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Abstract

Hadwiger’s Conjecture asserts that every Kh-minor-free graph is properly
(h − 1)-colourable. We prove the following improper analogue of Hadwiger’s
Conjecture: for fixed h, every Kh-minor-free graph is (h − 1)-colourable with
monochromatic components of bounded size. The number of colours is best
possible regardless of the size of monochromatic components. It solves an open
problem of Edwards, Kang, Kim, Oum and Seymour [SIAM J. Disc. Math. 2015],
and concludes a line of research initiated in 2007. Similarly, for fixed t ⩾ s, we
show that every Ks,t-minor-free graph is (s + 1)-colourable with monochromatic
components of bounded size. The number of colours is best possible, solving an
open problem of van de Heuvel and Wood [J. London Math. Soc. 2018]. We
actually prove a single theorem from which both of the above results are immediate
corollaries. For an excluded apex minor, we strengthen the result as follows: for
fixed t ⩾ s ⩾ 3, and for any fixed apex graph X, every Ks,t-subgraph-free X-
minor-free graph is (s+1)-colourable with monochromatic components of bounded
size. The number of colours is again best possible.
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1 Introduction

1.1 Hadwiger’s Conjecture

Our starting point is Hadwiger’s Conjecture [31], which suggests a deep relationship
between graph colourings and graph minors1. A colouring of a graph G is a function
that assigns one colour to each vertex of G. For an integer k ⩾ 1, a k-colouring is
a colouring using at most k colours. A colouring of a graph is proper if each pair of
adjacent vertices receives distinct colours. The chromatic number χ(G) of a graph G is
the minimum integer k such that G has a proper k-colouring. A graph H is a minor
of a graph G if H is isomorphic to a graph that can be obtained from a subgraph of
G by contracting edges. A graph G is H-minor-free if H is not a minor of G. Let Kh

be the complete graph on h vertices. Hadwiger [31] famously conjectured that every
Kh-minor-free graph is properly (h − 1)-colourable. This is widely considered to be one
of the most important open problems in graph theory. By Wagner’s characterization of
K5-minor-free graphs [67], the case h = 5 is equivalent to the 4-Colour Theorem [1, 55].
The conjecture is true for h ⩽ 6 [59], and is open for h ⩾ 7. The best known upper
bound on the chromatic number of Kh-minor-free graphs remained of order O(h

√
log h)

[38, 63] since the 1980s, until a sequence of breakthrough results [48, 53] culminated in
a O(h log log h) bound due to Delcourt and Postle [10]. It is open whether every Kh-
minor-free graph is O(h)-colourable. See Seymour’s survey [61] for more on Hadwiger’s
Conjecture.

1.2 The Clustered Hadwiger Conjecture

As mentioned above, one of the main ways to approach Hadwiger’s Conjecture has been
to try to minimise the number of colours in a proper colouring of a Kh-minor-free graph.
A second natural approach is to fix a number of colours close to Hadwiger’s bound (at
h−1 for instance), and try to obtain a colouring that is close to being proper. This leads
to the notion of improper colourings of Kh-minor-free graphs; see [20, 22, 33–35, 40–
45, 47, 49, 50, 52, 65, 68] and the references therein. A monochromatic component with
respect to a colouring of a graph G is a connected component of the subgraph of G

induced by all the vertices assigned a single colour. A colouring has clustering c if
every monochromatic component has at most c vertices. Note that a colouring with
clustering 1 is precisely a proper colouring. The clustered chromatic number χ⋆(G) of a
graph class G is the minimum integer k for which there exists an integer c such that

1We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-set E(G). See latter
sections and [11] for graph-theoretic definitions not given here.
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every graph in G is k-colourable with clustering c. See [69] for an extensive survey on
this topic, and see [2, 25] for connections between clustered colouring and asymptotic
dimension in geometric group theory and site percolation in probability theory. One
of the earliest works on clustered colouring was by Kleinberg, Motwani, Raghavan,
and Venkatasubramanian [37], who used it as a tool to design algorithms for evolving
databases.

Consider the clustered chromatic number of the class of Kh-minor-free graphs. So-called
standard examples provide a lower bound of h − 1 (regardless of the clustering function);
see Proposition 9 below. A natural weakening of Hadwiger’s Conjecture, sometimes
called the Clustered Hadwiger Conjecture, asserts that every Kh-minor-free graph is
(h − 1)-colourable with clustering at most some function f(h). This conjecture was first
asked as an open problem by Edwards et al. [22]. This line of research was initiated in
2007 by Kawarabayashi and Mohar [35], who proved the first O(h) upper bound on the
number of colours. Their bound was ⌈31

2 h⌉, which was successively improved to ⌈7h−3
2 ⌉

by Wood [68]2, to 4h−4 by Edwards et al. [22], to 3h−3 by Liu and Oum [41], to 2h−2
independently by Norin [47], van den Heuvel and Wood [65] and Dvořák and Norin [20],
and most recently to h by Liu and Wood [44]. Note that Dvořák and Norin [20] showed
that h − 1 colours suffice for h ⩽ 9, and that Edwards et al. [22] proved that every
Kh-minor-free graph has an (h − 1)-colouring in which each monochromatic component
has bounded maximum degree (which is significantly weaker than having bounded size).

Our first contribution is to prove the Clustered Hadwiger Conjecture3, thereby solving
the above-mentioned open problem of Edwards et al. [22].

Theorem 1. Every Kh-minor-free graph is (h − 1)-colourable with clustering at most
some function f(h).

1.3 Excluding a Complete Bipartite Minor

Consider the clustered chromatic number of the class of Ks,t-minor-free graphs, where
Ks,t is the complete bipartite graph with parts of size s ⩾ 1 and t ⩾ s. This question is
of particular interest since the answer turns out to not depend on t. Van den Heuvel and
Wood [65] proved a lower bound of s + 1 (for t ⩾ max{s, 3}; see Proposition 9 below),
and observed that results of Edwards et al. [22] and Ossona de Mendez et al. [52] imply
an upper bound of 3s, which was improved to 2s + 2 by Dvořák and Norin [20], and

2The result of Wood [68] depended on a result announced by Norin and Thomas [51, 62], which has
not yet been fully written.

3Dvořák and Norin [20] announced in 2017 that a forthcoming paper, which has not yet been fully
written, will also prove the Clustered Hadwiger Conjecture.
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further improved to s + 2 by Liu and Wood [42]. Our second main result resolves the
question.

Theorem 2. Every Ks,t-minor-free graph is (s + 1)-colourable with clustering at most
some function f(s, t).

Combined with the above-mentioned lower bound, Theorem 2 shows that the clustered
chromatic number of the class of Ks,t-minor-free graphs equals s + 1. This resolves an
open problem proposed by van den Heuvel and Wood [65].

1.4 Colin de Verdière Parameter

The Colin de Verdière parameter µ(G) is an important graph invariant introduced by
Colin de Verdière [7, 8]; see [60, 66] for surveys. It is known that µ(G) ⩽ 1 if and only
if G is a disjoint union of paths, µ(G) ⩽ 2 if and only if G is outerplanar, µ(G) ⩽ 3
if and only if G is planar, and µ(G) ⩽ 4 if and only if G is linklessly embeddable. A
famous conjecture of Colin de Verdière [7] states that χ(G) ⩽ µ(G) + 1, which implies
the 4-colour theorem and is implied by Hadwiger’s Conjecture. The following clustered
analogue was conjectured by Wood [69].

Theorem 3. The clustered chromatic number of the class of graphs with Colin de
Verdière parameter µ equals µ + 1.

The lower bound in Theorem 3 is proved in [69]. The upper bound follows immediately
from either Theorem 1 or Theorem 2 since graphs with Colin de Verdière parameter µ

are Kµ+2-minor-free [7, 8] and are Kµ,max{µ,3}-minor-free [66].

1.5 A Common Generalization

We in fact prove a common generalization of Theorems 1 and 2 using the following
definition of Campbell, Clinch, Distel, Gollin, Hendrey, Hickingbotham, Huynh, Illing-
worth, Tamitegama, Tan, and Wood [6]. Let Js,t be the set of all graphs Ks ⊕ T where
T is a t-vertex tree. Here the complete join G1 ⊕ G2 is the graph obtained from the
disjoint union of graphs G1 and G2 by adding all edges between G1 and G2. A graph is
Js,t-minor-free if it contains no graph in Js,t as a minor4.

