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Abstract

We show that any randomized first-order algorithm which minimizes a d-dimensional, 1-
Lipschitz convex function over the unit ball must either use Ω(d2−δ) bits of memory or make

Ω(d1+δ/6−o(1)) queries, for any constant δ ∈ (0, 1) and when the precision ǫ is quasipolynomially

small in d. Our result implies that cutting plane methods, which use Õ(d2) bits of memory

and Õ(d) queries, are Pareto-optimal among randomized first-order algorithms, and quadratic

memory is required to achieve optimal query complexity for convex optimization.

http://arxiv.org/abs/2306.12534v1


1 Introduction

A fundamental problem in optimization and mathematical programming is convex optimization
given access to a first-order oracle. Consider one of the canonical settings where the input is a
1-Lipschitz, convex function F : Bd → R over the d-dimensional unit ball Bd. An algorithm has
access to a first-order oracle of F : In each round, it can send a query point x ∈ B

d to the oracle
and receive a pair (F (x),g(x)), where g(x) ∈ ∂F (x) ⊆ R

d is a subgradient of F at x. The goal is
to find an ǫ-optimal point x∗ ∈ B

d satisfying F (x∗) − argminx∈Bd F (x) ≤ ǫ. Convex optimization
has a wide range of applications in numerous fields. In particular, it has served as one of the most
important primitives in machine learning [Bub15]

The worst-case query complexity of minimizing a 1-Lipschitz, convex function F : Bd → R has
long been known to be Θ(min{1/ǫ2, d log(1/ǫ)}) [NY83]. The two upper bounds can be achieved
by subgradient descent (O(1/ǫ2) [Nes03]) and cutting-plane methods (O(d log(1/ǫ)) [Lev65, BV04,
Vai96, AV95, LSW15, JLSW20]), respectively. However, even when ǫ≪ 1/

√
d (which is arguably the

more interesting regime), gradient descent has been the dominant approach for convex optimization
despite its suboptimal worst-case query complexity, and cutting-plane methods are less frequently
used in practice. One noticeable drawback of cutting-plane methods is its memory requirement,
which has become a more and more important resource in the era of massive datasets. While
cutting-plane methods require quadratic Ω(d2 log(1/ǫ)) bits of memory (e.g., to either store all
subgradients queried so far or at least an ellipsoid in R

d), in contrast, linear O(d log(1/ǫ)) bits of
memory suffice for gradient descent. It is a natural question to ask whether there is an algorithm
that can achieve the better of the two worlds.

This motivates a COLT 2019 open problem posed by Woodworth and Srebro [WS19] to study
memory-query tradeoffs of convex optimization. The first result along this direction was proved by
Marsden, Sharan, Sidford and Valiant [MSSV22]. They showed that any randomized first-order
algorithm that minimizes a 1-Lipschitz, convex function F : Bd → R with ǫ = 1/poly(d) accuracy
must either use d1.25−δ bits of memory or make d1+(4/3)δ many queries, for any constant δ ∈ [0, 1/4].
Recently, Blanchard, Zhang and Jaillet [BZJ23] showed that any deterministic algorithm must use
either d2−δ bits of memory or d1+δ/3 queries. Their tradeoffs imply that cutting-plane methods are
Pareto-optimal among deterministic algorithms on the memory-query curve of convex optimization.

1.1 Our Contribution

The result of Blanchard, Zhang and Jaillet [BZJ23] left open the question about whether similar
tradeoffs hold for randomized algorithms. We believe that this is an important question to address
because numerous gradient descent methods (e.g. stochastic gradient descent [Bub15], randomized
smoothing [DBW12], variance reduction [JZ13]) are inherently randomized. Many exponential
separations are known between deterministic and randomized algorithms for optimization problems,
including escaping saddle points [DJL+17, JNG+21] and volume estimations [Vem05]. The role of
randomness becomes even more critical in connection to memory. Almost all known streaming
algorithms and dimension reduction technique are randomized [Woo14].

In this paper, we show that cutting-plane methods are in fact Pareto-optimal among randomized
algorithms and thus, optimal query complexity for convex optimization requires quadratic memory.
This is a corollary of the following memory-query tradeoff:

Theorem 1.1. Let d be a sufficiently large integer, ǫ = exp(− log5 d) and δ ∈ (0, 1). Any algorithm
that finds an ǫ-optimal point of a d-dimensional 1-Lipschitz convex function requires either Ω(d2−δ)
bits of memory or makes at least Ω(d1+δ/6−o(1)) queries.
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After reviewing additional related work in Section 1.2, we give an overview of our techniques
in Section 2. At a high level, our proof is based on a novel reduction to a two-player, three-round
communication problem which we call the correlated orthogonal vector game. Crucially, it differs
from the orthogonal vector game considered in both [MSSV22] and [BZJ23] in two aspects: (a) It
suffices for Bob to output a single vector that is orthogonal to vectors of Alice, but (b) the vector
cannot be an arbitrary one but needs to have a strong correlation with a random vector that Bob
sends to Alice in the second round. See Section 2.1. The major challenge is to prove a lower bound
for the correlated orthogonal vector game, from which Theorem 1.1 follows. For this purpose, we
develop a recursive encoding scheme which we explain in more details in Section 2.2. We believe that
our techniques may have applications in understanding memory-query tradeoffs in other settings.

1.2 Additional related work

Learning with limited memory The role of memory for learning has been extensively studied
in the past few years, including memory-sample tradeoffs for parity learning [Raz17, Raz18, GRT18,
GRT19, GKLR21, LRZ23] and linear regression [SSV19], memory-regret tradeoffs for online learn-
ing [PZ23, PR23, SWXZ22, WZZ23, ACNS23], memory bounds for continual learning [CPP22],
communication/memory bounds for statistical estimation [BBFM12, GMN14, SD15, BGM+16] and
many others [SVW16, DS18, DKS19, GLM20, BHSW20, Fel20, BBF+21, BBS22].

Literature of convex optimization There is a long line of literature on convex optimization,
we refer readers to [Nes03, Bub15] for a general coverage of the area. In particular, there is a long
line of work [NY83, Nes03, WS16, BGP17, SEAR18, BHSW20] on establishing query lower bounds
for finding approximate minimizers of Lipschitz functions, with access to a subgradient oracle. A
recent line of work [Nem94, BS18, BJL+19, DG19] studies lower bounds for parallel algorithms.
Memory efficient optimization algorithms have also been proposed, including limited-memory-
BFGS [LN89, Noc80], conjugate gradient descent [HS+52, FR64, HZ06], sketched/subsampled quasi-
newton method [PW17, RKM19] and recursive cutting-planes [BJJ23].

2 Technique overview

We provide a high-level overview of techniques behind the proof of Theorem 1.1. To establish the
memory-query tradeoffs, we use the same family of hard instance as [MSSV22] and our contribution
is a novel and improved analysis. Define

F (x) =
1√
dL
·max

{
L‖Ax‖∞ − 1, max

i∈[N ]

(
〈vi,x〉 − iγ

)}
(1)

where A ∼ {−1, 1}(d/2)×d , vi ∼ 1√
d
Hd independently and uniformly at random withHd := {−1, 1}d.

Letting δ ∈ (0, 1) be the constant in Theorem 1.1, we use the standard choice of

γ = Õ(d−δ/4) and N = Õ(dδ/6)

for Nemirovski function, and L = exp(log5 d) is a large scaling factor.
The function (1) consists of two parts: the projection term ‖Ax‖∞ and the Nemirovski func-

tion maxi∈[N ](〈vi,x〉 − iγ). From a high level, the Nemirovski function enforces that any convex
optimization algorithm, with high probability, has to obtain v1, . . . ,vN in this order, and to obtain
the subgradient vi+1, the algorithm must submit a query x that has Ω(γ)-correlation with vi and
at the same time, is almost orthogonal to A, as enforced by the projection term.
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2.1 Reduction to correlated orthogonal vector game

At the heart of our proof is the new correlated orthogonal vector game. It is an abstract model that
captures the hardness of the Nemirovski function and the projection in the hard functions F .

Definition 2.1 ((s, ξ)-Correlated orthogonal vector game). Let d ∈ N be the dimension. Let k, s, n ∈
[d] and ξ ∈ (0, 1) be input parameters. The (s, ξ)-correlated orthogonal vector game is a two-player
three-round communication problem: Alice receives a matrix A ∼ {−1, 1}(d/2)×d and Bob receives a
vector v ∼ 1√

d
Hd. A deterministic (k, n)-communication protocol proceeds in three rounds:

Round 1: Alice sends Bob a message M of length dk.

Round 2: Bob sends Alice the vector v.

