
This is a repository copy of Parameterized approximation schemes for clustering with 
general norm objectives.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201314/

Version: Accepted Version

Proceedings Paper:
Abbasi, F., Banerjee, S., Byrka, J. et al. (6 more authors) (2023) Parameterized 
approximation schemes for clustering with general norm objectives. In: 2023 IEEE 64th 
Annual Symposium on Foundations of Computer Science (FOCS) Proceedings. 2023 
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 06-09 Nov 
2023, Santa Cruz, CA, USA. Institute of Electrical and Electronics Engineers (IEEE) , pp. 
1377-1399. ISBN 9798350318951 

https://doi.org/10.1109/FOCS57990.2023.00085

© 2023 The Authors. Except as otherwise noted, this author-accepted version of a paper 
published in 2023 IEEE 64th Annual Symposium on Foundations of Computer Science 
(FOCS) Proceedings is made available via the University of Sheffield Research 
Publications and Copyright Policy under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution and 
reproduction in any medium, provided the original work is properly cited. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Parameterized Approximation Schemes

for Clustering with General Norm Objectives

Fateme Abbasi

University of Wrocław

Poland

fateme.abbasi@cs.uni.wroc.pl

Sandip Banerjee

University of Wrocław

Poland

sandip.ndp@gmail.com

Jarosław Byrka

University of Wrocław

Poland

jby@cs.uni.wroc.pl

Parinya Chalermsook

Aalto University

Finland

parinya.chalermsook@aalto.fi

Ameet Gadekar

Aalto University

Finland

ameet.gadekar@aalto.fi

Kamyar Khodamoradi

University of Regina

Canada

kamyar.khodamoradi@uregina.ca

Dániel Marx

CISPA Helmholtz Center for Information Security

Germany

marx@cispa.de

Roohani Sharma

Max Planck Institute for Informatics

Germany

rsharma@mpi-inf.mpg.de

Joachim Spoerhase

University of Sheffield

United Kingdom

j.spoerhase@sheffield.ac.uk

Abstract—This paper considers the well-studied algorith-
mic regime of designing a (1+ ϵ)-approximation algorithm
for a k-clustering problem that runs in time f(k, ϵ)poly(n)
(sometimes called an efficient parameterized approximation
scheme or EPAS for short1). Notable results of this kind
include EPASes in the high-dimensional Euclidean setting
for k-center [Badŏiu, Har-Peled, Indyk; STOC’02] as well
as k-median, and k-means [Kumar, Sabharwal, Sen; J.
ACM 2010].

Our main contribution is a clean and simple EPAS that
settles more than ten clustering problems (across multiple
well-studied objectives as well as metric spaces) and unifies
well-known EPASes. More specifically, our algorithm gives
EPASes in the following settings:

• Clustering objectives: k-means, k-center, k-median,
priority k-center, ℓ-centrum, ordered k-median, so-
cially fair k-median (aka robust k-median), or any
other objective that can be formulated as minimizing
a monotone (not necessarily symmetric!) norm of
the distances of the points from the solution (gen-
eralizing the symmetric formulation introduced by
Chakrabarty and Swamy [STOC’19]).

• Metric spaces: Continuous high-dimensional Eu-
clidean spaces, metrics of bounded doubling dimen-
sion, bounded treewidth metrics, and planar metrics.

Prior to our results, EPASes were only known for vanilla
clustering objectives (k-means, k-median, and k-center)
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and each such algorithm is tailored to work for the specific
input metric and clustering objective (e.g., EPASes for k-
means and k-center in Rd are conceptually very different).
In contrast, our algorithmic framework is applicable to a
wide range of well-studied objective functions in a uniform
way, and is (almost) entirely oblivious to any specific
metric structures and yet is able to effectively exploit those
unknown structures. In particular, our algorithm is not
based on the (metric- and objective-specific) technique of
coresets.

Key to our analysis is a new concept that we call bounded
ϵ-scatter dimension—an intrinsic complexity measure of a
metric space that is a relaxation of the standard notion
of bounded doubling dimension (often used as a source of
algorithmic tractability for geometric problems). Our main
technical result shows that two conditions are essentially
sufficient for our algorithm to yield an EPAS on the input
metric M for any clustering objective:

(i) The objective is described by a monotone norm, and
(ii) the ϵ-scatter dimension of M is upper bounded by a

function of ϵ.

Index Terms—clustering, parameterized approximation
algorithms, scattered dimension, norm clustering.

I. INTRODUCTION

In the class of k-clustering problems, we are inter-

ested in partitioning n data points into k subsets called

clusters, each of which is represented by a center. We

aim at minimizing a certain objective based on the

distances between the data points and their respective

cluster centers. This is among the most fundamental

optimization problems that arise routinely in both theory

and practice and has received attention from various



research communities, including optimization, data min-

ing, machine learning, and computational geometry. Ba-

sic clustering problems such as k-MEDIAN, k-CENTER,

and k-MEANS have been researched for more than half

a century and yet remain elusive from many perspectives

of computation.

This paper considers a prominent and classic algo-

rithmic regime for k-clustering in which one aims at

designing efficient parameterized approximation schemes

(EPAS)—a (1 + ϵ) approximation algorithm that runs

in time h(k, ϵ)poly(n) for every ϵ > 0. In a general

metric space, obtaining such an approximation scheme

is impossible even for basic clustering problems. Past

research has therefore focused on designing algorithms

that work in structured metric spaces (such as planar

graphs or Euclidean spaces). In the continuous high-

dimensional Euclidean space, EPASes are arguably the

“fastest” approximation scheme one can hope for [3], [4],

so it is no surprise that research on EPASes for clustering

problems has received a lot of attention in the past two

decades [5], [6], [7], [8], [9], [10], [11].2

This paper is inspired by the following meta-question:

For a given k-clustering objective and a (structured)

metric space, does an EPAS exist?

Systematic understanding about this question has been

seriously lacking. While affirmative answers for basic

clustering problems such as k-CENTER, k-MEDIAN, and

k-MEANS in the continuous high-dimensional Euclidean

space have been shown already two decades ago [13],

[1] (recently for structured graph metrics [14], [15], [16],

[10], [11]), we do not know of any such result for more

complex clustering objectives.

This paper makes substantial progress towards a com-

plete understanding of the above meta-question. In par-

ticular, we present a unified EPAS that works for a broad

class of clustering objectives (encompassing almost all

center-based clustering objectives ever considered by the

algorithms community and some new ones that further

generalize the existing problems) as well as diverse met-

ric spaces, hence settling many well-studied standalone

clustering problems as a by-product.3 In contrast to the

1Quick remarks: (i) An EPAS is not comparable to polynomial
time approximation schemes (PTAS), (ii) before the term EPAS was
invented some researchers call this type of approximation schemes a
PTAS or simply an approximation scheme (in clustering, it is often
assumed that k is small) [1], [2], and (iii) both EPAS and PTAS are
implied by the existence of efficient polynomial time approximation
schemes (EPTAS).

2We remark that PTASes, which are incomparable to EPASes, do
not exist for continuous k-means, k-median and k-center [12], [4].

3There are variants of clustering problems that enforce constraints
on how points can be assigned to open centers (e.g., capacitated
and diversity constraints). Our purpose is handling many center-based
clustering objectives; handling a broad range of constraints (such as
capacities) is beyond the scope of this paper.

existing approaches (where each algorithm is tailored to

specific input metric and clustering objective), our algo-

rithmic framework is (almost) entirely oblivious to any

specific metric structures and the objective function, yet

is able to effectively exploit those unknown structures.

A. Efficient Parameterized Approximation Schemes for

NORM k-CLUSTERING

As an input to the (general) k-clustering problem,

we are given n data points P , candidate centers F , a

metric space M = (P ∪ F, δ), a positive integer k, and

an objective function f : RP → R. When a set of k
“open” centers X ⊆ F is chosen, this solution induces

a cost vector δ(P,X) = (δ(p,X))p∈P where δ(p,X) =
minx∈X δ(p, x) represents the distance from point p
to the closest center in X . Our goal is to minimize

f(δ(P,X)). We call this problem the k-clustering prob-

lem with cost function f . We may think of the function f
as “aggregating” the costs incurred by the points. For ex-

ample, we can formulate basic k-clustering objectives via

the functions f(x) =
∑

p∈P x(p) (k-MEDIAN), f(x) =∑
p∈P x(p)2 (k-MEANS) and f(x) = maxp∈P x(p) (k-

CENTER).

Most natural and well-studied clustering objectives

can be modeled using (a generalization of) the concept

of norm optimization introduced by Chakrabarty and

Swamy [17]. More specifically, we are interested in the

setting where the objective f is a norm. A norm is

a function f : Rn → R≥0, n ∈ N that satisfies (i)

for all x ∈ Rn, f(x) = 0 if and only if x = 0,

(ii) ∀x,y ∈ Rn : f(x + y) ≤ f(x) + f(y), and (iii)

∀x ∈ Rn, λ ∈ R : f(λx) = |λ|f(x). We say that f is

monotone if f(x) ≤ f(y) whenever x ≤ y. By NORM

k-CLUSTERING we refer to the k-clustering problem

whose objective f : RP → R≥0 is a monotone norm.

While Chakrabarty and Swamy [17] further require that

f be symmetric4, our algorithmic framework applies to

all monotone norm cost functions. This family includes

the following well-known clustering problems (see Fig-

ure 2 for an overview):

• From k-MEANS, k-CENTER, and k-MEDIAN

to (k, z)-CLUSTERING: All the basic clustering

problems can be captured by the ℓz-norm when

z ∈ {1, 2,∞}. In fact, the (k, z)-clustering prob-

lem [18], [19], [20] (for constant positive integer z)

uses the objective function g(x) =
∑

p∈P |x(p)|
z .

(This function itself is not a norm, but we can

instead consider the ℓz-norm f(x) = g(x)1/z .)

• WEIGHTED k-CENTER (or PRIORITY k-

CENTER): The weighted version of k-CENTER

[21], [22], [23] generalizes the k-CENTER so that

4We say that f is symmetric if f(x) = f(x′) whenever x
′ can

be obtained by reordering coordinates of x.
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each data point p ∈ P is associated with a positive

weight (or priority) w(p), and the objective is to

minimize the (weighted) maximum distance to

a center.5 This problem can be modelled by the

“weighted max” norm f(x) = maxp∈P w(p)x(p).
One can analogously define the weighted versions

of k-MEDIAN and k-MEANS (see, for example,

[24]). We remark that the underlying weighted

norms are not symmetric.

• ℓ-CENTRUM: This problem (sometimes called k-

FACILITY ℓ-CENTRUM) aims to minimize the sum

of the connection costs among the ℓ “most expen-

sive” points (that is, those that are furthest away

from the open centers). The problem generalizes

both k-CENTER (ℓ = 1) and k-MEDIAN (ℓ = |P |)
problem [25]. (See the books [26], [27] for more

details on ℓ-CENTRUM and the more general OR-

DERED k-MEDIAN discussed below.) This prob-

lem can be modelled by the top-ℓ norm f(x) =∑ℓ
j=1 x

↓(j) where x↓ denotes the reordering of

vector x so that the entries appear non-increasingly.

The top-ℓ norm is symmetric.

• ORDERED k-MEDIAN: This problem further gen-

eralizes ℓ-CENTRUM, allowing flexible penalties to

be applied to data points that incur the highest

connection costs. More formally, the objective is

the ordered weighted norm f(x) = v⊺x↓ where

v ∈ Rn
≥0 is a non-increasing cost vector, that

is, v(1) ≥ v(2) ≥ . . . ≥ v(n). ℓ-CENTRUM

corresponds to v = (1, . . . , 1, 0, . . . 0) where the

first ℓ-entries of v are ones. This problem has

already received attention for a few decades [28],

[17], [29]. We remark that the f here is a monotone

and symmetric norm.

• SOCIALLY FAIR k-MEDIAN (or ROBUST k-

MEDIAN): In SOCIALLY FAIR k-MEDIAN, along

with the point set P , we are given m different

(not necessarily disjoint) subgroups such that P =⋃
i∈[m] Pi. Our goal is to find a set X of centers that

incurs fair costs to the groups by minimizing the

maximum cost over all the groups. In other words,

min
X⊆F
|X|=k

max
i∈[m]

∑

p∈Pi

δ(p,X) .

Due to distinct applications in at least two domains,

this variant of clustering has recently been studied

extensively: (i) in algorithmic fairness [30], [31],

[32], [33] and (ii) in the robust optimization context,

this problem is known as ROBUST k-MEDIAN,

which intends to capture the applications when

we are uncertain about the actual data scenarios

5For convenience of presentation, the terminologies we use are
somewhat different from the literature.

(corresponding to the groups Pi) that may come

up [34], [35], [36]. The resulting norm is generally

asymmetric.

• (z, q)-FAIR CLUSTERING: Our problem also mod-

els a clustering problem called (z, q)-FAIR CLUS-

TERING
6 introduced by Chlamtáč et al. [37], which

generalizes SOCIALLY FAIR k-MEDIAN.

