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Abstract

We prove a k−Ω(log(ε2−ε1)) lower bound for adaptively testing whether a Boolean function
is ε1-close to or ε2-far from k-juntas. Our results provide the first superpolynomial separation
between tolerant and non-tolerant testing for a natural property of boolean functions under
the adaptive setting. Furthermore, our techniques generalize to show that adaptively testing
whether a function is ε1-close to a k-junta or ε2-far from (k+ o(k))-juntas cannot be done with
poly(k, (ε2 − ε1)

−1) queries. This is in contrast to an algorithm by Iyer, Tal and Whitmeyer
[CCC 2021] which uses poly(k, (ε2 − ε1)

−1) queries to test whether a function is ε1-close to a
k-junta or ε2-far from O(k/(ε2 − ε1)

2)-juntas.
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1 Introduction

Junta Testing. We say a Boolean function f : {0, 1}n → {0, 1} is a k-junta if it only depends on
k of its input variables. As one of the most fundamental classes of Boolean functions, juntas have
received significant attention during the past few decades in extensive areas such as learning theory
[Blu94, BL97, MOS03, Val15] (where juntas are used to model learning concepts in the presence of
many irrelevant features) and analysis of Boolean functions [O’D14] (where juntas are used as good
approximations of other classes of Boolean functions). Juntas have also been studied intensively in
property testing. Under the standard model, the goal of the junta testing problem is to understand
how many queries are needed by a randomized algorithm to decide whether a function f : {0, 1}n →
{0, 1} is a k-junta or ε-far from k-juntas, where we say f is ε-far from k-juntas if f and g disagree
on at least ε2n entries for every k-junta g : {0, 1}n → {0, 1}. Testing juntas, in particular, was
initially of interest because of its connections to testing long-codes (which is related to PCPs)
[BGS98, PRS02], but it is also a very natural question and highly motivated by feature selection
in machine learning.

This problem has been settled now under both the adaptive and non-adaptive settings.1 After
a sequence of work [PRS02, CG04, FKR+04, Bla08, Bla09, BGSMdW13, STW15, CST+18, Sağ18],
starting with [PRS02], it was shown that Θ̃(k/ε) queries are necessary [CG04, Sağ18] and sufficient
[Bla09] for adaptive junta testing; Θ̃(k3/2/ε) queries are necessary [CST+18] and sufficient [Bla08]
for non-adaptive algorithms. Note that all the bounds are independent of n, the number of variables
in the function, which can be much larger than k.

Tolerant Testing. A drawback of the standard testing model is that the algorithm is allowed to
reject functions that are very close to having the property. Indeed all aforementioned junta testing
algorithms would reject a function immediately once it has been found to have more than k relevant
variables, no matter how big their influences are in the function. This makes algorithms under the
standard model less applicable in more realistic scenarios that arise from experimental design and
data analysis, where even a correct instance with the desired property may be subject to a small
amount of noise.

To address this question, Parnas, Ron, and Rubinfeld [PRR06] introduced tolerant testing, a
natural generalization of the standard testing model. For the tolerant testing of juntas, the goal of
a (k, ε1, ε2)-tester, for some 0 ≤ ε1 < ε2 < 1, is to tell whether a given function f : {0, 1}n → {0, 1}
is ε1-close to a k-junta or is ε2-far from k-juntas, where we say f is ε1-close to a k-junta g if f and
g disagree on no more than ε12

n entries. So the standard model corresponds to the case of ε1 = 0.
In general, tolerant testing of a property can be much more challenging than its standard testing,
as intuitively seeing a single violation of the property is no longer sufficient to reject the input and
the tester needs to estimate the distance of the input to the property.2

While it is believed that tolerant testing is much harder and current best upper bounds for well
studied properties of Boolean functions such as juntas (which we review next) and monotonicity
all remain exponential in their counterparts under the non-tolerant model [ITW21, FR10], there
is no known superpolynomial separation between tolerant and non-tolerant testings for natural
properties of Boolean functions.3 Our work proves the first such superpolynomial separation, using
junta testing. We also believe our approach may be fruitful in proving tolerant testing lower bounds
for other properties such as monotonicity.

1A testing algorithm is adaptive if its queries can depend on results from previous queries.
2It was shown in [PRR06] that distance approximation and (fully) tolerant testing are equivalent up to a log(1/ε)

factor in the query complexity.
3Using PCPs, [FF05] showed the existence of a class of Boolean functions that has a strong separation between

the two models.
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Previous Results on Tolerant Junta Testing. Indeed testing juntas under the tolerant model
turns out to be challenging. Even after much effort, there remains an exponential gap in our under-
standing of its query complexity. After a sequence of work [CFGM12, BCE+19, DMN19, ITW21],
the best algorithm up to date [ITW21] (which is highly adaptive) still needs exp(Õ(

√

k/(ε2 − ε1)))
queries. And there has been no progress on the lower bound side: the current best lower bound for
adaptive testers remains to be the Ω̃(k/ε) lower bound from the standard testing model.

There has been more success on lower bounds when the tester is non-adaptive. [LW19] showed
that any non-adaptive algorithm requires Ω̃(k2) queries, for some constants 0 < ε1 < ε2. Later, for
ε1 = O(1/k1−η) and ε2 = O(1/

√
k), the bound was improved to 2k

η
for any 0 < η < 1/2 [PRW22].

Relaxed Tolerant Junta Testing. Given the state of the art, the following relaxed, easier model
has been considered in the literature [FKR+04, BBM11, RT13, DMN19, ITW21], with the hope of
developing algorithms that are significantly more efficient than the best tolerant algorithm to date:
For some k ≤ k′ and ε1 < ε2, the goal of a (k, k′, ε1, ε2)-tester is to decide whether a given function
is ε1-close to a k-junta or is ε2-far from k′-juntas.

The relaxed model was first posed by Fischer et al. in [FKR+04] under the non-tolerant setting
(with ε1 = 0), who asked whether a (k, 2k, 0, ε)-tester still requires Ω(k) queries. Blais et al. [BBM11]
proved that any (k, k+O(

√
k), 0, ε)-tester must make Ω(k) queries for ε = Θ(1). This was improved

by Ron and Tsur [RT13] to an Ω̃(k) lower bound for (k, 2k, 0, ε)-testers for some constant ε.
As before, under the relaxed, tolerant setting (ε1 > 0), the best known lower bound remains to

be the Ω̃(k) lower bound of [RT13] inherited from the non-tolerant setting. In contrast, much more
efficient algorithms are known when k′ is sufficiently larger than k. First Blais et al. [BCE+19] gave
a (k, 4k, ε/16, ε)-tester that makes poly(k, ε−1) queries. De et al. [DMN19] removed the restriction
of ε2/ε1 ≥ 16 and proved that poly(k, (ε2 − ε1)

−1) queries suffice for a (k,O(k2/(ε2 − ε1)
2), ε1, ε2)-

tester. More recently, Iyer et al. in [ITW21] obtained a (k,O(k/(ε2−ε1)
2), ε1, ε2)-tester that makes

poly(k, (ε2 − ε1)
−1) queries.

Our Contribution. Obtaining stronger adaptive lower bounds for tolerant junta testing has been
an important open problem in the property testing of Boolean functions (see e.g., the open problem
posed in [ITW21]). In this paper, we make progress on this question by giving a superpolynomial
separation between tolerant and non-tolerant adaptive junta testing:

Theorem 1. Let ε1, ε2 : 0.01 ≤ ε1 < ε2 ≤ 0.49 be two parameters such that ε2 − ε1 ≥ 2−O(k.99).4

Then any (k, ε1, ε2)-tolerant junta tester requires k−Ω(log(ε2−ε1)) queries.

