
Generalizations of Matrix Multiplication
can solve the Light Bulb Problem

Josh Alman* Hengjie Zhang†

November 6, 2023

Abstract

In the light bulb problem, one is given as input vectors x1, . . . , xn, y1, . . . , yn ∈ {−1, 1}d which are
all uniformly random. They are all chosen independently except for a planted pair (xi∗ , yj∗) which is
chosen to have correlation ρ for some constant ρ > 0. The goal is to find the planted pair. The light bulb
problem was introduced over 30 years ago by L. Valiant, and is known to have many applications in data
analysis, statistics, and learning theory.

The naive algorithm runs in Ω(n2) time, and algorithms based on Locality-Sensitive Hashing ap-
proach quadratic time as ρ → 0. In 2012, G. Valiant gave a breakthrough algorithm running in time
O(n(5−ω)/(4−ω)) < O(n1.615), no matter how small ρ > 0 is, by making use of fast matrix mul-
tiplication. This was subsequently refined by Karppa, Kaski, and Kohonen in 2016 to running time
O(n2ω/3) < O(n1.582), but is essentially the only known approach for this important problem.

In this paper, we propose a new approach based on replacing fast matrix multiplication with other
variants and generalizations of matrix multiplication, which can be computed faster than matrix multipli-
cation, but which may omit some terms one is supposed to compute, and include additional error terms.
Our new approach can make use of a wide class of tensors which previously had no known algorithmic
applications, including tensors which arise naturally as intermediate steps in border rank methods and in
the Laser method.

We further show that our approach can be combined with locality-sensitive hashing to design an
algorithm whose running time improves as ρ gets larger. To our knowledge, this is the first algorithm
which combines fast matrix multiplication with hashing for the light bulb problem or any closest pair
problem, and it leads to faster algorithms for small ρ > 0.

We then focus on tensors for “multiplying” 2 × 2 matrices; using such small tensors is typically
required for practical algorithms. In this setting, the best prior algorithm, using Strassen’s algorithm for
matrix multiplication, yields a running time of only O(n1.872). We introduce a new such low-rank tensor
we call T2112, which has omissions and errors compared to matrix multiplication, and using it, we design
a new algorithm for the light bulb problem which runs in time O(n1.797). We also explain why we are
optimistic that this approach could yield asymptotically faster algorithms for the light bulb problem.

*josh@cs.columbia.edu. Columbia University. Supported in part by NSF Grant CCF-2238221 and a grant from the
Simons Foundation (Grant Number 825870 JA).

†hengjie.z@columbia.edu. Columbia University. Supported in part by NSF grant CCF2008733 and ONR grant N00014-
22-1-2713.

ar
X

iv
:2

31
1.

01
63

0v
1

 [
cs

.D
S]

 2
 N

ov
 2

02
3

1 Introduction
We’ve known since the work of Strassen [Str73] that designing algebraic algorithms for matrix multiplica-
tion is equivalent to bounding the ranks of matrix multiplication tensors. Since then, an enormous amount
of work has gone into bounding the ranks of these tensors in various regimes, combining techniques from
algebra, combinatorics, algorithm design, and computer search. One big reason that so much effort has gone
into this problem is that matrix multiplication has many algorithmic applications; algorithmic problems from
nearly every domain of computation have been reduced to matrix multiplication.

A goal of this paper is to show that tensors other than matrix multiplication can also have algorithmic
applications. In this way, the same techniques which have been developed for matrix multiplication could be
repurposed to lead to new algorithms. Tensors whose support is a subset of the support of matrix multiplica-
tion have been applied to Boolean matrix multiplication [CU13, KK19, Har21] and even directly to matrix
multiplication [Sch81], but we’re unaware of applications of any tensors whose support is incomparable
with matrix multiplication (other than a small handful of special problems like polynomial multiplication).

We focus here on the light bulb problem, a fundamental problem from learning theory which currently
has two best algorithms depending on the parameter regime: one using fast matrix multiplication, and one
using locality-sensitive hashing. Somewhat surprisingly, there are no known parameter regimes where com-
bining the two approaches leads to an improved algorithm. Using tensors other than matrix multiplication,
we achieve two main results

1. Any tensor can replace matrix multiplication to solve the light bulb problem. The efficiency of this
algorithm comes from a trade-off between the tensor’s rank and how similar it is to matrix multiplica-
tion. We find that, restricted to small tensors, there are better tensors than matrix multiplication that
lead to improved algorithms.

2. Tensors other than matrix multiplication can be combined with locality-sensitive hashing to yield im-
proved algorithms. We find that the symmetry of matrix multiplication prevents one from combining
it with hashing, but that sufficiently asymmetric tensors can be improved with hashing.

1.1 The Light Bulb Problem

In the light bulb problem for n vectors of dimension d and correlation ρ > 0, we are given as input vectors
x1, . . . , xn, y1, . . . , yn ∈ {−1, 1}d which are all picked uniformly at random, and all picked independently
except for a ‘planted pair’ (xi∗ , yj∗) which is chosen to have correlation ≥ ρ (i.e., so that ⟨xi∗ , yj∗⟩ ≥ ρ · d).
The indices i∗ and j∗ of the planted pair are unknown to us, and our goal is to find them.1

L. Valiant introduced the light bulb problem over 30 years ago [Val88] as a basic primitive which cap-
tures the fundamental task of detecting correlations among n random variables. It can be seen as a special
case of a multitude of other problems in data analysis, statistics, and learning theory, and for many of these
problems, the fastest known algorithm comes from a reduction to the light bulb problem. For instance:

• If one would like to detect correlations among random variables with a range R other than just
{−1, 1}, one can typically reduce to the light bulb problem by making use of a locality-sensitive
hash function for R. For example, if R is the Euclidean sphere, then one can map points in R to
{−1, 1} by determining which side of a random hyperplane they lie on, which only slightly decreases
the correlation ρ, by a constant factor [Cha02].

• The light bulb problem is a special case of many learning problems, including learning sparse parities
with noise, and learning k-Juntas with and without noise, and the fastest known algorithms for these
problems come from reducing the general case to the light bulb problem [Val12].

1The light bulb problem is often stated as a ‘monochromatic’ problem, where we are not told which are ‘x’ or ‘y’ vectors, but
this has a simple reduction to the ‘bichromatic’ version we define here.

1

Suppose d = Θ(log n). The straightforward algorithm for this problem simply compares each pair of
vectors and runs in time Õ(n2).2 Techniques for nearest neighbor search like locality-sensitive hashing have
been applied to the problem, culminating in Dubiner’s algorithm [Dub10] which runs in time n2/(ρ+1)+o(1).
This is the fastest known algorithm for larger ρ, but its running time becomes quadratic as ρ → 0. In
2012, G. Valiant [Val12] gave a breakthrough algorithm running in time O(n1.615) no matter how small
the constant ρ > 0 is. Thereafter, Karppa, Kaski, and Kohonen [KKK18] improved the running time to
O(n1.582). This is faster than Dubiner’s algorithm for all 0 < ρ < 0.264. To emphasize, these algorithms
work for any constant ρ > 0, but give essentially the same running time no matter how large ρ is.

The key ideas behind these latter two algorithms focus on the dimension d, which is sometimes called
the ‘sample complexity’. One would typically like to keep d low while still solving the problem quickly.
It is information-theoretically necessary to pick d = Ω(log n) (since if d = o(log n), then by the pigeon-
hole principle, two of the uncorrelated vectors will be equal to each other and indistinguishable from the
correlated pair).

Interestingly, G. Valiant [Val12] introduced a ‘XOR/Tensor Embedding’ technique, and Karppa, Kaski,
and Kohonen [KKK18] gave a more efficient ‘compressed matrices’ implementation, which (roughly) al-
lows one to efficiently ‘expand’ lower-dimensional vectors, and convert d = Θ(log n) to a much larger
d = nΘ(1) with only a negligible decrease in ρ. This allows one to focus on the task of designing faster
algorithms for detecting correlations without worrying about d. More precisely, these prior algorithms con-
sist of two phases solving two different problems: a ‘vector aggregation’ problem of converting groups of
shorter vectors into single longer vectors, and a ‘light bulb computation’ problem of actually detecting the
correlations among these vectors. The final running time of [Val12] trades off between the running times
of these two problems, and the later work [KKK18] showed how to make the running time of vector aggre-
gation negligible compared to the running time of light bulb computation. Both prior algorithms ultimately
solve the light bulb computation problem using fast matrix multiplication, and we focus in this paper on
faster algorithms for this problem. (See footnote 10 in Section 3 below for more details.)

Despite the importance of the light bulb problem, no approach beyond locality-sensitive hashing or
‘expand then use fast matrix multiplication’ has been proposed since the breakthrough almost 10 years
ago [Val12], and these known approaches seem to have hit their limits [KKK18, Alm18]. Furthermore,
although hashing approaches and matrix multiplication approaches have been known for both the light bulb
problem as well as many other closest pair problems for some time (see, for instance, the survey [AIR18]),
there are no known algorithms for any of these problems which truly combine the two.

In this paper, we propose a new approach to designing faster algorithms for the light bulb problem by
replacing fast matrix multiplication with other tensors which are generalizations of matrix multiplication,
and which can be computed faster. We also show how hashing methods can be combined with our approach
to design even faster algorithms: while previous matrix multiplication-based algorithms for the light bulb
problem have the same running time regardless of how large ρ > 0 is, our new approach yields algorithms
which are faster as ρ gets larger. Before getting into more detail, we introduce some necessary background.

Known Algorithms and Exponents. The exponent of matrix multiplication, ω, is the smallest real num-
ber such that for any ε > 0, one can multiply n × n matrices over a field using O(nω+ε) field operations3.
Since n × n matrices have n2 entries one must read and write, it is known that ω ≥ 2, and the best known
algorithms show ω < 2.37286 [CW82, DS13, Wil12, LG14, AW21].

We similarly define the exponent of the light bulb problem, ωℓ, to be the smallest real number such that
for any ε > 0, one can solve the light bulb problem with n vectors, for any constant ρ > 0, in time O(nωℓ+ε).

2We write Õ(t) to suppress polylog(t) factors.
3The ‘running time’ and ‘number of field operations’ are typically related by low-order terms unless one is working with very

large numbers. In principle, ω might depend on the characteristic of the field, although all known bounds work equally well over
any field, so we will abuse notation and simply refer to the same ω for all fields.

2

G. Valiant [Val12] showed that ωℓ ≤ (5−ω)/(4−ω) < 1.615, and Karppa, Kaski, and Kohonen [KKK18]
later improved this to the best known bound ωℓ ≤ 2ω/3 < 1.582. Since the input size is only Õ(n), the
corresponding lower bound is ωℓ ≥ 1. However, even showing ω = 2 would only imply that ωℓ ≤ 4/3
using the known algorithms [Val12, KKK18, Alm18].

We will also discuss the Boolean matrix multiplication problem, where we’re given as input matrices
A,B ∈ {0, 1}n×n, and we need to compute the matrix product C = A × B over the Boolean semiring,
i.e., the matrix C ∈ {0, 1}n×n given by C[i, j] =

∨n
k=1(A[i, k] ∧ B[k, j]). Let ωB denote the smallest real

number such that for any ε > 0, one can solve this problem in time O(nωB+ε). It is known that 2 ≤ ωB ≤ ω,
and there are no known algorithms for Boolean matrix multiplication that are asymptotically faster than the
best known matrix multiplication algorithms (see, e.g., [KK19, Section 1]).

1.2 Bilinear Problems

A key technique in this paper will be designing and making use of algorithms for bilinear problems, wherein
one would like to evaluate a prescribed set of bilinear polynomials when its variables are set to input num-
bers. Matrix multiplication is a prominent example, and we will focus particularly on bilinear problems
like this where the inputs and outputs are naturally formatted as matrices. Bilinear problems which take
as input a qi × qk matrix X and a qj × qk matrix Y, and output a qi × qj matrix Z, can be written as a
(three-dimensional) tensor

T =
∑

i,i′∈[qi],j,j′∈[qj],k,k′∈[qk]

T (Xi,kYj,k′Zi′,j′) · Xi,kYj,k′Zi′,j′ ,

where T (Xi,kYj,k′Zi′,j′) ∈ R is the coefficient of Xi,kYj,k′ in the bilinear polynomial we output in entry
Zi′,j′ . One can imagine plugging in values for each of the X and Y variables, and then the goal is to compute
the coefficient of each Z variable. For example, for the q × q matrix multiplication problem Tq = ⟨q, q, q⟩,

Tq(Xi,kYj,k′Zi′,j′) =

{
1 if i = i′, j = j′, and k = k′,

0 otherwise.

1.3 Main result when ρ is close to 0

Our main result, which we will state below, gives a way to use an algorithm for almost any bilinear problem
T to solve the light bulb problem, even if T only computes some of the terms of matrix multiplication, and
if T also computes other ‘noise’ terms. To state our result, we need to define two relevant properties of T .
The first property, the rank of T , is a standard measure of how complicated T is, while the another property,
efficacy, is the property we introduce for measuring how useful T is for solving the light bulb problem.

Rank. A tensor T has rank 1 if it can be written in the form

T =

 ∑
i∈[qi],k∈[qk]

αi,kXi,k

 ∑
j∈[qj],k∈[qk]

βj,kYj,k

 ∑
i∈[qi],j∈[qj]

γi,jZi,j

for coefficients αi,k, βj,k, γi,j ∈ R. More generally, the rank of T , denoted rank(T), is the minimum
nonnegative integer k such that there are rank 1 tensors T1, . . . , Tk with T = T1 + · · · + Tk. Rank is the
most prominent measure of the complexity of a tensor, and rank upper bounds for tensors yield algorithms
for applying that tensor to matrices. For instance, Strassen [Str69] famously showed that the rank of the
tensor ⟨2, 2, 2⟩ for multiplying two 2 × 2 matrices is at most 7, and hence that one can multiply n × n
matrices in time O(nlog2 7).

3

Efficacy. The second property of T , which is a new property we introduce, is its efficacy4. For i ∈ [qi] and
j ∈ [qj], the efficacy of T at (i, j) is given by:

eff
i,j
(T) :=

∑
k∈[qk] T (Xi,kYj,kZi,j)√∑

i′∈[qi],j′∈[qj],k,k′∈[qk] T (Xi′,kYj′,k′Zi,j)2
.

The numerator of effi,j(T) is the sum of the coefficients of all the entries which are supposed to be included
in Zi,j in regular matrix multiplication. The denominator is the ℓ2 norm of the vector of coefficients of all
the terms which are included in Zi,j in T . Hence, one can think of effi,j(T) as a ratio of the ‘signal’ and the
‘noise’ of T for computing the (i, j) output entry of matrix multiplication.

Then, the efficacy of the whole tensor T is the ℓ2 norm of the efficacies of all its output entries:

eff(T) :=

√√√√ ∑
i∈[qi],j∈[qj]

(
eff
i,j
(T)

)2

.

We will see that eff(T) measures how useful T is for solving the light bulb problem from our main result,
which shows how one could improve on the current best exponent 2ω/3:

Theorem 1.1. For any tensor T , if
log(rank(T))

log(eff(T))
<

2ω

3
,

then
ωℓ <

2ω

3
.

Moreover, if T has negligible aggregation time (see Section 1.4 below), then

ωℓ <
log(rank(T))

log(eff(T))
.

Hence, as long as T is easy to compute (rank(T) is small) and it has a high ratio of signal to noise for
computing matrix multiplication (eff(T) is large), one can use it to design a fast algorithm for the light bulb
computation problem. (Again, this algorithm works with this exponent for any constant ρ > 0, no matter
how small.) We will see shortly that the algorithm consists of applying T to pairs of carefully-chosen (but
simple to construct) matrices, and then doing a simple analysis of the result. In other words, the algorithm
itself is fairly simple, but the proof of correctness is quite involved.

1.4 Aggregation time

The aggregation time assumption in Theorem 1.1 relates to the initial aggregation step that appears in all
prior matrix multiplication-based light bulb algorithms including ours [Val12, KKK18, Alm18]. In [Val12],
aggregation took a significant amount of time which needed to be “traded off” against later steps of the
algorithm. [KKK18] substantially improved aggregation to take a negligible amount of time compared to
the rest of the algorithm.

The same technique of [KKK18] applies in our setting as well, which makes aggregation negligible for
all the tensors we study. We believe this technique makes the aggregation time negligible for all possible
tensors T , although we’re unable to prove this5.

4We were inspired to pick this name by the ‘luminous efficacy’ of a light bulb, which measures the ratio of how much light
is produced and how much power is consumed. It bears similarity to other known statistical ratios like the ‘standardized second
moment’ and the ‘Fano factor’.

5Tensors with nonnegligible aggregation time would have very low efficacy, so that very long vectors are needed in our algo-
rithm, but extremely low rank so that the algorithm may still be fast; see Appendix A below for more details.

4

Nonetheless, we prove in Theorem 1.1 that in order to improve the current best exponent 2ω/3, it suffices
to find any tensor T with log(rank(T))

log(eff(T)) < 2ω
3 , ignoring the aggregation time condition. To prove this, we show

in Appendix A below that for any tensor T with nonnegligible aggregation time, if the quantity log(rank(T))
log(eff(T))

is less than the current best exponent 2ω/3, then one can slightly modify T to get a new tensor T ′ with
negligible aggregation time which still has log(rank(T ′))

log(eff(T ′)) < 2ω/3.

