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Improved Approximations for Vector Bin Packing

via Iterative Randomized Rounding

Ariel Kulik∗ Matthias Mnich† Hadas Shachnai‡

Abstract

We study the d-dimensional Vector Bin Packing (dVBP) problem, a generalization of
Bin Packing with central applications in resource allocation and scheduling. In dVBP, we
are given a set of items, each of which is characterized by a d-dimensional volume vector; the
objective is to partition the items into a minimum number of subsets (bins), such that the total
volume of items in each subset is at most 1 in each dimension.

Our main result is an asymptotic approximation algorithm for dVBP that yields a ratio of
(1+lnd−χ(d)+ε) for all d ∈ N and any ε > 0; here, χ(d) is some strictly positive function. This
improves upon the best known asymptotic ratio of (1 + ln d+ ε) due to Bansal, Caprara and
Sviridenko (SICOMP 2010) for any d > 3. By slightly modifying our algorithm to include an
initial matching phase and applying a tighter analysis we obtain an asymptotic approximation
ratio of

(

4

3
+ ε
)

for the special case of d = 2, thus substantially improving the previous best

ratio of
(

3

2
+ ε
)

due to Bansal, Eliáš and Khan (SODA 2016).
Our algorithm iteratively solves a configuration LP relaxation for the residual instance (from

previous iterations) and samples a small number of configurations based on the solution for the
configuration LP. While iterative rounding was already used by Karmarkar and Karp (FOCS
1982) to establish their celebrated result for classic (one-dimensional) Bin Packing, iterative
randomized rounding is used here for the first time in the context of (Vector) Bin Packing.
Our results show that iterative randomized rounding is a powerful tool for approximating dVBP,
leading to simple algorithms with improved approximation guarantees.
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1 Introduction

Bin Packing is one of the most fundamental problems in combinatorial optimization. An instance
of Bin Packing consists of a set I of n items with sizes in (0, 1], for which we seek the smallest
number m of unit-size bins into which those items can be packed. The extensive study of Bin
Packing since the early 1970’s has had a great impact on the design and analysis of approximation
algorithms (see, e.g., [FL81, KK82, CCG+13, HR17]).

In this work we study a d-dimensional generalization of Bin Packing, where both the items to
be packed as well as bin capacities are given as d-dimensional vectors. Formally, an instance I of
the d-Dimensional Vector Bin Packing (dVBP) problem is a pair (I, v), where I is a set of n
items and v : I → (0, 1]d is a d-dimensional volume function.1 A solution for the instance (I, v)
is a collection of subsets of items S1, . . . , Sm ⊆ I such that v(Sb) =

∑

i∈Sb
v(i) ≤ (1, . . . , 1) for

all b = 1, . . . ,m and
⋃m
b=1 Sb = I.2 The size of the solution is m. Our objective is to find a solution

of minimum size.
As a natural generalization of Bin Packing, and due to its wide range of applications, there

has been extensive research on dVBP (see, e.g., [GGJY76, FL81, Woe97, KK03, CK04, CHP05,
MT06, BCS10, BEK16, ADGH18, WLLH20, Ray21]). Consider, for example, the allocation of
computing services (items) to a minimum number of identical servers (bins), where each service
requires the use of both CPU and memory. A set of services allocated to a single server may not
exceed the available memory and CPU capacity of the server. This yields an instance of 2VBP. For
other applications see, e.g., [Spi94, PTUW11, YG12, TS19].

Our goal in this paper is to design efficient polynomial-time approximation algorithms for dVBP.
Let α ≥ 1 be a constant. An algorithm A is an asymptotic α-approximation algorithm for
dVBP if for any instance I of dVBP it returns, in polynomial time, a solution of size at most
αOPT(I) + o(OPT(I)), where OPT(I) is the optimal solution size for I. A weaker notion is that
of a randomized asymptotic α-approximation algorithm; such an algorithm always returns a solution
for I in polynomial time, but the solution size has to be at most αOPT(I) + o(OPT(I)) with some
constant probability. An asymptotic polynomial-time approximation scheme (APTAS) is an infi-
nite family {Aε} of asymptotic (1 + ε)-approximation algorithms, one for each ε > 0. Ray [Ray21]
showed that 2VBP does not admit an asymptotic approximation ratio better than 600

599 , assuming
P 6= NP, implying there is no APTAS already for d = 2.3

In [BCS10] Bansal, Caprara and Sviridenko introduced the Round&Approx framework, which
yields an asymptotic (1 + ln d+ ε)-approximation for dVBP, for all d ∈ N and any ε > 0. Their
results are the best-known asymptotic approximation ratio for d > 3. For the special cases of
d = 2 and d = 3, the best-known asymptotic approximation ratios, due to Bansal, Eliáš and
Khan [BEK16], are 1.5 + ε and 2 + ε, respectively, for all ε > 0.

1.1 Our Contribution

Our main contribution is an asymptotic approximation algorithm for dVBP which improves upon
the best-known ratio of [BCS10] for all d > 3. Specifically, we show the following result.

Theorem 1.1. For all d ∈ N and any ε > 0 there is a randomized (1 + ln d−χ(d) + ε)-asymptotic

approximation algorithm for dVBP, where χ(d) =
(

1
2 · ln d+ 1√

d
− 1
)

·
(

1− 2d

√

1
d

)d

> 0.

Theorem 1.1 is derived via a simple iterative randomized rounding algorithm. In fact, we show
that our algorithm outperforms any algorithm which follows the framework of Bansal et al. [BCS10].

1Instances with v : I → [0, 1]d can be easily reduced to equivalent instances with v : I → (0, 1]d.
2We say that (a1, . . . , ad) ≤ (b1, . . . , bd) if ai ≤ bi for i = 1, . . . , d.
3Ray’s result addresses an oversight in an earlier proof of Woeginger [Woe97].
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Reference d = 2 d = 3 d = 4 arbitrary d

[GGJY76] 2.7 3.7 4.7 d+ 0.7

[FL81] 2 + ε 3 + ε 4 + ε d+ ε

[CK04] O(ln d)

[KK03] 2 (absolute)

[BCS10] ≈ 1.69314 ≈ 2.09861 ≈ 2.38629 1 + ln d+ ε

[BEK16] 3
2 + ε ≈ 1.5 2 + ε 2.5 + ε d+1

2 + ε

(absolute)

This paper 4
3 + ε ≈ 1.3333 ≈ 2.09801 ≈ 2.38617 1 + ln d− χ(d) + ε

Table 1: Known and new results for dVBP. An entry of value β indicates the paper in this row
gives an asymptotic β-approximation for dVBP, where d appears at the head of the column.

For the case d = 2, we provide a tighter analysis and an additionial matching subroutine prior
to the iterative randomized rounding phase; together, they enable us to obtain a better bound.

Theorem 1.2. For any ε > 0, there is a randomized asymptotic
(

4
3 + ε

)

-approximation algorithm
for 2VBP.

Table 1 summarizes the previously known, as well as our new results for Vector Bin Packing.

1.2 Related Work

The one-dimensional case (1VBP) is the classic Bin Packing problem. A simple reduction from
Partition [Vaz01, Ch. 9] shows there is no α-approximation for Bin Packing with α < 3

2 ,
assuming P 6= NP. This motivates the study of asymptotic approximation algorithms for the
problem, and in particular, the search for APTASs. The first APTAS for Bin Packing was
proposed by Fernandez de la Vega and Lueker [FL81], who introduced the linear grouping technique.
In their seminal work, Karmarker and Karp [KK82] give an approximation algorithm that uses at
most OPT(I) +O(log2(OPT(I))) bins. Their work introduced the concept of Configuration-LP to
which they applied (deterministic) iterative rounding. More recently, Hoberg and Rothvoß [HR17]
obtained a polynomial-time algorithm that returns a solution of size OPT(I) + O(log(OPT(I))).
Comprehensive surveys of algorithmic results for Bin Packing are given, e.g., by Coffman et
al. [CCG+13] and Delorme et al. [DIM16].

To the best of our knowledge, the first asymptotic approximation algorithm for dVBP, due to
Garey et al. [GGJY76], achieves the ratio

(

d+ 7
10

)

. This ratio was improved to an asymptotic
(d + ε)-approximation by Fernandez de la Vega and Lueker [FL81]. The first algorithm to break
the additive of d in the approximation ratio is an asymptotic (1+O(ln d))-algorithm due to Chekuri
and Khanna [CK04]. An absolute (i.e., non-asymptotic) 2-approximation ratio for the special case
of 2VBP was given by Kellerer and Kotov [KK03].

Bansal, Caprara and Sviridenko [BCS10] introduced a powerful framework, based on random-
ized rounding, which they call Round&Approx. They use it to obtain a randomized asymptotic
(1 + ln d+ ε)-approximation for dVBP, for every d ≥ 2 and any ε > 0. The framework combines
a configuration LP relaxation of the problem with a “subset-oblivious” approximation algorithm.

2



Informally, a β-subset oblivious algorithm for dVBP is an algorithm which, given a dVBP in-
stance (I, v) and a random subset of items S ⊆ I, such that Pr(i ∈ S) ≤ γ for all i ∈ I, returns a
solution for (I, v) using approximately β · γ · OPT(I, v) bins. A (nearly-optimal) solution for the
configuration LP is interpreted as a distribution over the configurations of the instance (i.e., subsets
S ⊆ I for which vt(S) ≤ 1 for every t ∈ {1, . . . , d}). This distribution is used to independently
sample a set of configurations; items which do not belong to any of the sampled configurations are
packed using the subset-oblivious approximation algorithm. The properties of the subset-oblivious
approximation algorithm combined with a concentration bound of McDiarmid [McD89] then yield
the claimed approximation guarantee. Round&Approx is the framework used to obtain the best
approximation algorithms for 2-Dimensional Geometric Bin Packing and for Vector Bin
Packing.

Bansal, Eliáš and Khan [BEK16] obtained an asymptotic
(

d+1
2 + ε

)

-approximation for dVBP,
for all d ∈ N and any ε > 0. Their algorithm is based on a rounding scheme which yields a packing
with resource augmentation in all dimensions except one. The rounding scheme is combined with
the generation of an inflated solution of specific structure, which leaves some free volume in all
dimensions but one. The free volume is used to balance the resource augmentation. The authors
prove the existence of such a solution, while the algorithm uses heavy enumeration to “guess”
properties of the solution which suffice to reconstruct it. The authors also attempted to combine
this algorithm with the Round&Approx framework of Bansal et al. [BCS10] to obtain improved
asympatotic approximation. Unfortunately, there is a flaw in the analysis (we give the details in
Appendix A).4 For d = 2, Bansal et al. [BEK16] obtained an absolute (3/2 + ε)-approximation
using a combinatorial algorithm.

Recently, Sandeep [San22] showed there is no asymptotic o(log d)-approximation for dVBP. For
other results relating to dVBP see, e.g., [Joh16] and the excellent survey on multidimensional Bin
Packing problems by Christensen et al. [CKPT17].

Iterative rounding and randomized rounding are two powerful techniques used to obtain an
integral solution from a fractional solution of an LP relaxation for a problem. Iterative rounding
generates an integral solution by iteratively assigning integral values to subsets of variables in
the LP, and solving a suitably modified linear program (excluding these variables). In contrast,
randomized rounding is done in one shot, by interpreting the variable values as probabilities, and
assigning an integral value to each variable via sampling according to these probabilities. An
excellent survey on iterative rounding can be found in [LRS11] (see also [Ban14]). For various
applications of randomized rounding, see, e.g., [Vaz01, WS11].

One of the earliest and most sophisticated applications of iterative rounding appears in the anal-
ysis of Karmarkar and Karp [KK82] in their OPT(I) +O(log2(OPT(I)))-approximation for classic
Bin Packing. Later works applied iterative randomized rounding for solving other problems, such
as Steiner Tree [BGRS13], makespan minimization on unrelated machines and degree-bounded
minimum spanning trees [Ban19], fair scheduling [IM20], and k-Clustering Completion [HS22].
However, we are not aware of earlier use of iterative randomized rounding in solving classic Bin
Packing or its variants.

1.3 The Algorithm

Given a dVBP instance (I, v), a configuration is a subset C ⊆ I of items such that v(C) ≤ 1.5 For
each item i ∈ I, let C(i) ∈ {0, 1} indicate whether the item i appears in the configuration C or not.
We use C to denote the set of all configurations. That is, C = {C ⊆ I | v(C) ≤ (1, . . . , 1)}. We use
a variant of the standard configuration LP which only consider a subset of items S ⊆ I. Given a

4We contacted the authors and made them aware of this flaw [BEK21].
5We use the notation 1 = (1, . . . , 1) and 0 = (0, . . . , 0).
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Boolean expression D, we define 1D ∈ {0, 1} such that 1D = 1 if D is true and 1D = 0 otherwise.
For every S ⊆ I define

LP(S) : min
∑

C∈C
x̄C ,

∀i ∈ I :
∑

C∈C
x̄C · C(i) = 1i∈S

∀C ∈ C : x̄C ≥ 0 .

(1)

Each of the variables x̄C represents a (fractional) selection of the configuration C, where the first
constraints ensure that each item i ∈ S is covered. It is well-known [BCS10] that there is a PTAS
for LP(S).

For any vector x̄ ∈ [0, 1]C we associate a distribution over the configurations C. We say that a
random configuration R ∈ C is distributed by x̄ (and use the notation R ∼ x̄) if Pr(R = C) = x̄C

z
for every C ∈ C, where z = ‖x̄‖ ≡∑C∈C x̄C .

Our main algorithm, Iterative Randomized Rounding, is given in Algorithm 1. For arbitrary d,
the algorithm is used with S0 = I; the distinction between I and S0 will be used later in our
improved algorithm for 2VBP (see Algorithm 2). We note that Algorithm 1 has a polynomial run
time (for fixed δ), and that it returns a solution for the dVBP instance (S0, v). Line 6 of Algorithm 1
uses a classic First-Fit approach to pack the remaining items (see Section 2 for more details).

Algorithm 1: Iterative Randomized Rounding

Parameters: δ ∈ (0, 0.1), α = − ln (1− δ) and k =
⌈

log1−δ(δ)
⌉

, where δ−1 ∈ N.
Input : A d-VBP instance (I, v) and a subset S0 ⊆ I.
Output : A solution for the instance (S0, v).

1 for j = 1, . . . , k do
2 Find a (1 + δ2)-approximate solution x̄j for LP(Sj−1) and let zj = ‖x̄j‖ be its value.

3 Independently sample ρj = ⌈αzj⌉ configurations Cj1 , . . . , C
j
ρj , where Cjℓ ∼ x̄j for all

ℓ ∈ {1, . . . , ρj}.
4 Update Sj ← Sj−1 \

(

⋃ρj
ℓ=1C

j
ℓ

)

.

5 end
6 Pack Sk into configurations C∗

1 , . . . , C
∗
ρ∗ using First-Fit

7 Return
(

⋃k
j=1{C

j
1 , . . . , C

j
ρj}
)

∪ {C∗
1 , . . . , C

∗
ρ∗}.

In the analysis we show that ρ∗ is negligible in comparison to OPT(I, v). Thus, the solution
generated by Algorithm 1 consists predominately of configurations which are randomly sampled
according to solutions for the configuration LP.

Furthermore, the algorithm repeatedly solves the configuration LP, each time using the set Sj
consisting of the items not covered in previous iterations. This stands in contrast to algorithms
associated with the Round&Approx framework (e.g., [BCS10]) which solve the configuration LP
once and utilize a subset-oblivious algorithm to generate a significant part of the solution following
the random sampling stage.

The above difference is the key for the improved approximation ratio. The analysis of
Round&Approx uses the fact that if C1, . . . , Cρ are independent random configurations distributed

by a (nearly) optimal solution x̄ for LP(I), then Pr(i /∈ ⋃ρ
ℓ=1 Cℓ) ≈ exp

(

− ρ
OPT(LP(I))

)

. For exam-

ple, to have the random configurations C1, . . . , Cρ cover each item i ∈ I (i.e., i ∈ C1∪ . . .∪Cρ) with

4



probability 1
2 , the number of sampled configurations has to be ρ ≈ OPT(LP(I)) · ln(2). The core

idea in our analysis is that if the configurations are sampled iteratively, as in Algorithm 1, then the
probability of an item to remain uncovered is 1

2 after sampling strictly fewer configurations.
Bansal et al. [BCS10] defined the notion of β-subset oblivious algorithms for dVBP; we give a

formal definition of the term in Section 3. The main result of Bansal et al. [BCS10], applied to
dVBP, is the following.

Theorem 1.3 (Round&Approx [BCS10]). Let d ∈ N and β ≥ 1. If there is a polynomial-time
β-subset oblivious algorithm for dVBP then there is a randomized asymptotic (1 + ln β + ε)-
approximation algorithm for dVBP for every ε > 0.

Bansal et al. [BCS10] also presented subset-oblivious algorithms for dVBP, as stated in the next
lemma.

Lemma 1.4. For every ε > 0 and d ∈ N there is a polynomial-time (d + ε)-subset oblivious
algorithm for dVBP.

In particular, the asymptotic (1 + ln d + ε)-approximation for dVBP of Bansal et al. [BCS10]
is derived as an immediate consequence of Theorem 1.3 and Lemma 1.4. The following theorem
states that Algorithm 1 is strictly better than any algorithm that is based on Round&Approx
(Theorem 1.3).

Theorem 1.5. Let β ≥ 1 and d ∈ N. If there is a β-subset oblivious algorithm for dVBP then for
every ε > 0 there exists δ > 0 such that Algorithm 1 configured with δ is a randomized asymptotic

(1 + lnβ − χ(β, d) + ε)-approximation algorithm for dVBP, where χ(β, d) =
(

1
2 · ln β + 1√

β
− 1
)

·
(

1− 2d

√

1
β

)d
.

Theorem 1.1 follows immediately from Theorem 1.5 and Lemma 1.4. Since χ(β, d) > 0 for all
β > 1 and d > 1, Theorem 1.5 implies that Algorithm 1 is strictly better than Round&Approx; that
is, it achieves an asymptotic approximation ratio smaller than that obtained by any Round&Approx-
based algorithm. Furthermore, while the result of Theorem 1.3 refers to an algorithm which uses
as a subroutine a β-subset oblivious algorithm, the result of Theorem 1.5 uses the β-subset obliv-
ious algorithm only as part of its proof. Thus, Theorem 1.5 does not require the subset-oblivious
algorithm to run in polynomial time. Finally, we note that the value of χ(β, d) in Theorem 1.5 is
likely to be sub-optimal, and can probably be replaced by a larger value. Our main objective is to
show Algorithm 1 yields a better asymptotic approximation ratio in comparison to Round&Approx
in a simple manner, possibly sacrificing the value of χ(β, d).

The proof of Theorem 1.5 utilizes an iteration-dependent bound on OPT(Sj , v). Trivially,
OPT(Sj , v) ≤ OPT(I, v). The subset-oblivious algorithm is used to show that OPT(Sj , v) .

β(1−δ)jOPT(I, v) with high probability. Together, these two bounds can be used to show that the
asymptotic approximation ratio of Algorithm 1 is approximately (1+ln β), matching the statement
of Theorem 1.3. To show a strictly better approximation ratio, we consider a nearly optimal solution
A1, . . . , Am of the instance, and use a simple rounding scheme to show that if Tj ⊆ {1, . . . ,m} is a set

of configurations such that vt(Ab∩Sj) ≤ 1−δ for all t = 1, . . . , d, then the items in
(

⋃

b∈Tj Ab
)

∩Sr
can be packed in strictly less than |Tj | configurations for r > j. This, together with a lower bound
on |Tj| for a specific iteration j, leads to a third upper bound on OPT(Sj , v), which is used to
obtain the improved asymptotic approximation ratio. The configurations in Tj can be considered
as “easy”, and the lower bound on |Tj | can be interpreted as a guarantee that some configurations
must “become easy” as the iterative rounding process progresses.

5



In Section 3 we further show that the dependence of δ on ε derived from Theorem 1.5 is poly-
nomial. A simple consequence of this property is that, by appropriately setting δ, Algorithm 1 is a
randomized asymptotic (1 + ε)-approximation for Bin Packing whose run time is polynomial in
the input size and in 1

ε . Thus, we have

Lemma 1.6. Algorithm 1 is a randomized asymptotic fully polynomial-time approximation scheme
(AFPTAS)6 for Bin Packing.

1.4 Improved Algorithm for 2VBP

For the special case where d = 2, we strengthen our analysis to obtain a better approximation
ratio. To simplify our analysis, we may assume our instances adhere to a specific structure. Given
δ > 0, we say that an item i ∈ I is δ-huge if v1(i) ≥ 1 − δ and v2(i) ≥ 1 − δ. The δ-huge free
2VBP (δ-2VBP) is the special case of 2VBP in which there are no δ-huge items. In solving a
general 2VBP instance, we may restrict our attention to the corresponding δ-huge free instance, as
formalized in the next result.

Lemma 1.7. For any α ≥ 1 and δ ∈ (0, 0.1), if there is a randomized asymptotic α-approximation
for δ-2VBP then there is a randomized asymptotic (α+ 4δ)-approximation for 2VBP.

The lemma follows by noting that each huge item can be packed in a separate bin. This incurs
only a small increase in the packing size (we omit the details).

The analysis of Algorithm 1 (as part of our approximation algorithm for 2VBP) relies on an
iteration-dependent bound on OPT(Sj, v) which holds with high probability. We use a classification
of items and configurations into categories. As in Algorithm 1, let δ ∈ (0, 1) be such that δ−1 ∈ N.
We say that an item i ∈ I is δ-large if v1(i) > δ or v2(i) > δ, and use L ⊆ I to denote the set of
δ-large items (δ is commonly known by context). It can be easily shown that |C ∩ L| ≤ 2 · δ−1 for
all C ∈ C. For h = 2, . . . , 2 · δ−1, we define

Ch = {C ∈ C | v(C ∩ L) > (1− δ, 1 − δ) and |C ∩ L| = h} . (2)

Let C0 = C \
(

⋃2·δ−1

h=2 Ch
)

be the set of all remaining configurations. As we assume that (I, v) is an

instance of δ-2VBP (i.e., no δ-huge items), it follows that for every C ∈ C0 either v1(C ∩L) ≤ 1− δ
or v2(C ∩ L) ≤ 1− δ.

For vectors x̄, z̄ ∈ [0, 1]C , x̄ · z̄ =
∑

C∈C x̄C · z̄C is the dot product of x̄ and z̄. By applying a
tigher analysis (in comparison to Theorem 1.5), it can be shown that if x̄∗ ∈ [0, 1]C is a solution for
LP(S0) then,with high probability, the solution returned by Algorithm 1 is of size at most

x̄∗ · 1C0 +

2δ−1
∑

h=2

h+ 1

h
· x̄∗ · 1Ch ≤

(

3

2
+ δ · O(1)

)

· ‖x̄∗‖+O(1) . (3)

This implies that, given the input S0 = I, and by taking x̄∗ which corresponds to an optimal
solution, Algorithm 1 yields an asymptotic approximation ratio arbitrarily close to 3

2 . While we
do not include a proof of (3), the proof can be derived by modifying the proof of Lemma 4.11 and
using Lemma 4.16.

Our analysis relies on structural properties of 2VBP instances (inspired by properties presented
by Bansal et al. [BEK16]) by which configurations in C0 are “easy” (when selected by x̄∗) and
configuration in C\C0 are “difficult”. Intuitively, from the viewpoint of Algorithm 1, a configuration

6A randomized AFPTAS for a problem P is an infinite family {Aε} of randomized asymptotic (1+ε)-approximation
algorithms for P , one for each ε > 0, whose run times are polynomial in the input size and in 1

ε
.
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C ∈ C\C0 becomes easy at iteration j if C∩L 6⊆ Sj, as in this case C∩Sj ∈ C0. Our analysis exploits
this intuition via the notion of touched and untouched configurations (see the formal definition in
Section 4.1.1).

The bound (3) on the solution quality suggests that the most “difficult” configurations in x̄∗ are
those in C2; indeed, if we have an optimal solution containing no configuration in C2 then we can
obtain an approximation ratio of 4

3 . Furthermore, if an optimal (integral) solution contains only
configurations in C2 then a nearly optimal solution can be easily constructed using matching. As a
solution may contain both configurations in C2 and in C\C0, we use a sophisticated combination of a
matching polytope and a configuration LP, along with the dependent sampling technique of Chekuri
et al. [CVZ11]. In the execution of our algorithm Match&Round, the solution for the resulting LP is
(conceptually) partitioned into two parts: one which contains the configurations in C2 and handled
using matching techniques, and another which contains the remaining configurations that is handled
by Algorithm 1.

We define the δ-matching graph G = (L,E) of (I, v) as the graph whose vertex set L consists of
the δ-large items of (I, v), and whose edge set is E = {{i1, i2} ⊆ L | {i1, i2} ∈ C2}. We use PM(G)
to denote the matching polytope of G. We refer the reader to Schrijver’s book [Sch03] for a formal
definition of the matching polytope. Given x̄ ∈ [0, 1]C , we define the projection of x̄ on E as the
vector p̄ ∈ R

E
≥0 where p̄e =

∑

C∈C s.t. e⊆C x̄C . Let E(x̄) = p̄. We note that for any C ∈ C, there is
at most a single edge e ∈ E such that e ⊆ C.

The Matching Configuration LP of the δ-2VBP instance (I, v) is the following optimization
problem:

MLP : min
∑

C∈C
x̄C ,

∀i ∈ I :
∑

C∈C
x̄C · C(i) = 1,

E(x̄) ∈ PM(G),

∀C ∈ C : x̄C ≥ 0 .

(4)

Thus, MLP takes as input a δ-2VBP instance (I, v), and a solution for (I, v) is a vector x̄ ∈ R
C
≥0

which satisfies the constraints in (4). The objective is to find a solution x̄ such that ‖x̄‖ =
∑

C∈C x̄C
is minimized.

Note that the Matching Configuration LP is a restriction of LP(I) in which we also require
that E(x̄) is in the matching polytope PM(G). Observe that if S1, . . . , Sm is a solution for (I, v)
in which the sets S1, . . . , Sm are pairwise disjoint, then the vector x̄ ∈ {0, 1}C with x̄Sb

= 1 for
b ∈ {1, . . . ,m} and x̄C = 0 for any other C ∈ C, is a feasible solution for MLP. This holds since
the set {e ∈ E | ∃b ∈ {1, . . . ,m} : e ⊆ Sb} forms a matching in the graph G.

Similar to the configuration LP, MLP can be approximated as well:

Lemma 1.8. For any δ ∈ (0, 0.1), there is a PTAS for the MLP problem.

We note that writing PM(G) as a linear program requires a super-polynomial number of con-
straints [Rot17]. It follows that both MLP and its dual have super-polynomial number of variables
and a super-polynomial number of constraints. Thus, the standard method for solving configura-
tion LPs using an approximate separation oracle for the dual program fails (the method can be
traced back to Karmarker and Karp [KK82]), and more sophisticated tools are required to obtain
a PTAS. We give the proof of Lemma 1.8 in Section 4.4.

Given x̄ such that β̄ = E(x̄) ∈ PM(G) and a parameter γ > 0, we use a randomized algorithm of
Chekuri, Vondrák and Zenklusen [CVZ11] called SampleMatching. This algorithm, for input (β̄, γ)
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in polynomial time generates a random matchingM for which Pr(e ∈M) = (1−γ)β̄e. Importantly,
the algorithm also gives dimension-free Chernoff-like concentration bounds forM (see Lemma 4.20
for details).

We refer to our algorithm for 2VBP as Match&Round; its pseudocode is given in Algorithm 2.7

We note that Match&Round is a polynomial-time algorithm which returns a solution for the in-
stance (I, v).

Algorithm 2: Match&Round

Parameters: 0 < δ < 0.1, where δ−1 ∈ N.
Input : A δ-2VBP instance (I, v).
Output : A solution for the instance (I, v).

1 Find a (1 + δ2)-approximate solution x̄0 for MLP.
2 M← SampleMatching

(

E(x̄0), δ4
)

, and set S0 ← I \
(
⋃

e∈M e
)

.
3 Run Algorithm 1 on the instance (I, v) with S0 and the parameter δ. Denote the returned

solution by D1, . . . ,Dm.
4 Return M∪ {D1, . . . ,Dm}.

Our main result for 2VBP follows from the next lemma.

Lemma 1.9. For any δ ∈ (0, 0.1), Algorithm 2 is a randomized asymptotic
(

4
3 +O(δ)

)

-approximation
for δ-2VBP.

Using Lemma 1.9 and Lemma 1.7, we obtain the statement of Theorem 1.2. We use the stan-
dard notation of ∧ for the element-wise minimum of two vectors.8 The analysis of Algorithm 2
is based on a partition of the solution x̄0 obtained in Line 2 into its two “matching” and “frac-
tional” components: x̄0 ∧ 1C2 and x̄0 ∧ 1C\C2 . We show that, with high probability, |M| . x̄0 · 1C2 .
Furthermore, we exploit the fact that x̄0 ∧ 1C\C2 does not select configurations in C2 to show that
the number of configurations returned by Algorithm 1 (when invoked in Step 3 of Algorithm 2) is
bounded by ≈ 4

3 · x̄0 · 1C\C2 + 1
3 · x̄0 · 1C2 .

1.5 Technical Contribution

Our main technical contribution is the introduction of iterative randomized rounding in the context
of Bin Packing. The ingenious randomized rounding techniques known for Bin Packing prob-
lems (e.g., [BCS10]) rely on solving once a Configuration-LP and sampling a set of configurations
according to the distribution induced by the Configuration-LP solution. In contrast, our iterative
randomized rounding approach is based on solving a (modified) Configuration-LP iteratively and
sampling in each iteration a set of configurations using the distribution induced by the current LP
solution. While the resulting algorithms are simple and yield improved ratios, we are not aware of
the use of iterative randomized rounding in previous studies of Bin Packing problems.

Intuitively, we expect iterative randomized rounding to outperform non-iterative randomized
rounding in the context of Bin Packing. Indeed, the former is less likely to select many con-
figurations containing the same item, presumably leading to a more efficient solution. Moreover,
once a significant fraction (say, 10%) of the items in I is “covered” (at random), we expect the
Configuration-LP solution value to decrease. This can be used to obtain a better approximation
ratio if we solve the modified Configuration-LP, and use the corresponding distribution to sample

7The idea to use matching algorithms is inspired by the work of Bansal et al. [BEK16]. However, matching plays
different roles in the two algorithms. In particular, MLP is introduced in this paper.

8That is, for r̄1 = (r̄11, . . . , r̄
1
k) and r̄2 = (r̄21, . . . , r̄

2
k), (r̄

1 ∧ r̄2)i = min{r̄1i , r̄
2
i } for i = 1, . . . , k.
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configurations. However, formalizing the above intuition into a rigor proof is non-trivial. In the
proof of Theorem 1.5 we provide a formal expression to the above intuition and prove that iterative
randomized rounding is superior to any algorithm which follows the Round&Approx framework.

Our analysis for the case of arbitrary d > 2 is fairly simple, leaving much room for improvement.
For the special case of d = 2 we use a tighter analysis. While many of the ingredients in this
tighter analysis can be applied also to dVBP instances where d > 2, and possibly to other Bin
Packing variants, some of the concepts exploit special properties of 2VBP instances. This includes
a strong structural property (Lemma 4.2) on which we elaborate in Section 4, and the Matching-
Configuration-LP. The strong structural property can potentially be extended to the d-dimensional
case; however, such extension requires overcoming some technical challenges. We elaborate on these
challenges in Section 6.

1.6 Organization

In Section 2 we give some definitions and notation. Section 3 presents the analysis of Algorithm 1
as well as the proof of Theorem 1.5 and Lemma 1.6. Section 4 gives the results for 2VBP including
the PTAS for the Matching-Configuration-LP (Lemma 1.8). In Section 5 we show basic properties
which are used both in Sections 3 and 4. We conclude with a discussion in Section 6.

2 Preliminaries

In this section we give some basic definitions and properties that will be used in the proofs of
Theorem 1.5 and Theorem 1.2. Throughout the paper, for x ∈ R, exp(x) = ex, where e = 2.718...
is the base of the natural logarithm.

2.1 Probability Space

Our analysis refers to an execution of either Algorithm 1 or Algorithm 2 on a dVBP instance (I, v).
For an execution of Algorithm 1, we have S0 = I. We use (Ω,F ,Pr) to denote the probability space
generated by the algorithm. Observe that as δ < 0.1,

ρj ≤ ⌈αzj⌉ ≤
⌈

(− ln(1− δ)) (1 + δ2)OPT
⌉

≤ OPT, for j = 1, . . . , k .

Assume, without loss of generality, that Algorithm 1 samples in each iteration OPT configura-
tions Cj1 , . . . , C

j
OPT independently according to x̄j, and ignores configurations Cjρj+1, . . . , C

j
OPT.

Furthermore, we may assume that Ω is finite. Define the random variables P0 = S0 and Pj =

(Cj1 , . . . , C
j
OPT) for j = 1, . . . , k. Let Fj = σ(P0, P1, . . . , Pj) be the σ-algebra of the random vari-

ables P0, P1, . . . , Pj . We also define F−1 = {∅,Ω}. It follows that F−1 ⊆ F0 ⊆ F1 ⊆ . . . ⊆ Fk.
We use conditional expectations and probabilities given the σ-algebra Fj . We refer the reader

to standard textbooks on probability (e.g., by Chow and Teicher [CT97]) for the formal definitions.
Intuitively, E [X|Fj] is the expectation of X given the sample outcomes up to iteration j, and as
such depends on the outcomes of the first j iterations.

The parameter α is set such that the probability of i ∈ Sj decreases exponentially with j, as
stated in the next lemma.

Lemma 2.1. For j = 1, . . . , k and i ∈ I it holds that

Pr (i ∈ Sj | Fj−1) = 1i∈Sj−1 ·
(

1− 1

zj

)ρj

≤ (1− δ) · 1i∈Sj−1 .
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Proof. We can write

Pr
(

1i∈Sj

∣

∣Fj−1

)

= 1i∈Sj−1 · Pr
(

∀ℓ ∈ ρj : i /∈ Cjℓ
∣

∣

∣ Fj−1

)

= 1i∈Sj−1 ·
ρj
∏

ℓ=1

Pr
(

i /∈ Cjℓ
∣

∣

∣ Fj−1

)

= 1i∈Sj−1

(

1− 1i∈Sj−1

zj

)ρj

= 1i∈Sj−1

(

1− 1

zj

)ρj

≤ 1i∈Sj−1 · exp (−α) = 1i∈Sj−1 · (1− δ) .

