
ar
X

iv
:2

30
8.

08
87

0v
1

 [
cs

.D
S]

 1
7

A
ug

 2
02

3

Sensitivity and Dynamic Distance Oracles via Generic Matrices

and Frobenius Form

Adam Karczmarz∗ Piotr Sankowski†

Abstract

Algebraic techniques have had an important impact on graph algorithms so far. Porting
them, e.g., the matrix inverse, into the dynamic regime improved best-known bounds for various
dynamic graph problems. In this paper, we develop new algorithms for another cornerstone
algebraic primitive, the Frobenius normal form (FNF). We apply our developments to dynamic
and fault-tolerant exact distance oracle problems on directed graphs.
For generic matrices A over a finite field accompanied by an FNF, we show (1) an efficient

data structure for querying submatrices of the first k ≥ 1 powers of A, and (2) a near-optimal
algorithm updating the FNF explicitly under rank-1 updates.
By representing an unweighted digraph using a generic matrix over a sufficiently large field

(obtained by random sampling) and leveraging the developed FNF toolbox, we obtain:

• a conditionally optimal distance sensitivity oracle (DSO) in the case of single-edge or
single-vertex failures, providing a partial answer to the open question of [GR21],

• a multiple-failures DSO improving upon the state of the art [vdBS19] wrt. both prepro-
cessing and query time,

• improved dynamic distance oracles in the case of single-edge updates,

• a dynamic distance oracle supporting vertex updates, i.e., changing all edges incident to a
single vertex, in Õ(n2) worst-case time and distance queries in Õ(n) time.

1 Introduction

Algebraic techniques have had an important impact on graph algorithms so far. For example, the
state-of-the-art maximum matching algorithm in dense non-bipartite graphs [Har09, MS04] is of
algebraic nature. Porting some fundamental linear-algebraic concepts, like the matrix inverse, into
the dynamic regime has led to non-trivial dynamic algorithms for multiple graph problems, such as
reachability, shortest paths, maximum matchings [vdBNS19, San04, San05b, San07], and a unified
view on iterative optimization methods [vdB21].
In this paper, we consider another cornerstone algebraic primitive, the Frobenius normal form

(FNF). Any square matrix A over a field F is similar to a block-diagonal matrix
F = diag(Cf1 , . . . , Cfk) where each Cfi is the companion matrix of a certain monic polynomial
fi ∈ F[x] called an invariant factor of A. Such a matrix, along with the corresponding similar-
ity transform and its inverse, constitutes a Frobenius normal form of A. Similarly to the Jordan
normal form, FNF encodes the characteristic polynomial of a matrix; however, contrary to the
Jordan form, computing it does not require finding zeros of this polynomial. Computing an FNF is

∗University of Warsaw and IDEAS NCBR, Poland. a.karczmarz@mimuw.edu.pl. Partially supported by the ERC
CoG grant TUgbOAT no 772346 and the National Science Centre (NCN) grant no. 2022/47/D/ST6/02184.

†University of Warsaw, IDEAS NCBR, and MIM Solutions, Poland. sank@mimuw.edu.pl. Partially supported by
the ERC CoG grant TUgbOAT no 772346 and the National Science Centre (NCN) grant no. 2020/37/B/ST6/04179.

1

http://arxiv.org/abs/2308.08870v1
mailto:a.karczmarz@mimuw.edu.pl
mailto:sank@mimuw.edu.pl

a well-studied problem in the symbolic computation community, e.g., [Gie95, Sto01]. Using FNF,
[SW19] reproduced1 the Yuster-Zwick exact distance oracle’s bounds [YZ05] (up to polylogarithmic
factors), thus providing a proof of concept of the usage of the Frobenius form in graph data struc-
tures. However, it seems that the full potential of FNF and other matrix forms in graph algorithms
is yet to be fully uncovered.
In this paper, we develop new data structures maintaining and exploiting the Frobenius normal

form of a matrix in the generic case. The genericity assumption is a common one in the computer
algebra community and says, broadly speaking, that an algorithm should work “almost always”,
or, for “all but special cases”. A specific genericity assumption (that we also use; see, e.g., [JV05])
for matrices may require that the cells of a matrix, seen as indeterminates, do not satisfy some
fixed polynomial equation, or in other words, do not lie on some fixed hypersurface of Fn×n. In
particular, such an assumption can be used to ensure that A has a single invariant factor, or,
equivalently, that the characteristic polynomial pA of A equals the minimal polynomial µA of A.
This property implies that A is similar to the companion matrix of the characteristic polynomial
of A, i.e., an FNF of A has a particularly simple form. Single-invariant-factor matrices can be
themselves considered generic among all matrices over a finite field F since the fraction of matrices
in Fn×n not having this property is known to be 1/q3+O

(
1/q4

)
if q is the field size [NP95]. In the

following, when talking about generic matrices, we mean matrices with a single invariant factor.
By representing digraphs with generic matrices, we can apply our FNF developments to dynamic

and fault-tolerant exact distance oracle problems on general dense directed graphs.

Distance oracles in static, fault-tolerant, and dynamic settings. In the distance oracle
problem, the goal is to preprocess the input graph G into a data structure supporting arbitrary-pair
distance queries. The distance oracle problem has two trivial solutions. First, one could precompute
answers to all the O(n2) possible queries by solving the all-pairs shortest paths (APSP) problem.
The other extreme is to not preprocess the graph G at all, and run an s, t-shortest path algorithm
(such as Dijkstra’s algorithm) from scratch upon a distance query (s, t). The study of distance
oracles concentrates on identifying what non-trivial tradeoffs between space, preprocessing time
and query time are attainable, possibly under additional assumptions about the graph class of
interest, and whether approximate answers are acceptable.
Real-world networks are subject to link/node failures and evolve in time and thus motivate the

study of distance oracles in fault-tolerant and dynamic settings.
In the distance sensitivity oracle (DSO) problem, the goal is to preprocess the input graph

G = (V,E) so that queries (s, t, F) asking for the length of the shortest s, t path not going through
the subset F ⊆ V ∪ E of failed edges or vertices are supported. A DSO may also constrain the
number of allowed failures, e.g., require that only a single edge or vertex fails. If only at most k
failures are supported, we call such a DSO a k-DSO.
In dynamic scenarios, the input graph G is subject to edge set updates and we seek a data

structure supporting distance queries interleaved with graph updates. In the fully dynamic setting,
the data structure is supposed to accept both edge insertions and edge deletions. In the incremental
(decremental, resp.) setting, only edge insertions (deletions, resp.) are accepted. Some dynamic
distance oracles accept single-edge updates, whereas other allow vertex updates, i.e., changing all
(possibly Θ(n)) edges incident to a single vertex at once.

1The paper [SW19] contains a rather significant error, as confirmed by its authors (personal communication).
[SW19] mistakenly state that the diameter D (i.e., the largest finite distance) of a digraph G is bounded by the
degree of the smallest invariant factor of its adjacency matrix A. Indeed, D is bounded by the degree of the minimal
polynomial of A, which equals the largest (and not the smallest) invariant factor of A. Nevertheless, the construction
of [SW19] remains correct if it happens that the adjacency matrix of A has a single invariant factor.

2

1.1 State of the art

Static and dynamic computation of Frobenius normal form. For generic matrices (as
defined before), finding an FNF is closely related to computing the characteristic polynomial.
[Kel85] showed an Õ(nω) time2 algorithm computing the characteristic polynomial. [Gie95] was
the first to obtain an Õ(nω)-time algorithm computing an FNF in the general (non-generic) case,
whereas [Sto01] gave a deterministic algorithm running within that near-optimal bound. Computing
the Frobenius form has also been studied for sparse matrices and, more generally, in the “black box”
model where the input matrix can only be accessed via multiplying it by vectors [Ebe00, Vil00].
In particular, a Frobenius form of a generic matrix (with one invariant factor) can be computed in
Õ(n2) time plus the time needed to perform Õ(n) black-box matrix-vector multiplications [Ebe00].
[FS11] studied dynamic maintenance of an FNF of a matrix subject to rank-1 updates (i.e.,

updates of the form A := A+abT for given vectors a, b ∈ F
n×1, capturing, e.g., row and column up-

dates). They gave a dynamic algorithm with Õ(kn2) worst-case update time, where k is the number
of invariant factors of A. For the generic case k = 1, the update time is Õ(n2). Their algorithm
has a significant limitation though. Even for generic matrices, whereas the block-diagonal matrix
F (encoding the characteristic polynomial) similar to A is maintained explicitly, an appropriate
similarity transform Q and its inverse such that A = Q−1 ·F ·Q is maintained only implicitly. More
specifically, the matrices Q and Q−1 can only be accessed by multiplying them via vectors in Õ(n2)
time which makes processing them troublesome.

Static distance oracles. For general weighted digraphs with large edge weights (say, integral
and polynomial in n), no non-trivial preprocessing/space/query trade-offs are known.
For digraphs with small integer weights {−W, . . . ,W}, [YZ05] gave a non-trivial distance oracle

with Õ(Wnω) preprocessing time, O(n2) space and Õ(n) query time. The query time is also
significantly smaller than the Θ(n2) cost of running breadth-first search on G. The data structure
of [YZ05] can also produce an actual shortest path (not just the distance) upon query. Importantly,
in the fundamental case of dense unweighted graphs, preprocessing time of [YZ05] is significantly
lower than the best-known unweighted APSP bound [Zwi02] of Õ(n2+ρ), where ρ ≈ 0.529 is a
number such that ω(1, ρ, 1) = 1 + 2ρ and ω(a, b, c) is such that one can multiply na × nb and
nb × nc matrices in O(nω(a,b,c)) time. In fact, computing APSP in unweighted directed graphs is
conjectured to require Θ(n2.5) time even if ω = 2 [LPW20] and there are compelling reasons to
believe that Zwick’s algorithm is near-optimal [CWX21].

Distance sensitivity oracles. Whereas the extreme no-preprocessing tradeoff transfers to fault-
tolerant and dynamic settings with no change, the precompute-all approach requires much more
time and space effort simply because there are much more possible queries to serve. Indeed, a
trivial solution would require precomputing Θ(n2 · mf) distances if at most f edge failures are
to be supported. Despite this, [BK09] showed a 1-DSO for real-weighted digraphs with Õ(nm)
preprocessing time, Õ(n2) space and constant query time. Note that their preprocessing matches the
state-of-the-art Õ(nm) APSP bound that is conjectured to be optimal for real-weighted digraphs.
[DZ17] improved the space bound of [BK09] to O(n2). For the case f = 2, [DP09] gave a DSO with
Õ(n2) space and Õ(1) query time, requiring higher polynomial preprocessing.
There is also extensive prior work on distance sensitivity oracles in the unweighted and small-

integer-weights regimes. [WY13] showed the first non-trivial distance sensitivity oracle in this

2Where ω ≈ 2.37 is the matrix multiplication exponent, i.e., a number such that one can multiply two n × n
matrices in O(nω) time.

3

setting. For integer weights {−W, . . . ,W}, they could achieve subcubic preprocessing and sub-
quadratic query time for any constant number of failures. In the same regime, [GW20a] showed the
first 1-DSO with subcubic preprocessing and sublinear query time. [CC20] showed a 1-DSO with
O(Wn2.873) preprocessing and polylogarithmic query time. Around the same time, [Ren22] gave a
1-DSO for positive edge weights with O(Wn2.724) preprocessing time and O(1) query time. The
data structures [CC20, GW20a, Ren22, WY13] are all randomized, have a linear dependence on the
largest (absolute) edge weight, and also support path reporting. [BCC+22] showed a derandomiza-
tion of the approach of [Ren22] at the cost of slightly slower (but still subcubic) preprocessing.
The aforementioned data structures for small weights all leverage fast matrix multiplication to

speed up combinatorial computations. DSOs with improved preprocessing and query times have
been obtained via a more aggressive use of algebraic techniques: forms of path counting [DI05, KS02]
or small-rank update to the matrix inverse [San04, San05b, San05a] combined with randomized
polynomial identity testing [Zip79]. These techniques typically do not allow for efficient path
reporting. Using algebraic techniques of this flavor, [GR21] recently showed a 1-DSO for digraphs
with weights {1, . . . ,W} with O(Wn2.58) preprocessing time that is quite close to the O(n2.529)
APSP bound of [Zwi02].
[vdBS19] gave an algebraic DSO that can handle a polynomial number of failures in the case

of weights {−W, . . . ,W}. Specifically, for any µ ∈ [0, 1], their data structure has Õ(Wnω+(3−ω)µ)
construction time, and after preprocessing a batch of f failures in Õ(Wn2−µf2 + Wnfω) time,
answers distance queries wrt. that batch in Õ(Wn2−µf +Wnf2) time. That is, if the failing edges
are considered a part of the query, the query time is Õ(Wn2−µf2 +Wnfω). In particular, one can
handle up to f = n1/ω−ǫ ≈ n0.42 failures with subcubic preprocessing and subquadratic query time.