1.5 Applying to Matrix Multiplication Generalizations

To demonstrate the promise of Theorem 1.1, we focus on tensors for 2 × 2 input matrices. (Using the
notation above, we focus on qi = qj = qk = 2.) This is the size of the tensor for Strassen’s algorithm. As
we discuss shortly, we introduce a new tensor with rank only 5 which is able to to achieve a better exponent
than Strassen’s algorithm.

We focus on this case for three reasons. First, using such a small tensor is typically necessary to design a
practical algorithm (see, e.g., the introductions of [HSHVDG16, KK19, Pan18, FBH+22] where practicality
concerns are discussed). Second, using such small tensors lets us more concretely see how more general
tensors can be used, especially in conjunction with locality-sensitive hashing later. Third, small tensors are
typically a good test bed for further improvements based on larger tensors. (We discuss this in more detail
shortly, in Section 1.7 below.)

Three Matrix Multiplication Generalizations. We apply Theorem 1.1 to three tensors of interest. We
will see that applying it when T is a matrix multiplication tensor recovers the best known bound ωℓ ≤ 2

3ω
of [KKK18], but that other tensors can yield even faster algorithms, including a new tensor we introduce.
See Figure 1 for descriptions of the three tensors; their precise definitions and rank expressions are given in
Section 5 below.

First is the tensor for 2×2 matrix multiplication (denoted ⟨2, 2, 2⟩). We can calculate that eff(⟨2, 2, 2⟩) =√
8, and hence, using Strassen’s bound rank(⟨2, 2, 2⟩) ≤ 7, that ωℓ ≤ 1.872. Prior to this work, this was

the smallest known exponent for the light bulb problem based on a q = 2 tensor. Note that more generally,
eff(⟨n, n, n⟩) = n3/2, so applying Theorem 1.1 to the n×n matrix multiplication tensor (denoted ⟨n, n, n⟩)
for large n yields ωℓ ≤ log(R(⟨n, n, n⟩))/ log(n1.5) ≤ log(nω+o(1))/ log(n1.5) → 2

3ω, which recovers the
best known exponent for the light bulb problem [KKK18].

Second is the tensor SW , which consists of 7 of the 8 terms of 2 × 2 matrix multiplication, and which
has rank 6 via an identity by Winograd [Win71]. Recent work by Karppa and Kaski [KK19] showed how
to apply any tensor which consists of a subset of the terms of matrix multiplication to design a Boolean
matrix multiplication algorithm. Follow-up work by Harris [Har21] improved their analysis specifically
for the tensor SW to design a practical (since it is based on a small tensor) algorithm for Boolean matrix
multiplication with exponent ωB < 2.763. It was previously unclear how to use SW , or any such ‘subset of
matrix multiplication’ tensor, to design an algorithm for the light bulb problem, or any problem which does
not have a known reduction to Boolean matrix multiplication. Applying our Theorem 1.1 to SW yields
an algorithm with exponent ωℓ < 1.842, improving on Strassen’s algorithm. More generally, for ‘subset
of matrix multiplication’ tensors, our bound on ωℓ is strictly better than 2

3 times the bound on ωB which
Karppa and Kaski [KK19] achieves, and equal to 2

3 times the bound on ωB which Harris [Har21] achieves
(although [Har21] only applies to some such tensors7).

Third is a new rank-5 tensor T2112 that we design and give a rank bound for in this paper. In terms of a
parameter ε > 0, T2112 is a sum of 6 of the 8 terms terms of 2 × 2 matrix multiplication, plus 7 additional
terms with coefficients O(ε), which can be made arbitrarily small by suitably picking ε. (Note that one

7It seems difficult to extend the approach of [Har21] to ‘subset of matrix multiplication’ tensors with very skewed patterns of
terms, whereas [KK19] applies to all such tensors. In this paper we use a technique to ‘regularize’ the pattern of errors of a tensor
(see Section 3.3 below) which seems at a first glance like it could apply to that setting as well, but unfortunately, the ‘space of
errors’ in that settings is 3-dimensional, whereas we critically use the fact that it is 2-dimensional here.

5

Tensor Name Rank Tensor
Table of effi,j

6

value of eff , and
resulting ωℓ bound

⟨2, 2, 2⟩
(Strassen’s
algorithm
[Str69])

7

(X1,1Y1,1 + X1,2Y2,1)Z1,1

+ (X1,1Y1,2 + X1,2Y2,2)Z2,1

+ (X2,1Y1,1 + X2,2Y2,1)Z1,2

+ (X2,1Y1,2 + X2,2Y2,2)Z2,2

i\j 1 2
1

√
2

√
2

2
√
2

√
2

eff(⟨2, 2, 2⟩) =
√
8

ωℓ ≤ log(7)

log(
√
8)

< 1.872

SW
(Strassen-
Winograd
identity
[Win71])

6

(X1,2Y2,1)Z1,1

+ (X1,1Y1,2 + X1,2Y2,2)Z2,1

+ (X2,1Y1,1 + X2,2Y2,1)Z1,2

+ (X2,1Y1,2 + X2,2Y2,2)Z2,2

i\j 1 2
1 1

√
2

2
√
2

√
2

eff(SW) =
√
7

ωℓ ≤ log(6)

log(
√
7)

< 1.842

T2112

(new tensor)
5

(X1,1Y1,1 +X1,2Y2,1 +O(ε))Z1,1

+ (X1,2Y2,2 +O(ε))Z2,1

+ (X2,1Y1,1 +O(ε))Z1,2 +
(X2,1Y1,2 +X2,2Y2,2 +O(ε))Z2,2

(O(ε) hides arbitrarily small posi-
tive coefficients in terms of a pa-
rameter ε > 0)

i\j 1 2
1

√
2−O(ε2) 1−O(ε2)

2 1−O(ε2)
√
2−O(ε2)

eff(T2112) =
√
6−O(ε2)

ωℓ ≤ log(5)

log(
√
6−O(ε2))

→ 1.797

Figure 1: Three tensors with q = 2 which we use in our algorithm, along with the resulting bounds on ωℓ

from using them in Theorem 1.1. See Section 5 below where we define these tensors exactly (without hiding
terms in ‘O(ε)’) and give their rank expressions. The tensors ⟨2, 2, 2⟩ and SW come from classical work
on optimizing Strassen’s algorithm, while T2112 and its rank upper bound are both new.

cannot eliminate these terms by setting ε = 0, since we divide by ε when showing that T2112 has rank 5; see
Section 5 for more details.)

Prior work would have concluded by taking the limit ε→ 0 in T2112 that the ‘border rank’ of 6 of the 8
terms of 2× 2 matrix multiplication is 5. Border rank bounds could be used instead of rank in conjunction
with our approach by using the technique of Bini [Bin80a]. One advantage of Theorem 1.1 is that it allows
one to plug constants ε > 0 into border rank expressions and avoid the complications of border rank. (Border
rank identities are typically harder to find using numerical methods, and lead to less practical algorithms.)
Setting just ε = 0.025 suffices to get the best possible exponent using q = 2:

Theorem 1.2. There is a tensor T2112 with q = 2 which achieves the exponent ωℓ < 1.797.

Before moving on, we note that a prior identity of Bini [Bin80b] already gave a different tensor B with
(a different) 6 of the 8 terms of 2 × 2 matrix multiplication, and border rank 5. However, our tensor T2112

has one advantage over B. That is, the pattern of effi,j(T2112), with larger entries along the diagonal, will
allow us to use it in conjunction with hashing methods in our second result.

6

1.6 Main result when ρ is bounded away from 0, using locality-sensitive hashing

At a high level, our algorithm for Theorem 1.1 works by first mapping each of the n different x inputs into
one of qi independently random buckets, and each of the n different y inputs into one of qj independently
random buckets. (Recall that qi, qj are two of the parameters defining the size of the tensor T ; think of them
as nc for a constant 0 < c < 1, for instance by first taking an appropriate ‘Kronecker power’ of T .) If the
correlated pair were mapped into buckets i ∈ [qi] and j ∈ [qj], then our algorithm will succeed as long as
effi,j(T) is large enough. The proof of Theorem 1.1 requires carefully balancing the parameters so that,
when i and j are picked uniformly randomly, then this becomes fairly likely.

Our second main result shows how to improve Theorem 1.1 by combining it with one of the most
prevalent techniques in nearest neighbor search: locality-sensitive hashing. The main idea to improve on
this is to place the inputs into buckets using (a variation on) bit sampling locality-sensitive hashing, instead
of uniformly random hashing. In this way, thinking of the buckets as {−1, 1} bit strings, we know that
if the planted pair has correlation ρ > 0, then they are likely put into buckets i ∈ {−1, 1}log2(qi) and
j ∈ {−1, 1}log2(qj) which also have correlation close to ρ. If such buckets have larger effi,j(T) than
uniformly random buckets, then we can speed up our algorithm.

By construction, our new tensor T2112 has exactly this property! By renaming variables8 and taking
the limit ε → 0 for notational simplicity, we see that it has eff1,1(T2112) = eff−1,−1(T2112) =

√
2 and

eff1,−1(T2112) = eff−1,1(T2112) = 1. More generally, once we’ve taken a Kronecker power so that qi =
qj = q is larger than 2, the resulting tensor will have the property that, for buckets i, j ∈ {−1, 1}log2(q)

with correlation ρ, we have effi,j(T
⊗ log2(q)
2112) = 2(1+ρ)(log2(q)/2), whereas the median pair i, j of buckets has

only effi,j(T
⊗ log2(q)
2112) = 2log2(q)/2. Thus, in a sense, the efficacy of our tensor T2112 is increasing with ρ,

resulting in a faster algorithm. (We briefly note that although our analysis makes use of Kronecker powers
of tensors, our algorithm itself does not, and only applies the tensor itself to input matrices.)

However, the formal statement of our result is more complicated than this because of a key detail behind
Theorem 1.1 that we have thus far swept under the rug. Rather than map each input point into a single
bucket, it actually makes many copies of each input point and independently maps them into buckets. This
way, in order to solve the light bulb problem, it suffices for any one pair of copies of the correlated pair
to map into buckets with large efficacy. Typically a locality-sensitive hashing scheme would map all the
different copies of the same vector to the same bucket, and lose these savings. Nonetheless, we find a way
to hash inputs into multiple buckets, so that the correlated pair is still hashed to correlated buckets, but the
different pairs of buckets are ‘sufficiently independent’ of each other so that whether or not each succeeds
isn’t too correlated. Applying this to T2112, we achieve:

Theorem 1.3. For the tensor T2112, the bound of Theorem 1.1 can be improved to

ωℓ ≤

2 log 5

log(6(1−ρ)−ρ/2(1+ρ)ρ/2(1−ρ2)1/2)
when ρ < 1/3,

4 log 5
(5+ρ) log 2 when 1/3 ≤ ρ ≤ 1.

The resulting plot of wℓ with respect to ρ from can be found in Figure 2 (in blue). Our Theorem 1.1, as
well as prior matrix multiplication-based algorithms for the light bulb problem, give the same running time
exponent no matter how large ρ > 0 is, whereas Theorem 1.3 uses hashing to improve with ρ. We also show
Dubiner’s algorithm, which is purely based on hashing, and is worse for small ρ > 0, but better for larger ρ.

Custom-tailored hash functions for other tensors. In order to prove Theorem 1.3, we observed that bit
sampling locality-sensitive hashing is likely to put the correlated pair of vectors into buckets i, j where i and
j are correlated, and hence have a higher-than-average value of effi,j(T

⊗ log2(q)
2112). What if we are working

8Whenever i or j was 2, we now call it −1.

7

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

(a) The running time exponent of three different methods
in terms of ρ ∈ [0, 1].

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
1.78

1.79

1.80

1.81

1.82

(b) The same plot as in the figure to the left, but focused
on the range ρ ∈ [0, 0.2].

Figure 2: The running time exponents (y-axis) of three algorithms in terms of ρ (x-axis): Theorem 1.3 (blue
line), Theorem 1.1 using T2112 (green line), and Dubiner’s algorithm [Dub10] (orange line).

with a different tensor T for which the value of effi,j(T) does not increase as i and j are more correlated? Bit
sampling locality-sensitive hashing won’t give an improvement, but this is only one possible hash function.

In fact, we can generalize Theorem 1.3 to almost any tensor. We show that for any T whose efficacy
matrix [(effi,j(T))

2]i,j is not ‘degenerate’ in some sense, one can custom-tailor hash functions for T which
result in an improved running time as ρ grows. The formal statement of this result is somewhat complicated;
we defer the details to Section 4 below. However, for one simple and important example, we show:

Theorem 1.4. Suppose T is a ⟨q, q, qk⟩-sized tensor which consists of a subset of the terms of a matrix
multiplication tensor, and the matrix [(effi,j(T))

2]i∈[q],j∈[q] has full rank. Let ω′
ℓ be the exponent one would

get from T from applying Theorem 1.1. Then, for every ρ > 0, there is an f(T, ρ) > 0 such that the light
bulb computation problem with correlation ρ can be solved with the improved exponent ω′

ℓ − f(T, ρ).

Theorem 1.4 shows that hashing can improve the algorithm based on almost any ‘subset of matrix
multiplication’ tensor. These are the same tensors used by Karppa and Kaski [KK19] to solve Boolean
matrix multiplication (they showed that bounds on their ranks give bounds on the ‘probabilistic rank’ of
matrix multiplication) and include the tensors other than ⟨2, 2, 2⟩ that we discussed above in Section 1.5.

Intuitively, we require the matrix [(effi,j(T))
2]i,j to have full rank in Theorem 1.4 so that there are

regions of buckets with higher efficacy that we could hope to hash the correlated pair to. For instance, if T
is a matrix multiplication tensor, then hashing cannot move the correlated pair to a better bucket since all
buckets have the same efficacy, and indeed, the efficacy matrix has rank 1 since all its entries are equal.

1.7 Comparison with Prior Work on Tensor and Nearest Neighbor Search Algorithms

Other Variants on Matrix Multiplication. As mentioned at the beginning of Section 1, prior work has
solved Boolean matrix multiplication using tensors whose support is (a subset of) the support of matrix
multiplication [CU13, KK19, Har21]. To our knowledge, we are the first to use tensors whose support may
not be a subset of the support of matrix multiplication, and the first to use variants of matrix multiplication
on a problem that is not (reducible to) Boolean matrix multiplication. This access to a larger class of tensors
is what allows us to design a faster practical algorithm for the light bulb problem than the analogous fastest
practical algorithm for Boolean matrix multiplication; our tensor T2112 cannot be applied in the other settings
(for fixed ε > 0). We hope our techniques could be used to apply these tensors to other problems in the
future, particularly problems which are currently solved with exact matrix multiplication but which may
only need approximate matrix multiplication.

8

Improving the asymptotic exponent We are optimistic that Theorem 1.1 can be used to improve the best
known exponent for the light bulb problem by using larger tensors. Finding improvements based on larger
tensors has historically been very difficult compared to finding improvements based on small tensors; for
instance, it took almost 10 years after Strassen’s algorithm based on a 2 × 2 identity before Pan [Pan78]
gave an improved exponent based on a larger tensor. Moreover, decades of work have gone into designing
matrix multiplication algorithms for larger q which we need to catch up to for the light bulb problem.
Many of these techniques can be directly repurposed to the light bulb problem (for instance, it is not hard
to prove a version of the asymptotic sum inequality [Sch81] in this setting), but the centerpiece of fast
matrix multiplication algorithms, the Coppersmith-Winograd tensor, seems particularly designed for exact
matrix multiplication, and it is not clear how to improve it for our light bulb setting. (More generally, it is a
major open challenge to understand the effectiveness of the Coppersmith-Winograd tensor or find any useful
variants on it [HJMS22, BL16, CGLV19, CHL22].) Nonetheless, our computations suggest that this trend
continues: our approach gives better bounds on 3

2ωℓ than prior approaches do for ωB when restricted to
certain small classes of tensors, such as tensors on the variable set of ⟨3, 3, 3⟩, or tensors on the variable set
of ⟨2, 2, 2⟩ of rank at most 4 (but none of these beats the bound of T2112). We are optimistic improvements
are possible for larger q as well.

Exponent Comparison. Combining our result with [KK19, Har21] shows that, when restricted to rank
bounds on small tensors over the same variable set as ⟨2, 2, 2⟩, the best known upper bounds have 3

2ωℓ <
ωB < ω. By comparison, the asymptotically best known upper bounds have 3

2ωℓ = ωB = ω. It would
be exciting to determine the relationship between these exponents in the asymptotic setting, perhaps using
fine-grained reduction techniques. Indeed, although we know ωB ≤ ω, it’s not clear in general what the
relationship between ωℓ and ωB should be. Neither problem is known to be reducible to the other. Moreover,
even our ‘efficacy’ approach for the light bulb problem is incomparable to the ‘support rank’ [CU13] and
‘probabilistic rank’ [KK19] approaches: our approach applies to a wider class of tensors, but the bound
in Theorem 1.1 becomes worse when T has large or negative coefficients, whereas ‘support rank’ and
‘probabilistic rank’ aren’t impacted by what the coefficients are. Nonetheless, from the small tensor regime,
it appears plausible that ωℓ < ωB; it may be worth investigating whether other problems which are known
to be reducible to matrix multiplication can actually be reduced to the light bulb problem instead!

Another advantage of our new algorithm is that it is not necessarily restricted to give exponents which
are ≥ 4/3. Recall that using the known bound ωℓ ≤ 2

3ω, even if ω = 2, one could only prove ωℓ ≤ 4/3.
Achieving an exponent less than 4/3 requires another approach, and our Theorem 1.1 appears promising
since it doesn’t seem to have any such restrictions.