In particular, one can view the cost function f
of SOCIALLY FAIR k-MEDIAN as a “two-level”

aggregate cost: First, cost
∑

p∈Pi
δ(p,X) incurred

by group Pi, i ∈ [m] can be viewed as weighted

ℓ1-norm w
⊺

i x where wi = 1Pi
∈ {0, 1}P denotes

the characteristic vector of Pi. Second, these group

costs are further aggregated through ℓ∞, that is,

f(x) = max(w⊺

1x,w
⊺

2x, . . . ,w
⊺

mx).
(z, q)-FAIR CLUSTERING allows arbitrary uses

of ℓz and ℓq norms to aggregate the costs

in two levels. The cost function is defined as

f(x) = g(h(x)) where g is any ℓq-norm func-

tion and h(x) = (h1(x), h2(x), . . . , hm(x)) where

hi(x) is a weighted ℓz-norm, that is, hi(x) =(∑
p∈P wi(p)x(p)

z
)1/z

for arbitrary weight vec-

tors wi ∈ RP
≥0, i ∈ [m]. It is easy to check that

f(x) = g(h(x)) is a monotone norm whenever

g and {hi} are. The objective is generally an

asymmetric norm.

• Beyond the Known Problems: Our (asymmetric)

norm formulation allows us to model more com-

plex clustering objectives that might be useful in

some application settings and, to our knowledge,

have not yet been considered in the algorithms

community. One such objective is PRIORITY OR-

DERED k-MEDIAN: We have the cost function

f(x) = v⊺xw
↓ where the weight vector v ∈ Rn

≥0,

and priority vector w ∈ RP
≥0 are given as input,

and where xw = (w(p)x(p))p∈P . This objective

generalizes both PRIORITY k-CENTER and OR-

DERED k-MEDIAN. Another natural objective is

the (multi-level) CASCADED NORM CLUSTERING,

which generalizes (z, q)-FAIR CLUSTERING to al-

low multiple levels of cost aggregation. The cost

function f for this problem is described by a

directed acyclic graph (DAG) D with one sink node

and |P | source nodes (each source corresponds to

a point in P ). Each non-source node v is associ-

ated with a norm ℓq for some q, and each edge

(u, v) has weight wu,v . Given such a DAG D, the

value of f(x) can be evaluated by computing the

evaluations at nodes in V (D) in (topological) order

from sources to sink: (i) The evaluation at source

6Chlamtáč et al. [37] call the problem (p, q)-FAIR CLUSTERING.
For the sake of consistency with the notation in the rest of the paper,
we changed the naming slightly.
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Fig. 1: The DAG here describes evaluation of function

f . Node v is labeled with the ℓq norm, so the evaluation

at node v is η(v) = (w1,vx
q
1 + w2,vx

q
2 + w5,vx

q
5)

1/q .

p ∈ P is η(p) = x(p), (ii) For any non-source node

v ∈ V (D) labelled with the norm ℓq , we evaluate

η(v) =
(∑

u∈N−(v) wu,vη(u)
q
)1/q

, and (iii) the

value of f(x) is the evaluation of the sink. See

Figure 1 for illustration. (z, q)-FAIR CLUSTERING

is a special case when D has 3 layers with the

middle layer using the same norm. Of course,

also other basic monotone norms such as top-ℓ
or ordered weighted norms could be composed to

more complex norms analogously.

We remark that asymmetric norms can potentially

make the problem substantially harder. For example,

a poly-time O(1)-approximation algorithm exists for

symmetric norms [17] but the asymmetric norm makes

it Ω(log n/ log log n)-hard to approximate even for the

special case of ROBUST k-MEDIAN on the line met-

rics [35].

Our main results are encapsulated in the following

theorem.

Theorem I.1. Let f be an efficiently (approximately)

computable monotone norm cost function. Then the k-

clustering problem with cost function f admits an EPAS

for the following input metrics: (i) metrics of bounded

doubling dimension, (ii) continuous Euclidean spaces of

any dimension, (iii) bounded treewidth metrics, and (iv)

planar metrics.

By continuous Euclidean space, we refer to the setting

where any point of the space can be chosen as a center.

This is in contrast to a discrete Euclidean space, where

we restrict the centers to be selected from a specific

finite subset of the points. Observe that for a fixed

d, discrete Euclidean problems in Rd have bounded

doubling dimension, hence covered by our framework.

Furthermore, it is not a shortcoming of our result that

Fig. 2: Selected clustering objectives that can be formu-

lated as monotone norm minimization. The line illus-

trates generalization (bottom is a special case of top).

it does not cover discrete Euclidean spaces of high

dimensions: in this setting, k-CENTER is W[1]-hard to

approximate within a factor of
√
3/2−o(1) [38]. In the

setting of graph metrics (such as bounded treewidth or

planar metrics), the metric is induced by a graph of the

given graph class, the set P of data points and the set

F of centers are arbitrary node subsets, and the distance

function δ is the shortest-path distance in the graph.

Our result in particular implies the following.

Corollary I.2. In all aforementioned metric spaces,

1) There exists a 2h(1/ϵ)·k·polylog(k) ·poly(n) time EPAS

for ORDERED k-MEDIAN on n points.

2) There exists a 2h(1/ϵ)·k·polylog(k) · poly(n,m) time

EPAS for (z, q)-FAIR CLUSTERING on n points and

m groups.

Prior to our results, the existences of EPASes for all

these problems were open (except for k-MEANS, k-

CENTER, and k-MEDIAN). Beyond these known prob-

lems, we also obtain EPASes for the new, generalized

problems introduced above and depicted in Figure 2.

Rather surprisingly, in contrast to the poly-time ap-

proximation regime, the complexities of symmetric and

asymmetric norm clustering problems “collapse” in the

parameterized approximation regime.

B. Our Conceptual and Technical Contributions

Our main contributions have two parts: (i) a new

concept of metric dimension and (ii) our main techni-

cal result showing EPASes for all the aforementioned

clustering problems.

Unifying Metric Spaces via Scatter Dimension: Our

key conceptual contribution is a new notion of bounded

metric space dimension that relaxes the standard re-

quirement of bounded doubling dimension so that the

4



metric spaces mentioned in Theorem I.1 all “live” in a

finite dimension. We first explain why existing notions

of dimensions are not suitable for such purpose.

There are multiple dimensionality notions that ap-

pear in the literature of metric spaces. Most familiar

in the algorithmic community is perhaps the doubling

dimension (a.k.a. Assouad dimension). Roughly, the dou-

bling dimension of metric (M, δ) is O(d) iff at most

(1/ϵ)O(d) balls of radius ϵ/2 can be packed into a unit

ball (this is called an ϵ-packing). Such property can

often be computationally leveraged, leading to efficient

algorithms for many geometric optimization problems

(often with the running time depending exponentially on

the dimension). However, the doubling dimension (as

well as any other popular notions of dimensions [39])

would not be suitable for us due to the following reasons:

(i) The doubling dimension can be as large as Ω(n)
in high-dimensional Euclidean space, and (ii) they do

not very well “exploit” structured graph metrics, i.e.,

even stars have unbounded dimension.7 In sum, any

algorithms that exploit existing notions of dimensions

are unlikely to lead to our desired results.

We introduce the notion of ϵ-scatter dimen-

sion. Given metric M = (P, F, δ), the sequence

(x1, p1), . . . , (xℓ, pℓ) ∈ F × P is said to be an ϵ-
scattering if, whenever (x, p) appears before (x′, p′) in

the sequence, then δ(x, p) and δ(x′, p′) are larger than

1 + ϵ each, while δ(x′, p) ≤ 1. The ϵ-scatter dimension

of M is then defined as the length of the longest scatter,

minus one.

There are two natural interpretations. The first inter-

pretation is as a game between two players: The center

player who tries to claim she can cover all the points

with a unit ball and the point player who present a

counterexample. In the first round, the center player

picks a center x1 ∈ F and the point player refutes the

claim by presenting a point p1 ∈ P which is at least

a factor 1 + ϵ away from the (closed) unit ball around

x1, that is, p1 ̸∈ ball(x1, 1+ ϵ). The game continues this

way: In the i-th round, the center player presents xi such

that {p1, . . . , pi−1} ⊆ ball(xi, 1), and the point player

gives pi ̸∈ ball(xi, 1 + ϵ). Both players are interested

in prolonging the game as much as possible. The ϵ-
scatter dimension is the length of the longest possible

game. In the second interpretation, one can view such

sequence as a pair of ϵ-packings that are required to

be sufficiently distanced: It is easy to verify (simply

using triangle inequalities) that P ∗ = {p1, p2, . . . , pℓ−1}
and F ∗ = {x2, . . . , xℓ} are ϵ-packings of the unit

(closed) balls around xℓ and p1, respectively. This view

7In an n-node star rooted at r, a unit ball ball(r, 1) includes the
whole graph. There exists an ϵ-packing of size (n − 1) by choosing
the non-root nodes.

immediately implies that ϵ-scatter dimension is bounded

in a bounded doubling metric.

Theorem I.3. For ϵ ∈ (0, 1), any metric of doubling

dimension d has ϵ-scatter dimension (1/ϵ)O(d).

We proceed to study the ϵ-scatter dimension of graph

metrics where we the set P of data points and the set F
of centers are arbitrary node subsets in a graph of some

fixed graph class and the distances between them are the

shortest path distances.

Theorem I.4. For ϵ ∈ (0, 1), the ϵ-scatter dimension is

exp
(
(1/ϵ)O(tw)

)
for treewidth-tw graphs.

This proof is based on a (delicate) combinatorial

argument that, given graph G, parameter t and an ϵ-
scattering sequence of length at least doubly exponential

in t, produces a “certificate” to the fact that the treewidth

of G is greater than t. The proof can be found in

Section VI-B.

Next, we present a tool that allows “bootstrapping” of

graph classes having bounded ϵ-scatter dimension. This

is done via a simple connection between ϵ-scatter di-

mension and low-treewidth embedding (an active area of

metric space embedding) [40], [16], [41]. This connec-

tion would allow us to reduce the question of bounding

ϵ-scatter dimension in a certain graph class to that in

bounded treewidth graphs (thereby invoking our Theo-

rem I.4.)

Theorem I.5 (informal, formal statement in Sec-

tion VI-C). The ϵ-scatter dimension is bounded for

any graph class G that admits an η-additive distortion

embedding (error ±η∆ where ∆ is the diameter of the

graph) into a graph whose treewidth only depends on η.

Such a connection, combined with the embedding

result of [16], implies the following. (Again we allow the

sets of points and centers to be arbitrary node subsets.)

Theorem I.6. For ϵ ∈ (0, 1), the ϵ-scatter dimension is

exp (exp(poly(1/ϵ))) for planar graphs.

Moreover, further progresses in the area of low-

treewidth embedding would lead to even wider classes

of graphs that have bounded ϵ-scatter dimension, e.g.,

it seems plausible that minor-free graphs admit such an

embedding [40].

Unfortunately, the bounded dimensionality does not

hold in the high-dimensional (continuous) Euclidean

metric.8 To handle the high-dimensional continuous Eu-

8To see this, consider the sequence (x1, p1) . . . , (xd−1, pd−1)
where, for each i ∈ [d − 1], the point xi ∈ Rd has i-th coordinate

1/
√
2 and all other coordinates are zero. Define points pi = −xi for

all i ∈ [d − 1]. It is easy to check that this sequence is a (
√
2 −

1)-scattering. This example implies that the ϵ-scatter dimension of
continuous Euclidean metrics Rd can be at least d − 1 (unbounded
in ϵ). In fact, the ϵ-scatter dimension is as high as (1/ϵ)Ω(d).
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clidean setting, we present a stronger version of ϵ-scatter

dimension, that we call algorithmic ϵ-scatter dimension.

The setting of the game is the same except that the center

player would optimize to end the game early, while the

point player would be interested in prolonging the game

indefinitely. This means, they play against each other. A

centering strategy is a function σ : 2P → F that specifies

how the center xi = σ({p1, . . . , pi−1}) would be chosen

by the center player, given the points p1, . . . , pi−1 played

in the preceding rounds. The (σ, ϵ)-scatter dimension is

the maximum number of rounds when the center player

always plays strategy σ, and the algorithmic ϵ-scatter

dimension is the minimum (σ, ϵ)-scatter dimension over

all strategies σ. We remark that our actual definition is

more involved, as it considers a weighted version of the

game.

Theorem I.7 (Bounding Algorithmic Scatter Dimen-

sion). The continuous Euclidean space (P, F, δ), that is,

P ⊊ Rd finite, and F = Rd, has algorithmic ϵ-scatter

dimension O(1/ϵ4 log 1/ϵ).

EPAS for General Norm Clustering: Bypassing Core-

sets: Now we are ready to explain our main technical

result that would allow us to obtain EPAS for all metrics

having bounded ϵ-scatter dimension.

A generic tool whose existence immediately implies

an EPAS is an ϵ-coreset —a “compression” of an input

instance (P, F, δ) into a much smaller instance so that

the cost of any solution is preserved within a factor of

(1± ϵ). The existence of an ϵ-coreset of size depending

only on ϵ and k would immediately imply an EPAS (but

not vice versa): First, use the ϵ-coreset to compress the

instance (P, F, δ) to (P ′, F ′, δ′) where |P ′| ≤ γ(ϵ, k).
Then enumerate all possible partitionings of P ′ into k
sets P ′

1, . . . , P
′
k (there are at most kγ(ϵ,k) such parti-

tions). For each set i ∈ [k], compute the optimal center

for P ′
i . We choose the partition that gives the lowest total

cost.

