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Abstract

Given a set of points P = (P+ ⊔ P−) ⊂ R
d for some constant d and a supply function

µ : P → R such that µ(p) > 0 ∀p ∈ P+, µ(p) < 0 ∀p ∈ P−, and
∑

p∈P µ(p) = 0, the

geometric transportation problem asks one to find a transportation map τ : P+ × P− → R≥0

such that
∑

q∈P−
τ(p, q) = µ(p) ∀p ∈ P+,

∑

p∈P+ τ(p, q) = −µ(q) ∀q ∈ P−, and the weighted
sum of Euclidean distances for the pairs

∑

(p,q)∈P+×P−
τ(p, q) · ||q − p||2 is minimized. We

present the first deterministic algorithm that computes, in near-linear time, a transportation
map whose cost is within a (1 + ε) factor of optimal. More precisely, our algorithm runs in
O(nε−(d+2) log5 n log logn) time for any constant ε > 0.

While a randomized nε−O(d) logO(d) n time algorithm for this problem was discovered in
the last few years, all previously known deterministic (1 + ε)-approximation algorithms run
in Ω(n3/2) time. A similar situation existed for geometric bipartite matching, the special case of

geometric transportation where all supplies are unit, until a deterministic nε−O(d) logO(d) n time
(1+ε)-approximation algorithm was presented at STOC 2022. Surprisingly, our result is not only
a generalization of the bipartite matching one to arbitrary instances of geometric transportation,
but it also reduces the running time for all previously known (1+ ε)-approximation algorithms,
randomized or deterministic, even for geometric bipartite matching. In particular, we give the
first (1 + ε)-approximate deterministic algorithm for geometric bipartite matching and the first
(1 + ε)-approximate deterministic or randomized algorithm for geometric transportation with
no dependence on d in the exponent of the running time’s polylog.

As an additional application of our main ideas, we also give the first randomized near-linear
O(ε−2m logO(1) n) time (1 + ε)-approximation algorithm for the uncapacitated minimum cost
flow (transshipment) problem in undirected graphs with arbitrary real edge costs.
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1 Introduction

Let P ⊂ R
d be a set of n points in d-dimensional Euclidean space, and let µ : P → R be a

function assigning each point a supply such that
∑

p∈P µ(p) = 0. Let P+ = {p ∈ P | µ(p) > 0}
and P− = {p ∈ P | µ(p) < 0}. A transportation map τ : P+ × P− → R≥0 is a non-negative
assignment to each ordered pair such that for all p ∈ P+ we have

∑

q∈P− τ(p, q) = µ(p) and

for all q ∈ P− we have
∑

p∈P+ τ(p, q) = −µ(q). A common interpretation of this setting is to

imagine each point p ∈ P+ as a pile of earth of volume µ(p) and point p ∈ P− to be a hole of
volume −µ(p). A transportation map describes a way to move all of the earth from the piles to the
holes. Accordingly, the cost of our transportation map is its total earth-distance according to the
Euclidean norm, cost(τ) :=

∑

(p,q)∈(P+×P−) τ(p, q) · ||q−p||2.1 Our goal is to find a transportation
map of minimum cost cost∗(P, µ), a task we refer to as the geometric transportation problem .
Due to the analogy relating the geometric transportation problem to moving piles of earth, the
optimal cost cost∗(P, µ) is often called the earth mover’s distance . The earth mover’s distance
is a discrete version of the 1-Wasserstein distance between continuous probability distractions,
and the continuous version of this problem has also been referred to as the optimal transport or
Monge-Kantorovich problem. Along with being an interesting math problem in its own right, earth
mover’s distance has applications to various topics in computer science such as shape matching and
graphics [Vil08,GD04,RTG00,BvdPPH11,SRGB14,CD14,GV02,PC19,SdGP+15].

The geometric transportation problem can be viewed as a special case of the minimum cost
flow problem restricted to an uncapacitated complete bipartite graph. Unfortunately, merely con-
structing an explicit representation of the appropriate graph takes Θ(n2) time. The transportation
map can then be found in strongly polynomial O(n3 polylog n) time using a minimum cost flow
algorithm of Orlin [Orl93]. If supplies are integral, we can instead use an algorithm of Lee and
Sidford [LS14] that will run in O(n2.5 polylog(n,U)) time where U =

∑

p∈P |µ(p)| is the sum of
the absolute values of the points’ supplies. The only faster exact algorithm we are aware of is an
implicit implementation of Orlin’s algorithm by [AFP+17] that runs in O(n2 polylog n) time and
only when given points in the plane.

Agarwal and Raghvendra [SA12a] described an O(n
√
U polylog(U, ε, n))-time

(1 + ε)-approximation algorithm for the integral supply case. [ANOY14] described an O(n1+o(1))
time algorithm that computes a (1+ε)-factor estimate of the earth mover’s distance (without asso-
ciated transportation map) where the o(1) hides dependencies on ε. Later, [AFP+17] described a
randomized algorithm with an expected O(log2(1/ε))-approximation ratio that runs in O(n1+ε) ex-
pected time. Lahn, Mulchandani, and Raghvendra [LMR19] described an O(n(Cδ)2 polylog(U, n))-
time algorithm that computes a transportation map of cost at most cost∗(P, µ) + δU where
C = maxp∈P |µ(p)| is the maximum over the supplies’ absolute values. Finally, Khesin, Nikolov,
and Paramonov [KNP21] described a randomized (1 + ε)-approximation algorithm with running
time nε−O(d) logO(d)

Sp(P ) log n where Sp(P ) is the spread or ratio of largest to smallest distance
between any pair of points in P . Via a straightforward reduction, one can use their algorithm
to approximately solve the integer supply case in nε−O(d) logO(d) U log2 n time [KNP21]. Fox and
Lu [FL22] subsequently extended their algorithm to run in time nε−O(d) logO(d) n, a bound which
is independent of both the spread and supplies of P .

The above history of the geometric transportation problem neatly mirrors that of the geometric

bipartite matching problem , the special case of geometric transportation where all supplies are
either 1 or −1. (Geometric bipartite matching also requires the output map to be 0, 1, but one
can guarantee that is the case with near-linear additional overhead in running time; see Section 4.)

1Our results apply to any ℓp-norm, but we stick with the ℓ2-norm to simplify the presentation.
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Indeed, Raghvendra and Agarwal [SA12b,RA20] achieved the same nε−O(d) logO(d) n running time
only after a long line of work detailed in their paper. This running time was recently improved
to n(ε−O(d3) log log n+ ε−O(d) log4 n log5 log n), eliminating the dependence on d from the polylog’s
exponent [ARSS22].

One commonality held by many of the above results, including most notably the near-linear
time approximation schemes for geometric bipartite matching and transportation [KNP21, FL22,
RA20,ARSS22], is that these results are Monte Carlo randomized algorithms that are guaranteed
to work in their reported time bounds but have a small probability of not finding a good solution.
These four results in particular work by approximating distances between pairs of points using a
sparse graph based on a randomly shifted quadtree. Agarwal and Raghvendra [AS14] were able to
describe a few different deterministic approximation algorithms for geometric bipartite matching
with varying tradeoffs between approximation ratio and running time. Still, no deterministic (1+ε)-
approximation algorithm with running time o(n3/2) was known, even for the geometric bipartite
matching problem, for nearly a decade after the initial publication [SA12b] of Raghvendra and
Agarwal’s (1 + ε)-approximation algorithm.

At STOC 2022, [ACRX22] showed that randomness was not necessary for a fast approximation
of geometric bipartite matching by describing a deterministic (1+ε)-approximation algorithm that
runs in nε−O(d) logO(d) n time. Instead of basing distances on a single randomly shifted quadtree,
they use the concept of a tree cover, introduced by Awerbuch, Kutten, and Peleg [AKP94]. A tree
cover can be thought of as 2d deterministicly shifted quadtrees combined in a way to guarantee
distances are well-approximated. Through a great deal of effort, they are able to apply the main
ideas behind Raghvendra and Agarwal’s [RA20] algorithm to work in the more complicated setting
of a tree cover as opposed to a single tree.

It is tempting to imagine this same work can be applied to the geometric transportation
problem. Unfortunately, the approach originally taken by Raghvendra and Agarwal [RA20] and
later [ARSS22] for geometric bipartite matching is very different from the one taken by [KNP21]
and [FL22] for geometric transportation. The former results iteratively add matching edges along
carefully chosen augmenting paths that increase in length slowly enough that they can all be found
in a small amount of time. The latter results instead build a sparse spanner graph which is entrusted
to a minimum cost flow approximation framework of Sherman [She17] (see also [ASZ20]). Deran-
domizing the latter results likely requires many ideas other than those used by [ACRX22], and they
presented the design of a fast deterministic approximation scheme for geometric transportation as
an open problem in their paper.

1.1 Our results

We describe a deterministic (1+ε)-approximation algorithm for the geometric transportation prob-
lem that runs in near-linear time. Specifically, for any ε > 0, our algorithm is guaranteed to compute
a transportation map of cost at most (1 + ε) · cost∗(P, µ), and it has a worst-case running time of
O(nε−(d+2) log5 n log log n).

Our approximate transportation map also has the property that each value τ(p, q) is guaranteed
to be an integer if all supplies µ(p) are integers. In the special case of all supplies being −1 and 1,
this property implies each value τ(p, q) ∈ {0, 1}; those pairs (p, q) with τ(p, q) = 1 form a match-
ing. In other words, τ is a (1+ε)-approximate solution to the geometric bipartite matching problem.

We consider our algorithm noteworthy for two main reasons.

• It derandomizes previous approximation schemes for the geometric transportation problem,
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extending the recent result of [ACRX22] beyond the more specialized geometric bipartite
matching problem.

• It actually improves upon the running times of all previously known approximation schemes
for geometric transportation and geometric bipartite matching, both randomized and de-
terministic (we are able to remove a log factor from the running time for the special case of
geometric bipartite matching; see Section 5). In particular, ours is the first (1+ε)-approximate
deterministic algorithm for geometric bipartite matching and the first (1 + ε)-approximate
determinstic or randomized algorithm for geometric transportion where the exponent on the
running time’s polylog n factor is bounded by an absolute constant instead of a linear function
of the dimension d.

