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Abstract

We study the problem of finding elements in the intersection of an arbitrary conic variety
in [F" with a given linear subspace (where IF can be the real or complex field). This problem
captures a rich family of algorithmic problems under different choices of the variety. The spe-
cial case of the variety consisting of rank-1 matrices already has strong connections to central
problems in different areas like quantum information theory and tensor decompositions. This
problem is known to be NP-hard in the worst case, even for the variety of rank-1 matrices.

In this work, we propose and analyze an algorithm for solving this problem. Surprisingly,
despite the above hardness results we show that our algorithm solves this problem efficiently
for “typical” subspaces. Here, the subspace U C [F" is chosen generically of a certain dimension,
potentially with some generic elements of the variety contained in it. Our main result is a
guarantee that our algorithm recovers all the elements of ¢/ that lie in the variety, under some
mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following new
results:

e Polynomial time algorithms for several entangled subspaces problems in quantum entan-
glement, including determining r-entanglement, complete entanglement, and genuine
entanglement of a subspace. While all of these problems are NP-hard in the worst case,
our algorithm solves them in polynomial time for generic subspaces of dimension up to
a constant multiple of the maximum possible.

* Uniqueness results and polynomial time algorithmic guarantees for generic instances of a
broad class of low-rank decomposition problems that go beyond tensor decompositions.
Here, we recover a decomposition of the form ZF:1 v; ® w;, where the v; are elements of
the given variety X'. This implies new uniqueness results and genericity guarantees even
in the special case of tensor decompositions.
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1 Introduction

Consider an n-dimensional vector space V over a field FF that is either R or C. An (algebraic)
variety X' C V is cut out by a collection of polynomials fi,..., fp, i.e. it is given by the common
zeroes

X={xeV:fi(x) =0, f2(x) =0,..., f(x) = 0}.

We study the problem of finding points in the intersection of the given algebraic variety &
with a linear subspace U. The subspace U is specified by some basis {u1,...,ug} C V, while the
variety X is specified by a set of polynomials that cut it out. We will focus on the general class of
conic varieties, which are those that are closed under scalar multiplication.1 Conic varieties are cut
out by homogeneous polynomials, which can be chosen to all have the same degree d.

Problem 1. Given as input a subspace U C 'V specified by a basis {uy,...,ug}, and an arbitrary
conic variety X C 'V cut out by homogeneous degree-d polynomials fi, ..., f,, can we either certify that
UNX = {0} orelse find a non-zero pointv € U N X'?

The above question encompasses a natural class of algorithmic problems that vary with the
different choices of the variety. Even the special case of determinantal varieties i.e., varieties of ma-
trices of bounded rank, has rich connections to central problems in diverse areas such as quantum
information theory and tensor decompositions. The set of 111 X 1, matrices of rank at most 1 forms
a determinantal variety cut out by homogeneous polynomials of degree 2 (corresponding to the
determinants of all 2 x 2 submatrices being 0). More generally, the set of matrices of rank at most r
forms a determinantal variety cut out by polynomials of degree r 4- 1. Problem 1 has the following
applications in the context of quantum entanglement and low-rank decompositions (even for the
special case of determinantal varieties):

¢ In a bipartite quantum system, an entangled subspace is a linear subspace U/ of matrices
that contains no product state, i.e no rank-1 matrix. Entangled subspaces have applica-
tions to certifying entanglement of mixed states [Hor97, BDM"99], constructing entangle-
ment witnesses [ATL11, CS14], certifying that a set of vectors is an unextendible product
basis [BDM 799, DMS*03], and designing quantum error correcting codes [GW07, HG20].
An important algorithmic question in this context is determining whether a given subspace
is entangled [Par04, BhaO6]. This algorithmic problem is a special case of Problem 1, and
is already NP-hard in the worst case [BFS99]. Measuring and certifying other notions of
entanglement e.g., r-entanglement, complete entanglement, genuine entanglement are also
captured by Problem 1 for different choices of varieties.

* A rank R decomposition of a tensor T is an expression of T as a sum of R rank-1 tensors. The
tensor rank of T is the smallest integer for which a decomposition of that rank exists for T.
The algorithmic goal in tensor decompositions is to find a rank R decomposition of a given
tensor T if it exists. While this problem is NP-hard in the worst-case [HL13], there exist
polynomial time algorithms that work for a broad range of the rank R tensors on generic
instances of the problem (i.e. the algorithm is successful on all but a zero measure set of
instances). The key subroutine in a famous algorithm due to De Lathauwer, Cardoso, and
Castaing [DL06, DLCCO07] tries to find all the rank-1 matrices in a certain generic subspace,
and is an instantiation of Problem 1.

LA conic variety is the affine cone over a projective variety. These results can equivalently be formulated in terms of
projective varieties.



In light of the computational intractability of Problem 1, our goal is to design algorithms with
polynomial time guarantees for “typical” or generic instances. It is well known that a generic linear
subspace U of sufficiently small dimension R (depending on the Krull dimension of X’) does not
contain any elements of the conic variety X. For example, in the case of n; x n, dimensional
matrices, a generic linear subspace of dimension Ry < (n; —1)(n — 1) does not contain any rank-
1 matrix almost surely [Har13a, CMWO08]. Hence, if we consider a generic R < Rp-dimensional
subspace that contains s < R generic rank-1 matrices, we can hope to recover all of these s planted
elements.

In this work, we propose and analyze a polynomial-time algorithm (which we call Algorithm 1,
see Section 3) to recover all the elements of I/ that lie in the variety &". In more details, on input a
collection of homogeneous degree-d polynomials cutting out X C [F" and any basis for the linear
subspace U C ", Algorithm 1 runs in n°(@ time and either outputs “Fail,” or else outputs a finite
collection of elements of the intersection ¢/ N X, along with a nO@)_time certificate that these are
the only elements of &/ N X (up to scale). To simplify the analysis, we ignore issues of numerical
precision (formally, we prove polynomial time guarantees in the real model of computation, given
access to a constant number of calls to an oracle to diagonalize polynomial-sized matrices”). Our
Algorithm 1 is based on Hilbert’s Nullstellensatz and a “lifted” version of the simultaneous diago-
nalization algorithm to the space of degree-d polynomials. In the special case when X’ is the set of
rank-one matrices, our algorithm captures the tensor decomposition method proposed in [DL06].
Our main result (Theorem 2) guarantees that Algorithm 1 is always correct (i.e., any output that is
not “Fail” is guaranteed to be correct), and does not output “Fail” almost surely when dim (/) is
small enough.’

1.1 Owur results

We will require two technical assumptions on the variety X, which will be satisfied by many
varieties of interest: We say X’ is irreducible if it cannot be written as a union of smaller varieties,
and we say that an irreducible variety X is non-degenerate of order d if X has no equations in
degree d. For example, X is non-degenerate of order 1 if span(X’) = V. We say that an element
is generically chosen if it is chosen from a Zariski open dense subset of the underlying instance
space (this also commonly referred to as a general element). Proving that a property holds for a
generically chosen element is a standard algebraic-geometric approach to showing that it holds
almost surely over the underlying instance space; see Section 2.2 for more details.

The following result applies when the field F is either R or C. The notation X ** x V*
denotes the set of R-tuples of elements of V, the first s of which are chosen from X.

(R=s)

Theorem 2. Let X C V = F" be an irreducible variety cut out by p = 6 (”+j_1) linearly independent

homogeneous degree-d polynomials fi,...,f, € F[xq,..., x4, for constants d > 2 and 5 € (0,1).
Suppose furthermore that X is non-degenerate of order d — 1. Then a linear subspace U C 'V of dimension

Rg%-é(n+d—1), 1

2A k x k diagonalizable matrix can be diagonalized to precision € in time O(k% log?(k/€)), where w is the exponent
of matrix multiplication [BGVKS20]. Our algorithm requires a constant number of diagonalizations to run the simul-
taneous diagonalization algorithm as a subroutine, which itself has been shown to be numerically stable under some
natural conditions [GVX14, BCMV14b].

3Note that assumptions on genericity and dimension of the subspace are necessary: If // is a worst-case input or
dim(Yf) is too large, then U N X could have an infinite number of non-parallel elements.



spanned by a generically chosen element of X*5 x V*(R=%) for some s € {0,1,...,R}, contains only s
elements in its intersection with X (up to scalar multiples), and on input any basis of U our Algorithm 1
correctly outputs these elements in n%4) time. When s = 0, Algorithm 1 certifies that U N X = {0} in
n@ time.

We remark that in the above theorem, the choice of the variety X is arbitrary (subject to the
irreducibility and non-degeneracy conditions), while the subspace U/ is chosen generically. The
theorem shows that when § = ()(1) (this is the parameter setting for many varieties of interest), we
get genericity guarantees for R going up to a constant fraction of the maximum possible dimension
n. As stated in the theorem, our algorithm runs in polynomial time (in the dimension 7) as long
as d is fixed. Note that our algorithm assumes knowledge of the coefficients of the p homogenous
degree-d polynomials fi, ..., fp, which in itself requires p(’”jfl) time.

As alluded to earlier, it is classically well known that a linear subspace &/ C V of dimension
R < codim(X') spanned by a generically chosen point in X' ** x V*(R=%) contains only s elements
in its intersection with X' (up to scalar multiples) when &’ is irreducible and non-degenerate of
order 1 [FOV99, Theorem 4.6.14], [Har13a, Definition 11.2]. However, for a particular subspace U/,
it is NP-hard in general to find these elements of the intersection and to certify that they are the
only ones [BFS99]. Despite this hardness result, our Algorithm 1 runs in polynomial time, and
either outputs “Fail,” or else finds elements of the intersection and certifies that they are the only
ones. Theorem 2 guarantees that our algorithm will almost surely output the latter, provided that
U C V has dimension R upper bounded by (1).* We call this a genericity guarantee for Algorithm 1.

It is natural to ask if the irreducibility and non-degeneracy conditions can be removed. The ir-
reducibility condition can indeed be removed, by assuming the non-degeneracy condition holds for
every irreducible component of X'. The non-degeneracy assumption can also removed if s = 0 (i.e.
the last sentence of the theorem holds without any non-degeneracy assumption nor irreducibility
assumption on X’). See Corollary 16. Some form of non-degeneracy assumption on X’ is necessary
for general s: For example, if & is a linear subspace, then X can be cut out by degree-2 polyno-
mials, but the intersection & N X’ contains the entire span of {vy,...,vs}, so for s > 2 we cannot
hope to recover vy, ..., v;. (See also the discussion after Theorem 7). Moreover, many commonly
studied varieties satisfy this non-degeneracy assumption, as we will see below.

Consider the specific case of the variety of rank-1 matrices X; = {M € F"*"2 : rank(M) < 1}.
This is an irreducible variety that is cut out by p = (3})(") homogenous polynomials of degree
d = 2. Furthermore X is non-degenerate of order 1, i.e. span(X;) = F"1*"2 . Hence we get the
following immediate corollary, which already implies new results for quantum entanglement and
tensor decompositions:

Corollary 3. A linear subspace U C 'V = F"*" of dimension

R< DG 1y = Yy - 1) - 1)

< 2(n1n22+1) 112 =zUm 2 /
spanned by a generically chosen element of X7 x V*(R=9) for some s € {0,1,...,R}, contains only s
elements in its intersection with Xy (up to scalar multiples), and our Algorithm 1 correctly outputs these
elements in (nyny)°Y) time. When s = 0, Algorithm 1 certifies that U N Xy = {0} in (n112)°W) time.

More generally, the set of matrices of rank at most r, X, = {M € F"1*"2 : rank(M) < r}, forms

an irreducible variety cut outby p = (,";)(,"%) homogenous polynomials of degree d = r + 1, and

is non-degenerate of order r. We thus obtain the following consequence of Theorem 2:

4We remark that the righthand side of (1) can be verified to be always less than or equal to codim(X).