Round 3: Alice sends Bob n rows a1, . . . ,an ∈ row(A) ∪ {nil}.
At the end, Bob is required to output a vector x ∈ B

d, such that, with probability at least 1/2 (over
the randomness of A and v),

Orthogonality: x is almost orthogonal to A, i.e., ‖Ax‖∞ ≤ ξ, and

Correlation: x has large correlations with v, i.e., |〈v,x〉| ≥
√

s/d.

A randomized (k, n)-communication protocol is a distribution of deterministic protocols.

Suppose that there is a randomized convex optimization algorithm that uses S = d2−δ bits
of memory, makes T = d1+δ/6−o(1) queries, and finds an ǫ-optimal solution of a random F with
probability at least 2/3, where ǫ is quasipolynomially small in d. We show in Section 4 that such an
algorithm can be used to obtain a (k, n)-communication protocol with k = S/d and n ≈ T/N that
solves the (s, ξ)-correlated orthogonal vector game with s ≈ dγ2 ≈ d1−δ/2 and a quasipolynomially
small ξ. The novelty is mainly in the definition of the correlated orthogonal vector game and that we
can manage to prove a strong lower bound for it, as sketched in the next subsection; the reduction
itself uses standard techniques from the literature.

2.2 Lower bound for the correlated orthogonal vector game

We next that prove any (k, n)-communication protocol for (s, ξ)-correlated orthogonal vector game,
requires either sending kd ≥ Ω(s2) bits in the first round or sending n ≥ d1−o(1) rows in the
third round. By our choice of parameters, this implies the third round message must contain
T/N = d1−o(1) rows, and yields a query lower bound of T ≥ d1+δ/6−o(1).

Remark 2.2 (Sharpness of parameters). We remark on the relation of k, s, d, n. A communication
protocol that sends n = d/2 rows in the third round could of course resolve the game. Hence
n ≥ d1−o(1) is almost the best one can prove. Meanwhile, for the first round, Alice could send a
k-dimensional subspace U (this costs roughly kd bits) that is orthogonal to A, and even without the
third round message, Bob can extract a vector x ∈ U that satisfies |〈x,v〉| ≥ O(

√
k/d). This implies

that k ≥ Ω(s) is the best one can prove. Our lower bound does not exactly match this and we only
manage to prove kd ≥ Ω(s2). Though the later already suffices for an improved (quadratic) lower
bound for randomized algorithms.

The proof of this lower bound turns out to be challenging and it is our main technical contribu-
tion. We prove by contradiction and assume (1) kd≪ s2 and (2) ∆ := d/n ≥ exp(log d/ log log d).
Our lower bound is established via an iterative encoding argument: We provide an encoding pro-
cedure, built upon the (too-good-to-be-true) communication protocol, that encodes (almost) all
matrices A ∈ {0, 1}(d/2)×d into a set of size no more than 2d

2/2/d.
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Warm up: Encoding in the bit model Our encoding argument is delicate and we first illustrate
the basic idea in a simpler “bit model” of the correlated orthogonal vector game: Alice sends n bits
(instead rows) in the third round. This is strictly weaker than the original model because n rows
can transmit at least n bits of message (even when they are required to be row vectors of A).

In this model, Bob’s output vector x, is a function of the first round message M ∈ {0, 1}kd, the
third round message b ∈ {0, 1}n and its input vector v ∈ 1√

d
Hd, and we denote as xM,v,b. Fix

a matrix A ∈ {−1, 1}(d/2)×d and the first round message MA, the choice of v is still uniformly
at random, and we observe that the collection {xMA,v,b}v∈ 1√

d
Hd,b∈{0,1}n should contain at least s

linearly independent vectors that are orthogonal to A, and this continues to hold w.h.p. when one
restricts to a subset V ∗ ⊆ Hd of size O(s). That is to say, using a probabilistic argument, there
exists a set V ∗ ⊆ 1√

d
Hd (|V ∗| = O(s)) such that {xMA,v,b}v∈V ∗,b∈{0,1}n contains at least s linearly

independent vectors that are orthogonal to A, for at least 1/2-fraction of matrices A ∈ {0, 1}(d/2)×d .
We denote this set as Anice

Consider the following (one-shot) encoding strategy: Fix a message M ∈ {0, 1}kd, a s-tuple
x1, . . . ,xs ∈ {xM,v,b}v∈V ∗,b∈{0,1}n that are linearly independent, include all matrices A ∈ {−1, 1}(d/2)×d
whose rows are orthogonal to x1, . . . ,xs. The above argument implies that all matrices A ∈ Anice

are included, but on the hand, the encoding scheme only encodes

2kd × (2ns)s × 2(d/2)×(d−s) ≤ 2d
2/2+kd+ns log2(s)−ds/2 ≪ 1

2
· 2d2/2 = |Anice|

different matrices. Here the first term of LHS is the number of message M, the second term is the
number of s-tuple x1, . . . ,xs (note this is the place we need |V ∗| ≤ O(s)) and the third term is the
number of matrices A that are orthogonal to the s-tuple.

Encoding in the row model We next design an encoding strategy based on the (too-good-
to-be-true) communication protocol that sends n rows instead of n bits, which turns out to be
much more challenging and requires an iterative encoding. In the row model, the output x of Bob
depends on the message M ∈ {0, 1}kd, the vector v ∈ 1√

d
Hd as well as n rows R ⊆ row(A) ∪ {nil},

and we denote it as xM,v,R. The first step is similar and we select a subset V ∗ ⊆ 1√
d
Hd that is

“representive”. In particular, one can select a subset V ∗ ⊆ 1√
d
Hd, of size at most 2s, such that

{xMA,v,R}v∈V ∗,R∈row(A)∪{nil} contains at least N0 = 2Ω(s) “well-spread” output vectors x1, . . . ,xN0

that are orthogonal to A, for 1/2-fraction of matrices A ∈ {−1, 1}(d/2)×d . Here “well-spread” means
the pairwise distance are at least α0 = 1/d8. Again, we denote this set as Anice.

To apply a similar encoding strategy, we need to fix the message M, and the s-tuple from
TM(A) := {xM,v,R}v∈V ∗,R∈row(A)∪{nil}, this turns out to be circular because it already needs the
full knowledge of A. Hence, a natural idea is to select a subset of rows A1 of A, and uses the s-tuple
from TM(A1) = {xM,v,R}v∈V ∗,R∈row(A1)∪{nil}. Let A2 = A\A1 be the removed sub-matrix and we
need its size to be as large as possible – this is the part where we get compressions. Meanwhile,
one can not hope to remove too many rows, because removing one row would decrease the size of
TM(A) by a factor of roughly (1 − 1/∆). There are N0 = 2Ω(s) well-spread vectors in TMA(A)
(that are also orthogonal to A), so one only affords to remove at most s∆ rows.

The encoding strategy would fix a message M ∈ {0, 1}kd, a submatrix A1 ∈ {−1, 1}(d/2−s∆)×d,
a s-tuple x1, . . . ,xs ∈ {xM,v,b}v∈V ∗,R∈row(A1) that are (1) linearly independent, and (2) orthogonal

to A1, then it includes all matrices Ã2 ∈ {−1, 1}s∆×d whose rows are orthogonal to x1, . . . ,xs. It
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encompass Anice and has size at most1

2kd × 2(d/2−s∆)×d × (dn2s)s × 2s∆×(d−s) ≈ 2d
2/2+kd+sn log2(d)−s2∆.

This is much larger than 2d
2/2 and not useful at all! We note in the above expression, the first

term is the number of message M, the second term is the total number of A1, the third term is the
number of s-tuple x1, . . . ,xs and the last term is the number of orthogonal matrices Ã2.

Iterative encoding Our key observation is that: If there are too many s-tuples that are linearly
independent and orthogonal to A1, then there must exists a large number of well-spread vectors
in TMA(A1) = {xMA,v,R}v∈V ∗,R∈row(A1)∪{nil} that are orthogonal to A1. In particular, if there

are 2Ω(s2∆) different s-tuples, then there are N1 := 2Ω(s∆) well-spread vectors that are orthogonal
to A1. This guarantee is stronger than the original one: N0 = 2Ω(s) well-spread vectors that are
orthogonal to A. Therefore, if we fail to compress A by removing s∆ rows, we can try to compress
it by removing another s∆2 rows. We can repeat it for log log(d) iterations and it yields our final
iterative encoding scheme.

There are a few subtle yet critical details that are (intentionally) omitted by us, e.g., the “well-
spreadness” (the choice of pairwise distance α) are doubly exponentially decreasing at each iteration,
and we need robustly linear independence (similar to [MSSV22]), we refer readers to Section 5 for
these technical details.