Theorem 1 rules out the possibility of any tolerant junta tester that makes poly(k) · F (ε1, ε2)
many queries, where F is an arbitrary function. In particular, this means that there is no tolerant
junta tester that makes poly(k) queries for all constants ε1, ε2 : 0 < ε1 < ε2 < 1. Moreover, when
ε2 − ε1 is polynomially small (e.g., ε1 = 1/3 and ε2 = 1/3+1/ka for any constant a > 0), Theorem
1 gives a lower bound of kΩ(log k) for adaptive tolerant junta testing.

We remark that our proof naturally extends the linear lower bound of Chockler and Gutfreund
[CG04]. Namely, we prove Theorem 1 by showing that determining whether a function on (k + ℓ)
variables is ε2-far or ε1-close to a k-junta requires kΩ(ℓ) queries. Our main technical insight is that
utilizing k-wise independence in the construction of hard instances essentially allows us to assume
that the tester is non-adaptive in the lower bound proof.

Next, by making some slight modifications to our construction, we can extend our techniques
to the relaxed tolerant junta testing setting. Namely, we prove that

4Both constants 0.01 and 0.49 are arbitrary; any constants that are positive and strictly less than 1/2 would work.
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Theorem 2. Let ε1, ε2, k and γ be parameters such that 0.01 ≤ ε1 < ε2 ≤ 0.49, ε2 − ε1 ≥ 2−k0.1

and γ ≥ 1/k but is sufficiently small. Then any (k, (1 + γ)k, ε1, ε2)-tester has query complexity

(

1

γ

)Ω(− log(ε2−ε1))

.

Setting ε2 − ε1 = 1/k, we get a superpolynomial lower bound (in k) whenever γ = o(1). Hence
Theorem 2 rules out the possibility of any (k, k+ o(k), ε1, ε2)-tester that makes poly(k, (ε2 − ε1)

−1)
queries, which complements the need of a sufficiently large gap between k′ and k to obtain testers
with poly(k, (ε2 − ε1)

−1) queries in [BCE+19, DMN19, ITW21].

Notation. We start with some simple notation. Given a set S ⊆ [n] and a binary string x ∈ {0, 1}n,
we let x|S be the restriction of x to the coordinates in S. Similarly, given a string x ∈ {0, 1}S and
y ∈ {0, 1}T for disjoint sets S, T ⊆ [n] we let x ⊔ y denote the string z ∈ {0, 1}S∪T with z|S = x
and z|T = y. For a set S ⊆ [n] and x ∈ {0, 1}n, we take x⊕S to denote the string y ∈ {0, 1}n with
y|[n]\S = x|[n]\S and ys 6= xs for all s ∈ S. Finally, we let x−i = x1x2...xi−1xi+1...xn.

Bn(r) will denote the hamming ball of radius r centered at 0n and B(x, r) will be the hamming
ball around a point x ∈ {0, 1}n of radius r.

We let IE denote the indicator variable for E. Additionally, MAJ denotes the majority function,
breaking ties arbitrarily.

2 Lower Bounds for Tolerant Junta Testing

We will actually prove a stronger lower bound which allows for non-constant ε1 and ε2.

Theorem 3. For any 0 < ε1 < ε2 ≤ 0.49 and integer k with ε2 − ε1 ≥ 2−O(k.99) and

(1− ε1/ε2)
−1 ≥ logO(1)(1/ε2),

any (k, ε1, ε2)-tolerant junta tester must make at least k−Ω(log(1−ε1/ε2)) queries.

We’ll assume that 1− ε1/ε2 is sufficiently small. Note that we can always take the constant in
the Ω notation to be sufficiently small, so that when 1 − ε1/ε2 is large the theorem only gives an
Ω(k) lower bound, which follows from [CG04].

The key insight for our lower bound is the following observation:

Lemma 1. Let n be an integer divisible by 4, D be the uniform distribution over {0, 1}n, and D′

be the uniform distribution over {x ∈ {0, 1}n : ⊕n
i=1xi = 1}. Then

Ex∼D′

[

dist(x, {0n, 1n})
]

≤ Ex∼D
[

dist(x, {0n, 1n})
]

− 1

n
,

where 0n and 1n are the all zeros and all ones strings respectively and dist is the hamming distance.

We remark that the 1
n term in the lemma is not tight, but will suffice for our purposes. The

proof uses a coupling argument; we defer it to the end of the section.
Our construction will be parametrized by integers ℓ and r as well as a value p ∈ [0, 12), which

will be specified at the end (in the proof of Theorem 3) by k, ε1 and ε2 and in particular, we will
make sure that r < k. It may help the reader to set r = 0 and p = 0, which will lead to a lower
bound construction that works for some ε2 =

1
2 − oℓ(1) and ε1 = ε2 − 2−O(ℓ) (in which case DNO is

simply the uniform distribution over all functions). Setting r and p appropriately (as we do later
in the proof of Theorem 3) can help us shift ε1 and ε2 to where we want.
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We will proceed by Yao’s principle and give two distributions DY ES and DNO, both over boolean
functions from {0, 1}n to {0, 1} with n := k + ℓ. We show that they are ε1-close and ε2-far from
k-juntas, respectively, and show that it is difficult for any deterministic algorithm to distinguish
them with few queries.

DNO: A boolean function f : {0, 1}n → {0, 1} is drawn as follows:

(a) For each x ∈ {0, 1}n with x|[r] 6= 0r, independently draw f(x) from Bernoulli(p).

(b) For each x ∈ {0, 1}n with x|[r] = 0r, draw f(x) uniformly and independently at random.

DY ES: A boolean function f : {0, 1}n → {0, 1} is drawn as follows:

(a) Randomly choose a set J ⊆ {r + 1, ..., n} of size ℓ.

(b) For each x ∈ {0, 1}n with x|[r] 6= 0r, independently draw f(x) from Bernoulli(p).

(c) For each x ∈ {0, 1}n with x|[r] = 0r and x|J 6= 1ℓ, draw f(x) uniformly and
independently at random.

(d) For each x ∈ {0, 1}n with x|[r] = 0r and x|J = 1ℓ, set f(x) to be such that

⊕

y∈{0,1}J
f(x|[n]\J ⊔ y) = 1.

The key property of the two distributions is that to distinguish DY ES and DNO we must at least
query a pair of points x, x⊕J for some x. (In fact, we must query, for some x, x⊕S for all S ⊆ J to
get any evidence, but this is more than we need for the lower bound.)

Lemma 2. Consider a set of points x(1), ..., x(m) ∈ {0, 1}n and y1, . . . , ym ∈ {0, 1}. Then

Pr
f ,J∼DYES

[

∀i f(x(i)) = yi | ∀i, j x(i) 6= (x(j))⊕J
]

= Pr
f∼DNO

[

∀i f(x(i)) = yi

]

Proof. Consider a J ⊆ {r + 1, ..., n} such that x(i) 6= (x(j))⊕J for all i, j ∈ [m]. We will show that

Pr
f ,J∼DYES

[

∀i f(x(i)) = yi ∧ J = J
]

= Pr
f∼DNO

[

∀i f(x(i)) = yi

]

· Pr
f ,J∼DYES

[

J = J
]

.

Indeed, without loss of generality let x(1), ..., x(a) be such that x(i)|[r] 6= 0r and x(a+1)...x(m) be such

that x(i)|[r] = 0r. Now note that for any ρ ∈ {0, 1}[n]\J, the following 2ℓ bits

{f(ρ ⊔ z) : z ∈ {0, 1}ℓ}

are (2ℓ − 1)-wise independent. So it follows that the events f(x(i)) = yi are all independent and

Pr
f ,J∼DYES

[

∀i f(x(i)) = yi | J = J
]

=

(

a
∏

i=1

pyi(1− p)1−yi

)

· 1

2m−a
= Pr

f∼DNO

[

∀i f(x(i)) = yi

]

This finishes the proof of the lemma.