(5)
The first equality holds by the definition of Sj, and the second holds since Cj1 , . . . , C

j
ρj are condition-

ally independent given Fj−1 (note that ρj is Fj−1-measurable). The third equality holds since x̄j is

a solution for LP(1Sj−1) and Cjℓ ∼ x̄j . The inequality in (5) uses ρj ≥ αzj and
(

1− 1
x

)x ≤ exp(−1)
for x ≥ 1.

2.2 McDiarmid’s Concentration Bound

Our analysis heavily relies on concentration bounds. Let A be an arbitrary set, m ∈ N+ and
f : Am → R. For any η ≥ 0, we say that f is of η-bounded difference if for any x̄, x̄′ ∈ Am and
r ∈ {1, . . . ,m} such that x̄ℓ = x̄′ℓ for all ℓ ∈ {1, . . . ,m} \ {r} (i.e., x̄ and x̄′ differ only in the r-th
entry) it holds that |f(x̄)− f(x̄′)| ≤ η. The next result is due to McDiarmid [McD89].

Lemma 2.2 (McDiarmid). Given a finite arbitrary set A, m ∈ N+ and η > 0, let f : Am → R

be a function of η-bounded difference. Also, let X1, . . . ,Xm ∈ A be independent random variables.
Then for any t ≥ 0,

Pr (f(X1, . . . ,Xm)− E [f(X1, . . . ,Xm)] > t) ≤ exp

(

− 2 · t2
m · η2

)

.

To motivate our next lemma, consider the following example arising in our setting. Let
x0, x1, . . . , xk be random variables defined by xj =

∑d
t=1 vt(Sj). That is, xj is the total volume

of Sj in all dimensions. Given Sj−1 and ρj we we can express xj as a function of Cj1 , . . . , C
j
OPT.

For any S ⊆ I and ρ ∈ [OPT] define fS,ρ : COPT → R by

fS,ρ(C1, . . . , COPT) =

d
∑

t=1

vt

(

S \
(

ρ
⋃

ℓ=1

Cj

))

.

Then it can be verified that xj = g(Cj1 , . . . , C
j
OPT) where g = fSj−1,ρj . However, we cannot use

Lemma 2.2 to show that xj ≈ E[xj] with high probability, since the random variables Cj1 , . . . C
j
OPT

are not independent, and the function g is random.
Nontheless, we note that at the end of iteration j−1 (Step 1 of Algorithm 1) the values of Sj−1

and ρj are known (while ρj was not computed yet, its value does not depend on future random
samples); thus, the function g = fSj−1,ρj is known at iteration j of the algorithm. Furthermore,

the random variables Cj1 , . . . , C
j
OPT are independent (by definition) assuming we have the random

samples of the first (j−1) iterations. Therefore, we expect Lemma 2.2 to hold in this setting. More
formally, since Cj1 , . . . , C

j
OPT are conditionally independent9 given Fj−1, and g = fSj−1,ρj is a ran-

dom function that is Fj−1-measurable, we expect that g(Cj1 , . . . , C
j
OPT) ≈ E[g(Cj1 , . . . , C

j
OPT)|Fj−1].

This is formalized in the next lemma.

9See, e.g., the book by Chow and Teicher [CT97] for a formal definition of conditional independence.
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Lemma 2.3 (Generalized McDiarmid). Given a finite arbitrary set A, m ∈ N+ and η > 0, let D
be a finite family of η-bounded difference functions from Am to R. Let (Ω,F ,Pr) be a probability
space for which Ω is finite, G ⊆ F a σ-algebra, and g ∈ D a G-measurable random function (i.e.,
g : Ω → D with {ω ∈ Ω| g(ω) ∈ U} ∈ G for every U ⊆ D). Then, for a sequence of random
variables X1, . . . ,Xm ∈ A which are conditionally independent given G, and any t ≥ 0,

Pr (g(X1, . . . ,Xm)− E [g(X1, . . . ,Xm)|G] > t) ≤ exp

(

− 2 · t2
m · η2

)

.

Lemma 2.3 can be derived from Lemma 2.2 using standard arguments from probability theory
(we omit the details).

We use Lemma 2.3 in the proofs of Theorems 1.5 and 1.2. For a set of items S ⊆ I, we denote
by 1S ∈ {0, 1}I an indicator vector in which entries corresponding to i ∈ S are equal to ‘1’, and
all other entries are equal to ‘0’.10 The next lemma is used in the proofs of both theorems, and
deals with random variables of the form 1Sj

· ū where ū ∈ R
I
≥0. Given ū ∈ R

I define the tolerance

of ū by tol(ū) = maxC∈C
(
∑

i∈C ūi
)

. Intuitively, the vector ū associates with each item i ∈ I some
weight ūi; then tol(ū) is the largest total weight of a configuration C with respect to ū.

Lemma 2.4. Let j ∈ {0, 1, . . . , k − 1} and t > 0. Also, let ū ∈ R
I
≥0 be an Fj-measurable random

vector. Then,

Pr
(

∃r ∈ {j, . . . , k} : ū · 1Sr − (1− δ)r−j · ū · 1Sj
> t · tol(ū)

)

≤ δ−2 · exp

(

−2 · δ4 · t2
OPT

)

.

The proof of Lemma 2.4, given in Section 5, follows from Lemma 2.3 and Lemma 2.1.

2.3 First-Fit

In several places we use the following First-Fit strategy, which takes as input a dVBP instance (I, v)
and a subset of items S ⊆ I. Throughout its execution, First-Fit maintains a set A1, . . . , Am ⊆ S
of configurations, and iterates over the items in S. For each item i ∈ S, First-Fit examines
the configurations sequentially, until it finds a configuration Ai to which i can be added without
violating the volume constraints. If no such configuration exists, First-Fit adds a new configu-
ration Am+1 = {i}. The next lemma follows from a simple analysis of First-Fit for Bin Pack-
ing (see, e.g., Vazirani [Vaz01, Ch. 9]), by taking for each item i ∈ I in the dVBP instance
v̂(i) = max{v1(i), . . . , vd(i)}, and considering the problem in single dimension.

Lemma 2.5. Given a dVBP instance (I, v) and a subset of items S ⊆ I, First-Fit returns a packing

of S in at most 2 ·
(

∑d
t=1 vt(S)

)

+ 1 bins.

Recall that ρ∗ is the number of configurations used by the First-Fit strategy in Step 6 of

Algorithm 1. By Lemma 2.1, it follows that E

[

∑d
t=1 vt(Sk)

]

≤ (1− δ)k
(

∑d
t=1 vt(I)

)

≤ d · δOPT,

and by Lemma 2.5 we have E[ρ∗] ≤ 2 · d · δOPT + 1. The next lemma uses Lemma 2.4 to show
that, with high probability, ρ∗ does not significantly deviate from its expectation.

Lemma 2.6. With probability at least 1−δ−2 ·exp
(

−δ7 ·OPT
)

, it holds that ρ∗ ≤ 8 ·d ·δ ·OPT+1.

The proof of Lemma 2.6 is given in Section 5. Lemma 2.6 implies that the number of configurations
added by the First-Fit strategy in Line 6 of Algorithm 1 is negligible.

10Similarly, for a set of configurations C′ ∈ C, we use the indicator vector 1C′ ∈ {0, 1}C in which entries corresponding
to C ∈ C′ are equal to ‘1’.
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3 Improved Asymptotic Approximation for dVBP

In this section we prove Theorem 1.5. That is, we show that Algorithm 1 outperforms any algorithm
which falls into the Round&Approx framework of Bansal et al. [BCS10]. We also derive Lemma 1.6
as a simple consequence of the analysis of Algorithm 1.

As Theorem 1.5 refers to subset-oblivious algorithms, we first have to formally define this class
of algorithms. The following is a slight simplification of the definition of Bansal et al. [BCS10,
Definition 1].

Definition 3.1. For every d ∈ N and β ≥ 1, an algorithm appr is β-subset oblivious for dVBP if
for every ε > 0 there are K ∈ N and ψ > 0 such that, for every dVBP instance (I, v), there is a
set of K vectors S ⊆ R

I
≥0 which satisfies the following properties:

1. For any ū ∈ S, it holds that tol(ū) ≤ ψ.

2. OPT(I, v) ≥ maxū∈S ‖ū‖.

3. For any Q ⊆ I, given the dVBP instance (Q, v), appr returns a solution satisfying

appr(I, v,Q) ≤ β ·max
ū∈S

1Q · ū+ ε ·OPT(I, v) +K,

where appr(I, v,Q) is the number of bins used by the solution.

We refer to K and ψ as the ε-parameters of appr, and to S as the ε-weight vectors of appr and (I, v).

Instead of Theorem 1.5 we prove a more specific result, which indicates also the dependencies
between ε and δ.

Theorem 3.2. Let β ≥ 1 and d ∈ N. If there is a β-subset oblivious algorithm for dVBP then for

every δ ∈ (0, 0.1) such that δ−1 ∈ N and δ < min
{

1
28d2

, 1
β

}

it holds that Algorithm 1 configured

with δ is a randomized asymptotic (1 + ln β − χ(β, d) + 200 · d2 · δ · β)-approximation algorithm for

dVBP, where χ(β, d) =
(

1
2 · lnβ + 1√

β
− 1
)

·
(

1− 2d

√

1
β

)d
.

We give the proof of Theorem 3.2 in Section 3.1. We first use Theorem 3.2 to derive Lemma 1.6.

Proof of Lemma 1.6. Let ε ∈ (0, 0.1) and δ = 1
⌈400·ε−1⌉ . Consider the execution of Algorithm 1 with

a Bin Packing (1VBP) instance and the above parameter δ. By Lemma 1.4 there is a (1 + δ)-
subset oblivious algorithm for Bin Packing; thus, by Theorem 3.2, Algorithm 1 is a randomized
asymptotic ζ-approximation for Bin Packing, where

ζ = (1 + ln(1 + δ) + 200 · δ · (1 + δ)− χ(1 + δ, 1)) ≤ (1 + δ + 200 · δ · (1 + δ)) ≤ (1 + ε) .

The first inequality holds as χ(1 + δ, 1) ≥ 0 and ln(1 + δ ≤ δ). The last inequality follows from
400 · δ ≤ ε by the definition of δ.

It is well-known that (1) admits an FPTAS for Bin Packing instances. Indeed, in this case
the separation oracle for the dual of (1) needs to solve an instance of the (standard) Knapsack
problem, for which there is an FPTAS (see, e.g., Vazirani’s textbook [Vaz01]). Hence, the run time
of each iteration in Line 1 of Algorithm 1 (given a Bin Packing instance) is polynomial in the
instance size and δ−2. As the total number of iterations is k ≤ δ−2, it follows that the total run
time is polynomial in the input size and in 1

δ . Since we defined δ to be polynomial in ε, it follows
that the run time is polynomial in the input size and 1/ε. Thus, Algorithm 1 is an AFPTAS for
Bin Packing.
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3.1 Proof of Theorem 3.2

Let (I, v) be a dVBP instance, and let appr be a β-subset oblivious algorithm for dVBP. Also, let
δ ∈ (0, 0.1) such that δ ≤ 1

28·d2 , δ < 1
β , and δ−1 ∈ N. We denote by OPT = OPT(I, v) the value

of an optimal solution for the instance. Consider an execution of Algorithm 1 with the instance
(I, v), S0 = I and the parameter δ. We use notations such as ρj , Sj and Cjℓ when referring to
the corresponding variables in the execution of Algorithm 1. We also use the probability space
(Ω,Pr,F) and the filtration F−1,F0, . . . ,Fk as defined in Section 2.

The size of the solution returned by Algorithm 1 is
∑k

j=1 ρj + ρ∗. By Lemma 2.6, the value

of ρ∗ is negligible with high probability. Thus, we may focus in the analysis on
∑k

j=1 ρj . This sum
can be trivially upper bounded by

k
∑

j=1

ρj ≤
k
∑

j=1

⌈α · zk⌉

≤ k +

k
∑

j=1

α · zk

≤ δ−2 + (1 + δ2)(1 + 2δ)δ
k
∑

j=1

OPT(Sj−1, v)

≤ δ−2 + (1 + 4δ) · δ
k
∑

j=1

OPT(Sj−1, v),

(6)

where the third inequality uses α = − ln(1− δ) ≤ δ · (1 + 2δ), k =
⌈

log1−δ(δ)
⌉

≤ δ−2 and

zj ≤ (1 + δ2) ·OPT(Sj−1, v) .

Following (6), we turn our attention to the expression δ ·∑k
j=1 OPT(Sj−1, v).

We use the next trivial bound for small values of j.

Observation 3.3. For j = 1, 2, . . . , k it holds that OPT(Sj−1, v) ≤ OPT.

We can use the subset-oblivious algorithm appr to obtain an additional bound on OPT(Sj−1, v).
Let K and ψ be the δ2-parameters of appr. Observe that by Definition 3.1, it holds that K and ψ
depend solely on δ2, and are independent of the instance (I, v). Without loss of generality, we
assume that ψ,K > 1.

Lemma 3.4. With probability at least 1−K · δ2 · exp
(

− δ8

ψ2 ·OPT
)

, it holds that

∀j ∈ {0, 1, . . . , k − 1} : OPT(Sj, v) ≤ β · (1− δ)j ·OPT + 2 · δ2 · β ·OPT +K .

Proof. Let S be the set of δ2-weight vectors of appr and (I, v). The set S is non-random, and is
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therefore F0-measurable. Thus, by Lemma 2.4, for every ū ∈ S it holds that

Pr
(

∃j ∈ {0, 1, . . . , k} : ū · 1Sj
> (1− δ)j · ‖ū‖+ δ2 ·OPT

)

= Pr

(

∃j ∈ {0, 1, . . . , k} : ū · 1Sj
− (1− δ)j · ū · 1S0 >

δ2 ·OPT

tol(ū)
· tol(ū)

)

≤ δ−2 · exp






−

2 · δ4 ·
(

δ2·OPT
tol(ū)

)2

OPT







≤ δ−2 · exp

(

−2 · δ8 ·OPT

ψ2

)

,

(7)

where the last inequality uses tol(ū) ≤ ψ. We note that the second inequality in (7) assumes
tol(ū) 6= 0, but the same outcome (i.e., the first expression is at most the last expression) can be
trivially shown in case tol(ū) = 0 (that is, ū is the zero vector).

As |S| ≤ K, we can use (7) and the union bound to get

Pr
(

∃ū ∈ S, j ∈ {0, 1, . . . , k} : ū · 1Sj
> (1− δ)j‖ū‖+ δ2OPT

)

≤ Kδ−2 exp

(

−2δ8OPT

ψ2

)

. (8)

For the remainder of the proof we assume that

∀j ∈ {0, 1, . . . , k}, ū ∈ S : ū · 1Sj
≤ (1− δ)j‖ū‖+ δ2OPT . (9)

By (8), this assumption holds with probability at least 1−K · δ−2 · exp
(

−2·δ8·OPT
ψ2

)

.

Recall that OPT(I, v) ≥ maxū∈S ‖ū‖ (Definition 3.1). Thus,

∀j ∈ {0, 1, . . . , k}, ū ∈ S : ū · 1Sj
≤ (1− δ)j‖ū‖+ δ2OPT ≤ (1− δ)j ·OPT + δ2 ˙OPT, (10)

where the first inequality is by (9). Hence, by Definition 3.1, for every j = 1, . . . , k it holds that

OPT(Sj−1, v) ≤ appr(I, v, Sj−1)

≤ β ·max
ū∈S

1Sj−1 · ū+ δ2 ·OPT +K

≤ β ·
(

(1− δ)j−1 ·OPT + δ2 ˙OPT
)

+ δ2 ·OPT +K

≤ β · (1− δ)j−1 ·OPT + 2 · βδ2 ·OPT +K,

(11)

where the second inequality is by (10). Since we assumed (9) holds, (11) holds with probability at

least 1−Kδ−2 exp
(

−2·δ8·OPT
ψ2

)

.

We note that Observation 3.3 and Lemmas 2.6 and 3.4 suffice to show that Algorithm 1 achieves
an asymptotic approximation ratio arbitrarily close to (1+ln β), which matches the Round&Approx
framework. To show Algorithm 1 is strictly better we use some additional components.

We say a configuration C ∈ C has δ-full slack if vt(C) ≤ 1 − δ for all t = 1, . . . , d. Define
κ(δ) = exp(exp(δ−3)).

Lemma 3.5 (Weak Structural Property). Let B1, . . . , Bs ∈ C be configurations such that Bℓ has
δ-full slack for all ℓ = 1, . . . , s, and let R =

⋃s
ℓ=1Bℓ. Then there exists a set S ⊆ RI≥0 such that

• |S| ≤ κ(δ),
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• supp(ū) ⊆ R for all ū ∈ S,11

• and for all Q ⊆ R and γ ∈ [0, 1] which satisfy

∀ū ∈ S : 1Q · ū ≤ γ · 1R · ū+
δ20

κ(δ)
·OPT(I, v) · tol(ū),

it holds that OPT(Q, v) ≤ γ(1 + d · δ) · s+ δ10 ·OPT + κ(δ).

We refer to S as the weak structure of B1, . . . , Bs. We defer the proof of Lemma 3.5 to
Section 3.2. Intuitively, Lemma 3.5 can be interpreted as follows. If R can be packed using s
configurations with δ-full slack, and Q ⊆ R is a random subset of R such that Pr(i ∈ Q) ≤ γ then
OPT(Q, v) . γs, assuming Q satisfies some concentration bounds.

We also utilize the existence of a nearly optimal solution of (I, v) satisfying some additional
properties. We say an item i ∈ I is δ-large if there is a t ∈ {1, . . . , d} such that vt(i) ≥ δ; otherwise,
the item is small. Observe that these notions extend the ones given in Section 1.4 for the special
case of d = 2. Thus, we also use L to denote the set of δ-large items in the instance (I, v).

Lemma 3.6 (Arranged solution). For any (I, v) there exists a solution A1, . . . , Am and sets
W1, . . . ,Wm ⊆ I such that

• m ≤ (1 + d2 · 14 · δ) ·OPT + 1,

• Wb ⊆ Ab ∩ L for b = 1, . . . ,m,

• |Wb| ≤ d for b = 1, . . . ,m,

• and Ab \Wb has δ-full slack for b = 1, . . . ,m.

We refer to A1, . . . , Am and W1, . . . ,Wm as an arranged solution of (I, v). We use Lemma 3.6 as
a means to utilize Lemma 3.5. The main observation is that if Z ⊆ [m] is a subset of configurations
in the arranged solution such that Wb ∩ Sj = ∅ for every b ∈ Z, then there is a weak structure of
the configurations (Ab ∩ Sj)b∈Z which can be used to bound OPT(Sr, v) for r ≥ j.

The proof of Lemma 3.6 utilizes the following technical lemma of Bansal et al. [BEK16].

Lemma 3.7. Let C ∈ C and let Z ⊆ [d] be a set of coordinates such that vt(C) > 1 − δ for all
t ∈ Z and vt(i) ≤ δ for all i ∈ C and t ∈ Z. Then there is Q ⊆ C such that vt(Q) ≥ δ for all t ∈ Z
and vt(Q) ≤ 7 · d2 · δ for all t ∈ [d].

Proof of Lemma 3.6. Let A′
1, . . . , A

′
m′ be an optimal solution for (I, v). That is, m′ = OPT(I, v).

For every b ∈ [m′] we define a set Wb as follows. Start with Wb = ∅ and while there is
a coordinate t ∈ [d] and i ∈ A′

b \ Wb such that vt(A
′
b \ Wb) > 1 − δ and vt(i) ≥ δ add the

item i to Wb. Clearly, at the end of the process |Wb| ≤ d and Wb ⊆ Ab ∩ L. Furthermore, let
Zb = {t ∈ {1, . . . , d} | vt(A′

b \Wb) > 1 − δ}. By construction of Wb it holds that vt(i) ≤ δ for all
i ∈ A′

b \Wb and t ∈ Zb. Thus, by Lemma 3.7, for b = 1, . . . ,m′ there exists Qb ⊆ A′
b \Wb such that

A′
b \Wb \Qb has full slack and vt(Qb) ≤ 7 · d2 · δ for all t = 1, . . . , d.

Define Ab = A′
b\Qb. By the above Ab\Wb has δ-full slack for b = 1, . . . ,m′. Let η =

⌊

1−δ
7·d2δ

⌋

, then
the union of every η of the sets among Q1, . . . , Qm′ is a configuration with δ-full slack. We simply
iteratively pack η of the sets Q1, . . . , Qm′ into a single configuration. Thus there are configurations
Am′+1, . . . , Am′+r such that Ab is with δ-full slack for every b = m′ + 1, . . . ,m′ + r, r ≤ m′

η + 1 and

Am′+1 ∪ . . . ∪Am′+r = Q1 ∪ . . . ,∪Qm′ . We define Wm′+1, . . . ,Wm′+r = ∅ and m = m′ + r.

11We define supp(ū) = {i ∈ I | ūi > 0}.
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Since δ < 1
28·d2 , it holds that

η =

⌊

1− δ
7 · d2δ

⌋

≥ 1− δ
7 · d2δ − 1 =

1− δ − 7 · d2 · δ
7 · d2 · δ ≥

1
2

7 · d2 · δ =
1

14 · d2 · δ .

Therefore, r ≤ m′

η +1 ≤ 14 ·d2 ·δm′+1 = 14 ·d2 ·δOPT+1. Hence, m = (1+14 ·d2 ·δ) ·OPT+1.

Let A1, . . . , Am and W1, . . . ,Wm ⊆ I be an arranged solution of (I, v). For every j = 0, 1, . . . , k
define

Tj = {b ∈ [m] | Wb ∩ Sj = ∅} (12)

to be the (indices of) configurations in the arranged solution such that Ab ∩ Sj is guaranteed to

have δ-full slack. Define j1 =
⌈

1
2 log1−δ

1
β

⌉

.

Lemma 3.8. With probability at least 1−K · κ(δ) · δ−4 · exp
(

− δ50

ψ2·κ2(δ) ·OPT
)

, it holds that

δ

k
∑

j=1

OPT(Sj−1, v) ≤ (1+ln β)OPT+ |Tj1 | ·
(

1− 1√
β
− 1

2
ln β

)

+60 ·d2βδ ·OPT+δ−3K ·β ·κ(δ) .

The implication of Lemma 3.8 is that if we show that |Tj1 | is at least a constant fraction of
OPT (with high probability), then Algorithm 1 attains an asymptotic approximation ratio which
is strictly better than the (1 + ln β) of Round&Approx. Indeed, such an assertion about Tj1 will
be proved later on in Lemma 3.9. We also note that the value of j1 was selected arbitrarily. A
more refined analysis may consider |Tj \ Tj−1| for all values of j. This concept is ingrained into our
tighter analysis for the special case of 2DVP given in Section 4.1.

The proof of Lemma 3.8 partitions the sum δ
∑k

j=1 OPT(Sj−1, v) into three parts. The first

part is δ
∑j1

j=1 OPT(Sj−1, v), which is trivially bounded via Observation 3.3. The last part is

δ
∑k

j=j2+1 OPT(Sj−1, v), where j2 =
⌈

log1−δ
1
β

⌉

. Using the subset-oblivious algorithm based

bound in Lemma 3.4, this sum can be bounded by roughly OPT. The (remaining) middle part,
δ
∑j2

j=j1+1 OPT(Sj−1, v), utilizes a weak structure of the configuration in Tj1 to attain a bound on
OPT(Sj−1, v), which is better than the trivial bound of OPT (and also better than the bound of
Lemma 3.4 which is worse for those values of j).

Proof of Lemma 3.8. By Observation 3.3,

δ

j1
∑

r=1

OPT(Sr−1, v) ≤ δ

j1
∑

r=1

OPT

= δ · j1 ·OPT

≤ δ · 1

2
· ln β

− ln(1− δ) ·OPT + δ ·OPT

≤ 1

2
(ln β) OPT + δ ·OPT .

(13)

The second inequality follows from the definition of j1, and the third inequality holds since
− ln(1− δ) ≥ δ.

Assume that
OPT(Sj , v) ≤ β · (1− δ)j ·OPT + 2 · δ2 · β ·OPT +K (14)
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for all j = 0, 1, . . . , k − 1. By Lemma 3.4, Assumption 14 holds with probability at least 1 −K ·
δ−2 · exp

(

−2·δ8·OPT
ψ2

)

. Also, define j2 =
⌈

log1−δ
1
β

⌉

; therefore,

δ
k
∑

r=j2+1

OPT(Sr−1, v) ≤ δ
k
∑

r=j2+1

(

β · (1− δ)r−1 ·OPT + 2 · δ2 · β ·OPT +K
)

≤ βδ · (1− δ)j2 ·OPT

∞
∑

r=0

(1− δ)r + 2 · k · δ · δ2 · β ·OPT + δ · k ·K

≤ β · (1− δ)j2 · δ · 1

1− (1− δ) ·OPT + 2 · δβ ·OPT + δ−2K

≤ β · 1

β
·OPT + 2 · δβ ·OPT + δ−2 ·K

≤ OPT + 2 · δ · β ·OPT + δ−2 ·K .

(15)

The third inequality uses k ≤ δ−2 and the forth inequality follows from (1− δ)j2 ≤ 1
β .

Let Q∗ =
⋃

b∈Tj1
Ab ∩ Sj1 . That is, Q∗ is the set of all items in configurations which are

guaranteed to have δ-full slack in iteration j1. Since (Ab ∩ Sj1)b∈Tj1
is a collection of configuration

with δ-full slack, by Lemma 3.5 there is a weak structure S of (Ab ∩ Sj1)b∈Tj1
. In particular, S is

Fj1-measurable. Since supp(ū) ⊆ Q∗ for all ū ∈ S, it follows that ū · 1Sr = ū · 1Q∗∩Sr for all ū ∈ S
and r = j1, j1 + 1, . . . , k.

By Lemma 2.4, for every ū ∈ S it holds that

Pr

(

∃r ∈ {j1, . . . , k} : ū · 1Q∗∩Sr − (1− δ)r−j1 · ū · 1Q∗ >
δ20

κ(δ)
·OPT · tol(ū)

)

= Pr

(

∃r ∈ {j1, . . . , k} : ū · 1Sr − (1− δ)r−j1 · ū · 1Sj1
>

δ20

κ(δ)
·OPT · tol(ū)

)

≤ δ−2 · exp



−
2 · δ4 · δ40

κ2(δ) ·OPT2

OPT





≤ δ−2 · exp

(

− δ50

κ2(δ)
·OPT

)

.

Therefore,

Pr
(

∀ū ∈ S, r ∈ {j1, . . . , k} : ū · 1Sr∩Q∗ ≤ (1− δ)r−j1 · ū · 1Q∗ + δ20 ·OPT · tol(ū)
)

≥ 1− |S| · δ−2 · exp

(

− δ50

κ2(δ)
·OPT

)

≥ 1− κ(δ) · δ−2 · exp

(

− δ50

κ2(δ)
·OPT

)

.

(16)

For the remainder of the proof we assume that

∀ū ∈ S, r ∈ {j1, . . . , k} : ū · 1Sr∩Q∗ ≤ (1− δ)r−j1 · ū · 1Q∗ +
δ20

κ(δ)
·OPT · tol(ū). (17)

By (16), this assumption holds with probability at least 1− κ(δ) · δ−2 · exp
(

− δ50

κ2(δ)
·OPT

)

.
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By (17) it holds that

OPT(Sr ∩Q∗, v) ≤ (1− δ)r−j1 · (1 + d · δ)|Tj1 |+ δ10 ·OPT + κ(δ) (18)

for all r = j1, j1 + 1, . . . k. It trivially holds that

δ

j2
∑

r=j1+1

OPT(Sr−1, v) = δ

j2
∑

r=j1+1

OPT(Sr−1 ∩Q∗, v) + δ

j2
∑

r=j1+1

OPT(Sr−1 \Q∗, v) . (19)

By (18) we have

δ

j2
∑

r=j1+1

OPT(Sr−1 ∩Q∗, v) ≤ δ

j2
∑

r=j1+1

(

(1− δ)r−1−j1 · (1 + d · δ)|Tj1 |+ δ10 ·OPT + κ(δ)
)

≤ δ(1 + d · δ) · |Tj1 |
j2
∑

r=j1+1

(1− δ)r−1−j1 + k · δ11 ·OPT + δ · k · κ(δ)

≤ (1 + d · δ) · |Tj1 | · δ ·
1− (1− δ)j2−1−j1+1

1− (1− δ) + δ9 ·OPT + δ−1 · κ(δ)

≤ (1 + d · δ) · |Tj1 |
(

1− 1√
β

(1− δ)
)

+ δ9 ·OPT + δ−1 · κ(δ)

≤ |Tj1 | ·
(

1− 1√
β

)

+ 10 · d · δ ·OPT + δ−1 · κ(δ) .

(20)

The second inequality holds as j2−j1 ≤ k . The third inequality uses k ≤ δ−2. The forth inequality
holds, as

j2 − j1 ≤ log1−δ
1

β
+ 1− 1

2
· log1−δ

1

β
=

1

2
· log1−δ

1

β
+ 1, (21)

thus (1− δ)j2−j1 ≥ 1√
β
· (1− δ). The fifth inequality holds, as |Tj1 | ≤ m ≤ (1 + 14 ·d2 · δ)OPT + 1 ≤

2 ·OPT + 1.
It trivially holds that OPT(Sr−1 \Q∗, v) ≤ m− |Tj | for r = j1 + 1, . . . , j2 via the configurations

(Ab ∩ Sr−1)b∈{1,...,m}\Tj . Therefore,

δ

j2
∑

r=j1+1

OPT(Sr−1 \Q∗, v) ≤ δ(j2 − j1)(m− |Tj1 |)

≤ δ

(

1

2
· log1−δ

1

β
+ 1

)

· (m− |Tj1 |)

= δ · 1

2
· lnβ

− ln(1− δ) · (m− |Tj1 |) + δ(m− |Tj1 |)

≤ 1

2
(ln β) (m− |Tj1 |) + δm

≤ 1

2
(ln β) (m− |Tj1 |) + 2 · δOPT .

(22)

The second inequality follows from (21). The third inequality holds, as − ln(1− δ) ≥ δ.
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By (19), (20) and (22) we have

δ

j2
∑

r=j1+1

OPT(Sr−1, v)

≤ |Tj1 |
(

1− 1√
β

)

+ 10 · d · δOPT + δ−1 · κ(δ) +
1

2
(lnβ) (m− |Tj1 |) + 2 · δOPT

≤ m

2
lnβ + |Tj1 | ·

(

1− 1√
β
− 1

2
ln β

)

+ 20 · d · δ ·OPT + δ−1 · κ(δ)

≤ (1 + 14 · d2δ) ·OPT + 1

2
ln β + |Tj1 |

(

1− 1√
β
− 1

2
ln β

)

+ 20 · dδOPT + δ−1κ(δ)

≤ OPT

2
ln β + |Tj1 | ·

(

1− 1√
β
− 1

2
ln β

)

+ 50 · d2 · β · δ ·OPT + δ−1 · κ(δ) +
ln β

2
.

(23)

By (13), (15), and (23) we have

δ

k
∑

r=1

OPT(Sr−1, v)

≤ 1

2
(ln β) OPT + δOPT

+
OPT

2
lnβ + |Tj1 | ·

(

1− 1√
β
− 1

2
ln β

)

+ 50 · d2βδ ·OPT + δ−1 · κ(δ) +
ln β

2

+ OPT + 2 · δ · β ·OPT + δ−2 ·K

≤ (1 + ln β)OPT + |Tj1 | ·
(

1− 1√
β
− 1

2
ln β

)

+ 60 · d2βδ ·OPT + δ−3K · β · κ(δ) .

As we assumed that (14) and (17) hold, the statement holds with probability

1− κ(δ) · δ−2 · exp

(

− δ50

κ2(δ)
·OPT

)

−K · δ−2 · exp

(

−2 · δ8 ·OPT

ψ2

)

≥ 1−K · κ(δ) · δ−4 · exp

(

− δ50

ψ2 · κ2(δ)
·OPT

)

. ∗

To attain the statement of Theorem 3.2, we show that |Tj1 | is at least a constant fraction of
OPT (with high probability), and combine this result with Lemma 3.8.

Lemma 3.9. With probability at least 1− δ−2 · exp(−δ50 ·OPT), it holds that

|Tj1 | ≥
(

1− β− 1
2d

)d
·m− 4 · d · δ ·OPT .

Proof. For j = 0, 1, . . . , k and ℓ = 0, 1, . . . , d define Vj,ℓ = {b ∈ [m] | |Wb ∩ Sj| = ℓ} and Vj,≤ℓ =
⋃ℓ
h=0 Vj,ℓ. Since Ab \Wb is guaranteed to have δ-full slack, the set Vj,ℓ (Vj,≤ℓ) can be intuitively

interpreted as (the indices of) the set of configurations among A1 ∩ Sj, . . . , Am ∩ Sj which have
δ-full slack if (at most) ℓ specific large items are removed from them. Since S0 ⊇ S1 ⊇ . . . ⊇ Sk it
holds that V0,≤ℓ ⊆ V1,≤ℓ ⊆ . . . ⊆ Vk,≤ℓ. Observe that Vj,ℓ is Fj-measurable and Tj = Vj,0 = Vj,≤0.

Observe that for every b = 1, 2, . . . ,m and ℓ = 0, 1, . . . , d it holds that {j | b ∈ Vj,ℓ} is a set of
consecutive integers. That is, b belong to Vj,ℓ from some iteration r1 up to some iteration r2. The
next claim essentially states that the difference r2 − r1 is not expected to be too large.
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Claim 3.10. Let j ∈ {0, 1 . . . , k − 1}, ℓ ∈ {1, . . . , d} and let Z ⊆ Vj,ℓ be an Fj-measurable subset.
Then it holds that

E [ |Z ∩ Vj,ℓ+1| | Fj ] ≤ (1− δ) · |Z| .

Proof. For b = 1, . . . ,m let ib be an arbitrary item in Wb ∩ Sj (or an arbitrary item in I in case
Wb∩Sj = ∅). In particular, ib is an Fj-measurable random variable. For b = 1, . . . ,m it holds that

Pr (b ∈ Z ∩ Vj+1,ℓ | Fj) = Pr (b ∈ Z and Wb ∩ Sj ⊆ Sj+1 | Fj)
≤ Pr (b ∈ Z and ib ∈ Sj+1 | Fj)
≤ 1b∈Z · (1− δ) · 1ib∈Sj

= (1− δ) · 1b∈Z .