This generic method, unfortunately, faces a serious

information-theoretic limitation, that is, even for k-

CENTER, ϵ-coresets of desirable sizes do not exist in

high-dimensional Euclidean spaces [29]. Such lower

bounds imply that one cannot hope to prove our (unified)

results via the coreset route: While coresets are known

for (k, z)-CLUSTERING for constant z [19]—allowing to

handle k-MEANS and k-MEDIAN in a uniform fashion—

it is impossible to extend this approach to k-CENTER.

For more complex clustering objectives, such EPASes

were in fact not known even for low dimension. For

example, the coreset of Braverman et al. [29] for OR-

DERED k-MEDIAN in Rd has size Oϵ,d(k
2 log2 n) and

therefore does not give an EPAS even in low dimension.

Badoiu, Har-Peled, and Indyk [13] presented an EPAS

for k-CENTER in high-dimensional Euclidean spaces

(bypassing coresets in the above sense). Therefore, an

obvious open question is whether their techniques can

be extended to give an EPAS for any other clustering

objective. Unfortunately, this is not even known for

simple objectives such as PRIORITY k-CENTER. In fact,

even the known EPASes for k-MEANS [1] and k-

CENTER [13] are conceptually very different; to our

knowledge, no approximation schemes handle k-MEANS

and k-CENTER in a modular way.

Our main technical result is presented in the following

theorem. We remark that our techniques do not rely

on any coreset constructions (thus bypassing the coreset

lower bounds for k-CENTER).

Theorem I.8. Let M be a class of metric spaces that

is closed under scaling distances by a positive constant.

There is a randomized algorithm that computes for any

NORM k-CLUSTERING instance I = (M,f, k) with

metric M = (P, F, δ) ∈ M, and any ϵ ∈ (0, 1), with

high probability a (1 + ϵ)-approximate solution if the

following two conditions are met.

(i) There is an efficient algorithm evaluating for any

distance vector x ∈ RP
≥0 the objective f(x) in time

T (f).

(ii) There exists a function λ : R+ → R+, such that

for all ϵ > 0, the algorithmic ϵ-scatter dimension

of M is at most λ(ϵ).

The running time of the algorithm is

exp
(
Õ
(

kλ(ϵ/10)
ϵ

))
· poly(|M |) · T (f).

Note that the complexity of computing f appears only

as a linear factor in the running time. For instance, for

SOCIALLY FAIR k-MEDIAN, the number m of groups

affect only the computational cost of f , and therefore

the running time is polynomial in m. We remark that our

results extend to the setting of an approximate evaluation

oracle where f can be computed to within a factor 1± ϵ
in time T (f)poly(1/ϵ) where T (f) depends only on f but

not on ϵ. For the sake of easier presentation we assume

in this conference proceedings version that we have an

exact evaluation oracle for f .

Our algorithm is clean, simple, and entirely oblivious

to both the objective and the structure of the input metric.

The dependency on k in the exponent of our running

time is singly exponential (exp(Õϵ(k))). In terms of k,

we therefore match the running time of the fastest known

EPAS for the highly restrictive special case of high-

dimensional k-MEANS [1]. Moreover, the dependency

on ϵ in the exponent could be improved by proving better

bounds on the ϵ-scatter dimension of a metric space

of interest, e.g., λ(ϵ) = poly(1/ϵ) implies the EPAS

running time exp(Õ(k) · poly(1/ϵ)).
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II. OVERVIEW OF TECHNIQUES

In this section, we give an informal overview of the

technical ideas appearing in the paper. The main result

will be built step by step: we believe that it is already

interesting to understand our main result specialized

to WEIGHTED k-CENTER and WEIGHTED k-MEDIAN.

Our starting point is the EPAS of Badŏiu et al. [13] for

unweighted k-CENTER that works on high-dimensional

Euclidean spaces. We redesign and change this algo-

rithm in order to be able to present it with a clean

division into two parts: a simple branching algorithm

and a bound on the abstract concept of (algorithmic) ϵ-
scatter dimension. This way, we obtain a sharp separation

between the branching algorithm, which is specific to

the objective and the bound on ϵ-scatter dimension,

which is specific to the metric. This can be contrasted

with techniques based on coresets, which are inherently

specific both to a single objective and to a single metric.

The main message of the paper is that, with the right

combination of additional ideas, this framework can be

significantly generalized both in terms of objectives and

metric spaces.

This section presents the main algorithmic ideas in

three steps.

1) The algorithm for unweighted k-CENTER can be

generalized to WEIGHTED k-CENTER in a not

completely obvious way.

2) Building on the algorithm for WEIGHTED k-

CENTER, we can solve WEIGHTED k-MEDIAN

with a preprocessing and a random selection step.

3) The WEIGHTED k-MEDIAN algorithm can be gen-

eralized to arbitrary monotone norms by consid-

ering infinitely many WEIGHTED k-MEDIAN in-

stances defined by the subgradients.

While some of the challenges on the way may appear

to have other approaches promising at first glance, we

want to emphasize that it is nontrivial to find the combi-

nation of ideas that can be integrated together to obtain

our main result. In particular, for WEIGHTED k-MEDIAN

the initial upper bounds have to be defined carefully in

a way that allows, at the same time, an efficient random

selection step and generalization to arbitrary monotone

norms.

a) WEIGHTED k-CENTER with Bounded Number

of Different Weights: Our starting point is a simple

branching algorithm that is inspired by the EPAS of

Badŏiu et al. [13] for unweighted k-CENTER. Instead of

branching, it will be more convenient for us to present

it as a randomized algorithm. Furthermore, we consider

the more general setting of WEIGHTED k-CENTER: the

objective is to find a set O of k centers that minimizes

maxp w(p)δ(p,O). Let us first present the algorithm

with the simplifying assumption that w is a weight

function on the points whose range contains only at most

τ different values. The unweighted problem corresponds

to w(p) = 1 for every p ∈ P and hence τ = 1. It will

be convenient to assume that we (approximately) know

the value of OPT.

We start with k arbitrarily chosen candidates X =
{x1, . . . , xk} for the k centers. We additionally introduce

k sets of requests Q1, . . . , Qk, where each request is of

the form (p, r) with a point p ∈ P and radius r > 0.

For every κ ∈ [k], we impose the cluster constraint

requiring that, for every (p, r) ∈ Qκ, center xκ should be

at distance at most r from p. Initially, we set Qκ = ∅ for

every κ, which means that these conditions are trivially

satisfied. If we have maxp w(p)δ(p,X) ≤ (1 + ϵ)OPT,

then we can stop, as we have a (1 + ϵ)-approximate

solution at our hands. Otherwise, we have a point p
with δ(p,X) > (1+ϵ)OPT/w(p), while it is at distance

at most OPT/w(p) from some center of a hypothetical

optimum solution O. Thus the algorithm selects a κ ∈ [k]
uniformly at random, hoping it to be the index of the

center that is at distance at most OPT/w(p) from p in

the optimum solution O. Then we introduce the request

(p,OPT/w(p)) into the set Qκ and select xκ to be a

center that satisfies the cluster constraint defined by all

the requests in the updated Qκ. Observe that if every

random choice was compatible with the hypothetical

optimum solution O, then the algorithm is always able

to find such a center, as the requests in Qκ are always

satisfied by the κ-th center of the optimum solution O.

We claim that if the ϵ-scatter dimension of the metric

is bounded, then this algorithm stops after a bounded

number of steps, either by finding an approximate solu-

tion or by failing to find a center satisfying the cluster

constraints of some Qκ. Let x
(1)
κ , . . . , x

(ℓ)
κ be the

different candidates for the κ-th center throughout this

branch. Let (p
(1)
κ , r

(1)
κ ), . . . , (p

(ℓ)
κ , r

(ℓ)
κ ) be the requests

introduced to Qκ: that is, for 1 ≤ j ≤ ℓ, the center

x
(j)
κ was chosen to be at distance at most r

(i)
κ from

every p
(i)
κ for 1 ≤ i < j, but later was found to

be at distance at least (1 + ϵ)r
(j)
κ from p

(j)
κ . As there

are at most τ different weights in the input, at least

ℓ′ = ℓ/τ of these requests have the same radius.

That is, there is a subsequence (x
(s1)
κ , p

(s1)
κ , r

(s1)
κ ), . . . ,

(x
(sℓ′ )
κ , p

(sℓ′ )
κ , r

(sℓ′ )
κ ) where every r

(sj)
κ for j ∈ [ℓ′] is

the same value r ≥ 0. This means that we have a

subsequence (x̄1, p̄1), . . . , (x̄ℓ′ , p̄ℓ′) with the property

that δ(x̄i, p̄i) > (1 + ϵ)r, but δ(x̄i, p̄j) ≤ r for every

i < j. By scaling down every distance by a factor of

r, this is precisely an ϵ-scattering of length ℓ′. If we

consider a class of metrics closed under scaling where

the ϵ-scatter dimension is λ(ϵ), then this sequence cannot

have length longer than λ(ϵ), implying that ℓ ≤ τ ·λ(ϵ).
We can conclude that the algorithm can introduce at most
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τ ·λ(ϵ) requests into each Qκ, hence the algorithm cannot

perform more than k · τ · λ(ϵ) iterations.

If every step of the algorithm randomly chooses an

index κ ∈ [k] that is consistent with the optimum

solution O, then the only way it can stop is by finding

an approximate solution. Therefore, the algorithm is

successful with probability at least q = k−k·τ ·λ(ϵ). The

success probability can be boosted to be a constant arbi-

trarily close to 1 by the standard technique of repeating

the algorithm O(1/q) times, leading to a running time

of kk·τ ·λ(ϵ) · poly(n).

b) WEIGHTED k-CENTER with Arbitrary Weights:

We show now how the algorithm can be extended to

work in the weighted setting with arbitrary weights. Let

us observe first that if there is no bound on the number τ
of different weights, then we cannot bound the number

of requests to a given Qκ, even in very simple metric

spaces such as R1. Suppose for example that the requests

arriving to Qκ are (p(i), (1 + 2ϵ)−i) for i = 1, 2, . . .,
where every p(i) is at the origin (or maybe within a

very small radius of the origin). Then a center x(i) at

(1+2ϵ)1−i satisfies the first i−1 requests, but violates the

constraint of the i-th by more than a (1+ ϵ)-factor. This

sequence can be arbitrarily long, and the existence of

such a sequence shows that we cannot bound the number

of requests arriving to Qκ if we don’t have a bound on

the number of different weights. Nevertheless, we show

that the number of requests can be bounded if we start

the algorithm by carefully seeding the initial requests.

Let us remark that we know other simple modifications

that achieve such a bound, but the technique described

below turns out to be the one that can be extended further

for WEIGHTED k-MEDIAN and general norms.

The main idea is to bootstrap our algorithm with

a constant-factor approximation. A simple greedy 3-

approximation can be obtained following the ideas

of Plesník [23]. Let us consider all the balls

ball(p,OPT/w(p)) for every p ∈ P . Let us consider

these balls in a nondecreasing order of radius, and mark

each ball that does not intersect any of the balls marked

earlier; let ball(pκ,OPT/w(pκ)), 1 ≤ κ ≤ k′ be the

marked balls. We should have k′ ≤ k: otherwise, we

have more than k pairwise disjoint balls and each of

them has to contain a center of the solution, contradicting

the assumption that value OPT can be achieved with

k centers. For 1 ≤ κ ≤ k′, let xi be any center in

ball(pκ,OPT/w(pκ)) and let Qκ = {(pκ,OPT/w(pκ)}.
For k′ < κ ≤ k, we choose xi arbitrarily and let Qκ = ∅.
Let us observe that with this definition of the Qκ’s, we

have δ(p,X) ≤ 3OPT/w(p) during every iteration of

our algorithm. Indeed, if the ball of p was marked, then

X always contains a center in ball(pκ,OPT/w(pκ)); if

the ball of p was unmarked, then it intersects a marked

ball with not larger radius that contains a center of X .

The main claim is that the ratio between the radii

of two requests appearing in Qκ can be bounded by

O(1/ϵ). Suppose that (p, r) and (p′, r′) are two requests

in Qκ (introduced in any order) and we have r′ < ϵr/4.

A center of the optimum solution satisfies both request,

hence we have δ(p, p′) ≤ r + r′. As shown above, at

every step of the algorithm there is a center in X at

distance at most 3r′ from p′; let y be such a center at

the step when request (p, r) was introduced. Then we

have

δ(p, y) ≤ δ(p, p′) + δ(p′, y) ≤ r + r′ + 3r′ ≤ (1 + ϵ)r,

contradicting the need for the first request.

We can use the standard assumption that every weight

is of the form (1 + ϵ)i for some integer i: by rounding

down every weight to the largest number of this form,

we change the objective only by a factor of 1 + ϵ.
If every weight is of the form (1 + ϵ)i, then the

O(1/ϵ) bound proved above implies that the requests

introduced into Qκ for some fixed κ ∈ [k] have

O(1/ϵ · log 1/ϵ) different radii. Therefore, we can bound

the total number of requests (and hence the number of

iterations) by O(λ(ϵ) · k/ϵ · log 1/ϵ). This leads to a

kO(λ(ϵ)·k/ϵ·log 1/ϵ) · poly(n) time randomized algorithm

with constant success probability.

c) From WEIGHTED k-CENTER to WEIGHTED k-

MEDIAN: Towards our goal of understanding general

norms, let us consider now the WEIGHTED k-MEDIAN

problem, where the objective is to find a set O of k
centers that minimize

∑
p w(p)δ(p,O). We will try to

solve this problem by interpreting it as a WEIGHTED

k-CENTER problem on a weighted point set that we

dynamically discover during the course of the algorithm.