It now follows that DY ES and DNO are hard to distinguish.

Lemma 3. Any deterministic algorithm ALG that distinguishes between DY ES and DNO with prob-
ability at least 2/3, i.e., Prf∼DYES

[ALG(f) accepts] ≥ 2/3 and Prf∼DNO
[ALG(f) rejects] ≥ 2/3, must

make at least Ω

(

√

(k−r
ℓ

)

)

queries.
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Proof. Towards a contradiction, suppose ALG distinguishes the distributions and makes at most

Q = 1
10

√

(k−r
ℓ

)

queries. Since ALG is deterministic, it corresponds to a decision tree. But now

observe that for a particular path p of the decision tree, we have that

Pr
f∼DNO

[ALG(f) follows p] = Pr
f ,J∼DYES

[ALG(f) follows p|p doesn’t query a pair x, x⊕J].

by Lemma 2. We then conclude that

Pr
f∼DNO

[ALG(f) follows p] ≤ Prf∼DYES
[ALG(f) follows p]

Prf ,J∼DYES
[p doesn’t query a pair x, x⊕J]

.

Now observe

Pr
f ,J∼DYES

[p doesn’t query a pair x, x⊕J] ≥ 1− Q2

(k−r
ℓ

) ≥ .99.

Thus
Pr

f∼DNO

[ALG(f) follows p] ≤ 1.02 · Pr
f∼DYES

[ALG(f) follows p]

Summing over all rejecting paths we conclude that

Pr
f∼DNO

[ALG(f) rejects] ≤ 1.02 · Pr
f∼DY ES

[ALG(f) rejects] < 1/2,

a contradiction. So any tester must make Ω

(

√

(k−r
ℓ

)

)

queries as claimed.

Next, we need to understand exactly how far functions in DNO are from being k-juntas. To do
so, we’ll need the following helper lemma

Lemma 4. Let x1, ...,xn be independent boolean valued random variables such that xi ∼ Bernoulli(pi)
for constants pi ∈ [0, 1/2]. If 1

2 − 1
n

∑n
i=1 pi ≥ δ then

∣

∣

∣

∣

∣

Ex1,...,xn [dist(x1x2...xn, {0n, 1n})]−
n
∑

i=1

pi

∣

∣

∣

∣

∣

≤ ne−nδ2/3

Proof. We start by proving that it is unlikely that x1, ...,xn is closer 1n than 0n. Indeed, the
probability of this occurring is

Pr
x1,...,xn

[

n
∑

i=1

xi > n/2

]

≤ e−nδ2/3

by a Hoeffding bound. So we conclude that

∣

∣

∣

∣

Ex1,...,xn [dist(x1...xn, {0n, 1n})]− Ex1,...,xn [dist(x1...xn, 0
n)]

∣

∣

∣

∣

≤ ne−nδ2/3.

The result now follows as

E[dist(x1, ...,xn, 0
n)] =

n
∑

i=1

pi.

This finishes the proof of the lemma.
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Let ∆t be defined as follows:

∆t :=
1

t
· Ex1...xt∼Bernoulli( 1

2
)

[

dist(x1, ...,xt, {0t, 1t})
]

.

Lemma 5. Suppose that ℓ ≤ k, then

Pr
f∼DNO

[

dist(f ,Jk) ≤ p(1− 2−r) + ∆2ℓ · 2−r − e−2ℓ·(1/2−p)2/12 − 2−k/3
]

= ok(1)

where Jk denotes the class of k-juntas.

Proof. Fix a set S ⊆ [n] of size k. Let JS denote the set of k-juntas on S. Now take I = S ∩ [r]
and note that

dist(f ,JS) =
1

2k

∑

ρ∈{0,1}S

∑

y∈{0,1}[n]\S

1

2ℓ

∣

∣

∣
f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}[n]\S})

∣

∣

∣

We will lower bound Ef [dist(f ,JS)]. Consider some fixed ρ ∈ {0, 1}S . If ρ|I 6= 0 then

1

2ℓ
· Ef





∑

y∈{0,1}[n]\S

f(ρ ⊔ y)



 = p.

So by Lemma 4 it follows that

Ef





1

2ℓ

∑

y∈{0,1}[n]\S

∣

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}[n]\S})
∣

∣

∣



 ≥ p− e−2ℓ·(1/2−p)2/3.

So now suppose that ρI = 0|I|. We take cases on |I|. First suppose that |I| < r. Then

1

2ℓ
· Ef





∑

y∈{0,1}[n]\S

f(ρ ⊔ y)



 = p(1− 2|I|−r) +
1

2
· 2|I|−r

as the 2|I|−r fraction of x values with x|[r] = 0r are distributed according to Bernoulli(12 ) and the
rest are distributed according to Bernoulli(p). Using Lemma 4 along with the fact that r− |I| ≥ 1,
we get

Ef





1

2ℓ

∑

y∈{0,1}[n]\S

∣

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}[n]\S})
∣

∣

∣



 ≥ p(1−2|I|−r)+
1

2
·2|I|−r−e−2ℓ·(1/2−p)2/12.

All together we see that in this case

Ef [dist(f ,JS)] ≥ (1− 2−|I|)p+ 2−|I|
(

p(1− 2|I|−r) +
1

2
· 2|I|−r

)

− e−2ℓ·(1/2−p))2/12

= p(1− 2−r) +
1

2r+1
− e−2ℓ·(1/2−p))2/12

Now suppose that |I| = r. It then follows that all the entries are Bernoulli(12) and

1

2ℓ
· Ef





∑

y∈{0,1}[n]\S

∣

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}[n]\S})
∣

∣

∣



 = ∆2ℓ

7



So we conclude that in this case

Ef [dist(f ,JS)] ≥ p(1− 2−r) + ∆2ℓ · 2−r − e−2ℓ·(1/2−p)2/12

Since ∆2ℓ <
1
2 , it follows that for any set S ⊆ [n]

Ef [dist(f ,JS)] ≥ p(1− 2−r) + ∆2ℓ · 2−r − e−2ℓ·(1/2−p)2/12.

We now note that dist(f ,JS) is the average of independent random variables in [0, 1]. Namely,
it is the average the random variables

zρ :=
∑

y∈{0,1}[n]\S

1

2ℓ

∣

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}[n]\S})
∣

∣

∣

Thus, by Hoeffding’s inequality we have that

Pr
f∼DNO

[

dist(f ,JS) ≤ E[dist(f ,JS)]− 2−kt
]

≤ e−2t2/2k

Taking t to be 22k/3, it follows that

Pr
f∼DNO

[

dist(f ,JS) ≤ E[dist(f ,JS)]− 2−k/3
]

≤ e−2·2k/3

We can now take a union bound over all subsets to conclude that

Pr
f∼DNO

[

dist(f ,Jk) ≤ p(1− 2−r) + ∆2ℓ · 2−r − e−2ℓ·(1/2−p)2/12 − 2−k/3
]

≤ e−2·2k/3(k + ℓ)k = ok(1)

We will also need an analogous result for functions drawn from DY ES .

Lemma 6. Suppose that ℓ ≥ 2, then

Pr
f∼DYES

[

dist(f ,Jk) ≥ p(1− 2−r) + (∆2ℓ − 2−2ℓ)) · 2−r + e−2ℓ·(1/2−p)2/12 + 2−k/3
]

= ok(1)

where Jk denotes the class of k-juntas.

Proof. The proof follows very similarly to Lemma 5.