4Let Ps,t be the graph obtained from Ks,t by adding a path on the t-vertex side. Every tree on t2

vertices contains a K1,t minor or a path on t vertices. It follows that every graph in Js,t2 contains Ks+1,t

or Ps,t as a minor. Conversely, Ps,t+s and Ks+1,t+s contain a graph in Js,t as a minor (obtained by
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Theorem 4. Every Js,t-minor-free graph is (s + 1)-colourable with clustering at most
some function f(s, t).

Since Ks,t is a subgraph of each graph in Js,t, Theorem 4 implies Theorem 2. Since
Jh−2,2 = {Kh}, Theorem 4 with s = h − 2 implies Theorem 1.

The proof of Theorem 4 is constructive and yields a polynomial-time colouring algorithm
(using known polynomial-time algorithms [20, 30, 36] for finding the decomposition in
Theorem 11 as a starting point).

1.6 Excluding a Complete Bipartite Subgraph

As mentioned above, Liu and Wood [42] proved that Ks,t-minor-free graphs are (s + 2)-
colourable with bounded clustering. They actually proved a stronger result, where
the number of colours is determined by an excluded complete bipartite subgraph, as
expressed in the following results. For a graph X, a graph G is X-subgraph-free if no
subgraph of G is isomorphic to X.

Theorem 5 ([42, Theorem 5]). For any integers s, t, w ∈ N, every Ks,t-subgraph-free
graph of treewidth at most w is (s + 1)-colourable with clustering at most some function
f(s, t, w).

We use an extension of Theorem 5 as one of the tools in the current paper (see Lemma 26).

Theorem 6 ([42, Theorem 2]). For any integers t ⩾ s ⩾ 1 and for any graph X, every
Ks,t-subgraph-free X-minor-free graph is (s + 2)-colourable with clustering at most some
function f(s, t, X).

In both these theorems, the number of colours is best possible [42]. Our Theorem 2 uses
fewer colours than Theorem 6 but makes a stronger assumption of excluding Ks,t as a
minor. So the results are incomparable.

Theorem 6 implies that Kh-minor-free graphs are (h + 1)-colourable with bounded
clustering (since Kh is a minor of Kh−1,h−1). Liu and Wood [44] pushed this proof
further to reduce the number of colours to h, as mentioned above. These results are
presented over a series of three articles [42–44]. The main tool introduced in the first
article of the series [43] shows (via a technical 70-page proof) that Ks,t-subgraph-free
graphs of bounded layered treewidth are (s+2)-colourable with bounded clustering. It is

contracting a suitable s-edge matching). This says that (ignoring dependence on t) being Js,t-minor-free
is equivalent to being Ks+1,t-minor-free and Ps,t-minor-free. Therefore Theorem 4 could be stated for
graphs that are Ks+1,t-minor-free and Ps,t-minor-free. We choose to work with Js,t for convenience.
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open whether s + 1 colours (which would be best possible) suffice in this setting [42, 43].
Bounded layered treewidth is not a minor-closed property. However, for minor-closed
classes, having bounded layered treewidth is equivalent to excluding an apex graph as a
minor [18]. Here a graph is apex if it can be made planar by deleting at most one vertex.
Our next result shows that s + 1 colours suffice for apex-minor-free Ks,t-subgraph-free
graphs.

Theorem 7. For any integers t ⩾ s ⩾ 3 and for any apex graph X, every Ks,t-subgraph-
free X-minor-free graph is (s + 1)-colourable with clustering at most some function
f(s, t, X).

Several notes on Theorem 7 are in order:

• Theorem 5 is equivalent to saying that Ks,t-subgraph-free graphs excluding a fixed
planar graph as a minor are (s+1)-colourable with bounded clustering. Theorem 7
strengthens this result to the setting of apex-minor-free graphs (for s ⩾ 3).

• The bound on the number of colours in Theorem 7 is tight, simply because s + 1
colours is tight for bounded treewidth graphs [42, 43].

• Some non-trivial lower bound on s is needed in Theorem 7, since the hexagonal
grid graph is K5-minor-free and K1,7-subgraph-free, but every 2-colouring has
unbounded clustering by the Hex Lemma [32]. Theorem 7 with s = 2 is open,
even for planar graphs [43].

• Our proof of Theorem 7 in the case s ⩾ 4 is reasonably short and simple, and
is presented in Section 2.5. The case s = 3 is more difficult, and requires tools
for dealing with K2,t-subgraphs in surfaces that are also required by the proofs of
Theorems 1, 2 and 4.

For the sake of clarity, we now summarise how the present paper uses results of Liu
and Wood [42, 43, 44]. Lemma 15 is a result of Liu and Wood [42] for colouring Ks,t-
subgraph-free graphs of bounded treewidth. We use this to provide a simple proof of
(h + 4)-colourability for Kh-minor-free graphs as a way to introduce some of the key
ideas used in our main proof. Lemma 26 extends this lemma, and we provide a full
proof that uses one lemma by Liu and Wood [43] (our Lemma 25) which has a simple
1-paragraph proof. Lemma 27 is another result for colouring bounded treewidth graphs
that extends a result of Liu and Wood [44]. Again, we provide a full proof. The present
paper does not use layered treewidth or the 70-page proof mentioned above.
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1.7 Clustered 4-Colouring Theorems

It is well-known that the clustered chromatic number of the class of planar graphs equals
4, where the upper bound follows from the 4-Colour Theorem or a weaker result of
Cowen, Cowen, and Woodall [9], and the lower bound follows from the s = 3 case of
Proposition 9 below. In fact, much more general results are known for 4-colouring with
bounded clustering.

The Euler genus of a surface with h handles and c cross-caps is 2h + c. The Euler genus
of a graph G is the minimum integer g ⩾ 0 such that there is an embedding of G in a
surface of Euler genus g; see [46] for more about graph embeddings in surfaces. Dvořák
and Norin [20] proved the following elegant generalization of the 4-Colour Theorem.

Theorem 8 ([20]). Every graph of Euler genus g has a 4-colouring with clustering at
most some function f(g).

It follows from Euler’s formula that graphs of Euler genus g are K3,2g+3-minor-free. Thus
the s = 3 case of Theorem 2 generalises Theorem 8 to the setting of K3,t-minor-free
graphs. This setting is substantially more general since disjoint unions of K5 are K3,3-
minor-free, but have unbounded Euler genus. This highlights the utility of considering
excluded complete bipartite minors.

Theorem 7 with s = 3 provides a further generalization where the K3,t-minor-free
assumption is relaxed to apex-minor-free and K3,t-subgraph-free. Again, this is a
substantial generalization since, for example, the 1-subdivision of K3,n is K5-minor-free
and K3,3-subgraph-free, but contains a K3,n minor.

Dvořák and Norin’s proof of Theorem 8 uses the so-called ‘island’ method. Our proof
uses and builds on this approach; see Lemma 29 below.

1.8 Proof Outline

This section highlights the main challenges in adapting existing techniques to prove our
results and give a high-level sketch of the proof of Theorem 4 that gives a rough idea
of how we overcome these challenges. The key to our proofs is the novel use of ‘graph
product structure theory’ in partnership with the Graph Minor Structure Theorem of
Robertson and Seymour [58]. Graph product structure theory is a recently developed
field that describes graphs in a complicated graph class as subgraphs of a product of
simpler graphs (along with some other operations).

The starting point for these recent developments is the Planar Graph Product Structure
Theorem of Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [17], which says that
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every planar graph G is a subgraph of the strong product of a graph H of treewidth 8
and a path P , written as G ⊆ H ⊠ P . This often allows a question about planar graphs
(G) to be reduced to an analogous question about graphs of bounded treewidth (H),
which is usually easier to solve. Extending the solution for H to the product H ⊠ P

is often straightforward. This approach has been used to solve several decades-old
problems in mathematics and theoretical computer science [3, 4, 13, 14, 17], including
bounds on the queue number of planar graphs and the construction of nearly optimal
adjacency labelling schemes for planar graphs.

This approach is, of course, limited to graph families that admit this type of product
structure. Dujmović et al. [17] proved that apex-minor-free graphs are the most general
minor-closed classes contained in the product of a bounded treewidth graph and a path,
so this reduction cannot be applied to the graph classes considered by Theorems 1, 2
and 4 (except for a few small values of h or s).