Application: Approximating uncapacitated minimum cost flow

Recent work, including [She17,ASZ20, Li20], has established a connection between the geometric
transportation problem and the minimum cost flow problem in uncapacitated undirected graphs.
The latter is often referred to as the transshipment problem. In adjacent papers of the same
proceedings, [Li20] and [ASZ20] both claim randomized near-linear O(m polylog n) time (1 + ε)-
approximation algorithms for the latter problem. Unfortunately, both algorithms require the edge
costs to have bounded spread or consist of small integers. While the running times are polylog-
arithmic in the spread/sum of edge costs, they can become arbitrarily high when the values are
allowed to be arbitrary real numbers.

That said, [ASZ20] reduces finding a (1 + ε)-approximation for minimum cost flow to find-
ing an O(logO(1) n)-approximation for a bounded spread instance of geometric transportation in
O(logO(1) n)-dimensional Euclidean space. The efficiency of their algorithm crucially relies on both
the low spread and the fact that their dependency on the dimension is merely polynomial instead
of exponential. By setting the desired approximation ratio for our deterministic geometric trans-
portation algorithm to be sufficiently large, we are also able to remove exponential dependencies
on dimension while being able to handle point sets of arbitrary spread. As a consequence, we give
the first randomized near-linear time (1 + ε)-approximation algorithm for uncapacitated minimum
cost flow in undirected graphs with arbitrary real costs.

1.2 Technical overview

Similar to how the recent result of [ACRX22] for geometric bipartite matching uses many ideas
originally described by Raghvendra and Agarwal [RA20], our deterministic transportation algorithm
is closely tied to the randomized algorithms of [KNP21] and [FL22]. We will briefly review their
approach and then summarize the new ideas required for its derandomization.

Randomized algorithms

The randomized transportation algorithms begin by building a randomly shifted quadtree over P ,
a hierarchical collection of d-dimensional cubic cells where each cell contains at most 2d equal sized
children and cells containing exactly one point act as leaves. They then add a large number of
Steiner vertices to the collection of input points P and use the tree structure to build a sparse
spanner graph over P and the Steiner vertices. The number of Steiner vertices added to each cell of
the quadtree is Θ((K/ε)d), where K would be the excepted distortion between any pair of vertices
if the graph was constructed as a simple tree containing one Steiner vertex per cell. In [KNP21],
K = O(log Sp(P )), while in [FL22], K = O(log n), and these large numbers of Steiner vertices are
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essentially the reason why O(d) appears in the exponents of the runtimes’ polylogs. While there are
additional edges, the spanner is essentially a rooted tree where every point and nearly every Steiner
vertex has exactly one parent Steiner vertex. Distances between points of P are approximately
maintained in the spanner graph, implying the value of an uncapacitated minimum cost flow with
sources and sink P will serve as a good estimate for the earth mover’s distance (the cost of the
optimal transportation map).

Both algorithms use a framework of Sherman [She17] to approximately compute the minimum
cost flow within the spanner graph. Sherman’s framework requires one to formulate the uncapac-
itated minimum cost flow problem as finding a flow vector f of minimum cost subject to linear
constraints Af = b where A is the vertex-edge incidence matrix of the graph and b is a supply
vector not necessarily equal to the supplies of P . One repeatedly finds flows f of approximately
optimal cost that approximately satisfy linear constraints where b may vary between rounds of
the process. Applied naively, the number of rounds of this process is polynomial in the condition
number of A which can be arbitrarily large. Fortunately, it is possible to describe a preconditioner
matrix B such that BA has low condition number. Repeatedly finding approximate solutions for
constraints of the form BAf = Bb suffices for finding an approximately optimal solution to the
minimum cost flow problem that meets its original supply constraints exactly.

The preconditioner B is set up so that ||Bb||1 acts as an estimate on the cost of an approximately
optimal flow f where f is found using a very restrictive kind of “oblivious” greedy approximation
algorithm. Specifically, the greedy approximation algorithm must move the surplus out of/into
any vertex mostly without regard to the other vertices’ surpluses. The condition number of BA
is proportional to the approximation factor of this greedy approximation algorithm. The specific
greedy algorithm used in both papers just repeatedly moves the surplus of each vertex up to its
parent. If a minimum cost flow sends some flow from a vertex u another vertex v, then the surpluses
pushed up from u and v are likely to cancel at a common ancestor not too far away from either
vertex. Therefore, the cost of pushing these surpluses up is bounded.

When the two algorithms finally have an approximate minimum cost flow that respects the
original supplies of P , they then need to transform it into a proper transportation map without
increasing its cost. To do so, they shortcut flow to avoid each of the Steiner vertices one by one,
using a binary search tree based data structure to do several shortcuts at once in the case of Fox
and Lu [FL22].

Derandomization

We now discuss our techniques for derandomizing the above algorithms. To make the these discus-
sions easier to follow, we will begin with techniques that lead to a polylogarithmic dependence on
the spread of P before adding more detail into how we handle the case of arbitrary spread.

In the previous algorithms [KNP21,FL22], randomness is directly used only for picking a ran-
domly shifted quadtree. The “obvious” solution, then, to derandomizing the algorithms is to use a
tree cover similar to how [ACRX22] derandomize the algorithm for geometric bipartite matching.
Indeed, we essentially take this approach in order to construct of our sparse spanner graph. How-
ever, instead of describing it as a collection of 2d quadtrees with different shifts, it becomes easier to
think of it as a single arbitrary quadtree where each cell is given a single Steiner vertex, hereinafter
referred to as its net point, that is directly connected to a collection of O(εd) nearby net points of
equal sized cells. These nearby connections allow for paths to go directly between close-by cells
that are not comparable in the quadtree’s hierarchy. Therefore, we do not need to worry about
two close-by points having a distant lowest common ancestor net point in the tree, and we can
guarantee distances are maintained up to a (1 + ε)-factor while using a mere O((n/εd) log Sp(P ))
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net points total.

The big issue with this approach becomes apparent when attempting to compute minimum cost
flows within Sherman’s [She17] framework. Our spanner contains edges going between quadtree
cells with potentially distant lowest common ancestors. Therefore, the greedy approximation algo-
rithm from before that simply pushes surpluses to net points’ parents no longer has an acceptable
approximation factor. In fact, the condition number of BA may be polynomial in Sp(P ) (and,
we emphasize, not polynomial in logSp(P )). We start to really miss the simplicity afforded us by
using a single randomized quadtree without shortcuts between nearby cells.

The solution to our problem is to simulate random shifting within the greedy algorithm and
preconditioner themselves. Our greedy approximation algorithm treats the initial surplus of each
vertex described by the vector b as a separate commodity. For each vertex u, for each cell C closer
to the root of the tree than u, we explicitly compute the probability that a random shift of the
quadtree would cause the cell C to contain u. We then route an equal portion of u’s original
surplus to C’s net point. Now, suppose a minimum cost flow sends some flow from u to another
vertex v. Using similar algebra to that used in the analyses of the randomly shifted quadtree,
we argue that the cost of surplus from u and v that does not cancel out at any given level is
proportional to the total cost of flow sent from u to v. Therefore, the approximation factor of the
greedy algorithm is proportional to log Sp(P ), the height of the quadtree. This greedy algorithm
is still oblivious enough to imply a preconditioner with condition number roughly log Sp(P ), so we
can make Sherman’s framework run in near-linear time.

Adding edges between nearby non-related cells also complicates recovering a transportation
map from the approximately optimal flow, because the connected components on each level of the
quadtree now have unbounded size. We describe a new method of recovering the transportation
map that no longer relies on the spanner having a particular structure. In fact, our method is
general enough that it can be applied to any flow on a spanner over P , with or without Steiner
vertices. In short, we process vertices in topological order according to the flow’s support graph,
shortcutting flow passing through each vertex we process. We continue performing the shortcuts
through a single vertex in groups using the data structure of Fox and Lu [FL22].

Unbounded spread

The deterministic algorithm for the geometric bipartite matching problem does an O(n log2 n) time
reduction to an instance where the spread is polynomial in n [ACRX22]. Applying this reduction
with the above observations is already enough to speed up the previous result; see Section 5. How-
ever, we do require more work to account for unbounded spread cases of geometric transportation.
The main observation used by Fox and Lu [FL22] to avoid dependencies on spread is that, with high
probability, no input point lies within distance ∆/poly n of the edge of any enclosing cell where ∆
is the side length of that cell (see also [AFP+17]). These forbidden regions for cell boundaries are
referred to as moats around the input points. Most of their algorithm design and analysis is condi-
tioned on this high probability event. In particular, the event occuring has two main implications
of interest to us: First, if the set of points within a cell has a bounding box of side length ∆/polyn,
then those points are far enough away from everything else that we can essentially treat them as
a separate instance. In turn, one can “compress” the quadtree so it has height O(n log n) using
purely combinatorial operations. Second, the expected distortion of distances between any pair of
points when using a single Steiner point per cell is O(log n) instead O(logSp), implying a reason-
able approximation ratio is acheivable by adding extra dependencies on log n to the running time.
The gist of their argument is that expected distortion is proportional to the number of quadtree
levels in which a pair of points may be separated with probability strictly between 0 and 1.
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To replicate the first implication, we subtly move the axis-aligned hyperplanes bounding cells
while building our quadtree so that no input point lies within the aforementioned ∆/polyn distance
from the edge of a cell. The amount we move the hyperplanes is small enough as to not affect the
quality of the spanner, but it does make it possible to compress the quadtree in a similar manner to
Fox and Lu [FL22]. In order to consistently move individual hyperplanes, we first build a collection
of binary search tree based data structures that help us quickly determine whether a particular
placement of a hyperplane would lie too close to one or more points.

We replicate the second implication by modifying how we simulate random shifts during the
minimum cost flow phase of the algorithm. In short, our goal is to compute probabilities conditioned
on shifts not placing cell boundaries too close to any vertex point. Suppose we wish to compute
how much surplus various net points throughout the spanner should send to a net point at level ℓ
where cells at level ℓ have side length (1 ± 1/poly n)∆. We group together maximal collections of
net points called blobs that cannot be separated by a shift without one or more of them lying very
close to the boundary of a level ℓ cell. The surpluses of a blob’s constituent points are treated as a
single commodity as we figure out how much surplus to route to each level ℓ net point. Now, if a
minimum cost flow sends flow from net point u to net point v, there are only O(log n) levels in which
the cost of moving their surpluses is non-negligible; at levels closer to the root, u and v appear in
the same blob and their surpluses cancel perfectly. In order to guarantee the uncancelled portions
of their surpluses still have cost proportional to the flow between u and v across the O(log n)
levels that matter, we build a collection of d binary search based data structures that describe the
full collection of shifts that do not separate members of any one blob into distinct level ℓ cells.
Probability computations are based on the proportional amount of shift allowed according to these
data structures, and we can still use similar algebra to that of the randomized algorithm analyses
to prove approximation quality.