We would like to turn the linear constraint∑
p w(p)δ(p,X) ≤ OPT of WEIGHTED k-MEDIAN

into a distance constraint: some point p should be

at distance at most r to the solution. Let X be the

current solution and suppose that
∑

p w(p)δ(p,X) >
(1 + ϵ)OPT. The intuition is that

∑
p w(p)δ(p,X) >

(1 + ϵ)
∑

p w(p)δ(p,O) for an optimum solution O
implies that a nontrivial fraction of the points should

satisfy δ(p,X) > (1+ϵ/3)δ(p,O), that is, their distances

to the solution has to be improved by more than a

factor of 1 + ϵ/3. More precisely, an easy averaging

argument shows if we select a point p with probability

proportional to w(p)δ(p,X), then p satisfies δ(p,X) >
(1 + ϵ/3)δ(p,O) with probability Ω(ϵ). We call such

a point p an ϵ/3-witness, certifying that the current

solution has to be improved.

Assuming that the sampled point p is indeed a ϵ/3-

witness, we proceed as in the case of WEIGHTED k-

CENTER. We randomly choose an index κ and introduce

the request (p, δ(p,X)/(1+ϵ/3)) into Qκ, to update the

cluster constraint by requiring that xκ should be closer
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to p than in the current solution. If there is a center

satisfying all the requests in Qκ, then we update xκ.

These steps are repeated until we arrive to a solution P
with

∑
p w(p)δ(p,X) ≤ (1 + ϵ)OPT.

In each step, with probability Ω(ϵ/k), the algorithm

chooses an ϵ/3-witness p and a center κ that is consistent

with some hypothetical optimum solution O. However,

it is not clear how to bound the running time of the

algorithm. It can happen that the requests arriving to

Qκ have smaller and smaller radii. As we have seen for

WEIGHTED k-CENTER, in such a scenario we cannot

bound the number of steps even in R1 It is crucial to

have some control on the sequence of radii that appear

in the requests. Therefore, next we show how to ensure

that the radii in the requests to center κ stay within a

bounded range.

d) Initial Upper Bounds: For each point p, we

compute a weak upper bound u(p) ≥ δ(p,O) on

the distance to the optimum solution. Then instead of

starting with an arbitrary set of k centers, we bootstrap

the algorithm by a solution approximately satisfying all

these upper bounds. We argue that this can be done in

such a way that ensures that the radii appearing in the

requests to each center κ stay within a bounded range.

If a point p∗ has weight w(p∗), then u(p∗) =
OPT/w(p∗) is an obvious upper bound on the

distance of p∗ to O: otherwise, we would have∑
p w(p)δ(p,O) ≥ w(p∗)δ(p∗, O) > OPT. This bound

was sufficient for the WEIGHTED k-CENTER problem,

but the nature of WEIGHTED k-MEDIAN allows us to get

much stronger upper bounds in many cases. For example,

if there are c points of the same weight w roughly at the

same position, then each of them should be at distance

at most OPT/(wc) from O. Indeed, otherwise the total

contribution of these c points to the sum would be greater

than OPT. More generally, if there is a radius r such

that total weight of the points at distance at most r from

p is at least OPT/r, then we claim that p is at most

distance 2r from O. Indeed, otherwise all these points

would be at distance more than r from O, making their

total contribution greater than OPT. Therefore, we can

define u(p) = 2r, where r is the smallest radius with the

property that the total weight of the points at distance at

most r from p is at least OPT/r. Note that u(p) can be

determined in polynomial time from the weights of the

points and their distance matrix.

Similarly to our WEIGHTED k-CENTER algorithm, we

start with a 3-approximation of the constraints given by

the upper bounds u(p) for p ∈ P . Let us go through

the points in a nondecreasing order of u(p) and let us

greedily choose a maximal independent set of the balls

ball(p, u(p)). We should find at most k such balls. Let

us choose a center in each ball; it is easy to see that

every point p has a selected center at distance at most

3u(p) from it. If center xκ was selected to be a center

in ball(p, u(p)), then we initialize Qκ with the request

(p, u(p)). This ensures that during every step of the

algorithm, it remains true that every point p is at distance

at most 3u(p) from the current solution.

We run the algorithm for WEIGHTED k-MEDIAN with

this initial solution. Before analyzing the algorithm, let

us make a nontrivial change in the random selection.

We have seen that with probability Ω(ϵ/k), we select

a random point p and κ ∈ [k] such that δ(p,X) ≥
(1 + ϵ/3)δ(p,O) for some optimal solution O. A key

claim of the proof is that with probability Ω(ϵ/k), it is

also true that u(p) ≤ 2kδ(p,X)/ϵ (see Lemma V.10).

Intuitively, the total contribution of the ϵ/3-witnesses

that are too close to some center xκ ∈ X cannot be

very large, because then all of these witnesses would

be in a small ball, implying that the upper bound u(p)
should be smaller. Note that this is the point in the proof

where we crucially utilize the exact definition of u(p).
With this claim at hand, we can modify the algorithm

such that we are randomly choosing a point p satisfying

u(p) ≤ 2kδ(p,X)/ϵ, with probability proportional to

w(p)δ(p,X). It remains true that p is an ϵ/3-witness

with probability Ω(ϵ/k).

Let us analyze now the algorithm and bound the

number of times a center xκ is updated. We want to

argue that the radius in the requests remains in a bounded

range. Suppose that we update cluster κ with requests

(p, r) and (p′, r′) (in either order) such that r′ ≪ ϵ2r/k.

If the algorithm does not fail, then there is a center

xκ satisfying both requests. By the triangle inequality,

this means that the δ(p, p′) ≤ r + r′ < r + ϵr/6.

Furthermore, by the constraint u(p′) ≤ 2kδ(p′, X)/ϵ =
2k(1 + ϵ/3)r′/ϵ on our selection of the random point

p′, we have that u(p′) is much smaller than ϵr/18. At

every step of the algorithm, the upper bound u(p′) is 3-

approximately satisfied by the current solution X . Thus

there should be a center in X much closer than ϵr/6 to

p′. Together with δ(p, p′) < r+ϵr/6, it follows that there

is always a center in X at distance at most (1 + ϵ/3)r
from p, contradicting the need for the request (p, r).

Thus the combination of the two facts that (1) the

upper bounds are always satisfied approximately and that

(2) the radius in the request is not much smaller than

the upper bound implies that the radius in the requests

stays within a bounded range. Then we can argue as

in the case of the WEIGHTED k-CENTER problem. If

every weight is rounded to a power of (1+ ϵ), then each

cluster is given requests with only a bounded number of

different radii. If many requests arrive, then there is a

long subsequence of the requests with the same radius.

This means that the bound on the ϵ-scatter dimension

can be used to bound the length of this subsequence,

and hence the total number of requests to all clusters.
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e) From WEIGHTED k-MEDIAN to General Norms

Using Subgradients: Next we show how to solve the

clustering problem for an arbitrary monotone norm by

interpreting it as collection of WEIGHTED k-MEDIAN

instances that we need to satisfy simultaneously. We will

repeatedly solve such WEIGHTED k-MEDIAN instances

that are dynamically discovered during the course of the

algorithm.

It will be convenient to use the notion of subgradients.

For our purposes, it is sufficient to discuss subgradients

in the context of a monotone norm f : Rn → R. We say

that g is a subgradient of f at point x if f(x) = g⊺x and

f(y) ≥ g⊺y for every y ∈ Rn. It is known that every

monotone norm has a nonnegative subgradient g ≥ 0 at

every point x ≥ 0. Checking whether a vector g is a

subgradient at x and finding a subgradient at x can be

formulated as convex optimization problems, hence can

be (approximately) solved using the ellipsoid method if

f can be efficiently computed (or approximated) [42].

Suppose that we have a current solution X and let

x ∈ RP
≥0 be the vector representing the distances of the

points in P to X . Suppose that X is not (approximately)

optimal: f(x) > (1+ ϵ)OPT. Let us compute a sugradi-

ent g of f at x; we have g⊺x = f(x) > (1+ϵ)OPT and

g⊺y ≤ f(y) = OPT for the optimum solution y. That

is, g⊺x ≤ OPT is a linear constraint satisfied by the

optimum solution and violated by the current solution.

Then defining the weights w(p) based on the coordinates

of g gives an instance of WEIGHTED k-MEDIAN, with∑
p w(p)δ(p,X) > (1 + ϵ)OPT for the current solution

X . Now we can proceed as above for the WEIGHTED

k-MEDIAN problem: we randomly choose a point p and

cluster κ, introduce a new request into Qκ, find a new

center xκ, etc., until we arrive to a solution X with∑
p w(p)δ(p,X) ≤ (1 + ϵ)OPT. If this new solution X

is still nonoptimal for the original norm problem, that

is, f(x) > (1 + ϵ)OPT, then we can again compute

a subgradient, find a violated linear constraint (possibly

the same as in the previous step). We repeat this until

we find a solution with f(x) ≤ (1 + ϵ)OPT.

Defining the upper bounds and bootstrapping the algo-

rithm with a solution approximately satisfying the upper

bounds were crucial for the analysis of the WEIGHTED

k-MEDIAN algorithm. For general norms, we can again

define the upper bounds once we have the weights w
based on the violated linear constraint g⊺x ≤ OPT.

However, these upper bounds would not be useful for

the analysis, as they would depend on the violated linear

constraint, hence would change during the algorithm.

Intuitively, we can see the constraint f(x) ≤ OPT as

an infinite number of WEIGHTED k-MEDIAN instances,

corresponding to the linear constraints g⊺x ≤ OPT for

every subgradient g of f . We would like to define u(p) to

be the smallest possible upper bound that can be assigned

to p among all of these infinitely many WEIGHTED k-

MEDIAN instances. Determining this value seems to be

a difficult task, but actually the answer is very simple.

Recall that u(p) was defined as twice the smallest r
such that ball(p, r) contains total weight at least OPT/r.

Thus to define the upper bound u(p), we need to know

what the maximum weight of the points in ball(p, r)
can be among the infinitely many instances correspond-

ing to all the subgradients. Let b be the characteristic

vector of ball(p, r) (i.e., every coordinate is 1 or 0,

depending on whether a point is in or not in the ball).

Then the question is to determine the maximum of g⊺b

among all subgradients g. It is easy to see that this

maximum is exactly f(b): if g is a subgradient at b,

then g⊺b = f(b); if g is a subgradient at an arbitrary

point y, then g⊺b ≤ f(b). Thus we can determine the

maximum weight of any ball and define the upper bounds

accordingly. With these definitions, the analysis of the

WEIGHTED k-MEDIAN algorithm go through for general

mononote norms. The two main properties of the upper

bounds remain valid: (1) the upper bounds are satisfied

by the optimum solution and (2) we can restrict our

random choice of p to points where the distance to the

solution is not much smaller than u(p).

In summary, the final algorithm consists of the fol-

lowing steps (see Figure 3). First we compute the upper

bounds u(p) and greedily find a 3-approximate solution

satisfying these constraints. Then we repeat the following

steps until we reach a solution X for which the distance

vector x satisfies f(x) ≤ (1 + ϵ)OPT. We compute

a subgradient g of f at x to obtain a violated linear

constraint g⊺x ≤ OPT. We randomly choose a point

p (according to the distribution described above) and

require that p be at most distance δ(p,X)/(1 + ϵ/3)
from the solution, that is, we obtain a violated distance

constraint. Then we randomly choose a cluster κ ∈ [k]
and require that this distance constraint be satisfied by

center xκ. Thus we put the request (p, δ(p,X)/(1+ϵ/3)
into Qκ find a new xκ that satisfy the cluster constraints

imposed by the requests in Qκ, if possible. We repeat

these steps until we arrive to a solution X with distance

vector x satisfying f(x) ≤ (1 + ϵ)OPT. Our analysis

shows that each step is consistent with a hypothetical

optimum solution O with probability Ω(ϵ/k). Moreover,

if ϵ-scatter dimension is bounded, then the algorithm

has to find a solution or fail after a bounded number

of iterations.

f) (Algorithmic) ϵ-Scatter Dimension: After the

general algorithm capable of handling any monotone

norm objective, our second main contribution is bound-

ing the ϵ-scatter dimension of various classes of metrics

(Section VI). In the interest of space, we do not go into

the details of these (mostly combinatorial) proofs, but

give only a brief overview.
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Fig. 3: Overall structure of the main algorithm.

• Bounded Doubling Dimension. As outlined in the

introduction, the set of points as well as the set of

centers in an ϵ-scattering both form an ϵ-packing

of a unit ball implying that any metric of doubling

dimension d has ϵ-scatter dimension (1/ϵ)O(d). See

Theorem I.3.

• Bounded-Treewidth Graph Metrics. The ϵ-scatter

dimension bound for metrics defined by the shortest

path metric of bounded-treewidth graphs is obtained

by a delicate combinatorial proof that exploits both

structure of the graph and properties of the ϵ-

scattering. The bound we obtain is tw1/ϵO(tw)

for

graphs of treewidth tw, that is, double exponential

in tw for fixed ϵ. It remains is an interesting open

question if this bound can be improved.

• Planar Graph Metrics. As outlined in the intro-

duction, we can employ a known metric embedding

result to reduce the problem of bounding the ϵ-
scatter dimension of planar graphs to bounding the

ϵ-scatter dimension of bounded-treewidth graphs.