2.3 Comparison with [MSSV22, BZJ23]

We compare our techniques with previous work of [MSSV22, BZJ23]. Both proofs are based
on reductions to the following orthogonal vector game: Alice receives a random matrix A ∈
{−1, 1}(d/2)×d , sends Bob a message M ∈ {0, 1}kd and n rows R from A, and Bob is required
to output Ω(k) linearly independent vectors that are orthogonal to A. On the one hand, [MSSV22]
proves a lower bound of n ≥ Ω(d) for orthogonal vector game. On the other hand, they show that
any S-bit, T -query randomized algorithm can be used to obtain a protocol for the orthogonal game
with k = S/d and n = T/(N/k) and thus, using n ≥ Ω(d), one has T = Ω(Nd2/S). However,
N can only be O(d1/3) in the Nemirovski function, which limits their tradeoffs to apply only up
to S = d4/3 (for T to be superlinear). The tradeoffs of [BZJ23], on the other hand, are based on
the idea that, when against deterministic algorithms, one can adaptively build the vector vi in the
Nemirovski function (basing on the algorithm’s queries so far) and make it orthogonal to previous
queries. This increases the size N of Nemirovski function to be d and thus, the tradeoff holds even
near S = d2. However, the argument of [BZJ23] is dedicated to deterministic algorithms and can
be easily sidestepped by randomized algorithms.

The correlated orthogonal vector game introduced in this paper is more fine-grained. It proceeds
in three rounds (instead of one round as in the orthogonal vector game) and Bob is required to output
only one orthogonal vector that has large correlations with the random vector v. It is not surprising
that our encoding argument gives an alternative proof for the orthogonal vector game: One simply
enumerates the message M, the n rows R, and the rest rows of matrix A, which are required to be
orthogonal to the Ω(k) output vectors from (M,R). Proving a strong lower bound for the correlated
orthogonal vector game is technically the most challenging part of the paper.

1We also need to fix the row indices of A1, but it is a lower order term that we omit here for simplicity.
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3 Preliminaries

Notation Let [n] = {1, 2, . . . , n} and [n1 : n2] = {n1, n1+1, . . . , n2}. Let Bd be the d-dimensional
unit ball, Sd be the d-dimensional unit sphere, and Hd = {−1, 1}d be the d-dimensional Boolean
hypercube. Given a point x ∈ R

d and δ > 0, we write B(x, δ) := {y : ‖x− y‖2 ≤ δ} to denote the
δ-ball centered at x. For a set of vectors x1, . . . ,xm ∈ R

d, we use span(x1, . . . ,xm) ⊆ R
d to denote

the subspace spanned by x1, . . . ,xm. Given a subspace S and vector x ∈ R
d, we use projS(x) ∈ R

d

to denote the projection of x onto S. Given a matrix A, we write row(A) to denote the set of its
row vectors. We write x ∼ X if the random variable x is drawn uniformly at random from a set X.

We consider the following oracle model of convex optimization.

Definition 3.1 (Memory constrained convex optimization). Let d ∈ N be the dimension. An S-bit
and T -query convex optimization deterministic algorithm with first-order oracle access runs as fol-
lows. Given access to a first-order oracle of a 1-Lipschitz convex function F : Bd → R,

1. The algorithm starts by initializing the memory to be a string M0 ∈ {0, 1}S ;

2. During iteration t ∈ [T ], the algorithm picks a query xt ∈ B
d based on Mt−1, obtains from

the oracle both F (xt) ∈ R and a subgradient g(xt) ∈ ∂F (xt) ⊆ R
d, and updates the memory

state to Mt ∈ {0, 1}S based on Mt−1, F (xt) and g(xt).

3. Finally, after T iterations, the algorithm outputs a point xT ∈ B
d based on MT−1.

An S-bit and T -query randomized algorithm is a distribution over deterministic algorithms. We say
a randomized algorithm finds an ǫ-optimal point with probability at least 1− ρ if for any f ,

F (xT )− argminx∈Bd F (x) ≤ ǫ.

with probability at least 1− ρ.

4 Reduction to correlated orthogonal vector game

Let δ ∈ (0, 1) be the constant in Theorem 1.1. We use the following hard instances from [MSSV22]:

F (x) =
1√
dL
·max

{
L‖Ax‖∞ − 1, max

i∈[N ]

(
〈vi,x〉 − iγ

)}

where A ∼ {−1, 1}(d/2)×d , vi ∼ 1√
d
Hd (so that each vi is a unit vector), and

γ =
log2 d

dδ/4
, N =

dδ/6

log4 d
and L = exp

(
log5 d

)
.

It is easy to verify that F is 1-Lipschitz and convex.

First-order oracle Given A, vi and the function F they define, we will use g below as the
subgradient part of the first-order oracle of F : on any query point x ∈ B

d, if the maximum is

achieved at either
L·〈Aj ,x〉−1√

dL
or

−L·〈Aj ,x〉−1√
dL

, for some row Aj of A (j ∈ [d/2]), g returns either

Aj/
√
d or −Aj/

√
d accordingly with the smallest such j ∈ [d/2]; otherwise, g returns vi/(

√
dL)

with the smallest i ∈ [N ] that achieves the maximum. In the rest of the section, when F is the
input function, the algorithm has access to F and g for subgradients of F as the first-order oracle.

Our main result in this section is the following lemma, which shows that any query-efficient
randomized convex optimization algorithm would imply an efficient deterministic communication
protocol for the correlated orthogonal vector game.

6



Lemma 4.1 (Reduction). Let ǫ = 1/(d2L). If there is a randomized convex optimization algorithm
that uses S = d2−δ bits of memory, makes T = d1+δ/6−o(1) queries and finds an ǫ-optimal point with
probability at least 2/3, then there is a deterministic (k, n)-communication protocol that succeeds
with probability at least 1/2 for the (s, ξ)-correlated orthogonal vector game, with parameters

k =
S

d
= d1−δ−o(1), n =

40T

N
= d1−o(1), s = d1−δ/2 log2 d and ξ =

2

L
.

Assume such a randomized convex optimization algorithm exists. Since randomized algorithms
are distributions of deterministic algorithms, there must be a deterministic S-bit-memory, T -query
algorithm that outputs an ǫ-optimal point of F with probability at least 2/3 (over the randomness
of A and vi). Let ALG denote such an algorithm. For convenience we assume that the last point
that ALG queries is the same point it outputs at the end; it is without loss of generality since such
a requirement can only increase the number of queries by one. We use it to obtain a deterministic
communication protocol for the correlated orthogonal vector game in the rest of the section.

Given a function F , we first use the execution of ALG on F to define the correlation time:

Definition 4.2 (Correlation time). For each i ∈ [N ], let ti ∈ [T ] ∪ {∞} be the first time that ALG

submits a query xti ∈ B
d such that

1. xti has a large correlation with vi: |〈xti ,vi〉| ≥ γ/4; and

2. xti is almost orthogonal to A: ‖Axti‖∞ ≤ ξ.

If no such query exists during the execution of ALG, then we set ti =∞.

First we show that, with high probability, the correlation time are in order t1 ≤ t2 ≤ · · · ≤ tN :

Lemma 4.3. Fix any A ∈ {−1, 1}(d/2)×d. With probability at least 1− d−ω(1) over the randomness
of v1, . . . ,vN , we have t1 ≤ t2 ≤ · · · ≤ tN .

Proof. Consider the process of first initializing t1 = · · · = tN = ∞ and then in each round t ∈ [T ],
setting ti = t if ti =∞ at the end of round t−1 but the point xt queried by ALG in round t satisfies
both conditions |〈xt,vi〉| ≥ γ/4 and ‖Axt‖∞ ≤ ξ. Note that if the event of the lemma is violated,
then there must exist t ∈ [T ] and i ∈ [N − 1] such that the following two events hold:

1. Event E1: At the end of round t− 1, we have ti = ti+1 =∞; and

2. Event E2: At the end of round t, we have ti =∞ but ti+1 = t.

Fixing t ∈ [N ] and i ∈ [N − 1], we show in the rest of the proof that the probability of E1 ∧ E2 is
at most d−ω(1). The lemma follows from a union bound on t and i.

We start the following simple claim.

Claim 4.4. Assuming E1, ALG never receives vi+1/(
√
dL) as the subgradient before round t.

Proof. Given that ti = ti+1 = ∞ at the end of round t − 1, every point x queried by ALG before
round t satisfies one of the following conditions: either

1. ‖Ax‖∞ > ξ, in which case the maximum in F (x) must be achieved by L‖Ax‖∞ − 1; or

2. |〈x,vi〉| < γ/4 and |〈x,vi+1〉| < γ/4, in which case we have

〈x,vi+1〉 − (i+ 1)γ < (γ/4) − (i+ 1)γ < −(γ/4) − iγ < 〈x,vi〉 − (i+ 1)γ.
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So in both cases, vi+1/(
√
dL) cannot be a subgradient of F returned at x.