1.3 Organization

We describe the construction of the sparse spanner graph in Section 2. We describe how to ap-
proximate the minimum cost flow within the spanner in Section 3. We describe how to recover an
actual transportation map from the approximate minimum cost flow and give a theorem stating
our main result in Section 4. We describe some simplifications we can make to our algorithm for
the case where Sp(P ) is sufficiently small in Section 5. These simplifications ultimately result in a
slightly lower running time for the special case of geometric bipartite matching. Finally, we describe
our approximation algorithm for uncapacitated minimum cost flow in general undirected graphs in
Section 6.

2 Reduction to minimum cost flow in a sparse spanner graph

In this section, we describe a way to build a sparse spanner graph G = (V,E) based on a determin-
istically constructed quadtree. As we construct the quadtree, we will subtly shift the hyperplanes
bounding its cells so that no hyperplane goes through a small rectangular moat around each input
point. At the end of this section, we describe a way to reduce the geometric transportation problem
to finding a minimum cost flow in our graph.

Throughout the rest of this report, we assume without loss of generality that 1/ε is a power
of 2 and that n ≥ 1/ε. We use d to denote the set of d dimensions, and lg to denote the logarithm
with base 2. As is standard, we will directly prove our algorithm returns a (1+O(ε))-approximate
transportation map. An actual (1 + ε)-approximation can be obtained in the same asymptotic
running time by dividing ε by a sufficiently large constant.
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2.1 A data structure for avoiding moats

Before we begin constructing our quadtree, we need to build a collection of d data structures that
can be queried to quickly decide if a given axis-aligned hyperplane will intersect any moats of
a given size. For each dimension i ∈ d, we store a sequence of balanced binary search trees in
a persistent data structure [DSST89] parameterized by moat size where the nodes of each tree
correspond to maximal collections of points that cannot be separated by the hyperplane orthogonal
to dimension i. Each node stores the least ith coordinate of the points in its collection along with
the greatest ith coordinate of its points. Given a value xi and a moat size λ, we can easily check
in O(log n) time whether the hyperplane orthogonal to direction i with ith coordinate xi intersects
a moat, and if so, how far back in the i direction it would need to shift to no longer intersect
any moat. To do so, we do both a predecessor and successor search for xi in the tree for λ. If xi
lies between the two values li ≤ ri stored for a node, then we need to move the hyperplane back
to li − λ. Otherwise, if its predecessor has highest coordinate ri and ri + λ > xi, we let li be the
least coordinate of the predecessor node and move the hyperplane to li−λ. Finally, if the successor
has least coordinate li with li − λ < xi, we again move the hyperplane to li − λ.

To build the data structure for dimension i, we begin by building the tree for moat size λ = 0: it
is simply a balanced binary search tree over the members of P where their ith coordinates act as the
keys. We now act as if λ is continuously increasing, processing the next event moment λ where
the moats around two consecutive nodes’ points meet. These event moments can be computed
and ordered in advance in O(n log n) time by looking at the difference in i-coordinate between
consecutive points and sorting. At each event moment, we remove the two nodes whose moats are
meeting and replace them with a single node. It takes O(n log n) time total to processes all the
events. Again, we store the sequence of trees in a persistent data structure so we can easily access
the current tree for any given value λ in O(log n) time. We require O(log n) additional space per
tree in the sequence, for O(n log n) space total.

Lemma 2.1 In O(n log n) time, we can create a collection of d data structures using O(n log n)
space each so that, for any given dimension i ∈ d, coordinate xi, and moat size λ ≥ 0, we can lookup
in O(log n) time whether the hyperplane orthogonal to dimension i at xi intersects any point’s moat,
and if so, how far back in the ith dimension it needs to be shifted to avoid hitting any moats.

2.2 Warped quadtree

With the preprocessing out of the way, we can turn to constructing the spanner itself. We begin by
building what we call a warped quadtree T on P . Let �P be the minimum bounding hypercube
containing P . Let C∗ be the hypercube centered at the center of �P but with twice its side length.
Warped quadtree T has root cell C∗. The other cells of T are not necessarily hypercubes, but we
do guarantee each cell is an axis-parallel box. We generally use ∆C,i to denote the length of a
cell C in the ith dimension and ℓC to denote its level or number of edges on the unique path in T
from C∗ to C.

We construct T iteratively as follows. We first add C∗ to a queue of unprocessed cells. While
there exists a cell C we have not yet processed, we remove C from the queue and perform the
following steps. If there are lg(n2/ε) ancestor cells of C including C itself that all contain a single
point from P , then C is a leaf. We are done processing C.

Otherwise, let P ′ ⊆ P = C ∩P , and let �P ′ denote the minimum bounding hypercube contain-
ing P ′. Let ∆C = mini∆C,i and ∆P ′ denote the side length of �P ′ . If |P ′| ≥ 2 and ∆P ′ < ∆C/n

4,
we contract P ′ to a single point p ∈ P ′ as described below before moving on to the next steps in
processing C.
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Now, we partition C into 2d approximately equal sized axis-aligned boxes by splitting C along
the following d hyperplanes. For each dimension i ∈ d, the ith hyperplane lies orthogonal to
dimension i. Let xi be the average of the ith coordinates for the two bounding faces of C lying
orthogonal to dimension i. We query the moat-avoiding data structure for dimension i and place
hyperplane i at the coordinate the data structure says we should use instead of xi so it does not
intersect any moat of size λ = ∆C,i/(2n

2).

As stated, the d hyperplanes partition C into 2d boxes. For each such box C ′ such that C ′∩P 6=
∅, we add C ′ as a child of C and add C ′ to the queue of unprocessed cells. We are done processing C.

We now specify how to contract a subset of points P ′ ⊆ P as mentioned above. Let p ∈ P ′ be an
arbitrary member of P ′. We create a new instance of the geometric transportation problem (P ′, µ′)
such that µ′(q) = µ(q) for all q ∈ P ′ \ {p} and µ′(p) = −∑

q∈(P ′\{p}) µ(q). Finally, we remove all

points in P ′ \ {p} from P and change µ(p) to be
∑

q∈P ′ µ(q), the total supply of all points in P ′,
including the original supply of p. We do not modify the currently constructed tree T or the data
structures for avoiding moats when we modify P .

Later, we describe how to build a sparse spanner graph G over the contracted set of points P
(note that we may perform further contractions to P before we actually construct G). We then com-
pute a (1+O(ε))-approximately minimum cost flow f on G. The last component of our contraction
procedure is to recursively compute one or more spanners for (P ′, µ′) and (1 +O(ε))-approximate
flows on those spanners. In Section 4, we recover an approximately optimal transportation map
from the union of these flows. The following lemma will be of use when we analyze the total cost
of these flows and our final transportation map.

Lemma 2.2 Let (P /, µ/) denote the problem instance (P, µ) after contracting P ′. We have
cost∗(P /, µ/) + cost∗(P ′, µ′) ≤ (1 +O(1/n2))cost∗(P, µ).

Proof: Let τ be an arbitrary transportation map for (P, µ), and let p ∈ P ′ be the point replacing P ′

during its contraction. We will construct two transportation maps τ/ and τ ′ for (P /, µ/) and (P ′, µ′),
respectively, such that cost(τ/) + cost(τ ′) ≤ (1 + O(1/n2))cost(τ). For all (a, b) ∈ ((P /)+ ×
(P /)−), a, b 6= p, we set τ/(a, b) := τ(a, b). Similarly, for all (a, b) ∈ ((P ′)+ × (P ′)−), a, b 6= p,
we set τ ′(a, b) := τ(a, b). For all q ∈ ((P /)+ \ {p}), we set τ/(q, p) :=

∑

r∈(P ′)− τ(q, r), and for

all q ∈ ((P /)− \ {p}), we set τ/(p, q) :=
∑

r∈(P ′)+ τ(r, q). Note that we might now have non-
zero pair assignments with p in both the first and second position, but we can shortcut “flow”
going through p to make τ/ a valid transportation map while only reducing its cost. Similarly,
for all q ∈ ((P ′)+ \ {p}), we set τ ′(q, p) :=

∑

r∈(P /)− τ(q, r), and for all q ∈ ((P ′)− \ {p}), we set

τ ′(p, q) :=
∑

r∈(P /)+ τ(r, q), again shortcutting as necessary to make τ ′ a valid transportation map.

We now verify our claim on the total cost of τ/ and τ ′. Consider any q ∈ (P / \ {p}) and
r ∈ (P ′ \ {p}). Our algorithm contracts P ′ while processing a cell C. By construction of C, every
point in P ′ is distance at least ∆C/n

2 from the boundary of C, and our choice to contract implies
the diameter of P ′ is less than

√
d∆C/n

4. Therefore, ||p− q||2 + ||r− p||2 ≤ (1+O(1/n2))||r− q||2.
To keep the algebra concise, we define τ/(q, r) or τ ′(q, r) to be 0 whenever (q, r) is not really in the
domain of τ/ or τ ′. We see
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cost(τ/) + cost(τ ′)

=
∑

(q,r)∈(P /×P /)

τ/(q, r) · ||r − q||2 +
∑

(q,r)∈(P ′×P ′)

τ ′(q, r) · ||r − q||2

=
∑

(q,r)∈((P /×P /)∪(P ′×P ′))|q,r 6=p

τ(q, r) · ||r − q||2 +
∑

q∈(P /\{p})

(

τ/(p, q) + τ/(q, p)
)

||p− q||2

+
∑

q∈(P ′\{p})

(

τ ′(p, q) + τ ′(q, p)
)

||p− q||2

≤
∑

(q,r)∈((P /×P /)∪(P ′×P ′))|q,r 6=p

τ(q, r) · ||r − q||2 +
∑

q∈(P /\{p})

∑

r∈P ′

(τ(r, q) + τ(q, r)) · ||p− q||2

+
∑

q∈(P ′\{p})

∑

r∈P /

(τ(r, q) + τ(q, r)) · ||p − q||2

=
∑

(q,r)∈((P /×P /)∪(P ′×P ′))

τ(q, r) · ||r − q||2

+
∑

q∈(P /\{p})

∑

r∈(P ′\{p})

(τ(r, q) + τ(q, r)) · (||p − q||2 + ||r − p||2)

≤
∑

(q,r)∈((P /×P /)∪(P ′×P ′))

τ(q, r) · ||r − q||2

+
∑

q∈(P /\{p})

∑

r∈(P ′\{p})

(τ(r, q) + τ(q, r)) · (1 +O(1/n2))||r − q||2

≤ (1 +O(1/n2))cost(τ).