Since not all minor-closed classes admit the type of product structure described above, we
start by applying the Graph Minor Structure Theorem of Robertson and Seymour [58],
which describes graphs excluding a fixed minor in terms of graphs called ‘torsos’ that
are formed from a surface-embedded subgraph, by adding vortices in the surface, and
apex vertices with unrestricted neighbourhoods. The torsos are then pasted together in
a tree-like way (described by a tree-decomposition) using clique-sums.

A natural strategy for colouring a Js,t-minor-free graph is to colour each torso one-by-
one beginning with the root torso. With this strategy, when colouring a subsequent
non-root torso, the vertices it shares with its parent torso are already precoloured with
colours assigned while colouring the parent torso. These precoloured vertices are in one
clique-sum whose size is bounded by a function of s and t, but this bound may be much
larger than s, which is a major obstacle since Theorem 4 promises a colouring with at
most s + 1 colours.

For the purposes of this high-level description, call a clique-sum small if it has at most
s vertices, and large otherwise (although still of size bounded by a function of s and
t). Using the approach described above, the precoloured vertices of torsos are either
part of a small or a large clique-sum. Since the natural strategy is not applicable to
large clique-sums we conduct those clique-sums before any colouring. In particular,
we call a maximal collection of torsos pasted together by only large clique-sums a
curtain. (This choice of name will become clear later.) Now one can think of the
Robertson–Seymour decomposition as a collection of curtains glued together using small
clique-sums, which we call a tree of curtains. To colour the entire graph, it suffices to
colour each curtain one-by-one beginning with the curtain that contains the root torso.
The critical advantage of proceeding this way is that each non-root curtain comes with

9



at most s precoloured vertices.

To colour each individual curtain, we use a variant of the Graph Minor Structure
Theorem by Dvořák and Thomas [21], which classifies apex vertices as either major
or non-major. Edges incident to major apex vertices are unrestricted, but non-major
apex vertices are not adjacent to vertices in the part of the surface-embedded subgraph
avoiding the vortices. A graph is k-apex if it has k vertices whose removal leaves a
planar graph. Dvořák and Thomas [21] showed that for k-apex-minor-free graphs, the
number of major apex vertices is at most k − 1. In our case, Js,t includes an (s − 2)-apex
graph. So the number of major apex vertices is at most s − 3. From now on we group
the non-major apex vertices with the vortices (loosely speaking).

An important consequence of the Dvořák and Thomas [21] result is that (after some
manipulation) any large clique-sum only involves (major and non-major) apex vertices
and vertices from vortices of the two torsos being summed. Therefore, none of the
clique-sums used to make a curtain touch the surface-embedded parts of the torsos,
except those vertices on the boundary of a vortex.

The above material is presented in Section 2. To illustrate the utility of these preliminary
ideas, Section 2 also describes a short proof that Kh-minor-free graphs have clustered
colourings using h + 4 colours, and we prove Theorem 7 for s ⩾ 4.

Our task now is to colour each curtain, given a set of at most s precoloured vertices.
Recall that each torso in the curtain is described by a set of at most s − 3 major apex
vertices, a surface-embedded subgraph, and a collection of vortices and non-major apex
vertices. We now apply the so-called ‘island’ method of Esperet and Ochem [24] and
Dvořák and Norin [20]. A d-island is a set of vertices, each of which has at most d

neighbours outside I. If the surface-embedded subgraph contains a 3-island I disjoint
from the vortices and of bounded size, then it is an s-island in the overall graph (including
the at most s − 3 major apex vertices as possible neighbours). Delete I, apply induction,
and greedily colour each vertex in I by a colour not used on the at most s neighbours
outside I. Each new monochromatic component is contained within I, and thus has
bounded size. Now we may assume the surface-embedded subgraph of each torso (within
a curtain) has no 3-island of bounded size disjoint from the vortices.

The next step employs graph product structure theory. A result of Dujmović et al. [17]
says that each torso (without the major apex vertices) is a subgraph of the strong
product of a bounded treewidth graph and a path (generalising the result for planar
graphs mentioned above). This product structure can be described in terms of partitions
and layerings. For each torso with the major apex vertices removed, we obtain a partition
of the vertex-set with connected parts, and a layering such that the intersection of each
part and each layer has bounded size (thus, loosely speaking, each part in the partition
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is ‘long and skinny’). In addition, the first layer contains exactly the vortices and the
non-major apex vertices. This means that each large clique-sum used to paste together
a pair of torsos in the curtain G is restricted to the major apex vertices and the vertices
in the first layer of each torso. Dujmović et al. [17] proved that the minor obtained
by contracting each part of the partition results in a quotient graph that has bounded
treewidth.

However, we do not perform the contractions that would create this bounded treewidth
quotient graph, since doing so could interfere with a clique-sum and could introduce
complete bipartite subgraphs that we wish to avoid for reasons that will become clear
shortly. Instead, we reduce to a bounded treewidth graph by ‘raising the curtain’ as
follows. Within each torso of a curtain G, we contract the parts of the corresponding
partition while avoiding the first five layers. This produces a minor G↑ of G on at
most six layers and having bounded treewidth. Since these contractions avoid the
first five layers of each torso, they avoid the vertices used in the clique-sums between
torsos. Therefore, these clique-sums remain in G↑, and G↑ is also a curtain with a
surface-embedded subgraph within each torso. Unlike G, G↑ has bounded treewidth.

However, it is not enough that G↑ has bounded treewidth. Indeed, the extremal examples
have bounded treewidth (see Proposition 9). It is also critical that G↑ is a minor of G.
However, because of the possibility of edges added to each torso, it is not immediate
that G↑ is obtained by contracting connected subgraphs in G. To overcome this issue
we show that our tree of curtains is ‘lower-minor-closed’. We expect this property and
in particular Theorem 22 may be of independent interest.

In Section 3 we prove two lemmas (that are technical extensions of results by Liu and
Wood [42, 44]) for colouring bounded treewidth graphs containing no Ks,t-subgraph.
Our goal is to apply these results to G↑. However, without further work Ks,t-subgraphs
may be present in G↑.

Any such problematic subgraph contains a large K2,p-subgraph in the deeper layers
of some surface-embedded subgraph of G↑. We eliminate these problematic K2,p-
surface-embedded subgraphs in two steps: (i) We do further contractions of connected
surface-embedded subgraphs of G↑ that are separated from the rest of G↑ by short surface-
separating cycles and major apex vertices. (ii) We remove certain redundant surface
degree-2 vertices. The result of this process is a minor G↑• of G↑ that shares a crucial
property with G↑: Each vertex of G↑• corresponds to a long and skinny connected
subgraph of G. (Establishing this property relies on the fact that 3-islands have
been previously removed from each surface-embedded subgraph.) These techniques for
eliminating large K2,t subgraphs in surface-embedded graphs are presented in Section 4.1.

We augment G↑• with a set of ‘special’ vertices, each of which dominates a connected

11



subgraph in the embedded part of some torso of G↑•. The addition of these special
vertices only increases the treewidth by a small amount. On this augmented graph we
apply an enhanced version of the divide-and-conquer strategy for Ks,t-subgraph-free
bounded treewidth graphs of Liu and Wood [42, 44] to find an (s + 1)-colouring with
bounded clustering where, for each special vertex α, the subgraph dominated by α

completely avoids the colour used by α.

We now lower the curtain that was previously raised, and assign each vertex w of G the
colour given to the vertex of G↑• that w was contracted into. The resulting colouring
of G does not have bounded clustering, but its monochromatic components are all
long and skinny (with respect to the layering and partition). This allows us to use the
colours assigned to the special vertices as blocking colours to break any long and skinny
monochromatic components into (short and skinny) pieces of bounded size.

In this way, we obtain an (s + 1)-colouring of the curtain G with bounded clustering.
Then we use the top-down colouring strategy mentioned earlier to extend this colouring
to an (s + 1)-colouring of the tree of curtains, which is the original Js,t-minor-free graph.
This completes the high-level description of the proof of Theorem 4.

The full proof of Theorem 4 is completed in Section 4.2. In Section 4.3 we complete the
proof of Theorem 7 by explaining the changes needed for the case s = 3. Section 5 con-
cludes the paper by outlining polynomial-time algorithms for computing the colourings
in Theorems 1, 2, 4 and 7.