Ef ,J∼DYES
[dist(f ,J[n]\J)]

=
1

2k
Ef ,J∼DYES





∑

ρ∈{0,1}[n]\J

∑

y∈{0,1}J

1

2ℓ
∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}J})
∣

∣





≤ p(1− 2−r) + e−2ℓ·(1/2−p)2/12 +
(

∆2ℓ − 2−2ℓ
)

· 2−r

where p(1− 2−r) + e−2ℓ·(1/2−p)2/12 corresponds to the contribution from terms with ρ|[r] 6= 0r and
(

∆2ℓ − 2−2ℓ
)

· 2−r bounds the expectation for terms with ρ|[r] = 0r by Lemma 1. Applying a
Hoeffding bound now gives us the desired result.

We can now put everything together and prove the lower bound.
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Proof of Theorem 3. It only remains to set the parameters so any (k, ε1, ε2) tolerant tester is forced
to distinguish the two distributions. We let ℓ = ⌊−1

10 log(1 − ε1ε
−1
2 )⌋. We then take r to be the

smallest integer such that

∆2ℓ2
−r ≤ ε2 + 2−k/3 + e−2ℓ·(0.009)2/12

and set p to satisfy

ε2 + 2−k/3 + e−2ℓ·(0.009)2/12 = p(1− 2−r) + ∆2ℓ · 2−r.

We assume that ℓ and k are sufficiently large such that 2−k/3 ≤ .005, e−2ℓ·(0.009)2/12 ≤ .005, and
∆2ℓ ≥ .491. Note that these together imply that r ≥ 0 and 0 ≤ p ≤ .491. Moreover, note that by
the minimality of r, we have that

∆2ℓ2
−r+1 ≥ ε2.

which implies that 2−r ≥ ε2 and thus assuming ε2 − ε1 ≥ 2−k/6, r ≤ k/6 as promised.
To see that a (k, ε1, ε2) tolerant tester must distinguish DY ES and DNO, first observe that by

Lemma 5 and our choice of parameters, we have that functions in DNO are at least ε2-far from the
set of k-juntas with high probability. On the other hand, by Lemma 6, functions from DY ES are
with high probability

p(1− 2−r) + (∆2ℓ − 2−2ℓ)) · 2−r + e−2ℓ·(.009)2/12 + 2−k/3

close to some k-junta. We’ll show this is at most ε1 under our choice of parameters. To see this
first note that

e−2ℓ(.009)2/12 ≤ e−(1−ε1ε
−1
2 )−1/10(.009)2/24 ≤ e−(1−ε1ε

−1
2 )−1/11

where the second inequality assumes (1 − ε1ε
−1
2 )−1 is sufficiently large. Now we assume that

(1− ε1ε
−1
2 )−1 ≥ log12( 1

ε2
), which we took as a hypothesis in the theorem, and observe

−2 log(ε2−ε1) = −2 log(ε2)−2 log(1−ε1ε
−1
2 ) ≤ 2(1−ε1ε

−1
2 )−1/12+2(1−ε1ε

−1
2 )−1/12 ≤ (1−ε1ε

−1
2 )−1/11

for (1− ε1ε
−1
2 )−1 sufficiently large. Thus,

e−(1−ε1ε
−1
2 )−1/11 ≤ e2 log(ε2−ε1) = (ε2 − ε1)

2.

Plugging these into our expression for the distance of functions in DY ES to the set of k-juntas
yields that they are

ε2 + 4(ε2 − ε1)
2 − 2

1
5
log(1−ε1ε

−1
2 )ε2 ≤ ε2 + 4(ε2 − ε1)

2 − (1− ε1ε
−1
2 )

1
5 ε2

≤ ε2 + 4(ε2 − ε1)
2 − 10(1 − ε1ε

−1
2 )ε2 ≤ ε1

close to being a k-junta with high probability, again assuming (1−ε1ε
−1
2 )−1 is sufficiently large.

Thus any tolerant tester must distinguish the two distributions and the result follows from
Lemma 3.

Finally, we conclude by proving Lemma 1.
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Proof of Lemma 1. We’ll prove the statement by a coupling argument. Note that we can sample
from D taking x1, ...,xn to be i.i.d. Bernoulli(12) random variables. Similarly, we can sample from

D′ by taking x1, ...,xn−1 to be i.i.d. Bernoulli(12) and then setting xn = 1 ⊕
⊕n−1

i=1 xi. We now
compute

Ex∼D′ [dist(x, {0n, 1n})]
= Ex∼D′

[

dist(x1x2...xn−1, {0n−1, 1n−1}) + Ixn 6=MAJ(x1,...,xn−1)

]

= Ex∼D′,y∼Bernoulli( 1
2
)[dist(x1x2...xn−1, {0n−1, 1n−1}) + Ixn 6=MAJ(x1,...,xn−1)

+ Iy 6=MAJ(x1,...,xn−1) − Iy 6=MAJ(x1,...,xn−1)]

= Ex∼D[dist(x, {0n, 1n})] + Ex∼D′,y∼Bernoulli( 1
2
)[Ixn 6=MAJ(x1,...,xn−1) − Iy 6=MAJ(x1,...,xn−1)]

= Ex∼D[dist(x, {0n, 1n})] + Ex∼D′ [Ixn 6=MAJ(x1,...,xn−1)]−
1

2

where the first equality uses the fact the fact that MAJ(x1, ...,xn) = MAJ(x1, ...,xn−1) since n is
a multiple of 4 and x has odd parity. Now note that

Pr
x∼D′

[xn 6= MAJ(x1, ...,xn−1)] = Ei∼[n]

[

Pr
x∼D′

[xi 6= MAJ(x−i)]

]

= Ex∼D′

[

Pr
i∼[n]

[xi 6= MAJ(x−i)]

]

.

Since 4|n we have that any string x of odd parity satisfies MAJ(x−j) = MAJ(x) for all j. Moreover,
at most n/2− 1 bits of x differ from the majority. Thus,

Ex∼D′

[

Pr
i∼[n]

[xi 6= MAJ(x−i)]

]

≤
(n

2
− 1
) 1

n
=

1

2
− 1

n

as desired.

3 Lower Bounds for Relaxed Junta Testing

Recall that for relaxed tolerant junta testing, a (k, k′, ε1, ε2) tester must accept functions that are
ε1-close to some k-junta and reject those that are ε2-far from all k′ > k juntas. To prove Theorem
2, it will suffice to show:

Theorem 4. For any 0.01 ≤ ε1 < ε2 ≤ 0.49 and integer k with ε2 − ε1 ≥ 2−O(k) and any (k, k +

⌊− log(ε2−ε1)
20 ⌋, ε1, ε2)-tolerant junta tester must make at least

(

k
− log(ε2−ε1)

)−Ω(log(ε2−ε1))
queries.

We can then combine this result with the following observation:

Lemma 7. Let f : {0, 1}n → {0, 1} be a boolean function, b be an integer, and take F : {0, 1}nb →
{0, 1} as

F (x) = f





⊕

i=1,...,b

xi,
⊕

i=b+1,...,2b

xi, . . . ,
⊕

i=nb−b+1,...,nb

xi



 .

Then for any k ≤ n we have that

dist(F,Jkb) = dist(F,Jkb+b−1) = dist(f,Jk)

10



We include a proof in the appendix, but intuitively any junta must use all the coordinates from
a set of xor’d variables or no variables from it. This then gives the following corollary:

Corollary 1. Let k, ℓ, b be integers and 0 ≤ ε1 ≤ ε2 ≤ 1
2 . If any (k, k + ℓ, ε1, ε2) tester must make

Q(k, ℓ, ε1, ε2) queries, then any (kb, (k + ℓ)b+ b− 1, ε1, ε2) tester must make Q(k, ℓ, ε1, ε2) queries.