We finish the proof by showing that the probability of E2 conditioning on E1 is at most d−ω(1).
To this end, consider running ALG on F that is defined using the fixed A and random v1, . . . ,vN ,
and E1 holds at the end of round t− 1. Let H denote the query-answer history of the t− 1 rounds
so far. Let x1, . . . ,xt−1 be the t− 1 points queried in H, and let xt be the point to be queried by
ALG next in round t given H. By Claim 4.4, vi+1/

√
dL is never returned as a subgradient in H.

Before proceeding to round t, we reveal all vectors v1, . . . ,vN except vi+1. Let v−i denote the
tuple that contains these N − 1 vectors revealed. We claim that given v−i, the following set of
vectors captures exactly candidates for vi+1 to (i) be consistent with H and (ii) satisfy E1:

V :=

{
v ∈ 1√

d
Hd : |〈v,xτ 〉| ≤

γ

4
for all τ ∈ [t− 1] with ‖Axτ‖∞ ≤ ξ

}
. (2)

To see this is the case, it is trivial that vi+1 needs to be in V for both (i) and (ii) to hold. On the
other hand, vi+1 ∈ V is sufficient for (i) and (ii) since no subgradient in H is relevant to vi+1.

It then suffices to show that the probability of v ∼ V satisfying |〈v,xt〉| ≥ γ/4 is at most d−ω(1).
First we have by Khintchine inequality (Lemma A.1) and using δ < 1 that

Pr
v∼ 1√

d
Hd

[v ∈ V ] ≥ 1− d−ω(1).

On the other hand, we have by Chernoff bound that

Pr
v∼ 1√

d
Hd

[|〈v,xt〉| ≥ γ/4] ≤ d−ω(1).

It follows that the probability of v ∼ V satisfying |〈v,xt〉| ≥ γ/4 is at most d−ω(1).

Next, we observe the optimal value of F is small with high probability:

Lemma 4.5. Fix A ∈ {−1, 1}(d/2)×d. With probability at least 1− d−ω(1) over v1, . . . ,vN we have

argminx∈Bd F (x) ≤ − 1√
dL
· 1√

N log2 d
.

Proof. Let UA be an orthonormal matrix that spans the row space of A. Let v̂i = (I−UAU
⊤
A)vi

be projection vi onto the orthogonal space of UA. It is clear that v̂i ⊥ row(A) for any i ∈ [N ].
Consider

x = − 1√
N log d

·
N∑

i=1

v̂i.

It suffices to prove that, with probability at least 1− d−ω(1), one has

• F (x) ≤ − 1√
dL
· 1√

N log2 d
, and

• ‖x‖2 ≤ 1.
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For the first claim, it is clear that ‖Ax‖∞ = 0 since v̂i (i ∈ [N ]) is orthogonal to the row space of
A. Furthermore, for any i ∈ [N ], one has

〈vi,x〉 = vi(I−UAU⊤
A)x = 〈v̂i,x〉

=

〈
v̂i,−

1√
N log(d)

N∑

j=1

v̂i

〉

≤ − 1√
N log d

‖v̂i‖22 +
1√

N log d

∣∣∣∣∣∣

∑

j 6=i
〈v̂i, v̂j〉

∣∣∣∣∣∣
. (3)

The first step holds since (I −UAU⊤
A)x = x, the second and third step follow from the definition

of v̂i and x.
We bound the two terms separately. For the first term, since v̂i is the projection of vi onto the

orthogonal space of UA (which has rank at least d/2), by Lemma A.3, with probability at least
1− d−ω(1), one has

‖v̂i‖22 ≥
1

2
− log d√

d
. (4)

For the second term, with probability at least 1− d−ω(1), one has

〈
v̂i,

∑

j 6=i
v̂j

〉
= v⊤

i (I−UAU⊤
A)(

∑

j 6=i
vj)

≤ log d√
d
· ‖(I−UAU⊤

A)(
∑

j 6=i
vj)‖2

≤ log d√
d
· ‖

∑

j 6=i
vj‖2

≤ log d√
d
·
√
N log d ≤ 1

4
. (5)

Here the second step holds due to Khintchine inequality (Lemma A.1), the fourth step holds due to
Chernoff bound, and the last step holds due to the choice of parameters.

Combining Eq. (3)(4)(5), we conclude that

〈vi,x〉 ≤ −
1√

N log2(d)
∀i ∈ [N ]

and therefore, complete the proof of the first claim.
For the second claim, with probability at least 1− d−ω(1)

‖
N∑

i=1

v̂i‖2 = ‖(I−UAU⊤
A)

N∑

i=1

vi‖2 ≤ ‖
N∑

i=1

vi‖2 ≤
√
N log(d)

We finish the proof here.

It follows from Lemma 4.5 that tN ≤ T with probablity at least (2/3) − d−ω(1):

Lemma 4.6. With probability at least (2/3) − d−ω(1), we have tN ≤ T .
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Proof. We claim that tN ≤ T whenever (1) ALG finds an ǫ-optimal point of F and (2) the event of
Lemma 4.5 holds. The lemma follows from Lemma 4.5 and the assumption that ALG succeeds with
probability at least 2/3. To prove the claim, we note that by (2),

argminx∈Bd F (x) ≤ − 1√
dL
· 1√

N log2 d
.

On the other hand, if tN =∞, then every point xt queried by ALG satisfies

F (xt) ≥
1√
dL
·max

{
L‖Axt‖∞− 1, 〈vN ,xt〉−Nγ

}
≥ 1√

dL
·
(
−N − 1

4

)
γ ≥ argminx∈Bd F (x)+ ǫ.

Here the second step follows from tN =∞ and the last step follows from our choice of parameters.
Given that we assume ALG outputs xN , this contradicts with the assumption that ALG succeeds in
finding an ǫ-optimal point of F . This finishes the proof of the lemma.

By a simple averaging argument, there exists an i ∈ [N − 1] with the following property:

Lemma 4.7. There exists an i ∈ [N − 1] such that both ti ≤ ti+1 ≤ T and

ti+1 − ti ≤
20T

N
=

n

2

hold with probability at least 3/5.

Proof. We always condition on the high probability event of Lemma 4.3. Let E denote the event
that tN ≤ T and by Lemma 4.6, we have Pr[E ] ≥ 2

3−d−ω(1). We prove by contradiction and suppose
there is no such index i, then we have Pr[ti+1 − ti ≥ 20T

N ] > 3
5 for all i ∈ [N − 1], and therefore,

Pr[ti+1 − ti ≥ 20T
N |E ] > 1

15 . This means E[ti+1 − ti|E ] > 1
15 · 20TN ≥ 4T

3N , and

E [tN − t1|E ] = E

[
N−1∑

i=1

ti+1 − ti|E
]
> (N − 1) · 4T

3N
> T

This contradicts the fact that tN ≤ T when E happens.

We remark that all lemmas proved so far stand regardless of the memory constraints.

Reduction. Now we are ready to use ALG to design a randomized (k, n)-communication protocol
for the (s, ξ)-correlated orthogonal vector game that succeeds with probability at least 1/2. Given
that a randomized protocol is a distribution of deterministic protocols, Lemma 4.1 follows.

Proof of Lemma 4.1. Let i ∈ [N − 1] be an integer that satisfies the condition of Lemma 4.7. The
communication protocol is described in Figure 1. Recall that in the game Alice receives a matrix
A ∼ {−1, 1}(d/2)×d and Bob receives a vector v ∼ 1√

d
Hd. In the protocol, Alice and Bob sample

independently v1, . . . ,vN ∼ 1√
d
Hd using public randomness. Let

V = (v1, . . . ,vi,vi+1,vi+2, . . . ,vN ) and V ′ = (v1, . . . ,vi,v,vi+2, . . . ,vN ),

that is, V ′ replaces vi+1 with v. Let FA,V (or FA,V ′) denote the function defined using A and those
vectors in V (or V ′, respectively). Roughly speaking, Alice would first optimize the function FA,V

to time ti, then send its memory state M to Bob. It continues to optimize FA,V ′ for n iterations and
sends all subgradients to Bob. Bob would simulate ALG using M and these subgradients, output
any query x that is orthogonal to A and has large correlation with v.
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Communication protocol for the correlated orthogonal vector game

• Alice and Bob use public randomness to sample v1, . . . ,vN ∼ 1√
d
Hd.

• Round 1: Alice runs ALG on the function FA,V , from which Alice obtains ti and sends
the memory state M ∈ {0, 1}kd of ALG after ti − 1 rounds to Bob.

• Round 2: Bob sends v to Alice.

• Round 3: Alice runs ALG on the function FA,V ′ . For each j ∈ [n], Alice sets aj to be

Ai if the subgradient returned by FA,V ′ in round ti + j − 1 is either Ai/
√
d or

−Ai/
√
d, and set aj = nil otherwise. Alice sends a1, . . . ,an ∈ row(A) ∪ {nil} to Bob.