Tensors with Undesirable Terms. One motivation for this work is to use tensors with ‘undesirable’ terms
which, in other contexts, make them unusable. Typically one would expend rank to remove those terms,
but one could design faster algorithms by allowing them to contribute to the efficacy of the tensor instead.
We’ve already discussed the case of tensors from border rank upper bounds via our example T2112. Tensors
with undesirable terms also arise in the Laser method [Str87], the tool used to design the best known upper
bounds on ω. A key step at the end of the Laser method, which was improved but not entirely removed in
recent work of Alman and Vassilevska Williams [AW21], removes such undesirable terms. Leaving them in
to contribute to the efficacy could lead to asymptotically faster algorithms.

Further Generalizations of the Light Bulb Problem. In Section 4 below, we show that our algorithm can
also solve a generalization of the light bulb problem where each group of coordinates of the ‘correlated pair’
are sampled from any non-uniform joint distribution. Other generalizations have also been previously con-
sidered [Val12, KKK18], including a variant with many correlated pairs to find, and an ‘outlier correlation
detection’ variant where we are promised that the correlated pair has correlation ρ, and all other pairs have
correlation at most τ , for parameters 0 < τ < ρ < 1. Our approach can also solve these generalizations,
by using the same techniques from prior work (which essentially amplify the differences in correlations by

9

taking large Kronecker powers of the input vectors), since we focus on finding the correlated vectors after
this amplification step. The details, which are essentially the same as in the past work, are omitted here. As
discussed earlier, the best known algorithms for generalizations to other learning problems such as learning
sparse parities or Juntas with noise also come from reductions to the light bulb problem [Val12].

Other Closest Pair Problems. The light bulb problem is an average case version of the bichromatic
(1+ε)-approximate closest pair problem, where one is given as input two sets X,Y of n points from a metric
space, and one wants to find x∗ ∈ X and y∗ ∈ Y satisfying dist(x∗, y∗) ≤ (1+ ε) ·minx∈X,y∈Y dist(x, y).
Similar to the previous state of the art for the light bulb problem, for many popular metric spaces, there are
two known approaches for solving this problem: one based on matrix multiplication which is faster when
ε > 0 is small [AW15, ACW16, ACW20], and one based on locality-sensitive hashing which is faster when
ε is larger [AR15, ALRW17]; see also [AIR18]. To our knowledge, our hashing-based algorithm is the first
to successfully combine matrix multiplication and hashing methods for any such problem. It is not hard to
see that more straightforward ways to combine the two, such as hashing into smaller buckets and then using
matrix multiplication within each bucket, cannot be faster than just using one of the two techniques on its
own; we get around this by carefully choosing a hash function which correlates well with our chosen tensor.
It would be exciting to apply a similar technique to other nearest neighbor search problems.

1.8 Algorithm Overview

Although Theorem 1.1 has a simple form (perhaps reminiscent of the bound ω ≤ log(rank(⟨q, q, q⟩))/ log(q)
which follows from the simple recursive argument), the algorithm itself involves a number of subtle steps
in the case when T is not ‘symmetric enough’, and the proof of correctness is ultimately quite involved.
At a high level, the elaborate probabilistic analyses which arise in prior works on the light bulb prob-
lem [Val12, KKK18], wherein one needs to prove tail bounds on sums of correlated events, return in full
force when combined with errors which arise from using the tensor T instead of matrix multiplication. We
end up applying a simple variant on the Laser method to the tensor T to ‘regularize’ it without changing
eff(T) too much, to help with the analysis.9

We focus here on describing the algorithm for Theorem 1.1 in the case when the tensor T is sufficiently
‘symmetric’ (as is the case for the three tensors described in Figure 1). Afterwards we will briefly discuss
how we deal with asymmetric tensors, and how we extend our result using hashing to Theorems 1.3 and 1.4.

The main algorithm is given in Algorithm 1. There are two key results we need to prove its correctness.
First, because of how effi,j is defined, if |Xi| · |Yj | ≤ eff2

i,j(T
⊗N) but C[i, j] ≥ eff2

i,j(T
⊗N), this means

the correlated pair is likely to be in Xi and Yj . Roughly, we prove the fact that effi,j(T
⊗N) is so large

means that random noise cannot explain Ck[i, j] being so large for too many k. Second, there is a decent
probability that the bucketing used by the algorithm will result in copies of the correlated pair being put into
Xi and Yj for which effi,j(T

⊗N) is large enough.
This second result requires some work since whether or not the planted pair has been put into the pair

of groups (Xi, Yj) is not independent of whether it has been put into other pairs of groups. Moreover,
it becomes more complicated in the case when the set {(i, j) ∈ [q]N : effi,j ≥ g2} is ‘skewed’ and
mostly consists of pairs in a small number of rows or columns. In this case, we modify our algorithm by
alternatingly applying either T or its (appropriately defined) transpose. After this transformation, the large
efficacies are ‘balanced enough’ that a second moment method can be used to imply our second property.

Finally, as discussed in Section 1.6 above, the idea behind Theorems 1.3 and 1.4 is to modify Line 8
of the algorithm to sample the indices i1, . . . , it according to a locality-sensitive hash function. This fur-
ther complicates the analysis: not only are the pairs (Xi, Yj) which the planted pair has been put into not
independent of each other, but even the buckets Xi1 , . . . , Xit which a single one of the planted vectors has

9Alman [Alm18] recently simplified some steps in prior algorithms for the light bulb problem using the polynomial method, but
using our tensors in Alman’s approach doesn’t seem to work since Alman creates matrices with large entries to multiply.

10

Algorithm 1 Light bulb algorithm for Theorem 1.1

1: procedure LIGHTBULB(x1 · · ·xn, y1 · · · yn ∈ {−1, 1}d, T)
2: ▷ x1, · · · , xn, y1, · · · , yn are input vectors; T is a tensor with qi = qj = qk = q

3: Let N be such that nωℓ = rank(T)N . ▷ ωℓ =
log(rank(T))
log(eff(T))

4: Calculate effi,j(T
⊗N) for all i, j ∈ [q]N . ▷ Can be done in negligible Õ(q2N) time

5: Let g be such that g2 · |{i, j ∈ [q]N : effi,j(T
⊗N) ≥ g2}| is maximized, and set t← qNg/n.

6: X1, · · · , XqN , Y1, · · · , YqN ← ∅.
7: for i ∈ [n] do
8: Uniformly independently at random pick i1, · · · , it and j1, · · · , jt from [qN].
9: Add i to all the sets Xi1 , · · · , Xit , Yj1 , · · · , Yjt .

10: end for
11: For all i ∈ [q]N , let ai :=

∑
j∈Xi

xj and bi :=
∑

j∈Yi
yj .

12: Let A = [a⊤1 , · · · , a⊤qN] be qN × d matrix of all a⊤i vectors.
13: Let B = [b⊤1 , · · · , b⊤qN] be the qN × d matrix of all b⊤i vectors. ▷ Assume d = qNk .
14: Random multiply each row of A and B by −1 or 1.
15: Recursively apply T to ‘multiply’ A and B⊤ and get their ‘product’ C. ▷ Take time Õ(rank(T)N).
16: Do the multiplication 100 log n times to get C1, · · · , C100 logn. ▷ Each time redo from beginning

using fresh inputs.
17: Find (i, j) such that, there are at least 20 log n different k ∈ [100 log n] that, Ck[i, j] ≥

10 eff2
i,j(T

⊗N) ≥ 10g2.
18: end procedure

been put into are not independent. We address this by independently perturbing t copies of each input vec-
tor before applying a locality-sensitive hash function to them so that the different buckets are ‘sufficiently
independent’. The key behind applying our approach to tensors T other than T2112 in Theorem 1.4 is to
do this perturbation in a biased way which correlates with the efficacy matrix of T . Fortunately, although
the analysis requires these probabilistic analyses and explicitly analyzing the Kronecker power T⊗N , the
algorithm itself is simple and only applies T in the usual recursive way to pairs of matrices.

1.9 Outline

The remainder of our paper is organized as follows. After the preliminaries in Section 2, we prove Theo-
rem 1.1 in Section 3, then we prove Theorem 1.3 in Section 4. In Section 5 we define and give the rank
expressions for the tensors in Figure 1, including introducing our new tensor T2112. In Section 6 we prove
Theorem 1.4 that hashing can be used to improve the algorithm from most tensors. Finally, in Appendix A
we discuss techniques from prior work for vector aggregation.

2 Preliminaries
Notation For positive integer q, write [q] := {1, 2, 3, . . . , q}.

For an event F , write [F]1 to be 1 if F happens, and 0 if F does not happen.
For vectors v ∈ Rd, and ℓ ∈ [d], we write v[ℓ] to denote entry ℓ of v. Similarly, for matrices M ∈

Rd1×d2 , and ℓ1 ∈ [d1], ℓ2 ∈ [d2], we write M [ℓ1, ℓ2] to denote the corresponding entry of M .

Multinomial Coefficients If a1, a2, . . . , ak ∈ [0, 1] and N ∈ N are such that
∑k

i=1 ai = 1, and ai ·N is
an integer for all i, then we write the multinomial coefficient:(

N

{ai ·N}i∈[k]

)
:=

k∏
i=1

(
N · (1−

∑i−1
j=1 aj)

ai ·N

)
.

11

Standard bounds show that as N →∞, we have(
N

{ai ·N}i∈[k]

)
=

(
k∏

i=1

a−ai
i

)N−o(N)

.

Chebyshev’s inequality Chebyshev’s inequality says that if U ∈ R is a random variable with finite mean
and finite non-zero variance, then for any real k > 0 we have

Pr
[
|U − E[U]| ≥ k ·

√
var[U]

]
≤ 1

k2
.

Second Moment Method The second moment method says that if U ∈ R is a random variable such that
U is always nonnegative, and var[U] is finite, then

Pr[U > 0] ≥ (E[U])2

E[U2]
.

Tensors For positive integer q, qk, let X = {Xi,k}i∈[q],k∈[qk] , Y = {Yj,k}j∈[q],k∈[qk], and Z = {Zi,j}i,j∈[q].
Most of the tensors in this paper will be over these sets, and we call a tensor over these sets a ⟨q, q, qk⟩-sized
tensor.

A tensor T over X,Y,Z is a trilinear form in R|X|×|Y|×|Z|. For i, i′, j, j′ ∈ [q] and k, k′ ∈ [qk] we write
T (Xi,kYj,k′Zi′,j′) for the coefficient of the term Xi,kYj,k′Zi′,j′ in T . In other words, we can write:

T =
∑

i,i′,j,j′∈[q],k,k′∈[qk]

T (Xi,kYj,k′Zi′,j′) · Xi,kYj,k′Zi′,j′ .

We say X are the x-variables of T , Y are the y-variables of T , and Z are the z-variables of T .
The matrix multiplication tensor ⟨q, q, qk⟩ is a tensor over X,Y,Z given by

⟨q, q, qk⟩ :=
∑

i,j∈[q],k∈[qk]

Xi,kYj,kZi,j .

Tensor Rank A tensor T over X,Y,Z has rank 1 if it can be written in the form

T =

 ∑
i∈[q],k∈[qk]

ai,kXi,k

 ∑
j∈[q],k∈[qk]

bj,kYj,k

 ∑
i,j∈[q]

ci,jZi,j

for coefficients ai,k, bj,k, ci,j ∈ R. More generally, rank(T) is the minimum number of rank 1 tensors whose
sum is T .

Kronecker Product If X,Y,Z,X′,Y′,Z′ are sets of variables, T is a tensor over X,Y,Z, and T ′ is a tensor
over X′,Y′,Z′, then the Kronecker product T ⊗ T ′ is a tensor over X × X′,Y × Y′,Z × Z′ given by, for
x ∈ X, x′ ∈ X′, y ∈ Y, y′ ∈ Y′, z ∈ Z, z′ ∈ Z′,

T ⊗ T ′((x, x′)(y, y′)(z, z′)) = T (xyz) · T ′(x′y′z′).

Notice in particular that for positive integers q, q′, qk, q′k we have ⟨q, q, qk⟩⊗⟨q′, q′, q′k⟩ = ⟨qq′, qq′, qkq′k⟩.
(Here, we say two tensors are equal if they are the same up to renaming variables.) We can view ⟨qq′, qq′, qkq′k⟩
as a tensor whose X-variables are either {Xi,k}i∈[q·q′],k∈[qk·q′k] or {X(i,i′),(k,k′)}i∈[q],i′∈[q′],k∈[qk],k′∈[q′k]. These
are the same up to a natural bijection, and we will use both notations interchangeably.

For a tensor T over X,Y,Z and positive integer k, we define the Kronecker power T⊗k to be the Kro-
necker product of k copies of T . It is a tensor over Xk,Yk,Zk, and its coefficients are all the products of k
coefficients of T .

12

Applying a Tensor to Matrices If T is a tensor over X,Y,Z, and A,B ∈ Rq×qk are matrices, then the
result of applying T to A and B is a matrix C ∈ Rq×q given by

C[i, j] =
∑

i′,j′∈[q],k,k′∈[qk]

T (Xi′,kYj′,k′Zi,j) ·A[i′, k] ·B[j′, k′].

The usual recursive algorithm (similar to Strassen’s algorithm) shows that, for positive integers N , the
tensor T⊗N can be applied using only Õ(rank(T)N) field operations, or the improved bound O(rank(T)N)
when rank(T) > q2.

Tensor Reflection For a tensor T over X,Y,Z, its reflection T⊤ is another tensor over X,Y,Z given by,
for i, i′, j, j′ ∈ [q] and k, k′ ∈ [qk],

T⊤(Xi,kYj,k′Zi′,j′) = T (Xj,k′Yi,kZi′,j′).

This swaps the roles of the X and Y variables.

Kronecker Products of Matrices and Vectors If A ∈ Rna×ma and B ∈ Rnb×mb are matrices, one can
analogously define their Kronecker product A⊗B ∈ Rnanb×mamb by, for i ∈ [na], i

′ ∈ [nb], j ∈ [ma], j
′ ∈

[mb], A ⊗ B[(i, i′), (j, j′)] = A[i, j] · B[i′, j′]. Similarly, for vectors u ∈ Rna , v ∈ Rnb , one can define
u⊗ v ∈ Rnanb by u⊗ v[(i, i′)] = u[i] · v[i′].

Suppose P is a property of vectors which is preserved under Kronecker product, i.e., if u, v have the
property, then so does u⊗v. One example is the property of whether ∥v∥2 ≥ 1. For a tensor T over X,Y,Z,
let SP (T) ∈ Rq×q denote the matrix such that SP (T)[i, j] = 1 if the vector (T (Xi′,kYj′,k′Zi,j))i′,j′∈[q],k,k′∈[qk]
has property P , and SP (T)[i, j] = 0 otherwise. Then, we can see that SP (T

⊗N) = SP (T)
⊗N . This will be

particularly helpful to us in the case when P is the property that effi,j(T) ≥ f for some threshold f . (See
Definition 3.1 below for the the definition of eff .)

3 Algorithm for the light bulb problem
Definition 3.1 (Efficacy). Given any ⟨q, q, qk⟩-sized tensor T , for i, j ∈ [q], we define the (i, j)-efficacy of
T as:

eff
i,j
(T) :=

∑
k∈[qk] T (Xi,kYj,kZi,j)√∑

i′,j′∈[q],k,k′∈[qk] T (Xi′,kYj′,k′Zi,j)2
.

We further define the efficacy of T as:

eff(T) :=

√√√√∑
i∈[q]

∑
j∈[q]

(
eff
i,j
(T)

)2

.

Note that if T, T ′ are two tensors, for (i, i′), (j, j′) ∈ [q]2, we have eff(i,i′),(j,j′)(T ⊗ T ′) = effi,j(T) ·
effi′,j′(T

′).
We now begin giving our algorithm for the light bulb problem. Our goal is to analyze Algorithm 1

in order to prove Theorem 1.1. In particular, we assume throughout this section that T is such that the
aggregation step (lines 11, 12, , 13) take negligible time compared to the rest of the algorithm; in Appendix A
below, we show how to modify T , if necessary, so that this is the case.

Theorem 3.2. Suppose T is a ⟨q, q, qk⟩-sized tensor. For any f ≥ 1, and any set Sf ⊆ [q]2 such that
effi,j(T) ≥ f for all (i, j) ∈ Sf , we have ωℓ ≤ log(rank(T) · q2/|Sf |)/ log(f · q).

13

Proof. Suppose we are given as input x1, . . . , xn, y1, . . . , yn ∈ {−1, 1}d which are all generated indepen-
dently and uniformly at random except for an unknown (i∗, j∗) ∈ [n]2 with ⟨xi∗ , yj∗⟩ ≥ ρ · d. Permute the
inputs at random so that (i∗, j∗) is a uniformly random pair in [n]2.

We can solve the light bulb problem using O(log n) calls of its decision version – we randomly take
half x and half y, and for the decision problem, we need to distinguish between two cases 1). all inputs are
uniformly at random in {−1, 1}d, and 2). there exists one correlated (i∗, j∗) pair. From now on, we will
only consider the decision version.

Let m = (20nρ)
1

1+logq(f) and let g = n/m. Partition x1, . . . , xn into m groups X1, . . . , Xm of size g
each, and partition y1, . . . , yn into m groups Y1, . . . , Ym of size g each. For each i ∈ [m], create vectors
ai, bi ∈ Rd given by ai =

∑
u∈Xi

u and bi =
∑

v∈Yi
v. (These vectors aggregate all the data points

which were put into the same group; we will see soon that if groups i and j contain the correlated pair,
then ai and bj are still somewhat correlated.) Let sa, sb ∈ {−1, 1}m be two vectors whose entries are
independently uniformly sampled from {−1, 1}. Finally, we form the matrices A,B ∈ Rm×d whose rows
are sa[1] · a1, . . . , sa[m] · am and sb[1] · b1, . . . , sb[m] · bm, respectively.