Fully dynamic exact distance oracles. For general weighted digraphs, [DI04] gave a com-
binatorial deterministic fully dynamic data structure (later slightly improved by [Tho04]) with
Õ(n2) amortized update time maintaining all-pairs shortest paths explicitly. This improves upon
recompute-from-scratch for all but the sparsest digraphs. The fully dynamic APSP problem (that
is, explicitly maintaining the distance matrix) has also been studied with the objective of op-
timizing the worst-case update bounds [ACK17, CZ, GW20b, Tho05]. The current best-known
worst-case update bound for APSP is Õ(n2+2/3) for weighted graphs and Õ(n2.5) for unweighted
graphs [ACK17, GW20b]. In particular, the latter improves upon the static APSP bound of [Zwi02].
Interestingly, all the known fully dynamic APSP data structures support vertex updates.
As far as fully dynamic exact distance oracles with a non-trivial query procedure are concerned,

[RZ11] showed a data structure tailored to sparse graphs with Õ(m
√
n) amortized (vertex) update

time and Õ(n3/4) query time, whereas [KS23] recently presented a data structure for real-weighted
digraphs with Õ(mn4/5) worst-case update time and Õ(n4/5) query time.
For dense graphs, dynamic distance oracles with both subquadratic single-edge update and

query time can be obtained using variants of dynamic matrix inverse [San04, vdBNS19]. The state-
of-the-art worst-case update/query bound of this kind is Õ(n1.703) due to [vdBFN22]. Moreover,
[AvdB23, BHG+21] described shortest path-reporting extensions of these algebraic data structures
with polynomially worse (but still subquadratic) worst-case update and query time.

1.2 Our results

Frobenius form toolbox. We obtain two tools for generic matrices (i.e., with a single invariant
factor) over an arbitrary finite field F and accompanied by a Frobenius form. The first one is a
data structure for querying some number of initial powers of the matrix.

4

Theorem 1.1. Let A ∈ F
n×n be a generic matrix and suppose its Frobenius normal form is given.

One can preprocess A in Õ(n2) time so that the following queries are supported.
Given S, T ⊆ [n] and h ∈ [1, n], compute the S×T submatrices of the matrix powers A1, . . . , Ah.

The query time is Õ(nω(s,1−α,t)+α), where |S| = ⌊ns⌋, |T | = ⌊nt⌋ and h = ⌊nα⌋.

Theorem 1.1 generalizes and improves upon a previous result of [SW19] who showed3 that after
additional Õ(nω)-time preprocessing of a generic A (given its Frobenius form), one can support
queries (i, j) asking for the n values (A1)i,j, (A

2)i,j, . . . , (A
n)i,j in Õ(n) time.

One particularly important use case of Theorem 1.1 is computing the first h ≤ nα powers of A.
Theorem 1.1 implies that this is possible in Õ(hnω(1,1−α,1)) time which polynomially improves upon
the trivial O(hnω) bound for all polynomial values of h. To the best of our knowledge, previously,
the first non-trivial result of this kind has been described for the case h = n: [Sto15, ZLS15] showed
that n initial powers of A can be computed in Õ(n3) time, which also follows from the data structure
of [SW19]. An improved Õ(h2nω(1,1−α,1−α)) bound for computing the initial h powers of A has been
shown (implicitly) by [GR21]. Both [Sto15, ZLS15] and [GR21] studied a more general problem of
inverting an arbitrary degree-d polynomial matrix modulo xh+1.
We also show an improved dynamic algorithm updating a Frobenius form of a generic matrix

explicitly subject to a rank-1 perturbation.

Theorem 1.2. Let A ∈ F
n×n be a generic matrix. Suppose an FNF of A and an FNF of AT are

given. Then, for any a, b ∈ F
n×1 such that A′ = A+ abT is generic, Frobenius normal forms of A′

and (A′)T can be computed explicitly in Õ(n2) time. The algorithm succeeds with high probability.

Here, the assumption that an FNF of the transpose is also given is without much loss of
generality. Indeed, in a typical scenario, some FNF of A is initialized in, say, Õ(nω) time before the
first application of Theorem 1.2. If we additionally compute an FNF of AT at that point within
the same asymptotic bound, every subsequent application of Theorem 1.2 updates both FNFs.
The crucial advantage of Theorem 1.2 compared to the dynamic algorithm of [FS11] is that

the FNFs – including the (inverse) similarity transforms – are updated explicitly. This property
is essential if we want to use Theorem 1.2 in combination with the data structure of Theorem 1.1
which requires an explicit FNF of the input matrix.

Applications to distance oracles. As an application of the developed tools for generic matrices
with a Frobenius normal form, we show improved algebraic distance sensitivity oracles and fully
dynamic distance oracles for unweighted dense directed graphs.
First of all, we show that for the 1-DSO problem, one can essentially match the static APSP

bound of [Zwi02] that is conjectured to be near-optimal [CWX21, LPW20].

Theorem 1.3. Let G be an unweighted digraph. In Õ(n2+ρ) = O(n2.529) time one can construct
a distance sensitivity oracle for G handling single-edge/vertex failures with O(1) query time and
Õ(n2) space. The data structure is Monte Carlo randomized and the produced answers are correct
with high probability4.

[GR21] asked whether a 1-DSO with preprocessing time Õ(Wn2+ρ) is possible for graphs with
weights {1, . . . ,W}. Theorem 1.3 yields an affirmative answer to this problem in the case W = 1.
For distance oracles handling many failures, we show:

3This result does not depend on the erroneous statement in [SW19] about the graph diameter.
4That is, with probability at least 1− 1/nc, where the constant c ≥ 1 can be set arbitrarily. We will also use the

standard abbreviation w.h.p.

5

Theorem 1.4. Let G be an unweighted digraph. There exists a distance sensitivity oracle with
Õ(nω) preprocessing and O(n2) space such that for any set F of f edge or vertex failures, the data
structure can be updated in Õ(nfω−1) time to support distance queries with failures F in Õ(nf)
time. The data structure is Monte Carlo randomized and the produced answers are correct w.h.p.

For unweighted digraphs, the data structure of Theorem 1.4 improves upon the state-of-the-
art [vdBS19] in terms of update and query time even if [vdBS19] uses cubic preprocessing (i.e., if
one sets µ = 1). In particular, if the failures are part of the query, then we can handle a distance
query under up to n1/(ω−1)−ǫ ≈ n0.72 failures in subquadratic time. Moreover, in the case of
f = Õ(1) failures, our data structure has preprocessing and query time matching the respective
time characteristics of the state-of-the-art (failure-free) distance oracle of [YZ05].
That being said, the distance oracles of Theorems 1.3 and 1.4 have some evident drawbacks com-

pared to the respective results of [GR21, vdBS19]. Our data structure can be generalized to handle
small positive weights [1,W] at the cost of introducing a multiplicative factor polynomial in W –
by replacing n with nW in the preprocessing and query bounds. That is, the respective preprocess-
ing times in Theorems 1.3 and 1.4 for weighted graphs should be replaced with Õ((Wn)2.529) and
Õ((Wn)ω), respectively. On the other hand, the previously known data structures achieve a linear
dependence on W . Additionally, our data structure of Theorem 1.4 does not seem to generalize to
negative edge weights, whereas that of [vdBS19] does.
Let us now move to our results in the dynamic scenario. First, we obtain improved bounds for

fully dynamic distance oracles supporting single-edge updates in unweighted digraphs.

Theorem 1.5. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under single-edge insertions and deletions and supporting s, t-distance
queries with O(n1.673) worst-case update and query time. The answers produced are correct w.h.p.

Theorem 1.5 is obtained via a small tweak to the data structure of [vdBFN22] using Theorem 1.1.
Interestingly, if ω = 2, the update/query bounds of both data structures (Theorem 1.5 and that
of [vdBFN22]) simplify to an odd-looking bound of Õ(n1+5/8) = Õ(n1.625).
One component of [vdBFN22] is periodically recomputing bounded-hop all-pairs distances. Us-

ing a different approach avoiding this entirely, we obtain another dynamic distance oracle.

Theorem 1.6. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under single-edge insertions and deletions and supporting s, t-distance

queries with Õ
(
n

ω+1

2

)
worst-case update and query time. The answers produced are correct w.h.p.

The update/query bound of Õ
(
n(ω+1)/2

)
= O(n1.687) is currently inferior to that of Theorem 1.5

but nevertheless superior to the state-of-the-art bound O(n1.703) [vdBFN22]. However, the data
structure of Theorem 1.6 might be considered more promising: if ω = 2, its update bound simplifies
to a natural Õ(n1.5) bound, and even if ω < 2.25, the Õ(n(ω+1)/2) bound is better than the
theoretical limit of the approach of [vdBFN22].
Finally, we achieve a very natural tradeoff in the more general case of vertex updates.

Theorem 1.7. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under fully dynamic vertex updates in Õ(n2) worst-case time per update
and supporting arbitrary pair distance queries in Õ(n) time. The answers are correct w.h.p.

Theorem 1.7 shows that one can preserve the linear query of the static distance oracle of [YZ05]
without rebuilding it from scratch. Similarly as in the case of the previously known data structures
supporting vertex updates for transitive closure [San04] and APSP, our data structure does not need

6

fast matrix multiplication for performing updates or queries within the stated bounds. Another
interesting consequence of Theorem 1.7 is that we can maintain distances between n arbitrary
pairs of vertices in Õ(n2) worst-case time per update. To the best of our knowledge, no previous
data structure could achieve that for unweighted dense graphs. [Kar21] showed that Õ(mn2/3)
worst-case update time is possible for sparse weighted digraphs if the pairs of interest are fixed.
Similarly as for distance oracles, our dynamic data structures generalize to digraphs with weights

{1, . . . ,W} at the cost of a o(W 2) factor in the respective bounds. Again, the previous best
bound [vdBFN22] can be easily lifted to this case with an overhead linear in W .

1.3 Technical overview

Generic matrices and Frobenius form. Let U · C · U−1 be a Frobenius form of a generic
matrix A ∈ F

n×n, where C ∈ F
n×n is the companion matrix of the characteristic polynomial of A,

and U ∈ F
n×n is a (not necessarily unique) invertible similarity transform. See Section 3 for more

detailed definitions of these notions. As observed by [SW19], since C is a companion matrix:

(1) the n matrices U ·C,U ·C2, . . . , U ·Cn can be computed in Õ(nω) time and stored explicitly
(albeit succinctly) in O(n2) space;

(2) storing these matrices enables computing the values Ai,j, (A
2)i,j , . . . , (A

n)i,j for any query pair

(i, j) in Õ(n) time via Hankel matrix-vector multiplication which in turn is easily reducible
to polynomial multiplication, i.e., FFT [CT65]. See, e.g., [GVL13].

To obtain Theorem 1.1, we first show a more efficient Õ(n2)-time algorithm for computing the
matrices U · C, . . . , U · Cn by interpreting this problem as generation of multiple terms of linear
recurrences of order n and employing an efficient recent algorithm for this task [BM21].
Next, we generalize item (2) above to queries about an arbitrary submatrix of some h ≤ n initial

powers. While for small values of h, say h =
√
n, we cannot evaluate the cells (i, j) of h initial

powers faster than in Õ(n) time, we observe that considerable computational savings (on average)
are possible if a larger submatrix S × T (potentially the full n × n submatrix), for S, T ⊆ [n], is
queried. Indeed, in such a case, a careful packing of the matrices U ·C,U ·C2, . . . , U ·Cn into two
degree-Θ(h) polynomial matrices of sizes |S| × ⌈n/h⌉ and ⌈n/h⌉ × |T | (resp.) allows us to benefit
from FFT [CT65] and fast rectangular matrix multiplication [GU18, HP98] at the same time.