The second inequality follows from Lemma 2.1. That last equality holds since if b ∈ Z ⊆ Vj,ℓ then
ib ∈ Sj as ℓ 6= 0. Thus,

E [ |Z ∩ Vj,ℓ+1| | Fj ] =
∑

b∈[m]

Pr (b ∈ Z ∩ Vj+1,ℓ | Fj) ≤
∑

b∈[m]

(1− δ) · 1b∈Z = (1− δ)|Z| .

⋄
We use Lemma 2.3 to show that |Z ∩ Vj,ℓ+1| cannot be significantly larger than the bound on its
expectation as stated in Claim 3.10.

Claim 3.11. Let j ∈ {0, 1 . . . , k − 1}, ℓ ∈ {1, . . . , d} and let Z ⊆ Vj,ℓ be an Fj-measurable subset.
Then |Z ∩ Vj,ℓ+1| ≤ (1− δ) · |Z|+ δ20 ·OPT with probability at least 1− exp

(

−δ50 ·OPT
)

.

Proof. For every S ⊆ I, ρ ∈ [OPT] and X ⊆ [m] define a function fS,ρ,X : COPT → R by

fS,ρ,X(C1, . . . , COPT) =
∑

b∈X
1Wb∩S∩(

⋃ρ
s=1 Cs)=∅ .

Observe that

fSj ,ρj+1,Z(Cj+1
1 , . . . , Cj+1

OPT) =
∑

b∈Z
1

Wb∩Sj∩
(

⋃ρj+1
s=1 Cj+1

s

)

=∅ =
∑

b∈Z
1Z∈Vj+1,ℓ

= |Z ∩ Vj+1,ℓ| .

Moreover, as Sj, ρj+1 and Z are Fj measurable it follows that fSj ,ρj+1,Z is Fj-measurable as well

(note that ρj+1 is determined before Cj1,1 , . . . , C
j+1
ρj+1 are sampled in Line 3 of Algorithm 1).

Define D = {fS,ρ,X | S ⊆ I, ρ ∈ [OPT], X ⊆ [m]}. It follows that D is a finite set. In order to
use Lemma 2.3 we need to show that the functions in D are of bounded difference.

Let fS,ρ,X ∈ D, (C1, . . . , COPT), (C ′
1, . . . , C

′
OPT) ∈ COPT and r ∈ [OPT] such that Cs = C ′

s

for s = 1, . . . , r − 1, r + 1, . . . ,OPT (i.e., (C1, . . . , COPT) and (C ′
1, . . . , C

′
OPT) are identical in all

coordinates expect the r-th). If r > ρ then
∣

∣fS,ρ,X(C1, . . . , COPT)− fS,ρ,X(C ′
1, . . . , C

′
OPT)

∣

∣ = 0 .

Otherwise,

∣

∣

∣

∣

fS,ρ,X(C1, . . . , COPT)− fS,ρ,X(C ′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

b∈X
1Wb∩S∩(

⋃ρ
s=1 Cs)=∅ −

∑

b∈X
1Wb∩S∩(

⋃ρ
s=1 C

′
s)=∅

∣

∣

∣

∣

∣

≤
∑

b∈X
1Wb∩S∩Cr 6=∅ +

∑

b∈X
1Wb∩S∩C′

r 6=∅

≤ 2 · d · δ−1 .
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The last inequality holds, since the sets W1, . . . ,Wm are pairwise disjoint and only contain large
items, and furthermore, a configuration C ∈ C may contain at most d ·δ−1 large items. Thus, fS,ρ,X
is of (2 · d · δ−1)-bounded difference.

By Claim 3.10 and Lemma 2.3 we have

Pr
(

|Z ∩ Vj,ℓ+1| > (1− δ)|Z|+ δ20 ·OPT
)

≤ Pr

(

|Z ∩ Vj,ℓ+1| − E
[

|Z ∩ Vj,ℓ+1|
∣

∣ Fj
]

> δ20 ·OPT

)

≤ Pr
(

fSj ,ρj+1,Z(Cj+1
1 , . . . , Cj+1

OPT)− E

[

fSj ,ρj+1,Z(Cj+1
1 , . . . , Cj+1

OPT)
∣

∣

∣
Fj
]

> δ20 ·OPT
)

≤ exp

(

− 2 · δ40 ·OPT2

OPT · 4 · d2 · δ−2

)

≤ exp
(

−δ50 ·OPT
)

.

The last inequality holds as 1
d2
≥ 28δ ≥ δ. ⋄

Define η =
⌊

1
2d · log1−δ

1
β

⌋

. We use Claim 3.11 to prove the following.

Claim 3.12. Let ℓ ∈ {0, 1, . . . , d− 1}. Then

∣

∣Vℓ·η,d−ℓ ∩ V(ℓ+1)·η,d−ℓ
∣

∣ ≤ β− 1
2d (1 + 2δ) · |Vℓ·η,d−ℓ|+ η · δ20 ·OPT

with probability at least 1− η · exp
(

−δ50 ·OPT
)

.

Proof. We use induction on j = 0, 1, . . . , η to show that

|Vℓ·η,d−ℓ ∩ Vℓ·η+j,d−ℓ| ≤ (1− δ)j · |Vℓ·η,d−ℓ|+ j · δ20 ·OPT

with probability at least 1− j · exp
(

−δ50 ·OPT
)

.
Base case: For j = 0, it holds that |Vℓ·η,d−ℓ ∩ Vℓ·η+j,d−ℓ| = |Vℓ·η,d−ℓ| with probability 1.
Induction Step: Assume the induction hypothesis holds for some j ≥ 0. Define Z = Vℓ·η,d−ℓ ∩
Vℓ·η+j,d−ℓ, and observe that Z is Fℓ·η+j-mesuarable. By the induction hypothesis and Claim 3.10,
it holds that

|Z| = |Vℓ·η,d−ℓ ∩ Vℓ·η+j,d−ℓ| ≤ (1− δ)j · |Vℓ·η,d−ℓ|+ j · δ20 ·OPT

and |Z ∩ Vη·ℓ+j+1,d−ℓ| ≤ (1− δ) · |Z|+ δ20 ·OPT
(24)

with probability at least 1− (j + 1) · exp
(

−δ50 ·OPT
)

. Furthermore, if (24) holds, then

|Vℓ·η,d−ℓ ∩ Vℓ·η+j+1,d−ℓ| = |Z ∩ Vℓ·η+j+1,d−ℓ|
≤ (1− δ) · |Z|+ δ20 ·OPT

≤ (1− δ)j+1 · |Vη·ℓ,d−ℓ|+ (j + 1) · δ20 ·OPT,

where the first equality holds since for all b ∈ Vℓ·η,d−ℓ ∩ Vℓ·η+j+1,d−ℓ it also must hold that b ∈
Vℓ·η+j,d−ℓ. This completes the induction step.

Therefore, using the definition of η,
∣

∣Vℓ·η,d−ℓ ∩ V(ℓ+1)·η,d−ℓ
∣

∣ ≤ (1− δ)η · |Vℓ·η,d−ℓ|+ η · δ20 ·OPT

≤ β−
1
2d

1− δ · |Vℓ·η,d−ℓ|+ η · δ20 ·OPT

≤ β−
1
2d · (1 + 2δ) · |Vℓ·η,d−ℓ|+ η · δ20 ·OPT

21



with probability at least 1− η · exp
(

−δ50 ·OPT
)

. ⋄

Using Claim 3.12 and a simple induction, we attain the following.

Claim 3.13. Let ℓ ∈ {0, 1, . . . , d}. Then |Vℓ·η,≤d−ℓ| ≥
(

1− β− 1
2d (1 + 2δ)

)ℓ
·m − ℓ · η · δ20 · OPT

with probability at least 1− ℓ · η · exp(−δ50 ·OPT).

Proof. We prove the claim by induction over ℓ.
Base Case: For ℓ = 0 it holds that

|V0,≤d| = |[m]| =
(

1− β− 1
2d · (1 + 2δ)

)0
·m− 0 · η · δ10 ·OPT .

Induction Step: Assume the claim holds for ℓ < d. Then, by the induction hypothesis and
Claim 3.12 it holds that, with probability at least 1− (ℓ+ 1) · η · exp

(

−δ50 ·OPT
)

,

|Vℓ·η,≤d−ℓ| ≥
(

1− β− 1
2d (1 + 2δ)

)ℓ
·m− ℓ · η · δ20 ·OPT

and
∣

∣Vℓ·η,d−ℓ ∩ V(ℓ+1)·η,d−ℓ
∣

∣ ≤ β−
1
2d · (1 + 2δ)|Vℓ·η,d−ℓ|+ η · δ20 ·OPT .

(25)

Assuming (25) holds, we have
∣

∣V(ℓ+1)η,≤d−ℓ−1

∣

∣ ≥ |Vℓη,≤d−ℓ−1|+
∣

∣Vℓη,d−ℓ \ V(ℓ+1)η,d−ℓ
∣

∣

∣

∣V(ℓ+1)η,≤d−ℓ−1

∣

∣ ≥ |Vℓη,≤d−ℓ−1|+
∣

∣Vℓη,d−ℓ \ V(ℓ+1)η,d−ℓ
∣

∣

= |Vℓη,≤d−ℓ−1|+ |Vℓη,d−ℓ| −
∣

∣Vℓη,d−ℓ ∩ V(ℓ+1)η,d−ℓ
∣

∣

≥ |Vℓη,≤d−ℓ−1|+ |Vℓη,d−ℓ| −
(

β−
1
2d · (1 + 2δ)|Vℓ·η,d−ℓ|+ η · δ20 ·OPT

)

= |Vℓη,≤d−ℓ−1|+
(

1− β− 1
2d · (1 + 2δ)

)

· |Vℓ·η,d−ℓ| − η · δ20 ·OPT

≥
(

1− β− 1
2d · (1 + 2δ)

)

· |Vℓ·η,≤d−ℓ| − η · δ20 ·OPT

≥
(

1− β− 1
2d · (1 + 2δ)

)

·
(

(

1− β− 1
2d (1 + 2δ)

)ℓ
·m− ℓ · η · δ20 ·OPT

)

− η · δ20 ·OPT

≥
(

1− β− 1
2d (1 + 2δ)

)ℓ+1
·m− (ℓ+ 1) · η · δ20 ·OPT,

which completes the induction step. ⋄

By Claim 3.13 it follows that with probability at least 1 − d · η exp
(

−δ50 ·OPT
)

≥ 1 − δ2 ·
exp

(

−δ50 ·OPT
)

it holds that

|Vj1,0| ≥ |Vη·d,≤0|

≥
(

1− β− 1
2d (1 + 2δ)

)d
·m− d · η · δ20 ·OPT

≥
(

1− β− 1
2d

)d
·m− 2d · δ ·m+ ·δ18 ·OPT

≥
(

1− β− 1
2d

)d
·m− 4d · δ ·OPT .

The first inequality holds since η · d = d ·
⌊

1
2d · log1−δ

1
β

⌋

≤ 1
2 · log1−δ

1
β ≤ j1. The third inequality

holds since
(

1− β− 1
2d (1 + 2δ)

)d
≥
(

1− β− 1
2d

)d
− 2δ · d and d · η ≤ k ≤ δ−2. The last inequality

holds as m ≤ 2 ·OPT.
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To complete the proof of Theorem 3.2 we only need to combine the results of Lemmas 2.6, 3.8
and 3.9. Assume the inequalities

ρ∗ ≤ 8 · d · δ ·OPT + 1

δ

k
∑

j=1

OPT(Sj−1, v) ≤ (1 + ln β)OPT + |Tj1 | ·
(

1− 1√
β
− 1

2
ln β

)

+ 60 · d2βδ ·OPT + δ−3K · β · κ(δ)

|Tj1 | ≥
(

1− β− 1
2d

)d
·m− 4 · d · δ ·OPT

(26)

hold. By Lemmas 2.6, 3.8 and 3.9, these inequalities hold with probability at least

1− δ−2 · exp
(

−δ7 ·OPT
)

−K · κ(δ) · δ−4 · exp

(

− δ50

ψ2 · κ2(δ)
·OPT

)

− δ−2 exp
(

−δ50 ·OPT
)

≥ 1−K · δ−5 · κ(δ) · exp

(

− δ50

ψ2 · κ2(δ)
·OPT

)

.

Thus, if OPT is sufficiently large then (26) occurs with probability at least 1
2 . Furthermore, in

this case it also holds that

δ

k
∑

j=1

OPT(Sj−1, v)

≤ (1 + ln β)OPT + |Tj1 | ·
(

1− 1√
β
− 1

2
ln β

)

+ 60 · d2βδ ·OPT + δ−3K · β · κ(δ)

≤ (1 + ln β)OPT +

(

(

1− β− 1
2d

)d
·m− 4 · d · δ ·OPT

)

·
(

1− 1√
β
− 1

2
ln β

)

+ 60 · d2βδ ·OPT + δ−3K · β · κ(δ)

≤ (1 + ln β)OPT− χ(β, d) ·m+ 90 · d2 · δ · β ·OPT + δ−3K · β · κ(δ)

≤
(

1 + ln β − χ(β, d) + 90 · d2 · δ · β
)

OPT + δ−3K · β · κ(δ) .

(27)

The second and third inequalities hold as −β ≤
(

1− 1√
β
− 1

2 ln β
)

≤ 0. The third inequality uses

the definition of χ(β, d) as given in the statement of Theorem 1.5. The forth inequality holds as
χ(β, d) ≥ 0 and m ≥ OPT.

By (6), (26) and (27), the size of the solution returned by Algorithm 1 is

k
∑

j=1

ρj + ρ∗ ≤ δ−2 + (1 + 4δ) · δ
k
∑

j=1

OPT(Sj−1, v) + 8 · d · δ ·OPT + 1

≤ δ−2 + (1 + 4δ) ·
((

1 + ln β − χ(β, d) + 90 · d2 · δ · β
)

OPT + δ−3K · β · κ(δ)
)

+ 8 · d · δ ·OPT

≤
(

1 + ln β − χ(β, d) + 200 · d2 · δ · β
)

OPT + δ−5K · β · κ(δ) .

That is, the algorithm is a randomized asymptotic (1+ ln β−χ(β, d)+200 ·d2 ·δ ·β)-approximation
algorithm for dVBP.
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3.2 The Weak Structural Property

In this section we prove Lemma 3.5. The lemma relies on an implicit rounding of the large items
volumes to multiplicities of δ2

2d . While the volume of the items is rounded up, the slack of the
configurations B1, . . . , Bs ensures that these remain feasible configurations with respect to the
rounded weight. Subsequently, the proof of the lemma views items of the same rounded volume as
interchangeable, which is key in attaing the bound on OPT(Q, v) as stated in Lemma 3.5.

The lemma is utilizes some ideas from Bansal et al. [BEK16]. However, the rounding procedure
in their work only requires each of the configurations B1, . . . , Bs to have slack in d− 1 dimension,
and combines a shifting argument as part of the rounding. As mentioned in the introduction (see
also Appendix A), the approach taken by Bansal et al. [BEK16] has a flaw in the analysis, and
hence cannot be used. Requiring the configurations to have δ-full slack is a simple way to work
around the flaw. When possible, the notations used in both lemmas are kept similar.

Proof of Lemma 3.5. We assume that d ∈ N>0 and δ ∈ (0, 0.1). Throughout the proof, consider
an instance (I, v) of dVBP. Furthermore, we assume δ ≤ 1

d2
and δ−1 ∈ N. As in the statement

of Lemma 3.5, let B1, . . . , Bs ∈ C be collection of configurations with δ-full slack, and define R =
B1 ∪B2 ∪ . . . ∪Bs.

Recall that L is the set of large items of the instance (I, v). Set h = δ−2 and G = {1, . . . , 2·d·h}d .
For every ā ∈ G define

Iā =

{

i ∈ L ∩R
∣

∣

∣

∣

∀r ∈ [d] :
δ2

2 · d · (ār − 1) < vr(i) ≤
δ2

2 · d · ār
}

. (28)

Also, define the rounded volume of ā ∈ G by

ṽ(ā) =
δ2

2 · d · ā . (29)

Implicitly, we round the volume of all items in Iā to ṽ(ā). Since v(i) ∈ (0, 1]d for every i ∈ I, it
follows that

⋃

ā∈G Iā = R ∩ L.
The type of a configuration C ∈ C, denoted T(C), is the vector t̄ ∈ N

G defined by t̄ā = |Iā ∩ C|
for every ā ∈ G. That is, t̄ā is the number of items from Iā in the configuration C ∈ C. Define
T = {T(Bℓ) | ℓ = 1, 2, . . . , s} to be the set of all types of configurations in B1, . . . , Bs. As a
configuration C may contain up to d · δ−1 large items, it follows that

|T | ≤
(

d · δ−1
)|G|

≤
(

d · δ−1
)(2·d·h)d

= exp
(

(

2 · d · δ−2
)d

ln
(

d · δ−1
)

)

≤ exp
(

δ−4·δ−1
ln(δ−2)

)

≤ exp
(

δ−5·δ−1
)

≤ κ(δ)

3
,≤ exp

(

(

d2 · δ−2
)d+1

)

.

s (30)

where the third inequality holds as d2 ≤ δ−1. Similarly to (29), we define the rounded volume of
t̄ ∈ T by

ṽ(t̄) =
∑

ā∈G
t̄ā · ṽ(ā) . (31)
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For every t̄ ∈ T define

Lt̄ =
⋃

ℓ∈[s] s.t. T(Bℓ)=t̄

Bℓ ∩ L and St̄ =
⋃

ℓ∈[s] s.t. T(Bℓ)=t̄

Bℓ \ L,

as the set of large items and the set of small items in configuration of type t̄ among B1, . . . , Bs,
respectively. Also, for every r = 1, . . . , d define v̄r ∈ [0, 1]I by v̄ri = vr(i) for all i ∈ I. That is, v̄r

is a representation of the volume of the items in the r-th dimension as a vector. For every t̄ ∈ T
define

Slarge,t̄ =
{

1Iā∩Lt̄

∣

∣ ā ∈ G
}

and Ssmall,t̄ =
{

1St̄
∧ v̄r

∣

∣ r = 1, 2, . . . , d
}

.

Finally, define S =
⋃

t̄∈T
(

Slarge,t̄ ∪ Ssmall,t̄

)

.

Claim 3.14. It holds |S| ≤ κ (δ).

Proof. By a simple counting argument,

|S| ≤
∑

t̄∈T

(∣

∣Slarge,t̄
∣

∣+
∣

∣Ssmall,t̄

∣

∣

)

≤ |T | · (|G|+ d)

≤ exp
(

δ−5δ−1
)(

(d · h)d + d
)

≤ exp
(

δ−6·δ−1
)

≤ exp
(

exp
(

−5 · δ−1 · ln(δ)
))

≤ κ(δ) .

The third inequality uses (30) and the forth inequality uses d ≤ δ−1. ⋄

We are left to show the constructed structure S satisfies the condition in Lemma 3.5. The
following claims provide some basic properties which will assist us in achieving this goal.

Claim 3.15. Let t̄ ∈ T and let C ∈ C be such that C ⊆ L∩R and T(C) ≤ t̄. That is, for all ā ∈ G
it holds that Tā(C) ≤ t̄ā. Then v(C) ≤ ṽ(t̄).

Proof. For r = 1, . . . , d it holds that

vr(C) =
∑

ā∈G

∑

i∈C∩Iā
vr(i)

≤
∑

ā∈G

∑

i∈C∩Iā
ṽr(ā)

=
∑

ā∈G
Tā(C) · ṽr(ā)

≤
∑

ā∈G
t̄ā · ṽr(ā) = v̄r(t̄) .

The first inequality holds since vr(i) ≤ ṽr(ā) for every i ∈ Iā by (28) and (29). The second inequal-
ity follows from the assumptions of the claim. The last equality follows from the definition of ṽ(t̄)
in (31). ⋄
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Claim 3.16. Let t̄ ∈ T and C ∈ C such that C ⊆ R ∩ L and T(C) = t̄. Then vr(C) ≥ ṽr(C) − δ
2

for r = 1, . . . , d.

Proof. For r = 1, . . . , d it holds that

vr(C) =
∑

ā∈G

∑

ā∈C∩Iā
vr(i)

≥
∑

ā∈G

∑

ā∈C∩Iā

(

ṽr(ā)− δ2

2 · d

)

= ṽr(t̄)− |C ∩ L| ·
δ2

2d

≥ ṽr(t̄)−
δ

2
.

The first inequality follows from (28) and (29). The last inequality holds, as |C ∩  L| ≤ d · δ−1. ⋄

Claim 3.17. Let ℓ ∈ {1, . . . , s} and t̄ = T(Bℓ). Then vr(Bℓ \ L) ≤ 1− ṽr(t̄)− δ
2 for r = 1, . . . , d.

Proof. For r = 1, . . . , d we have

vr(Bℓ \ L) = vr(Bℓ)− vr(Bℓ ∩ L) ≤ 1− δ −
(

ṽr(t̄)−
δ

2

)

= 1− ṽr(t̄)−
δ

2
.

The inequality holds since Bℓ has δ-full slack and by Claim 3.16. ⋄

The following is an immediate consequence of Claim 3.17.

Corollary 3.18. For all t̄ ∈ T and r ∈ {1, 2, . . . , d} it holds that ṽr(t̄) ≤ 1− δ
2 .

Let Q ⊆ R and γ ∈ (0, 1) be such that

∀ū ∈ S : 1Q · ū ≤ γ · 1R · ū+
δ20

κ(δ)
·OPT(I, v) · tol(ū) . (32)

To complete the proof, we need to show that OPT(Q, v) ≤ γ(1+d ·δ) ·s+δ10 ·OPT+κ(δ). Towards
this end, we will construct a separate packing of Q ∩ (Lt̄ ∪ St̄) for every t̄ ∈ T .

Define the prevalence of type t̄ ∈ T by pt̄ = |{ℓ ∈ {1, . . . , s} | T(Bℓ) = t̄}|. That is, pt̄ is the
number of configuration among B1, . . . , Bs of type t̄. For every t̄ ∈ T , define

ηt̄ =

⌈

γ · pt̄ +
δ15

κ(δ)
·OPT

⌉

. (33)

We will show that OPT(Q∩(Lt̄∪St̄)\Xt̄, v) ≤ ηt̄ where Xt̄ is a set that satisfies OPT(Xt, v) ≤ δ ·ηt̄.
Claim 3.19. For every t̄ ∈ T there exists Dt̄

1, . . . ,D
t̄
ηt̄
⊆ I such that

⋃ηt̄
ℓ=1D

t̄
ℓ = Q ∩ Lt̄ and

v(Dt̄
ℓ) ≤ ṽ(t̄) for ℓ = 1, . . . , ηt̄.

By Claim 3.19 we can pack the items in Q∩Lt̄ into ηt̄ configuration with volume at most ṽ(t̄).
The unused volume of 1 − ṽr(t̄) in each coordinate r = 1, . . . , d will be used to pack the set small
items Q ∩ St̄.
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Proof of Claim 3.19. Let Gt̄ = {ā ∈ G | t̄ā 6= 0}. For every ā ∈ G \Gt̄, we have t̄ā = 0, and therefore
Lt̄ ∩ Iā = ∅ (configurations of type t̄ do not contain items from Iā, and Lt̄ is a set of items in
configurations of type t̄). Thus Q ∩ Lt̄ ∩ Iā = ∅ for all ā ∈ G \ Gt̄.

For all ā ∈ Gt̄ it holds that 1Iā∩Lt̄
∈ Slarge,t̄ ⊆ S. Thus, by (32) we have

|Q ∩ Iā ∩ Lt̄| = 1Q · 1Iā∩Lt̄
≤ γ · 1R · 1Iā∩Lt̄

+
δ20

κ(δ)
·OPT(I, v) · tol

(

1Iā∩Lt̄

)

. (34)

Furthermore, for all C ∈ C it holds that
∑

i∈C
(

1Iā∩Lt̄

)

i
≤ ∑

i∈C 1i∈L ≤ d · δ−1 ≤ δ−2, thus
tol(1Iā∩Lt̄

) ≤ δ−2. By plugging the last inequality into (34) we obtain,

|Q ∩ Iā ∩ Lt̄| ≤ γ · 1R · 1Iā∩Lt̄
+

δ18

κ(δ)
·OPT(I, v) ≤ γ · |R ∩ Iā ∩ Lt̄|+

δ18

κ(δ)
·OPT(I, v) . (35)

Observe that

|R ∩ Iā ∩ Lt̄| =
∑

ℓ∈[s] s.t. T(Bℓ)=t̄

|Bℓ ∩ Iā| =
∑

ℓ∈[s] s.t. T(Bℓ)=t̄

t̄ā = pt̄ · t̄ā . (36)

By (35) and (36), it holds that

|Q ∩ Iā ∩ Lt̄| ≤ γ · pt̄ · t̄ā +
δ18

κ(δ)
·OPT(I, v) ≤ t̄ā · ηt̄.

Therefore, for every ā ∈ Gt̄ we can partition Q ∩ Iā ∩ Lt̄ into ηt̄ sets Dt̄
1,ā, . . . ,D

t̄
ηt̄,ā

such that
∣

∣

∣
Dȳ
ℓ,ā

∣

∣

∣
≤ t̄ā (we allow sets in the partition to be empty). Define sets Dt̄

1, . . . ,D
t̄
ηt̄

by Dt̄
ℓ =

⋃

ā∈Gt̄
Dt̄
ℓ,ā

for all ℓ = 1, 2, . . . , ηt̄. It follows that

ηt̄
⋃

ℓ=1

Dt̄
ℓ =

ηt̄
⋃

ℓ=1

⋃

ā∈Gt̄

Dt̄
ℓ,ā =

⋃

ā∈Gt̄

(Q ∩ Iā ∩ Lt̄) = Q ∩ Lt̄ .

For all ā ∈ G \ Gt̄ and ℓ = 1, . . . , ηt̄ it holds that Tā(D
t̄
ℓ) =

∣

∣

∣Dt̄
ℓ ∩ Iā

∣

∣

∣ = 0 = t̄ā. Furthermore, for

all ā ∈ Gt̄ and ℓ = 1, . . . , ηt̄ it holds that t Tā(D
t̄
ℓ) =

∣

∣

∣Dt̄
ℓ ∩ Iā

∣

∣

∣ =
∣

∣

∣Dt̄
ℓ,ā

∣

∣

∣ ≤ t̄ā. Thus, T(Dt̄
ℓ) ≤ t̄ for

all ℓ = 1, . . . , ηt̄. By Claim 3.15, it follows that v(Dt̄
ℓ) ≤ ṽ(t̄) for all ℓ = 1, . . . , ηt̄. ⋄

While Claim 3.19 handles the large items in Q, the next claim deals with the small items in Q.

Claim 3.20. For all t̄ ∈ T there exists F t̄1 , . . . , F
t̄
ηt̄
⊆ I and Xt̄ ⊆ I such that

•

⋃ηt̄
ℓ=1 F

t̄
ℓ = (Q ∩ St̄) \Xt̄,

• OPT(Xt̄, v) ≤ δ · d · ηt̄ + 1,

• and vr(F
t̄
ℓ ) ≤ 1− ṽr(t̄) for all ℓ = 1, . . . , ηt̄ and r = 1, . . . , d.

Proof. For all r = 1, . . . , d it holds that 1St̄
∧ v̄r ∈ S. Thus, by (32) it holds that

vr(Q ∩ St̄) = 1Q ·
(

1St̄
∧ v̄r

)

≤ γ · 1R ·
(

1St̄
∧ v̄r

)

+
δ20

κ(δ)
·OPT · tol(1St̄

∧ v̄r) . (37)
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For all C ∈ C it holds that
∑

i∈C
(

1St̄
∧ v̄r

)

i
≤∑i∈C vr(i) ≤ 1, hence tol(1St̄

∧ v̄r) ≤ 1. Thus, we
can rewrite (37) as

vr(Q ∩ St̄) ≤ γ · 1R ·
(

1St̄
∧ v̄r

)

+
δ20

κ(δ)
·OPT = γ · vr(R ∩ St̄) +

δ20

κ(δ)
·OPT . (38)

By the definition of St̄ we also have

vr(R ∩ St̄) =
∑

ℓ∈[s] s.t.T(Bℓ)=t̄

vr(Bℓ \ L) ≤
∑

ℓ∈[s] s.t.T(Bℓ)=t̄

(

1− ṽr(t̄)−
δ

2

)

≤ pt̄ · (1− ṽr(t̄)) , (39)

where the first inequality follows from Claim 3.17. By (38) and (39) we have

vr(Q∩St̄) ≤ γpt̄ (1− ṽr(t̄))+
δ20

κ(δ)
OPT ≤ (1− ṽr(t̄)) ·

(

γpt̄ +
δ15

κ(δ)
OPT

)

≤ (1− ṽr(t̄)) ·ηt̄, (40)

where the second inequality follows from Corollary 3.18.
Our construction utilizes integrality properties of the polytope P defined by

P =























µ̄ ∈ [0, 1]Q∩St̄×[ηt̄]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ηt̄
∑

ℓ=1

µ̄i,ℓ = 1 ∀i ∈ Q ∩ St̄
∑

i∈Q∩St̄

vr(i) · µ̄i,ℓ ≤ 1− ṽr(t̄) ∀r ∈ [d], ℓ ∈ [ηt̄],























. (41)

That is, an entry in P is a vector with entries of the form µ̄i,ℓ, where i ∈ Q∩St̄ and ℓ ∈ {1, . . . , ηt̄}.
The entry µ̄i,ℓ can be interpreted as the fractional assignment of the item i to the ℓ-th bin. The
first constraint in (41) ensures all the items are fully assigned, and the second constraint enforces
an upper bound on the total volume of items assigned to a specific bin in each coordinate. It is
well-known (see, e.g., [BEK16]) that a vertex of P contains at most d·ηt̄ fractional entries. Formally,

if µ̄∗ ∈ P is a vertex of P then
∣

∣

∣

{

(i, ℓ) ∈ Q ∩ St × {1, . . . , ηt̄} | µ̄∗i,ℓ ∈ (0, 1)
}∣

∣

∣ ≤ d · ηt̄.
In order to exploit the above-mentioned property of P , we first need to show P 6= ∅. Define

x̄ ∈ [0, 1]Q∩St̄×{1,...,ηt̄} by x̄i,ℓ = 1
ηt̄

for all i ∈ Q ∩ St̄ and ℓ = 1, . . . , ηt̄. For all i ∈ Q ∩ St̄ it holds
that

ηt̄
∑

ℓ=1

x̄i,ℓ =

ηt̄
∑

ℓ=1

1

ηt̄
= 1 . (42)

Furthermore, for every ℓ = 1, . . . , ηt̄ and r = 1, . . . , d we have

∑

i∈Q∩St̄

vr(i) · x̄i,ℓ =
∑

i∈Q∩St̄

vr(i) ·
1

ηt̄
=

1

ηt̄
· vr(Q ∩ St̄) ≤ 1− ṽr(t̄), (43)

where the last inequality follows from (40). By (42) and (43) we have x̄ ∈ P , and thus P 6= ∅.
Therefore, there exists a vertex µ̄∗ of the polytope P and it holds that

∣

∣

{

(i, ℓ) ∈ Q ∩ St × {1, . . . , ηt̄} | µ̄∗i,ℓ ∈ (0, 1)
}∣

∣ ≤ d · ηt̄ .

Define Xt̄ =
{

i ∈ Q ∩ St̄
∣

∣

∣∃ℓ ∈ {1, . . . , s} : µ̄∗i,ℓ ∈ (0, 1)
}

. It thus holds that |Xt̄| ≤ d · ηt̄. Since

all items in Xt̄ are small, it holds that every subset of δ−1 items of Xt̄ form a configuration, thus
OPT(Xt̄, v) ≤ δ|Xt̄|+ 1 ≤ δ · d · ηt̄ + 1.
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For ℓ = 1, . . . , ηt̄ define F t̄ℓ =
{

i ∈ Q ∩ St̄
∣

∣

∣ µ̄∗i,ℓ = 1
}

. As µ̄∗ ∈ P (41) it holds follows that

vr(F
t̄
ℓ ) ≤∑i∈Q∩St̄

vr(i) · µ̄∗i,ℓ ≤ 1− ṽr(t̄) for all r = 1, . . . , d. Furthermore,

ηt̄
⋃

ℓ=1

F t̄ℓ = {i ∈ Q ∩ St̄ | ∀ℓ = 1, . . . , ηt̄ : µ̄∗i,ℓ ∈ {0, 1}} = (Q ∩ St̄) \Xt̄,

which completes the proof of the claim. ⋄

For every t̄ let Dt̄
1, . . . ,D

t̄,ηt̄ be the sets from Claim 3.19 and let Xt̄ and F t̄1 , . . . , F
t̄
ηt̄

be the

sets from Claim 3.20. It follows that vr(D
t̄
ℓ ∪ F t̄ℓ ) ≤ ṽr(t̄) + 1 − ṽr(t̄) = 1 for all ℓ = 1, . . . , ηt̄

and r = 1, . . . , d. Thus Dt̄
ℓ ∪ F t̄ℓ ∈ C for all ℓ = 1, . . . , ηt̄. It also holds that

⋃ηt̄
ℓ=1

(

Dt̄
ℓ ∪ F t̄ℓ

)

=

(Q ∩ (Lt̄ ∪ St̄)) \Xt̄. Therefore,

OPT (Q ∩ (Lt̄ ∪ St̄), v) ≤ OPT ((Q ∩ (Lt̄ ∪ St̄)) \Xt̄, v) + OPT(Xt̄, v) ≤ ηt̄ + δ · d · ηt̄ + 1,

and thus,

OPT(Q, v) ≤
∑

t̄∈T
OPT (Q ∩ (Lt̄ ∪ St̄), v)

≤
∑

t̄∈T
(ηt̄ + δ · d · ηt̄ + 1)

≤ |T |+ (1 + δ · d)
∑

t̄∈T
ηt̄

= |T |+ (1 + δ · d)
∑

t̄∈T

⌈

γ · pt̄ +
δ15

κ(δ)
·OPT

⌉

≤ 3 · |T |+ (1 + δ · d)
∑

t̄∈T

(

γ · pt̄ +
δ15

κ(δ)
·OPT

)

= 3 · |T |+ γ · (1 + δ · d)
∑

t̄∈T
pt̄ + (1 + δ · d) · |T | · δ

15

κ(δ)
·OPT

≤ κ(δ) + γ · (1 + δ · d) · s+ δ10 ·OPT .

The first equality follows from (33). The last inequality uses (30) and d ≤ δ−1.