Theorems 1 and 2 give the first optimal bounds on the clustered chromatic number
of Kh-minor-free and Ks,t-minor-free graphs. At least as important as these results
are the definitions and tools that we develop, including curtain decompositions, raised
curtains, and skinnyness-preserving contractions to control K2,t subgraphs. Curtain
decompositions have already found applications to other decomposition and colouring
problems [16] and we expect that they will soon find more. Since the extremal examples
for many problems include large K2,t subgraphs, we expect the tools for controlling
K2,t-subgraphs will also find further applications in different contexts. Indeed, the
Planar Graph Product Structure Theorem mentioned above was initially developed to
bound the queue-number of planar graphs [17], but has since been used to resolve a
number of longstanding open problems on planar and other graph classes [3, 4, 12–15].

1.9 Lower Bounds

The number of colours in Theorems 1, 2 and 7 is best possible because of the following
well-known ‘standard’ example [22, 39, 42, 65, 69], which we include for completeness.
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Proposition 9. For each integer s ⩾ 1, there is a graph class Gs, such that every graph
in Gs has treewidth s and is Ks,s+2-subgraph-free, and for any integer c ⩾ 1 there exists
G ∈ Gs such that every s-colouring of G has a monochromatic component on more than
c vertices.

Proof. We proceed by induction on s, where G1 is the class of all paths on at least two
vertices, which trivially satisfies the desired properties. Now assume the claim for some
s ⩾ 1. As illustrated in Figure 1, let Gs+1 be the class of all graphs obtained by taking
arbitrarily many disjoint copies of graphs in Gs and adding one dominant vertex.

Figure 1: Members of the families G1, G2, and G3.

Every graph in Gs+1 has treewidth s + 1 and is Ks+1,s+3-subgraph-free. For any c, there
is a graph H in Gs such that any s-colouring of G has a monochromatic component
on more than c vertices. Let G be obtained from c disjoint copies of H by adding
a dominant vertex v. So G ∈ Gs+1. In any colouring of G with clustering c, some
copy of H avoids the colour assigned to v, as otherwise the monochromatic component
containing v would have at least c + 1 vertices. By assumption, H has at least s + 1
colours, implying G has at least s + 2 colours. This proves the claim.

Proposition 9 shows that h − 1 colours in Theorem 1 is best possible, since every graph
with treewidth s is Ks+2-minor-free. Similarly, Proposition 9 shows that s + 1 colours in
Theorem 2 is best possible, since the graph in Proposition 9 is Ks,max{s,3}-minor-free [65].
To see that the number of colours in Theorem 7 is best possible, note that every graph
in Gs contains no (s + 1) × (s + 1) grid as a minor (since the (s + 1) × (s + 1) grid has
treewidth s + 1). Thus Gs excludes a planar (and thus apex) graph as a minor. If every
graph in Gs is k-colourable with clustering at most some function f(s), then k ⩾ s + 1
by Proposition 9.
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1.10 Notation

We use the following notation for a graph G. For v ∈ V (G). let NG(v) := {w ∈ V (G) :
vw ∈ E(G)} and NG[v] := NG(v) ∪ {v}. For S ⊆ V (G), let NG[S] := ⋃

v∈S NG[v] and
NG(S) := NG[S] \ S.

For two vertices v and w in the same component of a graph G, let distG(v, w) be
the number of edges in a shortest path from v to w in G. If v and w are in distinct
components of G then distG(v, w) := ∞. For a subset S ⊆ V (G), we write distG(v, S) :=
min{distG(v, w) : w ∈ S}. For d ∈ N, let Nd

G[S] := {v ∈ V (G) : distG(v, S) ⩽ d}.

2 Structure of k-Apex-Minor-Free Graphs

2.1 Graph Minor Structure Theorem

The Graph Minor Structure Theorem of Robertson and Seymour [58] describes the
structure of graphs excluding a fixed minor using four ingredients: tree-decompositions,
graphs on surfaces, vortices, and apex vertices. To describe this formally, we need the
following definitions.

A tree-decomposition of a graph G is a collection (Bx : x ∈ V (T )) of subsets of V (G)
(called bags) indexed by the vertices of a tree T , such that (a) for every edge uv ∈ E(G),
some bag Bx contains both u and v, and (b) for every vertex v ∈ V (G), the set
{x ∈ V (T ) : v ∈ Bx} induces a non-empty (connected) subtree of T . For each edge
xy ∈ E(T ) the set Bx ∩ By is called an adhesion set. The adhesion of (Bx : x ∈ V (T )) is
max{|Bx ∩By| : xy ∈ E(T )}. The width of (Bx : x ∈ V (T )) is max{|Bx| : x ∈ V (T )}−1.
A path-decomposition is a tree-decomposition in which the underlying tree is a path,
simply denoted by the corresponding sequence of bags (B1, . . . , Bn). The treewidth of a
graph G, denoted by tw(G), is the minimum width of a tree-decomposition of G.

If (Bx : x ∈ V (T )) is a tree-decomposition of a graph G, then the torso G⟨Bx⟩ of a bag
Bx is the graph obtained from the induced subgraph G[Bx] by adding edges so that
Bx ∩ By is a clique for each edge xy ∈ E(T ).

A rooted tree consists of a tree T and a distinguished vertex of T called the root. The
depth of a vertex v in a tree T rooted at r ∈ V (T ) is distT (r, v). A tree-decomposition
(Bx : x ∈ V (T )) of a graph G is rooted if T is rooted. If T is rooted at r ∈ V (T ), then
G⟨Br⟩ is called the root torso.

Let G0 be a graph embedded in a surface Σ. A closed disc D in Σ is G0-clean if the
interior of D is disjoint from G0, and the boundary of D only intersects G0 in vertices of
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Σ
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Â \A

Σ

G1
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Â \A
A

Figure 2: A (0, ℓ)-almost-embedded graph and a (3, ℓ)-almost-embedded graph. The
G0-clean discs used to define vortices are yellow. Edges and vertices that participate in
vortices are red. Non-major apex vertices and their incident edges are dark cyan. Major
apex vertices and their incident edges are purple. Non-top edges and vertices are black.

V (G0). Let x1, . . . , xn be the vertices of G0 on the boundary of D in the order around
D. A D-vortex consists of a graph H and a path-decomposition (B1, . . . , Bn) of H such
that xi ∈ Bi for each i ∈ {1, 2, . . . , n}, and V (G0 ∩ H) = {x1, . . . , xn}.

As illustrated in Figure 2, for integers a, â, g, r ⩾ 0 and w ⩾ 1, an (a, â, g, r, w)-almost-
embedding of a graph G is a tuple E := (A, Â, G0, G1, . . . , Gr) such that:

• A ⊆ Â ⊆ V (G) with |A| ⩽ a and |Â| ⩽ â;
• G0, G1, . . . , Gr are subgraphs of G such that G − Â = G0 ∪ G1 ∪ · · · ∪ Gr;
• NG(v) ⊆ Â ∪ V (G1) ∪ · · · ∪ V (Gr) for each v ∈ Â \ A;
• G1, . . . , Gr are pairwise vertex-disjoint;
• G0 is embedded in a surface Σ of Euler genus at most g;
• there are pairwise disjoint G0-clean discs D1, . . . , Dr in Σ; and
• Gi is a Di-vortex with a path-decomposition (B1, . . . , Bni

) of width at most w, for
each i ∈ {1, 2, . . . , r}.

The top of G (with respect to E) is Â ∪ V (G1 ∪ · · · ∪ Gr). The near-top of G is the
union of the top of G and the neighbourhood of the top of G in G0 .

The graph G0 is called the embedded part of E . The vertices in Â are called apex vertices;
those in A are called major apex vertices and those in Â \ A are called non-major apex
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vertices. Major apex vertices can be adjacent to any vertex of G but the neighbourhood
of non-major apex vertices is restricted to the top of G. The precise number, a, of
major apex vertices in an almost-embedding is critical in this work, so we say that a
graph is (a, ℓ)-almost-embeddable if it has an (a, â, g, r, w)-almost-embedding for some
â, g, r, w ⩽ ℓ. A graph G equipped with an (a, ℓ)-almost-embedding of G is said to be
(a, ℓ)-almost-embedded.

We need the following result, which is probably well known to experts in the field, but
for which we have not been able to find any reference. A closed curve in a surface Σ is
contractible if it bounds a region of Σ homeomorphic to a disc. For any terms related to
graphs on surfaces that are not defined here, the reader is referred to the monograph by
Mohar and Thomassen [46].