Dynamic Frobenius form. To obtain the improved dynamic Frobenius form data structure of
Theorem 1.2, more ideas are needed. Crucially, we use a notion of a generic vector wrt. A, i.e., a
vector u ∈ F

n×1 such that the iterates u,Au, . . . , An−1u are linearly independent. In other words,
u is generic wrt. A if the order-n Krylov subspace generated by A and u has dimension n. As
shown by [Kel85], if u is generic wrt. A, the iterates of u encode a similarity transform U such that
U · C · U−1 is a Frobenius form of A (and C is a companion matrix of pA). Using the techniques
of [BGY80, Ebe00], one can in fact prove that, given the iterates of a generic vector u wrt. A and
iterates of a generic vector v wrt. AT , all three matrices U,C,U−1 comprising the Frobenius form
can be computed in Õ(n2) time. Moreover, that algorithm can be used to detect non-genericity
of input vectors: if either u or v is not generic wrt. the respective matrix, the algorithm fails.
Therefore, if A is subject to a rank-1 update A′ := A+ abT (which keeps A′ generic), then in order
to compute a Frobenius form of A′ explicitly in Õ(n2) time, it is sufficient to compute the iterates
of some generic vectors u′, v′ wrt. the matrices A+ abT and (A+ abT)T in Õ(n2) time.
We show a dynamic programming-based algorithm for this task that works even if u′, v′ are not

generic. Specifically, given FNFs of generic A and AT and some arbitrary vectors u′, v′ ∈ F
n×1,

7

the algorithm computes the iterates of u′ wrt. A + abT and v′ wrt. (A + abT)T . One important
ingredient here is the preprocessing of Theorem 1.1 which also allows computing iterates of an
arbitrary vector in near-optimal Õ(n2) time. With the respective iterates wrt. A and AT in hand,
the obtained dynamic programming formula for the subsequent iterates wrt. the perturbed matrices
can be efficiently evaluated using a folklore combination of divide-and-conquer and FFT.
Finally, as proved by [BGL03], generic vectors wrt. a generic n×n matrix over a finite field can

be obtained (w.h.p.) within Õ(polylog n) random samples even for small fields. Thus, computing
the iterates of O(polylog n) random vectors wrt. A+abT and (A+abT)T and feeding them into the
aforementioned procedure based on [BGY80, Ebe00] yields an Õ(n2)-time Las Vegas randomized
(w.h.p.) algorithm computing an FNF of a (generic) matrix A after a rank-1 perturbation.

From generic matrices to graphs. The key technical idea enabling all our developments for
fault-tolerant and dynamic distance oracles is to represent an arbitrary directed graph using a
generic matrix.
Roughly speaking, the state-of-the-art dynamic distance oracle [vdBFN22] for unweighted graphs

(and its predecessors [vdBNS19, San05b]) rely on path counting of sufficiently short paths. If A(G)
is an adjacency graph of G, then (A(G)k)s,t equals the number of distinct s → t paths consisting
of precisely k edges. As a result, if (A(G)k)s,t 6= 0, the distance from s to t is no more than k. In
the other direction, if an s → t path of length k exists in G, then (A(G)k)s,t 6= 0. Consequently,
the matrix powers A(G), A(G)2 , . . . , A(G)h encode the short distances between vertices at distance
at most h. The short distances (for a sublinear h = poly(n)), combined with standard hitting set
arguments [UY91], already allow computing an s, t distance in G in subquadratic time.
The challenge is to efficiently compute the first h matrix powers of A(G) and maintain them

(possibly implicitly) under element updates to A(G). The simple-minded approach leads to an
Õ(nω · h2) time for the static computation since the elements of A(G)h may use up to Õ(h) bits.
In the path applications, we are only interested in whether the entries of the powers are zero or
not, so performing all the counting modulo a sufficiently large random Õ(polylog n)-bit prime still
yields high-probability correctness. Therefore, the powers A(G), . . . , A(G)h can be thought to be
computable in Õ(nω · h) time. The well-established way to handle updates is to note that these
powers are encoded by the inverse of the polynomial matrix I−A(G) ·X in the ring of polynomials
modulo Xh+1 and apply dynamic matrix inverse data structures [San04, vdBNS19, vdBFN22].
Since the entries of A(G)h are polynomials of degree at most h, the obtained update bounds are
generally factor-Õ(h) away from the known dynamic matrix inverse bounds [San04, vdBNS19].
As shown by [Sto15, ZLS15], the Õ(nω · h) bound for computing the first h powers statically is

certainly not optimal for large values of h: for h = n the computation can be performed in near-
optimal Õ(n3) time precisely via a reduction to polynomial matrix inverse. In fact, the state of the
art DSOs [vdBS19, GR21] that we improve upon rely on the techniques of [ZLS15]. Specifically,
one of the contributions of [GR21] is showing that h = nα first powers of a matrix can be computed
in Õ(nω(1,1−α,1−α)+2α) field operations.
To obtain the improved distance oracles, we avoid using the techniques of [ZLS15] and apply

our data structure for querying matrix powers (Theorem 1.1) to compute the h-bounded distances
faster, in Õ

(
hnω(1,1−α,1)

)
time (after Õ(nω)-time computation of an FNF). Such a speed-up alone

is enough to obtain the tweaked dynamic distance oracle of Theorem 1.5, and, via the reduction
of [GR21], a 1-DSO with preprocessing time matching the APSP bound of [Zwi02].
For the above application of Theorem 1.1 to be legitimate, we need to guarantee that the graph

is represented by a generic matrix. Simply using a standard adjacency matrix of a digraph fails
here, since the adjacency matrix is often not generic, i.e., it may have multiple invariant factors.

8

Based on the techniques of [Wie86], we show that a weighted adjacency matrix A(G) ∈ F
n×n

representing G can be appropriately and efficiently sampled so that A(G) is generic, if the size of
the field F used is sufficiently large but still polynomial in n. A random weighted adjacency matrix
also has, with high probability, the desired properties relating the non-zero entries of (A(G))k to the
existence of length-≤ k paths between vertex pairs. Moreover, the elements of A(G) are sampled
independently and thus small updates to the graph G result in small updates to A(G) and they
maintain genericity with high probability (over polynomially many updates).
A further combination of the submatrix queries data structure of Theorem 1.1 with formulas for

updating the matrix inverse after changing few elements [vdBNS19, San04, San05b] and standard
hitting set arguments [UY91] allows us to obtain the improved multiple-failures distance sensitivity
oracle of Theorem 1.4 and the “prospective” dynamic distance oracle of Theorem 1.6.
We note that the previous work, in particular concerning (possibly negatively-) weighted graphs

(e.g., [vdBS19, San05a]) or reachability in presence of cycles [San04], where simple path counting
fails, also used weighted adjacency matrices, albeit for a different reason. There, one starts with a
polynomial symbolic adjacency matrix in the first place and then applies random variable substitu-
tion to enable efficient polynomial identity testing [Sch80, Zip79]. Our use of weighted adjacency
matrices can be considered merely a trick to fix the non-genericity in basic path counting.

1.4 Further related work

Specialized exact distance oracles have been shown for incremental [AIMN91] and decremen-
tal [BHS07, EFGW21] unweighted directed graphs. Non-trivial approximate distance oracles for
weighted directed graphs are known in the fully dynamic setting [vdBN19] and partially dynamic
settings [Ber16, EFGW21, KŁ19].
There has been extensive and influential work on static distance oracles for undirected graphs,

especially in various approximate settings, e.g., [Che15, CZ22, PR14, TZ05, Wul12]. See also the
survey [Som14]. Distance oracles for undirected graphs have also been studied specifically in the
fault-tolerant (e.g., [CLPR12, DR22]) and fully dynamic (e.g., [Ber09, vdBN19]) settings.

2 Preliminaries

We denote by [n] the set {1, . . . , n}. Let F be a finite field. For an n ×m matrix A ∈ F
n×m, and

S ⊆ [n], T ⊆ [m], we generally denote by AS,T the submatrix of A with rows S and columns T . We
may write As,T or AS,t, for s, t ∈ [n], to denote A{s},T or AS,{t}, respectively. In particular, As,t is
the element in the cell (s, t) of A. Whenever we write AS , we mean AS,S.
If v is a column (row) vector in F

n×1 (in F
1×n, resp.), then we sometimes write vi to denote

vi,1 (v1,i, resp.). If n is known from the context, we denote by ei ∈ F
n×1 a column vector satisfying

(ei)j = [j = 1].
We generally measure time in field operations, i.e., the field operations are assumed to take unit

time. We denote by MM(p, q,m) the time needed to multiply a matrix from F
p×q by a matrix from

F
q×m. That is, if p = ⌊nα⌋, q = ⌊nβ⌋, m = ⌊nγ⌋ for α, β, γ ≥ 0, then MM(p, q,m) = O(nω(α,β,γ)).
When talking about directed graphs G = (V,E), for F ⊆ E ⊔ V we denote by G−F the graph

obtained from G by removing the vertices and/or edges F . If G is (non-negatively) weighted, then
we denote by wG(uv) the weight of the edge uv ∈ E. For any s, t ∈ V , denote by δG(s, t) the weight
of the shortest s → t path in G. If no s → t path exists in G, we put δG(s, t) = ∞.

9

3 Generic matrices and Frobenius form

Let F be a finite field. Once again, we call a matrix A ∈ F
n×n generic if the characteristic polynomial

pA(t) = det(tI − A) equals the minimal polynomial µA of A, i.e., the minimum-degree monic
polynomial over F such that µA(A) ≡ 0. We start with the following well-known fact.

Fact 3.1. (see, e.g., [BJN94]) Suppose the matrix A is generic and let pA(t) = tn+cn−1t
n−1+. . .+c0.

There exists an invertible matrix U ∈ F
n×n such that

A = U · C · U−1, (1)

where C ∈ F
n×n is a companion matrix of pA, that is:

C =

0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...
...
. . .
...

0 0 . . . 1 −cn−1

.

For any similarity transform U ∈ F
n×n satisfying Equation (1), U ·C ·U−1 is called the Frobenius

normal form (FNF) of the generic matrix A. The Frobenius form can be defined more generally for
arbitrary non-generic matrices from F

n×n, albeit the middle matrix C has then a more complicated
form – it may consist of multiple companion matrices. FNF can be computed deterministically
in Õ(nω) [Sto01] time for every matrix from F

n×n. For generic matrices, there exists an easier
Õ(nω)-time FNF algorithm [Kel85] that we sketch in this section and build upon later on.
Let us call a vector u ∈ F

n×1 generic wrt. A if the vectors u,Au,A2u, . . . , An−1u are linearly
independent.

Lemma 3.2. [Kel85] Let A ∈ F
n×n be a generic matrix and let u ∈ F

n×1 be generic wrt. A. Then
the matrix U =

[
u Au A2u . . . An−1u

]
∈ F

n×n is invertible and U · C · U−1 is an FNF of A.

Proof. U is invertible since it is of size n × n and its columns are linearly independent. More-
over, we have AU = [Au|A2u| . . . |Anu]. On the other hand, for any vector v ∈ F

1×n such that
v = (v0, . . . , vn−1), we have vC = (v1, . . . , vn−1,−

∑n−1
i=0 civi). As a result:

UC =
[
Au A2u . . . An−1u −

(∑n−1
i=0 ciA

i
)
u
]
.

Since A is generic, µA(A) = pA(A) = An +
∑n−1

i=1 ciA
i ∈ F

n×n is a zero matrix. Consequently, we
have UC =

[
Au A2u . . . Anu

]
, which proves AU = UC. Thus, indeed A = UCU−1.

We now refer to [BGL03] for the following estimate.

Theorem 3.3. [BGL03, Theorem 9] Let A ∈ F
n×n be a generic matrix and let q = |F|. Then, with

probability at least 0.2
1+logq n

, a random vector from F
n×1 is generic wrt. A.

Since one can compute the n vectors u,Au, . . . , An−1u and matrix inverse in general in Õ(nω)
time (see, e.g., [Kel85]), by Theorem 3.3, Lemma 3.2 applied to random vectors u ∈ F

n×1 yields:

Lemma 3.4. Let A ∈ F
n×n be a generic matrix. There is a Las Vegas algorithm computing an

FNF of A in Õ(nω) time. The running time bound holds with high probability.

10

Proof. Multiplying a random vector u ∈ F
n×1 by the n first powers of A yields an FNF of A

with probability Ω(1/ log n). After c · log2 n = O(polylog n) trials (where c = O(1)), the success
probability is at least 1−O(n−c).

Crucially for our applications, an FNF can be computed faster if an efficient way of multiplying
a vector by n powers of A is available. The following lemma has been proven in a more general
form by Eberly [Ebe00]. We include a proof for completeness.

Lemma 3.5. [Ebe00] Let A ∈ F
n×n be a generic matrix, and let u, v ∈ F

n×1. Suppose the vectors
u,Au, . . . , An−1u and vT , vTA, . . . , vTAn−1 are given.
Then, using Õ(n2) additional field operations one can either compute a Frobenius normal form

of A or detect that either u is not generic wrt. A or v is not generic wrt. AT .

Proof. We wish to compute the Frobenius form U · C · U−1 given by Lemma 3.2 or detect that
either u is not generic wrt. A or v is not generic wrt. AT . Recall that the matrix U is obtained by
putting the (given) vectors u,Au, . . . , An−1u in a row. Moreover, let

V =

vT

vTA
...

vTAn−1

 .

Consider a Hankel matrix (i.e., with all skew diagonals constant)

V U =

vTu vTAu . . . vTAn−1u
vTAu vTA2u . . . vTAnu
...