Proof. We’ll construct a (k, k+ℓ, ε1, ε2) tester using a (kb, (k+ℓ)b+b−1, ε1 , ε2) tester ALG. Indeed,
given a function f : {0, 1}n → {0, 1}, we construct F as in Lemma 7. We then run ALG on F and
accept if ALG accepts and reject otherwise.

Note that dist(F,Jkb) = dist(f,Jk) and dist(F,J(k+ℓ)b+b−1) = dist(f,Jk+ℓ), so this indeed
constitutes a (k, k + ℓ, ε1, ε2) tester. Since we can answer each query to F with at most one query
to f , the corollary follows.

With this, we can prove Theorem 2.

Proof of Theorem 2. Note that it suffices to handle the case when γ ≥ 1
k.01

: If 1
k ≤ γ ≤ 1

k.01
, a

(k, (1+γ)k, ε1, ε2) tester is also a (k, (1+ 1
k.01

)k, ε1, ε2) tester. Thus, the k
−Ω(log(ε2−ε1)) query lower

bounds for a (k, (1+ 1
k.01

)k, ε1, ε2) applies to the (k, (1+γ)k, ε1, ε2) tester, which proves the desired
result.

Let ℓ = ⌊− log(ε2 − ε1)⌋ and set k′ = ⌊ℓ/(100γ)⌋. Now observe that if γ is smaller than some

appropriate absolute constant, we can apply Theorem 4 to get a
(

1
γ

)−Ω(log(ε2−ε1))
lower bound for

a (k′, k′ + ⌊ℓ/20⌋, ε1, ε2) tester. Now let b = ⌊k/k′⌋. Applying Corollary 1 then extends this lower
bound to (k′b, k′b+ b⌊ℓ/20⌋ + b− 1, ε1, ε2) testers.

Note note that k′ ≤ k.12. Thus

k′b+ b⌊ℓ/20⌋ + b− 1 ≥ k − k′ + 5kγ − 5k′γ − 1 ≥ (1 + 4γ)k > (1 + γ)k

assuming k is sufficiently large.

3.1 Weak Gap Lower Bound

It now remains to prove Theorem 4. At a high level, we follow the same proof as with Theorem 3
but with some changes the DNO distribution. Since most of the proofs are simple or identical to
their counterparts in the original lower bound we banish them to the appendix.

Lemma 8. Let d ≤ n be integers. There exists a coloring of the boolean cube χ : {0, 1}n → [|Bn(d)|]
such that for all x, y ∈ {0, 1}n with dist(x, y) ≤ d, χ(x) 6= χ(y).

We’ll also need the following fact.

Lemma 9. Let λ1, ..., λn be non-negative real numbers with
∑

i λi = 1. Let X1, ...,Xn be drawn
uniformly and independently at random from {−1, 1}. Then

E

[∣

∣

∣

∣

∣

∑

i

λiXi

∣

∣

∣

∣

∣

]

≥ E

[∣

∣

∣

∣

∣

∑

i

1

n
Xi

∣

∣

∣

∣

∣

]

.

Finally, standard results about random walks give us that

Lemma 10 (Folklore). ∆t satisfies the following properties

(i) ∆t is an increasing function in t

11



(ii) For t sufficiently large, 1
2 − 10√

t
≤ ∆t ≤ 1

2 − 1
10

√
t

With this we have everything we need to construct our new distributions. We again proceed
by Yao’s lemma and construct a DY ES and DNO distributions, which are again boolean functions
over n := k+ ℓ variables. We take ℓ, r and d to be parameters, which we’ll set later. We again will
ensure that r < k and take d = Θ(ℓ).

DNO: A boolean function f : {0, 1}n → {0, 1} is drawn as follows:

(a) For each x ∈ {0, 1}n with x|[r] 6= 0r, independently draw f(x) from Bernoulli(p).

(b) For each x ∈ {0, 1}n with x|[r] = 0r, draw f(x) uniformly and independently at random.

DY ES: A boolean function f : {0, 1}n → {0, 1} is drawn as follows:

(a) Randomly choose a set J ⊆ {r + 1, ..., n} of size ℓ.

(b) Let χ be a coloring of {0, 1}J from Lemma 8 such that points within distance d have
different colors.

(c) For each ρ ∈ {0, 1}[n]\J, sample y
ρ
1, ...,y

ρ
|Bℓ(d)| ∼ Bernoulli(12 ).

(d) For each x ∈ {0, 1}n with x|[r] 6= 0r, independently draw f(x) from Bernoulli(p).

(e) For each x ∈ {0, 1}n with x|[r] = 0r set f(x) = y
x|[n]\J

χ(x|J) .

We now follow the previous proof. Note that by construction we have that

Lemma 11. Consider a set of points x(1), ..., x(m) ∈ {0, 1}n and y1, . . . , ym ∈ {0, 1}. Then

Pr
f ,J∼DYES

[

∀i f(x(i)) = yi | ∀i, j x(i)|[n]\J 6= x(j)|[n]\J ∨ dist(x, y) ≤ d
]

= Pr
f∼DNO

[

∀i f(x(i)) = yi

]

Lemma 12. Any deterministic algorithm ALG that distinguishes between DY ES and DNO with
probability at least 2/3, i.e., Prf∼DYES

[ALG(f) accepts] ≥ 2/3 and Prf∼DNO
[ALG(f) rejects] ≥ 2/3,

must make at least Ω((k/ℓ)d/2) queries.

Applying Lemma 5 with our new parameters then gives

Lemma 13. Suppose that ℓ ≤ k, then

Pr
f∼DNO

[

dist(f ,Jk+ℓ/10) ≤ p(1− 2−r) + ∆20.9ℓ · 2−r − e−20.9ℓ·(1/2−p)2/12 − 2−(k+ℓ/10)/3
]

= ok(1)

where Jk+ℓ/10 denotes the class of (k + ℓ/10)-juntas.

Finally, we have that

Lemma 14. Suppose that ℓ ≥ 2, then

Pr
f∼DY ES

[

dist(f ,Jk) ≥ p(1− 2−r) + ∆|Bℓ(d)| · 2−r + e−2ℓ·(1/2−p)2/12 + 2−k/3
]

= ok(1)

where Jk denotes the class of k-juntas.

Combining these all together and setting parameters now gives us the theorem:

12



Proof of Theorem 4. It only remains to set the parameters so any (k, ε1, ε2) tolerant tester is forced
to distinguish the two distributions. We let ℓ = 10⌊− log(1 − ε1ε

−1
2 )⌋. We then take r to be the

smallest integer such that

∆20.9ℓ2
−r ≤ ε2 + 2−(k+0.1ℓ)/3 + e−20.9ℓ ·(0.009)2/12

and set p to satisfy

ε2 + 2−(k+0.1ℓ)/3 + e−20.9ℓ ·(0.009)2/12 = p(1− 2−r) + ∆20.9ℓ · 2−r.

We assume that ℓ and k are sufficiently large such that 2−(k+0.1ℓ)/3 ≤ .005, e−20.9ℓ·(0.009)2/12 ≤ .005,
and ∆20.9ℓ ≥ .491. Note that these together imply that r ≥ 0 and 0 ≤ p ≤ .491. Moreover, note
that by the minimality of r, we have that

∆20.9ℓ2
−r+1 ≥ ε2.

which implies that 2−r ≥ ε2, yielding r = O(1) and thus that r < k as promised.
Finally, we set d to be the largest integer such that

|Bℓ(d)| ≤ 20.1ℓ.