In particular, the result by Fox-Epstein, Klein,

and Schild [16] provides an (approximate) metric

embedding of planar metrics into low-treewidth

metrics, which can be used to obtain a 22
poly(1/ϵ)

bound on the ϵ-scatter dimension of planar graph

metrics.

• Continuous High-Dimensional Euclidean Space.

As mentioned in the introduction, the high-

dimensional Euclidean space does not have

bounded ϵ-scatter dimension. However, in the con-

tinuous Euclidean space, where any point of the

space can be a center, we can bound the algorithmic

ϵ-scatter dimension. Towards this, we replace the

center player by an algorithmic “player” applying

the algorithm by Kumar and Yildirim [43] for

WEIGHTED 1-CENTER. To achieve bounded algo-

rithmic ϵ-scatter dimension, this algorithm would

require, however, a bounded aspect ratio of the

radii in the input requests. We therefore prove an

aspect-ratio condition (which holds even for general

metrics) implying that it is sufficient for the algo-

rithm to handle instances with aspect-ratio O(1/ϵ).
We combine this result with the algorithm by Ku-

mar and Yildirim to prove bounded algorithmic ϵ-
scatter dimension for continuous high-dimensional

Euclidean space, that is, Theorem I.7.

III. PRELIMINARIES

a) Classes of Metric Clustering Spaces: A metric

clustering space (or metric space for brevity) is a triple

M = (P, F, δ) where P is a finite set of n data points, F
is a (possibly infinite) set of potential locations of cluster

centers, and δ is a metric on P ∪ F . Sets P and F are

not necessarily disjoint. (For example, it is natural for

clustering problems to have P = F or P ⊆ F .) Given

any point u ∈ P ∪ F in the metric space and a radius

r ∈ R+, we denote by ballδ(u, r) = { v ∈ P ∪ F |
δ(u, v) ≤ r } the ball of radius r centered around u. We

drop the subscript δ if the distance function is clear from

the context.

By |M | we denote the space needed to represent the

metric space M in the memory. If M is finite then |M | is
polynomial in |F |, |P | and the space needed for storing

a point and a center, respectively. If F is infinite (for

example, in the continuous Euclidean setting, F = Rd),

|M | is polynomial in |P | and the space of storing a point.

A class M of metric spaces is a (infinite) set of

metric spaces. This paper focuses on metric classes

that are closed under scaling distances by a constant.

We consider the following classes of metric clustering

spaces:

• Graph Metric: In the case of graph metric, we are

given a (weighted) graph G = (V,E) and the metric

δG on V as the shortest path metric, i.e., δG(u, v) is

the shortest distance of a path connecting u and v.

The clustering space (P, F, δG) is given such that

P, F ⊆ V .
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• Continuous Euclidean Spaces: In this case, we

are allowed to choose centers from the (high-

dimensional) continuous Euclidean space F = Rd.

The set P ⊊ Rd is a finite set of points.

• Doubling Metric: The doubling dimension of a

metric space (X, δ), denoted as d, is the smallest

m > 0 such that every ball of radius r in the

metric can be covered by 2m balls of radius r
2 . Note

that a d-dimensional Euclidean metric has doubling

dimension O(d).

b) Treewidth: A tree decomposition of a graph G
is a pair (T, β) where T is a tree, β : V (T ) → 2V (G),

V (T ) and V (G) denote the vertices of the tree T and

G respectively, with the following properties.

1) For each v ∈ V (G), there exists t ∈ V (T ) such

that v ∈ β(t),
2) For each (u, v) ∈ E(G), there exists t ∈ V (T ) such

that u, v ∈ β(t), and

3) For each v ∈ V (T ), the subgraph induced by T on

{t : v ∈ β(t)}, is connected.

The width of the tree decomposition (T, β) is

maxt∈V (T ) |β(t)| − 1. The treewidth of a graph G is

the minimum width over all tree decompositions of G.

Subgradients of Norms: We state definitions and

summarize basic facts about subgradients of norms that

we will use throughout the paper.

Fact III.1. Any norm is a convex function.

Definition III.2 (Subgradient). A subgradient of a con-

vex function f : Rn → R at any point x ∈ Rn is any

g ∈ Rn such that the following holds for every y ∈ Rn

f(y) ≥ f(x) + g⊺(y − x);

we denote by ∂f(x) the set of subgradients of f at x.

The following fact summarizes various useful prop-

erties of subgradients specialized to norm functions.

Because we are apply norm objectives exclusively to

non-negative distance vectors, we call (slightly abusing

terminology) a restriction of a norm to Rn
≥0 a norm as

well.

Fact III.3 ([17]). Let f : Rn
≥0 → R≥0 be a norm and

x ∈ Rn
≥0. If g is a subgradient of f at x, then f(x) =

g⊺x and f(y) ≥ g⊺y for all y ∈ Rn
≥0. Further, if f

is monotone, there exists a subgradient g ∈ ∂f(x) such

that g ≥ 0.

The following observation is an immediate conse-

quence of Fact III.3.

Observation III.4. Let ∂f =
⋃

y∈R
n
≥0

∂f(y) be the set

of all subgradients of f . Then for any x ∈ Rn
≥0, we have

that

f(x) = max
g∈∂f

g⊺x .

Definition III.5 (ϵ-Approximate Subgradient). Let

f : Rn
≥0 → R≥0 be a norm and let ϵ > 0. We define

the set ∂ϵf(x) of ϵ-approximate subgradients of f at

x to contain all g ∈ Rn
≥0 such that the following two

conditions hold

(i) f(y) ≥ g⊺y for each y ∈ Rn
≥0, and

(ii) f(x) ≤ (1 + ϵ)g⊺x .

It is known that approximate subgradients of convex

functions can be computed efficiently via an (approx-

imate) value oracle for the function through reductions

shown by Grötschel, Lovasz and Schrijver in their classic

book [42]. While the reduction in [42] appears to take at

least Ω(n10) calls to the oracle, there exist faster methods

assuming additional properties of the convex function,

for example, see [44], [45]. Specifically for ℓp norms,

closed formulas describing the sets of subgradients are

known and used in practice.

Some Terminology and Notation: Let M =
(P, F, δ) be a clustering space on n = |P | data points.

Let b ∈ RP
≥0 be an n-dimensional vector. We interpret

b as assigning each point p ∈ P a non-negative value

denoted b(p). That is, b = (b(p))p∈P . For example, given

a subset X ⊆ F of centers, we define the distance vector

δ(P,X) = (δ(p,X))p∈P . If B ⊆ P is a subset of points

then 1B ∈ {0, 1}
P denotes the characteristic vector of

B, that is, it assigns value 1 to any b ∈ B and 0 to any

p ∈ P \B. If p ∈ P and α ≥ 0 then we denote by 1p,α

the binary vector 1ball(p,α)∩P .

IV. ϵ-SCATTER DIMENSION

In this section, we introduce the concept of ϵ-scatter

dimension formally, which plays a central role in our

algorithmic framework. The following definition is a

formalization of the “center-point game” presented in

the introduction.

Definition IV.1 (ϵ-Scatter Dimension). We are given a

class M of finite metric spaces, a space M = (P, F, δ)
in M, and some ϵ ∈ (0, 1). An ϵ-scattering in M is a

sequence (x1, p1) . . . , (xℓ, pℓ) of center-point pairs xi ∈
F , pi ∈ P , i ∈ [ℓ] such that

δ(xi, pj) ≤ 1 for all 1 ≤ j < i ≤ ℓ (covering)

δ(xi, pi) > 1 + ϵ for all i ∈ [ℓ] (ϵ-refutation)

The ϵ-scatter dimension of M is the maximum length of

an ϵ-scattering in it. The ϵ-scatter dimension ofM is the

supremum of the ϵ-scatter dimension over all M ∈M.

Note that for any ϵ-scattering (x1, p1), . . . , (xℓ, pℓ),
any subsequence (xi1 , pi1), . . . , (xiℓ′ , piℓ′ ) where i1 <
· · · < iℓ′ and ℓ′, ij ∈ [ℓ], j ∈ [ℓ′] is an ϵ-scattering as

well.

As described in Theorem I.8, we show that bounded

(algorithmic) ϵ-scatter dimension is essentially suffi-

cient to yield an EPAS for NORM k-CLUSTERING in
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the respective metric space. In Section VI-B we show

that bounded treewidth and planar graph metrics, and

bounded doubling metrics have bounded ϵ-scatter dimen-

sion. This allows us to obtain EPASes in all these met-

rics. To handle high-dimensional Euclidean space, we

resort to an algorithmic version of ϵ-scatter dimension.
Optimizing the Centering Strategy: Recall the ex-

ample from the introduction showing that the ϵ-scatter

dimension of the high-dimensional (continuous) Eu-

clidean space Rd is be unbounded. We constructed an

ϵ-scattering (x1, p1), . . . , (xd−1, pd−1) where xi is the

i-th unit vector scaled by 1/
√
2 and where pi = −xi for

all i ∈ [d − 1]. Note that in this example the unit ball

around the origin contains all the points in the sequence.

Hence, the above example would collapse if the center

player would improve her strategy. This motivates us to

consider a variant where we replace the center player

with an algorithm that computes centers more prudently.

Further, employing algorithms allows us also to handle

infinite spaces.
BALL INTERSECTION Problem and Algorithm:

Towards this, we formalize the algorithmic problem the

center player has to solve. We adopt and generalize a

dual interpretation of the center-point game in which the

center player is trying to find a center in the intersection

of all unit balls around the points played by the point

player. In fact, we consider the more general setting of

non-uniform balls where each point p in the scattering

has its own dedicated radius r.

Let M be a class of metric spaces (P, F, δ) with

possibly infinite center sets F . We define the following

search problem.

BALL INTERSECTION

Input: A metric space M = (P, F, δ) ∈ M, a set

finite set Q ⊊ P × R+ of distance constraints.

Output: A point x ∈ F satisfying all distance

constraints, that is, δ(x, p) ≤ r for each (p, r) ∈ Q,

if such a point exists and “fail” otherwise.

For finite metric spaces, the BALL INTERSECTION

problem can be solved efficiently by exhaustively search-

ing the center space F . Unfortunately, we are not

aware of exact algorithms for BALL INTERSECTION for

certain infinite metric spaces such as high-dimensional

continuous Euclidean space. We therefore work with

approximate algorithms. To define this formally, we say

that a center x ∈ F η-satisfies the distance constraint

(p, r) ∈ Q for some error parameter η > 0, if

δ(x, p) ≤ (1+η)r. Let CM be a (deterministic) algorithm

whose input is an instance of BALL INTERSECTION and

an error parameter η > 0. The algorithm is called an

approximate BALL INTERSECTION algorithm (or BALL

INTERSECTION algorithm for short) if it satisfies the

following conditions.

(i) The algorithm outputs a center that η-satisfies all

distance constraints or it fails.

(ii) If there exists a center satisfying all points distance

constraints exactly, then the algorithm does not fail.

(iii) The running time of CM is poly(|M |, 1/η).

We remark that there is an approximate BALL IN-

TERSECTION algorithm for high-dimensional Euclidean

space [43], which we employ in Section VI-D to prove

bounded algorithmic ϵ-scatter dimension of this metric.

Algorithmic ϵ-Scatter Dimension: The definition of

algorithmic ϵ-scatter dimension is based on the notion

of (CM, ϵ)-scattering, which is a variant of ϵ-scattering:

Centers are chosen via an (approximate) BALL INTER-

SECTION algorithm CM rather than by an adversar-

ial center-player. Intuitively, we maintain a dynamic

instance of BALL INTERSECTION that is augmented

by adding distance constraints (p, r) one by one. In

the context of (CM, ϵ)-scattering, we call the distance

constraints (p, r) requests, which are satisfied by the

BALL INTERSECTION algorithm sequentially.

Definition IV.2 (Algorithmic ϵ-Scatter Dimension). Let

M be a class of metric spaces with BALL INTERSEC-

TION algorithm CM, let M = (P, F, δ) be a metric in

M, and let ϵ ∈ (0, 1) Moreover, let pi ∈ P , xi ∈ F , and

ri ∈ R+ for each i ∈ [ℓ] where ℓ is a positive integer.

The sequence (x1, p1, r1), . . . , (xℓ, pℓ, rℓ) is called an

(CM, ϵ)-scattering if the following two conditions hold.

(i) We have xi =
CM(M, {(p1, r1), . . . , (pi−1, ri−1)}, ϵ/2) for

each 2 ≤ i ≤ ℓ. (There is no requirement

regarding the first center x1 in the sequence.)

(ii) Moreover, δ(xi, pi) > (1 + ϵ)ri for each i ∈ [ℓ].

We say that M has algorithmic (ϵ, CM)-scatter dimen-

sion λM(ϵ) if any (CM, ϵ)-scattering contains at most

λM(ϵ) many triples with the same radius value. The

algorithmic ϵ-scatter dimension of M is the minimum

algorithmic (ϵ, CM)-scatter dimension over any BALL

INTERSECTION algorithm CM for M.