For simplicity, let us assume that d = mlog(qk)/ log(q) so that T⊗c is a ⟨m,m, d⟩-sized tensor that can be
used on A and B, where c = log(m)/ log(q). As discussed in the introduction, if one would like to remove
this requirement, then using the ‘compressed matrices’ method introduced in [KKK18, Section 4.2], one can
‘expand’ lower-dimensional vectors, and hence relax this assumption to only require d ≥ Ω(log n) while
only decreasing ρ by a negligible factor10; see Appendix A below for more details.

We now apply the usual recursive algorithm using the tensor T to the matrices A and BT , resulting in
the matrix C ∈ Rm×m. The running time is Õ(mlog(rank(T))/ log(q)) = Õ(nlog(rank(T))/ log(qf)). The output
C is the result of applying the tensor T⊗c to the matrices X = A and Y = BT , so that each entry C[i, j] is
the sum:

C[i, j] =
∑

ia,jb∈[qc],ka,kb∈[qck]

T⊗c(Xia,kaYjb,kbZi,j) ·A[ia, ka] ·B[jb, kb]. (1)

Consider the product of two terms A[i, ka] ·B[j, kb]. These are distributed as follows:

• If there’s a planted pair (xi∗ , yj∗) and ka = kb, xi∗ ∈ Xi, and yj∗ ∈ Yj , then this is the sum of g2

random {−1, 1} variables which are pairwise-independent from each other. They all have mean 0
except one of them has mean ρ, so the entire variable A[i, ka] ·B[j, kb] has mean ρ and variance g2.

• Otherwise, it is the sum of g2 uniformly random pairwise-independent {−1, 1} variables, which has
mean 0 and variance g2.

Let’s compute the variance of C[i, j]. We showed earlier that each term A[ia, ka] ·B[jb, kb] has variance
g2, so T⊗c(Xia,kaYjb,kbZi,j) · A[ia, ka] · B[jb, kb] has variance T⊗c(Xia,kaYjb,kbZi,j)

2 · g2. Since we use
sa, sb entry-wise independently sampled from {−1, 1}, the terms in the sum (1) are pairwise-independent
of each other. It follows that regardless of whether there’s a planted pair, every C[i, j] has variance:

var[C[i, j]] = g2 ·
∑

ia,jb∈[qc],ka,kb∈[qck]

T⊗c(Xia,kaYjb,kbZi,j)
2.

10In fact, the result of the compressed matrices method gives that if xi, yj are not the correlated pair, the the entries of the entry-
wise product xi ◦ yj are only pairwise-independent of each other, and not fully independent. (This is because they are products of
different entries of the original vectors.) As we will see below, this pairwise-independence suffices for our algorithm.

The compressed matrices technique particularly speeds up the time to compute the aggregated vectors ai, bj so that it is negligible
compared to the remaining running time of the algorithm, and one can confirm that it remains negligible here. We refer the reader
to [KKK18, Section 4.4] for more details.

14

Next let’s compute the mean of C[i, j]. If there’s no planted pair, every C[i, j] has mean 0. If the planted
pair (xi∗ , yj∗) exists, let’s assume xi∗ ∈ Xi and yj∗ ∈ Yj and only consider the mean of C[i, j]. Recall
that A[ia, ka] · B[jb, kb] has mean nonzero only if ka = kb, ia = i and jb = j. It follows by linearity of
expectation that

E[C[i, j]] =
∑
k∈[qck]

T⊗c(Xi,kYj,kZi,j) · E[A[i, k] ·B[j, k]]

= ρ · sa[i] · sb[j] ·
∑
k∈[qck]

T⊗c(Xi,kYj,kZi,j).

To summarize: when there’s no planted pair, every C[i, j] has mean 0 and variance

g2 ·
∑

ia,jb∈[qc],ka,kb∈[qck]

T⊗c(Xia,kaYjb,kbZi,j)
2.

When the planted pair exists, and xi∗ is in Xi, yj∗ is in Yj , and the entry (i, j) is ‘good’ (We say (i, j) is
‘good’ if effi,j(T

⊗c) ≥ f c), the ratio of its mean and standard deviation is at least:

∣∣∣∣∣ ρ · sa[i] · sb[j] ·
∑

k∈[qck]
T⊗c(Xi,kYj,kZi,j)

g2 ·
∑

ia,jb∈[qc],ka,kb∈[qck]
T⊗c(Xia,kaYjb,kbZi,j)2

∣∣∣∣∣
=

ρ

g
· eff
i,j
(T⊗c)

≥ ρ

g
· f c

=
ρ ·m
n
· f c

≥ ρ ·m
n
· f log(m)/ log(k)

=
ρ

n
·m1+log(f)/ log(k)

=
ρ

n
· 20 · n

ρ

= 20.

Therefore, follows by Chebyshev’s inequality, when there’s no planted pair, C[i, j] ≤ 10 var[C[i, j]]
with probability ≥ 0.99 for all (i, j) ∈ [m]2, and when there exists a planted pair in a ‘good’ entry (i∗, j∗),
then C[i∗, j∗] ≥ 10 var[C[i∗, j∗]] with probability ≥ 0.99. Thus, we can independently repeating O(log n)
times to distinguish the two cases with polynomially-low error.

Let |Sf | = qα. Since eff(i,i′),(j,j′)(T ⊗ T ′) = effi,j(T) · effi′,j′(T
′), there are at least |Sf |c pairs of

(i, j) ∈ [m]2 that effi,j(T
⊗c) ≥ f c. So the planted pair has |Sf |c/q2c = q−(2−α)c probability going to a

‘good’ entry. We repeat q(2−α)c log n times to make sure the planted pair goes to a ‘good’ entry at least once
with high probability, therefore we can distinguish the planted-pair case and the non planted-pair case.

Running time: Each run cost Õ(nlog(rank(T))/ log(qf)) time. We repeat the whole procedure O(n(2−α) log(q)/ log(qf)·
log2 n) times to succeed with high probability.

The total running time is Õ(nlog(rank(T))/ log(qf) ·n(2−α) log(q)/ log(qf)) = Õ(nlog(rank(T)q2−α)/ log(qf)) =
Õ(nlog(rank(T)q2/|Sf |)/ log(qf)), as desired.

15

3.1 Improvement when Sf is not ‘skewed’

We next show that in the special case when Sf is not too ‘skewed’, we can improve the bound of Theo-
rem 3.2.

Recall that for f ≥ 1, we chose a subset Sf ⊆ [q]2 consisting of pairs (i, j) ∈ [q]2 for which effi,j(T) ≥
f . Let’s define the following measurement of how a set Sf is closed to ’skewed’.

Definition 3.3 (Vx(S) and Vy(S)). For any set S ⊆ [q]2, let’s define Vx(S) :=
∑

i∈[q] |{j ∈ [q] | (i, j) ∈
S}|2, and similarly define Vy(S) :=

∑
j∈[q] |{i ∈ [q] | (i, j) ∈ S}|2.

Theorem 3.4. Suppose T is a ⟨q, q, qk⟩-sized tensor. For any f ≥ 1, and any set Sf ⊆ [q]2 such that
effi,j(T) ≥ f for all (i, j) ∈ Sf , if Vx(Sf), Vy(Sf) ≤ |Sf |1.5, then, ωℓ ≤ log(rank(T))/ log(f ·

√
|Sf |).

Proof. Let E1 = log(rank(T))/ log(qf) and E2 = log(q2/|Sf |)/ log(qf).
Recall that in Theorem 3.2, we randomly partitioned the inputs x1, . . . , xn into sets X1, . . . , Xm, and

the inputs y1, . . . , yn into sets Y1, . . . , Ym, then we ran an algorithm which takes time Õ(nE1), and which
will (with high probability) distinguish the all-random case and the planted-pair case, if xi∗ was put into set
Xi and yj∗ was put into set Yj such that (i, j) ∈ S⊗c

f . Call such (i, j) ‘good’. The probability (i, j) is good
is (|Sf |c/q2c) = n−E2 .

In Theorem 3.2, we then repeated Õ(nE2) times, resulting in a final running time of Õ(nE1+E2), but we
will now instead do something more clever.

Let t = nE2/(2−E2). We will make t copies of each xi and yj vector, and then run the above algorithm
on this new instance with n · t vectors, with the caveat that we never put two copies of the same x vector
in the same group Xi, or two copies of the same y vector in the same group Yj . The running time of this is
Õ((nt)E1) = Õ(n2·E1/(2−E2)), and the probability that a particular correlated pair will be put in a good pair
of groups is now (nt)−E2 . Since we made t copies of xi∗ and t copies of yj∗ , there are now t2 correlated
pairs, so the expected number of correlated pairs in a good pair of groups is

t2 · (nt)−E2 = t2−E2 · n−E2 = n
E2

2−E2
·(2−E2)−E2 = nE2−E2 = 1.

With more work, and using our bounds on Vx(Sf) and Vy(Sf), we can show that there is a positive constant
probability that a correlated pair was put in a good pair of groups. See Lemma 3.7 below for the details.
Hence, if we repeat O(log n) times, a correlated pair will be put in a good pair of groups with polynomially
low error.

The proof that our algorithm can distinguish the planted-pair case with the non planted-pair case is
almost identical to the proof in Theorem 3.2, except the following. In the old proof, when the planted pair
is in Xi and Yj and effi,j(T

⊗c) ≥ f c, there’s ≥ 0.99 probability that C[i, j] ≥ 10 var[C[i, j]]. Now, we can
only prove the probability is ≥ 0.24 because duplicated vectors created correlation. Nonetheless, we can
distinguish from the non-planted-pair case, in which every C[i, j] ≥ 10 var[C[i, j]] with probability≤ 0.01.
We show probability ≥ 0.24 as follows.

Let
P [ia, jb] :=

∑
ka,kb∈[d]

T⊗c(Xia,kaYjb,kbZi,j) · aia,ka · bjb,kb ,

so that C[i, j] can be written as

C[i, j] =
∑

ia,jb∈[m]

P [ia, jb] · sa[ia] · sb[jb], (2)

where sa, sb ∈ {−1, 1}m has i.i.d. {−1, 1} entries.

16

Use Lemma 3.5 on C[i, j], we conclude that with ≥ 1/4 probability over random choice of sa, sb,
|C[i, j]| ≥ |P [i, j]|.

E[P [i, j]] = ρ ·
∑

k∈[qck]
T⊗c(Xi,kYj,kZi,j) and var[P [i, j]] ≤ var[C[i, j]]. By the same analysis in

Theorem 3.2, with ≥ 1/4− 0.01 probability, |C[i, j]| ≥ |E[P [i, j]]| − 10 var[P [i, j]] ≥ 10 var[C[i, j]].
The resulting exponent is hence:

2 · E1/(2− E2) = 2 · E1/(log(f
2 · |Sf |)/ log(qf)) = log(rank(T))/ log(f ·

√
|Sf |).

Lemma 3.5. Let P ∈ Rn×n be a matrix. Let a, b ∈ {−1, 1}n be entry-wise i.i.d. uniformly sampled from
{−1, 1}. Then with probability ≥ 1/4,∣∣∣∣∣∣

∑
i,j∈[n]

a[i] · b[j] · P [i, j]

∣∣∣∣∣∣ ≥ |P [1, 1]| . (3)

Proof. Define T =
∑

j≥2 P [1, j] ·b[j], and T = T +P [1, 1] ·b[1]. Regardless of how large T is, with≥ 1/2
probability over b[1], |T | ≥ |P [1, 1]|.

Let S be the left side of Eq. (3). Notice that

S =

∣∣∣∣∣∣
∑
i≥2

a[i](
∑
j∈[n]

P [i, j] · b[j]) + T · a[1]

∣∣∣∣∣∣ ,
use the same argument, we have |S| ≥ |T | ≥ |P [1, 1]| with ≥ 1/4 probability.

3.2 Probabilistic lemma for when Sf is not ‘skewed’

Lemma 3.6. Suppose q is a positive integer and S ⊆ [q]2 is a nonempty subset. Let Vx(S) :=
∑

i∈[q] |{j ∈
[q] | (i, j) ∈ S}|2 and Vy(S) :=

∑
j∈[q] |{i ∈ [q] | (i, j) ∈ S}|2, and suppose that Vx(S) ≤ |S|1.5 and

Vy(S) ≤ |S|1.5.
Suppose we pick Sx, Sy ⊆ [q] of size |Sx|, |Sy| ≥ q/

√
|S| independently and uniformly at random.

Then, the probability that |(Sx × Sy) ∩ S| > 0 is at least 1/4.

Proof. Let U denote the random variable |(Sx × Sy) ∩ S|. We will use the second moment method, which
says that

Pr[U > 0] ≥ (E[U])2

E[U2]
.

First, by linearity of expectation, we compute that E[U] = |Sx| · |Sy| · (|S|/q2) = 1.
Next, again by linearity of expectation, we compute:

17

E[U2] =
∑

(i,j)∈S

∑
(i′,j′)∈S

Pr[i, i′ ∈ Sx and j, j′ ∈ Sy]

=
∑

(i,j)∈S

((
1√
|S|

)2

+

(
1√
|S|

)3

· |{(i′, j′) ∈ S | i = i′ xor j = j′}|

+

(
1√
|S|

)4

· |{(i′, j′) ∈ S | i ̸= i′ and j ̸= j′}|

)

=

(
1√
|S|

)2

· |S|+

(
1√
|S|

)3

· (Vx(S) + Vy(S)− 2|S|)

+

(
1√
|S|

)4

· (|S|2 − Vx(S)− Vy(S) + |S|)

=2 +
1

|S|
− 2

|S|0.5
+ (Vx(S) + Vy(S)) ·

(
1

|S|1.5
− 1

|S|2

)
≤4 + 1

|S|
− 4

|S|0.5

<4,

where the last step follows since 1
s −

4√
s
< 0 for all s ≥ 1.

In total, we get as desired that

Pr[U > 0] ≥ (E[U])2

E[U2]
=

1

E[U2]
>

1

4
.

Lemma 3.7. Suppose q is a positive integer and S ⊆ [q]2 is a nonempty subset. Let Vx(S) :=
∑

i∈[q] |{j ∈
[q] | (i, j) ∈ S}|2 and Vy(S) :=

∑
j∈[q] |{i ∈ [q] | (i, j) ∈ S}|2, and suppose that Vx(S) + Vy(S) ≤ |S|1.5.

Let c be a positive integer.
Suppose we pick Sx, Sy ⊆ [qc] of size |Sx|, |Sy| ≥ qc/

√
|S|c independently and uniformly at random.

Then, the probability that |(Sx × Sy) ∩ S⊗c| > 0 is at least 1/4.

Proof. Apply Lemma 3.6 to S⊗c ⊆ [qc]2. Note that Vx(S
⊗c) = (Vx(S))

c and Vy(S
⊗c) = (Vy(S))

c, so the
conditions are still satisfied after taking the cth Kronecker power.

3.3 Symmetrizing a tensor to avoid skew

Definition 3.8. For a positive integer q, we say a set S ⊆ [q]2 is regular if there are positive integers a and
b such that, for all i ∈ [q], |{j ∈ [q] | (i, j) ∈ S}| is either equal to a or equal to 0, and similarly for all
j ∈ [q], |{i ∈ [q] | (i, j) ∈ S}| is either equal to b or equal to 0.

Lemma 3.9. Suppose q is a positive integer and S ⊆ [q]2 is regular. Let Vx(S) :=
∑

i∈[q] |{j ∈ [q] |
(i, j) ∈ S}|2 and Vy(S) :=

∑
j∈[q] |{i ∈ [q] | (i, j) ∈ S}|2. Then, Vx(S) · Vy(S) ≤ |S|3.

Proof. If S is empty, then the result holds since Vx(S) = Vy(S) = |S| = 0. Otherwise, assume without
loss of generality that (1, 1) ∈ S.

18

Let a = |{j ∈ [q] | (1, j) ∈ S}|, and b = |{i ∈ [q] | (i, 1) ∈ S}|. Since S is regular, there are |S|/a
choices of i ∈ [q] for which |{j ∈ [q] | (i, j) ∈ S}| = a, and so Vx(S) = |S|

a · a
2 = a · |S|. Similarly,

Vy(S) = b · |S|, which means Vx(S) · Vy(S) = a · b · |S|2.
Let W := {j ∈ [q] | (1, j) ∈ S}, so |W | = a. Next, for each j ∈ W , let Wj := {(i, j) | i ∈

[q] and (i, j) ∈ S} ⊆ S. Let W ′ :=
⋃

j∈W Wj ⊆ S, and note that the Wj sets are disjoint, so |W ′| =∑
j∈W |Wj |. By definition of W , we know that Wj is nonempty for each j ∈ W , and so |Wj | = b. It

follows that |S| ≥ |W ′| = |W | · b = a · b.
We thus get as desired that Vx(S) · Vy(S) = a · b · |S|2 ≤ |S|3.

Theorem 3.10. Suppose T is a ⟨q, q, qk⟩-sized tensor. For any f ≥ 1, and any regular set Sf ⊆ [q]2 such
that effi,j(T) ≥ f for all (i, j) ∈ Sf , we have ωℓ ≤ log(rank(T))/ log(f ·

√
|Sf |).