�

2.3 Properties of warped quadtrees

We now prove some basic properties of the warped quadtree T .

Lemma 2.3 Suppose P has n′ points remaining after all contractions used in the construction
of T . Warped quadtree T contains at most O(n′ log n) cells.

Proof: Consider a path of cells 〈C1, C2, . . . , Ck〉 where each cell Cj in the path contains the same
point subset P ′. If |P ′| = 1, then k ≤ lg(n2/ε) = O(log n). Now suppose otherwise. For each j ∈
{2, . . . , k}, we have ∆Cj ≤ ((1/2+1/(2n2))∆Cj−1 . Therefore, ∆P ′ ≤ ∆Ck ≤ (1/2+1/(2n2))k−1∆C1 .
On the other hand, ∆P ′ ≥ ∆C1/n

4, because we did not contract P ′ to one point. We again conclude
that k = O(log n). We complete the proof by recalling there are at most n′ − 1 cells C where each
child of C contains strictly fewer points than C. �

Lemma 2.4 Let m be the total number of cells in all warped quadtrees, including those constructed
recursively during contractions. We can construct all the warped quadtrees in O((m+n) log n) time
total.

Proof: We use a similar strategy to that used in prior work [CK93, FL22], complicated only by
the existence of our data structures for avoiding moats. Given the original input point set P , we
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begin by creating d doubly-linked lists of the points P , each sorted by a different coordinate. As
we process any cell C with point subset P ′, we will provide access to a sorted sublists containing
just the points P ′. We will also provide the total supply of points in P ′.

Suppose we wish to process a cell C. If |P ′| = 1, we check if the lg(n2/ε)−1 first strict ancestors
of C have other children in O(log n) time, and if not, declare C to be a leaf and stop processing it.
If not, we use the sorted lists to determine whether ∆P ′ < ∆C/n

4 in constant time. If so, let p be
the point chosen to represent P ′ after contraction. We can use the total supply of P ′ to compute
the new supplies of p in both the current and recursive instances of the geometric transportation
problem in constant time. Further, we directly hand off the sorted lists for P ′ to the recursive
instance so that the root cell of the recursive instance can be computed in constant time as well.

After the possible contraction, we still need to find the child cells of C. For each dimension i ∈ d,
we use its moat avoiding data structure to compute the coordinate for the axis-aligned hyperplane
orthogonal to i in O(log n) time. We then search that dimension’s linked list of points from both
ends in simultaneously to find where that hyperplane splits in the points in time proportional to
the number of points in the less populated side of the split. We also perform individual deletions
and insertions of the other dimensions’ linked lists to create the sorted lists of every dimension for
the less populated side in time proportional to its number of points. The remains of the original
linked lists are the sorted point sets for the more populated side. When we have finished splitting
along each dimension, we add all cells with at least one point to be children of C and then add
them to the queue of cells to process.

Outside of splitting the point sets, we spend at most O(log n) time per each of the m cells. The
total time spent doing splits throughout all cells is proportional to the total number of points going
to the less populated sides of splits. Every time a point goes to a less populated cell, it shares
that cell with at most half as many points as it did before, meaning we move each point to a less
populated cell at most O(log n) times. The total time computing splits is therefore O(n log n), and
we spend O((m+ n) log n) time total computing all warped quadtrees. �

Lemma 2.5 Any cell at level ℓ has sides of length at least ∆C∗/(2ℓe) and at most (e∆C∗)/2ℓ

where e ≈ 2.72 denotes Euler’s number.

Proof: Assuming n is sufficiently large, Lemma 2.3 implies warped quadtree T has height strictly
less than n2. Let i ∈ d be any dimension. For any cell C and child cell C ′, we have (1/2 −
1/(2n2))∆C,i ≤ ∆C′,i ≤ (1/2 + 1/(2n2))∆C,i. Therefore, the minimum side length at level ℓ is at
least

(

1

2
− 1

2n2

)ℓ

∆C∗ >
∆C∗

2ℓ

(

1− 1

n2

)n2

>
∆C∗

2ℓe
,

and the maximum side length is at most

(

1

2
+

1

2n2

)ℓ

∆C∗ <
∆C∗

2ℓ

(

1 +
1

n2

)n2

<
e∆C∗

2ℓ
.

�

2.4 Constructing the spanner

We now describe how to build our sparse spanner graph G = (V,E) using the warped quadtree
described above. For each cell C in T , we add a single net point NC at the center of C. The
vertices V of G constitute the set P unioned with the set of net points.
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We add an edge from each point p ∈ P to the net point NC where C is the leaf cell containing p.
For each pair of net points NC and NC′ such that C ′ is the parent cell of C, we add an edge between
NC and NC′ . By construction of T , the cells at any single level ℓ form a subset of a d-dimensional
grid, albeit with somewhat uneven spacing between consecutive parallel boundary hyperplanes. For
each cell C belonging to some level ℓ, we add edges from NC to the at most (1/ε+1)d−1 = O(1/εd)
other net points NC′ where C ′ is another level ℓ cell at most 1/(2ε) grid cells away in each of the
d dimensions. All edges are weighted according to the Euclidean distance between their endpoints.
We let distG(p, q) denote the shortest path distance between vertices p and q in G.

Lemma 2.6 Let n′ be the number of points in P after contractions. The sparse spanner graph G =
(V,E) has O(n′ log n) vertices and O((n′/εd) log n) edges. Given the warped quadtree T , it can be
built in O((n′/εd) log n) time.

Proof: The number of vertices follows immediately from Lemma 2.3. We add O(1/εd) edges per
net point, establishing the claimed total number of edges. We do the following to construct G.
Recall, the cells at any particular level form a subset of a grid. For each level ℓ, we sort its cells by
their location in their grid so we may efficiently find all adjacent pairs of cell. We then search the
neighborhood around each cell to figure out which edges to add to that cell’s net point. Each level
contains at most n cell, so the total time spent sorting at all levels is O(n′ log n). The time spent
searching neighbors is proportional to the number of edges in G. �

Lemma 2.7 The distance between any pair of points p, q ∈ P in G is at most (1+O(ε)) · ||p− q||2.

Proof: Let C be the deepest/smallest cell containing both p and q. There exists at least one
axis-aligned hyperplane splitting C into children cells that specifically separates p and q. Let this
hyperplane be orthogonal to dimension i. By construction, both p and q are distance ∆C,i/n

2 or
more from this hyperplane. Applying Lemma 2.5, we conclude ||q − p||2 ≥ ∆C∗/(2ℓC−1en2).

Let Cp and Cq be the leaf cells containing p and q, respectively. Both leaf cells lie at level ℓC +
lg(n2/ε) or higher. Therefore, they have side lengths at most (εe∆C∗)/(2ℓCn2) ≤ ((εe2)/2)·||q−p||2 .

Let ℓ′ denote the greatest level where either Cp and Cq have the same ancestor at level ℓ′ or the
net points of their level ℓ′ ancestors are adjacent in G. Let C ′

p and C ′
q denote the ancestors of Cp

and Cq, respectively, at level ℓ
′. Suppose C ′

p 6= Cp and C ′
q 6= Cq. In that case, their children cells

containing p and q, respectively, do not contain adjacent net points. There must be at least 1/(2ε)
level ℓ′+1 cells separating those two children in some dimension, implying ||q−p||2 ≥ ∆C∗/(2ℓ

′+2eε).
Meanwhile, the sides of C ′

p and C
′
q have length at most (e∆C∗)/2ℓ

′ ≤ (4e2ε) · ||q−p||2. We conclude,
whether or not one of C ′

p or C ′
q is a leaf, they have sides of length at most (4e2ε) · ||q − p||2.

Let N ′
p = NC′

p
and N ′

q = NC′
q
denote the net points of C ′

p and C ′
q, respectively. Triangle

inequality implies distG(N
′
p, N

′
q) = ||N ′

q−N ′
p||2 ≤ ||p−N ′

p||2+||q−p||2+||N ′
q−q||2 ≤ (1+4

√
de2ε)·||q−

p||2. Some (admittedly loose) algebra based on the diameters of the descendent cells of C ′
p and C ′

q

implies both distG(p,N
′
p) and distG(q,N

′
q) to be at most (

√
d/2)

∑n2

k=0(1/2+1/(2n2))k((4e2ε) · ||q−
p||2) ≤ (4

√
de3ε)·||q−p||2. Finally, we see distG(p, q) ≤ distG(p,N

′
p)+distG(N

′
p, N

′
q)+distG(N

′
q, q) ≤

(1 + 4
√
d(e2 + e3)ε) · ||q − p||2 = (1 +O(ε)) · ||q − p||2. �

2.5 Reduction to minimum cost flow

We are now ready to reduce the problem of computing an approximately optimal transportation
map for contracted instance (P, µ) to one of computing an approximately optimal minimum cost
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flow in our sparse spanner graph G = (V,E). Our formulation of the uncapacitated minimum cost
flow problem follows prior work [KNP21,FL22].

Let ~E be the set of edges E oriented arbitrarily. A vector f ∈ R
~E indexed by the oriented

edges ~E is called a flow vector or often simply a flow . Let A denote the |V | × | ~E| vertex-edge
incidence matrix where for each vertex-edge pair (u, (v,w)) ∈ V × ~E, we have Au,(v,w) = 1 if
u = v, Au,(v,w) = −1 if u = w, and Au,(v,w) = 0 otherwise. The divergence of a flow f at a vertex

v is defined as (Af)v =
∑

(v,w) f(v,w) −
∑

(u,v) f(u,v). For each edge (u, v) ∈ ~E, we abuse notation
by letting f(v,u) := −f(u,v).

Let || · || ~E denote the norm on R
~E where ||f || ~E =

∑

(u,v)∈ ~E |f(u,v)| · ||v − u||2. We define an
instance of the uncapacited minimum cost flow problem in our spanner graph G as a pair
(G, b) where b ∈ R

V is a given set of vertex divergences. A feasible solution to the problem is a
flow vector f such that Af = b. Let cost∗(G, b) to be the minimum value ||f || ~E among feasible
flow vectors f . The goal is to find a flow vector achieving this minimum.

