤] =
∑n

j=1 v j v⊤
j

has trace Tr
[
E[Z Z⊤]

]
=

∑n
j=1 ‖v j‖2

2 ≤ n. Let u1, . . . ,ur be an orthonor-

mal basis of H with r ≤ n, and write
∑n

j=1 v j v⊤
j
=

∑r
j=1 σ j u j u⊤

j
. Since

∑n
j=1 v j v⊤

j
º

0, we have σ j ≥ 0 for all j . Then after reindexing we may assume that 0 ≤ σ1 ≤
σ2 ≤ ·· · ≤ σr . Since

∑r
j=1σ j =

∑n
j=1 ‖v j‖2

2 ≤ n we know by Markov’s Inequality
that σ2n/3 ≤ 3/2, denoting σ j = 0 for j > r . Thus restricting to the subspaces

11



F := span{u1, . . . ,u2n/3} and V := {g ∈ R
n |

∑n
j=1 g j v j ∈ F } with dim(V ) ≥ 2

3 n, we
may lower bound

Pr
g∼N(0,IV )

[ n∑

j=1
g j v j ∈ 3/2 ·K

]
= Pr

g∼N(0,I2n/3 )

[2n/3∑

j=1
g j ·σ j u j u⊤

j ∈ 3/2 ·K
]

(∗)
≥ Pr

g∼N(0,I2n/3 )

[2n/3∑

j=1
g j ·3/2 ·u j u⊤

j ∈ 3/2 ·K
]

= γF (K ∩F )
Lem 6
≥ γH (K ∩H)

≥ e−αn ,

where (∗) follows by Lemma 8. Then by Theorem 11, the symmetric convex body
Q := {x ∈R

n :
∑n

j=1 x j v j ∈ K } contains a good partial coloring in Q ∩F .

Then Lemma 23 implies the existence of a partial coloring with optimal bounds
as long as n is of the order of d :

Corollary 24. Let K ⊆ R
d be a normalized zonotope and let v1, . . . , vn ∈ K . Then

there is a randomized polynomial time algorithm to find a good partial coloring

x ∈ [−1,1]n so that ‖
∑n

j=1 x j v j‖K .
p

d.

Proof. By Theorem 3, denoting H := span{v1, . . . , vn}, we have γH (C ·K ∩H) ≥ e−n .
By Lemma 9, there exists some constant α > 0 such that γH (K ∩ H) ≥ e−αn . By
Lemma 17, vi ∈

p
dB d

2 , so that the statement follows directly from Lemma 23.

4.2 Proof of the main Theorem

Now we have all the ingredients to prove our main result, Theorem 1.

Proof of Theorem 1. By Theorem 15, we may assume that K is generated by only
m . d logd segments, and by Lemma 16, we may assume that K is a normal-

ized zonotope K :=
√

d
m

A⊤B m
∞ for some approximately regular A ∈ R

m×d . By
Theorem 14, since vb(K ,K ) ≤ 2 · vbd (K ,K ), we may assume that n = d , though
for clarity we only use this in the final bound. As before we set Q := {x ∈ R

n :∑n
j=1 x j v j ∈ K }. We iteratively apply Lemma 23 for t rounds to obtain a par-

tial coloring x′ ∈ Q ∩ [−1,1]n , so that the set I := {i : |x′
i
| < 1} of partially col-

ored indices satisfies |I | ≤ n/2t , and by the triangle inequality over the t rounds
‖
∑n

j=1 x′
j
v j ‖K .

p
d · t .

12



For each j ∈ I , we may write v j =
√

d
m

A⊤ui for some ui ∈ B m
∞. By Theorem 10,

we can find x̃ ∈R
n so that x := x̃+x′ ∈ {−1,1}n and

∑
i∈I x̃i ui ∈

√
|I | log( 2m

|I | ) ·c ·B m
∞

where we set x̃i = 0 for i ∉ I . Therefore, setting t := loglog( 2m
n

),

∥∥∥
n∑

j=1
x j v j

∥∥∥
K
≤

∥∥∥
n∑

j=1
x′

j v j

∥∥∥
K
+

∥∥∥
∑

j∈I

x̃ j v j

∥∥∥
K

.
p

d · t +
√

n

2t
· log

( 2m

n/2t

)

=
p

d loglog
(2m

n

)
+

√
n

log( 2m
n

)
· log

(2m

n
· log

(2m

n

))

︸ ︷︷ ︸
.
p

n≤
p

d

.
p

d loglog
(2m

n

)

.
p

d loglog
(d logd

n

)
.

We conclude that vb(K ,K ). vbd (K ,K ).
p

d logloglogd .

5 The vector balancing constant vb(K ,Q)

In this section we prove Theorem 4, stating that vb(K ,Q) .
√

d logd where K and
Q are normalized zonotopes. First note that Cor 24 indeed generalizes and for
any v1, . . . , vn ∈K there is a good partial coloring x ∈ [−1,1]n with ‖

∑n
j=1 x j v j ‖Q .

p
d . On the other hand, in the proof of Theorem 1 we have also relied on Spencer’s

Theorem which implies that vbn(K ,K ) .
√

n log( 2m
n

). In particular this gives a

bound that improves as n decreases. However in our setting with different zono-
topes K and Q such a bound does not hold!