Lemma 10. Let G be a 2-connected graph embedded in a surface Σ so that every cycle
in G is contractible. Then there is a region R ⊆ Σ bounded by a cycle of G such that R

is homeomorphic to a disc and G ⊆ R, and in particular G is planar.

Proof. First suppose that Σ is the sphere. Then the embedding of G in Σ is planar and
since G is 2-connected each face f bounds a cycle, implying Σ \ f is homeomorphic to a
disc and contains G.

Now assume that Σ has positive Euler genus, which implies that the embedding of G

in Σ is not cellular (since any cellular embedding in a surface of positive Euler genus
contains a non-separating cycle, which is non-contractible). It follows that there is a
face f of G that is not homeomorphic to a disc.

Consider a boundary walk W of f . Note that a priori, W might not be a cycle, but
since cycles form a basis for closed walks in G and all cycles of G are contractible, W

is also contractible. Consider an arbitrary small tubular neighbourhood N of W on Σ,
and let C be the closed curve bounding f \ N on Σ. Then C is contractible, and the
connected region R of Σ − C contained in f is not homeomorphic to a disc. Thus Σ − R

is homeomorphic to a disc, and moreover, Σ − R contains G. It follows that G has a
planar embedding in Σ − R and since G is 2-connected, all its faces in the embedding
are bounded by cycles. In particular, W is indeed a cycle. We conclude that G has an
embedding in a region of Σ that is homeomorphic to a disc, and is bounded by a cycle
of G.

A graph X is k-apex if X − A is planar for some set A ⊆ V (X) of at most k vertices.
We use the following version of the Graph Minor Structure Theorem, due to Dvořák and
Thomas [21]. (A version of Theorem 11 also appears in Dvorák and Kawarabayashi [19,
Theorem 16].)
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Theorem 11 ([21, Theorem 12]). For every integer k ⩾ 1 and every k-apex graph X

there exists an integer ℓ0 such that every X-minor-free graph G has a tree-decomposition
(Bx : x ∈ V (T )) such that for each node x ∈ V (T ):

(i) the torso G⟨Bx⟩ is a (k − 1, ℓ0)-almost-embedded graph; and
(ii) every 3-cycle in the embedded part of G⟨Bx⟩ is the boundary of a 2-cell face (that

is, a face homeomorphic to an open disc).

For graphs H and G, an H-model in G is a set {Gx : x ∈ V (H)} of pairwise vertex-
disjoint connected subgraphs of G, such that for each xy ∈ E(H) there is an edge of G

between Gx and Gy. Each subgraph Gx is called a branch set of the model. Observe that
H is a minor of G if and only if there is an H-model in G. An H-model {Gx : x ∈ V (H)}
in G is faithful if each vertex x ∈ V (H) is in Gx. That is, in a faithful model, each
branch set is indexed by some vertex of G that is in the branch set it indexes. If there
is a faithful H-model in G, then H is a faithful minor of G. This terminology is due to
Grohe [29].

Let T := (Bx : x ∈ V (T )) be a tree-decomposition of a graph G in which each torso
G⟨Bx⟩ is (a, ℓ)-almost-embedded. For each x ∈ V (T ), the lower torso G{Bx} is the
supergraph of G[Bx] obtained by adding each edge uv ∈ E(G⟨Bx⟩) \ E(G[Bx]) if neither
u nor v is in the top of G⟨Bx⟩. Equivalently, G{Bx} is the subgraph of G⟨Bx⟩ in which
edge uv ∈ E(G⟨Bx⟩) is removed if and only if uv ̸∈ E(G[Bx]) and at least one of u or
v is in the top of G⟨Bx⟩. We say that T is lower-minor-closed if, for each x ∈ V (T ),
G contains a faithful G{Bx}-model {Gv : v ∈ Bx} such that, for each vertex v in the
top of G⟨Bx⟩, Gv consists only of the vertex v. Note that this implies that G{Bx} is a
minor of G.

The definitions of torso and lower-minor-closed are motivated by the fact that we will
eventually contract subgraphs of G[Bx] that are connected in G⟨Bx⟩ (but not necessarily
connected in G[Bx]) in order to obtain a bounded treewidth graph Gx

↑ . Each connected
subgraph of G⟨Bx⟩ that we contract will avoid all vertices in the top of G⟨Bx⟩, so it
is also a connected subgraph of G{Bx}. This ensures that, even though we contracted
sets of vertices that are not connected in G[Bx], the contracted graph Gx

↑ is a minor of
G{Bx}, so it is a minor of G. This ensure that Gx

↑ is X-minor-free if G is X-minor-free.

The tree-decomposition of Theorem 11 can be modified to obtain the decomposition
described in Lemma 12 below. The proof of Lemma 12, which involves some careful
restructuring of the (k − 1, ℓ0)-almost-embedded torsos in the tree-decomposition of
Theorem 11, is presented in Appendix A. It is also possible to prove Theorems 4 and 7
with a version of this lemma that does not guarantee Property (3) (see Lemma 44 in
Appendix A), by working alternately with torsos G⟨Bx⟩ and induced subgraphs G[Bx].
We prefer to work with Lemma 12 because it makes our proof conceptually simpler and
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is useful, even critical, in other applications [16].

Lemma 12. For every integer k ⩾ 1 and every k-apex graph X there exists an integer
ℓ such that every X-minor-free graph G has a rooted tree-decomposition T := (Bx : x ∈
V (T )) such that:

(1) for each x ∈ V (T ), the torso G⟨Bx⟩ is a (k − 1, ℓ)-almost-embedded graph;
(2) for each edge xy of T where y is the parent of x;

(a) Bx ∩ By is contained in the top of G⟨Bx⟩,
(b) Bx ∩ By is contained in the near-top of G⟨By⟩ or |Bx ∩ By| ⩽ k + 2, and
(c) Bx ∩ By contains at most three vertices not in the top of G⟨By⟩; and

(3) T is lower-minor-closed.

Point (3) implies the existence of a faithful G{Bx}-model Mx := {Gv : v ∈ Bx} in G for
each x ∈ V (T ). It is worth noting that, for each such G{Bx}-model and each v ∈ Bx,
V (Gv) ∩ Bx = {v} and V (Gv) ∩ Bz ⊆ {v} for any node z that is not a descendant of
x. The first of these facts follows from the faithfulness of Mx, so that v′ is a vertex of
Gv′ and therefore not a vertex of Gv for any v′ ∈ Bx \ {v}. The second follows from the
fact that, if y is the parent of x, then each vertex Bx ∩ By is in the top of G⟨Bx⟩. If
v ∈ Bx ∩ By, then Gv = ({v},∅). Otherwise, the vertices in Bx ∩ By (none of which are
in Gv) separate v from every vertex in Bz \ (Bx ∩ By).

2.2 Pre-Curtains

As illustrated in Figure 3, a graph G is a (k, ℓ)-pre-curtain if it has a rooted tree-
decomposition T := (Bx : x ∈ V (T )) in which each torso G⟨Bx⟩ is a (k, ℓ)-almost-
embedded graph, and for each edge xy of T where y is the parent of x, Bx ∩ By is
contained in the top of G⟨Bx⟩ and in the near-top of G⟨By⟩. We say that G is a
(k, ℓ)-pre-curtain described by T . The top of G is the union of the tops of the torsos of
T and the near-top of G is the union of the near-tops of the torsos of T . Note that any
vertex of G that is not in the top of G appears in exactly one bag of T . We recall that
the root torso of G is the torso associated the root bag of T .

A graph G is a tree of (k, ℓ)-pre-curtains if it has a rooted tree-decomposition T :=
(Bx : x ∈ V (T )) such that:

• for each x ∈ V (T ), G⟨Bx⟩ is a (k, ℓ)-pre-curtain, described by some rooted tree-
decomposition Tx,

• for each edge xy of T where y is the parent of x, Bx ∩ By has size at most k + 3
and is contained in the top of the root torso of G⟨Bx⟩ in Tx.
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Figure 3: A (k, ℓ)-pre-curtain

Again, we say that G is a tree of (k, ℓ)-pre-curtains described by T .