4 Asymptotic
(

4
3
+ ε
)

approximation for 2VBP

In this section we prove Lemma 1.9. That is, we show that Algorithm 2 is a randomized asymptotic
(

4
3 + ε

)

-approximation algorithm for 2VBP. The analysis of the algorithm utilizes a variant of the
Configuration-LP (1) in which each item i ∈ I has a demand d̄i ∈ [0, 1]. That is, given a 2VBP
instance and for every demand vector d̄ ∈ [0, 1]I define

Demand-LP(d̄) : min
∑

C∈C
x̄C ,

∀i ∈ I :
∑

C∈C
x̄C · C(i) = d̄i,

∀C ∈ C : x̄C ≥ 0 .

(44)
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Observe that for every S ⊆ I it holds that LP(S) is identical to Demand-LP(1S). We use OPTf (d̄)
to denote the value of an optimal solution for Demand-LP(d̄)

We extend the definition of configuration to allow multiple occurrences of items. Let (I, v) be a
2VBP instance. A multi-set over I is a function C : I → N. For i ∈ I we say that i ∈ C if C(i) > 0.
A multi-configuration is a multi-set C over I such that v(C) =

∑

i∈I C(i) · v(i) ≤ (1, 1). We use C∗
to denote the set of all multi-configurations. We identify the set C ⊆ I with the multi-set C ′ in
which C ′(i) = C(i).

Given x̄ ∈ [0, 1]C (x̄ ∈ [0, 1]C
∗

) the coverage of x̄ is the vector ȳ ∈ [0, 1]I defined by ȳi =
∑

C∈C x̄C · C(i) (ȳi =
∑

C∈C∗ x̄C · C(i)) for every i ∈ I. We say that ȳ ∈ [0, 1]I is small-items
integral if ȳi ∈ {0, 1} for any i ∈ I \L. Similarly, we say that x̄ ∈ [0, 1]C (x̄ ∈ [0, 1]C

∗

) is small-items
integral if its coverage is small-items integral.

Recall that OPT(I, v) is the minimum solution size for the instance (I, v). Our analysis relies
on the existence of “linear structures”.

Definition 4.1 (Linear Structure). Let δ,K > 0. Let (I, v) be a δ-2VBP instance, let λ̄ ∈ [0, 1]C
∗

,
and let w̄ ∈ [0, 1]I be the coverage of λ̄. A (δ,K)-linear structure of λ̄ is a subset S ⊆ R

I
≥0 of size

at most K which satisfies the following property. For any small-items integral vector z̄ ∈ [0, 1]I and
β ∈

[

δ5, 1
]

such that supp(z̄) ⊆ supp(w̄) and

z̄ · ū ≤ β · w̄ · ū+
1

K10
·OPT(I, v) · tol(ū), (45)

for all ū ∈ S, it holds that OPTf (z̄) ≤ β · (1 + 10δ) · ‖λ̄‖+K + δ10 ·OPT(I, v).

Observe that a linear structure has properties similar to a weak structure (Lemma 3.5). Intu-
itively, a linear structure implies that if a demand vector z̄ satisfies a ‘small’ number of constraints
with respect to β (where K is a constant, as defined in Lemma 4.2) then we obtain a decrease in
OPTf (z̄) by factor of β. While linear structures do not necessarily exist for arbitrary vectors λ̄,
we show that such structures exist for vectors which only select configurations with slack. We say
that C ∈ C∗ has δ-slack in dimension d ∈ {1, 2} if vd(C) ≤ 1− δ. We say that C ∈ C∗ has δ-slack if
there is d ∈ {1, 2} such that C has δ-slack in dimension d. Finally, we say that λ̄ ∈ [0, 1]C

∗
is with

δ-slack if every configuration C ∈ supp(λ̄) has δ-slack.

Lemma 4.2 (Structural Property). Let (I, v) be a δ-2VBP instance, where δ ∈ (0, 0.1), and
δ−1 ∈ N. There is a set S∗ ⊆ R

I
≥0 such that |S∗| ≤ ϕ(δ) · |L|4, where ϕ(δ) = exp

(

δ−20
)

, which

satisfies the following property. For any small-items integral λ̄ ∈ [0, 1]C
∗
with δ-slack, there is a

(δ, ϕ(δ))-linear structure S of λ̄ where for all ū ∈ S: if supp(ū) ∩ L 6= ∅ then ū ∈ S∗.

The proof of the lemma (given in Section 4.2) uses some of the structural features shown by
Bansal et al. [BEK16], along with the recent concept of fractional grouping, adopted from Fairstein
et al. [FKS21]. While the set S∗ does not limit the number of structures which may be generated
by the lemma, it limits the set of vectors these structures may use. This attribute is crucial for our
analysis (specifically, in the proof of Lemma 4.16).

To show the existence of linear structure we often need to convert an arbitrary configuration to
a vector λ̄ with a slack. To this end, we use the following definition and lemmas.

Definition 4.3. Given C ∈ C and ψ ≥ 1, we say that λ̄ ∈ [0, 1]C
∗
is a ψ-relaxation of C if the

following conditions simultaneously hold:

1. λ̄ is with δ-slack,
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2. ‖λ̄‖ ≤ ψ,

3. and
∑

C′∈C∗ λ̄C′ · C ′(i) = C(i) for every i ∈ I.

Lemma 4.4. Let δ ∈ (0, 0.1) be such that δ−1 ∈ N and let (I, v) be a δ-2VBP instance. Then for
any C ∈ C0, there is a (1 + 4δ)-relaxation of C.

Lemma 4.5. Let δ ∈ (0, 0.1) and let (I, v) be a δ-2VBP instance. Then for any h = 2, . . . , 2δ−1

and C ∈ Ch there is an h
h−1-relaxation of C.

Lemma 4.6. Let δ ∈ (0, 0.1), let (I, v) be a δ-2VBP instance, and let C ∈ C such that v(C) ≤ (δ, δ).
Then there is a 4δ-relaxation of C.

The proofs of Lemma 4.4, Lemma 4.5, and Lemma 4.6 are given in Section 4.3. Some of the
statements and techniques used in the proofs can be viewed as variants of [BEK16, Lemma 5.3]. We
proceed to the analysis of Algorithm 2 in Section 4.1. The PTAS for the Matching Configuration
LP (4) (Lemma 1.8) is given in Section 4.4.

4.1 The Analysis of Match&Round

Throughout this section, we fix a δ-2VBP instance (I, v) and δ ∈ (0, 0.1) such that δ−1 ∈ N.
Thus, notations such as ρj , Sj C

j
ℓ , and M refer to the corresponding variables in the execution of

Algorithm 2 (and the call to Algorithm 1 as part of its execution), with (I, v) as its input and δ
as the parameter. We also use ϕ(δ) = exp(δ−20) as in Lemma 4.2 and OPT = OPT(I, v). We
commonly use k = ⌈ln1−δ(δ)⌉ ≤ δ−2.

The core of the analysis is in Section 4.1.1, in which we derive a bound on the number of
configurations sampled by Algorithm 1. Section 4.1.2 gives the proof of Lemma 1.9. The analysis
involves the use of several concentration bounds whose proofs are simple yet technical. To avoid
diversion from the main flow of the analysis, we defer the proofs of the concentration bounds to
Section 4.1.3.

We use the probabilistic space (Ω,F ,Pr) as defined Section 2. Recall that Lemma 2.6 provides
an upper bound on ρ∗, the size of the solution returned by First-Fit in Line 6 of Algorithm 1. Also,
observe that E [|M|] = (1 − δ4) · x̄0 · 1C2 (recall C2 is defined in (2)). We use the concentration
bounds of Chekuri, Vondrák and Zenklusen [CVZ11] to show that, with high probability, |M| is
close to its expectation.

Lemma 4.7. It holds that |M| ≤ x̄0 ·1C2 + δ2 ·OPT with probability at least 1− exp
(

−δ10 ·OPT
)

.

The proof of the lemma is given in Section 4.1.3.
The size of the solution returned by Algorithm 2 is |M| + ∑k

j=1 ρj + ρ∗. As Lemma 2.6 and

Lemma 4.7 give upper bounds for |M| and ρ∗, it remains to derive an upper bound on
∑k

j=1 ρj ,
the total number of configurations sampled by Iterative Randomized Rounding.

4.1.1 A Refined Analysis of the Iterattve Rounding

Our analysis relies on the key notion of “untouched” configurations. Recall the sets of configura-

tions Cj were define in (2), and C0 = C \
(

⋃2·δ−1

h=2 Ch
)

. For iteration j ∈ {0, 1, . . . , k}, define the set

of untouched configurations as

Uj = {C ∈ C | C ∩ Sj /∈ C0} = {C ∈ C | v(C ∩ Sj ∩ L) > (1− δ, 1 − δ)} .

Since S0 ⊇ S1 ⊇ . . . ⊇ Sk, it follows that U0 ⊇ U1 ⊇ . . . ⊇ Uk. We denote by T0 = C \ U0 the
initial set of touched configurations, and by Tj = Uj−1 \Uj the configurations that become touched
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in iteration j, for j = 1, . . . , k. Observe that C0 ⊆ T0. We refine the sets Uj and Tj by defining
Uj,h = Uj ∩ Ch and Tj,h = Tj ∩ Ch for j = 0, . . . , k and h = 0, . . . , 2 · δ−1.

Intuitively, we view configurations in C0 as “easy” compared to configurations in C \C0. Indeed,
we can construct linear structures only for configurations with a slack (Lemma 4.2), and a slack can
be obtained with negligible overhead for configurations in C0. Thus, configurations in Uj “remain
difficult” after iteration j, while configurations in Tj “become easy” in iteration j. Observe that

k
∑

j=1

ρj ≤ k + α(1 + δ2)

k−1
∑

j=0

OPTf (1Sj
) ≤ k + (1 + 2δ)δ

k−1
∑

j=0

OPTf (1Sj
), (46)

where the first inequality uses ρj = ⌈αzj⌉ ≤ α(1 + δ2)OPTf (1Sj−1) + 1, and the second inequality

uses α(1 + δ2) ≤ (1 + 2δ)δ. Next, we derive an upper bound on δ
∑k−1

j=0 OPTf (1Sj
). By (46), this

would imply a bound on
∑k

j=1 ρj , the number of configurations sampled by Algorithm 1.

Recall that x̄0 is the solution for MLP found in Line 2 of Algorithm 2. We define x̄∗ ∈ [0, 1]C by

x̄∗C =
∑

C′∈U0\C2 s.t. C′∩L=C
x̄0C′

for each C ∈ C. Inzuitively, x̄∗ can be viewed as selecting all the configurations in U0 \ C2 as in x̄0,
and then discarding the small items. Since U0 is F0-measurable and x̄0 is F−1-measurable, it follows
that x̄∗ is F0-measurable. It can be easily verified that x̄∗ ·1Ch = x̄0 ·1U0,h

for every 3 ≤ h ≤ 2 · δ−1

and x̄∗ · 1C0 = x̄∗ · 1C2 = 0. Furthermore, for any C ∈ supp(x̄∗) it holds that C ⊆ S0 ∩ L.
Let ȳ∗ ∈ [0, 1]I be the coverage of x̄∗. Then supp(ȳ∗) ⊆ S0 ∩ L. We note that our definition

of x̄∗ does not include the coverage of items by configurations in T0 ∪ C2 in x̄0. The coverage of
these items is given by 1I − ȳ∗. In the analysis we consider these coverage vectors separately, using
the inequality

δ

k−1
∑

j=0

OPTf (1Sj
) ≤ δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) + δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ∗)

)

. (47)

The configurations in supp(x̄∗) are those that remain “difficult” after the sampling of M;
thus, ȳ∗ represents the coverage of items by these difficult configurations. Other configurations are
either in T0, or in C2. As the configurations in T0 are “easy”, we use them to compensate for items
not selected by the matching M. Due to a technical limitation of linear structures, we eliminate
the small items from ȳ∗.

Our analysis relies on the following application of linear structures in conjunction with Lemma 2.4.

Lemma 4.8. For j ∈ {0, 1, . . . , k}, let λ̄ ∈ [0, 1]C
∗

be an Fj-measurable random vector, w̄ the
coverage of λ̄, S an Fj-measurable random (δ, ϕ(δ))-linear structure of λ̄, and d̄ ∈ [0, 1]I a small-
items integral Fj-measurable random demand vector. Then

∀r = j, . . . , k : OPTf

(

d̄ ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT

with probability at least ξ − ϕ(δ)2 · exp
(

− OPT
ϕ25(δ)

)

, where

ξ = Pr

(

∀ū ∈ S : (1Sj
∧ d̄) · ū ≤ w̄ · ū+

1

ϕ11(δ)
·OPT · tol(ū)

)

. (48)
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The proof of the lemma is given in Section 4.1.3.
We proceed to separately bound the quantities δ

∑k−1
j=0 OPTf (1Sj

∧ ȳ∗) (see Lemma 4.11) and

δ
∑k−1

j=0 OPTf

(

1Sj
∧ (1I − ȳ∗)

)

(see Lemma 4.16). The bound on δ
∑k−1

j=0 OPTf (1Sj
∧ȳ∗) is derived

using the next lemmas.

Lemma 4.9. With probability at least 1− δ−10 exp
(

−δ50 ·OPT
)

it holds that

∀h = 2, . . . , 2 · δ−1, j = 1, . . . , k :

∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− x̄∗ · 1Tj,h
∣

∣

∣

∣

≤ δ20 ·OPT . (49)

The proof (given in Section 4.1.3) is a simple application of a Lemma 2.3.

Lemma 4.10. There exists µ : (0, 0.1) → R+, independent of the instance (I, v) and δ, such that

∀h = 2, . . . , 2 · δ−1, j = 1, . . . , k : x̄∗ ·1Uj,h
≥ (1− δ)h·j · x̄∗ ·1U0,h

− δ10 ·OPT or OPTf (1Sj
) ≤ µ(δ)

(50)
with probability at least 1− δ−10 · exp

(

−δ50 ·OPT
)

.

The lemma follows from the inequality Pr (C ∈ Uj,h | Fj−1) ≥ 1C∈Uj−1,h
·
(

1− h
zj

)α·zj+1
implied

by Lemma 2.1, the observation that
(

1− h
z

)α·z+1 → (1 − δ)h as z → ∞, and Lemma 4.9. The
dependence on µ in the lemma arises as the observation holds only if z is sufficiently large. The
proof is given in Section 4.1.3. Henceforth, we use µ to denote the function in Lemma 4.10.

Lemma 4.11. Assuming OPT > δ−30·(ϕ(δ) + µ(δ)), with probability at least 1−ϕ4(δ)·exp
(

− OPT
ϕ25(δ)

)

it holds that

δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) ≤ 4

3
· x̄0 · 1U0\C2 + 30 · δ ·OPT .

Proof. For j = 1, . . . , k, define d̄j ∈ [0, 1]I , the touched demand of iteration j, as the coverage
of x̄∗ ∧ 1Tj . This is the coverage of items in configurations that become touched in iteration j,

given by d̄ji =
∑

C∈Tj x̄
∗
C · C(i) for all i ∈ I. For every i ∈ I and r ∈ {0, 1, . . . , k − 1} we have

ȳ∗i −
r
∑

j=1

d̄ji =
∑

C∈C
x̄∗C · C(i)−

r
∑

j=1

∑

C∈Tj
x̄∗C · C(i) =

∑

C∈Ur

x̄∗C · C(i),

where the last equality follows from supp(x̄∗) ∩ T0 = ∅ (by the definition of x̄∗). Hence, x̄∗ ∧ 1Ur

is a solution for LP
(

ȳ∗ −∑r
j=1 d̄

j
)

, and thus OPTf

(

ȳ∗ −∑r
j=1 d̄

j
)

≤ x̄∗ · 1Ur . It follows that for

r = 0, 1, . . . , k − 1,

OPTf (ȳ∗ ∧ 1Sr) ≤
r
∑

j=1

OPTf

(

d̄j ∧ 1Sr

)

+ OPTf

(

ȳ∗ −
r
∑

j=1

d̄j
)

≤
r
∑

j=1

OPTf

(

d̄j ∧ 1Sr

)

+ x̄∗ · 1Ur .

(51)

We use Lemma 4.8 to bound the above terms OPTf

(

d̄j ∧ 1Sr

)

. We note that a natural can-
didate for the construction of the vector λ̄ in Lemma 4.8 for iteration j = 1, . . . , k is the vector
µ̄j ∈ [0, 1]C

∗
defined by µ̄jC =

∑

C′∈Tj and C′∩Sj=C
x̄∗C′ for all C ∈ C (and µ̄jC = 0 for C ∈ C∗ \ C). It
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is easy to verify that µ̄j is with δ-slack and its coverage is d̄j∧1Sj
. However, using this construction

in the analysis leads to a sub-optimal approximation ratio. To some extent, this sub-optimality can
be attributed to the fact that supp(µ̄j) may contain configurations which use only a small fraction
of the available volume. For example, in case C ∈ Tj,h for some large h and |C ∩ Sj ∩ L| = 1, we

may have that µ̄jC∩L∩Sj
> 0, while v(C∩L∩Sj) is very small (e.g, (0, 1.1 ·δ)). Due to dependencies

between items, such events may have non-negligible probability. To overcome this sub-optimality,
we use for the construction of λ̄j ∈ R

C∗
conditional probabilities as described below.

For h = 2, . . . , 2 · δ−1 and C ∈ Ch, let γ̄C ∈ [0, 1]C
∗

be an h
h−1-relaxation of C. The existence

of γ̄C is guaranteed by Lemma 4.5. We define, for j = 1, . . . , k,

λ̄j =
∑

C∈C\C0
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

· γ̄C , (52)

and let w̄j be the coverage of λ̄j . Since Uj−1, ρj and zj are Fj−1-measurable, it follows that λ̄j is
Fj−1-measurable (and thus also Fj-measurable). Furthermore, since γ̄C is with δ-slack for every
C ∈ C \ C0, it follows that λ̄j is with δ-slack for j = 1, . . . , k.

Claim 4.12. For j = 1, . . . , k and i ∈ I it holds that E
[

d̄ji · 1i∈Sj

∣

∣

∣ Fj−1

]

= w̄ji .

Proof. For any i ∈ I \ L and j = 1, . . . , k it holds that E

[

d̄ji · 1i∈Sj
| Fj−1

]

= 0 = w̄ji , as

supp(ȳ∗) ⊆ L and ȳ∗ is the coverage of x̄∗. Thus, it remains to handle the case in which i ∈ L.
Now, for every i ∈ L and j = 1, . . . , k, we have

E

[

d̄ji · 1i∈Sj

∣

∣

∣
Fj−1

]

= E

[

∑

C∈C
1C∈Tj · 1i∈Sj

· x̄∗C · C(i)

∣

∣

∣

∣

∣

Fj−1

]

= E





∑

C∈C\C0

(

1C∈Tj − 1C∈Tj · 1i/∈Sj

)

· x̄∗C · C(i)

∣

∣

∣

∣

∣

∣

Fj−1





=
∑

C∈C\C0

(

Pr (C ∈ Tj | Fj−1)− E

[

1i/∈Sj
1C∈Uj−1 | Fj−1

])

· x̄∗C · C(i) .

(53)

The second equality uses Tj ∩ C0 = ∅ for j ≥ 1, and the third equality uses that

1C∈Tj1i/∈Sj
= 1C∈Uj−1 · 1C/∈Uj

· 1i/∈Sj
= 1C∈Uj−1 · 1i/∈Sj

for any configuration C for which i ∈ C. By Lemma 2.1, we have

E

[

1i/∈Sj
1C∈Uj−1

∣

∣

∣
Fj−1

]

= 1C∈Uj−1 · E
[

1i/∈Sj

∣

∣

∣
Fj−1

]

= 1C∈Uj−1

(

1− 1i∈Sj−1

(

1− 1

zj

)ρj)

= 1C∈Uj−1

(

1−
(

1− 1

zj

)ρj)

for any C ∈ C \ C0 and i ∈ C ∩ L. Furthermore, since γ̄C is a relaxation of C, we have that
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C(i) =
∑

C′∈C∗ γ̄CC′ · C ′(i). Therefore, for any C ∈ C \ C0 and i ∈ L, it holds that
(

Pr (C ∈ Tj | Fj−1)− E

[

1i/∈Sj
1C∈Uj−1 | Fj−1

]

)

· x̄∗C · C(i)

=

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

· x̄∗C · C(i)

=

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

· x̄∗C ·
∑

C′∈C∗

γ̄CC′ · C ′(i) .

(54)

By incorporating (54) into (53), we have (for every i ∈ L and j = 1, . . . , k) that

E

[

d̄ji · 1i∈Sj

∣

∣

∣ Fj−1

]

=
∑

C∈C\C0
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

·
∑

C′∈C∗

γ̄CC′ · C ′(i)

=
∑

C′∈C∗

C ′(i) ·
∑

C∈C\C0
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

· γ̄CC′

=
∑

C′∈C∗

C ′(i) · λ̄jC′ = w̄ji .

⋄

To show the existence of a linear structure for λ̄ using Lemma 4.2, we also need the following
claim.

Claim 4.13. For j = 1, . . . , k it holds that λ̄j ∈ [0, 1]C
∗

, w̄j ∈ [0, 1]I , and λ̄j is small-items integral.

Proof. We first show that λ̄j ∈ R
C∗

≥0. Let C ∈ C \C0, thus there is i ∈ C ∩L. It therefore holds that

Pr(C ∈ Tj | Fj−1) = E

[

1C∈Uj−1 · 1C/∈Uj
| Fj−1

]

= 1C∈Uj−1 · Pr(C /∈ Uj | Fj−1)

≥ 1C∈Uj−1 · Pr(i /∈ Sj | Fj−1)

= 1C∈Uj−1

(

1−
(

1− 1

zj

)ρj

· 1i∈Sj−1

)

= 1C∈Uj−1

(

1−
(

1− 1

zj

)ρj)

.

(55)

The inequality holds since i /∈ Sj implies C /∈ Uj , the third equality is by Lemma 2.1, and the last
equality holds since 1C∈Uj−1 · 1i∈Sj−1 = 1C∈Uj−1 . By (55) it follows that λ̄j ∈ R

C∗

≥0.

Since w̄ji = E

[

d̄ji · 1i∈Sj
| Fj−1

]

≤ 1 for every i ∈ I for j = 1, . . . , k (Claim 4.12) it follows that

w̄j ∈ [0, 1]I and subsequently λ̄j ∈ [0, 1]C
∗

for j = 1, . . . , k. Furthermore, w̄ji = 0 for every i ∈ I \ L
(as ȳ∗i = 0, ȳ∗ is the coverage of x̄∗ and (52)), hence w̄j and λ̄j are small-items integral. ⋄

By Lemma 4.2 there is a (δ, ϕ(δ))-linear structure Sj of λ̄j for j = 1, . . . , k.

Claim 4.14. For any j ∈ {1, . . . , k} it holds that

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[(

1Sj
∧ d̄j

)

· ū
∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1−ϕ(δ)·exp

(

− OPT

ϕ25(δ)

)

.
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The proof of Claim 4.14, given in Section 4.1.3, follows from Lemma 2.3. By Claim 4.12 it holds
that E

[

ū ·
(

d̄j ∧ 1Sj

)∣

∣Fj−1

]

= ū · w̄j for j = 1, . . . , k and ū ∈ Sj ; therefore,

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ w̄j · ū+

OPT

ϕ11(δ)
· tol(ū)

)

= Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[(

1Sj
∧ d̄j

)

· ū
∣

∣Fj−1

]

+
OPT · tol(ū)

ϕ11(δ)

)

≥ 1− ϕ(δ) · exp

(

− OPT

ϕ25(δ)

)

.

Here, the last inequality follows from Claim 4.14. Thus, by Lemma 4.8, with probability at least

1− k · ϕ(δ) · exp

(

− OPT

ϕ25(δ)

)

− k · ϕ2(δ) · exp

(

− OPT

ϕ25(δ)

)

≥ 1− ϕ3(δ) · exp

(

− OPT

ϕ25(δ)

)

,

it holds that

∀j = 1, . . . , k, r = j, . . . , k : OPTf

(

d̄j ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄j‖+ ϕ(δ) + δ10OPT . (56)

We henceforth assume that (56), (49) and (50) hold.
Observe that, for j = 1, . . . , k,

‖λ̄j‖ =
∑

C∈C\C0
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)−
(

1−
(

1− 1

zj

)ρj)

· 1C∈Uj−1

)

· ‖γ̄C‖

≤
∑

C∈C\C0
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

· ‖γ̄C‖

≤
2·δ−1
∑

h=2

∑

C∈Ch
x̄∗C ·

(

Pr (C ∈ Tj | Fj−1)− δ · 1C∈Uj−1

)

· h

h− 1

=

2·δ−1
∑

h=2

h

h− 1

(

E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− δ · x̄∗ · 1Uj−1,h

)

≤
2·δ−1
∑

h=2

h

h− 1

(

x̄∗ · 1Tj,h + δ10 ·OPT− δ · x̄∗ · 1Uj−1,h

)

≤
2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ δ8 ·OPT .

(57)

The first inequality follows from
(

1− 1
zj

)ρj ≤ (1 − δ) (Lemma 2.1). The second inequality holds,

since γ̄C is an h
h−1 -relaxation of C for any C ∈ Ch; the third inequality follows from the assumption

that (49) holds; and the last inequality uses Tj,h = Uj−1,h \ Uj,h.
Combining (56) and (57) with OPT > δ−30ϕ(δ), we have

OPTf

(

d̄j ∧ 1Sr

)

1 + 10δ
≤ (1− δ)r−j

2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ δ7OPT

36



for j = 1, . . . , k and r = j, . . . , k. Using the last inequality and (51), we obtain

OPTf (ȳ∗ ∧ 1Sr)

1 + 10δ
≤

r
∑

j=1

(1− δ)r−j
2·δ−1
∑

h=2

h

h− 1

(

(1− δ)x̄∗ · 1Uj−1,h
− x̄∗ · 1Uj,h

)

+ x̄∗ · 1Ur + δ5OPT

=
2·δ−1
∑

h=2

h

h− 1

(

(1− δ)r · x̄∗ · 1U0,h
− x̄∗ · 1Ur,h

)

+ x̄∗ · 1Ur + δ5OPT

=
2·δ−1
∑

h=2

1

h− 1

(

(1− δ)r · x̄∗ · 1U0,h
− x̄∗ · 1Ur,h

)

+ (1− δ)rx̄∗ · 1U0 + δ5OPT

for every r ∈ {0, 1, . . . , k − 1}. Observe that OPTf (ȳ∗ ∧ 1Sr) ≤ OPTf (1Sr) ≤ OPTf (1Sj
) for

j = 1, . . . , k and r = j, . . . , k; thus, if OPT(1Sj
) ≤ µ(δ) ≤ δ30OPT for some j ∈ {1, . . . , k}, then

for every r ≥ j it holds that OPTf (ȳ∗ ∧ 1Sr) ≤ δ30OPT . Using the above inequality and (50), we
have

OPTf (ȳ∗ ∧ 1Sr)

1 + 10δ
≤

2·δ−1
∑

h=2

(1− δ)r − (1− δ)h·r
h− 1

· x̄∗ · 1U0,h
+ (1− δ)rx̄∗ · 1U0 + δ4OPT .

Thus,

δ
∑k−1

j=0 OPTf (1Sj
∧ ȳ∗)

1 + 10δ

≤ δ
k−1
∑

j=0

2·δ−1
∑

h=2

(1− δ)j − (1− δ)h·j
h− 1

· x̄∗ · 1U0,h
+ δ ·

k−1
∑

j=0

(1− δ)j x̄∗ · 1U0 + δ3OPT

= δ

2·δ−2
∑

h=2

x̄∗ · 1U0,h

h− 1

(

1− (1− δ)k
1− (1− δ) −

1− (1− δ)k·h
1− (1− δ)h

)

+ δ · 1− (1− δ)k
1− (1− δ) · x̄

∗ · 1U0 + δ3OPT

≤
2·δ−2
∑

h=2

x̄∗ · 1U0,h

h− 1

(

1− 1− δ
h

)

+ x̄∗ · 1U0 + δ3OPT

≤
2·δ−2
∑

h=3

h+ 1

h
· x̄0 · 1U0,h

+ δ3OPT + δ‖x̄∗‖ .

The second inequality holds, since (1 − δ)k ≤ δ and (1 − δ)h ≥ 1 − δh. The last inequality uses
x̄∗ · 1U0,h

= x̄0 · 1U0,h
for h ≥ 3, and x̄∗ · 1C2 = 0 by the definition of x̄∗. Since ‖x̄∗‖ ≤ ‖x̄0‖ ≤

(1 + δ2)OPT ≤ 1.01 ·OPT, we have

δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) ≤

2·δ−2
∑

h=3

h+ 1

h
· x̄0 · 1U0,h

+ 30 · δ ·OPT ≤ 4

3
· x̄0 · 1U0\C2 + 30δ ·OPT, (58)

as in the statement of the lemma. As we assumed that (56), (49) and (50) hold, by Lemma 4.9 and
Lemma 4.10 it follows that (58) holds with probability at least

1− ϕ3(δ) · exp

(

− OPT

ϕ25(δ)

)

− 2 · δ−10 exp
(

−δ50 ·OPT
)

≥ 1− ϕ4(δ) · exp

(

− OPT

ϕ25(δ)

)

.
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Define ȳM as the coverage of x̄0 ∧ 1C2 ; that is, ȳMi =
∑

C∈C2 x̄
0
C ·C(i) for all i ∈ I. To obtain a

bound on δ
∑k−1

j=0 OPTf

(

1Sj
∧ (1I − ȳ0)

)

, we use the next lemma.

Lemma 4.15. For any i ∈ I it holds that Pr(i /∈ S0) = (1 − δ4)ȳMi if i ∈ L, and Pr(i /∈ S0) = 0
otherwise.

Proof. Let G = (L,E) be the δ-matching graph of the instance. We use N(i) to denote the set of
neighbors of i ∈ L . SinceM is a matching, for every i ∈ L it holds that 1i/∈S0

=
∑

i′∈N(i) 1{i,i′}∈M.
Therefore, for any i ∈ L it holds that

Pr(i /∈ S0) = E[1i/∈S0
] =

∑

i′∈N(i)

E
[

1{i,i′}∈M
]

= (1− δ4)
∑

i′∈N(i)

∑

C∈C2 s.t. {i,i′}⊆C
x̄0C

= (1− δ4)
∑

C∈C2
x̄0C · C(i) = (1− δ4) · ȳMi .

The third equality holds, since Pr(e ∈ M) = (1 − δ4)
∑

C∈C2 s.t. e⊆C x̄
0
C . Also, for any i ∈ I \ L it

holds that i /∈ ⋃e∈M e; thus, i ∈ S0, i.e., Pr(i /∈ S0) = 0.

We now derive an upper bound for δ
∑k−1

j=0 OPTf

(

1Sj
∧ (1I − ȳ∗)

)

.

Lemma 4.16. Assuming OPT > δ−30ϕ(δ), with probability at least 1−exp
(

− OPT
ϕ25(δ)

+ ϕ2(δ) · ln OPT
)

it holds that

δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ∗)

)

≤ 4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ · (OPT + |M|) .

Proof. Similar to the proof of Lemma 4.11, we use Lemma 4.8 also in this proof. To this end, we
construct a vector λ̄ that is used to derive a linear structure S. Subsequently, we show that λ̄ and S
admit the conditions of Lemma 4.8 with respect to the demand vector 1S0 ∧ (1I − ȳ∗).

For any h = 2, . . . , 2 · δ−1 and C ∈ Ch, let γ̄C be an h
h−1 -relaxation of C, and for any C ∈ C0

let γ̄C be a (1 + 4δ)-relaxation of C. Furthermore, for any C ∈ C such that v(C) ≤ (δ, δ) let τ̄C be
a 4δ-relaxation of C. The existence of these relaxations is guaranteed by Lemma 4.4, Lemma 4.5,
and Lemma 4.6. Define

λ̄ = δ4
∑

i∈L
ȳMi · 1{{i}} +

∑

C∈T0\C2
x̄0C · γ̄C +

∑

C∈U0∪C2
x̄0C · τ̄C\L,

where 1{{i}} ∈ [0, 1]C
∗

= z̄ such that z̄{i} = 1, and z̄C = 0 for C ∈ C∗ \ {{i}}. Observe that C0 ⊆ T0
by definition; thus, v(C \ L) ≤ (δ, δ) for every C ∈ U0 ∪ C2. That is, λ̄ is well-defined. Since
the instance does not contain δ-huge items, it follows that 1{{i}} is with δ-slack. Hence, λ̄ is with
δ-slack as well. As T0 and U0 are F0-measurable, it follows that λ̄ is F0-measurable. Let w̄ be the
coverage of λ̄ and define d̄ = 1S0 ∧ (1 − ȳ∗). Observe that we may have w̄i > 0 (i.e., i ∈ supp(w̄))
for items already selected by the matching, that is, items in L \ S0. The coverage of these items
can intuitively be viewed as a placeholder for items i ∈ L ∩ S0 for which w̄i < d̄i.

For any i ∈ I \ L, it holds that

w̄i =
∑

C∈C∗

λ̄C · C(i) =
∑

C∈T0\C2
x̄0C · C(i) +

∑

C∈U0∪C2
x̄0C · C(i)

=
∑

C∈C
x̄0C · C(i) = 1 = 1i∈S0(1− ȳ∗i ) = d̄i .

(59)
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The fourth equality holds, as x̄0 is a solution for MLP. The fifth equality holds, since ȳ∗i = 0 for
all i ∈ I \ L and by Lemma 4.15. In particular, it follows that w̄ and λ̄ are small-items integral,
and w̄i − d̄i = 0 for any i ∈ I \ L. Furthermore, for any i ∈ L it holds that

w̄i = δ4 · ȳMi +
∑

C∈T0\C2
x̄0C · C(i) ≤ δ4 · ȳMi +

∑

C∈C\C2
x̄0C · C(i) = δ4 · ȳMi + (1− ȳMi ) ≤ 1,

thus w̄ ∈ [0, 1]I and we can infer that λ̄ ∈ [0, 1]C
∗
.

For any i ∈ L, we have

d̄i = 1i∈S0



1−
∑

C∈U0\C2
x̄0C · C(i)





= 1i∈S0 − (1− 1i/∈S0
)
∑

C∈U0\C2
x̄0C · C(i)

= 1i∈S0 −
∑

C∈U0\C2
x̄0C · C(i)−

∑

C∈C\C2
1i/∈S0

· 1C∈U0 · x̄0C · C(i)

= 1i∈S0 −
∑

C∈U0\C2
x̄0C · C(i),

where the the fourth equality holds since for every C ∈ C such that i ∈ C, if i /∈ S0 then C /∈ U0.
Thus, for every i ∈ L,

w̄i − d̄i = δ4 · ȳMi +
∑

C∈T0\C2
x̄0C · C(i)−





1i∈S0 −
∑

C∈U0\C2
x̄0C · C(i)





= δ4 · ȳMi +
∑

C∈C\C2
x̄0C · C(i)− 1i∈S0

= δ4 · ȳMi + 1− ȳMi − 1i∈S0

= 1i/∈S0
− (1− δ4) · ȳMi ,

(60)

where the third equality holds since

1 =
∑

C∈C
x̄0C · C(i) =

∑

C∈C\C2
x̄0C · C(i) +

∑

C∈C2
x̄0C · C(i) =

∑

C∈C\C2
x̄0C · C(i) + ȳMi .