To see this, let H ∈ {−1,1}d×d be a Hadamard matrix, meaning that all rows
and columns are orthogonal. Then one can verify that K := 1p

d
H⊤B d

∞ is a nor-

malized zonotope; in fact, K is a rotated cube. Fix any n ≤ d and consider the
points v1, . . . , vn ∈ K with vi = 1p

d
H⊤H i =

p
d · ei . We choose Q := B d

∞ as the sec-

ond normalized zonotope. Any good partial coloring x ∈ [−1,1]n must have a

coordinate i with |xi | ≥ 1
2 and so ‖

∑n
j=1 x j v j ‖Q ≥

p
d |xi | ≥

p
d

2 .

Hence instead of applying Cor 24 iteratively and obtaining a bound of vb(K ,Q).p
d logd , we use Banaszczyk’s Theorem together with Theorem 3:

13



Proof of Theorem 4. Let K ,Q ⊆ R
d be normalized zonotopes, and let v1, . . . , vn ∈

K be the vectors to be balanced. Define H := span{v1, . . . , vn} and let r := dim(H) ≤
min{d ,n}. By applying Theorem 3 to the zonotope Q, subspace H , and t :=√

2 log2r , we find that

γH

(√
2 log2rC ′Q ∩H

)
≥ e− 1

2 >
1

2
.

By Lemma 17 we know that vi ∈
p

dB d
2 for each i ∈ [n], hence by Theorem 12,

signs x ∈ {−1,1}n can be computed in polynomial time such that

n∑

j=1
x j v j ∈

p
dC ′′

(√
2 log2rC ′Q ∩H

)
⊆C

√
d logmin{d ,n}Q,

as desired. In particular, vb(K ,Q) .
√

d logd .

6 Open problems

The main open question about zonotopes is whether a d-dimensional zonotope
can be approximated up to a constant factor using only a linear number of seg-
ments:

Conjecture 1 ([Sch07]). For any zonotope K ⊆R
d and 0 < ε≤ 1

2 , does there exist a

zonotope Q with O( d
ε2 ) segments so that Q ⊆ K ⊆ (1+ε)Q?

Equivalently, since the polar body of a zonotope A⊤B m
∞ ⊆ R

d is the preimage
A−1(B m

1 ) := {x ∈R
d : ‖Ax‖1 ≤ 1}, we can restate the question as follows:

Conjecture 2. Does there exist a universal constant C > 0 such that given any

matrix A ∈ R
m×d with m ≥ d and 0 < ε ≤ 1

2 , one can always find another matrix

Ã ∈R
Cd/ε2×d with ‖Ãx‖1 ≤ ‖Ax‖1 ≤ (1+ε)‖Ãx‖1 for all x ∈R

d ?

We remark that if one replaces the ℓ1 norm by the ℓ2 norm, an analogue of
Conjecture 2 holds as a direct corollary of a linear-size spectral sparsifier [BSS09].
In that setting, each row of Ã is a scalar multiple of a row of A, and there is hope
that another rescaling of the rows of A may suffice for the ℓ1 norm. Just as a
spectral sparsifier can be found via spectral partial colorings [RR20], we also state
the stronger conjecture of the existence of good partial colorings in the ℓ1 setting:

Conjecture 3. Given any matrix A ∈R
m×d , does the set

K :=
{

x ∈R
m :

∣∣∣
m∑

i=1
xi |〈Ai , z〉|

∣∣∣≤
√

d
m
‖Az‖1 ∀z ∈R

d
}

have large Gaussian measure γm(K ) ≥ e−Cm where C > 0 is a universal constant?

14



Finally, we restate Schechtman’s question, which would also follow from the
above conjectures:

Conjecture 4 ([Sch07]). Is it true that for any zonotope K ⊆R
d , vb(K ,K ).

p
d?
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A Normalizing zonotopes

In this section, we show that for any full-dimensional zonotope K ⊆ R
d there is

a linear transformation T : Rd → R
d and a normalized zonotope K̃ so that 4

5 K̃ ⊆
T (K ) ⊆ K̃ . For this result we will need the existence of Lewis weights [CP15]:

Theorem 25. Given a matrix A ∈ R
m×d , there exists a unique vector w ∈ R

m
>0 so

that for all i ∈ [m] one has

w−2
i A⊤

i (A⊤W
−1

A)−1 Ai = 1,

where W := diag(w). Moreover, Tr[W ] ≤ d, with equality for full rank A.

Now to the proof of Lemma 16.

Proof of Lemma 16. Consider a full-dimensional zonotope K = A⊤B m
∞ with A ∈

R
m×d . Let W be the diagonal matrix corresponding to the Lewis weights of A and

let W := DW where D > 0 is large enough so that wi := Wi ,i ≥ 1 for all i . Define
a matrix B := A(A⊤W −1 A)−1/2 ∈ R

m×d and define a second matrix Ã where each
row Bi is replaced by ⌈wi ⌉ many rows so that the first ⌊wi ⌋ rows are all copies of
w−1

i
Bi , and (if {wi } 6= 0) the last row is {wi }1/2w−1

i
Bi , for a total of m′ :=

∑m
i=1⌈wi ⌉

many rows. We will show that the conditions of Lemma 16 hold with

T : Rd →R
d , T (K ) =

√
d

m′ (AT W −1 A)−1/2K =
√

d
m′ ·B T B m

∞

and K̃ :=
√

d
m′ ÃT B m′

∞ .