Corollary 4. Let r be a fixed positive integer, and let ny,ny > r be integers. Then for a linear subspace
U CV = """ of dimension

(rr—li-ll) (77-2-21)

T (r 1))

() () (mng + 1)
(r+ 11"

c(mngy +r), (note that = Qr(n1n2)>,

spanned by a generically chosen element of X§ x V*(R=5) for some s € {0,1,...,R}, contains only s
elements in its intersection with X, (up to scalar multiples), and our Algorithm 1 correctly outputs these
elements in (nyny)°) time. When s = 0, Algorithm 1 certifies that U N X, = {0} in (n1nz)°W) time.

In the remainder of this introduction, we describe applications of our algorithm to quantum
entanglement and low-rank decomposition problems over varieties.

1.2 Entangled subspaces

In the context of quantum information theory, there are various choices of varieties X for which it
is useful to determine whether or not a given linear subspace {{ intersects X'. For example, if F = C
and V = [F" @ F"2 = [F"1*"2 then the unit vectors in V are called pure quantum states. The states in
the variety X1 = {M € V : rank(M) < 1} are called separable states, while those in V \ X; are said
to be entangled. Entangled states are of central importance in this area, as they are required as a
starting point for many quantum algorithms and protocols, like quantum teleportation [BBC*93]
and superdense coding [BW92]. More generally, the states in the determinantal variety X, = {M €
V : rank(M) < r} are said to have Schmidt rank at most r, and this notion of rank is regarded as a
rough measure of how entangled the quantum state is [NCO00].

A linear subspace &/ C V in which every pure state is highly entangled (i.e., has Schmidt
rank strictly larger than r) is called r-entangled (or just entangled if r = 1). Such subspaces have
found an abundance of applications in quantum entanglement theory and quantum error cor-
rection [Hor97, BDM ™99, ATL11, CS14, HM10]. Determining whether or not a subspace U/ is r-
entangled is exactly Problem 1 in the case of the variety X = A}, and this problem is known to
be NP-hard in the worst case, even for ¥ = 1 [BFS99]. To our knowledge, the best known algo-
rithm requires a certain e-promise and takes exp(O(4/n1/€)) time in the worst case when r = 1
and 1y = ny [BKS17] (see Section 5 for more details). Existing algorithms for solving similar prob-
lems either lack complexity-theoretic guarantees or only work in limited situations, such as when
the subspace’s dimension is smaller than min{ny, np } [LPS06, GROS, BVD'18, DRMA21]. Surpris-
ingly, by Corollaries 3 and 4, our algorithm solves this problem for generic instances of I/ (and
does not require the e-promise), as long as dim({/) is less than a constant fraction of the total di-
mension n11y. For example, when r = 1 we obtain the following, which is just the s = 0,5 = 1
cases of Corollary 3:

Corollary 5. Suppose F = C and let U C IF™ & IF"? be a generically chosen linear subspace of dimension

e (05)

< ot (s +1) = 2(ny —1)(n2 — 1)

4

with possibly a generically chosen planted separable state. Then, in (nyny)°Y) time, our algorithm either
certifies that U is entangled or else produces the planted separable state in U and a certificate that this is the
only separable state in U.

Note that, even if U contains a separable state, generically this will be the only separable state
contained in i/, and our algorithm will certify this efficiently. In fact, even if I/ contains several (but
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less than dim(U{)) generic separable states, our algorithm finds them all and certifies that there are
no others. This extends the range of applications of our algorithm beyond situations where it is
useful to know that a subspace is entangled, such as in the construction of an unextendible product
basis [BDM199], to situations where it is useful to know that that a subspace does not contain
enough separable states to span it, such as in the construction of an uncompleteable product basis
[DMS*03].

More generally, we use Theorem 2 to obtain similar guarantees for our algorithm to determine
whether a subspace exhibits other notions of entanglement, which corresponds to answering Prob-
lem 1 for other varieties X’

* WhenV =F"®---@F" and X = Xsep C F" @ - - - @ F" is the set of separable tensors (ten-
sors of the form v ® v ® - - - ® vy,), our algorithm determines in O(n; - - - n,,,) time whether
UN Xsep = {0} (i.e., whether U is completely entangled) for generically chosen subspaces U
of dimension up to a constant multiple of the total dimension nyn; - - - ny,.

e When X = A} is the set of biseparable tensors (tensors which are rank 1 with respect to one
of the 2"~ different ways to view a tensor T € F" ® --- ® F" as a matrix by grouping
factors), our algorithm determines in O(2"ny - --n,) time whether U N Xsep = {0} (ie,,
whether U is genuinely entangled) for generically chosen subspaces U of dimension up to a
constant multiple of the total dimension nyn; - - - ny,.

* As a final application, which does not necessarily directly apply to studying quantum en-
tanglement, we use our algorithm to determine whether a subspace U/ intersects the vari-
ety Xs of tensors of slice rank 1 (see Section 2.3). In this case, our algorithm determines in
O(mny - - - ny,) time whether U N Xs = {0} for generically chosen subspaces U of dimen-
sion up to a constant multiple of the total dimension n1n; - - - n,,. The slice rank has recently
arisen as a useful tool for studying basic questions in computer science such as the capset
and sunflower problems [Pet16, KSS16, BCC*17, NS17, FL17].

Our algorithm generalizes a recent algorithm studied in [JLV22] for certifying entanglementin a
subspace, in two ways: First, our algorithm can not only certify that a subspace trivially intersects
&, but it can also produce elements of ¢/ N X (if they exist) and prove that these are the only
elements of / N X in polynomial time. Second, our algorithm has provable genericity guarantees
for arbitrary conic varieties X" that satisfy the non-degeneracy assumption.

1.3 Low-rank decompositions over varieties

Low-rank decompositions of matrices and tensors form a powerful algorithmic toolkit that are
used in data analysis, machine learning and high-dimensional statistics. Consider a general de-
composition problem, where we are given a tensor T that has a rank-R decomposition of the form

R
T = Z v Q w;, 2)

i=1
where vy, ...,vg lie in a variety & C V and wj,...,wg are arbitrary vectors in WV; here V and
W are vector spaces over a field F (either R or C). The goal is to recover a rank-R decomposi-
tion given T, and when possible recover the above decomposition. These (X, W)-decompositions,
also known as simultaneous X -decompositions, specialize to other well-studied decomposition prob-
lems such as block decompositions (see Sections 1.5 and 6). When X is the entire space V), these
are standard matrix decompositions. When &’ is the variety corresponding to rank-1 matrices (or
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more generally, rank-1 tensors), then this leads to the tensor decomposition problem where the de-
composition has the form YR | y; ® z; ® w;.” More generally, this gives a rich class of higher order
decomposition problems depending on the choice of the variety.

A remarkable property of low-rank tensor decompositions is that their minimum rank decom-
positions are often unique up to trivial scaling and relabeling of terms. This is in sharp contrast to
matrix decompositions, which are not unique for any rank R > 2.5 The first uniqueness result for
tensor decompositions was due to Harshman [Har70] (who in turn credits it to Jennrich) — if an
n x n x n tensor T has a decomposition T = 211‘{:1 Yi ® z; ® w; for R < n, then for generic choices
of {y;,zi, w;} this is the unique decomposition of rank R up to permuting the terms. Moreover, while
computing the minimum rank decomposition is NP-hard in the worst-case [Has90, HL13], under
the same genericity conditions as above there exists a polynomial time algorithm that recovers
the decomposition [Har72, LRA93]. A rich body of subsequent work gives stronger uniqueness
results and algorithms for tensor decompositions [Kru77, CO12, DL06, DLCCO07]. These efficient
algorithms and uniqueness results for tensors are powerful algorithmic tools that have found nu-
merous applications including efficient polynomial time algorithms for parameter estimation of
latent variable models like mixtures of Gaussians, hidden Markov models, and even for learning
shallow neural networks; see [M0il8, JGKA19, Vij20] for more on this literature. This prompts the
following question:

Question 6. When can we design efficient algorithms that achieve unique recovery for low-rank decompo-
sition problems beyond tensor decompositions?

In answer to this question, we prove that one can establish uniqueness and efficiently recover
decompositions of the form (2) for any irreducible conic variety satisfying the non-degeneracy
assumption introduced above:

Theorem 7 (Uniqueness and efficient algorithm for decompositions). Let X C V = F" be an
irreducible conic variety cut out by p = (5(”+g_1) linearly independent homogeneous degree-d polynomials
for constants d > 2 and 6 € (0,1). Suppose furthermore that X is non-degenerate of order d — 1. Then

there is an n°@-time algorithm that, on input a generically chosen tensor T € V @ W of (X, W)-rank
1 .
R gmm{a-é(n—kd—l),dlm()/\/)}, (3)

outputs an (X, W)-rank decomposition of T and certifies that this is the unique (X, VW )-rank decomposi-
tion of T.

Theorem 7 follows from Theorem 2 by viewing T'asamap T : W* — V and running Algorithm
1 on any basis of i = T(W*) (see Theorem 26 for details). A similar remark to that of the second
paragraph following Theorem 2 is in order: The fact that a generically chosen tensor T of (X, W)-
rank upper bounded by (3) has a unique decomposition follows from known results [FOV99,
Theorem 4.6.14]. The main contribution in this theorem is the genericity guarantee for our n°(@-
time algorithm to recover this decomposition and certify that it is unique. Similar to Harshman'’s
algorithm, our algorithm is accompanied by a concrete sufficient condition for a given (X, WV)-
decomposition to be unique (Proposition 25).

5One can also get symmetric decompositions of the form ¥
appropriately).

For any matrix M with a rank R > 2 decomposition M = Zle v; ® wj, there exist several other rank R decomposi-
tions YR v} ® w! where v/ = Ov; and w} = Ow; for any matrix O with OO = I (this is called the rotation problem).

lfufw (by restricting y;,z; to be equal, and setting w;



As in Theorem 2, our algorithm uses the description of the variety A" as specified by the co-
efficients of the p homogenous degree-d polynomials that cut out X'. A generically chosen tensor
TeV®W of (X¥,W)-rank R is formed by choosing v1,...,vr generically from the variety X,
choosing wy, ..., wg generically from the vector space W, and letting T = 211‘{:1 v; ® w;. Note that
when R < dim(W), almost surely the vectors wj, ..., wg are linearly independent. Due to the
non-degeneracy of X, Theorem 7 also gives guarantees under the same rank condition for decom-
positions of the form:

R
T = Z v; ® v}, where vy, ...,vg and v}, ..., v} are chosen generically from X
i—1

(see Theorem 26 and the subsequent discussion).

Implications for tensor decompositions and beyond While the above result holds for an ar-
bitrary non-degenerate variety, even for the standard tensor decomposition problem where the
tensor T € F" ® F" ® F™ has the form

R
i=1

we get improved guarantees by restricting our attention to the variety of rank-1 matrices in IF"1*"2,

Corollary 8. For any positive integers ny, na, n3, there is an (nyny)°-time algorithm that, on input a
generically chosen tensor T € F" @ [F"2 @ [F™ of tensor rank

R < min {}l(nl —1)(ny — 1),713};

outputs a tensor rank decomposition of T and certifies that this is the unique tensor rank decomposition of
T.

See Corollary 27 in Section 6 for the proof. To interpret this result, consider the setting when
ny = ny = n < nz. Existing algorithms for order-3 tensors (e.g., [Har72, LRA93, EVDL22]) give
genericity guarantees when R < n. On the other hand, Corollary 8 gives guarantees for rank
min{(} — 0(1))n? n3} which can be significantly larger — for a tensor with n3 = Q(n?), we can
even handle tensors of rank R = Q(n?), which is the best possible up to constants (an 1 x n x n?
tensor has rank at most O(n?)). A similar result to Corollary 8 was earlier claimed by [DL06], but
we show that a crucial lemma in their proof is incorrect. See Section 1.5 for a more detailed descrip-
tion, and see Appendix A for a counterexample to the lemma in question. This lemma was also a
crucial ingredient in the claimed proof appearing in [DLCCO07] that the FOOBI algorithm recovers
symmetric decompositions of generically chosen n X n x n x n symmetric tensors of rank up to
O(n?). Our analysis provides corrected proofs of these results using a different proof technique,
and applies in a much more general setting.