Proof. Define T ′ = T ⊗T⊤ and S′
f = Sf ⊗S⊤

f . We can see that Vx(S
′
f) = Vy(S

′
f) = Vx(Sf) ·Vy(Sf). By

Lemma 3.9, this is at most |Sf |3 = |S′
f |1.5. Furthermore, for any i, i′, j, j′ ∈ [q] such that ((i, j′), (j, i′)) ∈

S′
f , we have that eff(i,j′),(j,i′)(T

′) = (effi,j(T)) · (effj′,i′(T
⊤)) ≥ f2. We may thus apply Theorem 3.4 to

T ′ and S′
f to yield the desired result.

Theorem 3.11 (Restatement of Theorem 1.1). Suppose T is a ⟨q, q, qk⟩-sized tensor, then

ωℓ ≤
log(rank(T))

log(eff(T))
.

Proof. Let N be a sufficiently large positive integer. We will partition the set [q]N × [q]N into many regular
sets in the following way. For any (I, J) = ((i1, · · · , iN), (j1, · · · , jN)) ∈ ([q]N)2, let p ∈ [q]2 → N be the
counter, such that p(u, v) counts the number of pairs (iℓ, jℓ) that equal to (u, v), and let Sp ⊆ [q]2N be the
set including all such pairs (I, J) whose counter is p. We have that {Sp}{p} form a partition of [q]N × [q]N .
We can also see that for every p, Sp is a regular set (since its definition does not depend on the order of the N
indices). Let fp = Πi,j∈[q]effi,j(T)

p(i,j), every pair (I, J) ∈ Sp has effI,J(T
⊗N) = fp. By Theorem 3.10,

we have

wℓ ≤
log(rank(T⊗N))

log(
√
f2
p · |Sp|)

.

The next step is to choose the best p that maximize f2
p · |Sp|. Note that the number of different p is upper

bounded by N q2 . And thus

max
p

f2
p · |Sp| ≥

1

N q2

∑
p

f2
p |Sp| =

1

N q2

∑
p

∑
(I,J)∈Sp

effI,J(T
⊗N)2 =

1

N q2
eff(T⊗N)2,

where the last step is because {Sp}{p} is the partition of [q]N × [q]N and the definition of eff(T).
Therefore, we have

wℓ ≤
log(rank(T⊗N))

log(
√
f2
p · |Sp|)

≤ log(rank(T⊗N))

log
(√

1

Nq2
eff(T⊗N)2

) =
N log(rank(T))

log(
√

1

Nq2
) +N log(eff(T))

≤ log(rank(T))

log(eff(T))
+ o(1),

and the result follows from taking N →∞.

19

4 Solving the P -light bulb problem with locality-sensitive hashing
General Faster Algorithm. The general statement of Theorem 1.3 which applies to any tensor needs a
few definitions. Let q ≥ 2 be an integer, and P ∈ Rq×q be a matrix of nonnegative real numbers whose
entries sum to 1, but whose entries are not all equal to 1/q2. We say that two vectors x, y ∈ [q]d are jointly
sampled according to P if, for each ℓ ∈ [d], the coordinates x[ℓ], y[ℓ] are sampled independently of all other
coordinates, and (x[ℓ], y[ℓ]) = (i, j) with probability P [i, j] for all (i, j) ∈ [q]2.

We focus on a generalization of the light bulb problem which our algorithm is naturally able to solve. In
the P -light bulb problem, one is given as input vectors x1, . . . , xn, y1, . . . , yn ∈ [q]d which are all indepen-
dent and uniformly random except for a planted pair which has been jointly sampled according to P , and
the goal is to find the planted pair. The light bulb problem with correlation ρ is a special case of this problem
with q = 2, P [0, 0] = P [1, 1] = (1 + ρ)/4, P [0, 1] = P [1, 0] = (1− ρ)/4. It could alternatively be viewed
as a special case of this problem for any q which is a power of 2, along with the appropriately defined P .

4.1 Overview of the proof

Let x∗, y∗ be the correlated pair. Since each bit of (x∗i , y
∗
i) is sampled according to the joint distribution P ,

the number of coordinates l such that (x∗l , y
∗
l) = (i, j) will be proportional to P [i, j] in expectation. In fact,

we will assume that the number is equal to its expectation for all (i, j); this happens with decent probability,
and will simplify our analysis. The assumption below that (x∗, y∗) falls into the set VN (defined in Eq. (4)
below) captures this property.

Given a tensor T of size ⟨q, q, q⟩ along with its eff matrix, our hope is that (x∗, y∗) falls into a bucket
(i, j) ∈ [q]2 with high effi,j . However, depending on how the eff matrix correlates with the P distribu-
tion matrix, this may not be the case. To address this, we will choose a pair of stochastic matrices Qx, Qy

(Def. 4.1 below) which we use to process vectors after they have been sampled, so that P after this transfor-
mation will be correlated with eff .

More precisely, we use Qx and Qy to decide which bucket every vector goes into as follows. Take a
vector x as example. For every coordinate l, if xl = i, we switch xl to j with probability Qx[i, j]. The final
x after this transformation is the bucket we put this vector into. Vectors y are transformed in a similar way,
but with the matrix Qy. Note that different buckets may have different numbers of points since the matrices
Qx, Qy are not necessarily doubly-stochastic. This needs to be taken into account since (x∗i , y

∗
i) wil only be

detected it they are put into a bucket where eff2
i,j is larger than the number of pairs of points. Below we will

rescale eff by ∂x and ∂y (Def. 4.1 below) to “normalize” this effect.
Ultimately we need to optimize over choices of Qx, Qy to achieve the best running time. The number

γQx,Qy (Def. 4.1 below) indicates the performance of particular matrices Qx, Qy. The higher this number
is, the better the choice of Qx, Qy.

Ultimately we will find using properties of the Kronecker power that many buckets shares the same
property: they have the same chance that of containing the correlated pair (x∗, y∗), and they have the same
eff value. We cluster these buckets into many groups, each specified by a mapping τ (Def. 4.6 below).
We find the best cluster Sτ in Lemma 4.8 below, and our algorithm will only consider the buckets inside
this cluster to find (x∗, y∗). (We will calculate that other clusters give a negligible additional probability of
finding (x∗, y∗).) Similar to Theorem 3.4 above, we copy x∗ and y∗ multiple times to guarantee that there
is a constant probability that at least one copy falls into a bucket in that cluster.

Similar to before, we will aim to use Lemma 3.6, and toward this goal, we need to ensure our cluster Sτ

is not too “skewed”. Similar to Section 3.3 above, we consider the Kronecker power of Sτ with its transpose
S⊤
τ to “symmetrize” the cluster and avoid this issue. Section 4.4.2 below is devoted to dealing with this

issue.
See Algorithm 2 below for the full algorithm description.

20

4.2 Preliminaries

Given any tensor T , we now define its P - eff(T), a generalization of eff(T). We start by defining some
useful functions.

Definition 4.1 (effQ and γ). Suppose T is a ⟨q, q, qk⟩-sized tensor. Given two stochastic matrices Qx, Qy ∈
Rq×q, define ∂x(i) :=

∑
j∈[q]Qx[i, j] for i ∈ [q], and same for ∂y. we define the Q version of eff(T) as

follows. For i, j ∈ [q],

effQ
i,j

(Qx, Qy, T) :=

∑
k∈[qk] T (Xi,kYj,kZi,j)√∑

i′,j′∈[q],k,k′∈[qk] T (Xi′,kYj′,k′Zi,j)2∂x(i′)∂y(j′)
.

Given a joint probability matrix P ∈ Rp×p, we further define the performance of Qx, Qy as

γQx,Qy :=
∏

i,j∈[q]

 ∑
u,v∈[q]

Qx[i, u]Qy[j, v](effQ
u,v

(Qx, Qy, T))
2

P [i,j]

.

Let γ be the best γQx,Qy over all stochastic matrices Qx, Qy.

γ := max
Qx,Qy

γQx,Qy ,

Note that effQ is multiplicative: suppose T, T ′ both have size ⟨q, q, qk⟩, and Qx, Q′
x, Qy, Q′

y are all
stochastic matrices, then for (i, i′), (j, j′) ∈ [q]2, we have effQ(i,i′),(j,j′)(Qx ⊗ Q′

x, Qy ⊗ Q′
y, T ⊗ T ′) =

effQi,j(Qx, Qy, T) · effQi′,j′(Q
′
x, Q

′
y, T

′).

Remark 4.2. By choosing matrix Qx, Qy to be the matrix where each entry is 1/q, effQ(T) is the same as
eff(T) and thus γ ≥ eff(T)2/q2.

We finally define:

P - eff(T) :=
√

γ · q2.

Here’s our main theorem of this section.

Theorem 4.3. Suppose T is a ⟨q, q, qk⟩-sized tensor. Suppose there are n vectors uniformly independently
sampled from [q]d, with a planted pair (x∗, y∗) where each bit of them is sampled from a symmetric joint
probability matrix P ∈ Rq×q.

Let γ be as defined in Definition 4.1, then (x∗, y∗) can be found in O(nωP+o(1)) time, where

ωP ≤
log rank(T)

log(qγ1/2)
.

Theorem 1.3 follows from Theorem 4.3 by finding the optimal Q for the tensor T2112 (see Section 5
for the definition of T2112) and the matrix P arising from ρ in the light bulb problem; see the Example 4.4
below for more details.

Example 4.4. Consider our standard light-bulb problem where the correlated pair has ρ-correlation, i.e.,

Pρ =

(1+ρ
4

1−ρ
4

1−ρ
4

1+ρ
4

)
.

21

Let a ∈ [0, 1] be some parameter, let both Qx and Qy be

Qx = Qy =

(
1− a a
a 1− a

)
.

Given our T2112 tensor, by definition of γQx,Qy (Definition 4.1), we can calculate

γQx,Qy =
(
2 ·
(
(1− a)2 + a2

)
+ 1 ·

(
2a(1− a)

)) 1+ρ
2
(
2 ·
(
2a(1− a)

)
+ 1 ·

(
(1− a)2 + a2

)) 1−ρ
2 .

The optimal a is given as a = max{0, (1−
√
3ρ)/2}. Write ωρ to be the exponent ωP in Theorem 4.3 given

our P = Pρ. Then we get

wρ =

2 log 5

log(6(1−ρ)−ρ/2(1+ρ)ρ/2(1−ρ2)1/2)
,when ρ < 1/3

4 log 5
(5+ρ) log 2 ,when 1/3 ≤ ρ ≤ 1.

In the remainder of this section, we prove Theorem 4.3.

4.3 Preparation before symmetrization

We will show that for every stochastic Qx, Qy, our algorithm gives an exponent ωP ≤ 2 log rank(T)
log(γQx,Qy)

and
therefore, the theorem follows by choosing the best Qx and Qy. In the following, we assume Qx, Qy are
fixed stochastic matrices.

Fix a joint probability matrix P . Let N be a sufficiently large positive integer so that P [i, j]N are all
integers.11 Define the set VN as all pairs of (x, y) where there are exactly P [i, j] ·N number of coordinates
l such that (x[l], y[l]) = (i, j),

VN := {(x, y) ∈ [q]N : ∀i, j ∈ [q], |{l | (x[l], y[l]) = (i, j)}| = P [i, j] ·N}. (4)

If the planted pair (x∗, y∗) is drawn from the joint distribution P , then there’s a descent chance that
(x∗, y∗) ∈ VN .

Definition 4.5 (Distribution Dx and Dy). Let i ∈ [q] and Qx ∈ Rq×q be a stochastic matrix, we define the
distribution Di

Qx
∈ Rq as

Di
Qx

(j) := Qx[i, j], ∀j ∈ [q].

In another words, the distribution Di
Qx

is generated by transforming i to j with probability Qx[i, j].

Let x ∈ [q]N be any vector, we define the distribution Dx
Q⊗N

x
∈ RqN as

Dx
Q⊗N

x
:= ⊗N

l=1D
x[l]
Qx

.

In another words, the distribution Dx
Q⊗N

x
is generated by transforming independently each entry x[ℓ] to x′[ℓ]

with probability Qx[x[ℓ], x
′[ℓ]].

Similarly, we define

Dy

Q⊗N
y

:= ⊗N
l=1D

y[l]
Qy
∈ RqN .

For simplicity, if Qx and Qy are clear from the context, we write Dx
Q⊗N

x
as Dx and Dy

Q⊗N
y

as Dy.

We define Dx,y := Dx ⊗ Dy to be their joint distribution. In particular, for x′, y′ ∈ [q]n, we will write
Dx,y(x′, y′) = Dx(x′) · Dy(y′) to denote the probability that Dx,y outputs (x′, y′).

11We only need this property when constructing the set VN . There is a negligible change in our algorithm if we round P [i, j] ·N
to be the integer closest to P [i, j] ·N in the construction of VN for large N .

22

Next, similar to the proof of Theorem 3.11, we will partition the entire space [q]N × [q]N into several
regular sets.

Definition 4.6 (τ -partition). Call a mapping τ : [q]4 → {0, 1, · · · , N} valid if for all i, j ∈ [q], we have∑
u,v∈[q] τ(i, j, u, v) = N · P [i, j]. Fix a pair (x∗, y∗) ∈ VN . Every pair (x, y) ∈ [q]N × [q]N corresponds

to one valid mapping τ defined by τ(i, j, u, v) = |{l : (x∗[l], y∗[l]) = (i, j) and (x[l], y[l]) = (u, v)}|. For
a valid mapping τ , let Sx∗,y∗

τ ⊆ [q]2N be the set of all pairs (x, y) that correspond to τ . When x∗, y∗ is clear
from the context, we simply write Sτ instead of Sx∗,y∗

τ .

We next make some key observations about valid mappings τ .

Fact 4.7. Fix (x∗, y∗) ∈ VN , then

1. {Sτ}{valid τ} is a partition of [q]N × [q]N ;

2. Sτ is regular for all valid τ ;

3. Every (x, y) ∈ Sτ has the same Dx∗,y∗(x, y), since Dx∗,y∗(x, y) =
∏

i,j,u,v(Qx[i, u]Qy[j, v])
τ(i,j,u,v)

only depends on τ . For simplicity, we denote them as Dτ ;

4. Every (x, y) ∈ Sτ has the same effQx,y(T
⊗N), since

effQ
x,y

(Q⊗N
x , Q⊗N

y , T⊗N) =
∏

i,j,u,v

effQ
u,v

(Qx, Qy, T)
τ(i,j,u,v)

only depends on τ . For simplicity, we denote them as effQτ .

Proof. 1. This is because each pair (x, y) corresponds to exactly one valid τ .
2. For i, j ∈ [q], let Zi,j := {l | x∗[l] = i and y∗[l] = j} ⊆ [N], and let (Sτ)i,j ⊆ [q]Zi,j be the

set of pairs (x, y) ∈ [q]Zi,j for which, for all (u, v) ∈ [q]2, we have |{ℓ ∈ Zi,j | (x[ℓ], y[ℓ]) = (u, v)}| =
τ(i, j, u, v). We can see that (Sτ)i,j is regular since it is defined independently of the order of the indices.
Thus, Sτ = ⊗i,j(Sτ)i,j , which is a Kronecker product of regular sets (Sτ)i,j , is also regular.

3 and 4. Proved in the statement.

Lemma 4.8. Let N be a sufficient large integer. Let (x∗, y∗) ∈ VN be any pair. Then there exists a valid
mapping τ such that

Dτ · |Sτ | · effQ2
τ ≥

1

(N + 1)q4
γNQx,Qy

,

where γQx,Qy is defined in Definition 4.1.

Proof.

max
τ
Dτ · |Sτ | · effQ2

τ

≥ 1

(N + 1)q4
∑
τ

Dτ · |Sτ | · effQ2
τ

=
1

(N + 1)q4
∑
τ

E(x,y)∼Dx∗,y∗ [effQ2
x,y(T

⊗N) ·
[
(x, y) ∈ Sτ

]
1
]

=
1

(N + 1)q4
E(x,y)∼Dx∗,y∗ [effQ2

x,y(T
⊗N)],

23

where the first step follows because there are at most (N + 1)q
4

different valid τ , the second step follows
from part 3 and part 4 of Fact 4.7, the third step follows from part 1 of Fact 4.7. We conclude by computing
that

E(x,y)∼Dx∗,y∗ [effQ
2
x,y(T

⊗N)]

= E
(x1,y1)∼Dx∗1,y

∗
1

...
(xN ,yN)∼Dx∗N,y∗N

[ΠN
i=1effQ

2
xi,yi(T)]

=

N∏
i=1

E
(xi,yi)∼Dx∗

i
,y∗

i
[effQ2

xi,yi(T)]

=
∏

i,j∈[q]

 ∑
u,v∈[q]

Qx[i, u]Qy[j, v]effQ
2
u,v(T)

Pi,jN

=γQx,Qy .

We also give this lemma for later use.

Lemma 4.9. Suppose q is even, and P ∈ Rq×q is a joint probability matrix. There exist two mappings
h, g : [q]→ {−1, 1} and a constant ρ > 0 such that:

• If b0, b1 are sampled independently from [q], and at least one of them is sampled uniformly, then
E[g(b0) · h(b1)] = 0, but

• If b0, b1 are sampled from [q] according to P (so (b0, b1) = (i, j) with probability P [i, j]), then
E[g(b0) · h(b1)] = ρ.

Proof. We construct g, h in a greedy fashion. Pick any row of P that is not uniform. Such a row exists since
we assume P is not the uniform matrix. Fix g to map the column indices of the q/2 largest entries in that
row to 1, and the others to −1. Let v := P · g ∈ Rq. Fix h to map the indices of the q/2 largest entries of v
to 1 and the others to −1.