When the familyM is clear from the context we drop

the subscript M from λM(ϵ) and CM. Note that, in

contrast to the ϵ-scatter dimension, for algorithmic ϵ-
scatter dimension we demand that the number of triples

per radius value be bounded rather than the total length

of the sequence. In fact, this stronger requirement would

not hold for high-dimensional Euclidean spaces whereas

the weaker (algorithmic) requirement turns out to be

sufficient for our results. Another noteworthy difference

is that a subsequence of an (CM, ϵ)-scattering is not

necessarily a (CM, ϵ)-scattering itself because it may not

be consistent with the behavior of algorithm CM.

Relation Between Algorithmic and non-Algorithmic

ϵ-Scatter Dimension: The following lemma shows that
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the algorithmic ϵ-scatter dimension indeed generalizes

the ϵ-scatter dimension for finite metric spaces.

Lemma IV.3. Any class of finite, explicitly given, metric

spaces with ϵ-scatter dimension λ(ϵ) has also algorith-

mic ϵ-scatter dimension λ(ϵ).

Proof. Let M = (P, F, δ) be a metric space in the given

class along with a set Q of distance constraints. Our

BALL INTERSECTION algorithm exhaustively searches

F to find a center x satisfying all distance constraints

exactly. If no such point exists the algorithm fails. Let C
denote this algorithm. Consider any (CM, ϵ)-scattering.

Notice that any sub-sequence of triples with the same

radius value forms an ϵ-scattering. Hence the sequence

contains at most λ(ϵ) many triples for any radius value.

Aspect-Ratio Lemma for Algorithmic ϵ-Scatter Di-

mension: The following is a handy consequence of

bounded algorithmic ϵ-scatter dimension that we use in

proving our result. It strengthens the properties of an

(CM, ϵ)-scattering by bounding the number of triples

whose radii lie in an interval of bounded aspect-ratio

(rather than bounding the number of triples with the

same radius value).

Lemma IV.4. Let M be a class of metric spaces of

algorithmic ϵ-scatter dimension λ(ϵ). Then there exists

a BALL INTERSECTION algorithm CM with the fol-

lowing property. Given ϵ ∈ (0, 1), a > 0, and τ ≥
2, any (CM, ϵ)-scattering contains O(λ(ϵ/2)(log τ)/ϵ)
many triples whose radii lie in the interval [a, τa].

Proof. It suffices to show the weaker claim that the

number of requests in the interval [a, (1 + ϵ/100)a] is at

most 2λ(ϵ/2). This claim implies the lemma because the

interval [a, τa] can be covered with O((log τ)/ϵ) many

intervals of the form [(1+ ϵ/100)j , (1+ ϵ/100)j+1], j ∈ Z.

Let AM be an BALL INTERSECTION algorithm such

that the algorithmic (ϵ,AM)-scatter dimension is λ(ϵ).
Let η ∈ (0, 1) be the input error parameter. Consider

the BALL INTERSECTION algorithm CM that works as

follows. For any of the input requests (p, r) we round r
to r′, which is the smallest power of 1+η/50 larger than r.

We then invoke AM on the rounded requests with error

parameter η/2 and output the center returned by AM.

Clearly, this algorithm is an (1 + η)-approximate BALL

INTERSECTION algorithm (for the original requests).

Consider any algorithmic (CM, ϵ)-scattering

(x1, p1, r1), . . . , (xℓ, pℓ, rℓ). Let r′i, i ∈ [ℓ]
be the rounded radii computed by CM. Let

ϵ′ = ϵ/2. Let 1 ≤ j < i ≤ ℓ. We have

δ(xi, pi) > (1+ϵ)ri ≥ (1+ϵ)/(1+ϵ/100)r′i ≥ (1+ϵ′)r′i.
Moreover, we have δ(xi, pj) ≤ (1 + ϵ′/2)r′i. Hence, the

sequence (x1, p1, r
′
1), . . . , (xℓ, pℓ, r

′
ℓ) is an algorithmic

(CM, ϵ′)-scattering. The radii in the requests (pi, ri),
i ∈ [ℓ] that lie in the interval [a, (1 + ϵ/100)a] are

rounded by CM to at most two distinct radius values

because CM is invoked with error parameter η = ϵ/2.

Hence the (unrounded) sequence contains at most

2λ(ϵ′) = 2λ(ϵ/2) many triples with radii in the interval

[a, (1 + ϵ/100)a]. This completes the proof of the claim

and therefore of the lemma.

V. FRAMEWORK FOR EFFICIENT PARAMETERIZED

APPROXIMATION SCHEMES

Main Result: We are now ready to state our main

result. In the remainder of this section, we prove the

following theorem, restated from the introduction. In

Section V-A, we describe the EPAS and give some

intuition. In Section V-B, we give a full, technical

analysis.

Theorem I.8. Let M be a class of metric spaces that

is closed under scaling distances by a positive constant.

There is a randomized algorithm that computes for any

NORM k-CLUSTERING instance I = (M,f, k) with

metric M = (P, F, δ) ∈ M, and any ϵ ∈ (0, 1), with

high probability a (1 + ϵ)-approximate solution if the

following two conditions are met.

(i) There is an efficient algorithm evaluating for any

distance vector x ∈ RP
≥0 the objective f(x) in time

T (f).
(ii) There exists a function λ : R+ → R+, such that

for all ϵ > 0, the algorithmic ϵ-scatter dimension

of M is at most λ(ϵ).

The running time of the algorithm is

exp
(
Õ
(

kλ(ϵ/10)
ϵ

))
· poly(|M |) · T (f).

A. Algorithm

Our algorithm is stated formally in Algorithm 1.

We informally summarize the key steps of our algo-

rithm, which we also outlined partially in the technical

overview. We also give some intuition of the analysis.

Using standard enumeration techniques, we assume

that we know (a sufficiently exact approximation of)

the optimum objective function value OPT. Our goal

is to satisfy the convex constraint f(x) ≤ (1 + ϵ)OPT

imposed on the distance vector x ∈ RP
≥0 (which repre-

sents the distance vector δ(P,X) induced by the feasible

solution X ⊆ F ). By Observation III.4, this constraint is

equivalent to (infinitely many) linear constraints w⊺x ≤
(1 + ϵ)OPT where w ∈ ∂f is any subgradient of f .

To illustrate the main idea, we first describe a highly

simplified, but failed attempt. We consider in each itera-

tion of the while-loop (lines 8–15) a candidate solution

X . If f(x) ≤ (1+ϵ)OPT, then we are done. Otherwise,

we compute an (ϵ/10-approximate) subgradient w of f at

x in line 9. Since w⊺x = f(x) > (1+ϵ)OPT, this con-

stitutes a violated linear constraint. Consider sampling a

14



point p ∈ P with probability proportional to its contribu-

tion w(p)δ(p,X) to the objective f(x) = w⊺x (line 11).

An averaging argument shows that with probability Ω(ϵ),
the sampled point p satisfies δ(p,X) > (1 + ϵ/3)δ(p,O)
for some fixed hypothetical optimum solution O. In this

event, we identified a violated distance constraint, and

call p an ϵ/3-witness for X . We assign p to a cluster

κ ∈ [k] picked uniformly at random, which equals the

correct cluster of p in O with probability 1/k. Assuming

that both events occur, this allows us to add the request

(p, r) with radius value r = δ(p,X)/(1 + ϵ/3) to the

cluster constraint Qκ imposed on the cluster with index

κ. (See lines 13 and 14.) Here, we refer to the set Qκ

of requests for cluster κ as cluster constraint of κ.

Fix cluster index κ ∈ [k]. Let

(p
(1)
κ , r

(1)
κ ), . . . , (p

(ℓ)
κ , r

(ℓ)
κ ) be the sequence of

requests added to the cluster constraint associated

with cluster κ. Let x
(i)
κ , i ∈ [ℓ] be the center of

cluster κ just before adding the request (p
(i)
κ , r

(i)
κ )

to Qκ. The key observation is that the sequence

of triples (x
(1)
κ , p

(1)
κ , r

(1)
κ ), . . . , (x

(ℓ)
κ , p

(ℓ)
κ , r

(ℓ)
κ ) forms

an algorithmic ϵ-scattering. We would like to argue

that the length of this sequence is bounded because

the algorithmic ϵ-scatter dimension is bounded.

Unfortunately, the scatter dimension bounds only the

number of triples per radius value but not the overall

length of the sequence.

To address this issue, we compute in line 1 an initial

upper bound u(p) on the radius of any point p ∈ P . We

(approximately) satisfy these initial distance constraints

for all points in a greedy pre-processing step (see lines 2–

7). We maintain the distance constraints during the main

phase by adding them as initial requests (see line 5).

The upper bound u(p) is a rough estimate of the smallest

radius r that may be imposed on p as part of any request

(p, r). We modify the sampling process in the main phase

(see line 11) to sample only from a subset of points

whose distance to X is not much smaller than their initial

upper bound u(p). We show via a careful argument that

every request (p, r) we make is consistent with O with

probability Ω(ϵ/k). We argue, moreover, that all radii

of requests made for a particular cluster are within a

factor O(k/ϵ2) of each other. The initial upper bounds

are computed by detecting “dense” balls (line 1) in the

input instance in the sense that they would receive high

weight by some subgradient of the objective norm and

would therefore require that any near-optimal solution

must place a center in the vicinity of that dense ball.

B. Analysis

Overview: The analysis consists of establishing the

following three facts. First, if the algorithm terminates

without failure, it computes a (1+ϵ)-approximation. Sec-

Algorithm 1: Framework for NORM k-

CLUSTERING

Data: Instance

I = ((P, F, δ), k, f : RP
≥0 → R≥0) of

NORM k-CLUSTERING, error parameter

ϵ ∈ (0, 1), OPT > 0, BALL

INTERSECTION algorithm C according to

Lemma IV.4

Result: Solution X of cost at most (1 + ϵ)OPT

if solution of cost at most OPT exists

1 For each p ∈ P , compute

u(p) = min{α > 0 | f(1p,α/3) ≥ 3OPT/α };
2 Sort P in non-decreasing order of u(p);
3 Mark pi ∈ P if ball(pi, u(pi)) is disjoint from

ball(pj , u(pj) for every j < i;

4 Let p(1), . . . , p(k
′) be the marked points.;

// Lemma V.5 shows that k′ ≤ k
5 Let Qκ = {(p(κ), u(p(κ)))} for all κ ∈ [k′];
6 Let Qκ = ∅ for all κ with k′ < κ ≤ k;

7 Let X = (x1, . . . , xk) be any set of centers

where xκ satisfies the requests in Qκ;

8 while f(δ(P,X)) > (1 + ϵ)OPT do

9 w ← ϵ/10-subgradient of f at δ(P,X);

10 A←
{
p ∈ P | δ(p,X) ≥ ϵu(p)

1000k

}
;

11 Sample an element p ∈ A where

Pr [p = a] = w(a)δ(a,X)∑
b∈A w(b)δ(b,X) for any a ∈ A;

12 Pick cluster κ ∈ [k] for p uniformly at

random;

13 Qκ ← Qκ ∪ {(p, δ(p,X)/(1 + ϵ/3))};
14 xκ ← C(Qκ, ϵ/10) if no xi was found then

fail ;

15 end

16 return X;

ond, the algorithm terminates—with or without failure—

after a number of iterations that depends on k and ϵ only.

Third, the algorithm does not fail with a probability that

depends only on k and ϵ as well.

The first step of the analysis follows immediately from

the stopping criterion (line 8) of the while loop.

Observation V.1 (Correctness). If the algorithm ter-

minates successfully (that is, without failure), then it

outputs a (1 + ϵ)-approximate solution.

The second step of the analysis is summarized in the

following lemma, which we prove in Subsection V-B1.

Lemma V.2 (Runtime bound). The algorithm terminates

after O
(

k(log k/ϵ)λ(ϵ/10)
ϵ

)
iterations—with or without

failure.

With these two insights at hand, we are left with the
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third step summarized by the following lemma, which

we prove in Subsection V-B2.

Lemma V.3 (Probability bound). The algorithm termi-

nates successfully (that is, without failure) with proba-

bility exp
(
−Õ

(
kλ(ϵ/10)

ϵ

))
.

We repeat the algorithm exp
(
Õ
(

kλ(ϵ/10)
ϵ

))
many

times and hence succeed with high probability by

Lemma V.3.

The remainder of this section is dedicated to proving

Lemmas V.2 and V.3, thereby completing proof of the

main Theorem I.8.

1) Bounding the Number of Iterations: In this sub-

section, we prove Lemma V.2. The proof consists in

three steps. First, we argue that the initial upper distance

bounds u(p) that we compute for each point p ∈ P are

(i) consistent with any optimum solution (Lemma V.4),

and (ii) approximately satisfied throughout the algorithm

(Lemma V.5). Second, we establish that the radii in the

requests made for any particular cluster are within a

bounded factor (aspect ratio) of each other (Lemma V.6).

The third step consists in proving that, for any partic-

ular cluster, the sequence of requests along with the

corresponding centers constitute an algorithmic (CM, ϵ)-
scattering of bounded aspect ratio. Hence we can use

Lemma IV.4 to bound the length of the sequence and

thus the number of iterations by a function of k and ϵ,
thereby completing the proof of Lemma V.2.

Initial Upper Bounds: We first show that the initial

upper bounds we calculate in the algorithm are conser-

vative in the sense that they are also respected by an

optimal solution.

Lemma V.4. If O is an optimal solution then δ(p,O) ≤
u(p) for any p ∈ P , where u(p) is the initial upper

bound computed in line 1 of Algorithm 1.