...
. . .

...
vTAn−1u vTAnu . . . vTA2n−2u

 .

Note that the 2n − 1 distinct entries of V U can be computed using O(n) inner products of the
input vectors, i.e., in O(n2) time. One can check in Õ(n) time whether an n × n Hankel matrix
(given its O(n) skew diagonal values) is singular [BGY80]. If V U is singular, then either V or U is
singular, that is, either v is not generic wrt. AT or u is not generic wrt. A.
Suppose both U and V are non-singular. We have

U−1 = (V U)−1 · V,
so the columns of U−1 can be found by solving n linear systems Hx = b, where H = V U is a
non-singular Hankel matrix and b is a column of V . Each such linear system can be solved using
Õ(n) field operations [BGY80]. As a result, U−1 can be computed in Õ(n2) time.
Finally, since C = U−1 ·A ·U and all but the last column of C are fixed, we can determine C by

simply computing the last column of U−1 ·A ·U , i.e., multiplying U−1 ·A ·An−1u in O(n2) time.

Lemma 3.5 can produce an FNF of a generic A in Õ(T (n) + n2) time, where T (n) is the
time required to multiply a vector by the first n powers of either A or AT . Note that AT and A
have the same characteristic and minimal polynomials, so AT is generic iff A is generic. Thus, by
Theorem 3.3, O(polylog n) samples of u, v are enough to succeed w.h.p.
The crucial property of the Frobenius normal form that we will use is that the companion

matrix C is particularly easy to power and for any k ≥ 1 we have

Ak = (UCU−1)k = U(CU−1U)k−1CU−1 = UCkU−1.

The companion matrix C has the following key property.

11

Fact 3.6. For any k ≥ 1, let w1, w2, . . . , wn ∈ F
n×1 be the columns of Ck. Then we have

Ck+1 =
[
w2 w3 . . . wn C · wn

]
.

Corollary 3.7. Let k ≥ 1 and let u1, . . . , un be the columns of the matrix U · Ck. Let wn be the
last column of Ck. Then

U · Ck+1 =
[
u2 u3 . . . un U · C · wn

]
.

Proof. Let w1, w2, . . . , wn ∈ F
n×1 be the columns of Ck. Then, by Fact 3.6:

U · Ck+1 =
[
Uw2 Uw3 . . . Uwn UCwn

]
=
[
u2 u3 . . . un UCwn

]
.

By Corollary 3.7, the n matrices U ·C, U ·C2, . . . , U ·Cn can be encoded concisely using only
2n − 1 column vectors, i.e., in O(n2) space. This is formally captured by the below lemma which
also shows that such a representation can be computed very efficiently.

Lemma 3.8. Let the Frobenius normal form U ·C ·U−1 of A be given. Using Õ(n2) field operations
we can compute an auxiliary matrix (ri,j) = R ∈ F

n×(2n−1), such that for any k ∈ [n]:

U · Ck =

r1,k r1,k+1 . . . r1,n+k−1

r2,k r2,k+1 . . . r2,n+k−1
...

...
. . .

...
rn,k rn,k+1 . . . rn,n+k−1

 := Rk.

Proof. Let ui = (ui,1, . . . , ui,n) be the i-th row of the matrix U . For any k > n define ui,k inductively:

ui,k = −c0 · ui,k−n − c1 · ui,k−n+1 − . . .− cn−1 · ui,k−1 = −
n−1∑

i=0

ci · ui,k−n+i.

In other words, (ui)
∞
i=1 is a linearly recursive sequence of order n. As discussed in the proof of

Lemma 3.2, for any k ≥ 0, we have:

ui · Ck = (ui,1+k, . . . , ui,n+k).

In particular, for k = n− 1, we obtain:

ui · Cn = (ui,n+1, . . . , ui,2n) = (ri,n, . . . , ri,2n−1).

Since (ri,1, . . . , ri,n−1) = (ui,2, . . . , un), the i-th row of the matrix R can be obtained by computing
the terms n+1, . . . , 2n of the linearly recursive sequence (ui)

∞
i=1. As shown in [BM21, Theorem 3],

this can be done using Õ(n) field operations. Therefore, by applying this to all i, computing the
entire matrix R is possible using Õ(n2) field operations.

Lemma 3.9. Let a Frobenius normal form U · C · U−1 of a generic A ∈ F
n×n and the associated

auxiliary matrix R of Lemma 3.8 be given. Then:

(1) For any i, j ∈ [n], the elements Ai,j , (A
2)i,j, . . . , (A

n−1)i,j can be computed in Õ(n) time.

(2) For any vector v ∈ F
n×1, all the vectors v,Av,A2v, . . . , An−1v can be computed in Õ(n2) time.

12

Proof. In the former item, set v := ej . We have A
kv = U · Ck · (U−1v). Let us first compute

w = U−1v. In the former item, the vector w is simply the j-th column of U−1 and thus it can be
read in O(n) time. In the latter item, it can be obtained in O(n2) time.
For any i ∈ [n], (Akv)i = (UCkw)i = (ri,k, . . . ri,n+k−1) · w. Thus, we have:

ri,1 ri,2 . . . ri,n
ri,2 ri,3 . . . ri,n+1
...

...
. . .

...
ri,n ri,n+1 . . . ri,2n−1

 · w =

(A1v)i
(A2v)i
...

(Anv)i

 .

Note that the n × n matrix on the left-hand side above is a Hankel matrix whose 2n − 1 distinct
entries come from the precomputed matrix R. As a result, the right-hand side vector can be
computed using fast Hankel matrix-vector multiplication in Õ(n) time (see, e.g., [GVL13]). This
gives the desired values Ai,j, (A

2)i,j, . . . , (A
n−1)i,j in item (1). By doing this for all i = 1, . . . , n, we

obtain the desired vectors v,Av, . . . , An−1v in Õ(n2) time in item (2).

4 Computing submatrices of k first powers of a generic matrix

Let A ∈ F
n×n be a generic matrix. As shown in Lemma 3.9, one can compute a certain cell (i, j)

of all the powers A1, . . . , An−1 in Õ(n) time via Hankel matrix-vector multiplication as long as a
Frobenius form of A is given. In this section, we generalize this as follows. Let 1 ≤ h ≤ n be an
integer. Let S be a subset of rows and let T be a subset of columns of A. Our goal is to compute the
S × T submatrices (A1)S,T , . . . , (A

h)S,T . One particularly interesting case is S = T = {1, . . . , n},
where we want to explicitly output the first h matrix powers of A. We prove:

Theorem 4.1. Let A ∈ F
n×n be generic and let U · C · U−1 be its Frobenius form. Let R = (ri,j)

be the associated auxiliary matrix of Lemma 3.8. Let S, T ⊆ [n]. Let h = ⌊nα⌋, |S| = ⌊ns⌋,
|T | = ⌊nt⌋ for some α, s, t ∈ [0, 1]. Then, the submatrices (A1)S,T , . . . , (A

h)S,T can be computed

using Õ(nω(s,1−α,t)+α) field operations.

Proof. Set ∆ = ⌈n/h⌉. Put U−1 = (gi,j). For all i ∈ S and j ∈ {0, . . . ,∆− 1}, let

pi,j(x) = ri,j·h+1 · x+ ri,j·h+2 · x2 + . . .+ ri,j·h+(2h−1) · x2h−1

be a polynomial. Similarly, for all i ∈ T and j ∈ {0, . . . ,∆− 1}, let us introduce a polynomial

qj,i(x) = gj·h+1,i · xh−1 + gj·h+2,i · xh−2 + . . .+ gj·h+h,i · x0.

In the above, every value r·,· and g·,· that has not been defined is assumed to be equal to 0.
Each pi,j is a polynomial of degree 2h−1, and each qj,i is a polynomial of degree h−1. Consider

the polynomial matrices P = (pi,j) ∈ F[x]|S|×∆ and Q = (qj,i) ∈ F[x]∆×|T |. The product P ·Q can
be computed in Õ(nω(s,1−α,t) ·h) = Õ(nω(s,1−α,t)+α) time since arithmetic operations on polynomials
of degree at most h can be carried out in Õ(h) time [CT65].
Now, for i ∈ S, j ∈ T , and k ∈ {h, . . . , 2h − 1} consider the coefficient di,j,k of xk in the

polynomial (P ·Q)i,j of degree at most 3h. We have:

di,j,k =
∆−1∑

t=0

h∑

l=1

ri,t·h+(k−h)+l · gt·h+l,j.

13

Now consider the element Ak
i,j, for k ∈ [h]:

Ak
i,j = (UCkU−1)i,j =

n∑

z=1

(UCk)i,z · gz,j

=

n∑

z=1

ri,z+k−1 · gz,j =
∆−1∑

t=0

h∑

l=1

ri,t·h+(k−1)+l · gt·h+l,j = di,j,k+h−1.

We conclude that all the required entries in the respective submatrices S × T of A1, . . . , Ah are
encoded as coefficients of the (polynomial) entries of the matrix P ·Q.

Note that Lemma 3.8 together with Theorem 4.1 imply Theorem 1.1.

5 Maintaining an FNF under generic rank-1 updates

Let A ∈ F
n×n be again a generic matrix. In this section, we consider the following problem. Let a

Frobenius normal form of A be given. Suppose A is subject to a rank-1 update, i.e., A is replaced
with A′ = A + abT for some a, b ∈ F

n×1. We require that the update is also generic, i.e., the
obtained matrix A′ is also generic. We would like to recompute an FNF of the updated matrix A′

faster than from scratch which would take Õ(nω) time. In this section, we show:

Theorem 1.2. Let A ∈ F
n×n be a generic matrix. Suppose an FNF of A and an FNF of AT are

given. Then, for any a, b ∈ F
n×1 such that A′ = A+ abT is generic, Frobenius normal forms of A′

and (A′)T can be computed explicitly in Õ(n2) time. The algorithm succeeds with high probability.

Let us remark that the assumption that the FNFs of both A and its transpose AT are maintained
is merely for simplicity of exposition. Recall that AT is generic if and only if A is generic.
We now describe the update procedure. Our goal is to compute, for some vectors u, v ∈ F

n×1

chosen randomly, the 2n vectors (A + abT)i · u, and vT · (A + abT)i, for i = 0, . . . , n − 1. By
Theorem 3.3 and Lemma 3.5, this will give an explicit FNF of A+abT using Õ(n2) additional time
with probability Ω(1/ log n). By applying the same procedure to AT , we will compute an FNF of
(A′)T = AT + baT as well. After trying O(polylog n) times, we will succeed with high probability.
In the following, will only focus on computing all (A+ abT)i · u, since all vT · (A+ abT)i can be

computed by proceeding symmetrically with the transpose AT .
First of all, using Lemmas 3.8 and 3.9 applied to A and its FNF, we compute the vectors

δi := Aiu, for i = 0, . . . , n − 1 in Õ(n2) time. Similarly, we compute the vectors αi := Aia, for
i = 0, . . . , n− 1 within the same time bound.
Note that for any k = 0, . . . , n− 1, we can expand Xk := (A+ abT)ku as follows:

Xk = (A+ abT)ku = Aku+
k∑

l=1

(
Al−1 · abT · (A+ abT)k−l · u

)

= Aku+

k∑

l=1

(
(Al−1a) · (bT · (A+ abT)k−l · u)

)

= δk +
k−1∑

l=0

αl · (bT ·X(k−1)−l)

= δk +

k−1∑

l=0

α(k−1)−l · (bT ·Xl).

14

This way we obtain a dynamic programming formula for computing the desired subsequent vectors
X0, . . . ,Xn−1. The right-hand side of the recurrence involves a convolution of scalars (obtained from
the previous terms) with the precomputed vectors αl. Recurrences of this kind can be evaluated
efficiently using a folklore combination of FFT and a divide-and-conquer approach, as follows.
Let us initialize vectors X ′

0, . . . ,X
′
n−1 ∈ F

n×n whose purpose is to store partially computed
vectors X0, . . . ,Xn−1. Initially, put X

′
i = δi. Let us define a recursive procedure F (p, q), for

0 ≤ p ≤ q ≤ n− 1 such that, assuming that for all j = p, . . . , q we have:

X ′
j = δj +

p−1∑

l=0

α(j−1)−l · (bT ·Xl), (2)

updates X ′
p, . . . ,X

′
q so that X

′
j = Xj for all j = p, . . . , q. Observe that the prerequisite of F (0, n−1)

is satisfied by the initial values of X ′
i. Moreover, after F (0, n − 1) completes we are done.