Let G be a tree of pre-curtains described by the tree-decomposition T := (Bx : x ∈ V (T )).
For each x ∈ V (T ), the lower torso G{Bx} is the supergraph of G[Bx] obtained by
adding each edge uv ∈ E(G⟨Bx⟩) if neither u nor v is in the top of G⟨Bx⟩. The tree
of pre-curtains G is lower-minor-closed if, for each x ∈ V (T ), G contains a faithful
G{Bx}-model {Gv : v ∈ Bx} such that, for each vertex v in the top of G⟨Bx⟩, Gv

consists only of the vertex v. Note that the wording of these definitions is identical to
that of lower torso and lower-minor-closed in a tree decomposition whose torsos are
almost-embedded graphs; the difference is that each torso G⟨Bx⟩ in a tree-of-pre-curtains
is a pre-curtain described by a tree decomposition Tx. The top of the pre-curtain G⟨Bx⟩
is the union of the tops of the (almost-embedded) torsos of Tx.

Lemma 13. For every integer k ⩾ 1 and every k-apex graph X there exists an integer
ℓ such that every X-minor-free graph G is a lower-minor-closed tree of (k − 1, ℓ)-pre-
curtains.

Proof. Let T0 := (Bx : x ∈ V (T0)) be the rooted tree-decomposition of G guaranteed by
Lemma 12. For an edge xy of T0 where y is the parent of x, we say that xy is k-heavy if
Bx ∩ By is contained in the near-top of G⟨By⟩, and call it k-light otherwise. Observe
that, by property (2b) of Lemma 12, |Bx ∩ By| ⩽ k + 2 for each k-light edge xy of T0.

By removing all k-light edges of T0 we obtain a forest with component trees T1, . . . , Tp

rooted at r1, . . . , rp, respectively. For each i ∈ {1, . . . , p}, let Bi := ⋃
x∈V (Ti) Bx, let

Gi := G[Bi] and let Ti := (Bx : x ∈ V (Ti)). Since each edge xy in Ti is k-heavy, if y is
the parent of x, then by definition, Bx ∩ By is contained in the near-top of G⟨By⟩. By
property (2a) of Lemma 12, Bx ∩ By is contained in the top of G⟨Bx⟩. Therefore, for
each i ∈ {1, . . . , p}, Gi is a (k − 1, ℓ)-pre-curtain described by Ti.
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Let T be the tree with vertex set V (T ) := {1, . . . , p} in which ij ∈ E(T ) if and only if
some k-light edge of T0 has an endpoint in V (Ti) and an endpoint in V (Tj). Root T

at the index r ∈ V (T ) such that Tr contains the root of T0. Let T := (Bi : i ∈ V (T )).
We claim that G is a tree of (k − 1, ℓ)-precurtains described by T , in which each torso
G⟨Bi⟩ is a (k − 1, ℓ)-pre-curtain described by Ti. Each edge ij of T with j the parent
of i corresponds to a k-light edge xy of T0 with y ∈ V (Tj) and x ∈ V (Ti). Since T

is rooted at r, y is the parent of x in T0. By property (2a) of Lemma 12, Bx ∩ By

is contained in the top of G⟨Bx⟩, which is the root torso of the curtain G⟨Bi⟩. Thus
T satisfies the first requirement for a tree of (k − 1, ℓ)-curtains. Since xy is k-light,
|Bi ∩ Bj| = |Bx ∩ By| ⩽ k + 2. Thus T satisfies the second requirement for a tree of
(k − 1, ℓ)-curtains.

It remains to show that the tree of (k − 1, ℓ)-pre-curtains G described by T is lower-
minor-closed. That is, we must show that for each i ∈ {1, . . . , p}, there is a faithful
G{Bi}-model Mi := {Gv : v ∈ Bi} in G, and for any vertex v in the top of G⟨Bi⟩,
Gv consists only of the vertex v in Mi. The model Mi := {Gv : v ∈ Bi} is defined
as follows. By property (3) of Lemma 12, for each x ∈ V (T0), there exists a faithful
G{Bx}-model Mx := {Gx

v : v ∈ Bx} in G such that for any vertex v in the top of
G⟨Bx⟩, Gx

v only contains the vertex v. For each v ∈ Bi, if v is in the top of G⟨Bi⟩, then
define Gv to only consist of the vertex v. Otherwise, define Gv to be the component of
Gx

v − (Bi \ {v}) that contains v, where Bx is the unique bag in Ti that contains v. Now
we verify that Mi is a faithful G{Bi}-model in G. Obviously Mi is faithful because
Mx is faithful for each x ∈ V (Ti).

Next we verify that the branch-sets of Mi are pairwise vertex-disjoint. Let v and v′

be distinct vertices in Bi, and let x and x′ be the minimum-depth nodes of Ti such
that v ∈ Bx and v′ ∈ Bx′ . Then Gv ⊆ Gx

v \ (Bi \ {v}) and Gv′ ⊆ Gx′
v′ \ (Bi \ {v′}). If

x = x′ then Gv and Gv′ are vertex-disjoint since they are each subgraphs of the branch
sets Gx

v and Gx
v′ in the G{Bx}-model Mx. If x ̸= x′ then we may assume without loss

of generality that x is not an ancestor of x′. Let y be the parent of x. Since Ti is a
(connected) tree that contains x and x′, y is in Ti. By the definition of x, v ̸∈ By, so
v ̸∈ Bx ∩By. Therefore the component of G− (Bx ∩By) that contains v does not contain
v′. If v′ ̸∈ Bx ∩ By then this implies that Gv′ and Gv are vertex-disjoint since they are
contained in different components of G − (Bx ∩ By). If v′ ∈ Bx ∩ By then v′ is in the
top of (the almost-embedded graph) G⟨Bx⟩, so v′ is in the top of (the curtain) G⟨Bi⟩,
so Gv′ , which only contains the vertex v′, is also vertex-disjoint from Gv.

Finally, we verify that for each edge vw ∈ G{Bj}, Gv and Gw are adjacent in G.
If vw ∈ E(G[Bj]), then this follows immediately from the fact that Mi is faithful.
Otherwise, vw ∈ E(G{Bj}) \ E(G[Bj]), which implies that T contains an edge ij

with Bi ∩ Bj ⊇ {v, w}. The existence of ij ∈ E(T ) implies that there exists a k-
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light edge xy ∈ E(T0) where x ∈ V (Ti), y ∈ V (Tj), and {v, w} ⊆ Bx ∩ By. Since
vw ∈ E(G{Bj}) \ E(G[Bj]), neither v nor w are in the top of the curtain G⟨Bj⟩.
Therefore y is the parent of x in T0. Furthermore, By is the only bag of Tj that contains
v and By is the only bag of Tj that contains w. Therefore Gv = Gy

v \ (Bj \ {v}) = Gy
v

and Gw = Gy
w \ (Bj \ {w}) = Gy

w. Therefore Gv and Gw are adjacent in G since My is
a G{By}-model in G.

Say that a colouring of a graph G properly extends a precolouring of a set Y ⊆ V (G) if
no monochromatic component of G has a vertex in Y and a vertex in V (G) \ Y ; that is,
each monochromatic component is a subgraph of G[Y ] or of G − Y . In particular this
happens if and only if each vertex in NG(Y ) is coloured differently to all its neighbours
in Y . Lemma 13 allows the problem of colouring an X-minor-free graph to be reduced
to the problem of colouring a tree of pre-curtains. We now show that for this task, it is
sufficient to be able to properly extend precolourings in pre-curtains.

Lemma 14. Let G be a graph that is a tree of (k, ℓ)-pre-curtains described by T := (Bx :
x ∈ V (T )) and such that, for any (k, ℓ)-pre-curtain G⟨Bx⟩ of G, any precolouring of a set
S of at most k + 3 vertices in the top of the root torso of G⟨Bx⟩ can be properly extended
to an m-colouring of G[Bx] with clustering at most c. Then G has an m-colouring with
clustering at most c.