If b0 or b1 is sampled uniformly from [q], then g(b0) or h(b1), respectively, is uniformly chosen from
{−1, 1} since h and g each map half of [q] to 1 and the other half to −1. Hence, in this case, if b0 and b1 are
sampled independently, then E[g(b0) · h(b1)] = 0.

Meanwhile, by our construction of h,

E(b0,b1)∼P [g(b0) · h(b1)] = ⟨v, h⟩ > 0,

which is strictly larger than 0 because v is non-zero. We may thus pick ρ = ⟨v, h⟩.

4.4 Proof of Theorem 4.3

In Lemma 4.8 from the previous section, we found the best mapping τ , and we aimed to use Sτ to detect the
correlated pair. However, although Sτ is a regular set, it still can be “skewed” (in the sense of Section 3.2).
In this section, at a high level, we are going to symmetrize Sτ using a Kronecker product with its transpose
S⊤
τ to avoid skew. We will prove Theorem 4.3 in four steps.

24

Algorithm 2
1: Input
2: Let T be a ⟨q, q, qk⟩-sized tensor.
3: Let x1, · · · , xn, y1, · · · , yn ∈ [q]d be 2n vectors with one planted pair (x∗, y∗).
4: Let P ∈ Rq×q be joint-probability symmetric matrix for planted pair, that every bit (x∗[l], y∗[l]) is

sampled according to P .
5: Algorithm
6: Let γ and its corresponding stochastic matrices Qx, Qy ∈ Rq×q be from Definition 4.1.
7: Let N be such that q2NγN = 20n · (N + 1)q

4

8: T ′ ← (T ⊗ T⊤)⊗N

9: for g a power of 2 from 1, 2, 4 · · · ,maxi,j effi,j(T
′) do

10: Prepare q2N sets indexed by vector in [q]2N for both x and y, X1, · · · , Xq2N , Y1, · · · , Yq2N .
11: c← q2N · g/n
12: for each xi, independently generate c indices i1, · · · , ic from Dxi

Q⊗N
x ⊗Q⊗N

y
and add {i} to every Xij .

13: for each yi, independently generate c indices i1, · · · , ic from Dyi
Q⊗N

y ⊗Q⊗N
x

and add {i} to every Yij .

14: Find correlated pair under such groupings. ▷ See details in Section 4.4.4
15: end for

4.4.1 Step 1. General start

We may assume γ > 1/q, since otherwise, the bound on ωP we claim in Theorem 4.3 is worse than the
trivial exponent of 2. We first fix N such that

q2N = 20n

(
1

γ

)N

(N + 1)q
4
. (5)

Note that N = Θq(log n).
For simplicity, let us assume that the input vectors are long enough; as discussed in the introduction

and early proofs, that one can use the ‘compressed matrices’ method introduced in [KKK18, Section 4.2] to
‘expand’ lower-dimensional vectors without losing too much correlations on correlated pair.

Let the planted pair be (x∗, y∗). We abuse notation here and also write x∗, y∗ ∈ [q]2N to denote the first
2N coordinates of the planted pair. We write x∗ = x∗1 ◦ x∗2, where x∗1, x

∗
2 ∈ [q]N , and write y∗ = y∗1 ◦ y∗2 in

the same way. (Here ◦ denotes vector concatenation.)
We will use Algorithm 2 to solve the problem. As suggested by line 9 to line 15 of the algorithm, our goal

here is to copy every vector c times and partition them into q2N groups, with each group containing roughly
g vectors (so nc/g ≈ q2N). Our algorithm enumerates over g from 1 to (maxi,j effi,j)

2N by doubling each
time. We are going to prove that we will successfully find the correlated pair for one of these choices of g.

We set aside the first 2N entries of each input vector which we will use to decide the grouping. We
will later use fresh entries from the input vectors in later parts of the algorithm (when we perform matrix
multiplication) so that there is no correlation between the independent random vectors which are placed in
the same group.

With probability 1/(qN)o(1), we have both pairs (x∗1, y
∗
1), (x

∗
2, y

∗
2) ∈ VN . We will assume this happens

in the later analysis, since it only cost a 1/(qN)o(1) overhead on the running time by repeating the algorithm
using fresh bits.

4.4.2 Step 2. Symmetrizing Sτ

Recall that Qx, Qy ∈ Rq×q are the given stochastic matrices. We apply Qx to x∗1 and Qy to y∗1 , and let τ1 be
the best τ chosen from Lemma 4.8 with respect to x∗1, y

∗
1, Qx, Qy. For ease of presentation, we will still use

25

notation Sτ , Dτ , effQτ in the Lemma 4.8 and note that they are with respect to τ1 and x∗1, y∗1 , Qx, Qy, i.e.,
we have

Sτ = S
x∗
1,y

∗
1

τ1 , and

∀(x, y) ∈ Sτ , Dτ = Dx∗
1,y

∗
1

Q⊗N
x ,Q⊗N

y
(x, y), (6)

∀(x, y) ∈ Sτ , effQ
τ

= effQ
x,y

(Q⊗N
x , Q⊗N

y , T⊗N).

Now, consider symmetrizing Sτ as follows. Let τ2 be the (“transposed”) mapping such that, for all
i, j, u, v ∈ [q], we have τ2(i, j, u, v) := τ1(j, i, v, u). Since P is a symmetric matrix, we know that τ2 is
also valid. Define S := S

x∗
1,y

∗
1

τ1 ⊗ S
x∗
2,y

∗
2

τ2 ⊆ [q]2N , and we will show in Claim 4.10, S = Sτ ⊗ S⊤
τ . For the

purpose of symmetricity, we will further apply Qy to x2 and Qx to y2. We are able to do so because P is
symmetric and thus, (y∗2, x

∗
2) is also in VN .

We will prove that, with a careful choice of c (the number of copies we make of each vector), there will
be a decent probability that a copy of the planted pair falls into some bucket in S. To do this, we first need
to prove S is not skewed. The following are some useful fact about S.

Claim 4.10. (S
x∗
1,y

∗
1

τ1)⊤ = S
y∗1 ,x

∗
1

τ2 .

Proof.

(S
x∗
1,y

∗
1

τ1)⊤

= {(x, y) ∈ [q]2N : ∀i, j, u, v ∈ [q] |{ℓ ∈ [N] : x∗1[ℓ] = i and y∗1[ℓ] = j and x[ℓ] = v and y[ℓ] = u}| = τ1(i, j, u, v)}
= {(x, y) ∈ [q]2N : ∀i, j, u, v ∈ [q] |{ℓ ∈ [N] : x∗1[ℓ] = i and y∗1[ℓ] = j and x[ℓ] = v and y[ℓ] = u}| = τ2(j, i, v, u)}
= {(x, y) ∈ [q]2N : ∀i, j, u, v ∈ [q] |{ℓ ∈ [N] : x∗1[ℓ] = j and y∗1[ℓ] = i and x[ℓ] = u and y[ℓ] = v}| = τ2(i, j, u, v)}

= S
y∗1 ,x

∗
1

τ2 ,

where the first step is by definition, the second step replaces τ1 with τ2, and the third step is by switching
variables.

Definition 4.11. For a ground set U , we say two sets S1, S2 ⊆ U2 are isomorphic if they are equal up
to permuting first and second coordinates, i.e., there are permutations π1, π2 : U → U such that, for all
(a, b) ∈ U2, (a, b) ∈ S1 if and only if (π1(a), π2(b)) ∈ S2.

Claim 4.12. 1. Vx(S), Vy(S) ≤ |S|1.5; (Vx(S), Vy(S) is defined in Definition 3.3)
2. |S| = |Sτ |2;
3. ∀(x, y) ∈ S, Dx∗

Q⊗N
x ⊗Q⊗N

y
(x) = Dy∗

Q⊗N
y ⊗Q⊗N

x
(y) = Dτ ;

4. Let T̃ := T⊗N . For all (x, y) ∈ S, we have effQx,y(Q
⊗N
x ⊗Q⊗N

y , Q⊗N
y ⊗Q⊗N

x , T̃ ⊗ T̃⊤) = effQ2
τ .

Proof. Part 1 and 2.
For any valid τ and (x1, y1), (x2, y2) ∈ VN , the sets Sx1,y1

τ and Sx2,y2
τ are isomorphic, since the defini-

tion of Sτ does not depend on the order of the N indices. Therefore, because both (y∗1, x
∗
1) and (x∗2, y

∗
2) are

in VN , we know that Sy∗1 ,x
∗
1

τ2 is isomorphic to S
x∗
2,y

∗
2

τ2 . By Claim 4.10, (Sy∗1 ,x
∗
1

τ2)⊤ = S
x∗
1,y

∗
1

τ1 , so

|S| = |Sx∗
1,y

∗
1

τ1 | · |Sx∗
2,y

∗
2

τ2 | = |Sx∗
1,y

∗
1

τ1 | · |Sy∗1 ,x
∗
1

τ2 | = |Sx∗
1,y

∗
1

τ1 |2,

and

Vx(S) = Vx(S
x∗
1,y

∗
1

τ1) · Vx(S
x∗
2,y

∗
2

τ2) = Vx(S
x∗
1,y

∗
1

τ1) · Vy(S
x∗
1,y

∗
1

τ1) ≤ |Sx∗
1,y

∗
1

τ1 |3 = |S|1.5,

26

where the third step follows because S
x∗
1,y

∗
1

τ1 is regular (by part 2 of Fact 4.7) and by Lemma 3.9.
Vy(S) ≤ |S|1.5 follows for the same reason.
Part 3. For all (x, y) ∈ S,

Dx∗

Q⊗N
x ⊗Q⊗N

y
(x) =

∏
i,j,u,v

(Qx)
τ1(i,j,u,v)
i,u

∏
i,j,u,v

(Qy)
τ2(i,j,u,v)
i,u =

∏
i,j,u,v

(Qx)
τ1(i,j,u,v)
i,u

∏
i,j,u,v

(Qy)
τ1(i,j,u,v)
j,v = Dτ ,

where the second step is by the symmetry of τ1 and τ2, and the last step is by the definition of Dτ (part 3 of
Fact 4.7). Similarly,

Dy∗

Q⊗N
y ⊗Q⊗N

x
(y) =

∏
i,j,u,v

(Qy)
τ1(i,j,u,v)
j,v

∏
i,j,u,v

(Qx)
τ2(i,j,u,v)
j,v =

∏
i,j,u,v

(Qy)
τ1(i,j,u,v)
j,v

∏
i,j,u,v

(Qx)
τ1(i,j,u,v)
i,u = Dτ .

Part 4. For all x, y ∈ S, we write x = x1 ◦ x2 and y = y1 ◦ y2 to partition them into two halves. Then,

effQx,y(Q
⊗N
x ⊗Q⊗N

y , Q⊗N
y ⊗Q⊗N

x , T̃ ⊗ T̃⊤) = effQx1,y1(Q
⊗N
x , Q⊗N

y , T̃) · effQx2,y2(Q
⊗N
y , Q⊗N

x , T̃⊤).

We can calculate that

effQx2,y2(Q
⊗N
y , Q⊗N

x , T̃⊤) =
∏

i,j,u,v

effQu,v(Qy, Qx, T
⊤)τ2(i,j,u,v) =

∏
i,j,u,v

effQv,u(Qx, Qy, T)
τ2(i,j,u,v)

=
∏

i,j,u,v

effQu,v(Qx, Qy, T)
τ1(j,i,u,v) =

∏
u,v

effQu,v(Qx, Qy, T)
∑

i,j τ1(j,i,u,v)

= effQx1,y1(Qx, Qy, T) = effQτ ,

where the second step is because effQu,v(Qy, Qx, T
⊤) = effQv,u(Qx, Qy, T), the third step is because

τ2(i, j, u, v) = τ1(j, i, v, u) and switching u and v, and the last step is by definition of effτ (part 4 of
Fact 4.7).

Therefore, the statement holds.

4.4.3 Step 3. Detect (x∗, y∗) using S

To simplify notation, we write the distribution Dx
Q⊗N

x ⊗Q⊗N
y

as Dx, omitting the matrix Q⊗N
x ⊗Q⊗N

y acting

on x. Similarly, we write Dy∗

Q⊗N
y ⊗Q⊗N

x
as Dy.

We let Sx := {x | Dx∗
(x) = Dτ} and Sy := {y | Dy∗(y) = Dτ}. By Claim 4.12, S ⊆ Sx ⊗ Sy, and

also |Sx| = |Sy| follows by symmetry.
In line 12, 13 of our Algorithm 2, for each xi ∈ [q]2N (also yi), we make c copies i1, . . . , ic indepen-

dently drawn from Dxi , and put xi into the buckets Xi1 , . . . , Xic . (If two copies turned out to be identical,
we only put xi into that bucket once.) Let g∗ be the least power of 2 that is larger than n

q2N ·|Sτ |·Dτ
(this

number is roughly effQ2
τ ; see Eq. (8)). Since our algorithm iterates over all g which are powers of 2, there’s

an iteration where g = g∗. In the remaining analysis, we focus on this case. Note that

c = q2Ng∗/n ≥ 1

|Sτ | · Dτ
≥ 1. (7)

Claim 4.13. Suppose c ≥ 1
|Sτ |·Dτ

, then with ≥ 1/4 probability, there’s one copy x′ of x∗ and one copy y′ of
y∗ such that (x′, y′) ∈ S.

27

Proof. The copies of the planted vector x∗ are drawn independently according to Dx∗
. Hence, the number

of copies which fall into Sx follows a binomial distribution with mean c · Dτ · |Sx| ≥ 1. It follows that,
with constant probability, there are at least c · Dτ · |Sx| many copies of x∗ which fall into Sx. For the same
reason, there is a constant probability that c · Dτ · |Sy| many copies of y∗ fall into Sy.

Furthermore, since for all x ∈ Sx, y ∈ Sy, Dx∗
(x) = Dy∗(y) = Dτ , it follows that: conditioned on

some particular copies of x∗ falling into Sx, those copies will be independently uniformly random elements
of Sx (and similarly for Sy). Also, since |Sx| = |Sy| and c · Dτ · |Sx| ≥ |Sx|/

√
|S| (by the choice of our c

and |S| = |Sτ |2) and Vx(S), Vy(S) ≤ |S|1.5 (Claim 4.12), it follows by Lemma 3.6 that with probability at
least 1/4, there is a pair of one copy of x∗ and one copy of y∗ which falls into S.

Lemma 4.14. Given i, j ∈ [q]2N , let |Xi| and |Yj | be the number of input vectors that placed a copy into
Xi and Yj , respectively. Then, over the randomness of the first 2N coordinates of the input vectors and the
process of making random copies,

E[|Xi|] = g∗ ·ΠN
l=1∂x(il) ·Π2N

l=N+1∂y(il), and

E[|Yi|] = g∗ ·ΠN
l=1∂y(jl) ·Π2N

l=N+1∂x(jl).

Proof. For every input vector x other than the planted pair, x is uniformly sampled from [q]2N . For a copy
x′ of x drawn from the distribution Dx

Q⊗N
x ⊗Q⊗N

y
, we have

Pr[x′ ∈ Xi] =
1

q2N
ΠN

l=1∂x(il) ·Π2N
l=N+1∂y(il).

By linearity of expectation over all input vectors and all copies, we have

E[|Xi|] = nc · Pr[x′ ∈ Xi].

Similarly, on the y side, we have

E[|Yj |] =
nc

q2N
ΠN

l=1∂y(jl) ·Π2N
l=N+1∂x(jl).

Thus, the claim follows since g∗ = nc
q2N

.

The following gives an upper bound on g∗,

g∗ ≤ 2n

q2N |Sτ |Dτ
=

nγN

10(N + 1)q4 · |Sτ |Dτn
≤ N q4Dτ |Sτ |effQ2

τ

10(N + 1)q4 · |Sτ |Dτ
= effQ2

τ/10, (8)

where the second step is by our choice of N from Equation (5) and c from Equation (7), and the third step
is by Lemma 4.8.

4.4.4 Step 4. Matrix multiplication

Our vectors currently come from [q]N , but we would like to map them to vectors in {−1, 1}N so that
the independent uniformly random vectors are still independent uniformly random, and the planted pair is
correlated. If q is even, we use the mappings g, h from Lemma 4.9. If q is odd, we first map each bit
of vectors from [q] to [2q] by adding a uniform bit in {0, 1}, so that the planted pair still has non-zero
correlation, then we use the mappings g, h.

As we discussed earlier, we use fresh bits (different from the ones used in the bucketing process above)
for each matrix multiplication. Sample q2Nk coordinates, and apply the mapping g to x, and h to y, bit-wise.
Here we abuse notation and still write xi, yi ∈ {−1, 1}q

2N
k to denote the mapped input vectors xi, yi. The

28

result is that the mapped vectors xi and yi are independently uniformly chosen from {−1, 1}q2Nk , except the
correlated pair x∗, y∗ has

⟨x∗, y∗⟩ = Ω(q2Nk).

For each i ∈ [q]2N , create vectors ai, bi ∈ Rm given by ai =
∑

j∈Xi
xj and bi =

∑
j∈Yi

yj . Let

sa, sb ∈ {−1, 1}q
2N

be random vectors whose entries are i.i.d. uniformly sampled from {−1, 1}. Form the
matrices A,B ∈ Rq2N×m whose rows are sa[1] · a1, . . . , sa[q2N] · aq2N and sb[1] · b1, . . . , sb[q2N] · bq2N ,
respectively.