• Output: Bob runs ALG for n rounds, starting with memory state M, the first message
from Alice. For each round j = 1, . . . , n, let xj be the query point of ALG:

1. If aj 6= nil, Bob sets (
L|〈aj ,xj〉| − 1√

dL
, ± aj√

d

)

be the pair returned by the oracle, where the sign of the subgradient can be
determined by the sign of 〈aj ,xj〉, and continue the execution of ALG;

2. If aj = nil, Bob finds the vector vℓ ∈ V ′ with the smallest index that maximizes
〈vℓ,xj〉 − ℓγ, sets (〈vℓ,xj〉 − ℓγ√

dL
,

vℓ√
dL

)

be the pair returned by the oracle and continue the execution of ALG.

Bob outputs any query xj (j ∈ [n]) that satisfies |〈v,xj〉| ≥ γ/4 and F (xj) ≤ 1√
dL

. If

no such query exists, Bob fails and outputs an arbitrary vector, say 0.

Figure 1: Reduction from convex optimization to the correlated orthogonal vector game

It is clear from the description of the protocol that it is a (k, n)-communication protocol. We
finish the proof by showing that it succeeds with probability at least 1/2. We first condition on
the high probability event of Lemma 4.3, for V and V ′. Note it happens with probability at least
1−d−ω(1). The convex optimization algorithm has the same transcripts for FA,V and FA,V ′ , during
time t ∈ [ti−1]. This is because it only receives subgradients from {v1, . . . ,vi}∪ row(A) before time
ti by Lemma 4.3 and Claim 4.4. Hence, we can assume the memory state M comes from optimizing
the function FA,V ′ .

Next, we condition on the event of Lemma 4.7, which asserts ti+1 − ti ≤ n/2 and it happens
with probability at least 3/5. It is easy to see that Bob, who knows M, V ′ and a1, . . . ,an, can
simulate ALG for function FA,V ′ up to time ti+1 ≤ ti+n. Therefore, it must submit a query x that

satisfies ‖Ax‖∞ ≤ 2
L = ξ and |〈x,v〉| ≥ γ/4 ≥

√
s/d. We finish the proof of reduction here.
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5 Lower bound for the correlated orthogonal vector game

In this section, We prove the following lower bound for correlated orthogonal vector game. Theorem
1.1 follows directly by combining the lower bound with Lemma 4.1.

Theorem 5.1 (Lower bound of correlated orthogonal vector game). Let d be a sufficiently large
integer. Let δ ∈ (0, 1), k = d1−δ−o(1), s = d1−δ/2 log2(d), ξ = 2exp(− log5(d)) Then any deter-
ministic (k, n)-communication protocol that solves the (s, ξ)-correlated orthogonal vector game with
probability at least 1/2 requires n ≥ d · exp(− log d/ log log d).

We prove by contradiction and assume n ≤ d · exp(− log d/ log log d) from now on.

Communication protocol. A deterministic (k, n)-communication protocol works as follows:

• (Round 1) Alice receives a matrix A ∈ {−1, 1}(d/2)×d , and let MA ∈ {0, 1}kd be the message
sent in the first round.

• (Round 3) Recall Alice obtains both A and v after the second round. Let

ri,A,v ∈ {−1, 1}d ∪ {nil}

be the i-th row sent to Bob (i ∈ [n]) and let RA,v = (r1,A,v, . . . , rn,A,v) be the collection of
rows sent by Alice.

• (Output) At the end, Bob outputs a vector xM,v,R based on the message M, the vector v

and the collection of rows R. We write xA,v = xMA,v,RA,v
to denote Bob’s output under the

input pair (A,v).

Note the output vector xM,v,R is well-defined for any message M ∈ {0, 1}d, vector v ∈ 1√
d
Hd

and any collection of rows R ∈ ({−1, 1}d ∪ {nil})n.
The following lemma shows that, without loss of generality, one can assume that the output

xM,v,R has unit norm.

Lemma 5.2 (Unit norm). If there is a (k, n) communication protocol for (s, ξ)-correlated orthogonal
vector game, then there is a (k, n) communication protocol that always output unit vectors and solves
(s, ξ′)-correlated orthogonal vector game, where ξ′ =

√
dξ

Proof. For any message M ∈ {0, 1}kd, vector v ∈ 1√
d
Hd and collection of rows R ∈ ({−1, 1}d ∪

{nil})n, consider the output vector xM,v,R:

• If ‖xM,v,R‖2 <
√

s/d, one can change it to an arbitrary unit vector and it does not reduce
the success probability of the protocol.

• If
√

s/d ≤ ‖xM,v,R‖2 ≤ 1, then we can scale the output to
xM,v,R

‖xM,v,R‖2 and it has unit norm.

The correlation with any vector can only increase, and by a factor of at most
√

d/s ≤
√
d,

hence by relaxing the orthogonal condition by a factor of
√
d, the success probability does not

decrease.

We complete the proof here.

For any matrix B ∈ {−1, 1}m×d and any collection of rows R ∈ ({−1, 1}d ∪ {nil})n, we write
R ⊆ row(B) ∪ {nil} if each row of R either is nil or belongs to row(B).
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Definition 5.3 (Table). Let m ∈ [d/2]. Given any message M ∈ {0, 1}kd, any matrix B ∈
{−1, 1}m×d and any set of vectors V ⊆ 1√

d
Hd

TM(B, V ) := {xM,v,R : v ∈ V,R ⊆ row(B) ∪ {nil}} ⊆ S
d

That is to say, TM(B, V ) contains all possible outputs by Bob, when the message is M, the vector
v is from V and the n rows are taken from B.

Note the definition of table is flexible that we do not need B to have exact d/2 rows. Given a
table TM(B, V ), we mostly care about entries that are (almost) orthogonal to B. Recall ξ′ =

√
dξ.

Definition 5.4 (Orthogonal entry). Given a table TM(B, V ), let OM(B, V ) contain all entries in
TM(B, V ) that are (almost) orthogonal to B, i.e.,

OM(B, V ) :=
{
x : x ∈ TM(B, V ), ‖Bx‖∞ ≤ ξ′

}
.

5.1 The existence of a succinct table

The goal of this subsection is to select a small subset V ∗ ⊆ 1√
d
Hd, of size at most 2s, that is

representative.

Let Asuc ⊆ {−1, 1}
d
2
×d contain all matrices A such that the protocol succeeds with probability

at least 1/4 (over the randomness of v) when Alice receives A as input. We have |Asuc| ≥ 1
4 · 2d

2/2

because the protocol succeeds with probability at least 1/2 over a random pair of A and v. First,
we prove the outputs {xA,v}v∈ 1√

d
Hd

are spread out for A ∈ Asuc.

Lemma 5.5. Let c1 > 0 be some sufficiently small constant and K = exp(c1s). For any fixed
matrix A ∈ Asuc and fixed set of vectors y1, . . . ,yK ∈ S

d, one has

Pr
v∼ 1√

d
Hd

[
‖AxA,v‖∞ ≤ ξ′ ∧ ‖xA,v − yi‖2 >

1

d8
∀i ∈ [K]

]
≥ 1/8. (6)

Proof. Let Vclose ⊆ 1√
d
Hd be the set of vectors v that has large correlations with some yi, i.e.,

Vclose =
⋃

i∈[K]

{
v : |〈v,yi〉| ≥

√
s/2d,v ∈ 1√

d
Hd

}
.

We first prove the size of Vclose is not large. For any fixed yi (i ∈ [K]), by Lemma A.3, we have that

Pr
v∼ 1√

d
Hd

[
|〈v,yi〉| ≥

√
s/2d

]
≤ exp(−c2s)

for some constant c2 > c1 > 0. Taking a union bound over i ∈ [K], we have

Pr
v∼ 1√

d
Hd

[
∃i ∈ [K] : |〈v,yi〉| ≥

√
s/2d

]
≤ K · exp(−c2s) ≤ exp(−(c2 − c1)s) ≤

1

8

Hence, we have |Vclose| ≤ 1
8 · 2d.

Let V ′ ⊆ 1√
d
Hd be the set of vectors such that Eq. (6) holds. It suffices to prove that the

protocol succeeds on (A,v) only if v ∈ Vclose ∪ V ′, as this would imply |V ′| ≥ 1
8 · 2d. For any vector
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v ∈ 1√
d
Hd\(Vclose ∪ V ′), if ‖AxA,v‖∞ ≤ ξ′, then xA,v must be close to some yi (since v /∈ V ′).

Then we have

|〈xA,v,v〉| ≤ |〈yi,v〉| +
1

d8
≤

√
s

2d
+

1

d8
<

√
s

d

where the first step follows from ‖xA,v − yi‖2 ≤ 1
d8

, the second step follows from v /∈ Vclose. We
finish the proof here.