Proof. Let α = u(p). For the sake of a contradiction,

assume that δ(p,O) > α. By triangle inequality, any

point p′ ∈ ball(p, α/3) has distance at least 2α/3 to

O. Hence we have δ(P,O) ≥ (2α/3) · 1p,α/3 and thus

f(δ(P,O)) ≥ f((2α/3) · 1p,α/3) = (2α/3)f(1p,α/3) ≥
(2α/3) · 3OPT

α = 2OPT, which is a contradiction.

The following lemma says that throughout the algo-

rithm we approximately satisfy all upper bounds. We

remark that the initialization (lines 2–7) as well as the

analysis is a variant of Plesník’s algorithm [23] for

PRIORITY k-CENTER when applied to point set P with

radii u(p), p ∈ P .

Lemma V.5. The number k′ of points marked in line 3

in Algorithm 1 is at most k. Moreover, at any time during

the execution of the while loop (lines 8–15), we have that

δ(p,X) ≤ 4u(p). For any request (p, r) added to some

cluster constraint, we have r ≤ 4u(p).

Proof. By Lemma V.4 each of the balls

ball(p(κ), u(p(κ))) with marked p(κ), κ ∈ [k′]
contains at least one point from some hypothetical

optimum solution O. On the other hand, these balls are

pairwise disjoint by construction. Hence k′ ≤ |O| ≤ k.

This also implies that the algorithm can initialize

X = (x1, . . . , xk) in line 7 with centers satisfying all

initial cluster constraints. For example, it may pick the

k′ centers in F closest to p(κ), κ ∈ [k′] and k − k′

many additional arbitrary centers.

Because these initial requests are never removed, they

are passed to the BALL INTERSECTION algorithm (with

error parameter ϵ/10; see line 14) whenever we make

a change in the respective cluster. Hence, we have

δ(p,X) ≤ (1 + ϵ/10)u(p) ≤ 3u(p)/2 for any marked

point p throughout the execution of the while loop.

For any point p′ not marked, ball(p′, u(p′)) intersects

ball(p, u(p)) for some marked p. Because the points

are processed in line 3 in non-decreasing order of

u(·), we must have u(p) ≤ u(p′). As argued before,

ball(p, 3u(p)/2) is guaranteed to contain a center in

X at any time during the while loop. This center has

distance at most u(p′) + 2 · 3u(p)/2 ≤ 4u(p′) from

p′ by triangle inequality. For the second claim, notice

that r < δ(p,X) ≤ 4u(p) at the time this request is

processed in line 14 for the first time.

Bounding the Aspect-Ratio of Requests: The fol-

lowing lemma establishes that the radii of any two

requests made for the same cluster are within a factor

O(k/ϵ2) from each other. The intuition is as follows.

We ensure in the algorithm (see line 10) that we only

sample points whose radii are within a factor O(k/ϵ)
from u(p). Assume that the radii, and thus the initial

bounds u(p), u(p′), in two request (p, r), (p′, r′) to the

same cluster were very far from each other, say r′ ≪ r
and u(p′) ≪ u(p). This would then imply that p was

already (essentially) within radius r from some center

before requesting (p, r) since there must be a center

within radius 4u(p′) ≪ ϵr/3 from p′ by Lemma V.5.

This contradicts the assumption that we requested (p, r)
in the first place.

Lemma V.6. Let (p, r) and (p′, r′) be requests added (in

either order) to the same cluster constraint Qκ, κ ∈ [k]
in line 13 of Algorithm 1. If r′ ≤ ϵ2 · r/(104k) then the

algorithm fails in line 14 upon making the second of the

two requests.

Proof. Assume for the sake of a contradiction that the

algorithm does not fail but finds a center xκ with

δ(p, xκ) ≤ (1+ϵ/10)r and δ(p′, xκ) ≤ (1+ϵ/10)r′. Hence

δ(p, p′) ≤ (1 + ϵ/10)(r + r′) by triangle inequality. By
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Lemma V.5, we have r ≤ 4u(p) and r′ ≤ 4u(p′). Be-

cause we sample points from the set A defined in line 10,

we have r ≥ ϵu(p)/(200k) and r′ ≥ ϵu(p′)/(200k).
Suppose r′ ≤ ϵ2r/(104k). At the time of adding

(p, r) to Qκ the current candidate solution X satisfies

δ(p′, X) ≤ 4u(p′) ≤ 1000kr′/ϵ by Lemma V.5. Hence

δ(p,X) ≤ δ(p, p′) + δ(p′, X)

≤ (1 + ϵ/10)(r + r′) + 1000kr′/ϵ

≤ (1 + ϵ/4)r .

However, this is a contradiction because δ(p,X) = (1+
ϵ/3)r when requesting (p, r) to Qκ as can be seen from

line 14.

Leveraging Bounded Algorithmic ϵ-Scatter Dimen-

sion: To complete the proof of Lemma V.2, we fix some

cluster and consider the sequence of triples (x, p, r)
where (p, r) is a request made for this cluster and where

x is the center of the cluster just before the request

was made. We establish that this sequence constitutes

an algorithmic (CM, ϵ)-scattering and use Lemma V.6

to bound the aspect ratio of the radii in this sequence

by O(k/ϵ2). We complete the proof via the aspect-ratio

lemma IV.4.

Proof of Lemma V.2. Fix a cluster index κ ∈ [k]. Let

(p
(1)
κ , r

(1)
κ ), . . . , (p

(ℓ)
κ , r

(ℓ)
κ ) be the sequence of requests

in the order in which they are added to Qκ in line 13.

For any i ∈ [ℓ], let x
(i)
κ be the center of clus-

ter κ at the time just before requesting (p
(i)
κ , r

(i)
κ ).

Since r
(i)
κ = δ(p

(i)
κ , X)/(1 + ϵ/3) ≤ δ(p

(i)
κ , x

(i)
κ )/(1 +

ϵ/3) and since x
(i)
κ is computed by invoking C on

{(p
(1)
κ , r

(1)
κ ), . . . , (p

(i−1)
κ , r

(i−1)
κ )} and error parameter

ϵ/10, the sequence (x
(1)
κ , p

(1)
κ , r

(1)
κ ), . . . , (x

(1)
κ , p

(ℓ)
κ , r

(ℓ)
κ )

is an algorithmic ϵ/5-scattering.

By Lemma V.6, r
(i)
κ ∈ Rκ =

[
rmin,

104krmin

ϵ2

]
for

every i ∈ [ℓ] where rmin denotes the smallest radius

in any request for cluster κ. Applying Lemma IV.4

to the interval Rκ, the length of the sequence is

O((log k/ϵ)λ(ϵ/10)/ϵ). Since our algorithm adds in each

iteration one request to some cluster constraint, the over-

all number of iterations is O(k(log k/ϵ)λ(ϵ/10)/ϵ).

2) Bounding the Success Probability: The proof of

Lemma V.3 consists of two key steps: First, we argue that

the algorithm terminates with success (that is, without

failure) if the random choices made by the algorithm are

“consistent” (to be defined more precisely below) with

some hypothetical optimum solution. Second, we argue

that consistency is maintained with sufficiently high

probability in each iteration. Together with our upper

bound on the number of iterations from Lemma V.2, this

completes the proof of the main result, Theorem I.8.

Consistency: Informally speaking, we mean by

consistency that a fixed hypothetical solution would

satisfy all current cluster constraints.

Definition V.7. Consider a fixed hypothetical optimum

solution O = (o1, . . . , ok). We say that the current

state of execution (specified by (X,Q1, . . . , Qk)) of

Algorithm 1 is consistent with O if for any request

(p, r) ∈ Qκ, κ ∈ [k], we have that δ(p, oκ) ≤ r.

If the current state is consistent with the optimum

solution O, then O certifies existence of solution to

the cluster constraints (Q1, . . . , Qk) currently imposed.

Therefore, the following observation is straightforward.

Observation V.8. If the state of the algorithm is con-

sistent with O before executing line 14 in any iteration,

then the algorithm does not fail during this iteration.

Probability of Maintaining Consistency: If the state

of execution is consistent with O at the beginning of

some iteration, then it remains consistent under the

following two conditions. First, the point p sampled

in this iteration is (randomly) assigned to the correct

cluster. Second, the distance of p to the current candidate

solution is sufficiently larger than its distance to O,

thereby justifying the request made in line 13. This

second condition motivates the following definition.

Definition V.9. Given a candidate solution X with

f(δ(P,X)) > (1 + ϵ)OPT, a point p ∈ P is called

an ϵ-witness if δ(p,X) > (1 + ϵ)δ(p,O).

The following lemma implies that the request made

in any iteration for the sampled point is justified with

probability Ω(ϵ). It is a key part of our analysis as it

links the specific way of (i) computing the initial upper

bounds and (ii) sampling a witness based on these upper

bounds. It is ultimately this interplay that allows us to

bound the aspect ratio of the radii in the requests for

a particular cluster and therefore the overall number of

requests per cluster in terms of k and ϵ.

Lemma V.10. Consider a fixed iteration of the while

loop of Algorithm 1 and let X be the candidate solution

at the beginning of this iteration. The point sampled in

line 11 is then an ϵ/3-witness for X with probability

Ω(ϵ). In particular, the set A computed in line 10 is not

empty.

Proof. For any subset S ⊆ P of points let CS =∑
p∈S w(p)δ(p,X) denote the contribution of S towards

w⊺δ(P,X) = CP .

Let W ⊆ P be the subset of ϵ/3-witnesses of X . We

claim that the contribution CW is at least ϵCP /10. Sup-

pose for the sake of a contradiction that their contribution
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is less. Then, using 0 < ϵ < 1,

OPT ≥ w⊺δ(P,O)

≥
∑

p∈P\W
w(p)δ(p,O)

≥
1

1 + ϵ/3

∑

p∈P\W
w(p)δ(p,X)

≥
1− ϵ/10

1 + ϵ/3

∑

p∈P

w(p)δ(p,X)

≥
w⊺δ(P,X)

1 + ϵ/2

≥
f(δ(P,X))

(1 + ϵ/2)(1 + ϵ/10)

≥
f(δ(P,X))

1 + 3ϵ/4

which contradicts f(δ(P,X)) > (1 + ϵ)OPT.

Let W1, . . . ,Wk denote the subsets of the witnesses

closest to centers x1, . . . , xk in X , respectively.

Let H ⊆ [k] be the subset of clusters κ ∈ [k] such

that CWκ
≥ ϵCP /(100k). Fix any cluster κ ∈ H . Let

{z1, . . . , zℓ} be the witnesses in Wκ in non-decreasing

order by the distance δ(zi, xκ), i ∈ [ℓ] to their closest

cluster center xκ. Let j ∈ [ℓ] be the minimum index j
such that the contribution of the set W−

κ = {z1, . . . , zj}
is at least CWκ

/2. This implies that also CW+
κ
≥ CWκ

/2
where W+

κ = {zj , . . . , zℓ}. Hence CW−
κ

and CW+
κ

are

both at least ϵCP /(200k) because κ ∈ H .

We claim that W+
κ ⊆ A where A is defined as in

line 10 in Algorithm 1. Towards this, let p ∈ W+
κ be

arbitrary. We prove that u(p) ≤ 1000kδ(p, xκ)/ϵ and

hence p ∈ A. To see this, notice that ball(p, 2δ(p, xκ)) ⊇
ball(xκ, δ(p, xκ)) ⊇W−

κ . On the other hand,

ϵOPT

300k
≤

ϵf(δ(P,X))

300k

≤
ϵCP

200k

≤
∑

q∈W−
κ

w(q)δ(q, xκ)

≤ δ(p, xκ)
∑

q∈W−
κ

w(q) .

Setting α = 6δ(p, xκ), this implies that

f(1p,α/3) ≥ w⊺
1p,α/3

=
∑

q∈ball(p,α/3)

w(q)

≥
∑

q∈W−
κ

w(q)

≥
ϵOPT

200kδ(p, xκ)

=
ϵ · 3OPT

100kα
.

(1)

Hence u(p) ≤ 100kα/ϵ ≤ 1000kδ(p, xκ)/ϵ as

claimed. This completes the proof of the claim that

W+
κ ⊆ A for any κ ∈ H .

As shown above,
∑

κ∈[k] CWκ
= CW ≥ ϵCP /10. By

definition of H , we have
∑

κ∈[k]\H CWκ ≤ ϵCP /100.

Hence
∑

κ∈H CWκ
≥ ϵCP /20. Also, by the arguments

above,

CA∩W ≥
∑

κ∈H

CW+
κ
≥

∑

κ∈H

CWκ

2
≥

ϵCP

40
≥

ϵCA

40
.

Since we sample a point p from A with probability pro-

portional to its contribution C{p}, we sample a witness

in each iteration with probability at least ϵ/40.
Notice that CP ≥ f(δ(P,X))/2 > 0. The left-

hand side of Equation 1 must therefore be positive. This

implies that A is not empty.

Overall Success Probability: We are now ready

to prove Lemma V.3, thereby completing the proof of

the main theorem I.8. We establish that the state of

execution is consistent before entering the while loop in

Algorithm 1. The proof is completed by combining the

upper bound on the number of iterations (Lemma V.2)

with the lower bound on the probability of maintaining

consistence (Lemma V.10).