We now apply the tensor T ′ to the matrices A and B⊤, resulting in the matrix C ∈ Rq2N×q2N . By
Claim 4.13, with ≥ 1/4 probability, one copy of x∗ and one copy of y∗ fall into S. Denote the index by
(i, j) ∈ S.

Using the same variance-based analysis from Theorem 3.2 and Theorem 3.4, we have

E[C[i, j]] = Ω(1) ·
∑
k

T ′(Xi,kYj,kZi,j)

var[C[i, j]] =
∑

i′,j′k,k′

T ′(Xi′,kYj′,k′Zi,j)
2 · E[|X ′

i|] · E[|Y ′
j |].

E[C[i, j]]

var[C[i, j]]1/2

= Ω(1) ·
∑

k T
′(Xi,kYj,kZi,j)

effQ2
τ ·
√∑

i′,j′k,k′ T
′(Xi′,kYj′,k′Zi,j)2 ·ΠN

l=1∂x(i
′
l) ·Π2N

l=N+1∂y(i
′
l) ·ΠN

l=1∂y(j
′
l) ·Π2N

l=N+1∂x(j
′
l)

= Ω(1) ·
effQi,j(Q

⊗N
x ⊗Q⊗N

y , Q⊗N
y ⊗Q⊗N

x , T ′)

effQ2
τ

= Ω(1),

where the first step is by replacing E[|X ′
i|],E[|Y ′

j |] from Lemma 4.14 and Eq. (8), the second step is by
definition of effQ (Def.4.1), the third step is because effQτ = effQx,y(Q

⊗N
x , Q⊗N

y , T⊗N) for any (x, y) ∈
Sτ from Eq.6 and the fact that (i, j) ∈ S = Sτ ⊗ S⊤

τ .
As before, because the expectation exceeds the square root of variance, we can detect x∗ and y∗ by

repeatedly running T ′-matrix multiplication O(log n) times, which takes total running time Õ(rank(T ′)).
Overall, by repeating (q2N)o(1) times, we can boost the success probability to nearly 1. Once we can

detect if the planted pair (x∗, y∗) exists, we can do binary search to find them with comparably negligible
time overhead.

The exponent ωP we get is

ωP =
log
(
(q2N)o(1) · rank(T)2N

)
log n

=
log
(
(q2N)o(1) · rank(T)2N

)
log
(
q2NγNN−q4

) =
log rank(T)

log(qγ1/2)
+ o(1),

where the second step is by (5).

5 New Tensor Construction
In this section, we formally give the tensors summarized in Figure 1 from the introduction. (In Figure Fig-
ure 1, the bounds on ωℓ from each of these tensors is calculated.) We begin with our new tensor T2112.

For any ε > 0, define the rank-5 tensor T2112 as the sum of the following five rank-1 tensors:

29

(X0,0 + X1,0/ε+ X0,1/ε
3 + X1,1)(Y0,0/ε

3 + Y1,0 + Y0,1 + Y1,1/ε)(ε
3Z0,0 + ε4Z1,0 + ε4Z0,1 + εZ1,1)/4

+(X0,0 + X1,0/ε− X0,1/ε
3 − X1,1)(Y0,0/ε

3 − Y1,0 − Y0,1 + Y1,1/ε)(ε
3Z0,0 + ε4Z1,0 − ε4Z0,1 − εZ1,1)/4

+(X0,0 − X1,0/ε− X0,1/ε
3 + X1,1)(Y0,0/ε

3 − Y1,0 + Y0,1 − Y1,1/ε)(ε
3Z0,0 − ε4Z1,0 + ε4Z0,1 − εZ1,1)/4

+(X0,0 − X1,0/ε+ X0,1/ε
3 − X1,1)(Y0,0/ε

3 + Y1,0 − Y0,1 − Y1,1/ε)(ε
3Z0,0 − ε4Z1,0 − ε4Z0,1 + εZ1,1)/4

−X0,1Y0,0Z1,1/ε
5

=(X0,0Y0,0 + X0,1Y1,0 + ε3X1,1Y0,1 + εX1,0Y1,1)Z0,0

+(ε4X0,0Y0,1 + X0,1Y1,1 + εX1,1Y0,0 + ε3X1,0Y1,0)Z0,1

+(X1,0Y0,0 + ε4X1,1Y1,0 + εX0,1Y0,1 + ε3X0,0Y1,1)Z1,0

+(X1,0Y0,1 + X1,1Y1,1 + εX0,0Y1,0)Z1,1.

(As discussed earlier, one might normally interpret this as a border rank expression, but here we substi-
tute fixed values of ε > 0 and view it as a rank expression instead.) We can see that for any ε > 0, it has
efficacies:

eff
0,0

(T) =
1 + 1√

1 + 1 + ε6 + ε2
=
√
2−O(ε2),

eff
0,1

(T) =
ε4 + 1√

ε8 + 1 + ε2 + ε6
= 1−O(ε2),

eff
1,0

(T) =
1 + ε4√

1 + ε8 + ε2 + ε6
= 1−O(ε2),

eff
1,1

(T) =
1 + 1√

1 + 1 + ε2
=
√
2−O(ε2).

Hence,

eff(T) =

√
(
√
2−O(ε2))2 + (1−O(ε2))2 + (1−O(ε2))2 + (

√
2−O(ε2))2 =

√
6−O(ε2).

5.1 Derivation of T2112

Although the rank expression above for T2112 suffices for our algorithm, we give an alternate, fairly simple
way to see why T2112 has rank 5; this is how we first found this tensor. Our rank expression for T2112 was
derived by a modification of the structural tensor T(Z/2)2 of the group (Z/2)2 in the following way. T(Z/2)2

is defined as

T(Z/2)2 =
∑

a,b∈(Z/2)2
XaYbZa+b,

and it has rank 4 since it is the structural tensor of an Abelian group. We can expand its terms:

X0,0Y0,0Z0,0 +X0,0Y0,1Z0,1 +X0,0Y1,0Z1,0 +X0,0Y1,1Z1,1

+X0,1Y0,0Z0,1 +X0,1Y0,1Z0,0 +X0,1Y1,0Z1,1 +X0,1Y1,1Z1,0

+X1,0Y0,0Z1,0 +X1,0Y0,1Z1,1 +X1,0Y1,0Z0,0 +X1,0Y1,1Z0,1

+X1,1Y0,0Z1,1 +X1,1Y0,1Z1,0 +X1,1Y1,0Z0,1 +X1,1Y1,1Z0,0

30

First, we rename some variables, swapping the names of X0,1 ↔ X1,1 and the names of Y1,0 ↔ Y1,1 to
yield

X0,0Y0,0Z0,0 +X0,0Y0,1Z0,1 +X0,0Y1,1Z1,0 +X0,0Y1,0Z1,1

+X1,1Y0,0Z0,1 +X1,1Y0,1Z0,0 +X1,1Y1,1Z1,1 +X1,1Y1,0Z1,0

+X1,0Y0,0Z1,0 +X1,0Y0,1Z1,1 +X1,0Y1,1Z0,0 +X1,0Y1,0Z0,1

+X0,1Y0,0Z1,1 +X0,1Y0,1Z1,0 +X0,1Y1,1Z0,1 +X0,1Y1,0Z0,0

Since we just renamed variables, this tensor still has rank 4.
Next, we multiply some variables by powers of ε. We multiply X1,0 by 1/ε, multiply X0,1 by 1/ε3,

multiply Y1,1 by 1/ε, multiply Y0,0 by 1/ε3, multiply Z0,0 by ε3, multiply Z0,1 by ε4, multiply Z1,0 by ε4,
and multiply Z1,1 by ε, to yield

X0,0Y0,0Z0,0 + ε4X0,0Y0,1Z0,1 + ε3X0,0Y1,1Z1,0 + εX0,0Y1,0Z1,1

+εX1,1Y0,0Z0,1 + ε3X1,1Y0,1Z0,0 +X1,1Y1,1Z1,1 + ε4X1,1Y1,0Z1,0

+X1,0Y0,0Z1,0 +X1,0Y0,1Z1,1 + εX1,0Y1,1Z0,0 + ε3X1,0Y1,0Z0,1

+ε−5X0,1Y0,0Z1,1 + εX0,1Y0,1Z1,0 +X0,1Y1,1Z0,1 +X0,1Y1,0Z0,0

Since we just multiplied variables by scalars, this did not change the rank, so this tensor still has rank 4.
(This is similar to an operation called a “monomial degeneration” or “toric degeneration” in the literature,
although here we are thinking of ε as a fixed, small positive value rather than a formal variable.)

Finally, we delete the term ε−5X0,1Y0,0Z1,1, yielding

X0,0Y0,0Z0,0 + ε4X0,0Y0,1Z0,1 + ε3X0,0Y1,1Z1,0 + εX0,0Y1,0Z1,1

+εX1,1Y0,0Z0,1 + ε3X1,1Y0,1Z0,0 +X1,1Y1,1Z1,1 + ε4X1,1Y1,0Z1,0

+X1,0Y0,0Z1,0 +X1,0Y0,1Z1,1 + εX1,0Y1,1Z0,0 + ε3X1,0Y1,0Z0,1

+εX0,1Y0,1Z1,0 +X0,1Y1,1Z0,1 +X0,1Y1,0Z0,0

Since a single term has rank 1, this is a rank-1 update to our tensor, so this new tensor has rank at most
5. This is exactly our desired tensor T2112.

We note that, since as ε→ 0, T2112 becomes 6 of the 8 terms of ⟨2, 2, 2⟩, one could add in the remaining
two terms to give a relatively simple proof that the border rank of ⟨2, 2, 2⟩ is at most 5 + 2 = 7. The fact
that these 6 terms of ⟨2, 2, 2⟩ have border rank 6 has also been independently observed by Vrana, although
with a different border rank identity (and hence not yielding T2112 specifically) [CV22].

5.2 Other Tensor Rank Bounds

We give the other tensor rank bounds mentioned in the introduction.

31

Strassen [Str69] showed that ⟨2, 2, 2⟩ has rank at most 7 via the following expression:

(X1,1 + X2,2)(Y1,1 + Y2,2)(Z1,1 + Z2,2)

+(X2,1 + X2,2)(Y1,1)(Z2,1 − Z2,2)

+(X1,1)(Y1,2 − Y2,2)(Z1,2 + Z2,2)

+(X2,2)(Y2,1 − Y1,1)(Z1,1 + Z2,1)

+(X1,1 + X1,2)(Y2,2)(−Z1,1 + Z1,2)

+(X2,1 − X1,1)(Y1,1 + Y1,2)(Z2,2)

+(X1,2 − X2,2)(Y2,1 + Y2,2)(Z1,1)

=(X1,1Y1,1 + X1,2Y2,1)Z1,1

+(X1,1Y1,2 + X1,2Y2,2)Z2,1

+(X2,1Y1,1 + X2,2Y2,1)Z1,2

+(X2,1Y1,2 + X2,2Y2,2)Z2,2

Winograd [Win71] showed via the Strassen-Winograd identity that the tensor SW , which consists of 7
out of the 8 terms of ⟨2, 2, 2⟩, has rank at most 6 as follows:

(X2,1 + X2,2)(Y2,1 + Y2,2)(−Z1,2 + Z2,2)

+(X1,2)(Y2,1)(Z1,1 − Z1,2 − Z2,1 + Z2,2)

+(X1,2 + X2,2)(Y1,2 − Y2,2)(Z2,1 − Z2,2)

+(X1,2 + X2,1 + X2,2)(−Y1,2 + Y2,1 + Y2,2)(Z1,2 + Z2,1 − Z2,2)

+(X1,1 + X1,2 + X2,1 + X2,2)(Y1,2)(Z1,2)

+(X2,1)(Y1,1 + Y1,2 − Y2,1 − Y2,2)(Z2,1)

=(X1,2Y2,1)Z1,1

+(X1,1Y1,2 + X1,2Y2,2)Z2,1

+(X2,1Y1,1 + X2,2Y2,1)Z1,2

+(X2,1Y1,2 + X2,2Y2,2)Z2,2

6 Hashing gives an improvement for almost any tensor
The goal of this section is to prove the following Theorem 6.1.

Theorem 6.1 (Restatement of Theorem 1.4). Suppose T is a ⟨q, q, qk⟩-sized tensor which consists of a
subset of the terms of a matrix multiplication tensor, and the matrix [(effi,j(T))

2]i,j has full rank. Let
ω′
ℓ := log(rank(T))

log(eff(T)) be the exponent one would get from T from applying Theorem 1.1. Then, there is a
non-decreasing, positive function fT : (0, 1) → R>0 such that the bound of Theorem 1.1 can be improved
to

ωℓ ≤ ω′
ℓ − fT (ρ).

When T is composed of a subset of the terms of a matrix multiplication tensor, T (Xi′,kYj′,k′Zi,j) ̸= 0
only if i′ = i, j′ = j and k′ = k. Thus, we can rewrite the effQ (Def. 4.1) as

32

effQ
i,j

(Qx, Qy, T) =
1

∂x(i)∂y(j)

∑
k∈[qk] T (Xi,kYj,kZi,j)√∑

i′,j′∈[q],k,k′∈[qk] T (Xi′,kYj′,k′Zi,j)2

=
effi,j(T)

∂x(i)∂y(j)

And γQx,Qy can be also rewritten as

γQx,Qy =
∏

i,j∈[q]

 ∑
u,v∈[q]

Qx[i, u]Qy[j, v](effQ
u,v

(Qx, Qy, T))
2

P [i,j]

=
∏

i,j∈[q]

 ∑
u,v∈[q]

Qx[i, u]

∂x(u)︸ ︷︷ ︸
Nx[i,u]

Qy[j, v]

∂y(v)︸ ︷︷ ︸
Ny [j,v]

eff
u,v

(T)2

P [i,j]

,

where we define Nx, Ny ∈ Rq×q as above. In other words, we normalize every column of Qx, Qy to get
Nx, Ny.

We begin with the key lemma behind our proof of Theorem 6.1, which shows how we will pick the
matrices Qx, Qy for our hashing scheme.

Lemma 6.2. Let T be the tensor having the same property as that in Theorem 6.1. There exist stochastic
matrices Qx, Qy such that γQx,Qy > 1

q2
∑

i,j eff
2
i , j(T).

Proof. Let ε > 0 be a small constant. Let avg = 1
q2
∑

i,j eff
2
i , j(T). Let A = eff2(T) ∈ Rq×q be the matrix

given by Ai,j = eff2
i,j(T).

Let C ∈ Rq×q be the matrix defined by

Ci,j =

{
avg + ε, if i = j = 1;

avg − ε/(q2 − 1), otherwise.

Suppose we can design Nx, Ny such that

C = Nx ·A ·N⊤
y ,

then γQx,Qy =
∏

i,j∈[q]C
P [i,j]
i,j . According to Lemma 6.3, γQx,Qy > avg and therefore we conclude the

lemma.
In the following, we are going to prove that such Nx, Ny exist in two steps. For j ∈ [q], let cj =

1
q

∑
i∈[q] eff

2
i,j(T) be the average of j-th column of eff2(T). Define B := 1⊤q · (c1, · · · , cq) + ∆ ∈ Rq×q.

Here, 1q is an all-one vector of length q, and ∆ is defined as follows, where δ := q
q+1ε:

∆i,j :=

0, if j ≥ 2;

δ, if j = 1 and i = 1;

−δ/(q − 1), if j = 1 and i ̸= 1.

The first step is to design Qx such that Nx · eff2(T) = B, and the second step is to design Qy such that
B ·N⊤

y = C.

33

Step 1. Design Qx We first design Nx as follows. Let Nx := 1
q · 1q×q + N ′

x, where 1q×q is an all-one
matrix of size q × q. We will note that every entry in N ′

x is of order O(ε).
By Nx ·A = B, we have

(
1

q
· 1q×q +N ′

x) ·A = 1⊤q · (c1, · · · , cq) + ∆,

therefore,

N ′
x = ∆ ·A−1.

(N ′
x)i,j =

{
δ · (A−1)1,j , if i = 1 ;

− 1
q−1δ · (A

−1)1,j , if i ≥ 2.

We design Qx as follows. For j ∈ [q], let zj be variables. Let (Qx)i,j := (Nx)i,j · zj . We will set zj so
that every row of Qx sums up to 1. Since all but the first row are all the same, we only need to care about
the first row and the second row: { ∑

j(
1
q + δ · (A−1)1,j) · zj = 1;∑

j(
1
q −

δ
q−1 · (A

−1)1,j) · zj = 1.
(9)

We solve this pair of equations case by case.
Case 1: When A is a diagonal matrix. In this special case, one solution to the Eq. 9 is z1 = 0 and

z2 = z3 = · · · = zq =
q

q−1 . In this case, all the entries in Qx are in [0, 1] and thus Qx is valid.
Case 2: When A is not diagonal. By Lemma 6.5, there are two indices j1, j2 ∈ [q] that (A−1)1,j1 > 0

and (A−1)1,j2 < 0. Let x = δ · (A−1)1,j1 > 0 and y = δ · (A−1)1,j2 < 0. Then we let zj1 := q|y|
|x|+|y| ,

zj2 := q|x|
|x|+|y| , and all zj := 0 for all other js. One can verify that this satisfies the Eq. (9).

Since all entries of (Nx)i,j = 1/q+Θ(ϵ) and 0 < zj1 , zj2 < q, for small enough ε, we have every entry
of Qx are in the range (0, 1), so that Qx is valid.

Step 2. Design Qy We first show how to construct Ny so that B ·N⊤
y = C.