Let us now discuss how F (p, q) is implemented. If p = q, there is nothing to be done, as the
prerequisite (2) already implies that X ′

p = Xp. Suppose p < q and let m = ⌊(p + q)/2⌋. We have
p ≤ m < q. First, F (p,m) is called; note that the prerequisite (2) of that call holds. Afterwards,
each vector X ′

l , for l ∈ {p, . . . ,m}, equals the respective vector X ′
l . The next step is to compute

the scalars dl := bT ·Xl for all such l in O((m− p)n) = O((q − p)n) time.
Subsequently, define the following polynomials ∈ F[x] of degree at most q − p:

Q(x) =

m−p∑

i=0

dp+i · xi,

Pk(x) =

q−p∑

i=0

αi,k · xi,

where αi,k, for k = 1, . . . , n, is the k-th coordinate of αi. For each k = 1, . . . , n, compute the

polynomial Pk(x)Q(x) using FFT [CT65] in Õ(q − p) time. Through all k, this takes Õ((q − p)n)
time. Observe that the coefficient ck,i of x

i in Pk(x)Q(x) equals

min(i,m−p)∑

l=max(0,i−q+p)

αi−l,k · dp+l =

min(p+i,m)∑

l=max(p,i−q+2p)

αi+p−l,k · dl.

In particular, for j = m+ 1, . . . , q, j − p− 1 ∈ [0, q − p− 1]. So we get (j − p− 1) + p = j − 1 ≥ m
and (j − p− 1)− q + 2p ≤ p− 1. Thus, the coefficient of xj−p−1 in Pk(x)Q(x) equals

ck,j−p−1 =

m∑

l=p

α(j−1)−l,k · dl.

We conclude that the following column vectors can be retrieved from the computed polynomials:

∆j :=
[
c1,j−p−1 c2,j−p−1 . . . cn,j−p−1

]T
=

m∑

l=p

α(j−1)−l · (bT ·Xl).

After adding ∆j to X
′
j for each j = m+ 1, . . . , q, we have

X ′
j = δj +

p−1∑

l=0

α(j−1)−l · (bT ·Xl) +
m∑

l=p

α(j−1)−l · (bT ·Xl) = δj +
m∑

l=0

α(j−1)−l · (bT ·Xl).

15

As a result, the prerequisite of the call F (m+1, q) is satisfied and we can call F (m+1, q) to update
X ′

m+1, . . . ,X
′
q so that they store Xm+1, . . . ,Xq respectively. The correctness of the procedure

F (p, q) follows easily by induction on q − p.
The time T (N) needed to compute F (l, r) when r − l = N clearly satisfies:

T (1) = O(1)

T (N) ≤ T (⌈N/2⌉) + T (⌊N/2⌋) + Õ(Nn).

Therefore, we get T (N) = Õ(Nn). Since the root call F (0, n− 1) satisfies r− l = n, all the desired
vectors Xk = (A+ abT)k for k = 0, . . . , n− 1 are computed in Õ(n2) time as desired.

6 Accessing matrix powers under batch element updates

This section is devoted to proving the following lemma on computing entries of the powers of a
matrix A under single-element updates to A. This result is implicit in the known works on dynamic
matrix inverse [vdBNS19, San04, San05b].

Lemma 6.1. Let A ∈ F
n×n. Let Ψ = {(u1, v1, y1), . . . , (uf , vf , yf)} ⊆ [n] × [n] × F be such that

all pairs (ui, vi) are distinct. Let S = {u1, . . . , uf} and T = {v1, . . . , vf}. Suppose the matrix B is
obtained from A by setting Aui,vi := yi for all i = 1, . . . , f . Let h ≥ 1 be an integer.

Given the submatrices (A1)T,S , . . . , (A
h)T,S, one can preprocess Ψ in Õ(fω ·h) time, so that the

following queries are supported. Given any X,Y ⊆ [n] along with the submatrices
(A1)X,S , . . . , (A

h)X,S, (A
1)T,Y , . . . , (A

h)T,Y , and (A1)X,Y , . . . , (A
h)X,Y , compute the submatrices

(B1)X,Y , . . . , (B
h)X,Y . The query time is Õ((MM(|X|, f, |Y |) +MM(f, f,min(|X|, |Y |)) · h).

Consider the ring F[X]/(Xh+1) of polynomials in X over F modulo Xh+1. Consider a matrix
polynomial I−X ·A, where X is a variable. I−X ·A can be also viewed as a matrix of degree ≤ 1
polynomials in X. The inverse (I − X · A)−1 exists in the ring

(
F[X]/(Xh+1)

)n×n
of polynomial

matrices modulo Xh+1 and equals:

(I −X ·A)−1 = I +X · A+X2 ·A2 + . . .+Xh ·Ah. (3)

The above equation can be seen to hold by multiplying both sides (modulo Xh+1) by I −X ·A.
For each i = 1, . . . , f , let δi := yi − Aui,vi , so that B can be seen to be obtained from A

by adding δi to a corresponding element Aui,vi . Let us put

U =
[
eu1

eu2
. . . euf

]
∈ F

n×f ,

V =
[
ev1 ev2 . . . evf

]T ∈ F
f×n,

∆ = diag(δ1, . . . , δf) ∈ F
f×f .

Then, we have B = A+ U ·∆ · V . Consider the inverse of I −X ·B in F[X]/(Xh+1). We have:

(I −X · B)−1 = (I −X · (A+ U∆V))−1 = (I −X ·A+ U · (−X∆) · V)−1.

Put Z := (I −X · A)−1 = (zi,j). By the Sherman-Morrison-Woodbury formula (see, e.g., [HS81]),
we have:

(I −X ·B)−1 = Z − Z · U · (I + (−X∆)V ZU)−1 · (−X∆)V · Z
= Z − (ZU) · (I −X∆(V ZU))−1 · (−X∆) · (V Z).

16

Above, the matrix ZU (V Z) selects the subsequent columns u1, . . . , uf ∈ S (rows v1, . . . , vf ∈ T ,
resp.) of Z and arranges them left to right (top to bottom, resp.). Similarly, (V ZU)i,j = Zvi,uj

and thus V ZU can be read from ZT,S in optimal O(f2) time.
The identity holds if (I −X∆(V ZU)) is invertible in F[X]/(Xh+1). It indeed is, as:

(I −X∆ · (V ZU))−1 =
h∑

i=0

(∆V ZU)i ·Xi.

Moreover, since

h∑

i=0

(∆V ZU)i ·Xi =

⌈log h⌉∏

j=1

(
I + (∆XV ZU)2

j
)

 mod Xh+1,

the matrix P = (I − X∆(V ZU))−1 can be computed, given ZT,S , using Õ(1) multiplications of
f × f matrices whose entries are polynomials of degree at most h (and the polynomial arithmetic
is performed modulo Xh+1), that is, in Õ(fω · h) time. Recall that since Z = I +A+ . . .+Ah, the
polynomial matrix ZT,S is encoded using the given submatrices (A

1)T,S, . . . , (A
h)T,S ∈ F

f×f .
Assuming the matrix P is precomputed, given X,Y ⊆ [n], we can compute (I −X · B)−1

X,Y in

Õ(f2 · h) time using (rectangular) matrix multiplication as:

(I −X ·B)−1
X,Y = ZX,Y − (ZU)X,[f] · P · (−X∆) · (V Z)[f],Y .

Here, the matrixces (ZU)X,[f] and (V Z)[f],Y can be read from the submatrices ZX,S , ZT,Y respec-
tively. The used order of multiplication depends on which of X,Y is smaller. This expression can
be evaluated as ((((ZU)X,[f] · P) · (−X∆)) · (V Z)[f],Y in Õ((MM(|X|, f, f)) +MM(|X|, f, |Y |)) · h)
time, or as (ZU)X,[f] · (P · ((−X∆) · (V Z)[f],Y)) Õ((MM(f, f, |Y |)) +MM(|X|, f, |Y |)) · h) time.
Finally, recall that the submatrices ZX,S , ZT,Y , and ZX,Y are encoded by the submatrices

(A1)X,S , . . . , (A
h)X,S , (A

1)T,Y , . . . , (A
h)T,Y , and (A1)X,Y , . . . , (A

h)X,Y , respectively. The desired
submatrices (B1)X,Y , . . . , (B

h)X,Y are encoded by the obtained polynomial matrix (I −X ·B)−1
X,Y .

7 Representing the graph with a generic matrix

Let G = (V,E) be an unweighted digraph. Let X̃ be a set of variables x̃u,v indexed with pairs from
V × V . Let Ỹ be a set of variables ỹv indexed with V .
An n× n symbolic adjacency matrix Ã(G) ∈ F[X̃ ∪ Ỹ]n×n of G is defined as follows:

Ã(G)u,v =

{
x̃u,v · ỹv if u = v or uv ∈ E,

0 otherwise.

This section is devoted to proving the following:

Theorem 7.1. For all u, v ∈ V , let us assign x̃u,v a random element xu,v ∈ F. Similarly, for all
v ∈ V assign ỹv a random element yv ∈ F. Suppose all these random samples are independent.
Let A ∈ F

n×n be a weighted adjacency matrix obtained from Ã(G) using this assignment. Then,
with probability at least 1− n4/|F|:

(1) A is generic.

17

(2) For every u, v ∈ V and k ∈ [n− 1], Ak
u,v 6= 0 if and only if there exists a path u → v in G of

length at most k.

We start by referring to the following lemma of Wiedemann [Wie86].

Lemma 7.2. [Wie86, Section V] Let B ∈ F
n×n be such that all n leading principal minors of B are

non-singular. Let ỹ1, . . . , ỹn be variables. Then the discriminant of the characteristic polynomial of
B · diag(ỹ1, . . . , ỹn) is a non-zero polynomial in ỹ1, . . . , ỹn of degree no more than 2n3.

With Lemma 7.2 in hand, let us prove that the matrix A is generic. Let Ã(G)|X̃=x ∈ F[Ỹ]n×n be

obtained from Ã(G) by setting all x̃u,v to xu,v. Let Ã(G)|Ỹ =1
∈ F[X̃]n×n (Ã(G)|X̃=x,Ỹ=1

∈ F
n×n,

resp.) be obtained from Ã(G) (Ã(G)|X̃=x, resp.) by setting all ỹv to 1.

Lemma 7.3. With probability at least 1−n2/|F|, all leading principal minors of Ã(G)|X̃=x,Ỹ=1
are

non-singular.

Proof. Identify V with [n]. Consider a k × k leading principal minor Ãk(G)|Ỹ=1
of Ã(G)|Ỹ=1

.

det(Ãk(G)|Ỹ =1
) is a polynomial of degree k in X̃ containing a monomial

∏k
i=1 x̃i,i, and thus is not

a zero polynomial. Since the assignment X̃ = x is random, by the Schwartz-Zippel lemma [Sch80,
Zip79], det(Ãk(G)|X̃=x,Ỹ=1

) 6= 0 with probability at least 1−k/|F| ≥ 1−n/|F|. By the union bound,
the probability that all the n leading principal minors are non-singular is at least 1− n2/|F|.

The following corollary proves item (1) of Theorem 7.1.

Corollary 7.4. With probability at least 1− n4/|F|, A is generic.

Proof. We simply apply Lemma 7.2 to the matrix Ã(G)|X̃=x,Ỹ=1
and hence obtain that the discrim-

inant of the characteristic polynomial of Ã(G)|X̃=x = Ã(G)|X̃=x,Ỹ=1
· diag(ỹ1, . . . , ỹn) is a non-zero

polynomial of degree no more than 2n3. As a result, if one randomly assigns field elements to
ỹ1, . . . , ỹn, the discriminant of the characteristic polynomial pA(t) of A is non-zero with probability
at least 1− 2n3/|F| ≥ 1− n4/|F| by the Schwartz-Zippel lemma. Equivalently, pA(t) has n distinct
roots in an algebraically closed extension F̄ of F. As the minimal and characteristic polynomials of a
matrix have the same roots, we obtain that pA ≡ µA when A is seen as an n×n matrix over F̄. But
it is well-known that neither the characteristic- nor the minimal polynomial of a matrix depends
on the base field, and consequently pA ≡ µA even if A is seen as a matrix over F.

Let us now move to proving item (2) of Theorem 7.1.

Lemma 7.5. Let u, v ∈ V and k ∈ [n − 1]. Then, with probability at least 1 − 2k/|F|, Ak
u,v 6= 0 if

and only if there exists a u → v path of length no more than k in G.

Proof. From the definition of matrix multiplication, one can easily prove inductively that:

Ã(G)ku,v =
∑

(u1,...,uk+1)∈V
k+1

u1=u
uk+1=v

(
k∏

i=1

Ã(G)ui,ui+1

)
. (4)

Observe that for a given (u1, . . . , uk+1) in the sum above, by the definition of Ã(G), the product∏k
i=1 Ã(G)ui,ui+1

is a non-zero monomial iff for all i = 1, . . . , k, either ui = ui+1 or uiui+1 ∈ E.