For our reduction from the geometric transportation problem, we define b∗ ∈ R
V to be the set

of divergences such that b∗p = µ(p) for all p ∈ P and b∗v = 0 for all net points v. By the construction
of G and Lemma 2.7, we have cost∗(P, µ) ≤ cost∗(G, b∗) ≤ (1 + O(ε))cost∗(P, µ). Our goal in
Section 3 is to compute a feasible flow f for (G, b∗) of cost ||f || ~E ≤ (1 + O(ε)) · cost∗(G, b∗) =
(1 +O(ε))cost∗(P, µ).

We perform at most n−1 contraction operations across the whole of our algorithm. Lemma 2.2
implies the total cost of optimal transportation maps across all contracted instances form a (1 +
O(1/n))-approximation of the optimal cost for the original input point set. We build span-
ners for all of these instances, and use them to find flows of cost at most (1 + O(ε)) times
the optimal cost of a transportation map for each of these instances. The total cost of these
flows is a (1 + O(ε))-approximation of the optimal cost for the original input transportation in-
stance. If n′ is the size of any of these minimal point sets, its approximate flow will be computed
in O(n′ε−(d+2) log5 n log log n) time, implying computing and combining all the individual flows
will take O(nε−(d+2) log5 n log log n) time. Finally, in Section 4, we turn this combined flow into a
transportation map of no greater cost in O(n log2 n) time.

3 Preconditioning for minimum cost flow

Let G = (V,E) be the spanner defined in Section 2 for contracted geometric transportation in-
stance (P, µ), and let b∗ be the set of divergences defined for the corresponding instance of mini-
mum cost flow. In this section, we describe a way to find a (1+O(ε))-approximate solution for the
minimum cost flow instance (G, b∗) using Sherman’s generalized preconditioning framework [She17].

Let Cp be denote the leaf cell containing a point p ∈ P . By the definition of G, point p is
incident to exact one edge connecting p to NCp . For simplicity, let f ′ be a flow such that, for all
points p ∈ P , f ′(p,NCp)

= b∗p. From now on, we assume G = (V,E) does not have any point in

P , and let b ∈ R
V such that bNCp = b∗p,∀p ∈ P and bv = 0 otherwise. We focus on finding an

(1 +O(ε))-approximation f of the minimum cost flow instance on (G, b). The flow f + f ′ is then a
(1 +O(ε))-approximate solution for the minimum cost flow instance (G, b∗).

Consider any instance of the minimum cost flow problem in G with an arbitrary divergence

vector b̃ ∈ R
V , and let f∗

b̃
:= argmin

f∈R~E ,Af=b̃
||f || ~E . A flow vector f ∈ R

~E is an (α, β)-solution
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to the problem if

||f || ~E ≤ α||f
∗
b̃
|| ~E

||Af − b̃||1 ≤ β||A|| ||f∗b̃ || ~E
where ||A|| is the norm of the linear map represented by A. An algorithm yielding an (α, β)-solution
is called an (α, β)-solver .

By arguments in [KNP21], we seek a preconditioner B ∈ R
V×V of full column rank such that,

for any b̃ ∈ RV with
∑

v∈V b̃v = 0, it satisfies

||Bb̃||1 ≤ min{||f || ~E : f ∈ R
~E , Af = b̃} ≤ κ||Bb̃||1 (1)

for some sufficiently small function κ of n, ε, and d.
Let M be the time it takes to multiply BA and (BA)T by a vector. Then there exists a

(1 + ε, β)-solver for any ε, β > 0 for this problem with running time bounded by O(κ2(|V |+ | ~E|+
M) log | ~E|(ε−2 + log β−1) [She17]. Moreover, if a feasible flow f ∈ R

~E with cost ||f || ~E ≤ κ||Bb̃||1
can be found in time K, there is a (κ, 0)-solver with running time K. By setting β = εκ−2 [KNP21],
the composition of these two solvers is a (1 + 2ε, 0)-solver with running time bounded by

O(κ2(|V |+ | ~E|+M) log | ~E|(ε−2 + log κ) +K).

3.1 Legal shifts, blobs, and probabilities

Our preconditioner B essentially simulates the effects of randomly shifting T along a diagonal. For
each level of T , we need to determine the probabilities that a random shift, conditioned on cell
boundaries not touching any moats, causes certain cells to contain certain subsets of vertices. In
order to do so efficiently, we build two sets of data structures. One set helps us determine the
set of legal shifts for T relative to each dimension, and the other set helps us maintain collections
of points that cannot be separated into distinct cells during a legal shift. The second set of data
structures will prove useful for efficiently determining how much flow to send from several vertices
at once as figuring these flows out for each individual vertex would be too expensive.

Let ∆ℓ = ∆C∗/(2ℓe) be the lower bound on the side length of any level ℓ cell as established
in Lemma 2.5. For each level ℓ, we compute a maximal set sℓi of values in [0,∆ℓ) per dimension
i ∈ d such that no grid lines clip any moat of size 2∆ℓ

n2 around any vertex v ∈ V when we shift the
grid by any value in sℓi . We call sℓi the legal shifts at level ℓ relative to dimension i, and we use
sℓ := ∩isℓi to denote the collection of legal shifts relative to all dimensions.

For computing sℓ, we define a blob at level ℓ as a maximal set of points that are guaranteed to
be in the same cell at this level in our quadtree after an arbitrary shift. Now we describe how to
compute the set of all blobs blℓ at each level ℓ. Because the moat size is equal to 2∆ℓ

n2 , a blob can
only become larger when ℓ decreases. Therefore, we compute each blℓ in decreasing order of ℓ by
combining smaller blobs to bigger ones as we consider each level. For any net point NC and level
ℓ < ℓC , let blℓ(NC) denote the blob containing NC at level ℓ. We leave blℓ(NC) undefined for any
ℓ ≥ ℓC . Let �bl be a near -minimum bounding box of all points in a blob bl. More specifically, if
blob bl is at level ℓ, we make �bl the box obtained by extending the minimum bounding box of bl
by ∆ℓ

n2 in each dimension. We use �
l,i
bl and �

r,i
bl to denote the coordinates of left and right sides of

�bl for each dimension i.
We now describe a way to compute blℓ given blℓ+1. First, for every bl ∈ blℓ+1, we extend �bl

so it is now a near-minimum bounding box of bl at level ℓ. Then, we sort blobs in blℓ+1 by the
least coordinate of their bounding boxes in the first dimension. After that, we split these blobs to
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subsets by putting any two blobs bl1 and bl2 to the same subset if [�l,i
bl1,�

r,i
bl1] and [�l,i

bl2,�
r,i
bl2] are

not disjoint, because we cannot put a grid line between these two blobs without hitting the moat
around at least one point in them. For each of these subsets, we recursively perform this procedure
for the remaining d − 1 dimensions. Every subset at the lowest level of recursion is a blob in blℓ.
If ℓ is the largest level, we may assume blℓ+1 is the set of blobs where each blob contains a single
vertex in V . For each blob bl ∈ blℓ, we call the blobs at level ℓ + 1 inside it its child blobs. We
use children(bl) to denote the set of child blobs of bl and parent(bl) to denote the parent blob of
bl. Since the sets of points in blobs at the same level are disjoint, it is easy to see that the number
of distinct blobs among all levels together is at most 2|V | − 1. Now, consider a blob bl for some
level ℓ, and let C be the level ℓ cell containing bl. By the definition of T , there is an ancestor
of C at most O(log n) levels closer to the root that has a sibling cell C ′. Cell C ′ contains at least
one blob bl′. Within another O(log n) levels, blobs bl and bl′ will have near-bounding boxes large
enough to touch. Therefore, every blob can only appear in at most O(log n) levels. We define the
blob forest as the hierarchical structure of blobs defined above. For simplicity, we allow the same
blob (with the same set of points) to appear multiple times in the blob forest, once per level it
appears. The blob forest has O(|V | log n) nodes in total.

We now compute the legal shifts at each level ℓ using blobs in blℓ. To compute sℓi for some

dimension i, we look at �
l,i
bl and �

r,i
bl for bl ∈ blℓ. Let C be the cell that contains bl at level ℓ.

Let coorl,i(C) and coorr,i(C) denote the coordinates of the left and right sides of C in dimension i,

respectively. Then we call [0,∆ℓ)∩ (�l,i
bl − coorl,i(C),�r,i

bl − coorl,i(C)) the set of forbidden shifts

for bl. Naturally, the set of legal shifts sℓi is equal to [0,∆ℓ) minus the union of forbidden shifts
of all blobs in this dimension. We can store sℓi in an array of size at most the number of blobs in
blℓ such that every element in the array is a maximal continuous subset in the union. From now
on, we assume elements in sℓi is sorted in increasing order by their lower bounds. Therefore, we
can precompute the total size of legal shifts before any element and then query the size of all legal
shifts in [x, y] ∩ sℓi for any values x, y in O(log n) time. The construction of all data structures
mentioned above can be accomplished in O(|V | log2 n) time total through careful use of dynamic
ordered dictionaries such as balanced binary search trees.

The last preparation for constructing the preconditioner is to compute the probability that a
cell C contains a blob bl if we shift the grid using a random value in sℓC , for every pair of bl and
C at the same level. We use P[bl ∈ C] to denote this probability. Recall, the side length of any
cell at level ℓ is at least ∆ℓ. Let Cℓ,bl be the cell containing bl at level ℓ. If we consider the legal
shifts putting bl in different cells in increasing order, we see each dimension is crossed at most once.
Therefore, there are at most d+1 cells for which we need to calculate the probability for each blob
per level. Let Cℓ,bl denote this subset of cells. Starting from the root level, for every level ℓ, we
process the cells Cℓ,bl. Not every cell in T has all 2d possible children, so some of the left neighbors
of Cℓ,bl in the grid at level ℓ may not exist in T itself. For simplicity, we put a softlink to Cℓ,bl in
place of such a grid cell if it does not already have one. For each C ∈ Cℓ,bl, we define sC,bl,i to be
the subset of sℓi that could make C cover bl in dimension i. Let lℓ := |sℓ| and lC,bl := | ∩i sC,bl,i|.
We have P[bl ∈ C] =

lC,bl
lℓ

.