For higher order tensors, we obtain algorithms with polynomial time (unique) recovery guar-
antees for non-symmetric tensors. For generic order-m tensors of rank R = O(nl"/2]), our al-
gorithm finds the unique tensor decomposition of rank-R in n°("™) time. (See Corollary 29 for a
slightly stronger statement, and Section 6 for more results on tensors.) For even order m, we are
not aware of prior works that prove such genericity guarantees for rank up to n"/%; such guar-
antees are known only in the special case of symmetric decompositions [MSS16, BCPV19]. See
Section 1.5 for related work on tensor decompositions.

9



While these results give improvements even in the case of standard tensor decompositions,
our algorithmic framework gives uniqueness results and efficient algorithms for a much broader
class of low-rank decomposition problems. One such collection of applications are aided decompo-
sitions, also known as block decompositions, which are generalizations of tensor decompositions that
are useful in signal processing and machine learning [KB09, CJ10, CMDL"15, SDLF*17, DL08a,
DLO08b, DLN08, DDL20]. Our general result (Theorem 7) also gives guarantees for such block de-
compositions; see Corollary 31.

1.4 Technical overview

Let V = F". Our main result is an algorithm for finding the points in the intersection of a conic
variety X C )V with a linear subspace (/. Our algorithm is based on Hilbert’s projective Nullstel-
lensatz from algebraic geometry over C, as well as a “lifted” version of the simultaneous diago-
nalization algorithm (also known as Jennrich’s algorithm). Our algorithm generalizes the method
of De Lathauwer, Cardoso and Castaing called “FOOBI” [DL06, DLCCO07] for finding rank-one
matrices in a subspace,” which is based on what they call a “rank-1 detecting device” ®. We will
describe our algorithm using language that is more natural from an algebraic-geometric view-
point.

We frequently invoke the canonical vector space isomorphism F[xy,...,x,]s = S%(V*) be-
tween the set of homogeneous polynomials of degree d and the d-th symmetric power of V*,
which sends a product of linear forms f; - - - f; to the projection of f; ® - - - ® f; onto S¥(V*) (since
Char(F) = 0, one can take fi - - - f = 5 Lpee, Jigay ® - ® fi,,) € S4(V*) C (V)ed).

1.4.1 The algorithm

On input a set of homogeneous degree-d polynomials fi,...,f, € S%(V*) cutting out a variety
X C V, and a basis {u1,...,ug} for a linear subspace i/ C V, our algorithm first computes a
basis {Pi, ..., P} for the linear subspace S?(U/) NI} C S4(V), where I; = span{fi, ..., f,}, and
(-)* denotes the orthogonal complement in the dual space. Since fi, ..., f, cut out X, the linear
subspace I;- C S%(V) satisfies the property that

X={veV:o®ci;}).

If S%U) NI} = {0}, thend N X = {0}, since for any element v € U N X it holds that v®¢ €
S%(U) N I3 ° In this case, our algorithm outputs “U trivially intersects X.”

Otherwise, our algorithm runs the simultaneous diagonalization algorithm on {Py, ..., P} to
determine whether there is a basis for S*(U) N I} of the form {v{?,...,0%} for some linearly
independent vy, ...,vs € V. If this is the case, then clearly vy, ...,v; € Y N X, and in fact the linear
independence of vy, ...,vs guarantees that these are the only elements of &/ N X’ up to scale (see
Observation 13). Accordingly, our algorithm outputs “The only elements of i/ N X are {vy,...,vs}
(up to scale).” If such a basis does not exist, our algorithm simply outputs “Fail.” Note that in
both of the above cases, the required condition on S¢(/) N I+ need not hold for certain choices of
U; as we describe in Section 1.4.2, Theorem 2 establishes that this indeed holds for generic U/.

7thereby also establishing genericity guarantees for the FOOBI algorithm and its variants [DL06, DLCC07].
8This part of our algorithm, which checks whether S(¢/) N I 1 = {0}, constitutes a degree-d Nullstellensatz certificate
for checking whether &f N X = {0} (see Remark 12).
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1.4.2 Proving the genericity guarantee

Our main technical contribution is Theorem 2, which guarantees that our algorithm works ex-
tremely well on generic inputs: Assuming that R is not too large (see (1)), when vy,...,05 € X
and vgy1,...,0r € V are generically chosen, our algorithm recovers vy, ..., vs (up to scale) from
any basis of U := span{vy,...,vg} in n0) time, and certifies that these are the only elements
of Y N X. As can be readily verified from the description of our algorithm, this reduces to prov-
ing that for generically chosen vy,...,vs € X and vgy1,...,0r € V, it holds that Sd(LI) N Ij -
span{v?d, ..., %%} (the reverse inclusion holds automatically).

For the proof, we in fact use nothing about the vector space I;- C S9(V) other than its codi-
mension p. To emphasize this, let X C S%(V) be an arbitrary linear subspace of codimension p.
To give an idea of the proof, let us first consider the case when s = 0. In this case we are setting
out to prove that for a generic linear subspace &/ C V of dimension not too large, it holds that
S4(U) N K = {0}. This seems to be an interesting multilinear algebraic question in its own right.
Of course, a generically chosen subspace £ C S4(V) of dimension dim(£) = codim(K) will sat-
isfy LN K = {0}, but our question is non-trivial because we constrain £ to take the particular
form S(U) for some U C V. The maximum dimension one could hope for would be the maximal
R for which (”+£_1) < codim(K) (the lefthand side is dim(S%(2/)) when dim(2/) = R). However,
it is not always possible to achieve this.”

More generally, for arbitrary s € {0,1,...,R}, when vy,...,vg are linearly independent
(which holds generically since X is non-degenerate), the desired inclusion S(U) N K C
span{o?,...,v%4} is equivalent to

span{Py; ;(v, ® - -+ ® V) 101 € [R]V9\ A} N K = {0},

where [R]¥? is the set of non-decreasing d-tuples of elements of [R] := {1,...,R}, A, =
{1,...,1),...,(s,5,...,8)},and Py, : V@d —y G4(V) is the projection onto S¢(V). A common
approach in algebraic geometry for proving such a statement is to exhibit one choice of vectors
v1,...,0r for which it holds; this would imply the statement for a generic choice of vy,...,vRg.
However, we do not know how to construct such vectors explicitly.

To prove the statement, we first define a certain total order > on [R]"? for which the largest
elements are (1,...,1) > --- > (s,...,s) > .... We then observe that it suffices to prove that, for
all (iy,...,i5) € [R]V4\ As, it holds that

Py (v, ® -+ ®v;,) & span{Py 4(va, ® -+~ ®0g,) : (in,...,0ia) = (a1,...,a4) € RV} + £ (4)

for generically chosen vy, ...,0s € X,0511,...,0r € V. We prove this statement by induction on d.
The crucial assumption is that & is non-degenerate of order d — 1, or equivalently

span{o®@=0 .y e X} = W0 (5)

forall 1 < ¢ < d — 1. To prove the statement, we first note that the case iy = --- = iy > s
follows easily from the fact that the righthand side of (4) is not the entire space S¢(V), by a simple
dimension count. In the other cases, we let 1 < ¢ < d — 1 be the largest integer for which i =
--- = iy, and apply the induction hypothesis in degree d — ¢ by showing that it suffices to establish
a similar non-containment as (4) for the tensor P]g’ (d-0) (vi,,, ® - - ®v;,). Tomake this reduction, we

contract along v%g while ensuring that this does not affect the dimension of the righthand side too

Indeed, let n = 3,V = F3, and K = S*(F?) C S%(FF®). Then for R = 2 we have ("#;71) = 6 = codim(K), but
S2(U)N K 2 S?(UNTF?) # {0} for any U C TF® of dimension 2 [Lib].

11



much. This requires a clever choice of ordering -, along with a lower bound on the dimension of
a generic contraction of a linear subspace (Lemma 17). After this reduction, the desired statement
“looks like” the s = 0 case in degree (d — {), since by the non-degeneracy assumption the variety
X “looks like” the entire space V in degree (d — ¢), in the sense of (5). This allows us to apply the
induction hypothesis, completing the proof.

Comparison to the FOOBI algorithm In earlier work of De Lathauwer, Cardoso and Castaing,
an algorithm (often referred to as the FOOBI algorithm) is proposed for finding the rank-one ma-
trices in a linear subspace of matrices [DL06, DLCCO07]. Our algorithm specializes to theirs in the
case when X = X} is the set of rank-one matrices, as we now briefly describe. In the FOOBI al-
gorithm, a linear map @y, is constructed with ker(®y,) = I(X1)5, where I(X;)2 C S?(V*) is the
span of the 2 x 2 determinants, which cut out &). Their algorithm is then essentially the same as
ours in this specialized setting, with the map @y, serving as a proxy for I(X;)5. We have found
that working directly with the subspace I(X;); greatly simplifies most arguments and notation.

The papers [DL06, DLCCO07] also claim a similar genericity guarantee as we do in the special
case X = X&) (see Lemma 2.3 of [DL06]). However, we show that this lemma is false by presenting
an explicit counterexample in Appendix A, and also identify the incorrect step in their proof. Our
analysis thus provides a correct genericity guarantee that holds in a much more general setting.
See Section 1.5 for further discussion and other related work.

1.5 Related work on tensor decompositions

There is a rich body of work on low-rank tensor decompositions where the goal is to express a
given tensor as a sum of rank-1 tensors. Considering the intractability of the tensor decomposi-
tion problem [Has90, HL13], several different assumptions on the input tensor have been made
to overcome the worst-case intractability. We focus on algorithms that run in polynomial time
and provably recover the rank-1 components (this also implies uniqueness) for generically chosen
tensors. See [Vij20] for references to other related lines of work.

The first algorithm for tensor decompositions was the simultaneous diagonalization
method [Har72, LRA93], which was used to recover the decomposition for generically chosen
tensors in F"*"*" of rank R < n.!” We use this algorithm as a subroutine in our algorithm; see
Section 2.5 for details. We are not aware of any polynomial time guarantee for generically chosen
third-order tensors in F"*"*" of rank R > (1 + ¢)n for constant ¢ > 0; see [BCMV14a] for a related
open question.!!

Our algorithm is a broad generalization of an algorithm proposed in [DLO06] for third order
tensor decompositions. This work also claims a similar genericity guarantee to our Corollary 8, but
we show that a crucial lemma in their proof is incorrect (see Appendix A). Unfortunately, this error
percolates to genericity guarantees in subsequent works, most notably that of the well-known
FOOBI algorithm for symmetric fourth-order tensor decompositions [DLCC07]. Our genericity
guarantee (Theorem 2) provides a correct proof of these results, uses a completely different proof
technique, and holds in a much more general setting that applies to other types of decomposition
problems and entangled subspace problems. We emphasize that, while the genericity guarantees

0This is also sometimes called Jennrich’s algorithm, named after Robert Jennrich, who Harshman credits for the
first uniqueness result for tensor decompositions [Har70]. Harshman gave an alternate proof of uniqueness using the
simultaneous diagonalization method (see the Theorem on page 2 of [Har72]).

1Some existing algorithms have a running time dependence of n°(*) to handle generic instances of rank 7 +
[DDL17, CR20].
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in these works appear to be incorrect, the algorithms and computational methods presented are
correct to our knowledge.

Several other generalizations of tensor decompositions that have been studied previously are
also captured by (X, WW)-decompositions. Some sufficient conditions for generic (non-algorithmic)
uniqueness results were explored in [DDL16]. When X = A; is the variety of rank » matrices
(of a given dimension), (X, W)-decompositions correspond to r-aided decompositions (also called
(r,r,1)-block decompositions and max ML-(r,r, 1) decompositions). Such r-aided decompositions have
applications in signal processing and machine learning, among others [KB09, CJ10, CMDL"15,
SDLF*17], and were also studied, for example, in [DL08a, DL08b, DLN08, DDL20]. Our general
result in Theorem 7 gives guarantees for r-aided decompositions, as described in Corollary 31. We
are unaware of such polynomial time genericity guarantees prior to our work.