Definition 5.6 (α-cover). Let α > 0 and X ⊆ R
d be a set of points. Let N (X,α) ⊆ X be the

α-covering of set X, which is defined as the largest set X ′ ⊆ X such that for any x1,x2 ∈ X ′,
‖x1 − x2‖2 ≥ α.

Now, we prove that there exists a “small” set of vectors V ∗ ⊆ 1√
d
Hd , such that the (1/d8)-cover

of OMA(A, V ∗) is large , for most A ∈ Asuc. We derive the existence using the probabilistic method.

Lemma 5.7. Let c1 > 0 be a sufficiently small constant and K = exp(c1s). For any fixed matrix
A ∈ Asuc, with probability least 1− exp(−s/2) over the random draw of V = {v1, . . . v16sK},

∣∣N
(
OMA(A, V ), 1/d8

)∣∣ ≥ K.

Proof. We partition the set V into K groups, where the i-th group

Vi = {v16s(i−1)+1, . . . ,v16si} ∀i ∈ [K]

We would construct a large set N from OMA(A, V ) such that the pairwise distance is large. Initially,
N0 = ∅. At the i-th step, suppose Ni−1 = {x1, . . . ,xi−1} ⊆ OMA(A, V1 ∪ · · · ∪ Vi−1) be the set
constructed thus far, we would add an entry from OMA(A, Vi) that is apart from existing vectors
in Ni−1.

Note for each j ∈ [16s], consider the entry xA,v16s(i−1)+j
∈ TMA(A, Vi), by Lemma 5.5, we have

Pr
v16s(i−1)+j∼ 1√

d
Hd

[
‖AxA,v16s(i−1)+j

‖∞ ≤ ξ′ ∧ ‖xA,v16s(i−1)+j
− xτ‖2 >

1

d8
∀τ ∈ [i− 1]

]
≥ 1/8.

Since {v16s(i−1)+j}j∈[16s] are sampled independently from 1√
d
Hd, with probability at least 1 −

exp(−s), there exists j ∈ [16s] such that

• ‖xA,v16s(i−1)+j
− xτ‖2 ≥ 1

d8
for any τ ∈ [i− 1], and

• ‖AxA,v16s(i−1)+j
‖∞ ≤ ξ′.

Hence we can add Ni = Ni−1 ∪ {xA,16s(i−1),j}. Taking a union bound over i ∈ [K], we have with

probability at least 1− exp(−s/2), one has |N (OMA(A, V ), 1/d8)| ≥ K.

By Lemma 5.7, we conclude that

Lemma 5.8. There exists a set V ∗ ⊆ 1√
d
Hd with size at most 16sK ≤ 2s, such that the set

Anice :=
{
A ∈ Asuc : |N (OMA(A, V ∗), 1/d8)| ≥ 2s/ log(d)

}
.

has size at least 1
8 · 2d

2/2.

We would fix the set of V ∗ from now on, and we only consider matrix A ∈ Anice. In the rest
of the proof, we would omit V ∗ when there is no confusion. That is to say, we write the table
TM(A) := TM(A, V ∗) and its orthogonal entries OM(A) := OM(A, V ∗).
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5.2 Encoding

Up to this point, we have proved that there exists a large set of matrices Anice ⊆ {−1, 1}(d/2)×d ,
such that, for any A ∈ Anice, the table TMA(A) contains many different orthogonal entries: The
(1/d8)-cover of OMA(A) is of size at least 2s/ log(d). We establish the contradiction by proving this
is simply impossible! Our strategy is to find an encoding strategy such that (1) it encodes every
matrix in Anice, but at the same time (2) the number of matrices encoded are at most 2d

2/2/d.
We first introduce the notion of robustly linearly independent sequence.2

Definition 5.9 (γ-robustly linearly independent sequence). Let γ ∈ (0, 1), L ∈ [d]. A sequence of
unit vectors y1, . . . ,yL is γ-robustly linearly independent, if for any j ∈ [L− 1],

‖yj − projspan(y1,...,yj−1)(yj)‖2 ≥ γ

That is to say, yj has a non-trivial component that is orthogonal to the linear span of y1, . . . ,yj−1.

The definition of γ-RLI sequence allows for arbitrary length, but in the rest of section, we would
consider sequence of length

L :=
s

4 log8 d

Parameters. We introduce a few parameters. Let

∆ :=
d

n
≥ exp(log d/ log log d).

Let H be the smallest integer such that

s

log2(d)
·
(

∆

log5(d)

)H
≥ d

10
,

we know that H ≤ log log d by our choice of parameters.
The encoding strategy proceeds in H levels, and the step size

sh =
s

log2(d)
·
(

∆

log5(d)

)h
, ∀h ∈ [0 : H − 1] and sH =

d

10
.

Denote the partial sum as s≤h =
∑h

i=1 si and s≤0 = 0 (note they exclude s0).
We consider doubly exponentially decreasing radius of cover {αh}h∈[H],

α0 =
1

d8
, αh = α8

h−1 = d−8h+1 ∀h ∈ [0 : H]

Note we still guarantee αH ≥ exp(−8 log4(d))≫ ξ′ =
√
d exp(− log5(d)).

Definition 5.10 (Partition). At the h-th level (h ∈ [H]), we consider partitions of rows [d/2] that
satisfy

Ph,1 ∪ Ph,2 ∪ Ph,3 = [d/2], |Ph,1| = d/2 − s≤h, |Ph,2| = sh, |Ph,3| = s≤h−1

and let Ph be the collection of all such partitions.
Given a partition Ph ∈ Ph and three sub-matrices Ah,1 ∈ {−1, 1}(d/2−s≤h)×d, Ah,2 ∈ {−1, 1}sh×d

and Ah,3 ∈ {−1, 1}s≤h−1×d, Let [Ah,1,Ah,2,Ah,3]Ph
∈ {−1, 1}(d/2)×d be the matrix induced naturally

by the partition. That is, the j-th row of Ah,τ is located at the Ph,τ (j)-th row, where Ph,τ (j) is the
j-th element in Ph,τ (τ = 1, 2, 3, j ∈ [|Ph,τ |]).

Finally, we set Γh := 2shd−2kd to be the threshold for level h.

2Our definition of γ-robustly linearly independent sequence is slightly different from [MSSV22], roughly speaking,
γ-RLI in our work implies (γ2/2)-RLI of [MSSV22] and vice versa.
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Algorithm 1 Encoding

1: Ah ← ∅ (h ∈ [H])
2: for h = 1, 2, . . . ,H do

3: for each message M ∈ {0, 1}kd, partition Ph ∈ Ph, matrix Ah,1 ∈ {−1, 1}(d/2−s≤h)×d do

4: SM,Ph,Ah,1
← ∅

5: for each (αh−1/4)-RLI sequence xh,1, . . . ,xh,L ∈ OM(Ah,1) do

6: Ih,xh,1,...,xh,L
← {Ah,2 ∈ {−1, 1}sh×d, ‖Ah,2xh,i‖∞ ≤ ξ′ ∀i ∈ [L]}

7: SM,Ph,Ah,1
← SM,Ph,Ah,1

∪ Ih,xh,1,...,xh,L

8: end for

9: JM,Ph,Ah,1
← {[Ah,1,Ah,2,Ah,3]Ph

: Ah,2 ∈ SM,Ph,Ah,1
,Ah,3 ∈ {−1, 1}s≤h−1×d}

10: if |SM,Ph,Ah,1
| ≤ Γh then

11: Ah ← Ah ∪ JM,Ph,Ah,1

12: end if

13: end for

14: end for

15: A ← A1 ∪ · · · ∪ AH

Encoding algorithm The encoding strategy is formally stated at Algorithm 1. It divides into
H levels. In the h-th level, it enumerates all possible messages M ∈ {0, 1}kd, partitions Ph ∈ Ph
and sub-matrices Ah,1 ∈ {−1, 1}(d/2−s≤h)×d. It remains to determine Ah,2 ∈ {−1, 1}sh×d (Ah,3

could take any value in {−1, 1}s≤h−1×d). To this end, it checks the orthogonal entries OM(Ah,1)
and enumerates all (αh−1/4)-RLI sequence (of length L) in it. It includes matrices Ah,2 that is
orthogonal to one of the sequence and and takes a union over all of them (Line 5-8). Finally, the
encoding algorithm includes this set of matrices (i.e., SM,Ph,Ah,1

) only if its size is no more than

Γh = 2shd−2kd.

5.3 Analysis

Our goal is to prove the size of A is at most 2d
2/2/d, but at the same time, it contains Anice, this

would reach a contradiction. In particular, we prove

Lemma 5.11 (Upper bound on A). The size of A is at most 2d
2/2/d.

Lemma 5.12 (Lower bound on A). Anice ⊆ A.

The proof of Lemma 5.11 is straightforward and follows simply from counting.

Lemma 5.13. For each level h ∈ [H], the size of Ah is at most 2d
2/2/d2.