By (59), (60) and Lemma 4.15, it holds that E[w̄i] = E[d̄i] for every i ∈ I.
Using the concentration bounds for SampleMatching, as given by Chekuri et al. [CVZ11], we

can show that, with high probability, ū · d̄ . ū · w̄ for every ū ∈ R
I
≥0.

Claim 4.17. For any ū ∈ R
I
≥0 it holds that

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≤ exp

(

− OPT

ϕ25(δ)

)

.

The proof of Claim 4.17 is given in Section 4.1.3.
Let S∗ ⊆ R

I
≥0 be the set defined in Lemma 4.2. Also, by Lemma 4.2, there exists a (δ, ϕ(δ))-

linear structure S of λ̄ such that for any ū ∈ S which satisfies supp(ū)∩L 6= ∅ it holds that ū ∈ S∗.
Observe that S∗ is non-random while S is an F0-measurable random set, as λ̄ is F0-measurable.
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Claim 4.17 requires that the vector ū ∈ R
I
≥0 is deterministic, and thus we cannot directly use

the claim with a random vector ū ∈ S. Instead, we use the set S∗ to circumvent this issue. Observe
that for any ū ∈ S, if supp(ū) ∩ L = ∅ then d̄ · ū = w̄ · w̄ by (59), and if supp(ū) 6= ∅ then ū ∈ S∗.
Thus,

Pr

(

∀ū ∈ S : d̄ · ū ≤ w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≥ Pr

(

∀ū ∈ S∗ : d̄ · ū ≤ w̄ · ū+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1− |S∗| · exp

(

− OPT

ϕ25(δ)

)

≥ 1− exp

(

− OPT

ϕ25(δ)
+ ϕ(δ) · ln OPT

)

.

The second inequality is by the union bound, and Claim 4.17. The third inequality holds, since
|S∗| ≤ ϕ(δ) · |L|4 ≤ ϕ(δ) · 24 · δ−4 ·OPT4 as OPT ≥ δ

2 |L|. Therefore, by Lemma 4.8, it holds that

∀j = 0, . . . , k : OPTf

(

1Sj
∧ (1I − ȳ∗)

)

≤ (1− δ)j · (1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT (61)

with probability at least

1−exp

(

− OPT

ϕ25(δ)
+ ϕ(δ) · ln OPT

)

−ϕ2(δ)·exp

(

− OPT

ϕ25(δ)

)

≥ 1−exp

(

− OPT

ϕ25(δ)
+ ϕ2(δ) · ln OPT

)

.

We henceforth assume that (61) holds.
We note that

‖λ̄‖ ≤ δ4 · 1L · ȳM +

2·δ−1
∑

h=3

h

h− 1
· x̄0 · 1T0,h + (1 + 4δ) · x̄0 · 1C0 + 4δ‖x̄0‖

≤ 4

3
· 1T0\C2 · x̄0 +

1

6
·
2·δ−1
∑

h=3

x̄0 · 1T0,h + 10δ ·OPT,

(62)

where the second inequality uses

1L · ȳM =
∑

i∈L
ȳMi =

∑

i∈L

∑

C∈C2
x̄0C · C(i) =

∑

C∈C2
x̄0C · 2 ≤ 2 · x̄0 · 1C2 ≤ 2 · (1 + δ2)OPT .

It also holds that

2·δ−1
∑

h=3

x̄0 · 1T0,h =
∑

C∈C\C0\C2
x̄0C · 1C∈T0

≤
∑

C∈C\C0\C2
x̄0C

∑

i∈C∩L
1i/∈S0

≤
∑

i∈L
1i/∈S0

∑

C∈C\C2
x̄0C · C(i) ≤

∑

i∈L
1i/∈S0

≤ 2 · |M| .

Plugging the above inequality into (62), we obtain

‖λ̄‖ ≤ 4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 10 · δ ·OPT . (63)

By (61) and (63), we have

δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ∗))

)

≤ δ
k−1
∑

j=0

(

(1− δ)j · (1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10OPT
)

≤ (1 + 10δ)‖λ̄‖+ δ8OPT

≤ (1 + 10δ)

(

4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 10δ ·OPT

)

+ δ8OPT

≤ 4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ(OPT + |M|),

(64)
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where the second inequality uses OPT > δ−30ϕ(δ), and the last inequality holds since
‖x̄0‖ ≤ 1.01 · OPT. As we assumed that (61) holds, it follows that inequality (64) holds with

probability at least 1− exp
(

− OPT
ϕ25(δ)

+ ϕ2(δ) · ln OPT
)

, as stated in the lemma.

4.1.2 Asymptotic Approximation Ratio

Proof of Lemma 1.9. Note that we may assume OPT is larger than any function which depends
on δ (but not on the instance). Assume that the statements of Lemmas 2.6, 4.7, 4.11 and 4.16
hold. This occurs with probability at least

1−δ−2·exp(−δ7·OPT)−exp(−δ10·OPT)−ϕ4(δ)·exp

(

− OPT

ϕ25(δ)

)

−exp

(

− OPT

ϕ25(δ)
+ ϕ2(δ) · ln OPT

)

≥ 1

2
,

assuming that OPT is sufficiently large.
We also assume that OPT > δ−30 (ϕ(δ) + µ(δ)). By Lemmas 4.11 and 4.16, we have

k
∑

j=1

ρj ≤ k + (1 + 2δ)δ
k−1
∑

j=0

OPTf (1Sj
)

≤ k + (1 + 2δ)



δ

k−1
∑

j=0

OPTf (1Sj
∧ ȳ∗) + δ

k−1
∑

j=0

OPTf

(

1Sj
∧ (1I − ȳ∗)

)





≤ k + (1 + 2δ)

(

4

3
· x̄0 · 1U0\C2 + 30δOPT +

4

3
· x̄0 · 1T0\C2 +

1

3
· |M|+ 50δ(OPT + |M|)

)

≤ k + (1 + 2δ)

(

4

3
· x̄0 · 1C\C2 +

1

3
· |M|+ 80δ(OPT + |M|)

)

≤ 4

3
· x̄01C\C2 +

1

3
· |M|+ 90δ(OPT + |M|) .

The first inequality uses (46), and the last inequality assumes OPT > k
δ . The number of configu-

rations returned by the algorithm (assuming the statement of the lemmas hold) is

|M|+
k
∑

j=1

ρj + ρ∗ ≤ |M|+ 4

3
· x̄0 · 1C\C2 +

1

3
· |M|+ 90δ(OPT + |M|) + 16δOPT + 1

≤ 4

3
· x̄0 · 1C\C2 + 110δ ·OPT +

(

4

3
+ 90δ

)

|M|

≤ 4

3
· x̄0 · 1C\C2 + 110δ ·OPT +

(

4

3
+ 90δ

)

·
(

x̄0 · 1C2 + δ2OPT
)

≤
(

4

3
+ 90δ

)

‖x̄0‖+ 110δOPT + 90δ3OPT

≤
(

4

3
+ 250δ

)

OPT,

where the last inequality uses ‖x̄‖0 ≤ (1 + δ2)OPT.

4.1.3 Concentration

In this section we give the missing proofs of Section 4.1 and Section 4.1.1.
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Proof of Lemma 4.8. Let S = {ū1, . . . , ū⌊ϕ(δ)⌋}, where ūℓ is an Fj-measurable random vector
for ℓ ∈ [ϕ(δ)] (in case |S| < ⌊ϕ(δ)⌋ the same vector may appear several times in ū1, . . . , ū⌊ϕ(δ)⌋).
As S is a (δ, ϕ(δ)) linear structure, it holds that

Pr
(

∀r = j, . . . , k : OPTf

(

d̄ ∧ 1Sr

)

≤ (1− δ)r−j(1 + 10δ)‖λ̄‖+ ϕ(δ) + δ10 ·OPT
)

≥ Pr

(

∀r = j, . . . , k, ℓ = 1, . . . , ϕ(δ) : (1Sr ∧ d̄) · ūℓ ≤ (1− δ)r−j · w̄ · ūℓ +
OPT

ϕ10(δ)
· tol(ūℓ)

)

≥ Pr









∀ℓ = 1, . . . , ϕ(δ) : (1Sj
∧ d̄) · ūℓ ≤ w̄ · ūℓ +

1

ϕ11(δ)
·OPT · tol(ūℓ)

∀ℓ = 1, . . . , ϕ(δ), r = j, . . . , k : (1Sr ∧ d̄) · ūℓ ≤ (1− δ)r−j · (1Sj
∧ d̄) · ūℓ +

OPT

ϕ11(δ)
· tol(ūℓ)









≥ ξ −
⌊ϕ(δ)⌋
∑

ℓ=1

Pr

(

∃r ∈ {j, . . . , k} : (1Sr ∧ d̄) · ūℓ > (1− δ)r−j · (1Sj
∧ d̄) · ūℓ +

OPT

ϕ11(δ)
· tol(ūℓ)

)

≥ ξ − ϕ(δ) · δ−2 · exp






−

2 · δ4 ·
(

OPT2

ϕ11(δ)

)2

OPT







≥ ξ − ϕ2(δ) · exp

(

− OPT

ϕ25(δ)

)

.

The fourth equality follows from the union bound and the definition of ξ in (48). The fifth inequality
is by Lemma 2.4.

The following technical lemma will be used to prove Lemma 4.9.

Lemma 4.18. Let j ∈ {1, . . . , k} and h ∈ {2, . . . , 2 · δ−1}. Then

Pr

(

∣

∣

∣E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− x̄∗ · 1Tj,h
∣

∣

∣ > δ20 ·OPT

)

≤ 2 · exp
(

−δ50 ·OPT
)

.

Proof. Let V ⊆ [0, 1]C be the set of values that x̄∗ can take, that is, V = {x̄∗(ω) | ω ∈ Ω}. Since Ω
is finite, it follows that V is finite as well. Furthermore, since

∑

C∈C x̄
∗
C ·C(i) ≤∑C∈C x̄

0
C ·C(i) = 1

for every i ∈ I, it follows that
∑

C∈C x̄C · C(i) ≤ 1 for every x̄ ∈ V and i ∈ I.
For any U ⊆ C, ρ = 1, . . . ,OPT and x̄ ∈ V define fU,ρ,x̄ : COPT → R by

fU,ρ,x̄ (C1, . . . , COPT) = x̄ · 1{C∈U | C∩(
⋃ρ

ℓ=1 Cℓ)∩L 6=∅} =
∑

C∈U
x̄C · 1C∩(

⋃ρ
ℓ=1 Cℓ)∩L 6=∅ .

Define D = {fU,ρ,x̄ | U ⊆ C, ρ = 1, . . . ,OPT, x̄ ∈ V}. It follows that D is a finite set.
Let fU,ρ,x̄ ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ COPT, and r = 1, . . . ,OPT such that Cℓ = C ′

ℓ

for ℓ = 1, . . . , r−1, r+1, . . . ,OPT. If r > ρ then |fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C ′
1, . . . , C

′
OPT)| = 0.
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Otherwise, let T =
⋃

ℓ∈{1,...,ρ}\{r} Cℓ =
⋃

ℓ∈{1,...,ρ}\{r} C
′
ℓ. It holds that

∣

∣

∣

∣

fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C ′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=
∣

∣x̄ ·
(

1{C∈U | C∩(T∪Cr)∩L 6=∅} − 1{C∈U | C∩(T∪C′
r)∩L 6=∅}

)∣

∣

=

∣

∣

∣

∣

∣

∑

C∈U
x̄C · 1C∩(T∪C′

r)∩L=∅ · 1C∩Cr∩L 6=∅ −
∑

C∈U
x̄C · 1C∩(T∪Cr)∩L=∅ · 1C∩C′

r∩L 6=∅

∣

∣

∣

∣

∣

≤ max

{

∑

C∈U
x̄C · 1C∩(T∪C′

r)∩L=∅ · 1C∩Cr∩L 6=∅,
∑

C∈U
x̄C · 1C∩(T∪Cr)∩L=∅ · 1C∩C′

r∩L 6=∅

}

≤ max

{

∑

C∈C
x̄C · 1C∩Cr∩L 6=∅,

∑

C∈C
x̄C · 1C∩C′

r∩L 6=∅

}

.

Furthermore,

∑

C∈C
x̄C · 1C∩Cr∩L 6=∅ ≤

∑

C∈C
x̄C

∑

i∈Cr∩L
C(i) =

∑

i∈Cr∩L

∑

C∈C
x̄C · C(i) ≤ |Cr ∩ L| ≤ 2 · δ−1,

and by a symmetric argument
∑

C∈C x̄C · 1C∩C′
r∩L 6=∅ ≤ 2 · δ−1. Thus,

∣

∣

∣

∣

fU,ρ,x̄(C1, . . . , COPT)− fU,ρ,x̄(C ′
1, . . . , C

′
OPT)

∣

∣

∣

∣

≤ 2 · δ−1 .

That is, all functions in D are of (2δ−1)-bounded difference.
Define g = fUj−1,h,ρj ,x̄∗. Since Uj−1,h, ρj and x̄∗ are Fj−1-measurable, we have that g is a

Fj−1-measurable random function. For every C ∈ C it holds that C ∈ Tj,h if and only if C ∈ Uj−1,h

and C ∩ L ∩
(

⋃

ℓ∈[ρj ]C
j
ℓ

)

6= ∅. Thus,

g(Cj1 , . . . , C
j
OPT) = x̄∗ · 1{C∈Uj−1,h | C∩

(

⋃ρj
ℓ=1C

j
ℓ

)

∩L 6=∅} = x̄∗ · 1Tj,h .

Therefore,

Pr

(

∣

∣

∣E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− x̄∗ · 1Tj,h
∣

∣

∣ > δ20 ·OPT

)

= Pr

(

∣

∣

∣
E

[

g(Cj1 , . . . , C
j
OPT)

∣

∣

∣
Fj−1

]

− g(Cj1 , . . . , CjOPT)
∣

∣

∣
> δ20 ·OPT

)

= Pr

(

E

[

g(Cj1 , . . . , C
j
OPT)

∣

∣

∣ Fj−1

]

− g(Cj1 , . . . , C
j
OPT) > δ20 ·OPT

)

+ Pr

(

E

[

−g(Cj1 , . . . , CjOPT)
∣

∣

∣
Fj−1

]

+ g(Cj1 , . . . , C
j
OPT) > δ20 ·OPT

)

≤ 2 · exp

(

− 2 · δ40 ·OPT2

(2δ−1)2 ·OPT

)

≤ 2 · exp
(

−δ50 ·OPT
)

,

where the inequality follows from Lemma 2.3.

The proof of Lemma 4.9 follows directly from Lemma 4.18.
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Proof of Lemma 4.9. By the union bound, we have

Pr

(

∀j = 1, . . . , k, h = 2, . . . , 2 · δ−1 :

∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− x̄∗ · 1Tj,h
∣

∣

∣

∣

≤ δ20 ·OPT

)

≥ 1−
k
∑

j=1

2·δ−1
∑

h=2

Pr

( ∣

∣

∣

∣

E
[

x̄∗ · 1Tj,h
∣

∣ Fj−1

]

− x̄∗ · 1Tj,h
∣

∣

∣

∣

> δ20 ·OPT

)

≥ 1− k · 2 · δ−1 · 2 · exp
(

−δ50 ·OPT
)

≥ 1− δ−10 · exp(−δ50 ·OPT),

where the second inequality follows from Lemma 4.18 and the last inequality uses k ≤ δ−2.

We use Lemma 4.9 to prove Lemma 4.10.

Proof of Lemma 4.10. For every ε ∈ (0, 0.1) and h ∈ N, it holds that limz→∞
(

1− h
z

)⌈−z·ln(1−ε)⌉
=

(1 − ε)h; thus, there is Mε,h > 1 such that for every z > Mε,h it holds that
(

1− h
z

)⌈−z·ln(1−ε)⌉ ≥
(1 − ε)h − ε20. Define µ : (0, 0.1) → R+ by µ(ε) = max

{

Mε,h | h ∈ [2, 2 · ε−1] ∩ N
}

for every
ε ∈ (0, 0.1). Note that since the maximum is taken over a finite set of numbers, each greater than
one, it follows that µ(ε) ∈ (1,∞) for every ε ∈ (0, 0.1).

Assume the event in (49) occurs. Let j ∈ {1, . . . , k} and h ∈ {2, . . . , 2δ−1}. For any C ∈ Ch it
holds that

Pr (C ∈ Uj,h | Fj−1) = 1C∈Uj−1,h
· Pr

(

∀ℓ ∈ 1, . . . , ρj : Cjℓ ∩ C ∩ L = ∅
∣

∣

∣ Fj−1

)

= 1C∈Uj−1,h
·
(

1−
∑

C′∈C x̄
j
C′ · 1C′∩C∩L 6=∅
zj

)⌈−zj ·ln(1−δ)⌉

≥ 1C∈Uj−1,h
·
(

1− h

zj

)⌈−zj ·ln(1−δ)⌉

≥ 1OPTf (1Sj−1
)>µ(δ) · 1C∈Uj−1,h

·
(

(1− δ)h − δ20
)

.

(65)

The first inequality holds, since, for every C ∈ C,
∑

C′∈C
x̄jC′ · 1C′∩C∩L 6=∅ ≤

∑

C′∈C
x̄jC′ ·

∑

i∈C∩L
C ′(i) =

∑

i∈C∩L

∑

C′∈C
x̄jC′ · C(i) ≤ h .

The last inequality in (65) holds by definition of µ and since zj ≥ OPTf (1Sj−1).
We therefore have

1Uj,h
· x̄∗ = 1Uj−1,h

· x̄∗ − 1Tj,h · x̄∗

≥ 1Uj−1,h
· x̄∗ − E

[

1Tj,h · x̄∗ | Fj−1

]

− δ20 ·OPT

= E
[

1Uj,h
· x̄∗ | Fj−1

]

− δ20 ·OPT

≥ 1OPTf (1Sj−1
)>µ(δ) · 1Uj−1,h

· x̄∗
(

(1− δ)h − δ20
)

− δ20 ·OPT

≥ 1OPTf (1Sj−1
)>µ(δ) · 1Uj−1,h

· x̄∗ · (1− δ)h − δ19 ·OPT .

The first inequality is due to (49), the second inequality follows from (65), and the last inequality
uses 1Uj−1,h

· x̄∗ ≤ ‖x̄∗‖ ≤ ‖x̄0‖ ≤ 2OPT. Overall, we showed that

1Uj,h
· x̄∗ ≥ 1OPTf (1Sj−1

)>µ(δ) · 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT (66)

for j = 1, . . . , k and h = 2, . . . , 2 · δ−1.
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Claim 4.19. For h = 2, . . . , 2 · δ−1 and j = 0, 1, . . . , k it holds that

x̄∗ · 1Uj,h
≥ (1− δ)h·j · x̄∗ · 1U0,h

− j · δ19 ·OPT or OPTf (1Sj
) ≤ µ(δ) .

Proof. Fix h ∈ {2, . . . , 2 · δ−1}. We show the claim by induction over j.
Base case: For j = 0 it clearly holds that x̄∗ · 1U0,h

≥ (1− δ)h·0 · x̄∗ · 1U0,h
− 0 · δ19 ·OPT.

Induction step: Assume the induction hypothesis holds for j − 1. If OPTf (1Sj
) ≤ µ(δ) then the

statement holds for j. Otherwise, OPTf (1Sj
) > µ(δ), and so OPTf (1Sj−1) ≥ OPTf (1Sj

) > µ(δ).
By the induction hypothesis, we have

x̄∗ · 1Uj−1,h
≥ (1− δ)h·(j−1) · x̄∗ · 1U0,h

− (j − 1) · δ19 ·OPT . (67)

Therefore,

x̄∗ · 1Uj,h
≥ 1OPTf (1Sj−1

)>µ(δ) · 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT

= 1Uj−1,h
· x̄∗ · (1− δ)h − δ19 ·OPT

≥ (1− δ)h
(

(1− δ)h·(j−1) · x̄∗ · 1U0,h
− (j − 1) · δ19 ·OPT

)

− δ19 ·OPT

≥ (1− δ)h·j · x̄∗ · 1U0,h
− j · δ19 ·OPT .

The first inequality holds by (66), and the second inequality is by (67). ⋄

By Claim 4.19, for j = 1, . . . , k and h = 2, . . . , 2 · δ−2, either OPTf (1Sj
) ≤ µ(δ), or

x̄∗ · 1Uj,h
≥ (1− δ)h·j · x̄∗ · 1U0,h

− j · δ19 ·OPT ≥ (1− δ)h·j · x̄∗ · 1U0,h
− δ10 ·OPT,

as required (the last inequality uses j ≤ k ≤ δ−2). Since we assumed (49) occurs, this property
holds with probability at least 1− δ−10 · exp(−δ50 ·OPT) by Lemma 4.9.

We now proceed to the proof of Claim 4.14. We use the same notation as in the proof of
Lemma 4.11, where the claim is stated.

Proof of Claim 4.14. As in the proof of Lemma 4.18, let V ⊆ [0, 1]C be all the values x̄∗ can
take (formally, V = {x̄∗(ω) | ω ∈ Ω}). It follows that

∑

C∈C x̄C · C(i) ≤ 1 for every i ∈ I
and x̄ ∈ V. Also, let A ⊆ R

I
≥0 be the set of all values the vectors in Sj can take (formally,

A = {ū | ∃ω ∈ Ω : ū ∈ Sj(ω)}) As Ω is finite, it follows that V and A are finite.
For any U ⊆ C, S ⊆ I, x̄ ∈ V, ρ ∈ [OPT] and ū ∈ A, we define fU,S,x̄,ρ,ū : COPT → R by

fU,S,x̄,ρ,ū(C1, . . . , COPT) =











1

tol(ū)
·
∑

C∈U
x̄C · 1C∩(

⋃

ℓ∈[ρ]Cℓ)∩L 6=∅ ·
∑

i∈C∩S
1i/∈⋃ℓ=1,...,ρ Cℓ

· ūi tol(ū) 6= 0

0 otherwise

Let D = {fU,S,x̄,ρ,ū | U ⊆ C, S ⊆ I, x̄ ⊆ V, ρ ∈ [OPT], ū ∈ A}. It follows that D is finite.
Let fU,S,x̄,ρ,ū ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ COPT and r ∈ {1, . . . ,OPT} be such that

Cℓ = C ′
ℓ for ℓ = 1, . . . , r − 1, r + 1, . . .OPT. If tol(ū) = 0 or r > ρ,

∣

∣fU,S,x̄,ρ,ū(C1, . . . , COPT)− fU,S,x̄,ρ,ū(C ′
1, . . . , C

′
OPT)

∣

∣ = 0 .
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Otherwise, let T =
⋃

ℓ∈{1,...,ρ}\{r} Cℓ =
⋃

ℓ∈{1,...,ρ}\{r} C
′
ℓ. Then

∣

∣

∣

∣

fU,S,x̄,ρ,ū(C1, . . . , COPT)− fU,S,x̄,ρ,ū(C ′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=
1

tol(ū)
·
∣

∣

∣

∣

∑

C∈U
x̄C · 1C∩(T∪Cr)∩L 6=∅ ·

∑

i∈C∩S
1i/∈T∪Cr

· ūi −
∑

C∈U
x̄C · 1C∩(T∪C′

r)∩L 6=∅ ·
∑

i∈C∩S
1i/∈T∪C′

r
· ūi
∣

∣

∣

∣

=
1

tol(ū)
·
∣

∣

∣

∣

∑

C∈U

∑

i∈C∩S
x̄C · ūi ·

(

1C∩(T∪Cr)∩L 6=∅ · 1i/∈T∪Cr
− 1C∩(T∪C′

r)∩L 6=∅ · 1i/∈T∪C′
r

)

∣

∣

∣

∣

≤ 1

tol(ū)
·
∑

C∈U

∑

i∈C∩S
x̄C · ūi ·

∣

∣

1C∩(T∪Cr)∩L 6=∅ · 1i/∈T∪Cr
− 1C∩(T∪C′

r)∩L 6=∅ · 1i/∈T∪C′
r

∣

∣

≤ 1

tol(ū)
·
∑

C∈U

∑

i∈C∩S
x̄C · ūi ·

(

1C∩(C′
r∪Cr)∩L 6=∅ + 1i∈Cr∪C′

r

)

≤ 1

tol(ū)

∑

C∈U
1C∩(C′

r∪Cr)∩L 6=∅ · x̄C ·
∑

i∈C
ūi +

1

tol(ū)
·
∑

i∈Cr∪C′
r

ūi ·
∑

C∈U
x̄C · C(i)

≤ 1

tol(ū)
· tol(ū) · 4 · δ−1 +

1

tol(ū)

∑

i∈Cr∪C′
r

ūi

≤ 4 · δ̇−1 +
1

tol(ū)
· 2 · tol(ū)

≤ δ−2,

where the fourth inequality uses
∑

C∈U
1C∩(C′

r∪Cr)∩L 6=∅ · x̄C ≤
∑

i∈(Cr∪C′
r)∩L

∑

C∈C
x̄C · C(i) ≤

∑

i∈(Cr∪C′
r)∩L

1 ≤ 4 · δ−1 .

We conclude that all functions in D are of δ−2-bounded difference.
Recall Sj is a (δ, ϕ(δ))-linear structure of λ̄j . Since λ̄j is Fj−1-measurable, it follows that Sj is

also Fj−1-measurable. As in the proof of Lemma 4.8, we denote Sj = {ū1, . . . , ū⌊ϕ(δ)⌋} where ūs

is an Fj−1-measurable random vector for s = 1, . . . , ⌊ϕ(δ)⌋ (in case |Sj | < ⌊ϕ(δ)⌋ the same vector
may appear several times in ū1, . . . , ū⌊ϕ(δ)⌋).

For s = 1, . . . , ⌊ϕ(δ)⌋ define a random function gs = fUj−1,Sj−1,x̄∗,ρj ,ūs. Since Uj−1, Sj−1, x̄
∗, ρj

and ūs are all Fj−1-measurable, it follows that gs is Fj−1-measurable as well. Furthermore,

tol(ūs) · gs(Cj1 , . . . , C
j
OPT) =

∑

C∈Uj−1

x̄∗C · 1C∩
(

⋃

ℓ=1,...,ρj
Cj

ℓ

)

∩L 6=∅ ·
∑

i∈C∩Sj−1

1

i/∈⋃ℓ∈[ρj ]
Cj

ℓ

· ūsi

=
∑

i∈I
1i∈Sj

· ūsi ·
∑

C∈Tj
x̄∗C · C(i) =

∑

i∈I
1i∈Sj

· ūsi · d̄ji = (1Sj
∧ d̄j) · ūs,

where the third equality follows from the definition of d̄j . Thus, for s = 1, . . . , ⌊ϕ(δ)⌋ it holds that

Pr

(

(1Sj
∧ d̄j) · ūs > E

[

ūs ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

= Pr

(

gs(Cj1 , . . . , C
j
OPT) > E

[

gs(Cj1 , . . . , C
j
OPT)

∣

∣

∣
Fj−1

]

+
OPT

ϕ11(δ)

)

≤ exp






−

2 ·
(

OPT
ϕ11(δ)

)2

δ−4 ·OPT






≤ exp

(

− OPT

ϕ25(δ)

)

,
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where the last inequality is by Lemma 2.3.
Thus, using the union bound we have that

Pr

(

∀ū ∈ Sj : (1Sj
∧ d̄j) · ū ≤ E

[

ū ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1−
⌊ϕ(δ)⌋
∑

s=1

Pr

(

(1Sj
∧ d̄j) · ūs > E

[

ūs ·
(

d̄j ∧ 1Sj

) ∣

∣ Fj−1

]

+
OPT

ϕ11(δ)
· tol(ū)

)

≥ 1− ϕ(δ) · exp

(

− OPT

ϕ25(δ)

)

.

⋄

It remains to prove Lemma 4.7 and Claim 4.17. We use G = (L,E) to denote the δ-matching
graph of (I, v), and PM(G) to denote the matching polytope of G. Both proofs rely on the
concentration bounds of SampleMatching given below.

Lemma 4.20 ([CVZ11]). Let β̄ ∈ PM(G) and γ > 0. Also, denote M = SampleMatching(β̄, γ).
Then M is a matching, and for any ā ∈ [0, 1]E the following holds:

1. Pr(e ∈ M) = (1− γ)β̄e for any e ∈ E.

2. For any ξ ≤ E
[
∑

e∈M āe
]

and ε > 0, it holds that Pr
(
∑

e∈M āe ≤ (1− ε) · ξ
)

≤ exp
(

− ξ·ε2·γ
20

)

.

3. For any ξ ≥ E
[
∑

e∈M āe
]

and ε > 0, it holds that Pr
(
∑

e∈M āe ≥ (1 + ε) · ξ
)

≤ exp
(

− ξ·ε2·γ
20

)

.

Proof of Lemma 4.7. As M = SampleMatching(E(x̄0), δ4), it follows that

E [|M|] =
∑

e∈E
Pr(e ∈ M) = (1− δ4) ·

∑

e∈E
Ee(x̄0) = (1− δ4) ·

∑

e∈E

∑

C∈C s.t. e∈C
x̄0C = (1− δ4) · 1C2 · x̄0 .

If 1C2 · x̄0 = 0, then |M| = 0, and the statement of the lemma holds.
Otherwise, by Lemma 4.20,

Pr
(

|M| > 1C2 · x̄0 + δ2 ·OPT
)

= Pr

(

|M| > 1C2 · x̄0 ·
(

1 +
δ2 ·OPT

1C2 · x̄0
))

≤ exp

(

− 1

20
· δ4 · (1C2 · x̄0) ·

(

δ2 ·OPT

1C2 · x̄0
)2
)

≤ exp
(

−δ10 ·OPT
)

,

where the last inequality uses 1C2 · x̄0 ≤ (1 + δ2)OPT ≤ 2OPT. Therefore,

Pr
(

|M| ≤ 1C2 · x̄0 + δ2 ·OPT
)

≥ 1− exp
(

−δ10 ·OPT
)

.

Proof of Claim 4.17. We use the same notation as in the proof of Lemma 4.16, where the claim
is stated. If tol(ū) = 0 the claim trivially holds. Thus, we may assume that tol(ū) 6= ∅.

Observe that

w̄ · ū− d̄ · ū =
∑

i∈I

(

w̄i − d̄i
)

ūi =
∑

i∈L

(

1i/∈S0
− (1− δ4) · ȳMi

)

ūi =
∑

i∈L
1i/∈S0

· ūi − E

[

∑

i∈L
1i/∈S0

· ūi
]

,
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where the second equality is by (59) and (60), and the last equality is by Lemma 4.15. Furthermore,
∑

i∈L
1i/∈S0

· ūi =
∑

{i1,i2}∈M
(ūi1 + ūi2) .

Thus,

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
tol(ū)

)

= Pr

(

∑

i∈L
1i/∈S0

· ūi < E

[

∑

i∈L
1i/∈S0

· ūi
]

− OPT

ϕ11(δ)
· tol(ū)

)

= Pr





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

< E





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)



− OPT

ϕ11(δ)





≤ exp



− 1

20
· δ4 · E





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)



 ·





OPT

ϕ11(δ) · E
[

∑

{i1,i2}∈M
ūi1+ūi2
tol(ū)

]





2



≤ exp

(

− OPT

ϕ25(δ)

)

.

(68)

The first inequality is by Lemma 4.20; observe that M ⊆ E ⊆ C, therefore
ūi1+ūi2
tol(ū) ≤ 1 for any

{i1, i2} ∈ E. The last inequality uses

E





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)



 ≤ |L|
2
≤ δ−1 ·OPT .

We implicitly assumed in (68) that E
[

∑

{i1,i2}∈M
ūi1+ūi2
tol(ū)

]

6= 0. In case E
[

∑

{i1,i2}∈M
ūi1+ūi2
tol(ū)

]

= 0,

we have
∑

{i1,i2}∈M
ūi1+ūi2
tol(ū) = 0, and

Pr

(

d̄ · ū > w̄ · ū+
OPT

ϕ11(δ)
tol(ū)

)

= Pr





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)

< E





∑

{i1,i2}∈M

ūi1 + ūi2
tol(ū)



− OPT

ϕ11(δ)





= Pr

(

0 < − OPT

ϕ11(δ)

)

= 0 ≤ exp

(

− OPT

ϕ25(δ)

)

.

⋄

4.2 Proof of the Structural Lemma

In this section we give the proof of Lemma 4.2. Let δ ∈ (0, 0.1) such that δ−1 ∈ N, and let (I, v)
be a δ-2VBP instance. As in Section 4.1, we use OPT = OPT(I, v).

We first need to construct the set S∗ ⊆ R
I
≥0. The construction is technical; its components will

become clearer below. The terms �d, Id,j , h and d̂ defined as part of the construction of S∗ are
also used in the construction of the linear structure S.

Let �∗ be an arbitrary total order12 over I. For d ∈ {1, 2} we define a total order �d on I
by i1 �d i2 if and only if vd(i1) > vd(i2) or (vd(i1) = vd(i2) and i1 �∗ i2). Let h = δ−2. For

12We refer the reader to Appendix B.2 of Cormen et al. [CLRS01] for a formal definition of total order.
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any d ∈ {1, 2} and j = 1, . . . , 2h we define a set Id,j =
{

i ∈ L | δ22 · (j − 1) < vd(i) ≤ δ2

2 · j
}

. The

construction of the linear structure S implicitly rounds the volume in dimension d of items in Id,j
to j · δ22 , and applies fractional grouping to round the volume of the items in the dimension other

than d, i.e., d̂ = 3 − d. For d ∈ {1, 2} define S∗d =
{

1{i∈Id,j | q1 �
d̂
i �

d̂
q2}
∣

∣

∣ j ∈ [2h], q1, q2 ∈ L
}

.

The set S∗d contains an indicator vector for every possible group which may be generated by the
fractional grouping for Id,j. Finally, the set S∗ is defined by S∗ =

{

ū1 ∧ ū2
∣

∣ ū1 ∈ S∗1 , ū2 ∈ S∗2
}

.