In other related work, there also exist algorithmic guarantees for tensor decompositions with
random components that can handle larger rank (e.g., random tensors in R"*"*" of rank O (n%/2)
[GM15]). However, these make strong assumptions about the components like incoherence (near
orthogonality), which are not satisfied by generic instances. There also exists a line of work on
smoothed analysis guarantees [BCMV14b, MSS16, BCPV19] that are similar in flavor to generic-
ity guarantees, but provide robust guarantees for tensor decompositions under slightly stronger
assumptions. Obtaining smoothed analysis analogs of our results is an interesting open question.

Finally, tensor decompositions have seen a remarkable range of applications for algorithmic
problems in data science and machine learning, including parameter estimation of latent variable
models like mixtures of Gaussians, hidden Markov models, and even for learning shallow neural
networks [Moil8, JGKA19]. Our work shows strong uniqueness results and efficient polynomial
time algorithms for a broader class of low-rank decomposition problems, and may present a pow-
erful algorithmic toolkit for applications in these domains.

Outline In Section 2 we introduce some notation, mathematical preliminaries and some exist-
ing algorithmic subroutines that will be used in later sections. Section 3 describes the algorithm
and shows some correctness properties of the algorithm. Section 4 proves Theorem 2 (see Corol-
lary 16 for the formal claim and proof). The applications to quantum entanglement are presented
in Section 5, while the applications to low-rank decompositions are presented in Section 6.

2 Mathematical preliminaries

In this section we review some mathematical preliminaries for this paper. We begin with some
miscellaneous definitions, and then review the symmetric subspace, basic notions from algebraic
geometry, some relevant examples of varieties, decompositions over varieties, and the simultane-
ous diagonalization algorithm.

Let [R] = {1,...,R} when R is a positive integer. For a finite, ordered set S and a positive
integer d, let S %4 be the d-fold cartesian product of S, and let

SVd:{(al,...,ad):al,...,adeS and a3 <--- <ay}.
For example, if S = [R], then
[R]Vd:{(al,...,ad):lgal§---§ad§R}.

Throughout this work, we let IF denote either the real or complex field. For an [F-vector space
V of dimension 1, let {ey, ..., e, } be a standard basis for V, and let {x1, ..., x,} be the dual basis
for V*.
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2.1 The symmetric subspace

Let V be an [F-vector space of dimension n. For a positive integer d, let F[x1, ..., x,]; be the vector
space of homogeneous degree-d polynomials on V (in addition to the zero polynomial), and let
Flx1,...,xn] = @5 o F[x1, ..., x4]4 be the polynomial ring on V. Let &, be the group of permuta-
tions of d elements, and let §¢ (V) be the d-th symmetric power of V, which can be identified (since
Char(FF) = 0) with the set of tensors T € V®? that are invariant under the action of &; on V®¢
which permutes the copies of V. As mentioned above, we frequently invoke the canonical vector
space isomorphism F[xy, ..., x,]q =& S9(V*).

Let Py ; : V@4 5 64(V) be the projection map. The standard basis {ey,...,e,} of V induces a
basis of S?(V) given by

{Piy,d(em ®- - ®ey):ac [”]Vd}'

Contraction or Hook: For F-vector spaces V,...,V,, an index i € [d], a vector v € Vi, and a
tensor T € V1 ® --- ® V;, we define the contraction of T with v in the i-th mode, denoted v _; T,
to be the tensor obtained by regarding Tasamap V/ — V1 ® - ®@ Vi1 @ Viy1 ® -+ ® Vy and
evaluating at v:

0 T:=TO)EV® @V, 10Vi® &V,

2.2 Algebraic geometry

A algebraic set (or an algebraic variety, or simply a variety) in V is a subset X C V for which there
exists a set of polynomials fi, ..., f, € F[xy,...,x,] such that

X={oeV:fi()=-- = f,(v) = O},

In this case, we say that X is cut out by f1,..., f,. We say that a variety X is conic if FX' = X' It
is straightforward to verify that a variety & is conic if and only if it is cut out by homogeneous
polynomials, which can furthermore be chosen to all have the same degree d. The Zariski topology
is the topology on V with closed sets given by the varieties in V. We therefore also refer to a variety
as a Zariski closed (or simply, a closed) subset of V. A subset of V is called locally closed if it is the
intersection of an open subset of V with a closed subset of V. A subset of V is called constructible
if it is a finite union of locally closed subsets of V. A subset A C V is called irreducible if it cannot
be written as a finite union of proper closed subsets of A (with respect to the subspace topology
on A). Any Zariski closed subset X C V can be written (uniquely, up to reordering terms) as a
finite union of irreducible varieties X = X7 U - - - U X}. The irreducible varieties X7,..., X C V
are called the irreducible components of X.

Let X C V be a conic, irreducible variety. We say that X’ is non-degenerate if it is not contained
in any proper linear subspace of V, i.e. span(X’) = V. More generally, we say that X C V is non-
degenerate of order d if there does not exist any homogeneous degree-d polynomials that vanish on
X, i.e. if the set

I(X);:={f €Fxi,...,x4);: f(v) =0 forall ve X}

is equal to {0}. More generally, we will say that a reducible variety X" is non-degenerate of order
d if all of its irreducible components are non-degenerate of order d. For the purpose of inductive
arguments, we adopt the convention that every variety is non-degenerate of order zero. The set
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I(X), is called the degree-d-component of the ideal of X. The set I(X) := ®F I(X), is called the
ideal of X . Viewing the elements of F[xy, ..., x,]; as elements of S4(V*), we have

[(X)+ = span{v®™ :v € X} C §%(V). (6)

As a consequence, we see that an irreducible, conic variety & is non-degenerate of degree d if and
only if

span{v®d~: veX} = SJ(V).

Note that if X' is cut out in degree d, then X’ is cut out by p = dim(I(X);) many linearly indepen-
dent homogeneous polynomials of degree d, where dim(I(X);) denotes the dimension of I(X),
as an [F-vector space.

Genericity: For a variety X C V, we say that a property holds for a generically chosen element
v € X if there exists a Zariski open dense subset (in the induced topology on X') A C & such
that the property holds for all v € A. Zariski open dense sets are massive: In particular, Zariski
open dense subsets of V are full measure with respect to any absolutely continuous measure, and
Zariski open dense subsets of a variety X are dense in X" in the Euclidean topology. For varieties
X1,..., Xr C V, the cartesian product X7 x --- x Ar C YP*R ig again a variety, and we say that a
property holds for generically chosen elements v; € Xj,...,vg € AR if there exists a Zariski open
dense subset A C A&j x --- x AR for which the property holds for all (vy,...,vr) € A (ie., if it
holds for a generically chosen elementv € X x - - - x &XR).

Genericity over R and C: We will be proving and using genericity results over R and C simul-
taneously. To this end, we present a basic fact which will allow us to translate genericity results
over C to genericity results over R. Let CI5(-) denote the Zariski closure over F.

Fact9. Let ¥ C R" C C" be a real variety, let T = Clg(«l’ ) be its complex Zariski closure, and let
A C T be a Zariski open dense subset. Then the following two properties hold:

1. AN X is Zariski open in X over R

2. AN X is Zariski dense in X over R.

Proof. The first property follows from the fact that AN X = ANR" N X by construction, and
ANR" C R" is Zariski open.'?

For the second property, suppose toward contradiction that there exists a real variety Z C R"
for which

ANX CZCX.

LetU = CIS(Z) C T be the complex Zariski closure of Z, and note that i/ N X = Z (this follows
from the fact that i/ NIR" = Z). This gives

ANX CUNX C X.

But this implies that ¥ C U/ U (T \ A) C T.Since X C T is Zariski dense,and U/ U (T \ A) C
T is Zariski closed, it follows that i/ U (T \\A) = T,so A C U C T. This is a contradiction to
A C T being Zariski-dense, and completes the proof that A N X" is Zariski densein X over R. [

12The real part of a Zariski open set is Zariski open over R. Indeed, A is the complement of some Zariski closed set
X={velC": fi(v) == fp(v) =0} C C" s0 ANIR" is the complement of the Zariski closed subset of R" cut out
by the 2p polynomials formed by taking the real and imaginary parts of each f;.
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2.3 Examples of varieties

In this section, we introduce several well known examples of conic varieties, which we will use in
later sections to demonstrate applications of our algorithm. These include determinantal varieties
of matrices, the variety of product tensors, the variety of biseparable tensors, and the variety of
slice rank one tensors.

Let 1, np, and r < min{ny, ny} be positive integers, let V; and V, be F-vector spaces of dimen-
sions 11 and n»,, and let

XT = {'Z) & Vl ® VZ : rank(v) S r} g V] ® VZ/

where rank(v) denotes the rank of v € V, ® V5, viewed as an n, x 11 matrix. More precisely, this
is the rank of v when v is viewed as an element of Homg(V;, V) under the isomorphism

V] & Vz = Homlp(Vz*,Vl), (7)

where Homp(V5, V) denotes the set of F-linear maps from V; to V. This map sends v; ® v, €
V1 ® Vs, to themap f +— f(v2)v1, and extends linearly. In coordinates, this is simply the map which
regards a tensor of dimension dim(V;) dim()%) as a dim(V;) x dim(}>) matrix.

We will sometimes use the notation XR and X' to emphasize the field. It is a standard fact
that &, is a conic variety cut out by the (r + 1) x (r 4+ 1) minors (these minors have degree r + 1,
and there are (,"!;)(,"?) of them). A slightly less standard fact is that &, has no equations in de-
gree r. Over C, this follows from the fact that the (r + 1) x (¥ 4+ 1) minors generate the ideal of
X [Harl3a]. Over R, it follows from e.g. [Man20, Theorem 2.2.9.2] that the Zariski closure of X'}
in C" is XC. By Hilbert's Nullstellensatz, it follows that any real polynomial which vanishes on
XR must also vanish on XC. Thus, the (r + 1) x (r + 1) minors also generate the ideal of XX, so
in particular, XX has no equations in degree .

Our further examples will be subsets of tensor product spaces with more factors: Let
ni,..., "y, be positive integers, let Vs, ..., V,, be [F-vector spaces of dimensions 7y, ..., n,, and let

V=V®: - ®V,. Let
Xoep = {01 @ @vp 01 €V, ..o, U € Vi)

be the set of product tensors (or separable tensors). Then Xsp, is non-degenerate and is cut out by

exactly
(g + 1 B ny+1 Ny + 1
P= 2 2 2

many linearly independent homogeneous polynomials of degree d = 2. Indeed, it is well-known
that Xsep is non-degenerate and cut out by degree d = 2 polynomials [Har13a]. The number
follows from the fact that p = dim(I(Xsep)2) (see Section 2.2), equation (6), and the fact that

span{v“? : v € Xgep} = S*(V1) ® -+ @ S*(V),
which has dimension (") - - - ("), Let
X = U v €V :rank v:@Vi*—> ® Vi <1}

TC[m) ieT jelm\T
1<|T|<|m/2]

16



be the set of biseparable tensors. Then this is the decomposition of X into irreducible components,
and the irreducible component indexed by T C [m] is non-degenerate and cut out by

_ (TLier i\ (TLjepmpr )
er= (") (M

many linearly independent homogeneous polynomials of degree d = 2 (this follows directly from
the analogous statement for X; above). Similarly, let

Xs = U {vEV:rank (U:VZ-*—> ® VJ-) <1}
i€ [m] jelm\{i}

be the set of slice rank 1 tensors. Then Xs is non-degenerate, this is the decomposition of X’s into
irreducible components, and the component indexed by i € [m] is non-degenerate and cut out by

P = (”f) (Hje[m]\{i} ’%‘)
! 2 2

many linearly independent homogeneous polynomials of degree d = 2 (this again follows directly
from the analogous statement for &} above). We will also consider the set of symmetric product
tensors. If V is an [F-vector space of dimension 7, then we define

step = Xsep N S"™(V) = {av®" s € F,v € V} C S"(V)

to be the set of symmetric product tensors in S™ (V). The set step forms a non-degenerate algebraic
variety that is cut out by

b (" +1\  (n+2m+1
2 2m
many linearly independent homogeneous polynomials of degree d = 2 (this calculation is similar
to the analogous calculation for Xsep).