3.2 The preconditioner

The preconditioner B is the V × V matrix defined as follows. For every net point u = NC , for
every level ℓ < ℓC , we let P′[blℓ(u) ∈ C] denote the sum of values P[blℓ(u) ∈ C ′] for all C ′ equal to

or softlinked to C. We set BNC′′ ,u =
∆ℓC
3Λ · P′[blℓ(u) ∈ C ′′] where Λ = 48d3/2e2 lg n, for each cell

C ′′ ∈ Cℓ,blℓ(u) that is part of T . In addition, we set Bu,u =
∆ℓC
3Λ for all u ∈ V and set all other
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entries to 0.
Observe how for each column NC of B, the entries for each row NC′ with ℓC′ ≥ ℓC are all 0,

with the exception of row NC itself. Any linear combination of columns excluding column NC with

BNC ,NC =
∆ℓC
3Λ must have at least one non-zero value for some row NC′ , ℓC′ > ℓC , implying the

combination does not equal column NC . Matrix B has full column rank.
We now describe an oblivious greedy algorithm that computes a flow f such that Af = b̃ and

the cost is at most Λ times that of the minimum cost. This algorithm is used in the algorithm
explicitly as the (κ, 0)-solver discussed above, and its existence is also used in establishing the
condition number of BA. We treat each blob as if it is moving the total divergence of higher level
constituent vertices together up toward the root. By the time all the divergences reach the root,
they will cancel each other out and the flow will be valid for the vector b̃. For a blob bl ∈ blℓ, define
bbl :=

∑

NC∈bl|ℓC≥ℓ
b̃NC . Observe, bbl =

∑

bl′∈children(bl) bbl′ +
∑

NC∈bl|ℓC=ℓ
b̃NC . To aid in moving

divergences we treat the total divergence of each child blob of bl as a separate commodity. The flow
along each edge will be the sum of flows of all commodities on that edge. Precisely, for every cell
C in a postorder traversal of T , for every bl with P

′[bl ∈ C] > 0, for every cell C ′ ∈ CℓC−1,parent(bl),
we add P

′[parent(bl) ∈ C ′]P′[bl ∈ C]bbl units of flow along the unique path from NC to its parent
to N ′

C . Observe that for any blob bl ∈ blℓ for some level ℓ, we send bbl units total to level ℓ−1 cells.
We now establish both the approximation ratio of the greedy algorithm and the condition

number of BA. Let f∗
b̃
:= argmin

f∈R~E ,Af=b̃
||f || ~E . We arbitrarily decompose f∗

b̃
into a set of flows

F =
{

f1, f2, . . .
}

with the following properties: 1) each flow follows a simple path between two

vertices u and v; 2) for each flow f i ∈ F and edge (u, v) ∈ ~E either f i(u, v) = 0 or its sign is equal
to the sign of f∗

b̃
(u, v); 3) for each flow f i ∈ F and vertex v, either (Af i)v = 0 or its sign is equal

to that of b̃v; and 4) for each edge (u, v) ∈ ~E, we have f∗
b̃
(u, v) =

∑

f i∈F f
i(u, v). The existence of

such a decomposition is a standard part of network flow theory.
Let f be the flow found by our greedy algorithm. We charge a portion of ||f || ~E to ||f i|| ~E for

each flow f i so that the sum of charges over all choices for f i sum to at least ||f || ~E and for any
one f i, we overcharge by a factor of at most Λ. Fix some f i ∈ F sending flow from some vertex
u to some vertex v. Let biu = Af iu. We define bu(C) as the part of divergence biu that the greedy
algorithm sends to C. Observe biu = −biv. Without loss of generality we assume biu ≥ 0 and biv ≤ 0.

Now we are ready to give the main lemma of the greedy algorithm.

Lemma 3.1 Let Cu and Cv be the leaf cells containing u and v, respectively. Let ℓ be any level
with ℓ ≤ min{ℓCu , ℓCv}. Then the total amount of biu not cancelled out by biv at level ℓ is

∑

C∈T,ℓC=ℓ

max{0, (bu(C) + bv(C))} ≤ 4d||u − v||2
∆ℓ

biu.

Proof: Let Lj ⊆ Cℓ,blℓ(u) denote the subset of cells in Cℓ,blℓ(u) that have lesser coordinates in
dimension j, and let Rj := Cℓ,blℓ(u) \ Lj. If Cℓ,blℓ(v) ∩ Lj = ∅ or Cℓ,blℓ(v) ∩ Rj = ∅ for any j, then
||u − v||2 ≥ |coorj(u) − coorj(v)| ≥ (1 − 2/n)∆ℓ and the lemma holds. From here on, we assume
both Cℓ,blℓ(v) ∩ Lj and Cℓ,blℓ(v) ∩ Rj are non-empty for all dimensions j.

Let bu(Lj) :=
∑

C∈L bu(C) be the total amount of biu sent to Lj, and define bu(Rj), bv(Lj),
and bv(Rj) similarly. There are O(|V | log n) nodes in the blob forest, and we may assume |V | ≤
O(n log n). Therefore, |sℓ| ≥ ∆ℓ − d·O(n log2 n)∆ℓ

n2 ≥ ∆ℓ/2, assuming n is sufficiently large. Let
lLj ,blℓ(u) denote the total length of legal shifts in sℓ that make any cell of Lj cover blℓ(u) and define
lLj ,blℓ(v) similarly. We have lLj ,blℓ(u) − lLj ,blℓ(v) ≤ ||u− v||2. Therefore,

bu(Lj) + bv(Lj) =
lLj ,blℓ(u) − lLj ,blℓ(v)

sℓ
biu ≤

2||u− v||2
∆ℓ

biu.
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Similarly, bu(Rj) + bv(Rj) ≤ 2||u− v||2/∆ℓ · biu.
Finally, summing over all dimensions j, we have

∑

C∈T,ℓC=ℓ

max{0, (bu(C) + bv(C))} ≤
∑

j∈d

max{0, bu(Lj) + bv(Lj)}+max{0, bu(Rj) + bv(Rj)}

≤ 4d||u − v||2
∆ℓ

biu.

�

Lemma 3.2 The flow computed by the greedy algorithm overcharges the cost of f i by a factor of
at most 48d3/2e2 lg n.

Proof: Let ℓ be the smallest value such that 4d||u − v||2 ≥ ∆ℓ. By Lemma 3.1, the divergence
of biu remaining at level ℓ and greater is biu. The divergence at each level ℓ′ is sent to net points
at level ℓ′ − 1 through paths of length at most 3

√
de2∆ℓ′ . So the cost of carrying biu to level ℓ

is at most
∑

ℓ′>ℓ 3
√
de2∆ℓ′b

i
u ≤ 3

√
de2∆ℓb

i
u ≤ 12d3/2e2||f i|| ~E in total. Starting from level ℓ′ = ℓ,

the cost of carrying the remain divergence of biu to one level less than the current level is at most
4d||u−v||2

∆ℓ′
biu·3
√
de2∆ℓ′ ≤ 12d3/2e2||f i|| ~E . Because ∆ℓ−1 > 4d||u−v||2, we have ∆(ℓ−1)−(2 lgn−2−lg d) >

n2||u−v||2. Moats will force u and v to be in the same blob at any level ℓ′ ≤ (ℓ−1)−(2 lg n−2−lg d).
This means for any cell C with ℓC ≤ (ℓ − 1) − (2 lg n − 2 − lg d), we have bu(C) + bv(C) = 0.
So we spend at most 12d3/2e2||f i|| ~E cost to send divergence of biu per level from level ℓ to level
(ℓ− 1)− (2 lg n− 2− lg d), and we spend zero cost for biu after that. In total, the greedy algorithm
charges at most (2 lg n − lg d)12d3/2e2||f i|| ~E cost to divergence of u in f i. Similarly, we can show
the cost it charges to divergence of v has the same upper bound, and the lemma holds. �

In our algorithm,
|Bb̃NC |3Λ

∆ℓC
divergence leaves the net point NC of a cell C through paths of

length at most 3
√
de2∆ℓC . On the other hand, these divergences leave NC through edges of length

at least
√
d(1/2 − (1/(n2 + 1)))∆ℓC . All together, we see ||Bb̃||1 < ||f ||~E

Λ ≤ ||f∗|| ~E . Therefore, by

setting κ = 9
√
de2Λ, we have

||Bb̃||1 < min{||f || ~E : f ∈ R
~E, Af = b̃} ≤ ||f || ~E ≤ κ||Bb̃||1.

Lemma 3.3 Applications of BA and (BA)T to arbitrary vectors f ∈ R
~E and b̃ ∈ R

V , respectively,
can be done in O(|E| log n) time.

Proof: Let A′ = Af and let b′ = BT b̃. Both A, f and b′ has O(|E|) non-zero entries, so we
can compute A′ and AT b′ in O(|E|) time given b′. We show how to compute BA′ and BT b̃ in
O(|E| log n) time.

Computing BA′ Let Cu be the cell with u as its net point. By the definition of B, for each cell
C,

(BA′)NC =
∆C

3Λ
A′
NC +

∆C

3Λ

∑

u∈V,P′[blℓC (u)∈C]>0

P
′[blℓC (u) ∈ C]A′

u

=
∆C

3Λ
A′
NC

+
∆C

3Λ

∑

bl∈blℓC ,P
′[bl∈C]>0

P
′[bl ∈ C]

∑

u∈bl,ℓCu>ℓ

A′
u
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There are at most 2|V |−1 different blobs and
∑

u∈bl,ℓCu>ℓ
A′
u =

∑

bl′∈children(bl)

∑

u∈bl,ℓCu>ℓ+1A
′
u+

∑

u∈bl′,ℓCu=ℓ+1,bl′∈children(bl)A
′
u for each blob at some level ℓ. So we can compute

∑

u∈bl,ℓCu>ℓ
A′
u for

each blob bl in O(|V | log n) time in total during a postorder traversal of the blobs. After that, we
can fill in all entries in BA′ in O(|E|) time.