18

Suppose Ã(G)ku,v is a non-zero polynomial. Then, the sum (4) contains at least one non-

zero monomial
∏k

i=1 Ã(G)ui,ui+1
corresponding to a (k + 1)-tuple (u1, . . . , uk+1) with u1 = u and

uk+1 = v. If one assumes that G contains self-loops, then
∏k

i=1 Ã(G)ui,ui+1
certifies the existence

of a u → v path consisting of k edges or self-loops in G. By eliminating the self-loops, one obtains
that there exists a u → v path in G with at most k edges.
Now suppose that some shortest u → v path P in G has length l ≤ k. We prove that Ã(G)ku,v

is a non-zero polynomial in that case. Let P = e1 . . . el, where uivi = ei ∈ E. Clearly, ui 6= vi
since P is shortest. Set uj := v for all j = l + 1, . . . , k + 1. Note that all u1, . . . , ul+1 are distinct

since P cannot contain cycles. Consider the monomialM =
(∏l

i=1 xui,ui+1
· yui+1

)
·(xv,vyv)k−l. We

now argue that this monomial M appears in the sum (4) precisely once, contributed by the tuple
(u1, . . . , uk+1). For contradiction, suppose there exists some other tuple (u

′
1, . . . , u

′
k+1) contributing

the same monomial M . Let j > 1 be the first index such that uj 6= u′j .
If we had u′j = u′j−1, then uj 6= uj−1 since uj−1 = u′j−1. As a result, u

′
j−1 = uj−1 6= v.

Consequently, the monomial contributed by (u′1, . . . , u
′
k+1) contains a variable xuj′ ,uj′

6= xv,v that
M does not contain, a contradiction.
Therefore, u′j 6= u′j−1. Then, the monomial contributed by (u

′
1, . . . , u

′
k+1) contains the variable

xuj−1,u′

j
. M contains only a single variable of the form xuj−1,·, namely xuj−1,uj

. But uj 6= u′j, a

contradiction. Therefore, M is indeed a monomial of Ã(G)ku,v and thus Ã(G)ku,v is non-zero.

We conclude that Ã(G)ku,v is a non-zero polynomial if and only if there exists a u → v path of

length at most k in G. Finally, Ã(G)ku,v ≡ 0 implies Ak
u,v = 0. On the other hand, if Ã(G)ku,v 6≡ 0,

then Ã(G)ku,v has degree at most 2k, so by the Schwartz-Zippel lemma, A
k
u,v 6= 0 with probability

at least 1 − 2k/|F|. We obtain that the equivalence is preserved after variable substitution with
desired probability.

Item (2) of Theorem 7.1 follows by combining the above lemma for all u, v, k via the union
bound – the success probability is at least 1− n2 · 2 · (1 + 2 + . . .+ (n− 1))/|F| ≥ 1− n4/|F|.

7.1 Handling edge weights

Encoding distances via matrix powers crucially requires that all the edges of G have positive and
equal weight, or equivalently, that G is unweighted.
For a weighted digraph G = (V,E) with n vertices and m edges with integer weights in [1,W],

we can, however, construct a related unweighted digraph G′ = (V ′, E′) with nW vertices and
m+ n(W − 1) edges, such that:

• Each vertex v ∈ V corresponds to W vertices v1, . . . , vW in G′, assembled into a directed
path with W − 1 edges vW vW−1, vW−1vW−2, . . . , v2v1.

• Each edge uv ∈ E of weight c has a corresponding edge u1vc in G′.

Lemma 7.6. For any u, v ∈ V , δG(u, v) = δG′(u1, v1).

Proof. If u = v, δG(u, v) = δG′(u1, v1) = 0. So let us assume u 6= v. Then δG(u, v), δG′ (u1, v1) > 0.
Let us first prove δG′(u1, v1) ≤ δG(u, v). If δG(u, v) = ∞ then this is trivial. Suppose

δG(u, v) = d. Then there exists an u → v path P = u1u2 . . . uk of weight d in G, where k ≤ d+ 1.
Let ci be the weight of the edge uiui+1 in G. Consider the path

P ′ = (u11u
c1
2 ·uc12 uc1−1

2 · . . . ·u22u12) ·(u12uc23 ·uc23 uc2−1
2 · . . . ·u23u13) · . . . ·(u1k−1u

ck−1

k ·uck−1

k u
ck−1−1
k · . . . ·u2ku1k).

19

By the construction of G′ and the existence of P , P ′ exists in G′ and consists of
∑k−1

i=1 ci = d edges.
So indeed δG′(u1, v1) ≤ δG(u, v).
Now we prove δG(u, v) ≤ δG′(u1, v1). Again, if δG′(u1, v1) = ∞, there is nothing to prove.

Otherwise, let δG′(u1, v1) = d ≥ 1. There exists an u1 → v1 path Q = zp11 . . . z
pd+1

d+1 in G′, where
z1, . . . , zd+1 ∈ V , z1 = u, p1 = 1, zd+1 = v, and pd+1 = 1. Let j1 < . . . < jk be all indices j such
that pj = 1. In particular, j1 = 1 and jk = d+ 1. Since in G′, a vertex wq ∈ V ′, for q > 1 has only
a single outgoing edge wqwq−1, ji < l < ji+1 implies that zl = zl−1 and pl = pl−1 − 1. As a result,
for i > 1, zji = zji−1+1. We obtain that P

′ can be expressed as:

P ′ = (z11z
p2
2 zp2−1

2 . . . z12) · (z1j2z
pj2+1

j2+1 z
pj2+1−1

j2+1 . . . z1j2+1) · . . . · (z1jk−1
z
pjk−1+1

jk−1+1 z
pjk−1+1−1

jk−1+1 . . . z1jk−1+1).

Hence we conclude that P ′ has
∑k−1

i=1 pji+1 edges. Moreover, by the construction of G
′, for each

i = 1, . . . , k − 1, there exists an edge zjizji+1 of weight pji+1 in G. As a result, there exists a

path zj1 → zjk = z1 → zd+1 = u → v of weight
∑k−1

i=1 pji+1 = |P ′| = d. This implies the desired
inequality δG(u, v) ≤ δG′(u1, v1).

Finally, let us note that by the correspondence of edges in G and G′, an insertion or deletion
(failure) or a single edge uv of weight c in G can be reflected by a single edge insertion or deletion
of the edge u1vc in G′. Similarly, a failure of a vertex v in G can be translated to a failure of a
single vertex v1 in G′.

8 Distance sensitivity oracles

Let G = (V,E) be a digraph. Recall that a distance sensitivity oracle (DSO) is a data structure
answering queries about δG−F (s, t), where s, t ∈ V and F ⊆ V ∪E. The DSO problem can also be
generalized by introducing the update procedure that takes the set F and preprocesses the failures
to support efficient queries (s, t) about δG−F (s, t) with the failures F fixed. Such a variant has been
studied, e.g., in [vdBS19] and the objective is to give a tradeoff between the preprocessing, update,
and query times.
In the following, we will focus, without loss of generality, on edge failures only. In directed

graphs, vertex failures can be easily reduced to edge failures via a standard vertex-splitting trick,
as described next. Construct a related graph G′, at most twice as large as G, as follows. Each
vertex v of G is split into two vertices vin, vout connected by a directed edge vinvout. Each edge
uv ∈ E gives rise to an edge uoutvin in G′. Every k-edge s → t path P in G corresponds to a
2k+1-edge path P ′ = sin → tout in G

′ such that P goes through a vertex z in G iff P ′ goes through
the edge zinzout in G

′. As a result, a failure of vertex z of G can be simulated using a failure of the
edge zinzout in G′. Clearly, if F ′ ⊆ E(G′) is obtained from F ∈ V (G) ∪ E(G) by replacing failing
vertices with failing edges this way, then δG−F (s, t) = (δG′−F ′(sin, tout)− 1)/2.

8.1 Single failures

Let us first consider the 1-DSO problem, i.e., we only allow queries of the form (s, t, F), where F
contains a single edge f of G. [GR21, Ren22] showed the following reduction of the 1-DSO problem
to the h-truncated 1-DSO problem where one is only interested in supporting queries computing
min(δG−f (s, t), h) instead.

Theorem 8.1. [GR21, Section 3.3] Let G be an unweighted digraph. Suppose an h-truncated
1-DSO Dh for G with preprocessing time P (n) and query time Q(n) is given. Then a general

20

Monte-Carlo randomized 1-DSO D for G with O(1) query time and Õ(n2) space can be constructed
in Õ(P (n)+n2+ρ+n2 ·Q(n)+n3/h) time. If Dh produces correct answers w.h.p., then so does D.

[GR21] showed an h-truncated 1-DSO with Õ
(
nω + nω(1,1−α,1−α)+2α

)
preprocessing time for

h = Θ(nα). This implies, by Theorem 8.1, a general 1-DSO with preprocessing time O(n2.58) and
O(1) query time if h is chosen appropriately. This construction time bound does not, however,
match the Õ(n2+ρ) = Õ(n2.529) time bound of Zwick’s APSP algorithm [Zwi02]. The h-truncated
1-DSO (and also the general 1-DSO) of [GR21] also generalizes to digraphs with integer weights
[1,W] at the cost of an additional factor W in the preprocessing time. We give an improved
h-truncated 1-DSO for unweighted digraphs, as captured by the following lemma.

Lemma 8.2. Let G be an unweighted digraph. For h = Θ(nα), there exists an h-truncated DSO
with Õ(nω(1,1−α,1)+α) preprocessing time, O(n2h) space and Õ(h) query time. The data structure
is Monte Carlo randomized and answers queries correctly with high probability.

Proof. Fix the field F to be Z/pZ for some prime number p = Θ(n4+c), where c ≥ 1 is a constant
controlling the error probability. Let A ∈ F

n×n be a weighted adjacency matrix of Theorem 7.1.
Recall that A is generic with probability at least 1 − 1/nc. The preprocessing is simply to com-
pute the matrix powers A1, . . . , Ah, which can be done in Õ(nω(1,1−α,1)+α) time by Theorem 4.1.
Theorem 4.1 requires an FNF of A, which can be computed in Õ(nω) time by Lemma 3.4, and an
auxiliary matrix R of Lemma 3.8, computed in Õ(n2) time. Note that ω(1, 1− α, 1) + α ≥ ω.
Observe that if the graphG is subject to a failure of a single edge f = uv, the weighted adjacency

matrix A – assuming the same variable substitution in Ã(G) – undergoes a single element update
of changing the entry Au,v, u 6= v, to 0. Let B denote the matrix A after such an update. By

Lemma 6.1, for any s, t ∈ V , we can compute (B1)s,t, . . . , (B
h)s,t in Õ(h) time. By Theorem 7.1,

with high probability, if d ≤ h is minimal such that (Bd)s,t 6= 0, then δG−f (s, t) = d, and otherwise,
if such a value d does not exists then δG−f (s, t) > h and thus min(δG−F (s, t), h) = h.

By using the above lemma for h = Θ(n1−ρ) and applying Theorem 8.1, we have5:

Theorem 1.3. Let G be an unweighted digraph. In Õ(n2+ρ) = O(n2.529) time one can construct
a distance sensitivity oracle for G handling single-edge/vertex failures with O(1) query time and
Õ(n2) space. The data structure is Monte Carlo randomized and the produced answers are correct
with high probability.

Notably, the obtained data structure of Theorem 1.3 matches Zwick’s best-known APSP
bound [Zwi02] in terms of preprocessing time (up to polylog factors) and has optimal O(1) query
time. As discussed in Section 7.1, the approach can be generalized to digraphs with integer weights
in [1,W] at the cost of Õ(W 2+ρ) = O(W 2.529) multiplicative overhead in the preprocessing time.

8.2 Multiple failures

Let us now consider supporting an arbitrary number f of edge failures in the preprocess-update-
query model. We will show the following.

Theorem 1.4. Let G be an unweighted digraph. There exists a distance sensitivity oracle with
Õ(nω) preprocessing and O(n2) space such that for any set F of f edge or vertex failures, the data
structure can be updated in Õ(nfω−1) time to support distance queries with failures F in Õ(nf)
time. The data structure is Monte Carlo randomized and the produced answers are correct w.h.p.

5Similarly as in [GR21, Ren22], the size of the obtained DSO is Õ(n2) even though superquadratic Õ(n3−ρ) space
is used during the construction phase.

21

Hitting sets. Before we continue, let us recall a standard hitting set trick [UY91] that proved
useful in solving shortest path problems across multiple settings in the past.

Lemma 8.3. Let G be an unweighted digraph. Let h ∈ [1, n] be an integer. Let H ⊆ V be a subset
of V obtained by sampling γ · (n/h) log n vertices uniformly and independently, where γ ≥ 1 is a
sufficiently large constant. For any s, t ∈ V , let GH,s,t be a weighted digraph on H ∪ {s, t} such
that for any u, v ∈ V (GH,s,t), an edge uv of weight δG(u, v) appears in E(GH,s,t) iff δG(u, v) ≤ h.
Then, δG(s, t) = δGH,s,t

(s, t) holds with high probability depending on the constant γ.