24 Decompositions over varieties

For an F-vector space 7 of dimension 7, a conic, non-degenerate variety ) C 7T, and a vector
T € T, a Y-decomposition of T is a set {vy,...,vr} C Y for which

T= Y o, (8)
ac[R]

The number R is called the length, or rank of this decomposition. The YV-rank of T is the minimum
length of any )Y-decomposition of T. We say that a }-rank decomposition {vy,...,vr} C Vis the
unique Y-rank decomposition of T if every other decomposition of T has length greater than R. We
will sometimes abuse terminology and refer to an expression of the form (8) as a Y-decomposition.

In this work, we study a particular type of J-decomposition. For [F-vector spaces V and )V and
a conic, non-degenerate variety X C V, we study (X, W)-decompositions (also called simultaneous
X -decompositions): these are )-decompositions under the choice

Y={v@w:veX and weW} VR W.
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For example, when V = V; ® V; is a tensor product space and A7 is the determinantal variety
introduced in Section 2.3, (X, WW)-decompositions exactly correspond to tensor decompositions,
i.e. expressions of a tensor T € V; ® V, ® W as a sum of terms of the form v; ® v, ® w. More
generally, (X, W)-decompositions correspond to r-aided rank decompositions (also called max ML
rank-(r,r, 1) decompositions, and (r,r, 1)-block decompositions). Aided decompositions have applica-
tions in signal processing and machine learning, among others [KB09, CJ10, CMDL*15, SDLF*17]
and were also studied, for example, in [DL08a, DL08b, DLN08, DDL20]. As one more example
(which also generalizes (X1, W)-decompositons), when V = V1 ® --- @ Vy and X' = Xgep C V
is the set of product tensors, (Asep, YW)-decompositions correspond to tensor decompositions in
VI®- @ Vy ®W,ie. expressionsof atensor T € V; ® --- ® V,, ® W as a sum of terms of the
formov; ® - QU Q w.

We will say that a property holds for a generically chosen element T € V @ W of (X, W)-
rank at most R if there exists a Zariski open dense subset A C X *R s WXR such that for all
(v1,...,0r, W1, ..., WR) € A, the property holds for T = 25:1 Uy @ w,.

2.5 Simultaneous diagonalization algorithm

In this section, we review the simultaneous diagonalization algorithm [Har72] (that is sometimes
referred to as Jennrich’s algorithm or Harshman’s algorithm), which we will use as a subroutine
in our algorithm. For [F-vector spaces V and W, we recall the natural isomorphism

V@ W = Homgp(W*, V),

(see (7)). We will invoke this isomorphism several times in the simultaneous diagonalization al-
gorithm and throughout this paper. For example, we will view a tensor T € V; ® V, ® V3 as an
element of Homg(V},V, ® V3), and also as an element of Homg ((V, ® V3)*, V;). For a linear map
X € Homg(V5, V3), let Xt € Homg(V3, V5') be the Moore-Penrose pseudoinverse of X.

Fact 10 (Correctness of the simultaneous diagonalization algorithm). Let T € F" ® F"2 ® F"* be
a tensor admitting a decomposition of the form {u, ® v, ® w, : a € [R]}, where (i) {v1,...,vr}
is linearly independent, (ii) {ws, ..., wr} is linearly independent, and (iii) u, ¢ span{u;} for all
a # b € [R] ie., {u,...,ur} has Kruskal rank at least 2. Then this is the unique tensor rank
decomposition of T, and with probability 1 over the choice of f,g € (IF")* in Step 1, the simul-
taneous diagonalization algorithm outputs “{u, ® v, ® w, : a € [R]} is the unique tensor rank
decomposition of T.”

In particular, Fact 10 shows that for any tensor T € F' ® F"2 @ [F"* admitting a decomposition
of the form {u, ® v, ® w, : a € [R]}, where {uy,...,ur}, {v1,...,or}, and {wy,..., wr} are all
linearly independent, this is the unique tensor rank decomposition of T, and it is computed by
the simultaneous diagonalization algorithm. It also shows that, when n; > 2, the simultaneous
diagonalization algorithm computes the (unique) tensor rank decomposition of generically chosen
tensors in [F"1 ® F"2 @ [F" of tensor rank at most min{ny, n3}.

Proof of Fact 10. The fact that {1, ® v, ® w, : a € [R]} is the unique tensor rank decomposition of T
follows from Jennrich’s theorem [Har70, Har72] (or more generally, Kruskal’s theorem, see [Kru77]
or [LP21]). If T admits such a decomposition, then

T: Z I/la®va®war
a€[R]
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Simultaneous diagonalization algorithm

Input: A tensor T € V; ® V) ® V.

1. Choose f,g € (F")* uniformly at random (according to e.g. the uniform spherical mea-
sure).

2. Let R = rank(T(f)T(g)"). Compute the eigenvalues and eigenvectors of T(f)T(g)™". If
there are repeated non-zero eigenvalues, output: “Fail.” Otherwise, let {11, ..., Ag} be the
non-zero eigenvalues of T(f)T(g)", and let {vy, ..., vr } be the (unique, up to scale) corre-
sponding eigenvectors.

3. Compute the eigenvalues and eigenvectors of T(f) " T(g). If the non-zero eigenvalues are
not {A;1,.. .,/\1;1}, then output: “Fail.” Otherwise, let {w, ..., wgr} be the corresponding
eigenvectors.

4. Let {h; : i € [R]} C (F" @ F"3)* be any set of linear functionals that is dual to {v, ® w, :
a € [R]}, ie. for which h,(v, ® wy,) = 6, for all a,b € [R]. Let u, = T(h,) € F™ for
all a € [R], viewing T as a linear map (F" ® F"3)* — F". If u, € span{u;} for some
a # b € [R], then output: “Fail.” Otherwise, output: “{u, ® v, ® w, : a € [R]} is the
unique tensor rank decomposition of T.”

so the eigenvalues of T(f)T(g)" are

{§EZZ§ R},

which are clearly distinct for generically chosen f, g € (IF")*, since u, ¢ span{u;} foralla # b €
[R]. The corresponding eigenvectors are {vy, ..., vg }. Similarly, the eigenvalues of T(f)"T(g) are
the reciprocals:

{ %3 R},

with corresponding eigenvectors {ws, ..., wg }. Itis also clear that u, = T(h,), so the simultaneous
diagonalization algorithm outputs “{u, ® v, ® w, : a € [R]} is the unique tensor rank decompo-
sition of T.” This completes the proof. O

3 The algorithm for computing / N X

Suppose we are handed a basis {u1,...,ur} for an R-dimensional linear subspace Y C V, and
we wish to describe the intersection of I/ with a conic variety X. In this section, we propose an
algorithm that (if it does not output “Fail”), either certifies Y N X = {0} (in which case we will
say that U trivially intersects X'), or else finds all the elements of &/ N X, provided that there are at
most R of them up to scalar multiples. Later on, in Section 4 we prove that the algorithm does not
return “Fail” almost surely under the conditions of Theorem 2.
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Since X is a conic variety, there exists a positive integer 4 and a finite set of homogeneous
degree-d polynomials fi, ..., f, € S?(V*) thatcut out X. Let I = (fi, ..., f,) be the ideal generated
by fi,..., fp,and Iy = span{fy, ..., f,} € S*(V*).

Correctness of our algorithm relies on the following two observations: Observation 11, a suf-
ticient condition for U to trivially intersect A’; and Observation 13, a sufficient condition for there
to be only s < R elements of &/ N X, up to scalar multiples.

Observation 11. If S(U) N I} = {0}, then U N X = {0}.

Proof. The observation is immediate from the fact that for any vector u € ¢ N &, it holds that
u® e ST UYNI(X)F. O

Remark 12 (Relation to Hilbert’s projective nullstellensatz over C). By Hilbert’s projective null-
stellensatz, if F = C then Y N X = {0} if and only if there exists a positive integer D for which
I(U) 4+ I; = SP(V*) (and furthermore, D can be chosen less than d°("); see e.g. [Kol88]). If F = R,
then I(U) 4 + I; = SP(V*) still implies U N X = {0}, but the reverse implication no longer holds
in general. Dualizing, note that I(U); + I; = SP(V*) if and only if $%(U/) N I} = {0}, so this is just
a degree-d Nullstellensatz certificate for checking whether U/ N X = {0}.

Observation 13. If d > 2 and there exists a set of linearly independent vectors vq,...,vr € V for
which S*(U) N I = span{v}?,..., 02}, then the only elements of U N X are vy,...,vs (up to scalar
multiples).

Proof. By, for example, [HK15, Theorem 3.2] or [LP21, Corollary 19], it follows from linear inde-
pendence of vy, ..., vg that v?d, ..., 024 are the only symmetric product tensors in $%(U) N I up
to scale, so vy, ..., vs are the only elements of &/ N X’ up to scale. O

This inspires Algorithm 1 for computing the intersection &/ N X'.
By the above observations, this algorithm is correct:

Fact 14 (Correctness of Algorithm 1). If Algorithm 1 outputs “U trivially intersects X” then U
indeed trivially intersects X'. If Algorithm 1 outputs “The only elements of U N X are {v1,...,vs} (up
to scale)” then the only elements of &/ N X are indeed {vy, ..., vs} (up to scale).

Proof. The first sentence follows directly from Observation 11. For the second sentence, if this
output occurs then T((IF*)*) = S*(U) NI} = span{v?,..., 02}, and {vy,...,vs} is linearly
independent. This implies by Observation 13 that v, ..., v, are the only elements of / N X" (up to
scale). O

4 Proof of the genericity guarantee

In this section, we prove the following theorem, which immediately implies our main result The-
orem 2, a genericity guarantee for Algorithm 1. For a positive integer 4, an [F-vector space VV and
vectors vy,...,v5 € V, wedefinev, V- Vv =Ppy(v1®--- ®vy) C Sd(V).

Theorem 15. Let V = ", let d, R be positive integers, and let s & {0,1,...,R} be an integer. Let
K C Sd(V) be a linear subspace, and let Xy,..., Xr C V be conic varieties for which X3,..., X; are
non-degenerate of order d — 1 and X, ..., Xr are non-degenerate of order d. If

n+d—2>

d—1 ®)

codim(K) > R(d — 1)!<
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Algorithm 1: Computing ¢/ N X.

Input: A basis {uy,...,ug} for a linear subspace Y C V, and a collection of homogeneous
degree-d polynomials fi, ..., f, that cut out a conic variety X C V.

1. Letl; = span{fi,..., fp} C S%(V*), and compute a basis {Py, ..., P;} C S*(V) for S(U) N
L. I SYU) N I} =0, thenUd N X = {0}. Output: “U trivially intersects X.”

2. If s > R, then output: “Fail.” Otherwise, construct the tensor
S
T=Ye@PeF®s(V).
i=1

Regarding T as a 3-mode tensor
TeFoVe (V)1

run the simultaneous diagonalization algorithm on T. If the simultaneous diagonalization
algorithm outputs a decomposition of T of the form {z; ® v¥? : i € [s]} for some linearly
independent zy,...,z; € IF° and linearly independent vy,...,v; € V, then output: “The
only elements of i N X are {v1,...,vs} (up to scale).” Otherwise, output: “Fail.”

then for a generic choice of v1 € X, ..., vr € Xg, it holds that
span{v,, V-~V 0, :a € [R]V4\ A} N K = {0}, (10)
where As = {(1,...,1),...,(s,...,s)}.
Before proving this theorem, we observe that it implies Theorem 2.