This clearly implies that d = Θ(ℓ) as promised.
To see that a (k, ε1, ε2) tolerant tester must distinguish DY ES and DNO, first observe that by

Lemma 13 and our choice of parameters, we have that functions in DNO are at least ε2-far from
the set of (k + ℓ/10)-juntas with high probability. On the other hand, by Lemma 14 and Lemma
10, functions from DY ES are with high probability at most

p(1− 2−r) + ∆20.1ℓ · 2−r + e−2ℓ·(.009)2/12 + 2−k/3

close to some k-junta. We’ll show this is at most ε1 under our choice of parameters. Note this is
at equal to

ε2 +∆20.1ℓ · 2−r −∆20.9ℓ · 2−r + e−2ℓ·(.009)2/12 + e−20.9ℓ ·(0.009)2/12 + 2−k/3 + 2−(k+0.1ℓ)/3

Again by Lemma 10, we have that if ε2 − ε1 is sufficiently small

∆20.1ℓ · 2−r −∆20.9ℓ · 2−r ≤ 10
√
2−0.9ℓ − 1

10

√
2−0.1ℓ ≤ − 1

20

√
2−0.1ℓ

Combining this with our hypothesis that ε2 − ε1 ≥ 2k/6 and the fact that 2−r ≥ ε2, we get that the
distance of functions from DY ES is at most

ε2−
1

20

√
2−0.1ℓ·ε2+4(ε1−ε2)

2 ≤ ε2−
1

20
(1−ε1ε

−1
2 )

1
2 ε2+(ε2−ε1)

2 ≤ ε2−2(1−ε1ε
−1
2 )ε2+(ε2−ε1)

2 < ε1

again assuming ε2 − ε1 is sufficiently small. The proof is now complete since

ℓ/10 ≥ − log(ε2 − ε1) + log(ε2)− 1 ≥ − log(ε2 − ε1)/20.

since ε2 ≥ 0.01.

13



4 Barriers to Stronger Lower Bounds

There are several interesting open questions raised by this work. Can we further improve the lower
bound for tolerant junta testing? For the relaxed model, can we rule out (k, 2k, ε1, ε2)-testers that
make poly(k, (ε2 − ε1)

−1) queries? Additionally, can we use our techniques to prove lower bounds
for testing monotonicity (tolerantly)?

We conclude with some limitations of our approach to getting stronger bounds. Optimistically,
one may hope that asking for smaller than (2ℓ − 1)-wise independence may give better bounds,
but this will not work naively even if we change DNO. Indeed, suppose we have a distribution
DNO over boolean functions on {0, 1}n with n := k + ℓ. Let DJ

Y ES for a subset J ⊆ [n] of size ℓ
also be a distribution over boolean functions on {0, 1}n. Moreover, assume that when f ∼ DJ

Y ES

and g ∼ DNO we have that for any ρ ∈ {0, 1}[n]\J and any m points y(1), ..., y(m) ∈ {0, 1}J ,
f(ρ ⊔ y(1)), ..., f(ρ ⊔ y(m)) and g(ρ ⊔ y(1)), ...,g(ρ ⊔ y(m)) are identically distributed.

It turns out that under these assumptions, if we follow our proof strategy naively we cannot
prove better lower bounds. To see this, we will need the following lemma.

Lemma 15. Let D1 and D2 be distributions over boolean functions f : {0, 1}ℓ → {0, 1}. Moreover,
suppose that for any x(1), ...,x(m) ∈ {0, 1}ℓ and y1, .., ym ∈ {0, 1} we have that

Pr
f∼D1

[∀i f(xi) = yi] = Pr
g∼D2

[∀i g(xi) = yi]

Then
∣

∣

∣

∣

Ef∼D1 [dist(f , {0, 1})] − Eg∼D2 [dist(g, {0, 1})]
∣

∣

∣

∣

≤ O

(
√

log(m)

m

)

.

where dist(f, {0, 1}) := min{Prx∼{0,1}ℓ [f(x) = 0],Prx∼{0,1}ℓ [f(x) = 1]}.

We leave the proof for the appendix. That said, intuitively such a pair of distributions would
give a lower bound against estimating the distance of a function f : {0, 1}ℓ → {0, 1} to constant,
and we know that this can be done without many samples.

Now note that an algorithm that makes nr queries can query every point in a ball B(x, r) for
some x ∈ {0, 1}n. Thus, in order to avoid giving any evidence that could distinguish DJ

Y ES and

DNO, we must take m ≥
(ℓ
r

)

. But Lemma 15, implies that if f and g are ǫ1-close and ǫ2-far from
being a junta on [n] \ J with high probability then m ≤ O((ǫ2 − ǫ1)

−3). Simplifying, we see that
we at best get a n−Ω(log(ǫ2−ǫ1)) lower bound.

Moreover, we can also observe that a better lower bound cannot use a uniformly random func-
tions as DNO: Namely, we can distinguish a uniformly random distribution from a distribution
on functions closer than random to k-juntas by sampling a random x ∈ {0, 1}n and querying all
points within hamming distance r. We then check if there is a set S ⊆ [n] of size k such that
B(x, r) ∩ {y ∈ {0, 1}n : yS = xS} is biased. For r suitably large, we expect few biased balls under
the random distribution, but for functions that are closer than random to juntas we expect to see
a biased ball with reasonable probability. Formally,

Lemma 16. Let DY ES a distribution over boolean functions f : {0, 1}n → {0, 1}n such that

Pr
f∼DY ES

[dist(f ,Jk) ≥
1

2
− ε] = o(1)

where ε ≥ Ω(2−(n−k)/10) and ε ≥ 2−n/128. Take DNO to be the uniform distribution over all
boolean functions. Then there exists an algorithm ALG that makes at most nO(log(1/ε)) queries and
distinguishes DY ES and DNO with probability 2/3.
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We again leave the proof for the appendix. Note that this rules out the possibility of a better
lower bound with n = poly(k). When n = kω(1), we remark that the techniques of [ITW21] are
likely able to remove our testers dependence on n and give a (k/ε2)O(log(1/ε)) query bound.

Thus, further improvements must move beyond m-wise independence and random functions.
A promising way of circumventing both these barriers would be to consider using distributions D1

and D2 over functions f : {0, 1}ℓ → {0, 1} that are only identically distributed on balls B(x, r) for
x ∈ {0, 1}ℓ rather than distributed identically for any m points. Indeed, [PRW22] shows that there
are distributions D1 and D2 over functions f : {0, 1}n → {0, 1} with functions in D2 being Ω(1)
closer (in expectation) to constant than those from D1 and such that D1 and D2 are identically
distributed along any ball B(x, r) of radius O(

√
n).
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A Missing Proofs from Section 3

Proof of Lemma 7. For simplicity of notation, we’ll assume f : {±1}n → {±1}. We’ll show that
dist(F,Jkb) ≤ dist(f,Jk) and dist(F,Jkb+b−1) ≥ dist(f,Jk). Since dist(F,Jkb) ≥ dist(F,Jkb+b−1)
the result follows.

We start by showing dist(F,Jkb) ≤ dist(f,Jk). Indeed, let S ⊆ {±1}n be a minimum set of
changes needed to make f into a k-junta. Let

m(x) =





⊕

i=1...b

xi,
⊕

i=b+1,...,2b

xi, . . . ,
⊕

i=nb−b+1,...,nb

xi





To get a kb-junta, it clearly suffices to change the values of F under m−1(S). Since m−1(S) =
|S|2nb/2n, we conclude dist(F,Jkb) ≤ dist(f,Jk).