Observe that |S∗| ≤ |S∗1 | · |S∗2 | ≤
(

2h · |L|2
)2

= δ−5 · |L|4 ≤ ϕ(δ) · |L|4.
Let λ̄ ∈ [0, 1]C

∗

be a small-items integral vector with δ-slack, and let w̄ ∈ [0, 1]I be the coverage
of λ̄. In Section 4.2.1 we construct the linear structure S of λ̄, and in Section 4.2.2 we show
the structure indeed satisfies the requirements in Definition 4.1. The construction and proof of
correctness rely on a technical refinement lemma whose proof is given in Section 4.2.3.

4.2.1 Construction of S
Our construction uses a partition of λ̄ into two parts: λ̄1 and λ̄2, such that for any d ∈ {1, 2}
and C ∈ supp(λ̄d) it holds that C has δ-slack in dimension d. Formally, we define λ̄1 ∈ [0, 1]C

∗
by

∀C ∈ C∗ : λ̄1C =

{

λ̄C if C has δ-slack in dimension 1

0 otherwise

Also, we define λ̄2 ∈ [0, 1]C
∗

by λ̄2 = λ̄ − λ̄1. Indeed, as λ̄ is with δ-slack, for every d ∈ {1, 2} and
C ∈ supp(λ̄d), it holds that C has δ-slack in dimension d. For d ∈ {1, 2} let w̄d be the coverage
of λ̄d.

As mentioned above, for each d ∈ {1, 2} we implicitly give a rounding scheme for the large

items, in which the volume in dimension d of all items in i ∈ Id,j is rounded up to j · δ22 . The slack
of configurations in supp(λ̄) is used to compensate for the possible volume increase. In the other
dimension, d̂, we apply fractional grouping, defined as follows.

Definition 4.21. Let E 6= ∅ be a finite set, γ̄ ∈ [0, 1]E , � be a total order over E and ξ ∈ N+.
A partition G1, . . . , Gτ of E is a ξ-fractional grouping with respect to γ̄ and � if the following
conditions hold:

1. For every 1 ≤ ℓ1 < ℓ2 ≤ τ , i1 ∈ Gℓ1 and i2 ∈ Gℓ2 it holds that i1 � i2.

2. For ℓ = 1, . . . , τ − 1 it holds that 1Gℓ
· γ̄ ≥ ‖γ̄‖

ξ .

3. For ℓ = 1, . . . , τ it holds that 1Gℓ
· γ̄ ≤ ‖γ̄‖

ξ + 1.

The proof of the next lemma utilizes arguments from Fairstein et al. [FKS21].

Lemma 4.22. For any finite set E 6= ∅ , γ̄ ∈ [0, 1]E , a total order � over E and ξ ∈ N+, there is
a ξ-fractional grouping G1, . . . , Gτ of E with respect to γ̄ and � for which τ ≤ ξ.

Proof. If γ̄ = 0 then the partition G1 = E is a ξ-fractional grouping. We henceforth assume γ̄ 6= 0.
Assume, without loss of generality, that E = {1, 2, . . . , ν} = [ν] and a � b if and only if a ≤ b.

Define a sequence (qℓ)
∞
ℓ=0 by q0 = 0, and qℓ = min

{

e ∈ E
∣

∣

∣

∑e
f=qℓ−1+1 γ̄f >

‖γ̄‖
ξ

}

∪ {ν}. Also,

define τ = min{ℓ ∈ N | qℓ = ν}. Since ‖γ̄‖ > 0, it follows that (qℓ)
τ
ℓ=0 is monotonically increasing.

We define Gℓ = {e ∈ E | qℓ−1 < e ≤ qℓ}. Then Gℓ = {1, . . . , qℓ} \ {1, . . . , qℓ−1} for ℓ = 1, . . . , τ .
As q0 = 0, qτ = ν and (qℓ)

τ
ℓ=0 is monotonically increasing, it follows that G1, . . . , Gτ is a partition
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of E. Clearly, for any 1 ≤ ℓ1 < ℓ2 ≤ τ , i1 ∈ Gℓ1 and i2 ∈ Gℓ2 it holds that i1 ≤ qℓ1 ≤ qℓ2−1 < i2
thus i1 � i2.

Let ℓ ∈ {1, . . . , τ}. By definition of qℓ it holds that
∑qℓ−1

f=qℓ−1+1 γ̄f ≤
‖γ̄‖
ξ . Hence, as γ̄qℓ ≤ 1, it

also holds that 1Gℓ
· γ̄ =

∑

e∈Gℓ
γ̄e = γ̄qℓ +

∑qℓ−1
e=qℓ−1+1 γ̄e ≤

‖γ̄‖
ξ + 1.

Let ℓ ∈ {1, . . . , τ − 1}. Then qℓ 6= ν and qℓ = min
{

e ∈ E
∣

∣

∣

∑e
f=qℓ−1+1 γ̄f >

‖γ̄‖
ξ

}

. Therefore,

1Gℓ
· γ̄ =

∑

e∈Gℓ
γ̄e =

∑qℓ
e=qℓ−1+1 γ̄e >

‖γ̄‖
ξ .

Thus, we showed that G1, . . . , Gτ is a ξ-fractional grouping of E with respect to γ̄ and �. It
also holds that

‖γ̄‖ =
∑

e∈E
γ̄e =

τ
∑

ℓ=1

∑

e∈Gℓ

γ̄e ≥
τ−1
∑

ℓ=1

∑

e∈Gℓ

γ̄e >

τ−1
∑

ℓ=1

‖γ̄‖
ξ

= (τ − 1)
‖γ̄‖
ξ

.

Hence, τ − 1 < ξ, and as both τ and ξ are integral it follows that τ ≤ ξ. This completes the
proof.

For any d ∈ {1, 2} and j = 1, . . . , 2h define a vector γ̄d,j ∈ [0, 1]Id,j by γ̄d,ji = w̄di for i ∈ Id,j .
By Lemma 4.22, for any d ∈ {1, 2} and j = 1, . . . , 2h such that Id,j 6= ∅ there is an h-fractional

grouping
(

Gd,jℓ

)τd,j

ℓ=1
of Id,j with respect to γ̄d,j and the total order �d̂ with τd,j ≤ h. For d ∈ {1, 2}

let Gd = {(j, ℓ) | j ∈ [2h], Id,j 6= ∅ and ℓ ∈ [τd,j ]}. It follows that G1,G2 ⊆ {1, . . . , 2h} × {1, . . . , h}
and thus |G1|, |G2| ≤ 2δ−4.

Our objective is to add to the structure S vectors ū to ensure that if z̄ ∈ [0, 1]I satisfies (45) then
we can decompose z̄ ∧1L to z̄1, z̄2 ∈ [0, 1]I such that z̄ ∧1L = z̄1 + z̄2 and z̄d · 1

Gd,j
ℓ

. β · w̄d · 1
Gd,j

ℓ

for any d ∈ {1, 2} and (j, ℓ) ∈ Gd. This can be intuitively interpreted as a decrease in demand for

items in Gd,jℓ by a factor of β. As we have a rounding scheme for each dimension, an item i ∈ L
may belong to two groups Gd,jℓ - one from the scheme for dimension 1 and another from the scheme
of dimension 2. We therefore add into S vectors which represent the intersection of each pair of
such groups, and therefore impose a decrease in demand by a factor of β for each intersection.

Formally, our linear structure will contain the set Slarge, which we define as

Slarge =

{

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

∣

∣

∣

∣

(j1, ℓ1) ∈ G1, (j2, ℓ2) ∈ G2
}

. (69)

In Section 4.2.2 we show that if Slarge ⊆ S and z̄ satisfies (45) then we can find the decomposition
z̄1 and z̄2 as mentioned above. Furthermore, to show the correctness of the structure we (implicitly)

use a shifting argument (see, e.g., [FL81]) in which items in Gd,jℓ take the place of items in Gd,jℓ−1.
We use the rounding schemes for the large items to define a type for each configuration. We then

fractionally associate each small item i ∈ I \ L with the various types, and use this association as
a basis for the linear structure. For d ∈ {1, 2}, the d-type of a multi-configuration C ∈ C∗, denoted
by Td(C), is the vector t̄ ∈ N

Gd defined by t̄(j,ℓ) =
∑

i∈Gd,j
ℓ

C(i) for any (j, ℓ) ∈ Gd. That is, t̄(j,ℓ)

is the number of items in C which belong to Gd,jℓ . Since the set Gd,jℓ contains only large items, it
follows that t̄(j,ℓ) ≤ 2δ−1. Let Td =

{

Td(C) | C ∈ C∗
}

be the set of all possible d-types. It follows

that Td ⊆ {0, 1, . . . , 2 · δ−1}Gd , and therefore |Td| ≤
(

1 + 2 · δ−1
)2·δ−4

≤ exp(δ−6).

The small item association of d ∈ {1, 2} and the d-type t̄ ∈ Td is the vector ād,t̄ ∈ [0, 1]I defined
by

ād,t̄i =
∑

C∈C∗ s.t.Td(C)=t̄

λ̄dC · C(i), (70)
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for i ∈ I \ L and ād,t̄i = 0 for i ∈ L. Intuitively, ād,t̄i is the fraction of i ∈ I \ L selected by
configurations of type t̄ in λ̄d.

For d ∈ {1, 2} define v̄d ∈ [0, 1]I by v̄di = vd(i) for all i ∈ I. Also, we use • to denote element-wise
multiplication of two vectors. That is, for ā, b̄ ∈ R

I let ā • b̄ = c̄, where c̄i = āi · b̄i for every i ∈ I.
The next lemma will be useful towards adding more vectors to the linear structure.

Lemma 4.23 (Small Items Refinement). Let ā ∈ [0, 1]I be such that supp(ā) ⊆ I \L, let d ∈ {1, 2},
and let q ∈ N≥4. Then there are subsets H1, . . . ,Hq ⊆ I \ L such that for any Q ⊆ I \ L and

β ∈
[

1
q , 1
]

which satisfy

∀j = 1, . . . , q :
∥

∥

∥
1Q∩Hj

• ā • v̄d
∥

∥

∥
≤ β

∥

∥

∥
1Hj
• ā • v̄d

∥

∥

∥
+

OPT

q5
max {vd(C ∩Hj) | C ∈ C} (71)

there is a set X ⊆ Q which admits the following properties:

1.
∥

∥

1X • ā • (v̄1 + v̄2)
∥

∥ ≤ 16
q ·OPT + 2qδ.

2.
∥

∥

1Q\X • ā • v̄d
∥

∥ ≤ β · ā · v̄d.

We refer to H1, . . . ,Hq as the refinement of ā and q in dimension d. Indeed, the condition in (71)
is essentially a variant of (45). Lemma 4.23 plays a central role in showing the correctness of the
structure S (see the proof of Lemma 4.29). We defer the proof of Lemma 4.23 to Section 4.2.3.

We select q =
⌈

exp
(

δ−10
)⌉

. For any d, d′ ∈ {1, 2} and t̄ ∈ Td let Hd,t̄,d′

1 , . . . ,Hd,t̄,d′
q be the

refinement of ād,t̄ and q in dimension d′. We use the small items association and its refinement to
define additional vectors as follows:

Ssmall =

{

1

Hd,t̄,d′

j

• ād,t̄ • v̄d′ | d, d′ ∈ {1, 2}, t̄ ∈ Td, j = 1, . . . , q

}

.

Finally, the structure is S = Slarge ∪ Ssmall.

4.2.2 Correctness

We first observe that

|S| = |Slarge|+ |Ssmall| ≤ |G1| · |G2|+ 2 · q · (|T1|+ |T2|) ≤ exp(δ−20) = ϕ(δ) .

Let ū ∈ S such that supp(ū) ∩ L 6= ∅, then ū ∈ Slarge. Therefore, by (69) there is (j1, ℓ1) ∈ G1
and (j2, ℓ2) ∈ G2 such that ū = 1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

. By Definition 4.21, for d ∈ {1, 2} there are

qd1 , q
d
2 ∈ Id,jd such that Gd,jdℓd

= {i ∈ Id,jd | qd1 �d̂ i �d̂ qd2}; thus, 1
G

d,jd
ℓd

∈ S∗d . It follows

that ū = 1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

∈ S∗.

Let β ∈ [δ5, 1] and z̄ ∈ [0, 1]I such that z̄ is small-items integral, supp(z̄) ⊆ supp(w̄), and

z̄ · ū ≤ β · w̄ · ū+
1

ϕ10(δ)
·OPT · tol(ū) (72)

for all ū ∈ S. To verify that S is a (δ, ϕ(δ)) linear structure, it remains to show that OPTf (z̄) ≤
β(1 + 10δ) · ‖λ̄‖+ ϕ(δ) + δ10 ·OPT(I, v).

We first generate two vectors z̄1 and z̄2 such that z̄ ∧ 1L and z̄d · 1
Gd,j

ℓ

. βw̄d · 1
Gd,j

ℓ

for every

d ∈ {1, 2} and (j, ℓ) ∈ Gd. Each item i ∈ L belongs to groups G1,j1
ℓ1

and G2,j2
ℓ2

. The demand z̄i of i

51



is partitioned between z̄1 and z̄2 with the same proportion that w̄1 and w̄2 contributed to the total
demand of items in G1,j1

ℓ1
∩G2,j2

ℓ2
. Specifically, for d ∈ {1, 2}, define z̄d ∈ [0, 1]I by

∀(j1, ℓ1) ∈ G1, (j2, ℓ2) ∈ G2, i ∈ G1,j1
ℓ1
∩G2,j2

ℓ2
∩ supp(z̄) : z̄di = z̄i ·

(

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

)

· w̄d
(

1

G
1,j1
ℓ1

∧ 1
G

2,j2
ℓ2

)

· w̄
, (73)

and z̄di = 0 for any other i ∈ I. Observe that since supp(z̄) ⊆ supp(w̄) we never get in (73) a
division by zero. Since for every i ∈ L there is a unique (j1, ℓ1) ∈ G1 and a unique (j2, ℓ2) ∈ G2
such that i ∈ G1,j1

ℓ1
∩G2,j2

ℓ2
, it follows that z̄ ∧ 1L = z̄1 + z̄2. For every d ∈ {1, 2} and (j, ℓ) ∈ Gd it

holds that

z̄d · 1
Gd,j

ℓ

=
∑

(j′,ℓ′)∈G
d̂

∑

i∈Gd,j
ℓ

∩Gd̂,j′

ℓ′
∩supp(z̄)

z̄i ·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d
(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄

=
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

((

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· z̄
)

·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d
(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄
.

(74)

Since 1
Gd,j

ℓ

∧ 1
Gd̂,j′

ℓ′

∈ S, by (72) it holds

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· z̄ ≤ β
(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
OPT

ϕ10(δ)
· tol

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

≤ β
(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
2 · δ−1

ϕ10(δ)
·OPT.

(75)

The second inequality holds since there are at most 2δ−1 large items in a configuration. Plug-
ging (75) into (74), we have

z̄d · 1
Gd,j

ℓ

≤
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

(

β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄ +
2 · δ−1OPT

ϕ10(δ)

)

·

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d
(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄

≤
∑

(j′,ℓ′)∈G
d̂
s.t.

(

1

G
d,j
ℓ

∧1
G
d̂,j′

ℓ′

)

·w̄ 6=0

β

(

1

Gd,j
ℓ

∧ 1
Gd̂,j′

ℓ′

)

· w̄d +
δ−6

ϕ10(δ)
·OPT

≤β · 1
Gd,j

ℓ

· w̄d +
δ−6

ϕ10(δ)
·OPT,

(76)
where the second inequality holds since |Gd̂| ≤ 2 · δ−4.

Therefore, for every d ∈ {1, 2} there is a vector r̄d ∈ [0, 1]I such that, for any (j, ℓ) ∈ Gd,
(

z̄d − r̄d
)

· 1
Gd,j

ℓ

≤ max
{

β · 1
Gd,j

ℓ

· w̄d − 2, 0
}

, (77)
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for every i ∈ I it holds that rdi ≤ zdi , and ‖r̄d‖ ≤
(

2 + δ−6

ϕ10(δ) ·OPT
)

· |Gd| ≤ δ−5 + δ−11

ϕ10(δ)OPT.

Hence, OPTf (r̄d) ≤ ‖r̄d‖ ≤ δ−5 + δ−11

ϕ10(δ)
OPT, as

∑

i∈I r̄
d
i · 1{i} is a solution for LP(r̄d).

For any d ∈ {1, 2}, let Fd =
⋃

j∈[2h] s.t. (j,1)∈Gd
Gd,j1 be the set of all items that belong to a first

group in one of the fractional groupings Gd,j1 , . . . , Gd,jτd,j . By (77),

(z̄d − r̄d) · 1Fd
≤

∑

j∈{1,...,2h} s.t. (j,1)∈Gd

(z̄d − r̄d) · 1
Gd,j

1
≤

∑

j∈{1,...,2h} s.t. (j,1)∈Gd

max
{

β · 1
Gd,j

1
· w̄d − 2, 0

}

≤ β
∑

j∈{1,...,2h} s.t. (j,1)∈Gd

1Id,j · w̄d
h

= β
w̄d · 1L
h

≤ 2 · β · δ · ‖λ̄d‖

where the third inequality is by Definition 4.21, and the last inequality follows from h = δ−2 and

∑

i∈L
w̄di =

∑

C∈C∗

λ̄dC ·
∑

i∈L
C(i) ≤

∑

C∈C∗

λ̄dC · 2δ−1 = 2 · δ−1‖λ̄d‖ .

Define Q = supp(z̄) \ L = {i ∈ I \ L | z̄i = 1} and

ȳ =
∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1Q . (78)

Then,

OPTf (z̄) ≤
∑

d∈{1,2}

(

OPTf (r̄d) + OPTf ((z̄d − r̄d) ∧ 1Fd
)
)

+ OPTf (ȳ)

≤ OPTf (ȳ) + 2βδ‖λ̄‖+ 2δ−5 +
2 · δ−11

ϕ10(δ)
OPT .

(79)

We proceed to derive an upper bound on OPTf (ȳ), which in turn implies an upper bound on OPTf (z̄).

Given d ∈ {1, 2} we define the d-size of (j, ℓ) ∈ Gd, denoted sd(j, ℓ) ∈ [0, 1]2, by sdd(j, ℓ) = δ2

2 j

and sd
d̂

= min{vd̂(i) | i ∈ G
d,j
ℓ }. The value sd(j, ℓ) can be viewed a the rounded volume of items

in Gd,jℓ .
The next lemma gives the basis for our shifting argument.

Lemma 4.24. Let d ∈ {1, 2}, (j, ℓ) ∈ Gd and i ∈ Gd,jℓ . If ℓ 6= 1 then v(i) ≤ sd(j, ℓ− 1).

Proof. As i ∈ Gd,jℓ ⊆ Id,j, it follows that vd(i) ≤ δ2

2 · j = sdd(j, ℓ − 1). Furthermore, vd̂(i
′) ≥ vd̂(i)

for every i′ ∈ Gd,jℓ−1 as (Gd,jℓ′ )
τd,j
ℓ′=1 is an h-fractional grouping with respect to the relation �d̂. Hence,

vd̂(i) ≤ min
{

vd̂(i
′) | i′ ∈ Gd,jℓ−1

}

= sd
d̂
(j, ℓ− 1) .

We extend the definition of size to d-types by sd(t̄) =
∑

(j,ℓ)∈Gd
t̄(j,ℓ) · sd(j, ℓ) for any d ∈ {1, 2}

and t̄ ∈ Td.

Lemma 4.25. Let d ∈ {1, 2} and C ∈ C∗ with λ̄dC > 0. Then
∑

i∈I\L v(i) · C(i) ≤ 1− sd
(

Td(C)
)

.

Proof. For any i ∈ L such that C(i) > 0 there is a unique (j, ℓ) ∈ Gd for which i ∈ Gd,jℓ . Thus,

∑

i∈I\L
v(i) · C(i) =

∑

i∈I
v(i) · C(i)−

∑

i∈L
v(i) · C(i) = v(C)−

∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

v(i) · C(i) . (80)
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Therefore, we have

∑

i∈I\L
vd(i) · C(i) = vd(C)−

∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

vd(i) · C(i)

≤ 1− δ −
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

(

sdd(j, ℓ) −
δ2

2

)

· C(i)

= 1− δ −
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

sdd(j, ℓ) · C(i) +
δ2

2

∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

·C(i)

= 1− δ −
∑

(j,ℓ)∈Gd

Td(j,ℓ)(C) · sdd(j, ℓ) +
δ2

2

∑

i∈L
C(i)

≤ 1− sdd(Td(C)) .

(81)

The first equality is by (80). The first inequality holds, as C has δ-slack in dimension d since

λ̄dC > 0, and since vd(i) >
δ2

2 (j − 1) for any i ∈ Gd,jℓ ⊆ Id,j. The last inequality holds as there are
at most 2δ−1 large items in a multi-configuration. Similarly,

∑

i∈I\L
vd̂(i) · C(i) = vd̂(C)−

∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

vd̂(i) · C(i)

≤ 1−
∑

(j,ℓ)∈Gd

∑

i∈Gd,j
ℓ

sd
d̂
(j, ℓ) · C(i)

= 1−
∑

(j,ℓ)∈Gd

Td(j,ℓ)(C) · sd
d̂
(j, ℓ)

≤ 1− sd
d̂
(Td(C)) .

(82)

The first equality follows from (80) and the first inequality is by the definition of sd
d̂
(j, ℓ). The

statement of the lemma follows from (81) and (82).

For any d ∈ {1, 2} and t̄ ∈ Td, the prevalence of type t̄ is ηd(t̄) =
∑

C∈C∗ s.t. T
d(C)=t̄ λ̄

d
C . In-

formally, ηd(t̄) is the number of configurations of type t̄ selected by λ̄d. Also, define κd(t̄) =
⌈β · ηd(t̄)⌉+ 2 · δ−1 for any d ∈ {1, 2} and t̄ ∈ Td. We construct a solution of LP(ȳ) in which there
are κd(t̄) configurations with large items of total size at most sd(t̄). For the assignment of large
items we use the next lemma.

Lemma 4.26. There are vectors x̄d,t̄ ∈ [0, 1]C for d ∈ {1, 2} and t̄ ∈ Td such that

1. for any d ∈ {1, 2} the coverage of
∑

t̄∈Td κd(t̄) · x̄
d,t̄ is

(

z̄d − r̄d
)

∧ 1L\Fd
,

2. for any d ∈ {1, 2} and t̄ ∈ Td it holds that ‖x̄d,t‖ = 1,

3. and for any d ∈ {1, 2}, t̄ ∈ Td and C ∈ supp(x̄d,t̄), it holds that v(C) ≤ sd(t̄).

The proof of Lemma 4.26 relies on the following combinatorial claim (we omit the proof).

Claim 4.27. Let E be an arbitrary finite set, ξ ∈ N+ and γ̄ ∈
[

0, 1ξ

]E
such that ‖γ̄‖ ≤ 1. Then

there exists a random set K ⊆ E such that |K| ≤ ξ and Pr(e ∈ K) = ξ · γ̄e for every e ∈ E.
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Proof of Lemma 4.26. Let d ∈ {1, 2} and for any (j, ℓ) ∈ Gd, define ρ(j,ℓ) =
∑

t̄∈Td t̄(j,ℓ) ·κd(t̄). Then

ρ(j,ℓ) ≥ 2 · δ−1. For any (j, ℓ) ∈ Gd and i ∈ Gd,jℓ such that ℓ 6= 1, define pi =
z̄di −r̄di
ρ(j,ℓ−1)

≤ 1
2·δ−1 .

For every (j, ℓ) ∈ Gd with ℓ 6= 1 it holds that

ρ(j,ℓ−1) =
∑

t̄∈Td
t̄(j,ℓ−1) · κd(t̄)

≥ β
∑

t̄∈Td
t̄(j,ℓ−1) · ηd(t̄) = β1

Gd,j
ℓ−1
· w̄d

≥ β
w̄d · 1Id,j

h

≥ max
{

β · w̄d · 1
Gd,j

ℓ

− 1, 0
}

≥
(

z̄d − r̄d
)

· 1
Gd,j

ℓ

.

The second and third inequalities hold since Gd,j1 , . . . , Gd,jτd,j is an h-fractional grouping of Id,j. The
last inequality is by (77). Therefore,

∑

i∈Gd,j
ℓ

pi ≤ 1.

Fix t̄ ∈ Td, and for any (j, ℓ) ∈ Gd with ℓ 6= 1 let K(j,ℓ) ⊆ Gd,jℓ be a random set such that

|K(j,ℓ)| ≤ t̄(j,ℓ−1) and Pr(i ∈ K(j,ℓ)) = t̄(j,ℓ−1) · pi for every i ∈ Gd,jℓ . The random sets K(j,ℓ) exist
by Claim 4.27. Furthermore, we may assume the random sets

(

K(j,ℓ)

)

(j,ℓ)∈Gd, ℓ 6=1
are independent.

Define R =
⋃

(j,ℓ)∈Gd s.t. ℓ 6=1K(j,ℓ) and x̄d,t̄C = Pr(R = C) for all C ∈ C. It follows that ‖x̄d,t̄‖ =
∑

C∈C∗ Pr(R = C) = 1. Observe that

v(R) ≤
∑

(j,ℓ)∈Gd s.t. ℓ 6=1

v(K(j,ℓ)) ≤
∑

(j,ℓ)∈Gd s.t. ℓ 6=1

t̄(j,ℓ−1) · sd(j, ℓ− 1) ≤ sd(t̄) .

The second inequality holds since |K(j,ℓ)| ≤ t̄(j,ℓ−1) and for every i ∈ K(j,ℓ) it holds that v(i) ≤
sd(j, ℓ− 1) by Lemma 4.25. Thus, for every C ∈ supp(x̄d,t̄) we have that v(C) ≤ sd(t̄). Finally, for

every i ∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

, there is (j, ℓ) ∈ Gd with ℓ 6= 1 such that i ∈ Gd,jℓ . Hence,

∑

C∈C
x̄d,t̄C · C(i) = Pr(i ∈ R) = t̄(j,ℓ−1) ·

z̄di − r̄di
ρ(j,ℓ−1)

. (83)

Let w̄′ be the coverage of
∑

t̄∈Td κd(t̄) · x̄
d,t̄. By construction, we have w̄′

i = 0 for any i ∈ I such

that i 6∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

. For any i ∈ supp
(

(z̄d − r̄d) ∧ 1L\Fd

)

, it holds that

w̄′
i =

∑

C∈C

∑

t̄∈Td
κd(t̄) · x̄d,t̄C · C(i) =

∑

t̄∈Td
κd(t̄) · t̄(j,ℓ−1) ·

z̄di − r̄di
ρ(j,ℓ−1)

= z̄di − r̄di ,

where the second equality is by (83), and the last equality is by the definition of ρ(j,ℓ).

Recall that Q = supp(z̄) \ L. The assignment of items in Q relies on integrality properties of
polytopes. Define M = exp(−δ−9) ·OPT + exp(δ−11) and

B = {(d, t̄,m) | d ∈ {1, 2}, t̄ ∈ Td, m ∈ [κd(t̄)]} ∪ {1, . . . ,M} .
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We consider B as a set of bins, and define a polytope

P =



































µ̄ ∈ [0, 1]Q×B

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

b∈B
µ̄i,b = 1 ∀i ∈ Q

∑

i∈Q
µ̄i,(d,t̄,m) · v(i) ≤ 1− sd(t̄) ∀d ∈ {1, 2}, t̄ ∈ Td, m ∈ {1, . . . , κd(t̄)}

∑

i∈Q
µ̄i,m · v(i) ≤ 1 ∀m ∈ {1, . . . ,M}



































(84)
The entry µ̄i,b in P represents a fractional assignment of an item i ∈ Q to bin b. The first constraint
in (84) represents the requirement that each item is fully assigned, and the remaining constraints
represent a volume limit for each bin.

The following is a well known integrality property of P (see, e.g., Bansal et al. [BEK16]).

Lemma 4.28. Let µ̄ be a vertex of P . Then |{i ∈ Q | ∃b ∈ B : 0 < µ̄i,b < 1}| ≤ 2 · |B|.

Before we use Lemma 4.28, we need to show that P has a vertex.

Lemma 4.29. It holds P 6= ∅.

Proof. Ideally, we would like to define µ̄i,(d,t̄,m) =
ad,t̄i

κd(t̄)
for any i ∈ Q, d ∈ {1, 2}, t̄ ∈ Td and

m ∈ {1, . . . , κd(t̄)}. Using (72) we can show that
∑

i∈Q µ̄i,(d,t̄,m) · vd′(i) is not significantly larger

than 1− sd(t̄); however, we cannot show it is smaller (or equal) to 1− sd(t̄). Thus, the suggested
vector µ̄ may not satisfy the properties in (84). We use Lemma 4.23 to overcome this difficulty.

Specifically, we define µ̄i,(d,t̄,m) =
ad,t̄i

κd(t̄)
for items i ∈ Q \ X1 \ X2, where the sets X1 and X2 are

obtained via Lemma 4.23. The value of µ̄i,m is subsequently increased for i ∈ X1∪X2 to ensure the
first constraint in (84) holds. Property 1 of Lemma 4.23 is used to show that

∑

i∈Q µ̄i,m · v(i) ≤ 1,

and property 2 of the lemma is used to show that
∑

i∈Q µ̄i,(d,t̄,m) ·v(i) ≤ 1− sd(t̄). We now proceed
to the formal proof.

Recall that Hd,t̄,d′

1 , . . . ,Hd,t̄,d′
q is the refinement of ād,t̄ and q =

⌈

exp(δ−10)
⌉

in dimension d′. For
every d, d′ ∈ {1, 2}, t̄ ∈ Td and j = 1, . . . , q it holds that

∑

i∈Hd,t̄,d′

j ∩Q

ād,t̄i · vd′(i) = z̄ ·
(

1

Hd,t̄,d′

j

• ād,t̄ • v̄d′
)

≤ β · w̄ ·
(

1

Hd,t̄,d′

j

• ād,t̄ • v̄d′
)

+
1

ϕ10(δ)
·OPT ·max

{

∑

i∈C
1

i∈Hd,t̄,d′

j

· ād,t̄i · v̄d′(i)
∣

∣

∣

∣

∣

C ∈ C
}

≤ β · ‖1
Hd,t̄,d′

j

• ād,t̄ • v̄d′‖+
1

ϕ10(δ)
·OPT ·max

{

vd′(H
d,t̄,d′

j ∩ C)
∣

∣

∣
C ∈ C

}

.

The equality follows from the definition of Q. The first inequality follows from (72) and the fact that
1

Hd,t̄,d′

j

• ād,t̄ • v̄d′ ∈ Ssmall ⊆ S. The second inequality holds, as w̄ is small-items integral and

supp(ād,t̄) ⊆ supp(w̄) \ L. Thus, by Lemma 4.23, for every d, d′ ∈ {1, 2}, t̄ ∈ Td and j = 1, . . . , q
there is a set Xd,t̄,d′ ⊆ Q such that

∥

∥

∥
1Xd,t̄,d′ • ād,t̄ • (v̄1 + v̄2)

∥

∥

∥
≤ 16

q
·OPT + 2qδ and

∥

∥

∥
1Q\Xd,t̄,d′ • ād,t̄ • v̄d

′
∥

∥

∥
≤ β · ād,t̄ · v̄d′ . (85)
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Define µ̄ ∈ [0, 1]Q×B by

µ̄i,(d,t̄,m) =







ād,t̄
i

κd(t̄)
, i ∈ Q \Xd,t̄,1 \Xd,t̄,2,

0, otherwise .

for every i ∈ Q, d ∈ {1, 2}, t̄ ∈ Td and m = 1, . . . , κd(t̄). Also, for every i ∈ Q and m = 1, . . . ,M
define

µ̄i,m =
∑

d∈{1,2}

∑

t̄∈Td

ād,t̄i · 1i∈Xd,t̄,1∪Xd,t̄,2

M
.

Next, we show that µ̄ ∈ P . For every i ∈ Q it holds that

∑

b∈B
µ̄i,b =

∑

d∈{1,2}

∑

t̄∈Td

∑

m∈[κd(t̄)]
µ̄i,(d,t̄,m) +

∑

m∈[M ]

µ̄i,m

=
∑

d∈{1,2}

∑

t̄∈Td
κd(t̄) ·

ād,t̄i
κd(t̄)

· 1i∈Q\Xd,t̄,1\Xd,t̄,2 +
∑

d∈{1,2}

∑

t̄∈Td
M · a

d,t̄
i

M
· 1i∈Xd,t̄,1∪Xd,t̄,2

=
∑

d∈{1,2}

∑

t̄∈Td
ād,t̄ · 1i∈Q\Xd,t̄,1\Xd,t̄,2 +

∑

d∈{1,2}

∑

t̄∈Td
ad,t̄ · 1i∈Xd,t̄,1∪Xd,t̄,2

=
∑

d∈{1,2}

∑

t̄∈Td
ād,t̄

= w̄1
i + w̄2

i = 1,

where the fifth equality follows from (70).
For every d, d′ ∈ {1, 2}, t̄ ∈ Td we have

ād,t̄ · v̄d′ =
∑

i∈I\L
vd′(i)

∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC · C(i) =
∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC ·
∑

i∈I\L
vd′(i) · C(i)

≤
∑

C∈C∗ s.t T
d(C)=t̄

λ̄dC ·
(

1− sdd′(t̄)
)

=
(

1− sdd′(t̄)
)

· ηd(t̄),

where the first equality is by (70) and the inequality is by Lemma 4.25. Thus, for m = 1, . . . , κd(t̄)
we have

∑

i∈Q
µ̄i,(d,t,m) · vd′(i) =

∑

i∈Q\Xd,t̄,1\Xd,t̄,2

ād,t̄i · vd′(i)
κd(t̄)

≤ β · ād,t̄ · v̄d′

κd(t̄)
≤ β ·

(

1− sdd′(t̄)
)

ηd(t̄)

κd(t̄)
≤ 1− sdd′(t̄),

where the first inequality is by (85).
Finally, for every m = 1, . . . ,M and d′ ∈ {1, 2} we have

∑

i∈Q
µ̄i,m · vd′(i) =

∑

i∈Q
vd′(i)

∑

d∈{1,2}

∑

t̄∈Td

ād,t̄i · 1i∈Xd,t̄,1∪Xd,t̄,2

M

≤ 1

M

∑

d∈{1,2}

∑

t̄∈Td

(

‖1Xd,t̄,1 • ād,t̄ • v̄d′‖+ ‖1Xd,t̄,2 • ād,t̄ • v̄d′‖
)

≤ 1

M

∑

d∈{1,2}

∑

t̄∈Td

(

32

q
·OPT + 4qδ

)

≤ 1,
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where the second inequality is by (85) and the last inequality holds since |Td| ≤ exp(δ−6), q ≥
exp(δ−10) and M = exp(−δ−9) ·OPT + exp(δ−11). Thus, µ̄ ∈ P , i.e., P 6= ∅.