Corollary 16 (Theorem 2). Let V be an [F-vector space of dimension n, let s € {0,1,...,R} be an integer,
and let X C 'V be a conic variety cut out by p = 6 (”+g_1) linearly independent homogeneous degree-d
polynomials fy, ..., f, € S*(V*) for a constant & € (0,1). Suppose furthermore that X is non-degenerate
of order d — 1. Then for a linear subspace U C 'V of dimension

R< P 0 (ntd—1)

- (Y a

spanned by a generically chosen element (vy,...,Vs, Vs41,...,Vr) € X*° X V*(R=3) 14 has only s ele-
ments in its intersection with X (up to scalar multiples), and, on input any basis of U, Algorithm 1 correctly
outputs “U trivially intersects X" if s = 0 and “The only elements of U N X are {v1,...,0s} (up toscale)”
ifs > 0. When s = 0, the statement holds even without the non-degeneracy assumption on X.

Proof. Let I; = span{fi,..., f,} C S?(V*).Since {f, ..., f,} is linearly independent, we have that
dim(I;) = codim(I;) = p. By Theorem 15, for a generically chosen tuple of vectors (v, ..., vg) €
X8 x Y*(R=s) it holds that vy, ..., vg are linearly independent and

span{v,, V- -V 0, s a € [R]VI\ A} NI = {0}.
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In particular, {v?d, .. .,v?d} forms a basis for S*(U) N Ij. By Observation 13, vy,...,v; are the
only elements of &/ N X up to scale. In Algorithm 1, the simultaneous diagonalization algorithm
is applied to T = Y, ¢; ® P, where {P,..., P} is any basis of S*(U) N I}. Let f1,..., fr € V*
be dual to vy,...,0g, ie. fi(v;) = &j. Then T = Y3,z ® v?d, where z; = T(fl.®d) € . By
Fact 10 this is the unique tensor rank decomposition of T and it is recovered by the simultaneous
diagonalization algorithm. It remains only to prove the last sentence of the corollary, which follows
immediately from Theorem 15 with K = I and X} = --- = Xg = V. This completes the proof.

O

Now we prove Theorem 15, for which we require the following lemma. For a positive integer
d, an F-vector space V and vectors vy,...,v; € V, we definev; V--- Vo, = Pyld(vl ® Q).
For a symmetric tensor u € S¢(V*), an integer £ € [d — 1], and a vector v € V, we define v®/ Ju €
S4=£(V*) to be the contraction of u with v®* in any / of the d factors. (The output will be the same
regardless of which ¢ factors are chosen. We will pick the first £ factors for concreteness.)

Lemma 17. Let n € IN be a positive integer, let d > 2 be an integer, let £ € [d — 1], let X CV = F" be
an irreducible variety that is non-degenerate of order d — 1, and let U C S%(V*) be a linear subspace. Then
for a generically chosen vector v € X, it holds that v®¢ JU C S0 (V*), and

dim(v®€_11/l) Z W
l

- dim(U). (11)

Proof. The fact that v®¢ JU C S0 (V*) is obvious, so it suffices to prove the dimension bound.
Since the set of v € & that satisfy (11) is clearly Zariski open, it suffices prove that it is non-empty;,
i.e. that there exists a single v € X that satisfies (11). Since X" is non-degenerate of order d — 1,
there exists v1,...,0,; € X, where m = ("*/71), for which {0 : i € [m]} forms a basis of S‘(V).
Let {u1,...,un} C S*(V*) be such that o (u;) = J;;. Since i C S*(V*) C S“(V*) ® SWU=O(V¥),
any element u € U can be written as u = Y1 | u; ® w; for some w; € S~/(V*). Furthermore, by
construction it holds that w; = vlw Ju € v?ﬂ 2 U. Tt follows that

m

U C Y spanf{u;} ® (07 LU).

i=1

Thus,
m
dim(U) < ) di m(o? JU),
so there exists some i € [m] for which

dim (0P’ JU) > -dim(U).

(n+gfl)

This completes the proof. O

First note that it suffices to prove Theorem 15 over C. Indeed, if F = R then we can consider
IR" as a subset of C" and let 74, ..., Tr be the Zariski closures of X7, ..., Xr in C". It is clear that
TiNR" = X; for each i € [R]. If &X; C R" is non-degenerate of order d, then 7; C C" is non-
degenerate of order d. We can similarly replace K with K ®g C (it's dimension will not change).
Furthermore, 7 := 77 X - -+ X Tg is the Zariski closure of X' := X; x -+ x Xk. For any Zariski
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open dense subset A C T for which (10) holds, it follows from Fact 9 that AN X C X is a Zariski
open dense subset for which (10) holds. We can therefore assume IF = C without loss of generality.

To prove Theorem 15, we will first define a total ordering of all the index tuples (a1, ...,a4) €
[R]V¥ (recall that (ay,...,a;) € [R]V implies 1 < a; <a, < --- < ag <R).

Definition 18. Given two index tuples (ay, ..., a4), (b1, ...,bs) € [R]V?, we use the following three
rules to determine if (ay,...,a5) < (by,...,by):

1. {a1,... a3} > |{b1,...,bs}| ie., (a1,...,a4) has more distinct indices than (by, ..., by)

2. when |{ay,...,a;}| = [{b1,...,bs}| = 1, we use the reverse lexicographic ordering
(1,...,1) = --->(R,...,R)

3. when |{a,...,a5}| = |{b1,...,bs}| # 1, we use the standard lexicographic ordering. For
example, (1,1,2) < (1,1,3) < --- < (1,1,R) < (1,2,2)--- < (R—1,R, R).

Note that the s largest tuples with respect to this ordering are (1,...,1) > (2,...,2) > --- >
(s,...,s). Theorem 15 is immediate from the following proposition.

Proposition 19. Suppose that F = C and the assumptions of Theorem 15 hold. Then for generically chosen
v1 € X),...,0g € Xy it holds that
V.-V &span{vg, V- Vg, (in,...,04) = (a1,...,a4) € [R]"} + K (12)

Uil

forall (iy,...,i5) € [R]V4\ As.

To see why this proposition implies Theorem 15, simply take the intersection of the Zariski
open dense subsets of X7 x - - - x Xj satisifying (12) for each (iy,...,i;) € [R]"%. This intersection
is again Zariski open dense in &} X - - - x Xg, and (10) holds for every tuple in this intersection.

Proof of Proposition 19. For each i € [R], let &j1,..., X, be the irreducible components of A;.
Then the irreducible components of X x - -- x Xg are X7, X --- X AR, as ji,...,jr range over
[71],-- -, [qr], respectively. It suffices to prove that (12) holds on a Zariski open dense subset of each
component. To ease notation, we redefine X; = XL]-I, o, AR =X R,jr” and prove that (12) holds
on a Zariski open dense subset of X7 x --- x Xg. We prove this by induction on d, starting with
the base case d = 1.

In the base case d = 1, it holds that codim(K) < R, and it is sufficient to verify that
span{vs11,...,0r} N K = {0} for generically chosen vs11 € Xyq,...,0r € AR. Since the set
of elements of X1 x --- x Xy satisfying this property is Zariski open, it suffices to prove that
it is non-empty, which follows easily from the fact that Xs14,..., Ar are non-degenerate (i.e.,
span(X;) = - - - = span(Ag) = V).

Proceeding inductively, supposed > 1. Let I = (i1, ...,i;) € [R]Y9\ A, and let

T(I) = {ae R : {a,...,a4} = {i1,...,is} and (ay,...,a4) < (il,...,id)},

where < is defined in Definition 18.
For each choice of vectors v; € X},...,vg € Xy, and each a € [R], let

Z/Ia(d) = Pg{d(span{va} ® V®(d*1)) C Sd(V),
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and let

U — Span{ U u;@} +K.
ac[R\{i1,-..ig}

Then a sufficient condition for (12) to hold is that

vy, V- Vo, &span{vg, V-V, caeT(I)}+U_;. (13)

1

Indeed, the righthand side of (12) is contained in the righthand side of (13). To complete the proof,
we show that (13) holds for generically chosen v; € &j,...,vr € AXr. Using Chevalley’s theo-
rem, it is not difficult to show that the set of elements of X} x --- x X satisfying (13) is con-
structible [Har13b, Exercise 11.3.19]. Since any constructible set contains an open dense subset of
its closure, it suffices to prove that this set is Zariski dense in X; x --- x Xr [An12, Lemma 2.1].

Note that, for any choice of (v; € X : j ¢ I), it holds that dim(Lla(d)) < (") foralla ¢ I
(with equality if v, # 0), and

dim(U_;) < dim(K) + (R —k) <” d - 2>

g1 (14)

. <n+;l—1> _k(d_l),<”;f52> (from (9), and (d —1)! > 1),

where k := [{i1,...,iz}|

Let ¢ be the largest integer in [d] for which i, = i;. We first consider the case ¢ = d. In this
case, T(I) = @. Then span{v® : v € X; } = S%(V) since X}, is non-degenerate of order d. For any
choice of the other vectors (v; € &j : j # i1), it holds that dim(U/_;) < (”Jrg*l), so a generic choice
of v;, € A}, satisfies (13). In more details, we have demonstrated the existence of a set

U (01, ey Z)ilfl) X ‘A(U/E/thj#h) X (UilJrl, ey Ud) (15)
(UJE.X]]#Zl)

such that (13) holds for every element, where A(Uje Xpjziy) & Ay is Zariski open dense for every
choice of (v]- €EXj:j# i1). The set defined in (15) is Zariski dense in X} X --- x X. Indeed, for
any non-empty Zariski open subset D C & x --- x X, D must intersect some (v1,...,v;,-1) X
Xi, % (vi,41,...,04) in a non-empty open subset. Since A(U].G Xjzi) © Ay is Zariski open dense,
it follows that D must intersect (vy,...,v;,_1) X A(Ujeszj#il) X (viy41,-..,04), and hence it must
intersect (15). Since D was an arbitrary non-empty open subset of X} x - -- x X%, it follows that
the set (15) is Zariski dense in X7 x - - - x &Ar. This completes the proof in the case ¢ = d.

Henceforth we assume 1 < ¢/ < d — 1, and prove that (13) holds for generically chosen v; €
Xi,...,vr € Ag by applying the inductive hypothesis with degree (d — ¢). Foralla € T(I) it holds
thata; = --- =ay = iy. Let Iy = (ig41,...,14). Note that for any choice of v; € A},...,vr € AR,
it holds that

span{v,, V... Vo, :a € T(I)} C span{vl-vlg Vop V-V, ,:be T )} +W
C span{vl-vf Vo, Voo Vo, L y>=be {igﬂ,...,id}v(d_g)} +W, (16)

where

W= Pg{d(span{vf?(gﬂ)} ® YBU—=1),
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Indeed, the first line follows from the fact that for any a € T(I), if ap,1 # i1 then (asyq,...,a4) €
YD g, VeV, € W. The

i
second line is immediate. (Here, the ordering on {is,1,...,i;}V@~% is that of Definition 18 under
the bijection between {i;,1,...,i;} and [k — 1] that sends the j-th distinct element of (7,1, ...,i)
to j. Recall that k = |{71,...,iz}|,s0k —1 = [{ips1,..., 05}

By (16), to verify (13) it suffices to prove that

T(I_y), and if ap,q = i thena; = -+ = a1 = i and v

ng Vo, V- Vo, & span{vl-vlg Vo V- Vo, g =by+WHU_, 17)

or equivalently,

Vi, V-V, &span{vy, V---Voy, 14 b} +Ui(1d7€) + (v, JU), (18)
where ()1 denotes the orthogonal complement in the dual symmetric space (for example, U+, €
S4(V*)), and

Ul = Py, (spanfo, } @ VEE-IT) € s@-0(y).

n

To see this equivalence, first note that (17) is equivalent to
vffé ® (vj,,, V- V) ¢ span{vffé ® (vp, V- Voy, ) I > b} (19)

+ span{vffe} ® Ui(ld_g) +U 1+ Z,

where Z = ker(P% d) C V@4 (This follows from the basic fact that for any vector space V, linear
subspace U C V, projection P : V — V, and vector v € V), it holds that P(v) € P(U) if and only if
v € P(U) + ker(P). For us, the righthand side of (17) plays the role of U, ]l%f ® P (d—0) plays the
role of P, and V*“ plays the role of V.) So we just need to prove that (19) and (18) are equivalent.
This follows from another basic fact: For vector spaces V, V), over the same field, a vector v, € V>,

and a linear subspace U/ C V; ® V;, the set of vectors v; € V; for which v; ® v, € U is precisely
the linear subspace (v, o U L)L C V. Indeed,