We now claim that dist(F,Jkb+b−1) ≥ dist(f,Jk). Indeed, fix a set J ⊆ [nb] of size kb+ b− 1.
Without loss of generality, we let ℓ be the largest integer such that [0, ℓb] ⊆ J and assume every
subsequent block is missing at least one element. Note that fixing a prefix ρ ∈ {±1}J will then fix
the first ℓ bits of m(x) to zρ ∈ {±1}ℓ. We can then compute

dist(g,JJ ) =
1

2kb+b−1

∑

ρ∈{±1}J

1

2
− 1

2nb−kb−b+2

∣

∣

∣

∣

∣

∣

∑

y∈{±1}[nb]\J

g(ρ ⊔ y)

∣

∣

∣

∣

∣

∣

=
1

2kb+b−1

∑

ρ∈{±1}J

1

2
− 1

2nb−kb−b+2
· 2

nb−kb−b+ℓ+1

2n

∣

∣

∣

∣

∣

∣

∑

b∈{±1}[n]\[ℓ]

f(zρ ⊔ b)

∣

∣

∣

∣

∣

∣

=
1

2kb+b−1

2kb+b−1

2ℓ

∑

a∈{±1}ℓ

1

2
− 2ℓ

2n+1

∣

∣

∣

∣

∣

∣

∑

b∈{±1}[n]\[ℓ]

f(a ⊔ b)

∣

∣

∣

∣

∣

∣

=
1

2ℓ

∑

a∈{±1}ℓ

1

2
− 1

2n−ℓ+1

∣

∣

∣

∣

∣

∣

∑

b∈{±1}[n]\[ℓ]

f(a ⊔ b)

∣

∣

∣

∣

∣

∣

= dist(f,J[ℓ])

The result now follows since ℓ is at most k.

Proof of Lemma 8. If we make a graph G with vertices {0, 1}n and an edge between x, y with
dist(x, y) ≤ d. Note every vertex in G has degree at most Bn(d) − 1. It then follows by a greedy
coloring that we need at most |Bn(d)| colors.

Proof of Lemma 9. Without loss of generality suppose that λ1 > λ2. We claim that

E

[∣

∣

∣

∣

∣

∑

i

λiXi

∣

∣

∣

∣

∣

]

≥ E

[∣

∣

∣

∣

∣

λ1 + λ2

2
(X1 +X2) +

n
∑

i=3

Xi

∣

∣

∣

∣

∣

]

.
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Let λ = λ1+λ2
2 . Now note

E

[∣

∣

∣

∣

∣

n
∑

i=1

λiXi

∣

∣

∣

∣

∣

]

− E

[∣

∣

∣

∣

∣

λ(X1 +X2) +
n
∑

i=3

λiXi

∣

∣

∣

∣

∣

]

= EX3,...Xn

[

EX1,X2

[∣

∣

∣

∣

∣

n
∑

i=1

λiXi

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

λ(X1 +X2) +

n
∑

i=3

λiXi

∣

∣

∣

∣

∣

∣

∣

∣

∣

X3, ...,Xn

]]

=
1

4
EX3,...Xn

[∣

∣

∣

∣

∣

λ1 − λ2 +
n
∑

i=3

λiXi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

λ2 − λ1 +
n
∑

i=3

λiXi

∣

∣

∣

∣

∣

− 2

∣

∣

∣

∣

∣

n
∑

i=3

λiXi

∣

∣

∣

∣

∣

]

which is non-negative by Jensen’s inequality. The lemma now follows by a limiting argument.

Proof of Lemma 12. Towards a contradiction, suppose ALG distinguishes the distributions and
makes at most Q = 1

10(k/ℓ)
d/2 queries. Call a pair of points x, y ∈ {0, 1}n bad if x|[n]\J = y|[n]\J

and dist(x, y) ≥ d. Since ALG is deterministic, it corresponds to a decision tree. But now observe
that for a particular path p of the decision tree, we have that

Pr
f∼DNO

[ALG(f) follows p] = Pr
f ,J∼DYES

[ALG(f) follows p|p doesn’t query a bad pair].

by Lemma 11. We then conclude that

Pr
f∼DNO

[ALG(f) follows p] ≤ Prf∼DYES
[ALG(f) follows p]

Prf ,J∼DYES
[p doesn’t query a bad pair]

.

Now observe
Pr

f ,J∼DYES

[p doesn’t query a bad pair] ≥ 1−Q2 · (ℓ/k)d ≥ .99.

Thus
Pr

f∼DNO

[ALG(f) follows p] ≤ 1.02 · Pr
f∼DYES

[ALG(f) follows p]

Summing over all rejecting paths we conclude that

Pr
f∼DNO

[ALG(f) rejects] ≤ 1.02 · Pr
f∼DY ES

[ALG(f) rejects] < 1/2,

a contradiction. So any tester must make Ω((k/ℓ)d/2) queries as claimed.

Proof of Lemma 14. We claim that f is close to a junta on [n] \ J:

Ef ,J∼DYES
[dist(f ,J[n]\J)]

=
1

2k
Ef ,J∼DYES





∑

ρ∈{0,1}[n]\J

∑

y∈{0,1}J

1

2ℓ

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}J})
∣

∣





≤ p(1− 2−r) + e−2ℓ·(1/2−p)2/12 +
1

2k
Ef ,J∼DYES











∑

ρ∈{0,1}[n]\J

ρ|[r]=0r

∑

y∈{0,1}J

1

2ℓ

∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}J})
∣

∣










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by Lemma 4. To bound the second term, let λi = |χ−1(i)|/2ℓ and observe that for a fixed ρ with
ρ|[r] = 0r we have that

Ef ,J∼DYES





∑

y∈{0,1}J

1

2ℓ
∣

∣f(ρ ⊔ y)−MAJ({f(ρ ⊔ y) : y ∈ {0, 1}J})
∣

∣





=
1

2
− 1

2
EXi∼{−1,1}





∣

∣

∣

∣

∣

∣

|Bℓ(d)|
∑

i=1

λiXi

∣

∣

∣

∣

∣

∣



 ≤ 1

2
− 1

2
EXi∼{−1,1}





∣

∣

∣

∣

∣

∣

|Bℓ(d)|
∑

i=1

1

|Bℓ(d)|
Xi

∣

∣

∣

∣

∣

∣



 = ∆|Bℓ(d)|

by Lemma 9. Thus,

Ef ,J∼DYES
[dist(f ,J[n]\J)] ≤ p(1− 2−r) + e−2ℓ·(1/2−p)2/12 +∆|Bℓ(d)|2

−r

as desired.

B Missing Proofs from Section 4

Proof of Lemma 15. Fix some function h : {0, 1}ℓ → {±1} and choose x(1), ...,x(m) ∈ {0, 1}ℓ
uniformly and independently at random. Note that

Ex(i) [h(x(i))] =

∑

x∈{0,1}ℓ h(x)

2ℓ
.

Moreover, since h(x(1)), ..., h(x(m)) are independent Chernoff-Hoeffding bounds give

Pr
x(1),...,x(m)

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

h(x(i))−
∑

x∈{0,1}ℓ h(x)

2ℓ

∣

∣

∣

∣

∣

≥ ε

]

≤ 2e−Ω(ε2m)

So we conclude that
∣

∣

∣

∣

∣

∣

Ex(1),...,x(m)





∣

∣

∣

∣

∣

1

m

m
∑

i=1

h(x(i))

∣

∣

∣

∣

∣

−

∣

∣

∣

∑

x∈{0,1}ℓ h(x)
∣

∣

∣

2ℓ





∣

∣

∣

∣

∣

∣

≤ ε+ 4e−Ω(ε2m).

It now follows that

Ef∼D1





∣

∣

∣

∣

∣

∣

Ex(1),...,x(m)





∣

∣

∣

∣

∣

1

m

m
∑

i=1

(2f(x(i))− 1)

∣

∣

∣

∣

∣

−

∣

∣

∣

∑

x∈{0,1}ℓ(2f(x)− 1)
∣

∣

∣

2ℓ





∣

∣

∣

∣

∣

∣



 ≤ ε+ 4e−Ω(ε2m).