Proof. For any fixed h ∈ [H], the total number of different messages M ∈ {0, 1}kd, partitions
Ph = (Ph,1, Ph,2, Ph,3) and sub-matrices Ah,1 ∈ {−1, 1}(d/2−s≤h)×d are at most

2kd × 23d × 2d(d/2−s≤h) (7)

It remains to bound the size of JM,Ph,Ah,1
. Note it would not be counted if |SM,Ph,Ah,1

| > Γh. On

the other side, when |SM,Ph,Ah,1
| ≤ Γh, the total different choice of Ah,2 is at most Γh = 2dsh−2kd.

We make no restrictions on Ah,3 and its size is at most 2ds≤h−1 . Multiply these numbers, we have

|JM,Ph,Ah,1
| ≤ 2dsh−2kd × 2ds≤h−1 . (8)
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Combining Eq. (7)(8), we have

|Ah| ≤ (2kd × 23d × 2d(d/2−s≤h))× (2dsh−2kd × 2ds≤h−1) = 2d
2/2+3d−kd ≤ 2d

2/2/d2.

We complete the proof here.

We set to prove Lemma 5.12, which is the major technical Lemma. We set

Nh = 2sh/ log(d) ∀h ∈ [0 : H].

Proof of Lemma 5.12. For any fixed A ∈ Anice, we wish to prove A ∈ A. We prove by induction
on h, and our inductive hypothesis is

• Inductive hypothesis. If A /∈ Aℓ for any ℓ = 0, 1, . . . , h, then there is a submatrix Ãh ⊆ A

(Ãh ∈ {−1, 1}(d/2−s≤h)×d), such that |N (OMA(Ãh), αh)| ≥ Nh.

In another word, our inductive hypothesis asserts that if A has not yet been added to A till level
h, then there is a submatrix Ãh that takes (d/2− s≤h) rows from A and the αh-cover of OMA(Ãh)
has size at least Nh.

The base case of h = 0 holds directly from the definition of Anice. In particular, it is clear that
A /∈ A0 = ∅ and we would take Ã0 = A. By Lemma 5.15, we have that |N (OMA(A), α0)| ≥ N0.

Suppose the claim holds up to h, and the orthogonal entries OMA(Ãh) has a large αh-cover.
Our first step is to remove sh+1 = sh · ( ∆

log5(d)
) different rows, Rh ∈ {−1, 1}sh+1×d, from Ãh, and

prove that the remaining sub-matrix Ãh+1 = Ãh\Rh still contains a large number of entries from
the αh cover. In particular,

Lemma 5.14 (Deleting rows). Suppose
∣∣∣N (OMA(Ãh), αh)

∣∣∣ ≥ Nh = 2sh/ log(d),

then there exists sh+1 rows of Ã, denoted as Rh, such that, after deleting Rh from Ãh, the remaining
matrix Ãh+1 = Ãh\Rh satisfies,

∣∣∣OMA(Ãh+1) ∩ N (OMA(Ãh), αh)
∣∣∣ ≥ 2sh/2 log(d).

Proof. It is clear if an entry x ∈ N (OMA(Ãh), αh), then it satisfies ‖Ãh+1x‖∞ ≤ ‖Ãhx‖∞ ≤ ξ′.
Hence, all we need to prove is that a non-trivial amount of entries in N (OMA(Ãh), αh) survive after
the deletion. Indeed, for any submatrix Ã ⊆ Ãh of at least d

10 rows, we wish to prove, there exists

a row r ∈ Ã, such that
∣∣∣OMA(Ã\{r}) ∩ N (OMA(Ãh), αh)

∣∣∣ ≥
(
1− 10

∆

)
·
∣∣∣OMA(Ã) ∩ N (OMA(Ãh), αh)

∣∣∣ . (9)

Assuming this is true, one can take a sequence of rows r1, . . . , rsh+1
and

∣∣∣OMA(Ãh\{r1, . . . , rsh+1
}) ∩ N (OMA(Ãh), αh)

∣∣∣

≥
(
1− 10

∆

)
·
∣∣∣OMA(Ãh\{r1, . . . , rsh+1−1}) ∩ N (OMA(Ãh), αh)

∣∣∣

...

≥
(
1− 10

∆

)sh+1

·
∣∣∣OMA(Ãh) ∩ N (OMA(Ãh), αh)

∣∣∣

≥ 2−sh/ log
4(d) · 2sh/ log(d) ≥ 2sh/2 log(d)
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The first and second step follows from Eq. (9) and Ãh contains d/2 − s≤h ≥ d/2 − d/5 ≥ d
5 rows.

We plug in the value of sh+1 = sh · ( ∆
log5(d)

) and Nh = 2sh/ log(d) in the third step.

It remains to prove Eq. (9), it follows from a counting argument. In particular, we claim

∑

r∈row(Ã)

∣∣∣OMA(Ã\{r}) ∩ N (OMA(Ãh), αh)
∣∣∣

≥ (|row(Ã)| − (d/∆)) ·
∣∣∣OMA(Ã) ∩N (OMA(Ãh), αh)

∣∣∣ .

This is because for any entry x in the RHS (i.e. x ∈ OMA(Ã)∩N (OMA(Ãh), αh)), suppose it equals
xMA,{q1,...,qn},v for some rows q1, . . . ,qn ∈ row(Ã) ∪ {nil} and v ∈ V ∗, then it is also contained in

OMA(Ã\{r}) ∩ N (OMA(Ãh), αh) as long as r /∈ {q1, . . . ,qn}. This means x has been counted for
|row(Ã)− n| = |row(Ã)− (d/∆)| times in the LHS.

Combining with the assumption that Ã contains at least d/10 rows, we conclude the proof of
Eq. (9), and complete the proof of Lemma.

We continue the proof of induction. In particular, let Rh, Ãh+1 be defined as in Lemma 5.14,
we would consider the following enumeration

M = MA, Ah+1,1 = Ãh+1 ∈ {−1, 1}(d/2−s≤h+1)×d, Ah+1,3 = A\Ãh ∈ {−1, 1}s≤h×d (10)

and the partition Ph+1 ∈ Ph+1 is the one, such that, A = [Ãh+1,Rh,A\Ãh]Ph+1
.

It remains to fill in Ah+1,2 with Rh, to this end, we prove

Lemma 5.15. Suppose the message M, the matrix Ah+1,1 and the partition Ph+1 are defined as
Eq. (10), then Rh ∈ SM,Ph+1,Ah+1,1

Proof. Consider the set

X := OM(Ah+1,1) ∩N (OM(Ãh), αh) (11)

By Lemma 5.14, the size |X| ≥ 2sh/2 log(d) and for any x ∈ X, ‖Rhx‖∞ ≤ ‖Ãhx‖∞ ≤ ξ′. Therefore,
it suffices to prove that there exists an (αh/4)-RLI sequence x1, . . . ,xL ∈ X, note it would imply
Rh ∈ Ih+1,x1,...,xL

.
We prove by contradiction and assume the maximum length of (αh/4)-RLI sequence is at most

L′ < L, then there exists an L′-dimensional subspace (formed by the maximum sequence), repre-
sented by the orthonormal U = [u1, . . .uL′ ] ∈ R

d×L′
, such that

‖(I −UU⊤)x‖2 <
αh
4
, ∀x ∈ X. (12)

Consider the grid

GL′ =

{
L′∑

i=1

λiui : λi = 0± ξ,±2ξ, . . . ,±1,∀i ∈ [L′]

}

Then the size of the grid is most

|GL′ | ≤ (4/ξ)L
′ ≤ exp(L log(4/ξ)) < exp

(
s/2 log3(d)

)
≤ exp(sh/2 log(d)).

where the third step follows from the choice of parameters L = s
4 log8(d)

, ξ = 2exp(− log5(d)), the

last step follows from sh ≥ s0 = s/ log2(d).
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Therefore, there exists x1,x2 ∈ X such that the projections UU⊤x1,UU⊤x2 are in the same
grid, then we have

‖x1 − x2‖2 ≤ ‖(UU⊤)(x1 − x2)‖2 + ‖(I−UU⊤)(x1 − x2)‖2 ≤ 2dξ + 2 · αh
4

< αh

Here the first step follows from the triangle inequality, the second step follows from Eq. (12) and
UU⊤x1,UU⊤x2 are at the same grid. This contradicts with the fact that points in X have pairwise
distance at least αh (see the definition at Eq. (11)). We complete the proof here.