110 cU = (1@v)U) =0 <= vi(vy2UT) =0 <= v1 € (va UL

For us, V¥ plays the role of V;, S(*~0) (V) plays the role of V,, and U_; + Z plays the role of U.
At this point we have shown that to prove the proposition it suffices to verify that (18) holds

for generically chosen v; € &},...,vr € Xg. To apply the induction hypothesis, we just need to

verify that the codimension of L{i(ldfé) + (v;, oUL,)* is generically large enough. By Lemma 17 and

the upper bound on dim(X/_;) derived in (14), for a generically chosen vector v;, € &j it holds
that

, k(d = D"
dim(v;, JUL,) > (n+£—1;l 1/

Let B(vje X © X}, be the Zariski open dense subset on which this holds (since /_; depends on
(vje Xj:jgI), B(vje X;j) also does, and we keep track of this with the subscript). Then for any
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(4 S B(UjGXij%I) it holds that

k(d — 1)! n+d—2 o
codim(@U" ™ + (v, ULt > ( NP5 <n+d 14 2)
I

- ("t d—0—1
>k(d—1)!‘ n+d—0-2\ (n+d—{-2
- Y d—0—1 d—0—1

z(k—l)-(d—ﬂ—l)!-(”;gﬁz)f

where the second line follows from ("}972) - (4,1 > (17,172 - ("*[~1). By the induction hypoth-
esis, there is a Zariski open dense subset C(v]-e Xpjgl ) € Xjer A for which (18) holds.
At this point we have proven that (18) holds for every element of the set

( U )(Z)] S X] ] % I) X (Uil) X C(vﬁ]‘él,()' (20)
v, € Xl
Vi €Bojijen)

It remains only to check that this set is Zariski dense in &7 x --- x &Xr. To this end, let D C &} x
-+ X A be a non-empty open subset. Then there exists (v; € & : j ¢ I) for which

Dy :zDﬂ((vjer:]'éI)x (Xjel‘)(j)>

is Zariski open dense in (v; € X; : j € I) x (Xje&j). For this choice of (v; € X : j ¢ I), there
exists v;, € B(U]E X;jitl) for which

Dy :=D1N <(Z)] S X] 0 ¢ 1_3) X ( Xjel, .X}))
is Zariski open dense in (v; € Xj:j & I_;) X (Xjel_é.)(j). Thus,

D> N ((v]- €X;:jE )X C(vjexj:jélff.)> # 2

since C(U].€ Xpjgl_) S Xjel A is Zariski open dense. So D intersects the set defined in (20) non-
trivially. Since D was an arbitrary non-empty open subset of &X; x --- x X%, it follows that the
set (20) is Zariski dense in X} x - - - x Ar. This completes the proof. O

5 Application to determining entanglement of a linear subspace

In the context of quantum information theory, there are many scenarios in which it is useful to de-
termine whether or not a linear subspace U/ intersects a conic variety X'. For example, whenF = C,
for positive integers n; and 1, and a positive integer r < min{ny, n }, determining whether or not
a linear subspace ¢/ C F" ® [F™ intersects the determinantal variety &, has found applications
in quantum entanglement theory (e.g., the problems of constructing entanglement witnesses and
determining whether or not a mixed quantum state is separable) and quantum error correction,
among many others [Hor97, BDM 799, ATL11, CS14, HM10] (see Section 2.3 for the definition of
Xy).
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If U trivially intersects &, then we say that U is r-entangled (or just entangled if r = 1). Other
relevant examples include completely entangled subspaces, subspaces of F" & - - - @ F"» which triv-
ially intersect the set of separable tensors Xsep; and genuinely entangled subspaces, subspaces of
F" & --- ® F" which trivially intersect the set of biseparable tensors Xz. We will also consider
subspaces avoiding the set of tensors of slice rank 1, Xs. While it is not clear if this last exam-
ple has quantum applications, we include it because Xs has found several recent applications in
theoretical computer science [Pet16, KSS16, BCC™17, NS17, FL17].

In particular, determining whether &/ C F" ® [F"2 is r-entangled is NP-hard [BFS99]. A slightly
easier problem is: given the promise that either ¢/ N A contains a non-zero element, or else / is
e-far from X, in the sense that

[0 —ull > ello]

forall u € U and v € A&, determining which of these two possibilities is the case. Here,
|-|l = {(-,-)1/? is the 2-norm. There is strong evidence that solving this problem should also take
super-polynomial time in min{#ny,n,} in the worst case [HM10, Corollary 14]. To our knowledge,
the best known algorithm for solving this problem takes exp(O(,/117/€)) time in the worst case
when r = 1 and n; = np [BKS17].

Despite these hardness results, our algorithm runs in polynomial time, and determine whether
a subspace Y C F" ® [F"2, of dimension up to a constant multiple of the maximum possible, is
r-entangled. We obtain analogous results for completely and genuinely entangled subspaces.

In these settings (and in contrast to the decomposition setting described in the next section),
we are not concerned with uniqueness, i.e. determining whether a found element v € U N X
(or collection of elements) is the only element of &/ N X. For reducible varieties, we can use this
flexibility to our advantage, and employ a variant of Algorithm 1 which has better scaling. In
short, this adaptation simply runs Algorithm 1 on each irreducible component of X. If A7, ..., X}
are cut out by homogeneous polynomials py, ..., px of degrees d, ..., di, then X = X;U---U X} is
naively cut out by the homogeneous polynomial p; - - - py of degree d; - - - dy.. The main advantage
of our adapted algorithm in this setting is that it avoids this blow-up in the degree. We call this
adapted algorithm Algorithm 2, and describe it formally below.

Algorithm 2: Determining whether i/ N X = {0}.

Input: A basis {u1,...,ug} for alinear subspace Y C V = ", and for each i € [k] a collection of
homogeneous degree-d; polynomials f; 1, ..., f; », that cut out the i-th irreducible component of
a conic variety X = X1 U--- U X, C V.

1. For each i € [k], run Algorithm 1 on input {uy,...,ugr} and polynomials fi ..., f,,i cut-
ting out A}, and output any non-zero elements of U/ N &; found by Algorithm 1.

2. If all of these output “U/ trivially intersects X;,” then output “i/ trivially intersects X.”

3. Otherwise, output “Fail.”

Corollary 16 implies the following genericity guarantee for Algorithm 2:

Theorem 20. Let n,dy, ..., dy be positive integers, let é1,...,6r € (0,1), let V be an F-vector space of
dimension n, and let X C 'V be a conic variety with irreducible components X, ..., Xy, such that each X;
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is non-degenerate of order d; — 1 and is generated by p; = 6( linearly independent homogeneous
degree-d; polynomials. If U C 'V is a generically chosen linear subspace, possibly containing a generically
chosen “planted” element of X, of dimension

di—1
n+d; )

o (0 o
R:=dim(U) < Ergf]{]\ <7 - (n+d; 1)) (21)

then Algorithm 2 either certifies that U N X = {0}, or else produces the planted element of U N X
In more details, Theorem 20 asserts that the following two statements hold:

1. For every positive integer R satisfying (21), there exists a Zariski open dense subset A C V xR
such that for all (vy,...,0g) € ‘A, the linear subspace U := span{vy,...,vg} trivially inter-
sects X', and Algorithm 2 correctly outputs “Uf trivially intersects X'.”

2. For every positive integer R satisfying (21), there exists a Zariski open dense subset
B C X x V*R=1guch that for all (vq,...,vg) € B, Algorithm 2 outputsv; € U N X.

Proof of Theorem 20. By Corollary 16, for each i € [k] there exists a Zariski open dense subset
A; € V*R such that for all (vy,...,vr) € A;, the linear subspace U := span{v,...,vg} trivially
intersects X, and Algorithm 1 correctly outputs “U trivially intersects X;.” We can therefore take
A= AN --- N A to obtain the first statement above. By Corollary 16, for each i € [k] there exists
a Zariski open dense subset B; C &; x V*R=1 guch that for all (v1,...,0r) € Bi, Algorithm 1 cor-
rectly outputs “v; is the only element of U/ N &}.” The theorem follows by taking B = B1 U - - - U By,
which is an open dense subset of X' x V*R-1, O

Corollary 21. Let nq,np be positive integers, let r < min{ny, ny} be a positive integer, and let
V =F1"@F"2 IfUU CV is a generically chosen linear subspace, possibly containing a generically chosen
“planted” element of X, of dimension

(i) G

(r+ D"

dim(U) < (mny +r), (22)

then (in time (n1n2)°"")) Algorithm 2 either certifies that U N X, = {0} or else produces the planted
element of U N X,. Note that the righthand side of (22) is Q) (nyny) for any fixed r.

Trivially, dim(i/) < nyn, for any r-entangled subspace, so the upper bound (22) is a quite mild
condition on dim(¢/)."?
Proof of Corollary 21. Recall from Section 2.3 that & is a conic variety cut out by p = (,"};)(,'?) ho-
mogeneous polynomials of degree d = r 4 1, and it has no equations in degree r (see Section 2.3).
Thus, the statement follows from Theorem 20. O

We can obtain similar corollaries for the varieties Xsep, Ap and Xs, introduced in Section 2.3,
as follows. We omit the proofs, as they are very similar to the proof of Corollary 21.

13Qver C, it is a standard fact that the maximum dimension of an r-entangled subspace is (1; — r)(ny — r) [Har13a,
CMWO08]. Over R, there can be larger r-entangled subspaces. For example, the 2-dimensional subspace

span{e; ® ey, e1 @ (e1+e2) —er @ (2e1 + )} C RZ®R?

is 1-entangled. The maximum dimension of a real r-entangled subspace does not seem to be known in general. See
e.g. [Pet96, Ree96] for work in this direction.
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Corollary 22. Let m be a positive integer, let ny, . .., ny, be positive integers, and let V = F" @ - - - @ F"m.
IfU C 'V is a generically chosen linear subspace, possibly containing a generic “planted” element of Xsep,
of dimension

nl.-.nm

(nl...nm+1>—zim(nlﬂ)...(nmﬂ), 23)

N[~

then (in time O(ny - - - ny,)) Algorithm 2 either certifies that U M Xsep = {0}, or else produces the planted
element of U M Xsep. Note that the righthand side of (23) is Q(ny - - - ny,).

Corollary 23. Let m be a positive integer, let ny, . .., n,, be positive integers, and let V = F" @ - - - @ F".
IfU C V is a generically chosen linear subspace, possibly containing a generically chosen “planted” element

of X, of dimension
dim (1) < (#) min (Hies ”i> <Hj€[m]\5 ”j>/ (24)

ni--- Ny SC[m] 2 2
1<|S|<m—1

then (in time O(2™ny - - - nyy,)) Algorithm 2 either certifies that U N X = {0}, or else produces the planted
element of U N Xp. Note that the righthand side of (24) is Q(nq - - - ny,).

Corollary 24. Let m be a positive integer, let ny, . .., ny, be positive integers, and let V = F" @ - - - @ F".
IfU C V is a generically chosen linear subspace, possibly containing a generically chosen “planted” element

of Xs, of dimension
< jelm\{i} ]
oim) < (= ) i (2) (71207) &
then (in time O(mny - - - n,,)) Algorithm 2 either certifies that U N Xs = {0}, or else produces the planted
element of U N Xs. Note that the righthand side of (25) is QY(ny - - - 1yy).