We now have the tools to prove the following.

Lemma 4.30. It holds that OPTf (ȳ) ≤ (1 + 8δ)|B| + 1.

Proof. Let µ̄∗ be a vertex of P , and let QI = {i ∈ Q | ∃b ∈ B : µ̄∗i,b = 1}. By Lemma 4.28 it
holds that |Q \QI | ≤ 2|B|. As Q ⊆ I \ L, it follows that the items of Q \ QI can be packed into
4δ|Q \QI |+ 1 ≤ 8δ|B| + 1 bins using the First-Fit strategy (Lemma 2.5). Thus, OPTf (1Q\QI

) ≤
8δ|B| + 1.

For every b ∈ B define Cb = {i ∈ Q | µ̄∗i = 1}. It follows that QI =
⋃

b∈B Cb. Recall

that x̄d,t̄ are the vectors defined in Lemma 4.26. For every (d, t̄,m) ∈ B \ {1, . . . ,M} define a

vector γ̄d,t̄,m ∈ [0, 1]C by γ̄d,t̄,mC∪Cd,t̄,m
= x̄d,t̄C for any C ∈ supp(x̄d,t̄), and γ̄d,t̄,mC′ = 0 for any other

configuration C ′ ∈ C. By definition of P , it holds that v(Cd,t̄,m) ≤ 1− sd(t̄), and by Lemma 4.26,

for every C ∈ supp(x̄d,t̄) it holds that v(C) ≤ sd(t̄); thus, C ∪Cd,t̄,m ∈ C, and γ̄d,t̄,m is well defined.
Also, for any m = 1, . . . ,M define γ̄m ∈ [0, 1]C by γ̄mCm

= 1 and γ̄mC = 0 for C ∈ C \ {Cm}.
Define x̄ =

∑

b∈B γ̄
b. We show that x̄ is a solution for LP

(

∑

d∈{1,2}
(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI

)

.

For i ∈ L we have
∑

C∈C
x̄C · C(i) =

∑

C∈C

∑

b∈B
γ̄bC · C(i)

=
∑

C∈C

∑

d∈{1,2}

∑

t̄∈Td

∑

m∈[κd(t̄)]
x̄d,t̄C · C(i)

=
∑

d∈{1,2}

∑

C∈C

∑

t̄∈Td
κd(t̄) · x̄d,t̄C · C(i)

=
∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

.

The second equality holds by definition of γ̄b, and since the sets Cb do not contain large items.
The last equality is by Lemma 4.26. For any i ∈ QI there is a unique b ∈ B such that i ∈ Cb.
Thus,

∑

C∈C x̄C · C(i) =
∑

C∈C γ̄
b
C · C(i) = 1. Therefore, x̄ is a solution for the linear program

LP
(

∑

d∈{1,2}
(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI

)

. As ‖γ̄b‖ = 1 for every b ∈ B, it follows that ‖x̄‖ = B.

Thus,

OPTf





∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI



 ≤ ‖x̄‖ = B,

and by definition of ȳ (78), we have

OPTf (ȳ) = OPTf





∑

d∈{1,2}

(

(z̄d − r̄d) ∧ 1L\Fd

)

+ 1QI



+ OPTf (1Q\QI
) ≤ (1 + 8δ)|B| + 1 .

Observe that

|B| =
∑

d∈{1,2}

∑

t̄∈Td
κd(t) +M =

∑

d∈{1,2}

∑

t̄∈Td

(

⌈βηd(t)⌉+ 2δ−1
)

+ exp(−δ−9) ·OPT + exp(δ−11)

≤ β‖λ̄‖+ (|T1|+ |T2|) · (1 + 2δ−1) + exp(−δ−9) ·OPT + exp(δ−11)

≤ β‖λ̄‖+ exp(−δ−9) ·OPT + exp(δ−12) .

(86)
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The first inequality holds since
∑

t̄∈Td ηd(t̄) = ‖λ̄d‖, and the second inequality uses |Td| ≤ exp(δ−6).
By (79) we have

OPTf (z̄) ≤ OPTf (ȳ) + 2βδ‖λ̄‖+ 2δ−5 +
2 · δ−11

ϕ10(δ)
OPT

≤ (1 + 8δ)|B|+ 1 + 2βδ‖λ̄‖+ 2δ−5 +
2δ−11

ϕ10(δ)
OPT

≤ (1 + 8δ)
(

β‖λ̄‖+ exp(−δ−9) ·OPT + exp(δ−12)
)

+ 1 + 2δβ‖λ̄‖+ 2δ−5 +
2 · δ−11

ϕ10(δ)
OPT

≤ β(1 + 10δ)‖λ̄‖+ exp(δ−20) + δ10OPT,

where the second inequality is by Lemma 4.30, the third inequality is by (86), and the last inequality
uses ϕ(δ) = exp(δ−20). Thus, we showed that S is a linear structure, which completes the proof of
Lemma 4.2.

4.2.3 Refinement for Small Items

Proof of Lemma 4.23: Define r(i) = vd(i)
v
d̂
(i) for any i ∈ I. Assume, without loss of generality, that

I \ L = {1, 2, . . . , s} for some s ∈ N, and r(1) ≤ r(2) ≤ . . . ≤ r(s).
If ā ·(v̄1 + v̄2) ≤ 1

q2 OPT+2qδ define H1 = I \L and Hj = ∅ for j ∈ {2, . . . , q}. Let Q ⊆ I \L and

β ∈ [1q , 1] which satisfies (71). We can select X = I \L. It follows that ‖1Q\X • ā• v̄d‖ = 0 ≤ β · ā · v̄d
and ‖1X • ā • (v̄1 + v̄2)‖ = ā ·

(

v̄1 + v̄2
)

≤ 16
q OPT + 2qδ. This shows the statement of the lemma

in case ā · (v̄1 + v̄2) ≤ 1
q2

OPT + 2qδ. We henceforth assume that

ā · (v̄1 + v̄2) >
1

q2
OPT + 2qδ . (87)

Define h0 = 0, and for j = 1, . . . , q set

hj = min

{

i ∈ [s]

∣

∣

∣

∣

(

ā ∧ 1[i]
)

· (v̄1 + v̄2) ≥ j

q
· ā · (v̄1 + v̄2)

}

. (88)

Observe that the set over which the minimum is taken is non-empty for all j ∈ {1, . . . , q}. Hence, hj
is well defined. Define Hj = {i ∈ {1, . . . , s} | hj−1 < i ≤ hj}; then Hj = {1, . . . , hj} \ {1, . . . , hj−1}
for j = 1, . . . , q.

Let Q ⊆ I\L and β ∈ [1q , 1] satisfy (71). For j = 1, . . . , q and C ∈ C it holds that vd(C∩Hj) ≤ 1,
and

vd(C ∩Hj) =
∑

i∈C∩Hj

vd(i) =
∑

i∈C∩Hj

vd̂(i) · r(i) ≤ r(hj)
∑

i∈C∩Hj

vd̂(i) ≤ r(hj) .

Thus, vd(C ∩Hj) ≤ min{1, r(hj)}. We conclude that

max {vd(C ∩Hj) | C ∈ C} ≤ min{1, r(hj)} (89)

for j = 1, . . . , q.
We use in our proof the following inequality (that we prove later), for j = 2, . . . , q:

‖1Hj
• ā • v̄d‖ ≥ 1

2
min{1, r(hj−1)} · 1

q3
OPT, (90)

For j = 1, . . . , q define

βj = max
{

0, ‖1Q∩Hj
• ā • v̄d‖ − β‖1Hj

• ā • v̄d‖
}

.

59



It follows from (71) and (89) that

βj ≤
OPT

q5
·max {vd(C ∩Hj) | C ∈ C} ≤ min{r(hj), 1} ·

OPT

q5
.

For every j ∈ [q]\{1} we define a set Xj ⊆ Q∩Hj. If ‖1Q∩Hj
• ā• v̄d‖+βj−1−βj ≤ β ·‖1Hj

• ā• v̄d‖
then we define Xj = ∅. Otherwise, we define Xj to be an inclusion-minimal subset of Q ∩Hj such
that ‖1Q∩Hj\Xj

• ā • v̄d‖+ βj−1 − βj ≤ β · ‖1Hj
• ā • v̄d‖. Observe that

‖1Q∩Hj\(Q∩Hj) • ā • v̄d‖+ βj−1 − βj ≤ βj−1 ≤ min{1, τj−1} ·
OPT

q5
≤ β‖1Hj

• ā • v̄d‖,

where the last inequality follows from β ≥ 1
q and (90). Hence, there exists Xj 6= ∅. As the set is

inclusion-minimal, it follows that there is xj ∈ Xj such that ‖1Xj\{xj} • ā • v̄d‖ ≤ βj−1 ≤ OPT
q5

.
Thus,

‖1Xj\{xj} • ā • v̄d̂‖ =
∑

i∈Xj\{xj}
āi · vd̂(i) =

∑

i∈Xj\{xj}
āi ·

vd(i)

r(i)
≤

∑

i∈Xj\{xj}
āi ·

vd(i)

r(hj−1)

=
‖1Xj\{xj} • ā • v̄d‖

r(hj−1)
≤ βj−1

r(hj−1)
≤ 1

r(hj−1)
min{r(hj−1), 1} · OPT(I, v)

q5
≤ OPT(I, v)

q5
,

where the first inequality holds as Xj ⊆ Hj.
Define X = (Hq ∩Q) ∪⋃qj=2Xj . It follows that

‖1Q\X · ā · v̄d‖ =

q−1
∑

j=1

‖1(Q\X)∩Hj
· ā · v̄d‖

= ‖1(Q\X)∩H1
· ā · v̄d‖ − β1 +

q−1
∑

j=2

(

‖1(Q\X)∩Hj
· ā · v̄d‖+ βj−1 − βj

)

+ βq−1

≤ β
q−1
∑

j=1

‖1Hj
· ā · v̄d‖+ βq−1

≤ β
q−1
∑

j=1

‖1Hj
· ā · v̄d‖+ min{r(hq−1), 1} · OPT(I, v)

q5

≤ β
q
∑

j=1

‖1Hj
· ā · v̄d‖ = β · ā · v̄d .

The first equality holds as supp(ā) ⊆ ⋃j∈[q]Hj. The first inequality follows from the definitions

of β1 and Xj (for j ∈ {2, . . . , q − 1}). The last inequality follows from β ≥ 1
q and (90).

Note that ‖1Hq · ā ·
(

v̄1 + v̄2
)

‖ ≤ ā·v̄d
q ≤ 2·OPT

q . Thus,

‖1X • 1A • (v̄1 + v̄2)‖ ≤ ‖1Hq · ā ·
(

v̄1 + v̄2
)

‖+

q
∑

j=2

‖1Xj
· ā ·

(

v̄1 + v̄2
)

‖

≤ 2 ·OPT

q
+ q · 2 · OPT

q5
+ 2δq ≤ 16

q
OPT + 2δq .
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It remains to show that (90) holds. For j = 1, . . . , q, we have

‖1Hj
• ā • (v̄1 + v̄2)‖ = ‖1[hj ] • ā • (v̄1 + v̄2)‖ − ‖1hj−1

• ā • (v̄1 + v̄2)‖

≥ j

q
ā · (v̄1 + v̄2)− j − 1

q
ā · (v̄1 + v̄2)− 2δ

=
1

q
ā · (v̄1 + v̄2)− 2δ

≥ 1

q

(

1

q2
OPT + 2δq

)

− 2δ

=
1

q3
OPT(I, v) .

(91)

The first inquality follows from (88) and v1(i) + v2(i) ≤ 2δ for all i ∈ I \ L. The second inequality
follows from (87). Additionally, for j = 2, . . . , ℓ we have

‖1Hj
• ā • (v̄1 + v̄2)‖ = ‖1Hj

• ā • v̄d‖+ ‖1Hj
• ā • v̄d̂‖

= ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi · vd̂(i)

= ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi ·
vd(i)

r(i)

≤ ‖1Hj
• ā • v̄d‖+

∑

i∈Hj

āi ·
vd(i)

r(hj−1)

= ‖1Hj
• ā • v̄d‖ ·

(

1 +
1

r(hj−1)

)

,

(92)

where the inequality follows from r(1) ≤ r(2) ≤ . . . ≤ r(p). Using (91) and (92), we get

∀j = 2, . . . , q : ‖1Hj
• ā • v̄d‖ ≥

(

1 +
1

r(hj−1)

)−1

· 1

q3
OPT ≥ 1

2
min{1, τj−1} ·

1

q3
OPT,

where the inequality follows from
(

1 + x−1
)−1 ≥ 1

2 min{1, x} for every x ≥ 0. Inequality (90)
follows from the last inequality.

4.3 Existence of ψ-Relaxations

In this section we prove Lemmas 4.4 to 4.6. That is, we show how to obtain relaxations for various
configurations.
Proof of Lemma 4.4: Let S ⊆ C \L be an inclusion-minimal set such that either v1(C \S) ≤ 1−δ
or v2(C \ S) ≤ 1− δ. As S is inclusion-minimal, it holds that

∀i ∈ S : v

(

C \ (S \ {i})
)

> (1− δ, 1− δ). (93)

Such a set exists, since C ∈ C0.
In the following we show that v(S) ≤ (2δ, 2δ). Suppose, for sake of contradiction, that

v1(S) > 2δ or v2(S) > 2δ. Then S 6= ∅ and there is an i ∈ S. Assume, without loss of gener-
ality, that v1(S) > 2δ. Then v1(S \ {i}) > δ as all items in S are small, and i ∈ S. Therefore,

v1

(

C \ (S \ {i})
)

= v1(C)− v1(S \ {i}) ≤ 1− δ,
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contradicting (93). Thus, v(S) ≤ (2δ, 2δ).
Define C1 = C \ S and C2 ∈ C∗ by

C2(i) =

{

κ, i ∈ S,
0, i 6∈ S

for i ∈ I, where κ =
⌊

1
2(δ−1 − 1)

⌋

. Observe that C1 has δ-slack by definition of S. Additionally,

v1(C2) ≤ v1(S) · κ ≤ 2δκ ≤ 2δ · 1

2
(δ−1 − 1) ≤ 1− δ,

thus C2 is a multi-configuration with δ-slack.
Define λ̄ ∈ [0, 1]C

∗
by λ̄C1 = 1, λ̄C2 = 1

κ and λ̄C′ = 0 for C ′ ∈ C \ {C1, C2}. Clearly, for any
C ′ ∈ C∗ such that λ̄C′ > 0 it holds that C ′ has δ-slack. Thus, λ̄ has δ-slack.

For any i ∈ C \ S we have

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 1 + 0 = 1 .

For any i ∈ S it holds that

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 0 +

1

κ
· κ = 1 .

For any i ∈ I \ C it holds that

∑

C′∈C∗

λ̄C′ · C ′(i) = C1(i) +
1

κ
· C2(i) = 0 +

1

κ
· 0 = 0 .

Since δ−1 ∈ N, we have κ ≥ 1
2(δ−1 − 1)− 1

2 = 1
2δ

−1 − 1. Therefore,

‖λ̄‖ =
∑

C′∈C∗

λ̄C′ = λ̄C1 + λ̄C2 = 1 +
1

κ
≤ 1 +

1
1
2δ

−1 − 1
= 1 +

2δ

1− 2δ
≤ 1 + 4δ,

where the last inequality holds as δ ≤ 0.1
We showed that λ̄ is a (1 + 4δ)-relaxation of C. This completes the proof of the lemma.

Proof of Lemma 4.5: Let C∩L = {i1, . . . , ih}. Define h configurations C1, . . . , Ch by Cℓ = C\{iℓ}
for ℓ = 1, . . . , h−1 and Ch = C∩L\{ih}. It can be easily shown that C1, . . . , Ch are configurations.
Define λ̄ ∈ [0, 1]C

∗

by

λ̄C′ =

{

1
h−1 , C ′ = Cℓ for some h ∈ {1, . . . , ℓ},
0, otherwise .

For ℓ = 1, . . . , h it holds that iℓ is large; thus, there is dℓ ∈ {1, 2} such that vdℓ(iℓ) ≥ δ. Therefore,

vdℓ(Cℓ) ≤ vdℓ(C \ {iℓ}) = vdℓ(C)− vdℓ(iℓ) ≤ 1− δ .

That is, all configurations C1, . . . , Ch have δ-slack. Thus, for any C ′ ∈ C∗ with λ̄C′ > 0 it holds
that C ′ has δ-slack. Hence, λ̄ has δ-slack.
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For any i ∈ C ∩ L there is an ℓ ∈ {1, . . . , h} such that i = iℓ. Thus,

∑

C′∈C∗

λ̄C′ · C ′(i) =

h
∑

j=1

1

h− 1
· Cj(iℓ) =

∑

j∈[h]\{ℓ}

1

h− 1
= 1 .

For any i ∈ C \ L it holds that i ∈ Cℓ for ℓ = 1, . . . , h− 1; thus,

∑

C′∈C∗

λ̄C′ · C ′(i) =

h
∑

j=1

1

h− 1
· Cj(i) =

h−1
∑

j=1

1

h− 1
= 1 .

For any i ∈ I \ C we have i 6∈ Cℓ for ℓ = 1, . . . , h. Therefore,

∑

C′∈C∗

λ̄C′ · C ′(i) =
h
∑

j=1

1

h− 1
· Cj(i) = 0 .

Finally,

‖λ̄‖ =
∑

C′∈C∗

λ̄C′ =
h
∑

ℓ=1

λ̄Cℓ
=

h

h− 1
.

Thus, we showed that λ̄ is a h
h−1 -relaxation of C.

Proof of Lemma 4.6: Define C ′ ∈ C∗ by

C ′(i) =

{

κ, i ∈ C,
0, otherwise,

where κ =
⌈

1
2δ

−1
⌉

and λ̄ ∈ [0, 1]C
∗

by λ̄C′ = 1
κ and λ̄D = 0 for any D ∈ C∗ \ {C ′}. Observe that

v1(C
′) =

∑

i∈I
v1(i) · C ′(i) = κ · v1(C) ≤

⌈

1

2
δ−1

⌉

· δ ≤
(

1

2
· δ−1 + 1

)

· δ ≤ 1

2
+ δ ≤ 0.6 ≤ 1− δ,

where the last two inequalities follow from δ ∈ (0, 0.1). Thus, C ′ has δ-slack and hence λ̄ is with
δ-slack.

For any i ∈ C it holds that
∑

D∈C∗ λ̄D ·D(i) = λ̄C′ ·C ′(i) = 1
κ · κ = 1. Also, for any i ∈ I \C it

holds that
∑

D∈C∗ λ̄D ·D(i) = λ̄C′ · C ′(i) = 0. Finally,

‖λ̄‖ =
1

κ
≤ 1
⌈

1
2δ
⌉ ≤ 2δ ≤ 4δ .

Thus, λ̄ is a 4δ-relaxation of C, as required.

4.4 Solving the Matching-LP

In this section we present a PTAS for the MLP problem, thus proving Lemma 1.8. Let δ ∈ (0, 0.1)
and ε ∈ (0, 0.1). Our objective is to obtain a polynomial-time (1 +O(ε))-approximation for MLP.
To this end we use a result of Grötschel, Lovász, and Schrijver [GLS81], which outlines the ellipsoid
method via separation oracles. A separation oracle for a polytope P ⊆ R

n accepts as input a point
x̄ ∈ R

n, and either determines that x̄ ∈ P or finds c̄ ∈ R
n such that x̄ · c̄ < ȳ · c̄ for any ȳ ∈ P .

That is, the oracle finds a hyperplane which separates between x̄ and the polytope P . It is also
required that the encoding size of the returned hyperplane is polynomial in the query encoding
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size. Given a separation oracle, the ellipsoid method either determines that P = ∅ or finds x̄ ∈ P in
time polynomial in n and the facet complexity of P . As a consequence, if P = ∅ then the execution
of the ellipsoid method is comprised of invocations of the separation oracle that always result in a
separating hyperplane. If P 6= ∅, then at least one of the calls to the separation oracle results in
x̄ ∈ P .

We use an approximate variant of the separation oracle commonly used to solve linear programs
similar to (1) (see, e.g., [KK82]). In the classic setting, the ellipsoid method is executed with
the dual of the original linear program, as this program has a polynomial number of variables.
For example, the dual linear program of (1) has |I| variables. This approach cannot be directly
implemented for MLP, since the number of variables in both the primal and dual linear programs
is non-polynomial in the δ-huge free 2VBP instance (I, v), due to the number of linear constraints
required to represent the matching polytop. We overcome this difficulty by projecting polytopes in
a vector space of non-polynomial dimension into polytopes with polynomial dimension. A similar
approach was recently used by Fairstein et al. [FKS21].

We use the following definitions and lemmas from Grötschel et al. [GLS88].

Definition 4.31 ([GLS88, Definition 6.2.2]). Let P ⊆ R
n be a polyhedron, and ϕ ≥ n+1 a positive

integer.

1. We say that P has facet complexity at most ϕ if there exists a system of linear inequalities
with rational coefficients that has a solution set P that the encoding length of each inequality
in the system is at most ϕ.

2. We say that P has a vertex complexity at most ϕ if there exist finite sets V1, V2 of rational
vectors such that P = conv(V1) + cone(V2) and each of the vectors in V1 ∪ V2 has encoding
length at most ϕ.13

3. A well-described polyhedron is a triplet (P, n, ϕ) where P ⊆ R
n is a polyhedron with facet

complexity at most ϕ.

Lemma 4.32 ([GLS88, Lemma 6.2.4]). Let P ⊆ R
n be a polyhedron with facet complexity at

most ϕ. Then P has vertex complexity at most 4n2 · ϕ.

Proposition 4.33 (The Ellipsoid Method, [GLS88, Theorem 6.4.1]). There is an algorithm Ellipsoid

which given n,ϕ and a separation oracle for a well-described polyhedron (P, n, ϕ), determines that
either P = ∅ or returns x̄ ∈ P in time polynomial in n+ ϕ.

Throughout this section, we define multiple mathematical optimization problems. We use
OPT(P) to denote the value of the optimal solution for the problem P. We use 〈x〉 to denote
the encoding length of a number/vector/inequality x. To simplify notation, we assume the δ-2VBP
instance (I, v) is fixed throughout this section, and omit it from the input of the algorithms. We
use G = (L,E) to denote the δ-matching graph of (I, v) as defined in Section 1.3, and PM(G) is
the matching polytope of G. Recall that E is the projection function defined in Section 1.3.

We first simplify our problem. We relax the requirement
∑

C∈C x̄C · C(i) = 1 in (4) and use

13
conv(V1) is the convex hull of V1 and cone(V2) is the conic hull of V2. We refer the reader to Grötschel et

al. [GLS88] for the formal definitions.
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inequality instead. That is,

rMLP : min
∑

C∈C
x̄C

∀i ∈ I :
∑

C∈C
x̄C · C(i) ≥ 1

E(x̄) ∈ PM(G)

∀C ∈ C : x̄C ≥ 0

(94)

It can be easily shown that the optima of (4) and (94) are equal; furthermore, a solution for (94)
can be easily converted to a solution for (4) of the same or lower value.

Our objective is to find a variant of (94) in which the set C is replaced by a polynomial-size
set D ⊆ C, while approximately preserving the optimal value. To this end we use the following
family of polytopes:

∀D ⊆ C : P (D) =



















(x̄, ȳ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̄ ∈ R
D
≥0, ȳ ∈ PM(G)

E(x̄) ≤ ȳ
∀i ∈ I :

∑

C∈D
x̄C · C(i) ≥ 1



















. (95)

Given D ⊆ C, with a slight abuse of notation we refer to a vector x̄ ∈ R
D
≥0 as a vector in R

C
≥0

where x̄C = 0 for every C ∈ C \ D. This ensures that the term E(x̄) is well defined. Since PM(G)
is downward closed, we have that rMLP is equivalent to the problem of finding (x̄, ȳ) ∈ P (C) such
that ‖x̄‖ is minimized.14 For D ⊆ C we define rMLP(D) as the problem of finding (x̄, ȳ) ∈ P (D)
such that ‖x̄‖ is minimized. It follows that OPT(rMLP(D)) ≥ OPT(rMLP) for any D ⊆ C.

We use P (D) to define a family of additional polytopes Q(D, h) in R
E, one for each D ⊆ C and

h ∈ R≥0:
Q(D, h) =

{

ȳ ∈ R
E
∣

∣ ∃x̄ ∈ R
D
≥0 : (x̄, ȳ) ∈ P (D) and ‖x̄‖ ≤ h

}

. (96)

It thus follows that Q(D, h) 6= ∅ if and only if OPT(rMLP(D)) ≤ h. Furthermore, Q(D, h) is
a polytope in a vector space of polynomial size. We use the ellipsoid method to determine if
Q(C, h) = ∅ for various values of h. The separation oracle first checks if ȳ ∈ PM(G), and otherwise
finds a separating hyperplane using a separation oracle for the matching polytope. If ȳ ∈ PM(G) we
use the following linear program, which depends on ȳ ∈ PM(G) and D ⊆ C, to obtain a separating
hyperplane:

PRIMAL(ȳ,D) min
∑

C∈D
x̄C ,

∀i ∈ I :
∑

C∈D
x̄C · C(i) ≥ 1,

∀e ∈ E :
∑

C∈S(e)∩D
x̄C ≤ ȳe,

∀C ∈ C : x̄C ≥ 0 .

(97)

where for every e ∈ E we define its superset of configurations as S(e) = {C ∈ C | e ⊆ C}. Using this
notation it holds that (E(x̄))e =

∑

C∈S(e) x̄C . It follows that ȳ ∈ Q(D, h) if and only if ȳ ∈ PM(G)
and OPT(PRIMAL(ȳ,D)) ≤ h.

14A polytope P ⊆ R
n
≥0 is downward closed if for any x̄ ∈ P and ȳ ∈ R

n
≥0 such that ȳ ≤ x̄ it holds that ȳ ∈ P .
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Recall the set C2 is defined in (2). For any C ∈ C it holds that C ∈ C2 if and only if there is
e ∈ E such that C ∈ S(e). We use this observation to derive the dual of PRIMAL(ȳ,D), which is
the following linear program:

DUAL(ȳ,D) max
∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe,

∀C ∈ D \ C2 :
∑

i∈C
λ̄i ≤ 1,

∀e ∈ E, C ∈ S(e) ∩ D :
∑

i∈C
λ̄i ≤ 1 + βe,

∀i ∈ I : λ̄i ≥ 0,

∀e ∈ E : β̄e ≥ 0 .

(98)

Observe that the feasibility region of DUAL(ȳ,D) is independent of ȳ. That is, for any D ⊆ C
we can define

R(D) =















(λ̄, β̄) ∈ R
I
≥0 × R

E
≥0

∣

∣

∣

∣

∣

∣

∣

∣

∀C ∈ D \ C2 :
∑

i∈C
λ̄i ≤ 1

∀e ∈ E, C ∈ S(e) ∩ D :
∑

i∈C
λ̄i ≤ 1 + βe















. (99)

Then DUAL(ȳ,D) is the problem of finding (λ̄, β̄) ∈ R(D) for which
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe is
maximized.

We use the following relation between R(C) and Q(C, h) to generate separating hyperplanes.

Lemma 4.34. For any h ∈ R≥0, ȳ ∈ Q(C, h) and (λ̄, β̄) ∈ R(C) it holds that

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≤ h .

Proof. As ȳ ∈ Q(C, h) it follows that OPT(DUAL(ȳ, C)) = OPT(PRIMAL(ȳ, C)) ≤ h. Thus, as
(λ̄, β̄) ∈ R(C) we have

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≤ OPT(DUAL(ȳ, C)) ≤ h .

We also use R(C) to bound the facet complexity of Q(C, h).

Lemma 4.35. There is a polynomial p1 (independent of the instance (I, v)) such that for any h ≥ 0
the facet complexity of Q(C, h) is at most p1(|I|+ 〈h〉).
Proof. By (99), the facet complexity of R(C) is polynomial in the encoding of the input in-
stance (I, v). Therefore, by Lemma 4.32, the vertex complexity of R(C) is at most 4 · (|I| + |I|2)
times the facet complexity of R(C). Thus, the vertex complexity of R(C) is polynomial in |I|.
Hence, there is a polynomial q such that the vertex complexity of R(C) is at most q(|I|).

By Definition 4.31 there are V1, V2 ⊆ R
I
≥0 × R

E
≥0 such that R(C) = conv(V1) + cone(V2) and

〈ū〉 ≤ q(|I|) for every ū ∈ V1 ∪ V2. For any h ≥ 0 define

Q′(h) =















ȳ ∈ PM(G)

∣

∣

∣

∣

∣

∣

∣

∣

∀(λ̄, β̄) ∈ V1 :
∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≤ h

∀(λ̄, β̄) ∈ V2 :
∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≤ 0
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Claim 4.36. For any h ≥ 0 it holds that Q(C, h) ⊆ Q′(h).

Proof. Let ȳ ∈ Q(C, h). For any (λ̄, β̄) ∈ V1 it holds that (λ̄, β̄) ∈ R(C), thus
∑

i∈I λ̄i −
∑

e∈E β̄e ·
ȳe ≤ h by Lemma 4.34. Suppose, for sake of contradiction, that there is (λ̄, β̄) ∈ V2 such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe = ξ > 0. It therefore holds that (h+1
ξ λ̄, h+1

ξ β̄) ∈ R(C). Thus

h ≥ OPT(PRIMAL(ȳ, C)) = OPT(DUAL(ȳ, C)) ≥
∑

i∈I

h+ 1

ξ
· λ̄i −

∑

e∈E

h+ 1

ξ
· β̄e · ȳe ≥ h+ 1,

a contradiction. Hence,
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe ≤ 0 for every (λ̄, β̄) ∈ V2, and ȳ ∈ Q′(h). ⋄

Claim 4.37. For any h ≥ 0 it holds that Q′(h) ⊆ Q(C, h).

Proof. Let ȳ ∈ Q′(h) and (λ̄∗, β̄∗) ∈ R(C). As R(C) = conv(V1) + cone(V2) there are numbers
ζλ̄,β̄ ≥ 0 for all (λ̄, β̄) ∈ V1 and ξλ̄,β̄ ≥ 0 for all (λ̄, β̄) ∈ V2 such that

∑

(λ̄,β̄)∈V1 ζλ̄,β̄ = 1, and

(λ̄∗, β̄∗) =
∑

(λ̄,β̄)∈V1

ζλ̄,β̄ · (λ̄, β̄) +
∑

(λ̄,β̄)∈V2

ξλ̄,β̄ · (λ̄, β̄) .

Thus,
∑

i∈I
λ̄∗i −

∑

e∈E
β̄∗e · ȳe

=
∑

(λ̄,β̄)∈V1

ζλ̄,β̄

(

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe

)

+
∑

(λ̄,β̄)∈V2

ξλ̄,β̄

(

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe

)

≤
∑

(λ̄,β̄)∈V1

ζλ̄,β̄ · h+
∑

(λ̄,β̄)∈V2

ξλ̄,β̄ · 0

≤ h .

That is, we showed that
∑

i∈I λ̄
∗
i −

∑

e∈E β̄
∗
e · ȳe ≤ h for every (λ̄∗, β̄∗) ∈ R(C). Hence,

OPT(DUAL(ȳ, C)) ≤ h. As it also holds that ȳ ∈ PM(G), we conclude that ȳ ∈ Q(C, h). ⋄

By Claim 4.36 and Claim 4.37 it follows that Q′(h) = Q(C, h). Furthermore, by Edmonds’
matching polytope theorem (see, e.g., Corollary 25.1a in Schrijver’s book [Sch03]) it holds that

PM(G) =
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Thus,

Q(C, h) = Q′(h) =
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e∈E
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∀(λ̄, β̄) ∈ V2 :
∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≤ 0

∀i ∈ L :
∑

(i,i′)∈E
x̄(i,i′) ≤ 1

∀U ⊆ L s.t. U is odd :
∑

(i,i′)∈E s.t.i,i′∈U
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⌋
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That is, Q(C, h) is the solution set for a system of linear equations in which the encoding length of
each inequality is at most q(|I|) + 〈h〉+O(|I|2). This completes the proof of Lemma 4.35.

Let M∗ be a maximum matching in the graph G. Since each of the vertices in a matching
polytope corresponds to a(n integral) matching, it holds that

∑

e∈E
ȳe ≤ |M∗| for all ȳ ∈ PM(G) . (100)

Since for every e ∈ M∗ it holds that e ∈ C2, i.e., v1(e) > (1 − δ), for every solution x̄ of rMLP we
have

∑

C∈C
x̄C ≥

∑

C∈C
x̄C · v1(C) ≥

∑

C∈C
x̄C
∑

i∈I
v1(i) · C(i)

=
∑

i∈I
v1(i)

∑

C∈C
x̄C · C(i) ≥

∑

i∈I
v1(i) ≥

∑

e∈M∗

v1(e) > (1− δ)|M∗| .

Hence,
OPT(rMLP) > (1− δ)|M∗| .

We combine Lemma 4.34 with the next lemma that is proved later in this section.

Lemma 4.38. There is a polynomial-time algorithm Ellipsoid R which, given ȳ ∈ PM(G) and
h > (1− δ)|M∗|, returns

• either a subset D ⊆ C of size |D| polynomial in the input size such that OPT(DUAL(ȳ,D)) ≤
(1 + ε) h,

• or a point (λ̄, β̄) ∈ R(C) such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h.

Algorithm 3: Q separator

Input : ȳ ∈ R
E
≥0, h > (1− δ)|M∗|.