Computing b′ For every point u, except BT
u,u, every non-zero entry in BT

u corresponds to a
net point NC of a cell C with P

′[blℓC (u) ∈ C] > 0. Let Cu be the cell with u as its net

point. We have b′u =
∆Cu
3Λ b̃u +

∑

C,P′[blℓC (u)∈C]>0
∆C
3Λ P

′[blℓC (u) ∈ C]b̃NC . Let bl− denote the

set of strict ancestor blobs of a blob bl. Let ℓ be any level where blℓ(u) is defined. We have
∑

C,ℓC≤ℓ,P
′[blℓC (u)∈C]>0

∆C
3Λ P

′[blℓC (u) ∈ C]b̃NC =
∑

C,ℓC=ℓ,P
′[blℓ(u)∈C]>0

∆C
3Λ P

′[blℓ(u) ∈ C]b̃NC

+
∑

bl′∈blℓ(u)−
∑

C,P′[bl′∈C]>0
∆C
3Λ P

′[bl′ ∈ C]b̃NC . We can compute
∑

bl′∈bl−
∑

C,P′[bl′∈C]>0
∆C
3Λ P

′[bl′ ∈
C]b̃NC for each blob bl in O(|V | log n) time in total during a preorder traversal of the blobs. Then
we can fill in each entry of b′ in constant time. �

We have shown there exists a (1+2ε, 0)-solver for the minimum cost flow problem onG. Plugging
in all the pieces, we see the running time of the solver is at most O(|E|ε−2 log4 n log log n).

4 Recovering a transportation map from a flow

Let Ĝ = (V,E) be any connected graph such that P ⊆ V ⊂ R
d and each edge has weight equal to

the Euclidean distance between endpoints. Let A be the vertex-edge incidence matrix of Ĝ, and

let f̂ ∈ R
~E be any flow in Ĝ such that Af̂ = µ where µ(v) = 0 if v /∈ P . In this section, we show

how to transform f̂ into a transformation map for (P, µ) where cost(τ) ≤ ||f̂ || ~E . Throughout
this section, we let m = |E|. We also assume m = O(n4), as we could simply compute an optimal
transportation map from scratch otherwise using an algorithm for minimum cost flow in general
graphs [Orl93].

Let ~E′ denote the edges of the complete graph over V where each edge is oriented consistently

with its counterpart in ~E if it exists and oriented arbitrarily otherwise. We maintain a flow f ∈ R
~E′

where initially f(u,v) = f̂(u,v) if uv ∈ E, and f(u,v) = 0 otherwise. We will eventually guarantee
f(u,v) 6= 0 only for u, v ∈ P .

For each point p ∈ P , there are potentially Θ(|E|) other vertices that may at some point
during the process directly send flow to or receive flow from p. We cannot afford to update these
flow assignments individually, so for each vertex v ∈ V , we instead maintain a single prefix split

tree [FL22] S(v) that will contain representations of certain vertices sending flow to v. A prefix
split tree S is an ordered binary tree where each node η is assigned a non-negative potential φ(η).
We let φ(S) denote the total potential of nodes in S. Prefix split trees containing s nodes support
the following operations in amortized O(log s) time each:

• Insert(S, φ): Insert a node of potential φ into tree S and return a reference to this node.

• Delete(S, η): Delete the node η from the tree S.

• Merge(S, S′): Modify S by adding all nodes of S′ after the nodes of S, emptying S′ in the
process.

• PrefixSplit(S, t): Assume 0 ≤ t ≤ φ(S). If a prefix of nodes in S has total potential
exactly t, then let η1 be the last member of this prefix. Otherwise, let η be the first node
where the prefix through η has total potential greater than t. Split η by replacing it in-place
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with two nodes η1 and η2 such φ(η1) + φ(η2) = φ(η) and the prefix through η1 has total
potential exactly t. Either way, create a new tree S′ containing the prefix through η1 and
remove this prefix from S.

Each node η in S(v) represents a vertex u ∈ V , and each vertex may be represented by multiple
nodes, even within a single prefix split tree. We denote the vertex represented by η as r(η). All
split tree S(v) are initially empty. When a node η is split into two nodes η1 and η2, we set

r(η1) = r(η2) := r(η). Along with the prefix split trees, we maintain a so-called base flow f ′ ∈ R
~E

that is initially equal to f . We maintain the invariant that for each pair of vertices u and v,
f ′(u,v) +

∑

η∈S(v)|r(η)=u φ(η) = f(u,v).

The support of flow f ′ is the set of undirected edges uv for which f ′(u,v) 6= 0. We begin by

changing f ′ and therefore f so that its support is a forest. We use a process inspired by the acyclic
flow algorithm of Sleator and Tarjan [ST83]. Let Ḡ = (V, Ē) be initially empty. We iteratively
process each directed edge (u, v) ∈ ~E such that f ′(u,v) > 0. When it comes time to process (u, v),

we check if u and v are in the same component of Ḡ. If not, we add uv to Ḡ. Otherwise, let π be
the directed path from u to v in Ḡ. We define the unit cost of π to be |π| := ∑

(x,y)∈π|f(x,y)>0 ||y−
x||2 −

∑

(x,y)∈π|f(x,y)<0 ||y − x||2, the amount ||f || ~E increases per unit of flow added to the directed

edges of π. If ||v−u||2 ≥ |π|, let (o, p) = argmin(x,y)∈({(x′,y′)∈π|f(x′,y′)<0}∪(v,u))−f(x,y), the first edge
to go to 0 flow if we “reroute“ as much flow along π instead of (u, v) as we can, and let F = f(o,p).
If ||v− u||2 < |π|, let (o, p) = argmin(x,y)∈π|f(x,y)>0 f(x,y) and F = −f(o,p) instead. We modify f ′ by

increasing the flow along all directed edges of π by F and decreasing the flow along (u, v) by F .
Doing so causes f ′(o,p) = 0. If op 6= uv, we remove op from Ḡ and add uv in its place. We are

now done processing uv. Observe Ḡ remains a forest after processing each edge. Therefore, each
edge can be processed in (amortized) O(log n) time using standard extensions to dynamic tree data
structures [ST83].

Lemma 4.1 The above procedure does not change Af , the cost of ||f || ~E does not increase, and
the support of f becomes a forest. Further, if µ(p) is an integer for all p ∈ P , then the procedure
guarantees f(u,v) is an integer for all uv ∈ E.

Proof: Each time the flow f ′, and thus f , are changed, we do so by changing the route some flow
takes between a pair of vertices u and v. We change the flow along the path π by the opposite
amount we change f ′(u,v), so the vector Af does not change. Further, the choice to increase or

decrease flow along π is made so that the change cannot increase ||f || ~E . Whenever an edge uv is
about to be added to Ḡ and create a cycle, we remove an edge (possibly uv itself) from that cycle.
Therefore Ḡ and the support of f is a forest.

For the claim about f being integral, observe that it is trivially true if every component of Ḡ
contains one vertex. If some component contains multiple vertices, let u be a leaf in that component,
and let uv be its one incident edge. Because (Af)u is integral, f(u,v) must be integral as well. If we
(for the sake of proof) remove u from Ḡ and set f(u,v) = 0, then (Af)v remains integral. The claim
follows by induction on the number of vertices in Ḡ. �

Consider the orientation of Ḡ such that for each directed edge (u, v) in the orientation, f(u,v) > 0.
We now process each vertex in topological order with respect to this orientation.

Suppose it is time to start processing vertex v. Our procedure guarantees that 1) f ′(u,v) = 0 for

each vertex u that has already been processed, 2) f ′(v,w) has not yet changed for each vertex w that

we have not yet processed, and 3) v is not yet represented in S(w) for any vertex w.
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From the above guarantees and the definition of Ḡ, we may conclude that f ′(v,w) ≥ 0 for any
vertex w we have not yet processed. Our goal is to shortcut flow passing through v from a processed
vertex u to an unprocessed vertex w by adding to w’s split tree. If v ∈ P+, then let η be the node
returned by Insert(S(v), µ(v)) and set r(η) ← v. In doing so, we’re implicitly declaring that v is
receiving µ(v) units of flow from itself, and we don’t have to set up any special cases for when we
want v to actually send flow. This moment is the only time we create new nodes for the split trees.
Observe whether or not we create a new node, we now have φ(S(v)) ≥∑

w∈V f
′
(v,w).

While there exists a vertex w such that f ′(v,w) > 0, we do the following. Let S′ be the tree

returned by PrefixSplit(S(v), f ′(v,w)). We perform a Merge(S(w), S′), shortcutting the flow

through v to w as desired. Finally, we set f ′(v,w) ← 0 as all flow into w originally from v is now

represented in S(w). We are done processing v when the while loop concludes. We may easily
verify each of our guarantees hold for later vertices in the topological order.

Consider when we have finished processing all the vertices. Those vertices v ∈ P+ are rep-
resented as one or more nodes in the vertices’ split trees, and these nodes have total potential
µ(v). Those vertices v ∈ P− each have a split tree of total potential φ(S(v)) = −µ(v). We now
construct the transportation map τ . Initially τ(u, v) = 0 for all (u, v) ∈ P+ × P−. While there
exists a split tree S(v) containing at least one node η, we increase τ(r(η), v) by φ(η) and perform
a Delete(S(v), η). When the loop completes, we are done constructing τ .

Lemma 4.2 The algorithm above produces a transportation map τ for (P, µ) such that cost(τ) ≤
||f̂ || ~E in O(m log n) time. Further, if µ(p) is an integer for all p ∈ P , then the procedure guaran-
tees τ(p, q) is an integer for all (p, q) ∈ (P+ × P−).

Proof: The fact that τ is a transportation map for (P, µ) follows from the above discussions.
Observe that every time we change f while processing vertices in topological order, we do so by
rerouting flow going from some vertex u through a vertex v and then to a vertex w. By triangle
inequality, these shortcuts can only reduce the cost of f , implying our bound on cost(τ). If µ(p)
is integral for all p ∈ P , then f(u,v) is integral immediately before we start processing vertices in
topological order. Each change reroutes an amount of flow equal to the flow along an edge, so the
flow values remain integral.

For running time, we observe we perform a constant number of split tree operations for each
of the m or fewer edges in Ḡ while processing the vertices in topological order. These operations
takes O(m log n) time total. We then do a number of split trees operations equal to the total
number of nodes in all split trees while adding values to pairs in the transportation map τ . The
only operations that can add nodes to a split tree are the Inserts done for each vertex of positive
supply, and the PrefixSplits done for each edge in Ḡ. Therefore, we create O(m) nodes total
and remove them from the split trees in O(m log n) time. Adding in the O(m log n) time needed to
construct and topologically sort Ḡ, we conclude our proof of the running time. �

We are now ready to state and prove our main theorem.