In all of these corollaries, the upper bound on dim(U/) is Q(n; - - - ny,). Trivially, dim(U) <
ny - - - ny, for any subspace, so this is a very mild condition on the dimension. '*

14The maximum dimension of a completely entangled subspace over C is

m
nl---nm—Z(ni—l)—l.

i=1

The maximum dimension of a genuinely entangled subspace over C is

min nj—1 ni—1]1].
SClm] (g ) (jg[l_m]]:\s ! )

1<|5|<|m/2]

The maximum dimension of a subspace that trivially intersects X’s over C is

min (n; — 1) ( I nj—l) .
i€fm] jem\{i}

The maximum dimension of such subspaces over R can be greater in general.
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6 Application to low-rank decompositions over varieties

Let V, W be arbitrary F-vector spaces, and let X C )V be a non-degenerate conic variety. In this
section, we study (X, W)-decompositions, which express a given T € V ® W in the form

T = Z v; @ w; (26)
i€[R]

for some vy,...,vr € X and wy,...,w, € W, with R as small as possible. We call the smallest
possible R for which there exists an (X, W)-decomposition of T with R summands the (X, W)-
rank of T, and say that an (X', W)-decomposition (26) of T is the unique (X, W)-rank decomposition
of T if it is an (X, W)-rank decomposition of T and the only other (X, W)-rank decompositions
of T are those formed by permuting the R summands of the decomposition. See Section 2.4 for
further background.

In this section, we show that Algorithm 1 can be used to compute the (unique) (X, W)-rank
decomposition of a generically chosen tensor T of small enough (X,)V)-rank. We apply these
results to the case of tensor rank decompositions and r-aided rank decompositions. First note that
Observation 13 and Fact 10 yield a sufficient condition for a given (X', W)-decomposition of T to
be the unique (X', W)-rank decomposition of T:

Proposition 25 (Sufficient condition for uniqueness). Let X C V := F" be a conic vari-
ety cut out by p linearly independent homogeneous degree-d polynomials fi,...,f, € S (V*), let
Iy =span{fi,..., fp} CSU(V*),let T € VW, and let

T - Z Ua ® Z/Ua (27)
a€[R]

be an (X, W)-decomposition of T. If {wy, ..., wr} is linearly independent, {v4, ..., v} is linearly inde-
pendent, and

SHT(W*)) NI = span{v, ..., 027},

then (27) is the unique (X, W)-rank decomposition of T, and furthermore this decomposition can be recov-
ered from T in nO@) time using Algorithm 1.

Proof. By Observation 13 and Fact 10, it holds that vy, . .., v are the only elements of T(W*) N X
(up to scale), and these are recovered in n°(?) time by Algorithm 1 (see the proof of Corollary 16 for
more details). It remains only to recover the vectors {wj, ..., wg} up to scale. Since {wy, ..., wg} is
linearly independent, the (X, W)-rank of T is equal to R. It follows that any (X, WW)-rank decom-
position must involve (scalar multiples of) vy, ..., vg. Since vy,...,vg are linearly independent,
they uniquely determine wy, ..., wg. To recover wy, ..., wg, let fi,..., f, € V*bedualtovy,...,vg,
i.e. satisfy f;(v;) = 0;;. Then w; = T(f;) for all i € [R]. This completes the proof. O

Combining Proposition 25 with Theorem 15, we obtain the following genericity guarantee for
using Algorithm 1 to recover (X, W) decompositions (this is slightly more general than Theorem 7
in the Introduction).

Theorem 26. Let X C V = [F" be an irreducible conic variety cut out by p =9 (”+5_1) linearly indepen-
dent homogeneous degree-d polynomials for constants d > 2 and 6 € (0,1). Suppose furthermore that X

is non-degenerate of order d — 1. Then for a tensor T € V @ W of the form

T= ) v,®uw, (28)
ac([R]
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where v, . .., UR are chosen generically from X, {ws, ..., wr} is linearly independent, and

. [0 .
R < mm{a : (n+d—1),d1m(W)}, (29)
the following holds: In n°@ time, Algorithm 1 can be used to recover the decomposition (28) and certify
that this is the unique (X, W )-rank decomposition of T.

In particular, this theorem proves that the (X', W)-rank decomposition of a generically chosen
tensor T € V ® W of (X, W)-rank R upper bounded by (29) can be recovered and certified as
unique by our algorithm. Note that, since X" is non-degenerate, a generically chosen collection of
R elements of X" will be linearly independent. Hence, one can alternatively set YW = V and also
choose {wy, ..., wr} generically from X, and the same uniqueness/recovery results hold. More
generally, one can choose {w1, ..., wr} generically from any non-degenerate variety ) C W, and
the same uniqueness/recovery results hold.

By letting X = X} = {u ® v: u € F",v € F"2}, we obtain the corollary for recovering unique
decompositions of order-3 tensors with potentially unequal dimensions.

Corollary 27. Let ny,ny, n3 be positive integers. For a generically chosen tensor T € F™ @ F" @ "3 of
tensor rank

R < min {}L(nl —1)(ny — 1),713};

in (n1n2)°W) time Algorithm 1 can be used to recover the tensor rank decomposition of T and certify that
it is unique.

The above corollary shows that when n3 = Q(n11,), we can go all the way up to rank Q(n11y),
which is the maximum possible rank up to constants.

Letting X = A1 = {u®v:u,v € F'} and W = F" ® [F", and choosing w1, . . ., wg generically
from A} (as in the discussion following Theorem 26), we obtain the following corollary for order-4
tensors (this is a special case of Corollary 29 below).

Corollary 28. For any positive integer n, and a generically chosen tensor T € F" @ F" @ F" ® F" of
tensor rank

(n—1)?

R < ,
- 4

in n°W) time Algorithm 1 can be used to recover the tensor rank decomposition of T and certify that it is
unique.

More generally, we have the following corollary for tensors of arbitrary order:

Corollary 29. Let n be a positive integer, and let m > 3 be an integer. Then for a generically chosen tensor
T € (IF")®™ of tensor rank

(m/i2l 41 (4 1)[m/2]
< mi [m/2) I _
R < min {n , > /7] , (30)
in n9U") time Algorithm 1 can be used to recover the tensor rank decomposition of T and certify that it is

unique.
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It can be shown that for all n > 8, the bound (30) translates to

X - nlm/2] if m is odd
< /2 [m/2] . .
nl 2W+1 _ (”;}ﬂ)m if m is even,

which is Q(n!"/2]) as n grows. For even order m, our results extend to non-symmetric tensors
the bounds known for symmetric decompositions [MSS16, BCPV19] (see also [Vij20] for related
references). In particular, we are not aware of any existing genericity guarantees (prior to our
work) for non-symmetric tensors of even order m that work for rank R = Q(n"/?).15

Proof of Corollary 29. We prove the statement by regarding tensor decompositions in (IF")®™ as
(X, W)-decompositions, where X' = Xsep, (IF")®[m/2] and the elements of W appearing in the
decomposition are constrained to be in Xse, C (IFm)®Lm/2],

Since Xsep C (IF")®[m/2] js non-degenerate and cut out by

nlm/2l 41 n+1\ "2
() (%)

many linearly independent homogeneous polynomials of degree 2 in 1n/"/2| variables, it follows
from Theorem 26 (and the subsequent discussion) that our algorithm recovers unique tensor de-
compositions of rank

(m/2] 4 q 1)[m/2]
: \m/2) 1 +1 (n+1)
Rgmm{n , > /2] .

This completes the proof. O

We obtain an analogous result for symmetric tensor decompositions. For a symmetric tensor
T € S™(IF"), a symmetric decomposition of T is a decomposition of the form T = Y, (g 220"
for some ay,...,ag € Fand vy,...,0r € F" (in the terminology introduced in Section 2.4, these
exactly correspond to step-decompositions). The Waring rank of T is the minimum number of
terms needed in the decomposition, and a Waring rank decomposition of T is said to be unique
if the only other Waring rank decompositions of T are those obtained by permuting terms in
the sum. We say that a property holds for a generically chosen symmetric tensor T € S™(F") of
Waring rank at most R if the property holds for every tensor of the form T = Y,¢ (g 2,05, where

o aguR™ € XY

®10] Sep are generically chosen.

Corollary 30. Let n be a positive integer, and let m > 3 be an integer. Then for a generically chosen
symmetric tensor T € S™(IF") of Waring rank

n—&-(m/ﬂ—l) (7’!+2(ﬂ1/2}—1)

) n+|m/2] — 1> ( [m/2] 2[m/2]
R <min , - : G1)
n+[m/2]—1
I
in 10" time our Algorithm 1 can be used to recover the Waring rank decomposition of T and certify that

it is unique.

15For odd m, a variant of Harshman's algorithm [Har72] works for rank O(n(”’_l)/ 2) (see e.g., [BCMV14b]).
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Note that the bound (31) is Q(n Lm/2] ) as n grows. For example, when m = 4 the bound (31) be-
comes R < in(n —1). This matches the best known bounds for symmetric decompositions [Har72,
MSS16, BCPV19] (see also [Vij20] for related references). Note that Corollary 27 obtains similar
bounds for non-symmetric tensors. In particular, we are not aware of any existing algorithmic
guarantees (prior to our work) for generically chosen non-symmetric tensors of even m that work
for rank R = Q(n"/?).

Proof. Note that the set of complex symmetric product tensors is equal to the Zariski closure of the
set of real symmetric product tensors (see e.g. [Man20, Theorem 2.2.9.2]). Thus, by Fact 9 it suffices
to prove this statement over C. Let

Xl = {0/ 10 e C"} C sIm/2(Cm)

be the set of symmetric product tensors in S["/2I(C") (we omit the scalars « as they are redundant
over C). Recall that X' is non-degenerate inside of $/"/2(C") and is cut out by

() ()

many homogeneous linearly independent polynomials of degree d = 2. Thus, for generically

?[m/ 2. .,v?m/ 2l ¢ xY_ it holds that {7 m2l . g € [R]} is linearly independent, and

chosen v Sep?

by Theorem 26,

T= Y o

a€[R]

is the unique tensor rank decomposition of T (and hence the unique Waring rank decomposition
of T), and it can be recovered using Algorithm 1 in nOm) time. In more details, there exists a
Zariski open dense subset A C (step) R for which this holds. This translates to a Zariski open

dense subset of (step) xR where
Xopp := {0 10 € C"} C §"(C"),
completing the proof. O

Finally, we can also use our framework to provide guarantees for r-aided rank decompositions
(also known as (r,r,1)-block rank decompositions).

Corollary 31. Let nq, 1y, n3 and r < min{ny, np} be positive integers. Then for a generically chosen tensor
T € F" @ F"™ ® [F"™ of r-aided rank

() G3)

R<min{ng, ————————
B { Y e

(niny + r)} = min {n3, Q,(mn2)},

in (n1n2)O") time our Algorithm 1 can be used to recover the r-aided rank decomposition of T and certify
that it is unique.

Proof. This follows from Theorem 26, and fact that X, is non-degenerate of degree r and is cut
out by p = (,/1,)(,"%) linearly independent homogeneous polynomials of degree d = r + 1 (see
Section 2.3). O
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A Counterexample to Lemma 2.3 in [DL06]

Example 32 (Counterexample to Lemma 2.3 in [DLO06]). The statement of Lemma 2.3 in [DLO06]
is as follows: Let W C R" ® R" be a linear subspace. Then for any positive integer R satisfying
R<n+1and

dim(W) + <I§> <n?,
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a generic collection of vectors vy, ..., vg € R” satisfies the property that
WnNspan{v; ®v;: 1 <i <j< R} ={0}.

This is false (over both R and C). Let n = 4, letif C R* be an arbitrary 3-dimensional sub-
space, and let W = U®?. Then R = 4 satisfies both inequalities, but for any collection of linearly
independent vectors v1,...,v4 € R", there exist non-zero elements u; € span{vy,v2} NU and
uy € span{vs,v4} NU (since U is a 3-dimensional subspace of R?). It follows that

ur ®up € Wnspan{v; ®v;: 1 <i <j <4},

This gives a counterexample to Lemma 2.3 in [DL06]. The false reasoning in their proof seems to
be in the fifth line of page 655 (the third to last line of the proof): Here, it seems to be implicitly
claimed that for an R-vector space V and three finite sets of vectors A,B,C € V,if AUBand BUC
are linearly independent, then span{A U B} Nspan{B U C} = span{B}. This is incorrect (consider
A={e1},B={e1+e},C={e}).
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