Output: Either a separating hyperplane between Q(C, h) and ȳ, or a subset D ⊆ C.
1 If ȳ /∈ PM(G), then find a separating hyperplane between ȳ and PM(G) and return it.
2 Run Ellipsoid R (Lemma 4.38) with ȳ and h as its inputs
3 if Ellipsoid R returned (λ̄, β̄) ∈ R(C) such that

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h then
4 return

∑

i∈I λ̄i −
∑

e∈E β̄e · z̄e = h as a separating hyperplane
5 else
6 notify the ellipsoid algorithm to abort, and return the set D ⊆ C returned by Ellipsoid R

7 end

We use algorithm Ellipsoid R in Lemma 4.38 to derive a separation oracle for Q(C, h). The
pseudocode of the oracle is given in Algorithm 3. We note there is a polynomial-time separation
oracle for the matching polytope (see, e.g, Schrijver [Sch03]); thus, Step 3 can be implemented in
polynomial time. While the algorithm does not formally qualify as a separation oracle, it gives the
following guarantee:

Lemma 4.39. Given ȳ ∈ R
E
≥0 and h > (1− δ)|M∗|, Algorithm 3,

• either returns a separating hyperplane between Q(C, h) and ȳ,

• or notifies the ellipsoid method to abort and returns D ⊆ C of polynomial cardinality such that
OPT(DUAL(ȳ,D)) ≤ (1 + ε)h. In this case, it must hold that ȳ ∈ PM(G).
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Proof. If ȳ 6∈ PM(G) then Algorithm 3 finds a separating hyperplane between ȳ and PM(G). As
Q(C, h) ⊆ PM(G), this hyperplane also separates between ȳ and Q(C, h).

If the invocation of Ellipsoid R returns (λ̄, β̄) ∈ R(C) such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h,
then

∑

i∈I λ̄i−
∑

e∈E β̄e · z̄e = h is a separating hyperplane between ȳ and Q(C, h) by Lemma 4.34.
Otherwise, by Lemma 4.38, the invocation of Ellipsoid R returns a subset D ⊆ C of polynomial
cardinality such that OPT(DUAL(ȳ,D)) ≤ (1 + ε) h. It follows that in this case Algorithm 3
notifies the ellipsoid to abort and returns D.

Algorithm 4 utilizes Q separator as a separation oracle. The algorithm may return a vector
x̄ ∈ R

D
≥0 for some D ⊆ C. Recall that we interpret such a vector as a vector in R

C as well.

Algorithm 4: Ellipsoid Q

Input : h > (1− δ)|M∗|
Output: Either determine that OPT(rMLP) > h, or return a solution x̄′ for rMLP with

‖x̄′‖ ≤ (1 + ε)h.
1 Run Ellipsoid with n = |E|, ϕ = p1(|I|+ 〈h〉) and Q separator (and h) as the separation

oracle
2 if the ellipsoid method returned that the polytope is empty then
3 Return OPT(rMLP) > h
4 else
5 This case can only happen if the Q separator notified the ellipsoid to abort and

returned a set D ⊆ C. Find an optimal solution (x̄′, ȳ′) for rMLP(D) and return x̄′.
6 end

Lemma 4.40. In polynomial time, Algorithm 4 either determines that OPT(rMLP) > h, or finds
a solution x̄′ for rMLP satisfying ‖x̄′‖ ≤ (1 + ε)h.

Proof. By Lemma 4.35 it holds that (Q,n, ϕ) is a well-described polyhedron. As n, ϕ are polynomial
in the instance, it follows the execution time of the ellipsoid method is polynomial. Furthermore, if
the algorithm solves rMLP(D) in Line 5 then, by Lemma 4.39, we have that |D| is polynomial, and
hence rMLP(D) can be solved in polynomial time (as there is a separation oracle for E(x̄) ∈ PM(G),
and the number of variables and additional constraints is polynomial).

By Lemma 4.39, if the ellipsoid method asserts that the polytope is empty, it holds that
all invocations of Q separator returned a separating hyperplane. Hence, this is a valid execu-
tion of Ellipsoid with a separation oracle for Q(C, h). It follows that Q(C, h) = ∅, implying that
OPT(rMLP) = OPT(rMLP(C)) > h due to (96).

Otherwise, it must hold that the execution of the ellipsoid method was aborted by Q separator at
some iteration. Let ȳ ∈ PM(G) be the value of ȳ used in the call to Q separator in this iteration, let
D ⊆ C be the subset of configurations returned by Q separator, and let (x̄′, ȳ′) ∈ P (D) be the solution
found in Line 5. It holds that ‖x̄′‖ ≤ OPT(PRIMAL(ȳ,D)) = OPT(DUAL(ȳ,D)) ≤ (1 + ε) h,
where the last inequality is by Lemma 4.39. Since (x̄′, ȳ′) ∈ P (D), it holds that E(x̄′) ≤ ȳ′ ∈ PM(G);
thus, E(x̄′) ∈ PM(G). For the same reason, we also have

∑

C∈C x̄
′
C ·C(i) ≥ 1 for all i ∈ I. Hence, x̄′

is a solution for rMLP of value at most (1 + ε)h.

Our algorithm for δ-rMLP, given in Algorithm 5, uses Ellipsoid Q to perform a binary search.

Proof of Lemma 1.8. We show that Algorithm 5 is a polynomial time (1 + 3ε)-approximation
algorithm for rMLP. This immediately implies a PTAS for the MLP problem due to the connection
between MLP and rMLP.
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Algorithm 5: Matching-LP

Configuration: ε, δ ∈ (0, 0.1)
Input : A 2VBP instance (I, v).
Output : A (1 +O(ε))-approximate solution x̄ for rMLP.

1 Run a binary search over the range (ℓ, u) = ((1− δ)|M∗|, |I|): in each iteration call

Ellipsoid Q(h) with h = ℓ+u
2 . If Ellipsoid Q returned that OPT(rMLP) > h update ℓ = h;

if Ellipsoid Q returned a solution x̄, set x̄ to be the best solution and u = h. Repeat the
process until u− ℓ < ε.

2 If u 6= |I|, return the best solution found; else, return a vector x̄ ∈ {0, 1}C where x̄{i} = 1
for every i ∈ I and x̄C = 0 for any other C ∈ C.

By Lemma 4.40 it holds that OPT(rMLP) > ℓ throughout the binary search, and if u 6= |I| then
the best solution found x̄ satisfies ‖x̄‖ ≤ (1 + ε)u throughout the execution of the binary search.
Thus, Algorithm 5 returns a solution x̄ satisfying

‖x̄‖ ≤ (1 + ε)u < (1 + ε)(ℓ + ε) < (1 + ε)(OPT(rMLP) + ε) ≤ (1 + 3ε)OPT(rMLP),

where the last inequality holds since OPT(rMLP) ≥ 1 (otherwise I = ∅ and x̄ = 0 is an optimal
solution).

It remains to prove Lemma 4.38. Similar to Ellipsoid Q, the ellipsoid method is applied with
an approximate separation oracle. Consider the following family of polytopes. For any ℓ ≥ 0,
ȳ ∈ PM(G) and D ⊆ C, define

R(ℓ, ȳ,D) =

{

(λ̄, β̄) ∈ R(D) |
∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≥ ℓ

}

=



































(λ̄, β̄) ∈ R
I
≥0 × R

E
≥0

∣
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∣
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∣

∣

∣

∣

∣

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe ≥ ℓ

∀C ∈ D \ C2 :
∑

i∈C
λ̄i ≤ 1

∀e ∈ E, C ∈ S(e) ∩D :
∑

i∈C
λ̄i ≤ 1 + βe



































.

(101)

The ellipsoid method is used with polytopes in R(ℓ, ȳ,D). To derive a separation oracle for
R(ℓ, ȳ,D) we use a PTAS for 2-Dimensional Knapsack (2DK) [FC84]. Using the terminology
in this paper, the input for 2DK is a 2VBP instance (S, v), a profit vector p̄ ∈ R

S
≥0 and a two-

dimensional budget b̄ ∈ R
2
≥0. The objective is to find a subset W ⊆ S of items such that v(W ) =

∑

i∈W v(i) ≤ b̄, and p(W ) ≡ ∑i∈W p̄i is maximal. Denote a 2DK instance by (S, v, p̄, b̄). We also
allow p̄ ∈ R

T
≥0 where S ⊆ T . The separation oracle is given in Algorithm 6. The pseudocode uses

NG[j] = {i ∈ L | {i, j} ∈ E} ∪ {j} to denote the closed neighborhood of j ∈ L in the δ-matching
graph G.

As in the case of Q separator, we show that R separator has properties similar to those of a
separation oracle.

Lemma 4.41. On input (λ̄, β̄) ∈ R
I × R

E, ȳ ∈ PM(G) and ℓ ≥ (1 − δ)|M∗|, in polynomial time
Algorithm 6 either

• returns a separating hyperplane between R(ℓ, ȳ, C) and (λ̄, β̄), or
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Algorithm 6: R separator

Input : (λ̄, β̄) ∈ R
I × R

E, ȳ ∈ PM(G) and ℓ > (1− δ)|M∗|.
Output: Either a separating hyperplane between R(ℓ, ȳ, C) and (λ̄, β̄), or

(λ̄′, β̄′) ∈ R
(

(1− ε
2)ℓ, ȳ, C

)

.
1 If

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe < ℓ, then return it as the separating hyperplane.
2 Find a (1− ε

8)-approximate solution W for the 2DK instance (I \ L, v, λ̄,1). If
∑

i∈W λ̄i > 1, return W as a separating hyperplane.
3 foreach j ∈ L do
4 Find a (1− ε

8 )-approximate solution W for the 2DK instance (I \NG[j], v, λ̄,1− v(j)).
If
∑

i∈W∪{j} λ̄i > 1 return W ∪ {j} as a separating hyperplane.

5 end
6 foreach e ∈ E do
7 Find a (1− ε

8 )-approximate solution W for the 2DK instance (I \ L, v, λ̄,1− v(e)). If
∑

i∈W∪e λ̄i > 1 + β̄e return W ∪ e as a separating hyperplane.

8 end
9 Notify the ellipsoid method to abort, and return

((

1− ε
8

)

λ̄, β̄′
)

where β̄′e = min{2, β̄e} for
every e ∈ E.

• notifies the ellipsoid method to abort and returns (λ̄′, β̄′) ∈ R
((

1− ε
2

)

ℓ, ȳ, C
)

.

Proof. Since 2DK admits a PTAS [FC84], it follows that Algorithm 6 runs in polynomial time.
If
∑

i∈I λ̄i−
∑

e∈E β̄e·ȳe < ℓ then the algorithm returns this inequality as a separating hyperplane
in Step 1. This inequality indeed serves as a separating hyperplane by the definition of R(ℓ, ȳ, C)
in (101). Thus, for the remainder of the proof, we may assume that

∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe ≥ ℓ.
If the algorithm returns a set W in Step 2, then W ⊆ I \ L and v(W ) ≤ 1 as a solution for

2DK. Thus, W ∈ C \ C2 and the inequality
∑

i∈W λ̄i > 1 defines a separating hyperplane by (101)
and (99). Hence, for the remainder of the proof we may assume that the algorithm did not return a
set in Step 2. This implies that the optimal solution for the 2DK instance (I \ L, v, λ̄,1) has value

at most
(

1− ε
8

)−1
. Since every C ∈ C such that C ⊆ I \L is a solution for (I \L, v, λ̄,1), it follows

that

∀C ∈ C, C ⊆ I \ L :
∑

i∈C
λ̄i ≤

(

1− ε

8

)−1
. (102)

Consider the case in which the algorithm returns the set W ∪ {j} in Step 4. It holds that
v(W ∪ {j}) ≤ v(W ) + v(j) ≤ 1 − v(j) + v(j) = 1, as W is a solution for the 2DK instance
(I \ NG[j], v, λ̄,1 − v(j)). Thus, W ∪ {j} ∈ C. Suppose, for the sake of contradiction, that
W ∪ {j} ∈ C2. Thus, there is some j′ ∈ W ∩ L such that (j, j′) ∈ E, and we conclude that
W∩N [j] 6= ∅, contradicting W ⊆ I\N [j] (see Step 3). It therefore holds that W∪{j} ∈ C\C2. Since
∑

i∈W∪{j} λ̄i > 1, the configuration W ∪ {j} defines a separating hyperplane, by (101) and (99).
Hence, for the remainder of the proof we may assume that the algorithm did not return a

separating hyperplane in Step 4. Let C ∈ C\C2. If C ⊆ I\L then it holds that
∑

i∈C λ̄i ≤
(

1− ε
8

)−1

by (102).
Consider the iteration of the loop in Step 3 in which j = j∗, and let W be the set found in this

iteration in Step 4. It holds that C \{j} is a solution for the 2DK instance (I \NG[j], v, λ̄,1−v(j));
thus,

∑

i∈W λ̄i ≥
(

1− ε
8

)
∑

i∈C\{j} λ̄i. Since the algorithm did not return W ∪ {j}, we have that
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that
∑

i∈W∪{j} λ̄i ≤ 1. Therefore,

∑

i∈C
λ̄i = λ̄j +

∑

i∈C\{j}
λ̄i ≤ λ̄j +

(

1− ε

8

)−1 ∑

i∈W
λ̄i ≤

(

1− ε

8

)−1 ∑

i∈W∪{j}
λ̄i ≤

(

1− ε

8

)−1
.

Thus,

∀C ∈ C \ C2 :
∑

i∈C
λ̄i ≤

(

1 +
ε

8

)−1
. (103)

Next, we consider the case in which the algorithms returns the set W ∪ e in Step 7. Then
v(W ∪ {e}) = v(W ) + v(e) ≤ 1 − v(e) + v(e) = 1 since W is a solution for (I \ L, v, λ̄,1 − v(e)).
Hence, W ∪ e ∈ C. It follows that W ∪{e} ∈ S(e). Since

∑

i∈W∪e λ̄i > 1 + β̄e, it follows that W ∪ e
defines a separating hyperplane between (λ̄, β̄) and R(ℓ, ȳ, C) (by (99) and (101)).

We may therefore assume that the algorithm does not return a set in Step 7 throughout its
execution. Let e∗ ∈ E and C ∈ S(e∗), and consider the iteration of the loop in Step 6 in which
e = e∗. It holds that C \e ⊆ I \L (otherwise, vd(C) > 1 for some d ∈ {1, 2}) and v(C \e) ≤ 1−v(e);
thus, C \ e is a solution for the 2DK instance (I \ L, v, λ̄,1 − v(e)). Let W be the approximate
solution found for (I \ L, v, λ̄,1 − v(e)). It then holds that

∑

i∈W λ̄i ≥
(

1− ε
8

)
∑

i∈C\e λ̄e. Also,

since we assume that the algorithm does not return a set in Step 7, it holds that
∑

i∈W∪e λ̄ ≤ 1+βe.
Therefore, we have that

∑

i∈C
λ̄i =

∑

i∈e
λ̄i+

∑

i∈C\e
λ̄i ≤

∑

i∈e
λ̄i+

(

1− ε

8

)−1 ∑

i∈W
λ̄i ≤

(

1− ε

8

)−1 ∑

i∈W∪e
λ̄i ≤

(

1− ε

8

)−1
(1+βe) .

(104)
Let e = {j1, j2}. Then {j1}, {j2}, C \ e ∈ C \ C2. Therefore, by (103),

∑

i∈C
λ̄i ≤ λ̄j1 + λ̄j2 +

∑

i∈C\e
λ̄i ≤ 3

(

1 +
ε

8

)−1
. (105)

By (104) and (105), we have

∀e ∈ E, C ∈ S(e) :
∑

i∈C
λ̄i ≤

(

1− ε

8

)−1
(1 + min{β̄e, 2}) =

(

1− ε

8

)−1
(1 + β̄′e) . (106)

By (103) and (106) it holds that
((

1− ε
8

)

λ̄, β̄′
)

∈ R(C). Furthermore,

∑

i∈I

(

1− ε

8

)

λ̄i −
∑

e∈E
β̄′e · ȳe =

(

1− ε

8

)

·
(

∑

i∈I
λ̄i −

∑

e∈E
β̄′e · ȳe

)

− ε

8

∑

e∈E
β̄′e · ȳe

≥
(

1− ε

8

)

·
(

∑

i∈I
λ̄i −

∑

e∈E
β̄e · ȳe

)

− ε

4

∑

e∈E
ȳe

≥
(

1− ε

8

)

ℓ− ε

4

ℓ

1− δ
≥
(

1− ε

2

)

ℓ .

The first inequality holds since β̄′e = min{β̄e, 2}, the second inequality uses
∑

e∈E ȳe ≤ |M∗| < ℓ
1−δ

due to (100). Thus,
((

1− ε
8

)

λ̄, β̄′
)

∈ R
((

1− ε
2

)

ℓ, ȳ, C
)

.
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The facet complexity of R(ℓ, ȳ,D) can be trivially bounded by (99), as stated in the next lemma
(we omit the proof).

Lemma 4.42. There is a polynomial p2 (independent of the instance (I, v)) such that for any
D ⊆ C, ȳ ∈ PM and ℓ ≥ 0 the facet complexity of R(ℓ, ȳ,D) is at most p2(|I|+ 〈ȳ〉+ 〈ℓ〉).

Algorithm 7 uses the ellipsoid method with R separator as the separation oracle.

Algorithm 7: Ellipsoid R

Input : ȳ ∈ PM(G) and h > (1− δ)|M∗|
Output: Either a subset D ⊆ C such that OPT(DUAL(ȳ,D)) ≤ (1 + ε)h or a

point (λ̄, β̄) ∈ R(C) such that
∑

i∈I λ̄i −
∑

e∈E β̄e · ȳe > h.
1 Run Ellipsoid (Proposition 4.33) with n = |I|+ |E|, ϕ = p2(|I|+ 〈ȳ〉+ 〈ℓ〉) and R separator

as the separation oracle, where R separator is used with ȳ and ℓ = h
1− 3ε

4

.

2 if the ellipsoid method returned the polytope is empty then
3 Let D be the set of configurations returned by R separator as a separating hyperplanes

throughout the execution of the ellipsoid method. Return D.
4 else

// This only happens if R separator aborted the ellipsoid method.

5 Return (λ̄, β̄), where (λ̄, β̄) ∈
((

1− ε
2

)

ℓ, ȳ, C
)

is the value returned by R separator.

6 end

Proof of Lemma 4.38. Note that Ellipsoid R runs in polynomial time. Furthermore, ℓ > h >
(1− δ)|M∗|. Thus, R separator is used with parameters that match the conditions of Lemma 4.41.

Consider the execution of Algorithm 7. If the ellipsoid method returns that the polytope is
empty then all separating hyperplanes returned by Ellipsoid R are also separating hyperplanes with
respect to the polytope R(ℓ, ȳ,D). Thus, it must hold that R(ℓ, ȳ,D) = ∅. This implies that
OPT(DUAL(ȳ,D)) ≤ ℓ = h

1− 3ε
4

≤ (1 + ε)h . Since the execution of the ellipsoid is of polynomial

time, it follows that |D| is also polynomial.
If the ellipsoid method was aborted, then by Lemma 4.41 it holds that (λ̄, β̄) ∈

((

1− ε
2

)

ℓ, ȳ, C
)

.
By (101) we have that (λ̄, β̄) ∈ R(C), and

∑

i∈I
λ̄−

∑

e∈E
β̄e · ȳe ≥

(

1− ε

2

)

ℓ =
(

1− ε

2

) h

1− 3ε
4

> h .

5 Basic Probabilistic Tools

In this section we prove Lemmas 2.4 and 2.6; the probabilistic lemmas which are used both
in Section 3 and Section 4. The proof of Lemma 2.4 follows from an iterative application of
Lemma 2.3. Lemma 2.6 is an application of Lemma 2.4.

We begin with the following technical lemma.

Lemma 5.1. Let j ∈ {0, 1, . . . , k − 1} and t > 0. Also, let ū ∈ R
I
≥0 be an Fj-measurable random

vector. Then,

Pr
(

ū · 1Sj+1 − (1− δ)ū · 1Sj
> t · tol(ū)

)

≤ exp

(

− 2 · t2
OPT

)

.
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Proof. Let A be the set of possible values the random vector ū can take, that is, A = {ū(ω) | ω ∈ Ω}.
Since Ω is finite, it holds that A is also finite.

For any S ⊆ I, ρ ∈ {1, . . . ,OPT} and ā ∈ A define fS,ρ,ā : COPT → R by

fS,ρ,ā(C1, . . . , COPT) =

{

1
tol(ā) · ā · 1S\(⋃ρ

ℓ=1 Cℓ), tol(ā) 6= 0,

0, otherwise .

Also, define D = {fS,ρ,ā | S ⊆ I, ρ ∈ {1, . . . ,OPT}, ā ∈ A}. It can be easily verified that D is finite.
Let fS,ρ,ā ∈ D, (C1, . . . , COPT), (C ′

1, . . . , C
′
OPT) ∈ COPT and r ∈ [OPT] such that Cℓ = C ′

ℓ for
ℓ = 1, . . . , r − 1, r + 1, . . . ,OPT. If tol(ā) = 0 or r > ρ, then

∣

∣fS,ρ,ā(C1, . . . , COPT)− fS,ρ,ā(C ′
1, . . . , C

′
OPT)

∣

∣ = 0 .

Otherwise, let T =
⋃

ℓ∈[ρ]\{r} Cℓ =
⋃

ℓ∈[ρ]\{r} C
′
ℓ. Then

∣

∣

∣

∣

fS,ρ,ā(C1, . . . , COPT)− fS,ρ,ā(C ′
1, . . . , C

′
OPT)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

tol(ā)
· ā
(

1S\T\Cr
− 1S\T\C′

r

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

tol(ā)





∑

i∈(S∩C′
r)\(Cr∪T )

āi −
∑

i∈(S∩Cr)\(C′
r∪T )

āi





∣

∣

∣

∣

∣

∣

≤ 1

tol(ā)
·max







∑

i∈(S∩C′
r)\(Cr∪T )

āi,
∑

i∈(S∩Cr)\(C′
r∪T )

āi







≤ 1

tol(ā)
· tol(ā) ≤ 1 .

The second equality holds, as S \ T \ Cr \ (S \ T \ C ′
r) = (S ∩ C ′

r) \ (Cr ∪ T ) and symmetrically
S \ T \ C ′

r \ (S \ T \ Cr) = (S ∩ Cr) \ (C ′
r ∪ T ). Thus, fS,ρ,ā is of 1-bounded difference.

Define a random function g = fSj ,ρj+1,ū. Since Sj, ρj+1 and ū are Fj-measurable, it follows
that g is Fj-measurable. By definition of g, we have

tol(ū) · g(Cj+1
1 , . . . , Cj+1

OPT) = ū · 1
Sj\
⋃ρj+1

ℓ=1 Cj+1
ℓ

= ū · 1Sj+1 .

Furthermore,

E[tol(ā) · g(Cj+1
1 , . . . , Cj+1

OPT) | Fj ] = E[ū · 1Sj+1 | Fj ] =
∑

i∈I
ūi · Pr(i ∈ Sj+1 | Fj)

≤ (1− δ)
∑

i∈I
ūi · 1i∈Sj

= (1− δ) · ā · 1Sj
,

where the inequality holds by Lemma 2.1. Therefore,

Pr
(

ū · 1Sj+1 − (1− δ)ū · 1Sj
> t · tol(ū)

)

≤ Pr
(

g(Cj+1
1 , . . . , Cj+1

OPT)− E[g(Cj+1
1 , . . . , Cj+1

OPT | Fj)] > t
)

≤ exp

(

− 2 · t2
OPT

)

,

where the last inequality is by Lemma 2.3.

We use Lemma 5.1 as part of the proof of Lemma 2.4
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Proof of Lemma 2.4. We note that

Pr
(

∃r ∈ {j, . . . , k} : ū · 1Sr − (1− δ)r−j · ū · 1Sj
> t · tol(ū)

)

= Pr



∃r ∈ {j, . . . , k} :

r
∑

ℓ=j+1

(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

)

· (1− δ)r−ℓ > t · tol(ū)





≤ Pr

(

∃r ∈ {j + 1, . . . , k}, ℓ ∈ {j + 1, . . . , r} :
(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

)

· (1− δ)r−ℓ > t

r − j · tol(ū)

)

≤ Pr

(

∃ ℓ ∈ {j + 1, . . . , k} : ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

>
t

k
· tol(ū)

)

≤
k
∑

ℓ=j+1

Pr

(

ū · 1Sℓ
− (1− δ) · ū · 1Sℓ−1

>
t

k
· tol(ū)

)

≤ k · exp

(

−2 ·
(

t
k

)2

OPT

)

≤ δ−2 exp

(

−2 · δ4 · t2
OPT

)

.

The first inequality holds, since if a sum of n variables is greater than T there most be a variable with
value greater than T

n . The fourth inequality is by Lemma 5.1, and the last inequality uses k ≤ δ−2.

Lemma 2.6 is a simple application of Lemma 2.4.

Proof of Lemma 2.6. Define ū ∈ [0, 1]I by ūi =
∑d

t=1 vt(i). For any C ∈ C it holds that
∑

i∈C ūi =
∑d

t=1 vt(C) ≤ d, therefore tol(ū) ≤ d. Furthermore, there is partition (Q1, . . . , QOPT)
of I such that Qℓ is a configuration for ℓ = 1, . . . ,OPT. Therefore,

ū · 1S0 ≤ ū · 1I =

OPT
∑

ℓ=1

ū · 1Qℓ
≤ OPT · tol(ū) ≤ d ·OPT . (107)

Recall that ρ∗ is the number of configurations used by First-Fit in Line 6 of Algorithm 1. Using
Lemma 2.5, we have

Pr(ρ∗ > 8 · d · δ ·OPT + 1) ≤ Pr

(

d
∑

t=1

vt(Sk) > 4 · d · δ ·OPT

)

≤ Pr(ū · 1Sk
> 4 · d · δ ·OPT)

≤ Pr
(

ū · 1Sk
− (1− δ)k · ū · 1S0 > 3 · d · δ ·OPT

)

≤ Pr (∃r ∈ {0, . . . , k} : ū · 1Sr − (1− δ)r · ū · 1S0 > tol(ū) · δ ·OPT)

≤ δ−2 · exp

(

−2 · δ4 · δ2 ·OPT2

OPT

)

≤ δ−2 · exp
(

−δ7 ·OPT
)

.

The third inequality uses (107) and (1 − δ)k ≤ δ. The fifth inequality is by Lemma 2.4. Hence,
Pr(ρ∗ ≤ 8 · d · δ ·OPT + 1) ≥ 1− δ−2 · exp(−δ7 ·OPT).
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6 Discussion

In this paper we showed that a simple iterative randomized rounding scheme (Algorithm 1) improves
the state-of-the-art algorithms for d-Dimentional Vector Bin Packing, for any d > 3. We
also showed that Algorithm 1 outperforms any algorithm within the Round&Approx framework
of Bansal et al. [BCS10]. Slight modifications in this algorithm to include an initial matching
phase (Algorithm 2) led to an algorithm that yields an asymptotic

(

4
3 + ε

)

-approximation for 2-
Dimentional Vector Bin Packing, improving upon the

(

3
2 + ε

)

-approximation algorithm of
Bansal et al. [BEK16]. To the best of our knowledge, we use here for the first time iterative
randomized rounding in the context of Bin Packing problems.

For arbitrary d > 2 we applied a fairly simple analysis of Algorithm 1, which leaves much room
for improvement. Our analysis of Algorithm 2 is the result of multiple back-and-forth steps which
led to new insights on the stochastic process generated by randomized rounding, and on structural
properties of dVBP which proved useful in the analysis. The matching subroutine in Algorithm 2
was introduced as part of this process. While this led to a significantly better asymptotic approxi-
mation ratio for d = 2, our analysis for this case is more complex.

We note that many of the ideas used in the analysis for d = 2 can be easily incorporated into the
analysis for d > 2. For example, the sets Tj (defined in (12)) used in the proof of Theorem 1.5 are
analogous to touched configurations in the analysis of Section 4.1.1. While the analysis for d = 2
considers the set Tj for every iteration j and attempts to exploit it to improve the approximation
ratio, the analysis for arbitrary d only considers the set Tj1 for a specific value of j1.

As part of the analysis of Algorithm 2 we introduced a structural property for 2VBP (Lemma 4.2)
which combines ideas of Bansal et al. [BEK16] and Fairstein et al. [FKS21]. Intuitively, it should be
possible to extend the lemma to arbitrary d > 2. While the rounding scheme presented in the proof
of Lemma 4.2 can be extended to d > 2, the Small Items Refinement (Lemma 4.23) is tailored to
the two-dimensional case.

The basic idea behind Algorithm 1 is that covering items with some fixed probability via iter-
ative randomized rounding requires sampling fewer configurations, in comparison to non-iterative
rounding. In our proofs we used structural properties of dVBP (e.g, Lemmas 3.5 and 4.2) to formal-
ize this basic idea. Intuitively, the same basic idea should also work for other Bin Packing prob-
lems, such as Geometric 2-Dimensional Bin Packing [BK14] and Generalized Multidimen-
sional Bin Packing [KSS21], for which the state-of-the-art algorithms use the Round&Approx
framework. Formalizing this intuition requires an analog of the structural properties for each of
these Bin Packing variants. We note that, even without a tailored structural property, follow-
ing the outline of the proof of Theorem 3.2, it can be easily shown that a simple adaptation of
Algorithm 1 yields an asymptotic approximation ratio which is at least as good as the ratio of any
Round&Approx algorithm for Geometric 2-Dimensional Bin Packing [BK14] and for Gener-
alized Multidimensional Bin Packing [KSS21].

Algorithm 1 can be used also to simplify existing results. For example, in Lemma 1.6 we
showed the algorithm is an AFPTAS for Bin Packing. We conjecture that the algorithm is also
an AFPTAS for Bin Packing with Cardinality Constraints [EL10].

Finally, the number of configurations sampled in each iteration of Line 1 in Algorithm 1 was
selected arbitrarily for an easier analysis. One may consider selecting a single configuration per
iteration. We believe that such modification is unlikely to yield a better approximation ratio, but
rather make the analysis more complicated. A main cause for complication here is that the vanilla
form of McDiarmid’s concentration bound [McD89] cannot be used, due to stronger dependencies
between the sampled configurations.
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A The Flaw in Bansal, Eliáš and Khan [BEK16]

The flaw we found in the work of Bansal et al. [BEK16] is in the proof of Theorem 6.1. The
theorem refers to properties of the residual items after sampling configurations using a solution for
the Configuration-LP. The proof of the theorem relies on McDiarmid’s bound, given as Lemma 6.1
in [BEK16]. The flaw is in the use of Lemma 6.1, affecting the correctness of the analysis of the
asymptotic approximation guarantees of Algorithm 3 and Algorithm 4 in [BEK16]. We refer below
to the third paragraph in the left column of page 1575 in [BEK16] (starting with “We now consider
the small items”). As some of the ingredients in the proof of Theorem 6.1 are missing, we expand
steps and add details where necessary, while keeping the deviation from [BEK16] to a minimum.

Using the notation of [BEK16], let ρ > 1, let x̄ be a solution for the Configuration-LP (1) of
the dVBP instance (I, v), and let X1, ...,Xr ∼ x̄ be a tuple of t = ⌈ρ · z∗⌉ random configurations
distributed by x̄, where z∗ = ‖x̄‖. Also, define J = I \ (

⋃r
ℓ=1Xℓ) to be the items not selected by

the sampled configurations X1, . . . ,Xr.
For j = (h1, . . . , hd) ∈ [0, 1]d, Sj ⊆ I is a set of items such that vk(i) ≤ hk for all i ∈ Sj and

k = 1, . . . , d. The set Sj represents a class of small items. Bansal et al. [BEK16] define functions
fkSj

: Cr → R by

fkSj
(C1, . . . , Cr) =

∑

i∈Sj\(
⋃r

ℓ=1 Cℓ)

vk(i) ·
1

hk
(108)

for k = 1, . . . , d. The definition in [BEK16] is: “Let function fkSj
be
∑

i∈Sj∩J vk(i) ·
1
hk

” (up to a

minor adaptation to our slightly different notation), which we can only interpret as (108) due to
the subsequent use of fkSj

in [BEK16] as a function whose domain is a tuple of configurations, and
since

fkSj
(X1, . . . ,Xr) =

1

hk
·

∑

i∈Sj\(
⋃r

ℓ=1Xℓ)

vk(i) =
1

hk

∑

i∈Sj∩J
vk(i).

To use Lemma 6.1 the authors of [BEK16] attempt to show that fkSj
is of 1-bounded difference

(see the definition in Section 2 of the preset paper) for k = 1, . . . , d. To this end, they consider
ℓ∗ ∈ {1, . . . , r} and two vectors x = (C1, . . . , Cr) ∈ Cr and x′ = (C ′

1, . . . , C
′
r) ∈ Cr such that Cℓ = C ′

ℓ

for ℓ ∈ {1, . . . , r} \ ℓ∗. That is, x and x′ differ only in one coordinate. Subsequently, the authors
state the following:

fkSj
(C1, . . . , Ck)− fkSj

(C ′
1, . . . , C

′
k)

≤ max







∑

i∈Sj∩Cℓ∗

vk(i) ·
1

hk
,

∑

i∈Sj∩C′
ℓ∗

vk(i) ·
1

hk







≤ 1

hk
· hk ≤ 1.

(109)

The second inequality (marked is red) is incorrect. With no explanation for this inequality, it
appears that Bansal et al. [BEK16] assumed that vk(Sj ∩ C) ≤ hk for any C ∈ C. However, there
may be C ∈ C such that vk(Sj ∩ C) = 1. For example, suppose that hk = 1

10 , and let vk(i) = hk
and vk′(i) = 0 for every i ∈ Sj and k′ ∈ {1, . . . , d} \ {k}. Then a configuration C containing 10
items from Sj satisfies vk(Sj ∩ C) = 1 > hk.

In the setting of the proof of Theorem 6.1 of [BEK16], the items in Sj are assigned to configu-
rations C∗

1 , . . . , C
∗
m in a specific solution. Indeed, it holds that vk(C

∗
ℓ ∩ Sj) ≤ hk for ℓ = 1, . . . ,m,

and we believe this led the authors of [BEK16] to the conclusion that vk(C ∩ Sj) ≤ hk for every
configuration C ∈ C, and hence to the flawed inequality in (109).
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Thus, the proof that fkSj
is of 1-bounded difference is incorrect, and the subsequent use of

Lemma 6.1 fails.
A correct version of (109) is

fkSj
(C1, . . . , Ck)− fkSj

(C ′
1, . . . , C

′
k)

≤ max







∑

i∈Sj∩Cℓ∗

vk(i) ·
1

hk
,

∑

i∈Sj∩C′
ℓ∗

vk(i) ·
1

hk







≤ 1

hk
.

(110)

However, this inequality only shows that fkSj
is of 1

hk
-bounded difference. As 1

hk
may be large

(for example, it may be that 1
hk

= (OPT(I))3), the concentration bound which can be derived
from (110) is too weak to complete the proof.

Theorem 6.1 of [BEK16] is a central component in the proofs of the asymptotic
(

1 + ln
(

3
2

)

+ ε
)

-

approximation for 2VBP and of the asymptotic
(

1.5 + ln
(

d+1
2

)

+ ε
)

-approximation for dVBP. By
the above, the two results are incorrect.
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