By Jensen’s inequality,

∣

∣

∣

∣

∣

∣

Ef∼D1,x(1),...,x(m)

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

(2f(x(i))− 1)

∣

∣

∣

∣

∣

]

− Ef∼D1





∣

∣

∣

∑

x∈{0,1}ℓ(2f(x)− 1)
∣

∣

∣

2ℓ





∣

∣

∣

∣

∣

∣

≤ ε+ 4e−Ω(ε2m).

Analogously, we have that

∣

∣

∣

∣

∣

∣

Eg∼D2,x(1),...,x(m)

[∣

∣

∣

∣

∣

1

m

m
∑

i=1

(2g(x(i))− 1)

∣

∣

∣

∣

∣

]

− Eg∼D2





∣

∣

∣

∑

x∈{0,1}ℓ(2g(x) − 1)
∣

∣

∣

2ℓ





∣

∣

∣

∣

∣

∣

≤ ε+ 4e−Ω(ε2m).
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But now as

Ef∼D1,x(1),...,x(m)

[∣

∣

∣

∣

∣

1

m

∑

i

(2f(x(i))− 1)

∣

∣

∣

∣

∣

]

= Eg∼D2,x(1),...,x(m)

[∣

∣

∣

∣

∣

1

m

∑

i

(2g(x(i))− 1)

∣

∣

∣

∣

∣

]

we conclude that
∣

∣

∣

∣

∣

∣

Ef∼D1





∣

∣

∣

∑

x∈{0,1}ℓ(2f(x) − 1)
∣

∣

∣

2ℓ



− Eg∼D2





∣

∣

∣

∑

x∈{0,1}ℓ(2g(x) − 1)
∣

∣

∣

2ℓ





∣

∣

∣

∣

∣

∣

≤ 2ε+ 8e−Ω(ε2m).

Finally, note that for a function f : {0, 1}ℓ → {0, 1}

dist(f, {0, 1}) = 1

2
− 1

2
·

∣

∣

∣

∑

x∈{0,1}ℓ(2f(x)− 1)
∣

∣

∣

2ℓ
.

Thus
∣

∣

∣

∣

Ef∼D1 [dist(f , {0, 1})] − Eg∼D2 [ dist(g, {0, 1})]
∣

∣

∣

∣

≤ ε+ 4e−Ω(ε2m).

Taking ε = Θ

(

√

log(m)
m

)

then gives the result.

Proof of Lemma 16. We consider the following algorithm, ALG: Set r = log(8/ε2) + log log(32/ε).
We’ll assume that ε ≥ 1000 · 2−(n−k)/10, which implies r ≤ n− k. Sample m := 1024n2/ε2 random
points x(1), ...,x(m) and query every point in a ball of radius r around each x(i). For each set S ⊆ [n]
of size k, compute

eS(x
(i)) :=

1

|Bn−k(r)|

∣

∣

∣

∣

∣

∣

∣

∑

z∈B(x(i),r)∩{y∈{0,1}n:yS=x
(i)
S }

(2f(z)− 1)

∣

∣

∣

∣

∣

∣

∣

If for some set S,

1

m

m
∑

i=1

I(eS(x
(i)) > ε/2) ≥ ε2/8

then accept. Otherwise, reject.

Claim 1.

Pr
f∼DYES

[ALG(f) accepts] = 1− o(1)

Proof. Let f be a function that is (12 − ε)-close to some junta on a set of relevant variables S of
size k. Note

dist(f,JS) =
1

2k

∑

ρ∈{0,1}S

1

2



1− 1

2n−k

∣

∣

∣

∣

∣

∣

∑

y∈{0,1}[n]\S

2f(ρ ⊔ y)− 1

∣

∣

∣

∣

∣

∣



 ≤ 1

2
− ε.

Rearranging, we have that

1

2k

∑

ρ∈{0,1}S

1

2n−k

∣

∣

∣

∣

∣

∣

∑

y∈{0,1}[n]\S

2f(ρ ⊔ y)− 1

∣

∣

∣

∣

∣

∣

≥ 2ε.
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By an averaging argument, it now follows that for at least ε2k values of ρ we have that

1

2n−k

∣

∣

∣

∣

∣

∣

∑

y∈{0,1}[n]\S

2f(ρ ⊔ y)− 1

∣

∣

∣

∣

∣

∣

≥ ε.

Fix a particular ρ ∈ {0, 1}S such that the above holds and assume that

1

2n−k

∑

y∈{0,1}[n]\S

(2f(ρ ⊔ y)− 1) ≥ ε.

Now observe

1

2n−k

∑

y∈{0,1}[n]\S

1

|Bn−k(r)|
∑

x∈B(y,r)

(2f(ρ ⊔ x)− 1) =
1

2n−k

∑

y∈{0,1}[n]\S

(2f(ρ ⊔ y)− 1) ≥ ε.

So by another averaging argument, we get that for at least ε2n−k−1 values of y ∈ {0, 1}[n]\S

1

|Bn−k(r)|

∣

∣

∣

∣

∣

∣

∑

x∈B(y,r)

2f(ρ ⊔ x)− 1

∣

∣

∣

∣

∣

∣

≥ ε/2

An analogous argument gives the same result when

1

2n−k

∑

y∈{0,1}[n]\S

(2f(ρ ⊔ y)− 1) ≤ −ε.

We can now conclude that
Pr
xi

[eS(x
(i)) ≥ ε/2] ≥ ε2/2.

So by a Chernoff bound we conclude that

Pr
x(1),...,x(m)

[

1

m

m
∑

i=1

I(eS(x
(i)) > ε/2) ≤ ε2/8

]

≤ e−mε2/8.

Since m ≥ 1024n2/ε2, we conclude that we accept such a function f with high probability. Finally,
as a function f ∼ DY ES is (12 − ε) close to a k-junta with high probability the result follows.

Claim 2.

Pr
f∼DNO

[ALG(f) accepts] = o(1)

Proof. Fix a set S ⊆ [n] of size k. By a Hoeffding bound, we have that

Pr
f∼DNO,x(i)

[

eS(x
(i)) ≥ ε/2

]

≤ 2e−ε2|Bn−k(r)|/8 ≤ 2e−ε22r/8 ≤ 2e− log(32/ε) = ε/16

Since r ≤ n/4, conditioned on dist(x(i),x(j)) ≥ n/4 for all i 6= j, we have that the events
I(eS(x

(i)) ≥ ε/2) are independent. (Note that without this assumption the events I(eS(x
(i)) ≥ ε/2)

are only independent given f .) Applying Chernoff bounds then gives us that

Pr
f∼DNO

[

1

m

m
∑

i=1

I(eS(xi) > ε/2) ≥ ε2/8

∣

∣

∣

∣

dist(x(i),x(j)) ≥ n/4 ∀i 6= j

]

≤ e−εm/64.
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Taking a union bound over all sets S,

Pr
f∼DNO

[

ALG(f) accepts
∣

∣dist(x(i),x(j)) ≥ n/4 ∀i 6= j
]

≤ nke−ε2m/64 = o(1).

It now remains to compute the probability that the x(i)’s are far from one another. By a Chernoff
bound

Pr
x(1),x(2)

[

dist(x(1),x(2)) ≤ n/4
]

≤ e−n/16.

A union bound then yields

Pr
x(1),x(2),...,x(m)

[

∃i 6= j : dist(x(i),x(j)) ≤ n/4
]

≤ m2e−n/16 ≤ 220 · n4 · 2n/32 · e−n/16 = o(1).
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