Lemma 8.3 reduces computing δG(s, t) to finding h-bounded distances between Õ(n/h) vertices
of G. Once the (potentially dense) auxiliary graph GH,s,t from Lemma 8.3 is constructed, obtaining

the desired s, t-distance amounts to running Dijkstra’s algorithm on GH,s,t in Õ((n/h)2) time.
Significantly, a sampled hitting set H is valid for any graph on V , i.e., with high probability,
the same H ⊆ V can be used with poly(n) (possibly random) different graphs, as long as H is
independent of these graphs. For example, in the dynamic setting, H is valid for poly(n) versions
of the evolving graph G if the queries do not reveal any information about H. In particular, for
the studied oracles computing exact distances, the answers are uniquely determined by the input
graph and thus do not reveal the random bits behind the used hitting sets.

Preprocessing. The only preprocessing is to construct a weighted adjacency matrix A (over a
sufficiently large F for G as described in Theorem 7.1) and its FNF along with the auxiliary matrixR
from Lemma 3.8, which costs O(n2) space. The preprocessing takes Õ(nω) time by Lemma 3.4.

Update. Given a batch F of f = Θ(nβ) failing edges, β < 1, we proceed as follows. Let S contain
all the endpoints of the failing edges F . We have |S| = O(f). Let H be a sampled hitting set from
Lemma 8.3 for h = ⌈n/f⌉. As a result, |H| = Õ(n/h) = Õ(f). Using Theorem 4.1, we compute
the submatrices (A1)S∪H , . . . , (Ah)S∪H in Õ(nω(β,β,β)+(1−β)) = Õ(n1+β·(ω−1)) = Õ(nfω−1) time.
Consider the weighted adjacency matrix B of G−F . B is obtained from A by zeroing the entries

Au,v for all uv ∈ F . Therefore, B is obtained from A via f element updates. By Lemma 6.1, for any
x, y ∈ H, the elements (B1)x,y, . . . , (B

h)x,y can be computed, given the preprocessed submatrices

of the powers of A, in Õ(fω · h) = Õ(nfω−1) time. Recall that by Theorem 7.1, the submatrices
(B1)H , . . . , (Bh)H encode the h-bounded distance between H in G− F .
The matrices stored upon update use Õ(nf) = O(n2) space.

Query. Suppose we want to compute δG−F (s, t) for query vertices s, t ∈ V . We construct the
graph GH,s,t from Lemma 8.3. Observe that we have precomputed most of the edges of GH,s,t in the
update phase. It remains to compute the (weights) of edges incident to s and t inGH,s,t. To this end,
we first compute the submatrices (A1){s,t},S∪H∪{s,t}, . . . , (A

h){s,t},S∪H∪{s,t} and the submatrices

(A1)S∪H,{s,t}, . . . , (A
h)S∪H,{s,t} in Õ(nω(0,β,β)+(1−β)) = Õ(nβ+1) = Õ(nf) time. Afterwards, we

can apply Lemma 6.1 to compute the submatrices (B1){s,t},H∪{s,t}, . . . , (B
h){s,t},H∪{s,t} and the

submatrices (B1)H,{s,t}, . . . , (B
h)H,{s,t} encoding the remaining h-bounded distances required for

constructing GH,s,t in Õ(nω(0,β,β)+(1−β)) = Õ(nf) time. Having GH,s,t constructed, the final step

is to run Dijkstra’s algorithm to compute the shortest s, t path in GH,s,t in Õ(f2) time.

9 Dynamic distances

In this section, we describe three different distance oracles for fully dynamic unweighted digraphs.

22

9.1 Tweaking the data structure of [vdBFN22]

Theorem 9.1. [vdBFN22] Let B ∈ F
n×n and let 0 ≤ ν ≤ µ ≤ 1. Let h ∈ [1, n] be an integer.

Let S, T ⊆ [n]. There exists a data structure maintaining the S × T submatrix of the inverse of
the polynomial matrix I − X · B ∈ F[X]/(Xh+1) under element updates to B and single-element
changes (additions or removals) to the sets S and T as long as |S|, |T | ≤ nµ. The initialization
time is Õ(h ·nω) and the worst-case update time is Õ((nω(1,µ,1)−µ+nω(1,ν,µ)−ν+nµ+ν+ |S| · |T |) ·h).
The data structure of Theorem 9.1 can be used to maintain an unweighted digraph G un-

der single-edge insertions and deletions and answer s, t-distance queries in G as follows (see also
[vdBFN21, Section C]). For a parameter ⌊nα⌋ = h ∈ [1, n], sample a random hitting set H ⊆ V of
size Θ̃(n/h) as in Lemma 8.3. The data structure of Theorem 9.1 is set up for the (unweighted)
adjacency matrix A∗ of G and S = T = H, and the field F is chosen to be Z/pZ for a sufficiently
large random prime p ∈ nΘ(1). As discussed in the proof of Lemma 6.1, the maintained H×H sub-
matrix of (I −XA∗)−1, encodes the submatrices ((A∗)1)H , . . . , ((A∗)h)H . Those, in turn, encode,
with high probability, the h-bounded distances between the vertices H in G.
To compute δG(s, t) for query vertices s, t ∈ V , we first temporarily add s, t to the sets S and T ,

at the cost of O(1) updates issued to the data structure. Afterwards, the maintained submatrix can
be used to construct the graph GH,s,t of Lemma 8.3, and consequently δG(s, t) can be computed in

Õ((n/h)2) additional time by running Dijkstra’s algorithm on GH,s,t. After δG(s, t) is computed,
we remove the temporarily added vertices {s, t} \H from S and T .
Both updates and queries are processed in Õ(nω(1,µ,1)−µ+α + nω(1,ν,µ)−ν+α + nµ+ν+α + n2−α)

worst-case time. By setting µ = 0.862, ν = 0.543, and h = n0.297, [vdBFN22] obtain Õ(n1.703)
update and query bound.6

Using Theorems 7.1 and 4.1, we can obtain an improved bound by slightly altering how the
data structure behind Theorem 9.1 operates when initialized with the weighted adjacency matrix A
from Theorem 7.1 instead of the unweighted adjacency matrix A∗. Specifically, the dynamic matrix
inverse data structure of Theorem 9.1 operates, at the topmost level, in phases of Θ(nµ) element
updates. At the end of each phase, the inverse (I−XA)−1 is explicitly recomputed from the inverse
at the beginning of the phase and the Θ(nµ) most recent updates using fast rectangular matrix
multiplication in Õ(nω(1,µ,1) · h) time. In a standard way, this cost can be distributed over the
Θ(nµ) updates and hence the Õ(nω(1,µ,1)−µ ·h) term in the update bound. However, we can as well
recompute (I −XA)−1 (mod Xh+1) from scratch using Theorem 4.1 in Õ(nω(1,1−α,1)+α) time as

(I −XA)−1 mod Xh+1 = I +X · A+ . . .+Xh ·Ah

(see Section 6). Since this recomputation happens every Θ(nµ) updates, we obtain a slightly
different Õ(nω(1,1−α,1)−µ+α + nω(1,ν,µ)−ν+α + nµ+ν+α + n2−α) update/query bound for h = nα, as
long as 1 − α ≤ µ. By using the online term balancing tool [Bra], we find that for µ = 0.793,
ν = 0.552, and α = 0.328, the bound is O(n1.673).

Theorem 1.5. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under single-edge insertions and deletions and supporting s, t-distance
queries with O(n1.673) worst-case update and query time. The answers produced are correct w.h.p.

9.2 Another data structure for single-edge updates

If ω = 2, both our data structure of Theorem 1.5 and that of [vdBFN22] yield an Õ(n1+5/8)
update/query bound if properly optimized. In this section, we show a different dynamic distance
oracle summarized as follows.
6One can use the online term balancer [Bra] to reproduce this bound for the given parameters.

23

Theorem 1.6. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under single-edge insertions and deletions and supporting s, t-distance

queries with Õ
(
n

ω+1

2

)
worst-case update and query time. The answers produced are correct w.h.p.

The bound Õ
(
n

ω+1

2

)
= O(n1.687) of Theorem 1.6 is slightly worse than the O(n1.673) bound

obtained in Theorem 1.5, but leads to a more natural O(n1.5) bound under the optimistic assump-
tion ω = 2. Moreover, it breaks through the theoretical O(n1+5/8) limit of the other discussed
approaches already if ω < 2.25.

Update. The algorithm operates in phases of ⌈n1−α⌉ edge updates, for α ∈ [0, 1] to be set
later. At any point of time, we denote by A the weighted adjacency matrix (see Theorem 7.1) of
the graph G from the beginning of the current phase, and by B a weighted adjacency matrix of
the current graph G. The matrix B equals A immediately after the phase starts and evolves by
single-element updates corresponding to the edge updates issued to G. In particular, if an edge
uv is inserted into G, a fresh random field element xu,v is sampled to guarantee that B is always
obtained from Ã(G) via random variable substitution (see Theorem 7.1).
When a phase starts, we compute in Õ(nω) time the weighted adjacency matrix A of the

graph G along with an FNF of A (Lemma 3.4) and the auxiliary matrix R of Lemma 3.8. This
costly computation happens once per phase and thus takes Õ(nω−1+α) amortized time per update.
Moreover, for h = ⌈nα⌉ we also sample a hitting set H ⊆ V of size Θ(n/h log n) = Õ(n1−α).
When a phase proceeds, let us denote by S ⊆ V the set of endpoints of the edges inserted or

deleted in the current phase. At the beginning of a phase, S = ∅ and we always have |S| = O(n1−α).
Throughout, we make sure that all the submatrices (A1)H∪S , . . . , (A

h)H∪S are stored explicitly.
To this end, when a phase starts, we compute the submatrices (A1)H , . . . , (Ah)H . This takes
Õ(nω(1−α,1−α,1−α)+α) = Õ(n(1−α)ω+α) ⊆ Õ(nω) time by Theorem 4.1. Amortized over the Θ(n1−α)
updates in a phase, this costs Õ(nω−1+α) time. Upon an update of an edge uv, u and v are inserted

into S, so we only need to compute the submatrices
(
(Aj){u,v},H∪S∪{u,v}

)h
j=1
and

(
(Aj)H∪S,{u,v}

)h
j=1

to satisfy the invariant. This costs Õ(nω(0,1−α,1−α)+α) = Õ(n2−α) time by Theorem 4.1.
We also maintain the submatrices (B1)H , . . . , (Bh)H . They are initialized trivially to the corre-

sponding computed submatrices (A1)H , . . . , (Ah)H when a phase starts. By Lemma 6.1, they can be
updated subject to an element change (u, v) (corresponding to an insertion or deletion of the edge uv
in G) in B in Õ(|H|2 ·h) = Õ(n2−α) time if the (current) submatrices (B1)H∪{u,v}, . . . , (B

h)H∪{u,v}

are provided. To provide those, we only need to construct the submatrices
(
(Bj){u,v},H∪{u,v}

)h
j=1

and
(
(Bj)H,{u,v}

)h
j=1
, as the other entries are maintained explicitly. Again, by Lemma 6.1, those

can be obtained from the submatrices
(
(Aj)H∪S∪{u,v}

)h
j=1
(that are off by at most |S| element

updates to A) in Õ ((MM(2, |S|, |H|) +MM(|S|, |S|, 2)) · h) = Õ(n2−2α · nα) = Õ(n2−α) time.

Query. Finally, to answer a distance query, we construct a graph GH,s,t of Lemma 8.3 and run

Dijkstra’s algorithm on it in Õ(n2−2α) time. As the h-bounded distances between the vertices H
are all encoded in the maintained submatrices (B1)H , . . . , (Bh)H , we only need to compute h-
bounded distances between {s, t} and H∪{s, t}. These, again, can be devised from the submatrices(
(Bj){s,t},H∪{u,v}

)h
j=1
and

(
(Bj)H,{s,t}

)h
j=1
. To construct those, we proceed identically as if an

update of the edge st was issued: we can temporarily add {s, t} to S, recompute the missing
submatrices of the powers of A and B, and revert this process at the end. This way, constructing
the O(|H|) missing edges of GH,s,t takes Õ(n2−α) time.

24

The amortized update time of the data structure is Õ(n2−α + nω−1+α), which is optimized for
α = 3−ω

2 . Observe that the heavy Õ(nω)-time computation, the only source of amortization here,
happens only when a phase starts, once per ⌈n1−α⌉ updates. As a result, the amortized bound can
be converted into a worst-case bound using a standard technique, see, e.g., [ACK17, vdBNS19].