Let b ∈ R be a parameter. Define Ny to be

(N⊤
y)i,j =

1, if i = j = 1;

0, if i = 1, j ≥ 2;

b, if i ≥ 2, j = 1;
1−b
q−1 , if i ≥ 2 and j ≥ 2.

Under this design of Ny, the equation B ·N⊤
y = C will become three small equations.

c1 + δ + b · (c2 + · · ·+ cq) = avg + ϵ

c1 − δ
q−1 + b · (c2 + · · ·+ cq) = avg − ε

q2−1
1−b
q−1(c2 + · · · , cq) = avg − ε

q2−1
.

(10)

Set δ = q
q+1ϵ, by solving Eq. 10, we get

b =
1

q
− c1(1− 1/q)− ε/(q + 1)

c2 + · · ·+ cq
≤ 1

q
.

34

Using the same method as in Step 1, we let (Qx)i,j := (Nx)i,j · zj . We need to find z1, · · · , zq so that
every row of Qx sums up to 1. By setting z2 = z3 = · · · = zq, this reduces to two equations.{

z1 + (q − 1)b · z2 = 1;
1−b
q−1 · z2 = 1.

By solving these equations, we get

z1 = 1− b(q − 1)

1− b
, z2 = 1/(1− b).

Since b ≤ 1/q, one can verify that every entry of Qx is in [0, 1], and Qx is a stochastic matrix.

We now prove the helper lemmas for the above result:

Lemma 6.3. Let q be a positive integer, and suppose a, ρ > 0 and 1 ≥ p > 1/q2. Then, for all sufficiently
small ε > 0 we have

(a+ ε)p ·
(
a− ε

q2 − 1

)1−p

> a.

Proof. Define f(ε) := (a + ε)p · (a − ε
q2−1

)1−p. Since f(0) = a, it suffices to prove that f ′(0) > 0. Let
m = q2 − 1 so that f(ε) := (a+ ε)p · (a− ε

m)1−p. Note that (m+ 1) · p > 1 by definition of p. We have:

f ′(ε) = p · (a+ ε)p−1 · (a− ε

m
)1−p + (a+ ε)p · p− 1

m
(a− ε

m
)−p

=
(amp+ ap− a− ε)(a+ ε)p−1(a− ε/m)−p

m
.

Hence, as desired,

f ′(0) =
(amp+ ap− a)(a)p−1(a)−p

m

=
mp+ p− 1

m
> 0.

Lemma 6.4. Suppose A ∈ Rq×q
≥0 for q ≥ 2 is a full-rank matrix with nonnegative entries such that at least

one of its rows has at least two nonzero entries. Then, one can permute the columns of A so that it has the
following property: For every row of A, if its first entry is nonzero, then another one of its entries is also
nonzero.

Proof. It suffices to prove that there is a column j of A such that: for every i with A[i, j] ̸= 0, there exists
an i′ ̸= i with A[i′, j] ̸= 0. We can then permute the columns of A so that j becomes the first column as
desired.

Assume to the contrary that there were no such j. Since A has full rank, we know every column of A
has a nonzero entry. It follows that for every j, there is a row with a nonzero entry in column j but no other
column. Since A has the same number of rows and columns, this means every row and every column of A
has exactly one nonzero entry. This contradicts our assumption that A has a row with at least two nonzero
entries.

35

Lemma 6.5. Suppose A ∈ Rq×q
≥0 for q ≥ 2 is a full-rank matrix with nonnegative entries such that at least

one of its rows has at least two nonzero entries. Then, one can permute the columns of A so that it has the
following property: In the top row of the matrix A−1, there is at least one positive entry and at least one
negative entry.

Proof. Applying Lemma 6.4, we may assume that for every row i of A, if A[i, 1] ̸= 0, then there is an j ̸= 1
such that A[i, j] ̸= 0.

We claim first that the top row of A−1 must have at least two nonzero entries. Assume to the contrary
that this is not the case. It must have at least one nonzero entry since A−1 has full rank, so it has exactly one
nonzero entry. Suppose it is in column j, so A−1[1, j] ̸= 0 and A−1[1, j′] = 0 for all j′ ̸= j. We know that
the top-right entry of the product A−1A is 1, so it follows that A[j, 1] = 1/A−1[1, j] ̸= 0. By the property
of the previous paragraph, there is a i ̸= 1 such that A[j, i] ̸= 0. It follows that entry (1, i) of the product
A−1A is equal to

∑
k A

−1[1, k] · A[k, i] = A−1[1, j] · A[j, i] ̸= 0, contradicting the fact that A−1A is the
identity matrix whose (1, i) entry is 0. This proves the claim.

Now, we know the top row of A−1 has at least two nonzero entries. We claim that the nonzero entries of
the top row of A−1 cannot all be positive or all be negative, which will complete the proof. Assume to the
contrary that they are all positive (the all negative case is identical), and as before, suppose A−1[1, j] > 0 is
one of the nonzero entries of the first row of A−1. Since the first row has at least two nonzero entries, we may
assume j ̸= 1. Since A has full rank, there is an i such that A[j, i] ̸= 0, and since A has nonnegative entries,
we further have A[j, i] > 0 and A[j′, i] ≥ 0 for all j′. It follows that entry (1, j) of the product A−1A is∑

k A
−1[1, k]A[k, i] ≥ A−1[1, j]A[j, i] > 0, contradicting again that it must equal 0. This completes the

proof.

Finally we conclude the main proof:

Proof of Theorem 6.1. By Lemma 6.2, we can construct stochastic matrices Qx, QY such that γQx,Qy >
1
q2
∑

i,j eff
2
i,j(T). By Theorem 4.3, we have

ωP ≤
log rank(T)

log(P - eff(T))
,

where P - eff(T) ≥ qγ
1/2
Qx,Qy

> eff(T). It’s clear from the proof that the difference between P - eff(T) and
eff(T) is a function of ρ. The function fT (ρ) is an non-decreasing function since we can always reduce
larger ρ to smaller ρ.

Appendix
A Aggregation time
In the algorithms throughout this paper, we assumed that the input vectors x1, . . . , xn,y1, . . . , yn have long
enough length d which is polynomial in n, i.e., d = qN (q and N are defined in Algorithm 1), whereas we
would like our algorithm to work for the information-theoretically minimum d = O(log n/ρ2) (recall that
ρ ∈ (0, 1) is the correlation of the planted pair). Furthermore, we assumed that the aggregation step of the
algorithm (lines 12, 13 of Algorithm 1) takes negligible time compared to the rest of the algorithm. (See
footnote 10 above.) However, if implemented naively, the aggregation step can actually take time qN · d,
which can potentially be the slowest step of the algorithm. In this section, we show how the “compressed
matrix” technique of [KKK18] can be used to require only the smaller d = O(log n/ρ2), and simultaneously
decrease the aggregation time.

Suppose the given vectors x ∈ {−1, 1}d have short length d = O(log n/ρ2) and we want a long enough
vector x′ ∈ {−1, 1}m to be used in our algorithm, for some m = poly(n). To “prolong” the vector, we first

36

pick r ≤ d such that
(
d
r

)
= m, and define for every subset S ⊆ [d] with |S| = r, the entry

x′S =
∏
j∈S

xj . (11)

This new vector x′ will be implicitly used as the true input vector in our algorithm; in fact, we will never
compute x′, but rather the aggregation of all such “prolonged” vectors defined as follows.

Definition A.1 (Aggregation problem). Given x1, . . . , xg ∈ {−1, 1}d and r ≤ d. Let m =
(
d
r

)
and

x′1, . . . , x
′
g be defined as in Eq. (11). The goal is to compute, for every j ∈ [m], the value Xj =

∑
i∈[g] x

′
i[j].

(I.e., the goal is to compute the vector
∑

i∈[g] x
′
i.)

Note that the aggregation vectors ai, bi in line 11 of Algorithm 1 can be computed by solving this
aggregation problem O(qN) times, and hence we construct our matrices A and B from lines 12 and 13.

Lemma A.2 ([KKK18, Alm18]). The Aggregation problem defined above (Def. A.1) can be solved in
MM(m1/2+o(1), g,m1/2+o(1)) time, where MM(a, b, c) is the time to multiply a matrix of size a × b with
another matrix of size b× c.

Proof. The proof is identical to the aggregation algorithm used by prior light bulb algorithms, such as
[Alm18, page 6, second and third paragraphs].

Lemma A.3. While running Algorithm 1 with input vectors x1, . . . , xn, y1, . . . , yn ∈ {−1, 1}d, and ⟨q, q, q⟩-

sized tensor T , the matrix A and B defined in line 12 and line 13 can be computed in n
1+ω/2

logq eff(T)
+o(1)

time.

Proof. Since A and B are constructed in the same way, we only analyze A.
Let g be such that g2 · |{i, j ∈ [qN] : effi,j(T

⊗N) ≥ g2}| is maximized, as defined in line 5 of the
algorithm. Note that effi,j(T) cannot exceed q by the Cauchy-Schwarz inequality (it is maximized when
T = ⟨q, q, q⟩), and so g ≤

√
maxi,j effi,j(T⊗N) ≤

√
qN .

In line 11, each ai aggregates together |Xi| vectors. We have E[|Xi|] = nt/qN = g since we set
t = qNg/n. By a Chernoff bound, |Xi| = O(g) for each i with high probability.

Let m = qN . Since the tensor T has size qk = q, the desired length of input vectors d is also m. By
Lemma A.2, calculating all the ai can be done in time

m ·MM(
√
d, g,
√
d) = m ·MM(

√
m, g,

√
m) ≤ m · gω · (

√
m/g)2 = m2gω−2 ≤ m2+ω−2

2 .

(Here we used that, since
√
m ≥ g, we have MM(

√
m, g,

√
m) ≤ (

√
m/g)2 ·MM(g, g, g).)

Since rank(T)N = n
log rank(T)
log eff(T) , we have N = log n/ log eff(T). Thus, this is the desired running time

since m = qN = nlog q/ log eff(T).

Remark A.4. When T is a matrix multiplication tensor, logq eff(T) = 1.5, so the aggregation time is

n
1+ω/2

logq eff(T)
+o(1)

= O(n
2+ω
3) < O(n

2ω
3). The aggregation time exponent 2+ω

3 is less than 2ω
3 , so aggregation

takes negligible time compared to the remainder of the algorithm.

Lemma A.5. If there is a ⟨q, q, q⟩-sized tensor T with

log rank(T)

log eff(T)
<

2ω

3
,

then there is another tensor T ′ that can solve light bulb problem in time n
2ω
3
−ε for some ε > 0.

37

Proof. Let N be a large enough constant and we let T ′ = T⊗δN ⊗ ⟨q, q, q⟩⊗(1−δ)N for some δ ∈ (0, 1) to
be determined. So

log rank(T ′) = N · (δ log rank(T) + (1− δ) log rank(⟨q, q, q⟩))

and
log eff(T ′) = N · (δ log eff(T) + (1− δ) log eff(⟨q, q, q⟩)).

Since log rank(⟨q,q,q⟩)
log eff(⟨q,q,q⟩) = 2ω

3 , choosing any δ > 0 results in log rank(T ′)
log eff(T ′) < 2ω

3 .

By Lemma A.3, the aggregation time of T ′ is n
1+ω/2

logq eff(T ′)+o(1)
≤ n

1+ω/2
(1−δ)1.5

+o(1). We can choose a small
enough δ so that 1

1−δ ·
1+ω/2
1.5 < 2ω

3 . Thus, the running time for both the main procedure and the aggregation
part while using tensor T ′ is small.

References
[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold

functions and algorithmic applications. In 2016 IEEE 57th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 467–476. IEEE, 2016. 10

[ACW20] Josh Alman, Timothy M Chan, and Ryan Williams. Faster deterministic and las vegas
algorithms for offline approximate nearest neighbors in high dimensions. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 637–649.
SIAM, 2020. 10

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search
in high dimensions. In Proceedings of the International Congress of Mathematicians: Rio
de Janeiro 2018, pages 3287–3318. World Scientific, 2018. 2, 10

[Alm18] Josh Alman. An illuminating algorithm for the light bulb problem. In 2nd Symposium on
Simplicity in Algorithms (SOSA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018. 2, 3, 4, 10, 37

[ALRW17] Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal
hashing-based time-space trade-offs for approximate near neighbors. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 47–66.
SIAM, 2017. 10

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 793–801, 2015. 10

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages
136–150. IEEE, 2015. 10

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021. 2, 9

[Bin80a] Dario Bini. Border rank of ap× q× 2 tensor and the optimal approximation of a pair of
bilinear forms. In International Colloquium on Automata, Languages, and Programming,
pages 98–108. Springer, 1980. 6

38

[Bin80b] Dario Bini. Relations between exact and approximate bilinear algorithms. applications.
Calcolo, 17(1):87–97, 1980. 6

[BL16] Markus Bläser and Vladimir Lysikov. On degeneration of tensors and algebras. arXiv
preprint arXiv:1606.04253, 2016. 9

[CGLV19] Austin Conner, Fulvio Gesmundo, Joseph M Landsberg, and Emanuele Ventura. Tensors
with maximal symmetries. arXiv preprint arXiv:1909.09518, 2019. 9

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In STOC,
2002. 1

[CHL22] Austin Conner, Hang Huang, and JM Landsberg. Bad and good news for strassen’s laser
method: Border rank of perm 3 and strict submultiplicativity. Foundations of Computational
Mathematics, pages 1–39, 2022. 9

[CU13] Henry Cohn and Christopher Umans. Fast matrix multiplication using coherent configu-
rations. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 1074–1086. Society for Industrial and Applied Mathematics, 2013. 1, 8,
9

[CV22] Matthias Christandl and Péter Vrana. personal communication, 2022. 31

[CW82] Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix multipli-
cation. SIAM J. Comput., 11(3):472–492, 1982. 2

[DS13] A.M. Davie and A. J. Stothers. Improved bound for complexity of matrix multiplication.
Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 143:351–369, 4
2013. 2

[Dub10] Moshe Dubiner. Bucketing coding and information theory for the statistical high-
dimensional nearest-neighbor problem. IEEE Transactions on Information Theory,
56(8):4166–4179, 2010. 2, 8

[FBH+22] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,
Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser,
Grzegorz Swirszcz, et al. Discovering faster matrix multiplication algorithms with rein-
forcement learning. Nature, 610(7930):47–53, 2022. 5

[Har21] David G Harris. Improved algorithms for boolean matrix multiplication via opportunistic
matrix multiplication. arXiv preprint arXiv:2109.13335, 2021. 1, 5, 8, 9

[HJMS22] Roser Homs, Joachim Jelisiejew, Mateusz Michałek, and Tim Seynnaeve. Bounds on com-
plexity of matrix multiplication away from coppersmith–winograd tensors. Journal of Pure
and Applied Algebra, 226(12):107142, 2022. 9

[HSHVDG16] Jianyu Huang, Tyler M Smith, Greg M Henry, and Robert A Van De Geijn. Strassen’s
algorithm reloaded. In SC’16: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 690–701. IEEE, 2016. 5

[KK19] Matti Karppa and Petteri Kaski. Probabilistic tensors and opportunistic boolean matrix
multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 496–515. SIAM, 2019. 1, 3, 5, 8, 9

39

[KKK18] Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for finding
outlier correlations. ACM Transactions on Algorithms (TALG), 14(3):1–26, 2018. 2, 3, 4, 5,
9, 10, 14, 25, 36, 37

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC, pages 296–
303, 2014. 2

[Pan78] V Ya Pan. Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and
canceling for constructing fast algorithms for matrix operations. In 19th Annual Symposium
on Foundations of Computer Science (sfcs 1978), pages 166–176. IEEE, 1978. 9

[Pan18] Victor Y Pan. Fast feasible and unfeasible matrix multiplication. arXiv preprint
arXiv:1804.04102, 2018. 5

[Sch81] Arnold Schönhage. Partial and total matrix multiplication. SIAM Journal on Computing,
10(3):434–455, 1981. 1, 9

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–
356, 1969. 3, 6, 32

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathe-
matik, 264:184–202, 1973. 1

[Str87] V. Strassen. Relative bilinear complexity and matrix multiplication. J. reine angew. Math.
(Crelles Journal), 375–376:406–443, 1987. 9

[Val88] Leslie G Valiant. Functionality in neural nets. In AAAI, 1988. 1

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 11–20. IEEE, 2012. 1, 2, 3, 4, 9, 10

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
STOC, pages 887–898, 2012. 2

[Win71] Shmuel Winograd. On multiplication of 2× 2 matrices. Linear algebra and its applications,
4(4):381–388, 1971. 5, 6, 32

40

	Introduction
	The Light Bulb Problem
	Bilinear Problems
	Main result when is close to 0
	Aggregation time
	Applying to Matrix Multiplication Generalizations
	Main result when is bounded away from 0, using locality-sensitive hashing
	Comparison with Prior Work on Tensor and Nearest Neighbor Search Algorithms
	Algorithm Overview
	Outline

	Preliminaries
	Algorithm for the light bulb problem
	Improvement when Sf is not `skewed'
	Probabilistic lemma for when Sf is not `skewed'
	Symmetrizing a tensor to avoid skew

	Solving the P-light bulb problem with locality-sensitive hashing
	Overview of the proof
	Preliminaries
	Preparation before symmetrization
	Proof of Theorem 4.3
	Step 1. General start
	Step 2. Symmetrizing S
	Step 3. Detect (x*,y*) using S
	Step 4. Matrix multiplication

	New Tensor Construction
	Derivation of T2112
	Other Tensor Rank Bounds

	Hashing gives an improvement for almost any tensor
	Aggregation time