Proof. Let (Bx : x ∈ V (T )) be a tree-decomposition of G rooted at a node r ∈ V (T ) as
in the definition of a tree of (k, ℓ)-curtains. Let x0, . . . , xr be the nodes of T , ordered so
that x0 is the root of T and, for each i ⩾ 1, the parent of xi is among x0, . . . , xi−1. By
definition of a tree of (k, ℓ)-pre-curtains, G⟨Bx0⟩ is a (k, ℓ)-pre-curtain. By assumption,
G[Bx0 ], as a spanning subgraph of G⟨Bx0⟩, has an m-colouring with clustering at most
c. Suppose now that G[Bx0 ∪ · · · ∪ Bxi−1 ] has an m-colouring with clustering at most c,
and let xj be the parent of xi. By the definition of (k, ℓ)-pre-curtain, Si := Bxj

∩ Bxi
has

size at most k + 3 and is contained in the top of the root torso of the (k, ℓ)-pre-curtain
G⟨Bxi

⟩. Treat Si as a precoloured set in the top of the root torso of G⟨Bxi
⟩, which

by assumption can be properly extended to an m-colouring of G[Bxi
] with clustering

at most c. In this way, we properly extend the colouring of G[Bx0 ∪ · · · ∪ Bxi−1 ] to an
m-colouring of G[Bx0 ∪ · · · ∪ Bxi

]. Since this is a proper extension, any monochromatic
component in this colouring is contained in G[Bx0 ∪ · · · ∪ Bxi−1 ] or is contained in
G[Bxi

]. In either case, each monochromatic component has size at most c. Doing this
for i = 1, . . . , r in order gives an m-colouring of G with clustering at most c.

21



2.3 A Digression

For expository purposes, we now pause to show how the notion of (k, ℓ)-pre-curtains can
be used, with some existing results, to quickly establish that the clustered chromatic
number of Kh-minor-free graphs is at most h + 4. This is weaker than Theorem 1,
but stronger than all previous results on clustered colouring of Kh-minor-free graphs
except for those of Liu and Wood [44]. The purpose of this proof is to introduce some
of the techniques used to prove Theorem 7 which are then expanded upon to prove
Theorem 4. We need the following result, which is a consequence of Corollary 18 by Liu
and Wood [42]. Lemma 26, proven in Section 3.1, is an extension of this result.

Lemma 15. For every Ks,t-subgraph-free graph G of treewidth at most k and every
P ⊆ V (G) such that each vertex in V (G) \ P has at most s neighbours in P , any
precolouring of P with s + 1 colours can be properly extended to an (s + 1)-colouring of
G with clustering at most some function f(k, s, t, |P |).

Proposition 16. For every h ⩾ 5, every Kh-minor-free graph has an (h + 4)-colouring
with clustering at most some function f(h).

Proof. Let H be a Kh-minor-free graph. Since K4 is planar, Kh is (h−4)-apex. Therefore,
by Lemma 13, H is a tree of (h − 5, ℓ)-pre-curtains described by a tree-decomposition
T := (Bi : i ∈ V (T )). Fix some i ∈ V (T ), let Ti := (Bx : x ∈ V (Ti)) be the tree-
decomposition that describes the (h − 5, ℓ)-pre-curtain H⟨Bi⟩, and let G := H[Bi]. Let
S be a set of at most h − 2 precoloured vertices contained in the top of the root torso
of Ti. By Lemma 14, it suffices to show that the precolouring of S can be properly
extended to an (h + 4)-colouring of G. Since H is Kh-minor-free and G is a subgraph of
H, G is also Kh-minor-free. Contracting a matching of size h − 2 in Kh−1,h−1 produces
Kh. So G is Kh−1,h−1-minor-free, implying G is Kh−1,h−1-subgraph-free.

Let G′ be the subgraph of G induced by the near-top of the curtain G⟨Bi⟩. The tree-
decomposition Ti induces a tree-decomposition T ′

i := (B′
x : x ∈ V (Ti)) of G′, where

B′
x := Bx ∩ V (G′). We now show that each torso G′⟨B′

x⟩ in this decomposition has
treewidth at most some k := k(h). The graph G′⟨B′

x⟩ − Âx can be written as the union
of a graph H0 embedded on some surface Σ of Euler genus at most ℓ, and vortices
H1, . . . , Hr as in the definition of an almost-embedding (with r ⩽ ℓ and such that each
Hi has a path-decomposition of width at most ℓ), with the additional property that
each vertex of H0 lies at distance at most 1 from the boundary of a vortex in H0 (by the
definition of a near-top). Let H ′

0 be the supergraph of H0 obtained as follows: For each
vortex Hi with G0-clean disc Di, add a vertex vi in the interior of Di that is adjacent to
each vertex on the boundary of Hi. Next, add edges so that each pair of consecutive
vertices encountered while traversing the boundary of Di are adjacent.
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Then H ′
0 can be embedded on Σ and thus has Euler genus at most ℓ. Moreover, each

connected component of H ′
0 has diameter at most 4r ⩽ 4ℓ. Eppstein [23] proved that

graphs of bounded Euler genus and bounded diameter have bounded treewidth, thus
H ′

0 has treewidth at most k′ := k′(h). Thus H0, which is a subgraph of H ′
0, also has

treewidth at most k′. Dvořák and Thomas [21, Lemma 10] proved that in this case⋃r
i=0 Hi = G′⟨B′

x⟩ has treewidth at most k′′ := ℓ(k′ + 1) − 1, where ℓ accounts for the
fact that the vortices H1, . . . , Hr all have a path-decomposition of width at most ℓ.
Therefore, G′⟨B′

x⟩ − Âx has a tree-decomposition Tx of width at most k′′, so G′⟨B′
x⟩ has

a tree-decomposition of width at most k′′ + |Âx| ⩽ k′′ + ℓ =: k. For each xy ∈ E(T ),
some bag of Tx contains B′

x ∩ B′
y and some bag of Ty contains B′

x ∩ B′
y. Joining these

two bags by an edge, for each xy ∈ E(T ) gives a tree-decomposition of G′ having width
at most k. Therefore the treewidth of G′ is at most k.

Since S is a subset of the top of the root torso of G⟨Bi⟩, S is a subset of the top
(and the near-top) of G⟨Bi⟩. Therefore S ⊆ V (G′). By Lemma 15, the precolouring
of S can be properly extended to an h-colouring of G′ with clustering f(k, h − 1, h −
1, h − 2). Without loss of generality, we may assume this colouring of G′ uses colours
{1, . . . , h}. Now, consider the graph G − V (G′). Each component of G − V (G′) is a
graph of Euler genus at most ℓ. By Theorem 8, G − V (G′) has a 4-colouring using
colours {h + 1, . . . , h + 4} with clustering f ′(ℓ), for some function f ′. The resulting
colouring of G is clearly a proper extension of the precolouring of S and has clustering
max{f(k, h − 1, h − 1, h − 2), f ′(ℓ)}.

We remark that the proof of Proposition 16 is easily adapted to prove the following
result (whose statement is more technical, but which is stronger and immediately implies
Proposition 16):

Proposition 17. For every k-apex graph X, every X-minor-free Ks,t-subgraph-free
graph is max{k + 7, s + 5}-colourable with clustering at most some function f(k, s, t).

2.4 Layered Partitions and Curtains

We now need the following definitions from the literature. A partition of a graph G is a
collection P of non-empty sets of vertices in G such that each vertex of G is in exactly
one element of P. Each element of P is called a part. The quotient of P is the graph,
denoted by G/P , with vertex set P where distinct parts A, B ∈ P are adjacent in G/P
if and only if some vertex in A is adjacent in G to some vertex in B. A partition of G is
connected if the subgraph induced by each part is connected. In this case, the quotient
is the minor of G obtained by contracting each part into a single vertex. It is often
convenient to omit singleton sets when defining partitions and quotient graphs, and only

23



require that P is a set of disjoint subsets of V (G). In this case, G/P := G/P ′ where
P ′ := P ∪ {{v} : v ∈ V (G) \ ⋃

P ∈P P}.

Partitions and clustered colouring are intimately related, since a graph G is k-colourable
with clustering c if and only if G has a partition P such that every part of P has at
most c vertices and the quotient G/P is properly k-colourable.

A layering of a graph G is an ordered partition L = (L1, L2, . . . ) of V (G) such that for
every edge vw ∈ E(G), if v ∈ Li and w ∈ Lj , then |i − j| ⩽ 1. For any integer i, we use
the shorthands L⩽i := ⋃

j⩽i Lj and L⩾i := ⋃
j⩾i Lj. We say that L is upward-connected

if for every i ⩾ 2 every vertex in Li has a neighbour in Li−1. A typical example of a
layering is a Breadth-First-Search (BFS) layering: set a root vertex vj in each connected
component and for each i ⩾ 1, let Li be the set of vertices at distance exactly i − 1 from
one of the vertices vj. Every BFS layering is upward-connected. We use the following
useful property of upward-connectivity

Observation 18. If L = (L1, L2, . . . ) is an upward-connected layering of a graph G,
then, for any integer i ⩾ 1, the number of components of G[L⩽i] is at most the number
of components of G[L1].