Theorem 4.3 There exists a deterministic algorithm that, given a set of n points P ⊂ R
d and a

supply function µ : P → R, runs in time O(nε−(d+2) log5 n log log n) and returns a transportation
map τ with cost at most (1+ε)·cost∗(P, µ). Further, if µ(p) is an integer for all p ∈ P , then τ(p, q)
is an integer for all (p, q) ∈ (P+ × P−).

Proof: Recall, we build a warped quadtree T while contracting certain subsets of P . Let (P ′, µ′)
denote the geometric transportation instance after contraction and let n′ = |P ′|. We build the
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sparse spanner graph G = (V,E) over P ′ in O(n′ε−d log n) time. Let m = |E| = O(n′ε−d log n).
We define an instance of uncapacitated maximum flow (G, b∗) where b∗v is equal to µ′(v) if v ∈ P ′

and equal to 0 otherwise. By Lemma 2.7, cost∗(G, b∗) ≤ (1 +O(ε))cost∗(P ′, µ′). We compute a
flow f of cost (1 + O(ε)) · cost∗(G, b∗) = O(1 + O(ε))cost∗(P ′, µ′) in O(mε−2 log4 n log log n) =
O(n′ε−(d+2) log5 log log n) time using the algorithm described in Section 3.

By the discussion at the end of Section 2, we can combine the spanner G and the flow f with the
recursively computed spanners’ (1+O(ε))-approximate flows for each contracted subset of P to yield
a flow f̂ for a single spanner Ĝ on (P, µ). This flow has cost ||f̂ || ~E = (1+O(ε))·cost∗(P, µ). Finally,

we compute a transportation map τ for (P, µ) with cost at most ||f̂ || ~E = (1 + O(ε))cost∗(P, µ).
If µ(p) is an integer for all p ∈ P , then τ(p, q) is an integer for all (p, q) ∈ (P+×P−) per the above
discussions.

By Lemmas 2.3 and 2.4, we spend O(n log2 n) time total constructing all warped quadtrees
across the various recursive subproblems. We then spend O(nε−(d+2) log5 n log log n) time com-
puting flows for all individual subproblems and O(n log2 n) time transforming the flows into a
transportation map. We conclude our proof. �

5 Simplifying the algorithm for low spread cases

In this section, we sketch some simplifications that can be made to our algorithm for the case
that Sp(P ) is small. Our simplified algorithm computes a (1 + ε)-approximation of the optimal
transportation map in O(nε−(d+2)(log n+log3 Sp(P ) log log Sp(P )) log Sp(P )) time. When Sp(P ) =
nO(1), the running time of the simplified algorithm is slightly better than the one for the unbounded
spread case.

Instead of building a warped quadtree as in the first half of Section 2, we use a standard
quadtree T where all cells at a level have exactly the same size and the leaves are exactly those
cells containing one point of P . Therefore, we do not need the moat avoidance data structures.
There is no need to contract subsets of P , and the depth of T is logSp(P )+1. We build our sparse
graph G = (V,E) on T using the procedure described in Section 2.4. Lemma 2.7 still holds on G.
The time to construct T and G is O(nε−d log Sp) and |E| = O(nε−d logSp) as well.

When finding the (1 + O(ε))-approximation for the minimum cost flow instance (G, b∗), we no
longer worry about moats. For the greedy algorithm and preconditioner in Section 3, we essentially
treat each point u ∈ V as its own blob appearing at every level of the quadtree. At level ℓ, we
allow all shifts in [0,∆∗/2ℓ]d, thus eliminating the need for the legal shift and blob data structures.
Lemma 3.1 and Lemma 3.2 together imply the conditioner number κ of the preconditioner in
the low spread case is at most 144d2 logSp(P ). Therefore, we can compute a flow with cost
at most (1 + O(ε)) · cost∗(P, µ) in O(nε−(d+2)(log4 Sp(P ) log log Sp(P ))) time using Sherman’s
preconditioner framework.

Our procedure for recovering a transportation map from the flow is unchanged, running in
O(nε−d log n log Sp(P )) time. Considering everything above, we get the following theorem.

Theorem 5.1 There exists a deterministic algorithm that, given a set of n points P ⊂ R
d of spread

Sp(P ) and a supply function µ : P → R, runs in time
O(nε−(d+2)(log n + log3 Sp(P ) log logSp(P )) log Sp(P )) and returns a transportation map τ with
cost at most (1 + ε) · cost∗(P, µ). Further, if µ(p) is an integer for all p ∈ P , then τ(p, q) is an
integer for all (p, q) ∈ (P+ × P−).

Recall, the geometric bipartite matching problem is the special case where µ(p) ∈ {−1, 1}
for all P , and the transportation map is required to assign either 0 or 1 to each pair of points.
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Approximating an arbitrary case of the geometric bipartite matching problem can be reduced in
O(n log2 n) time to an instance where the spread is polynomial in n [ACRX22]. As our algorithm
is guaranteed to return a 0, 1 map given such an instance, we conclude with the follow corollary.

Corollary 5.2 There exists a deterministic algorithm that, given an n-point instance of the geomet-
ric bipartite matching problem, returns a (1 + ε)-approximately optimal matching in time
O(nε−(d+2) log4 n log log n).

6 Uncapacitated minimum-cost flow in general graphs

Previously, we reduced approximating the geometric transportation problem to approximating a
special case of minimum-cost flow without edge capacities. In this section, we turn the situation
around by showing how to approximate minimum-cost flow in a general graph via reductions to
our algorithm for geometric transportation. Our algorithm is based on the one given in [ASZ20]
for the case of moderate integer edge costs.

Let G = (V,E) be an arbitrary undirected graph, let || · || ~E denote an arbitrary norm on R
~E ,

and let b ∈ R
V denote an arbitrary set of vertex divergences. In this section, we let n := |V | and

m := |E|. Fix a parameter ε > 0. We again use Sherman’s [She17] framework as described in
Section 3. Accordingly, we need a preconditioner Q ∈ R

r×V of full column rank such that

||Qb̃||1 ≤ min{||f || ~E : f ∈ R
~E , Af = b̃} ≤ κ||Qb̃||1 (2)

for any b̃ ∈ R
V and with κ small. Note that r 6= |V | in this case; we’ll leave it unspecified for

now. We also need to describe an efficient κ-approximate “oblivious” greedy algorithm to help us
estimate κ. However, as in [ASZ20], we’ll actually run iterations of Sherman’s framework until it
suffices to use a simple n-approximation to satisfy the final set of divergences.

We’ll begin with the greedy algorithm as it makes it easier to describe the preconditioner itself.
We start with the following lemma.

Lemma 6.1 ( [Bou85]) There is a randomized algorithm which can output a mapping ψ : V → R
d

with d = O(log2 n) with constant probability in O(m log2 n) time such that for all u, v ∈ V

distG(u, v) ≤ ||ψ(u) − ψ(v)||2 ≤ O(log n) · distG(u, v).

A solution to the geoemtric transportation problem for ψ(V ) should form a reasonable estimate
of the cost of the optimal flow. Unfortunately, the dimension of the target space is moderately
large. We can deal with the large dimensionality by using the following weakening of our main
result.

Theorem 6.2 Suppose d is not constant. There exists a deterministic algorithm that, given a set
of n points P ⊂ R

d and a supply function µ : P → R, runs in time O(dn log n) and returns a
transportation map τ with cost at most O(d2 log n) · cost∗(P, µ).

Proof: We build the spanners as before, except we place leaves immediately when a cell contains
exactly one point and add edges only between net points and the net points of their neighboring
cells. The resulting spanners have O(dn log n) vertices and edges total, and they maintain shortest
path distances up to an O(

√
d) factor. See Lemma 2.7.

We define the preconditioner B as before. A single iteration of the greedy algorithm results
in an O(d3/2 log n) approximation to the spanner’s minimum cost flow instance. See Lemma 3.2.
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We run a single iteration of the greedy algorithm in each spanner in O(dn log2 n) time total,
resulting in O(d2 log n) approximately optimal flows. We combine and transform them into proper
transportation maps in O(dn log2 n) additional time as described in Section 4. �

Our greedy algorithm for seeking approximately optimal flows on G computes a Bourgain
embedding as described in Lemma 6.1. We can then use the algorithm of Theorem 6.2 to get
an O(d2 log n) ·O(log n) = logO(1) n approximation on the minimum-cost flow value for the original
problem in n logO(1) n time. Note that our algorithm for minimum cost flow need not actually
extract a transportation map from the spanner flows.

We are now ready to describe the preconditioner Q needed for the minimum-cost flow instance
on G. Let V ′ denote the full set of net points in each of the spanners built by the algorithm of
Theorem 6.2. Let Q1 denote the |V ′| × |V | 0 − 1 matrix where Q1

ψ(u),NCψ (u)
= 1 for all vertices

u ∈ V , and all other entries are 0. Let Q2 denote the |V ′| × |V ′| real-valued matrix composed of
the spanners’ individual preconditioner matrices where Q2

u,v = Bu,v if u and v belong to the same

spanner with preconditioner B. All other entries of Q2 are 0. Finally, let Q = Q2Q1 ∈ R
V ′×V .

Matrix Q has full column rank. The value of κ in (2) is logO(1) n. For any f ∈ R
~E, we can

compute QAf in O(m log n) + n logO(1) n time by first computing q′ := Q1Af and then applying
the algorithm of Lemma 3.3 to compute Q2q′. In fact, we can compute Q2q′ in time proportional
to the size of the spanners, because we no longer need to track which blob flow originally came
from. For any b̃ ∈ R

V , we can compute (QA)T b̃ in the same time by first computing b′ := Q2T b̃

and then computing ATQ1T b′.
Assuming we compute a good embedding with Lemma 6.1, there exists a (1 + ε, ε1+lg n/κ)-

solver for the minimum cost flow instance that performs ε−2 logO(1) n matrix multiplications. We
can compose this solver with a simple (n, 0)-solver that runs in m logO(1) n time to get a (1+O(ε))-
approximate solution to the minimum cost flow instance. The total time spent is m logO(1) n. We
can run our algorithm O(log n) times to guarantee success with high probability 1 − 1/nc for any
constant c.

Theorem 6.3 There exists a randomized algorithm that, given an undirected graph G = (V,E) with

n vertices and m edges, an arbitrarily norm on R
~E, and an arbitrarily set of vertex divergences

b ∈ R
V , runs in time mε−2 logO(1) n and returns a (1 + ε)-approximate uncapacitated minimum

cost flow in G with high probability.
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