First we show that K̃ is normalized, or equivalently that Ã is approximately
regular. Note that

(Ã⊤ Ã) j ,k =
m′∑

i=1
Ãi , j Ãi ,k =

m∑

i=1
w−2

i (⌊wi ⌋+ {wi }) ·Bi , j Bi ,k =
m∑

i=1
w−1

i ·Bi , j Bi ,k ,

so that by definition of B ,

Ã⊤ Ã = B⊤W −1B = (A⊤W −1 A)−1/2 A⊤W −1 A(A⊤W −1 A)−1/2 = Id .

Moreover, by the definition of Lewis weights, for each row i ′ ∈ [m′] corre-
sponding to a copy of Bi one has

‖Ãi ′‖2
2 ≤ w−2

i B⊤
i Bi = w−2

i A⊤
i (A⊤W −1 A)−1 Ai =

1

D
≤

2d

m′ ,
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where the last inequality follows since

m′ =
m∑

i=1
⌈wi ⌉ ≤ 2 ·

m∑

i=1
wi = 2D

m∑

i=1
w i ≤ 2D ·d .

Thus Ã is approximately regular, and K̃ is normalized.
To see that 4

5 K̃ ⊆ T (K ) ⊆ K̃ , take an arbitrary

y = 4
5

√
d

m′

m∑

i=1

( ⌊wi ⌋∑

p=1
xi ,p w−1

i Bi +xi ,⌈wi ⌉{wi }1/2w−1
i Bi

)
∈ 4

5

√
d

m′ Ã⊤B m′
∞ = 4

5 K̃ ,

and rewrite it as

4
5

√
d

m′

m∑

i=1

(
w−1

i

( ⌊wi ⌋∑

i=1
xi ,p +xi ,⌈wi ⌉{wi }

)

︸ ︷︷ ︸
∈[−1,1]

+xi ,⌈wi ⌉
{wi }1/2−{wi }

wi︸ ︷︷ ︸
∈[− 1

4 , 1
4 ]

)
Bi ∈

√
d

m′ B
⊤B m

∞ = T (K ).

Now taking an arbitrary y :=
√

d
m′

∑m
i=1 xi Bi ∈B⊤B m

∞ = T (K ), we may write

y =
√

d
m′

m∑

i=1

( ⌊wi ⌋∑

p=1
xi w−1

i Bi +xi {wi }w−1
i Bi

)
∈

√
d

m′ Ã⊤B m′
∞ = K̃ ,

completing the proof of the lemma. Finally, note that this result immediately
implies that

4
5 vb(K̃ , K̃ ) ≤ vb(K ,K ) ≤ 5

4 vb(K̃ , K̃ ).

B Gaussian measure

Proof of Lemma 7. We make use of the following tail inequality due to Szarek and
Werner [SW99] which holds for t >−1:

Pr
g∼N(0,1)

[g > t ] <
1

p
2π

4e−t2/2

3t + (t 2 +8)1/2
.

In particular, for t ≥ 1 the right side is upper bounded by 1p
2π

4e−t2/2

6 . Thus

Pr
g∼N(0,1)

[|g | ≤ t ] ≥ 1−
4

3
p

2π
e−t2/2.

Since the function z 7→ e−2z/3 is convex, we have 1− 4
3
p

2π
z ≥ e−2z/3 for all

z ∈ [0,e−1/2] as it holds for the endpoints of the interval. Therefore for t ≥ 1,
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Pr
g∼N(0,1)

[|g | ≤ t ] ≥ exp(−2
3 e−t2/2).

We conclude that for any a ∈R
n with ‖a‖2 ≤ 1 and t ≥ 1 one has

Pr
y∼N(0,In )

[| 〈a, y〉 | ≤ t ] = Pr
g∼N(0,1)

[
|g | ≤

t

‖a‖2

]
≥ exp(−2

3 e−t2/(2‖a‖2
2)) ≥ exp(−e−t2/2·‖a‖2

2).

Indeed, the last inequality follows because

2

3
exp

( t 2

2
−

t 2

2‖a‖2
2

)
≤

2

3
exp

(1

2
−

1

2‖a‖2
2

)
≤

2

3
·e1/2 ·

2

e
· ‖a‖2

2 ≤ ‖a‖2
2,

where the second to last inequality follows from ez ≥ ez for z := 1/(2‖a‖2
2).

Proof of Lemma 8. Draw another random variable z ∼ N (0,B − A) and note that
by log-concavity we have

Pr
y∼N(0,A)

[y ∈ K ] ≥ Pr
y∼N(0,A)

[
Pr

z∼N(0,B−A)
[y + z ∈ K ]

]
= Pr

y∼N(0,B)
[y ∈K ].
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