Due to Lemma 5.15, we can conclude that, if |SM,Ph+1,Ah+1,1
| ≤ Γh+1 = 2sh+1d−2kd, then the

encoding algorithm would add A to Ah+1, and we can finish the induction. Hence, we focus on the
case of |SM,Ph+1,Ah+1,1

| > Γh+1 = 2sh+1d−2kd. In this case, let N̂h+1 be the size of αh+1-cover in

OM(Ah+1,1), that is

N̂h+1 := |N (OM(Ah+1,1), αh+1)|.
We give a lower bound on N̂h+1 in terms of |SM,Ph+1,Ah+1,1

|, in particular, we prove

Lemma 5.16. Suppose the message M, the matrix Ah+1,1 and the partition Ph+1 are defined as

Eq. (10), then |SM,Ph+1,Ah+1,1
| ≤ (N̂h+1)

L · 2sh+1·(d−Ω(L)).

We need the following bound on the number of orthogonal vectors to a RLI sequence.

Lemma 5.17 (Number of orthogonal vectors). Given any (αh/4)-RLI sequence x1, . . . ,xL, define

Ĩh+1,x1,...,xL
:=

⋃

x̃i∈B(xi,2αh+1),∀i∈[L]
Ih+1,x̃1,...,x̃L

.

Then we have
∣∣∣Ĩh+1,x1,...,xL

∣∣∣ ≤ 2sh+1(d−cL)

for some absolute constant c > 0.

Proof. We apply Lemma A.4 for the sequence x1, . . . ,xL, with δ = (αh/4)
2/2, X = [x1, . . . ,xL] ∈

R
d×L, then there exists an orthonormal matrix U ∈ R

d×(L/2), such that

‖U⊤a‖∞ ≤
d

δ
‖X⊤a‖∞ =

32d

α2
h

‖X⊤a‖∞ ∀a ∈ R
d. (13)

Now for any matrix R ∈ Ĩh+1,x1,...,xL
, there exists a sequence x̃1, . . . , x̃L, such that x̃i ∈ B(xi, 2αh+1)

for i ∈ [L], and R ∈ Ih+1,x̃1,...,x̃L
. Let X̃ = [x̃1, . . . , x̃L] ∈ R

d×L, for each row r of R, one has

‖U⊤r‖∞ ≤
32d

α2
h

‖X⊤r‖∞ ≤
32d

α2
h

(‖X̃⊤r‖∞ +
√
d · 2αh+1) ≤

32dξ′

α2
h

+
64d
√
dαh+1

α2
h

≤ 1/d5. (14)

Here the first step follows from Eq. (13), the second step follows from x̃i ∈ B(xi, 2αh+1) for every
i ∈ [L] and ‖r‖2 =

√
d. The last step follows from the choice of parameters.

Let Ror ⊆ {−1, 1}d contain all possible r that satisfies Eq. (14). We wish to bound the size of
Ror, by Lemma 5.7, we have that

Pr
r∼{−1,1}d

[
‖U⊤r‖22 ≤ 1/d8

]
≤ 2−cL

for some constant c > 0. Hence, we have |Ror| ≤ 2d · 2−cL = 2d−cL. Since we have proved r ∈ Ror

for every row of R ∈ Ĩh+1,x1,...,xL
, and R has sh+1 rows, we conclude the proof of Lemma.
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Now we can go back to the proof of Lemma 5.16

Proof of Lemma 5.16. Let Xh contain all (αh/4)-RLI sequence of length L in OM(Ah+1,1), then
ones has

SM,Ph+1,Ah+1,1
=

⋃

(x1,...,xL)∈Xh

Ih+1,x1,...,xL
.

Construct Yh as follows. For any x1, . . . ,xL in the αh+1-cover N (OM(Ah+1,1), αh+1), if there
exists a sequence y1, . . . ,yL, such that

• yi ∈ B(xi, αh+1),

• yi ∈ OM(Ah+1,1), and

• y1, . . . ,yL forms an (αh/4)-RLI sequence,

then we add (y1, . . . ,yL) to Yh. If there are multiple sequences, we only add one of them.
First, we have |Yh| ≤ (N̂h+1)

L because we look at each L-tuple in N (OM(Ah+1,1), αh+1) once.
Next, we claim that for any sequence x1, . . . ,xL ∈ Xh, there exists (y1, . . . ,yL) ∈ Yh such that

‖xi − yi‖2 ≤ 2αh+1. To see this, let x̃1, . . . , x̃L from the αh+1-cover N (OM(Ah+1,1), αh+1), such
that ‖x̃i − xi‖2 ≤ αh+1. Then there must exists (y1, . . . ,yL) ∈ Yh such that ‖x̃i − yi‖2 ≤ αh+1.
This is sufficient for our purpose.

Hence, we can conclude that

SM,Ph+1,Ah+1,1
=

⋃

(x1,...,xL)∈Xh

Ih+1,x1,...,xL
⊆

⋃

(y1,...,yL)∈Yh

Ĩh+1,y1,...,yL

By Lemma 5.17, we conclude

|SM,Ph+1,Ah+1,1
| ≤ |Yh| · 2sh+1(d−cL) ≤ (N̂h+1)

L · 2sh+1·(d−Ω(L)).

This completes the proof of Lemma.

By Lemma 5.16 and our assumption that |SM,Ph+1,Ah+1,1
| ≥ Γh+1, we have that

(N̂h+1)
L · 2sh+1·(d−Ω(L)) ≥ |SM,Ph+1,Ah+1,1

| ≥ Γh+1 = 2sh+1d−2kd

and therefore,

N̂h+1 ≥ 2sh+1/ log(d) = Nh+1

this is because kd = d2−δ−o(1) and sh+1L ≥ s2/poly log(d) ≥ d2−δ/poly log(d).
This wraps up the induction.
For any matrix A ∈ Anice, if A /∈ Ah for any h = 0, 1, 2, . . . ,H, then the above induction implies

that there exists a sub-matrix ÃH ⊆ A (ÃH ∈ {−1, 1}(d/2−s≤H )×d), such that

|N (OMA(ÃH), αH)| ≥ NH = 2sH/ log d ≥ 2d/10 log(d).

This is simply impossible, because the total number of entries in N (OMA(ÃH), αH ) is at most
∣∣∣N (OMA(ÃH), αH)

∣∣∣ ≤ |TMA(A)| = |TMA(A, V ∗)|

≤ |V ∗| · (d/2 + 1)n ≤ 2s+n log2(d) ≤ 2d/10 log(d).

Here the third follows from the definition of a table (see Definition 5.3), and there are at most
(d/2+1)n combinations of the third round message given A, the fourth step follows from |V ∗| ≤ 2s

(see Lemma 5.8) – this is the only place that we use the size of V ∗ is not large.
Combining the above inequalities, we have proved that Anice ⊆ A and finish the proof of Lemma

5.12.
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A Useful Lemma

Lemma A.1 (Khintchine’s Inequality). Let σ1, . . . , σn be i.i.d. Rademacher variables (i.e., σi ∼
{−1, 1}), and let x1, . . . , xn be real numbers. Then there are constants c1, c2 > 0 so that

Pr

[∣∣∣∣∣

n∑

i=1

σixi

∣∣∣∣∣ ≥ c1t · ‖x‖2
]
≤ exp(−c2t2).

Define the sub-Gaussian norm ‖x‖ψ2 of a sub-Gaussian random variable x as

‖x‖ψ2 := inf{K > 0 such that E[exp(x2/K2)] ≤ 2}.

We have

Lemma A.2 (Projection of sub-gaussian random variables, Lemma 40 of [MSSV22]). Let x ∈ R
d

be a random vector with i.i.d sub-Gaussian components which satisfy E[xi] = 0, ‖xi‖ψ2 ≤ K, and
E[xx⊤] = s2Id. Let U ∈ R

d×r be an orthonormal matrix, then there is a constant c > 0, such that,
for any t ≥ 0

Pr
[
|‖U⊤x‖22 − rs2| ≥ t

]
≤ exp

(
−cmin

{
t2

rK4
,

t

K2

})
.

In particular, if the vector v ∼ 1√
d
Hd, then we have E[vv⊤] = 1

dI and ‖vi‖ψ2 ≤ 2√
d
, and there

exists a constant c > 0 such that for any t ≥ 0,

Lemma A.3 (Projection of random vectors inHd). Let v ∼ 1√
d
Hd and U ∈ R

d×r be an orthonormal

matrix, then

Pr
[∣∣∣‖U⊤v‖22 −

r

d

∣∣∣ ≥ t
]
≤ exp

(
−cmin

{
d2t2

16r
,
dt

4

})
.

Lemma A.4 (Lemma 34 from [MSSV22]). Let L ∈ [d], δ ∈ (0, 1]. Suppose a sequence of unit norm
vectors x1, . . . ,xL ∈ R

d satisfies

‖projspan(x1,...,xi−1)(xi)‖2 ≤ 1− δ.

Let X = [x1, . . . ,xL] ∈ R
d×L. There exists an orthonormal matrix U ∈ R

d×(L/2) such that for any
vector a ∈ R

d,

‖U⊤a‖∞ ≤
d

δ
‖X⊤a‖∞
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