Proof of Lemma V.3. Let p(1), . . . , p(k
′) be the points

marked in line 3 of Algorithm 1. By Lemma V.4,

each ball(p(κ), u(p(κ))), κ ∈ [k′] contains a point from

O. By construction, these balls are moreover pairwise

disjoint. Hence, by relabeling the optimum centers O =
(o1, . . . , ok), we can assume that δ(p(κ), oκ) ≤ u(p(κ))
for each marked point p where κ ∈ [k′] is the index

of the cluster. Therefore the state of execution of the

algorithm is consistent with O just before the first

execution of the while loop (lines 8–15). Assume now

that the state is consistent with O at the beginning of

an iteration of the while loop. By Lemma V.10, we

sample an ϵ/3-witness p in this iteration with probability

Ω(ϵ). In this event, the request (p, r) added has radius

r = δ(p,X)/(1 + ϵ/3) ≥ δ(p,O). If additionally the

cluster index κ ∈ [k] picked at random is the same as
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the one in O—which happens with probability Ω(1/k)—
then the state remains consistent with O. In this event,

the recomputation of the center in line 14 does not fail.

By Lemma V.2, the algorithm terminates after at most

O
(

k(log k/ϵ)λ(ϵ/10)
ϵ

)
many iterations. Since in any itera-

tion it does not fail with probability Ω(ϵ/k), it succeeds

overall with probability exp
(
−Õ

(
kλ(ϵ/10)

ϵ

))
.

VI. ϵ-SCATTER DIMENSION BOUNDS

This section is devoted to bounding the ϵ-scatter

dimension in various classes of metrics, proving The-

orems I.3, I.4, and I.6 from the Introduction. Here, we

outline the arguments and omit proofs, for which we

refer to the full version [46].

A. Bounded Doubling Dimension

In this section, we show the upper bound of the

ϵ-scatter dimension of any metric space of doubling

dimension d, proving Theorem I.3.

a) Scatter Dimension and Packing: Given metric

(X, δ), an ϵ-packing of this metric is a subset of points

X ′ ⊆ X such that δ(i, j) ≥ ϵ for all i, j ∈ X ′. This

is a standard notion in the theory of metric spaces. We

first observe the following connection between our ϵ-
scattering and ϵ-packing.

Observation VI.1. Let (x1, p1), . . . , (xℓ, pℓ) be an ϵ-
scattering in a metric space (P, F, δ). Then, the set X =
{x2, . . . , xℓ} fo centers is an ϵ-packing in metric (P ∪
F, δ) and X is contained in a unit ball.

Corollary VI.2. The size of ϵ-packing of a unit ball in

metric M is at most the ϵ-scatter dimension minus one.

It is a well-known fact that ϵ-packing of any metric of

doubling dimension d has size at most O((1/ϵ)d). Com-

bining this with Observation VI.1 yields Theorem I.3.

b) Remark: We note that the converse of Corol-

lary VI.2 is false even in a very simple graph metric

such as a star. In an n-node star rooted at r, a unit ball

ball(r, 1) includes the whole graph. There exists an ϵ-
packing of size (n− 1) by choosing the non-root nodes.

However, any ϵ-scattering has length at most 2.

B. Bounded Treewidth Graphs

In this section we show that any graph of treewidth

tw has ϵ-scatter dimension tw(1/ϵ)O(tw)

. That is, we

prove Theorem I.4 for the bounded treewidth graph

metric. We later show that the bound for planar graphs

can be derived via an embedding result of [47]. For

convenience, we abbreviate ballδG(r, γ) by ballG(r, γ).

Fig. 4: A spider S = ballG(r, γ) on X . Paths connecting

X to r are disjoint, except for nodes in S.

1) Treewidth and Spiders: Our proof relies on the no-

tion of spiders, whose existence can serve as a “witness”

to the fact that the treewidth of a graph G is high. Given

an edge-weighted graph G, X ⊆ V (G) and γ ∈ (0, 1),
a γ-spider on X is a set S = ballG(r, γ) for some

r ∈ V (G) such that there are |X| paths from S to X
that are vertex-disjoint except for in S. We say that a set

S is a spider on X if it is a γ-spider for some γ. See

Figure 4 for illustration.

Observe that if S is a γ-spider on X, then for any

X ′ ⊆ X , S is also a γ-spider on X ′. The following

lemma is key to our result, roughly showing that the

existence of a large number of spiders implies that the

treewidth of G is large.

Lemma VI.3. Let G be a graph, k be an integer and

X ⊆ V (G) : |X| > 3k. If there is a family S of k + 1
pairwise disjoint spiders on X , then the treewidth of G
is larger than k.

2) Iteratively Finding Spiders: Our main result in this

section is encapsulated in the following theorem.

Theorem VI.4. If there is an ϵ-scattering of length at

least (O(k/ϵ))(4/ϵ)
k+1

in G, then graph G contains a

family of k + 1 disjoint spiders on vertex set of size

greater than 3k.

Combining the above with Lemma VI.3, we can

deduce that the length of any ϵ-scattering is at most

tw(1/ϵ)O(tw)

as desired. We spend the rest of this section

proving the theorem. Given ϵ-scattering σ, we say that

the ϵ-packing X = X(σ), given by Observation VI.1, is

a canonical packing of σ.

Lemma VI.5. Let σ be an ϵ-scattering of length ℓ in

G ⊆ ballG(r, 1) and X = X(σ) its canonical ϵ-packing.

Then, there exist

• a spider S = ballG(r, ϵ/3) on X ′ ⊆ X : |X ′| ≥
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c0ϵ · (ℓ/2)
ϵ/3 for some constant c0 and

• a graph G′ such that S ∩ V (G′) = ∅ and an ϵ-
scattering σ′ that is a subsequence of σ such that

X(σ′) = X ′.

We show how this lemma implies Theorem VI.4.

Let G0 = G contain a ϵ-scattering σ0 of length

at least ℓ0 = ( k
c0ϵ

)(4/ϵ)
k+1

and X0 = X(σ0). The

lemma allows us to find a spider S1 on X1 of size

c0ϵ · ℓ
ϵ/3
0 ≥ ( k

c0ϵ
)(4/ϵ)

k

= ℓ1 for sufficiently small

ϵ. Moreover, we have the graph G1 that is disjoint

with S1 and ϵ-scattering that is a subsequence σ1 of

length ℓ1. Since (G1, X1, σ1) satisfies the preconditions

of Lemma VI.5, we can apply it to obtain (G2, X2, σ2)
and so on. More formally, starting from (Gi, σi, Xi),
we apply Lemma VI.5 to obtain (Gi+1, σi+1, Xi+1).
We maintain the following invariant: The length of the

sequence σi satisfies ℓi = |Xi| ≥ ( k
c0ϵ

)(4/ϵ)
k+1−i

. This

allows us to find disjoint spiders S1, S2, . . . , Sk+1 on

Xk+1 : |Xk+1| > 3k as desired.

C. Bounding ϵ-Scatter Dimension via Low-Treewidth

Embedding

In this section, we show a (simple) connection be-

tween bounding ϵ-scatter dimension and an active re-

search area on embedding with additive distortion [16],

[40], [41]. This connection allows us to upper bound the

ϵ-scatter dimension of planar graphs.

In particular, we say that (weighted) graph class G ad-

mits a t-low treewidth-diameter embedding for function

t : N → N if there exists a deterministic algorithm that

takes G and produces a weighted graph H of treewidth

at most t(η) and an embedding ϕ : V (G)→ V (H) such

that:

δG(u, v) ≤ δH(ϕ(u), ϕ(v)) ≤ δG(u, v) + ηD

where D is the diameter of G.

Theorem VI.6. Let λtw(ϵ) denote the the ϵ-scatter

dimension of graphs of treewidth tw (from the previous

section, this bound is at most doubly exponential in tw).

If graph class G admits a t-low treewidth-diameter em-

bedding, then every metric in G has ϵ-scatter dimension

at most λt(ϵ/10)(ϵ/3).

Now we can use the following theorem.

Theorem VI.7 (Theorem 1.3 of [16]). There is a

polynomial-time algorithm that, given an edge-weighted

planar graph and given a number η > 0, outputs an

embedding of the graph into a planar graph of treewidth

poly(1/η) with additive error η · D where D is the

diameter of the input graph.

This implies, in our language, that planar graphs have

low treewidth-diameter embedding.

Corollary VI.8. Planar graphs have ϵ-scatter dimension

at most exp (exp(poly(1/ϵ))).

D. High-Dimensional Euclidean Space

Recall, from the introduction and Sections IV, that

the ϵ-scatter dimension of high-dimensional (continuous)

Euclidean space is unbounded. In this section, we show

that, in contrast, the algorithmic ϵ-scatter dimension of

this metric is bounded.

Theorem I.7 (Bounding Algorithmic Scatter Dimen-

sion). The continuous Euclidean space (P, F, δ), that is,

P ⊊ Rd finite, and F = Rd, has algorithmic ϵ-scatter

dimension O(1/ϵ4 log 1/ϵ).

We outline the proof of Theorem I.7. In order to

upper bound the algorithmic ϵ-scatter dimension for the

continuous Euclidean space, it suffices to show that

there exists an algorithm C such that the (C, ϵ)-scattering

dimension in the Euclidean space is bounded. We use an

algorithm by Kumar and Yildirim [43] as BALL INTER-

SECTION algorithm for the high-dimensional Euclidean

space. They study the BALL INTERSECTION problem

in the language of WEIGHTED EUCLIDEAN 1-CENTER.

They provide a BALL INTERSECTION algorithm based

on a convex optimization formulation which efficiently

(and approximately) solves the BALL INTERSECTION

problem in continuous Euclidean setting for weights with

bounded aspect ratio. Let CKY denote this algorithm. The

following lemma is adapted from Kumar and Yildirim’s

work into our terminology (see Lemma 4.2 of [43]).

Lemma VI.9. Given an instance (P, F, δ) of BALL

INTERSECTION in high-dimensional Euclidean space,

associated radii r(p) to each p ∈ P , and ϵ ∈ (0, 1),
the length of any (CKY, ϵ)-scattering is at most O (τ/ϵ2)
where τ ≥ 1 is the squared ratio of the largest radius

in the requests to the smallest.

Note that for a constant τ , Lemma VI.9 already gives

the theorem. To complete the argument for Theorem I.7

in the general setting, we show that by increasing the

length of the ϵ-scattering by a multiplicative factor of

O (log 1/ϵ), we can assume that τ is O (1/ϵ2).

Aspect-Ratio Condition: The following lemma pro-

vides a sufficient condition for bounded algorithmic ϵ-
scatter dimension that facilitates the design of a BALL

INTERSECTION algorithm for bounding the algorithmic

ϵ-scatter dimension. In particular, this condition is key

to bound the algorithmic ϵ-scatter dimension of high-

dimensional continuous Euclidean spaces. It can be seen

as a strenghtened converse of the aspect-ratio lemma V.6

and holds for arbitrary classes of metric spaces.

Lemma VI.10 (Aspect-Ratio Condition). Let M be

a class of metric spaces with BALL INTERSECTION
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algorithm CM and let ϵ ∈ (0, 1). If any (CM, ϵ)-
scattering (x1, p1, r1), . . . , (xℓ, pℓ, rℓ) with ri ∈ [ϵ/12, 1],
i ∈ [ℓ] contains at most λ(ϵ) triples with the same radius,

then the algorithmic ϵ-scatter dimension of M bounded

by O (λ(ϵ) log 1/ϵ).

Lemmas VI.9 and VI.10 together with the observation

that τ = (12/ϵ)
2

give the proof of Theorem I.7.

VII. CONCLUSIONS AND OPEN PROBLEMS

We present a unified view on efficient parameterized

approximation schemes that applies to large variety of

clustering objectives and metric spaces. From complexity

theoretic perspective, this implies rather surprising col-

lapses of approximability of symmetric and asymmetric

norm clustering problems (in the regime of P, their

approximabilities are substantially different, and yet they

collapse in FPT).

There are rooms for future open problems in two

directions that can be pursued independently. First,

can we characterize the class of metric spaces with

bounded scatter dimension? For example, do minor-free

graphs have bounded scatter dimension? This is a purely

structural question whose resolution immediately yields

an EPAS (through our framework). Since the bounded

treewidth graphs play an important role in our approach

(through the lens of low treewidth embedding), it would

be interesting to pinpoint the exact bound on their

ϵ-scatter dimension; a particularly interesting concrete

question is whether the bound can be brought down to

singly exponential.

The second direction concerns extensions of our

framework. Some clustering objectives are still missing

from our framework. For instance, what about clustering

with outliers [48], [49], [50] (in which case the cost

function f is instead an anti-norm)? Even more concep-

tually, our current algorithm is oblivious to the structure

of the input metric, but our theorem can only talk

about whether an EPAS can be obtained. Is it possible

for such a framework to give approximation factors

in all spectrums (e.g., (3 + o(1))-approximation for k-

CENTER if a general, unstructured metric space is given

as input)? The “dream result” could look something

like (γ(M)+o(1)) FPT approximation algorithm where

γ(M) is the FPT-approximability of metric class M.

Last, but not least, the scope of this paper is to handle

multiple clustering objectives and metric spaces. Many

clustering problems additionally impose restrictions on

how points in P can be assigned to open centers in

X , e.g., capacity [51], [52], [53], different notions of

fairness [54], [55], [56] and diversity constraints [57],

[58], [59]; in such case, our framework does not apply.

Extending our framework to handle such constraints (or

proving that EPASes do not exist when such constraints

are enforced) is an interesting direction.
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