9.3 Vertex updates

Finally, we show that the dynamic Frobenius form algorithm of Section 5 leads to the first distance
oracle supporting distance queries in Õ(n) time and vertex updates (i.e., changing all the edges
incident to a single vertex) significantly faster than Õ(nω) in the worst-case. We note that a static
distance oracle supporting queries in Õ(n) time can be constructed in Õ(nω) time [YZ05].

Theorem 1.7. Let G be an unweighted digraph. There exists a Monte Carlo randomized data
structure maintaining G under fully dynamic vertex updates in Õ(n2) worst-case time per update
and supporting arbitrary pair distance queries in Õ(n) time. The answers are correct w.h.p.

Proof. The data structure is very simple. We maintain a weighted adjacency matrix A of G, as
given by Theorem 7.1. We also maintain a Frobenius form of A and AT . Since updating all the
incoming edges or all the outgoing edges of a vertex v ∈ V (G) can be encoded using a rank-1
update of A, a vertex update translates to at most 2 rank-1 updates of A. Hence, by Theorem 1.2,
the Frobenius forms of A and AT can be updated subject to a vertex update on G in Õ(n2) time.
After each update, we also recompute the auxiliary matrix R of Lemma 3.8 in Õ(n2) time. Given
an FNF and the auxiliary matrix, for any s, t ∈ V , we can compute the entries (A1)s,t, . . . , (A

n−1)s,t
in Õ(n) time. By Theorem 7.1, w.h.p., δG(s, t) equals the minimal d ≥ 0 such that (Ad)s,t 6= 0.

Acknowledgment

We would like to thank Maciej Gałązka for important clarifications regarding linear algebra, and
anonymous FOCS reviewers for valuable comments.

References

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs short-
est paths with worst-case update-time revisited. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 440–452.
SIAM, 2017.

[AIMN91] Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and Umberto
Nanni. Incremental algorithms for minimal length paths. J. Algorithms, 12(4):615–638,
1991.

[AvdB23] Anastasiia Alokhina and Jan van den Brand. Fully dynamic shortest path reporting
against an adaptive adversary. CoRR, abs/2304.07403, 2023.

[BCC+22] Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck.
Deterministic sensitivity oracles for diameter, eccentricities and all pairs distances. In
49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, volume 229 of LIPIcs, pages 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

25

[Ber09] Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths
with fast query and close to linear update time. In 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2009, pages 693–702. IEEE Computer
Society, 2009.

[Ber16] Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed
graphs. SIAM J. Comput., 45(2):548–574, 2016.

[BGL03] Richard P. Brent, Shuhong Gao, and Alan G. B. Lauder. Random krylov spaces over
finite fields. SIAM J. Discret. Math., 16(2):276–287, 2003.

[BGY80] Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun. Fast solution of toeplitz
systems of equations and computation of padé approximants. J. Algorithms, 1(3):259–
295, 1980.

[BHG+21] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vas-
silevska Williams, and Nicole Wein. New techniques and fine-grained hardness for
dynamic near-additive spanners. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 1836–1855. SIAM, 2021.

[BHS07] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algo-
rithms for maintaining transitive closure and all-pairs shortest paths. J. Algorithms,
62(2):74–92, 2007.

[BJN94] Phani Bhushan Bhattacharya, Surender Kumar Jain, and SR Nagpaul. Basic abstract
algebra. Cambridge University Press, 1994.

[BK09] Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed
vertices and edges. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, pages 101–110. ACM, 2009.

[BM21] Alin Bostan and Ryuhei Mori. A simple and fast algorithm for computing the N -th
term of a linearly recurrent sequence. In 4th Symposium on Simplicity in Algorithms,
SOSA 2021, pages 118–132. SIAM, 2021.

[Bra] Jan van den Brand. Complexity term balancer.
www.ocf.berkeley.edu/~vdbrand/complexity/. Tool to balance complexity
terms depending on fast matrix multiplication.

[CC20] Shiri Chechik and Sarel Cohen. Distance sensitivity oracles with subcubic preprocessing
time and fast query time. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, pages 1375–1388. ACM, 2020.

[Che15] Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
pages 1–10. ACM, 2015.

[CLPR12] Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance
oracles and routing schemes. Algorithmica, 63(4):861–882, 2012.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

26

www.ocf.berkeley.edu/~vdbrand/complexity/

[CWX21] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Algorithms, re-
ductions and equivalences for small weight variants of all-pairs shortest paths. In 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021,
volume 198 of LIPIcs, pages 47:1–47:21. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021.

[CZ] Shiri Chechik and Tianyi Zhang. Faster Deterministic Worst-Case Fully Dynamic
All-Pairs Shortest Paths via Decremental Hop-Restricted Shortest Paths, pages 87–99.

[CZ22] Shiri Chechik and Tianyi Zhang. Nearly 2-approximate distance oracles in subquadratic
time. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, pages 551–580. SIAM, 2022.

[DI04] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs
shortest paths. J. ACM, 51(6):968–992, 2004.

[DI05] Camil Demetrescu and Giuseppe F. Italiano. Trade-offs for fully dynamic transitive

closure on dags: breaking through the o(n2 barrier. J. ACM, 52(2):147–156, 2005.

[DP09] Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceed-
ings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2009, pages 506–515. SIAM, 2009.

[DR22] Ran Duan and Hanlin Ren. Maintaining exact distances under multiple edge failures.
In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
1093–1101. ACM, 2022.

[DZ17] Ran Duan and Tianyi Zhang. Improved distance sensitivity oracles via tree partition-
ing. In Algorithms and Data Structures - 15th International Symposium, WADS 2017,
volume 10389 of Lecture Notes in Computer Science, pages 349–360. Springer, 2017.

[Ebe00] Wayne Eberly. Asymptotically efficient algorithms for the frobenius form. Technical
report, Department of Computer Science, Universiyt of Calgary, 2000.

[EFGW21] Jacob Evald, Viktor Fredslund-Hansen, Maximilian Probst Gutenberg, and Christian
Wulff-Nilsen. Decremental APSP in unweighted digraphs versus an adaptive adversary.
In 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, volume 198 of LIPIcs, pages 64:1–64:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[FS11] Gudmund Skovbjerg Frandsen and Piotr Sankowski. Dynamic normal forms and dy-
namic characteristic polynomial. Theor. Comput. Sci., 412(16):1470–1483, 2011.

[Gie95] Mark Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM J.
Comput., 24(5):948–969, 1995.

[GR21] Yong Gu and Hanlin Ren. Constructing a distance sensitivity oracle in O(nˆ2.5794 M)
time. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, volume 198 of LIPIcs, pages 76:1–76:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

27

[GU18] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1029–1046. SIAM,
2018.

[GVL13] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[GW20a] Fabrizio Grandoni and Virginia Vassilevska Williams. Faster replacement paths and
distance sensitivity oracles. ACM Trans. Algorithms, 16(1):15:1–15:25, 2020.

[GW20b] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs
shortest paths: Improved worst-case time and space bounds. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2562–2574.
SIAM, 2020.

[Har09] Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems. SIAM
J. Comput., 39(2):679–702, 2009.

[HP98] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and appli-
cations. J. Complex., 14(2):257–299, 1998.

[HS81] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. SIAM
Review, 23(1):53–60, 1981.

[JV05] Claude-Pierre Jeannerod and Gilles Villard. Essentially optimal computation of the
inverse of generic polynomial matrices. J. Complex., 21(1):72–86, 2005.

[Kar21] Adam Karczmarz. Fully dynamic algorithms for minimum weight cycle and related
problems. In 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, volume 198 of LIPIcs, pages 83:1–83:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[Kel85] Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theor. Com-
put. Sci., 36:309–317, 1985.

[KŁ19] Adam Karczmarz and Jakub Łącki. Reliable hubs for partially-dynamic all-pairs short-
est paths in directed graphs. In 27th Annual European Symposium on Algorithms, ESA
2019, volume 144 of LIPIcs, pages 65:1–65:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

[KS02] Valerie King and Garry Sagert. A fully dynamic algorithm for maintaining the transitive
closure. J. Comput. Syst. Sci., 65(1):150–167, 2002.

[KS23] Adam Karczmarz and Piotr Sankowski. Fully dynamic shortest paths and reachability
in sparse digraphs. In 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, volume 261 of LIPIcs, pages 84:1–84:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023.

[LPW20] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic trian-
gles, intermediate matrix products, and convolutions. In 11th Innovations in Theoreti-
cal Computer Science Conference, ITCS 2020, volume 151 of LIPIcs, pages 53:1–53:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

28

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian elimination. In
45th Symposium on Foundations of Computer Science (FOCS 2004), pages 248–255.
IEEE Computer Society, 2004.

[NP95] Peter M. Neumann and Cheryl E. Praeger. Cyclic matrices over finite fields. Journal
of the London Mathematical Society, 52(2):263–284, 1995.

[PR14] Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound.
SIAM J. Comput., 43(1):300–311, 2014.

[Ren22] Hanlin Ren. Improved distance sensitivity oracles with subcubic preprocessing time.
J. Comput. Syst. Sci., 123:159–170, 2022.

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011.

[San04] Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended
abstract). In 45th Symposium on Foundations of Computer Science, FOCS 2004, pages
509–517. IEEE Computer Society, 2004.

[San05a] Piotr Sankowski. Shortest paths in matrix multiplication time. In Algorithms - ESA
2005, 13th Annual European Symposium, volume 3669 of Lecture Notes in Computer
Science, pages 770–778. Springer, 2005.

[San05b] Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Computing
and Combinatorics, 11th Annual International Conference, COCOON 2005, volume
3595 of Lecture Notes in Computer Science, pages 461–470. Springer, 2005.

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007,
pages 118–126. SIAM, 2007.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM, 27(4):701–717, 1980.

[Som14] Christian Sommer. Shortest-path queries in static networks. ACM Comput. Surv.,
46(4):45:1–45:31, 2014.

[Sto01] Arne Storjohann. Deterministic computation of the frobenius form. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, pages 368–377. IEEE
Computer Society, 2001.

[Sto15] Arne Storjohann. On the complexity of inverting integer and polynomial matrices.
Comput. Complex., 24(4):777–821, 2015.

[SW19] Piotr Sankowski and Karol Wegrzycki. Improved distance queries and cycle counting
by frobenius normal form. Theory Comput. Syst., 63(5):1049–1067, 2019.

[Tho04] Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative
cycles. In SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, volume 3111
of Lecture Notes in Computer Science, pages 384–396. Springer, 2004.

29

[Tho05] Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing 2005, pages
112–119. ACM, 2005.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24,
2005.

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure
algorithms. SIAM J. Comput., 20(1):100–125, 1991.

[vdB21] Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up
iterative algorithms. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, pages
1–13. SIAM, 2021.

[vdBFN21] Jan van den Brand, Sebastian Forster, and Yasamin Nazari. Fast deterministic fully
dynamic distance approximation. CoRR, abs/2111.03361, 2021.

[vdBFN22] Jan van den Brand, Sebastian Forster, and Yasamin Nazari. Fast deterministic fully
dynamic distance approximation. In 63rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2022, pages 1011–1022. IEEE, 2022.

[vdBN19] Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, pages 436–455. IEEE Computer
Society, 2019.

[vdBNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 456–480.
IEEE Computer Society, 2019.

[vdBS19] Jan van den Brand and Thatchaphol Saranurak. Sensitive distance and reachability
oracles for large batch updates. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, pages 424–435. IEEE Computer Society, 2019.

[Vil00] Gilles Villard. Computing the frobenius normal form of a sparse matrix. In Computer
Algebra in Scientific Computing, pages 395–407, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theory, 32(1):54–62, 1986.

[Wul12] Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing
time. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, pages 202–208. SIAM, 2012.

[WY13] Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013.

[YZ05] Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast
matrix multiplication. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), pages 389–396. IEEE Computer Society, 2005.

30

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and
Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic and
Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages 216–
226. Springer, 1979.

[ZLS15] Wei Zhou, George Labahn, and Arne Storjohann. A deterministic algorithm for invert-
ing a polynomial matrix. J. Complex., 31(2):162–173, 2015.

[Zwi02] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multi-
plication. J. ACM, 49(3):289–317, 2002.

31

	Introduction
	State of the art
	Our results
	Technical overview
	Further related work

	Preliminaries
	Generic matrices and Frobenius form
	Computing submatrices of k first powers of a generic matrix
	Maintaining an FNF under generic rank-1 updates
	Accessing matrix powers under batch element updates
	Representing the graph with a generic matrix
	Handling edge weights

	Distance sensitivity oracles
	Single failures
	Multiple failures

	Dynamic distances
	Tweaking the data structure of BrandFN22
	Another data structure for single-edge updates
	Vertex updates