If L is a layering of a graph G, then a set X of vertices in G is ℓ-skinny with respect
to L if |X ∩ L| ⩽ ℓ for each L ∈ L. We will use the following lemma to transform a
colouring in which each monochromatic component is ℓ-skinny to a colouring in which
each monochromatic component has bounded size. A monochromatic component C

in some colouring φ of a graph G is called a φ-monochromatic component in G (this
notation is helpful to avoid confusion when we consider several colourings of a given
graph, as in the proof of the next result).

Lemma 19. Let G be a graph and let L := (L1, L2, . . .) be a layering of G. Let
φ : V (G) → {1, . . . , c} be a c-colouring of G such that every φ-monochromatic component
of G is ℓ-skinny with respect to L, and for each component C of G[L⩾6], there exists
a colour aC ∈ {1, . . . , c} \ {φ(v) : v ∈ V (C)} that is not used in C. Then G has a
c-colouring with clustering at most (2c + 5)ℓ.

Proof. As illustrated in Figure 4, define a colouring φ′ of G as follows: For each
component C of G[L⩾6], each colour a ∈ {1, . . . , c} \ {aC}, each i ∈ {7 + 2(a − 1) + 2jc :
j ⩾ 0}, and each v ∈ {w ∈ V (C) ∩ Li : φ(w) = a}, set φ′(v) := aC . For any v ∈ V (G)
not defined by this rule, set φ′(v) := φ(v). Clearly, φ′ is a c-colouring of G. We now
show that φ′ has clustering at most (2c + 5)ℓ.

Claim. For each edge vw of G, if φ(v) ̸= φ(w) then φ′(v) ̸= φ′(w).
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Figure 4: The proof of Lemma 19 with c = 3 colours

Proof. Suppose for the sake of contradiction that φ(v) ̸= φ(w) and φ′(v) = φ′(w).
Without loss of generality, φ(v) ̸= φ′(v). By construction, v ∈ V (C) ∩ Li where C is a
component of G[L⩾6], and i = 7 + 2(φ(v) − 1) + 2jc for some j ⩾ 0, and φ′(v) = aC .
Say w ∈ Li′ . Since L is layering, i′ ⩾ i − 1 ⩾ 6. Hence w is also in C. If φ′(w) = φ(w),
then aC = φ′(v) = φ′(w) = φ(w), which contradicts the assumption that aC is not used
in C. Thus φ′(w) ̸= φ(w). By construction, i′ = 7 + 2(φ(w) − 1) + 2j′c for some j′ ⩾ 0.
Hence 1 ⩾ |i − i′| = |2(φ(v) − φ(w) + jc − j′c)|, implying φ(v) − φ(w) + jc − j′c = 0
and φ(v) − φ(w) = c(j′ − j). Since φ(v) ̸= φ(w), we have j′ ̸= j and |c(j′ − j)| ⩾ c. On
the other hand, |φ(v) − φ(w)| ⩽ c − 1 since φ(v), φ(w) ∈ {1, . . . , c}. This contradiction
shows that φ′(v) ̸= φ′(w). ♢

It follows from the claim that each φ′-monochromatic component A′ is contained in
some φ-monochromatic component A. Consider the following two cases:

1. A′ and A have different colours a′ and a, respectively. That is, a = φ(v) ̸= φ′(v) =
a′ for each v ∈ V (A′). In this case A′ is contained in some component C of G[L⩾6],
a′ = aC , and A′ = A[Li] for some i ∈ {7+2(a−1)+2jc : j ⩾ 0} (since only vertices
in odd-numbered layers change their colour). Therefore, |V (A′)| = |V (A[Li])| ⩽ ℓ,
since A is ℓ-skinny with respect to L.

2. A′ and A have the same colour a. In other words, φ′(v) = φ(v) = a for each
v ∈ V (A′). Consider some component C of G[L⩾6]. If aC = a, then A′ does not
intersect C[L⩾6] by the definition of aC . Let C1, . . . , Cr be the components of
G[L⩾6] for which aCi

̸= a. Then, for each j ∈ {1, . . . , r}, Cj[Li] has no vertex
of colour a for any i ∈ {7 + 2(a − 1) + 2jc : j ⩾ 0}. Therefore the vertices of
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A′[L⩾7] are contained in 2c − 1 consecutive layers of L. Since A′ is contained in
A, and A is ℓ-skinny with respect to L, this implies that |V (A′[L⩾7])| ⩽ (2c − 1)ℓ.
Furthermore, |V (A′[L⩽6])| = |V (A[L⩽6])| ⩽ 6ℓ. Therefore, |V (A′)| ⩽ (2c + 5)ℓ.

Therefore, φ′ is a c-colouring of G with clustering at most (2c + 5)ℓ.

The number 6 in the statement of Lemma 19 might seem arbitrary, since the same proof
works if we replace 6 by any value t (with resulting clustering (2c + (t − 1))ℓ). It turns
out that taking t = 6 will be enough for all the applications of this lemma in the paper.

A layered partition (P , L) of a graph G consists of a partition P and a layering L of G.
Adjectives used to modify P or L have the obvious meaning when applied to (P , L).
For example, (P , L) is connected if P is connected and (P , L) is upward-connected if L
is upward-connected. We say that (P , L) is a (w, ℓ)-layered partition of G if each P ∈ P
is ℓ-skinny with respect to L and the quotient graph G/P has treewidth at most w. We
write ℓ-layered partition instead of (ℓ, ℓ)-layered partition for simplicity.

If E := (A, Â, G0, G1, . . . , Gr) is an almost-embedding of a graph G, then a layering L
of G − A is neat with respect to E if the first layer of L consists of exactly (Â \ A) ∪
V (G1 ∪ · · · ∪ Gr). In other words, the first layer of L consists of the top of G minus
the major apex vertices of G. This implies that the first two layers of L contain the
near-top of G minus the major apex vertices of G (possibly plus other vertices).

The next lemma by Dujmović et al. [17] is one of the key tools that distinguishes our
proof from those of Liu and Wood [42, 43, 44]. In particular, we use layered partitions,
whereas Liu and Wood [42, 43, 44] use layered treewidth.

Lemma 20 ([17, Lemma 28]). For every connected (a, ℓ)-almost-embedded graph G with
major apex vertex set A, G − A has a (13ℓ, 6ℓ)-layered partition (P , L) that is connected,
upward-connected, and neat with respect to the almost-embedding.

Since Lemma 20 is not stated explicitly in [17], we now explain the small modifications
to the proof of [17, Lemma 28] that are needed to deduce it. The proof of Lemma 28
in [17] starts by considering the embedded part G0 of the almost-embedding of G. Let
F1, . . . , Fr be the set of faces of G0 that contain the vortices. Choose an arbitrary vertex
v ∈ V (F1) and add edges so that v is adjacent to each vertex on the boundary of Fi, for
each i ∈ {1, . . . , r}. Since the number, r, of vortices is bounded, the resulting graph has
bounded Euler genus. The authors of [17] then consider a BFS layering starting at v in
the resulting graph, and apply a specific result on graphs on surfaces. This produces an
upward-connected layered partition of G0 in which all the vertices on the boundary of a
vortex appear on the first two layers of the resulting layering, and the proof continues
by adding all vortex vertices and apex vertices to the first layer.
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To obtain the result stated in Lemma 20 we start this process slightly differently.
Introduce a new vertex x∗ adjacent to every vertex of G0 that is on the boundary of a
vortex (the resulting graph still has bounded Euler genus). Consider a BFS layering
of G0 starting at x∗, and then apply the result for graphs on surfaces, as before. This
gives a layered partition in which x∗ is in the first layer and the second layer contains
precisely the vertices lying on the boundary of a vortex. After adding the non-major
apex vertices and vortex vertices to the second layer and discarding the first layer (that
is, {x∗}), we obtain a neat layering of G − A. Moreover, since we started with a BFS
layering, each vertex outside the first layer has a neighbour in the previous layer, so the
resulting layering is upward-connected.

A (k, ℓ)-almost-embedded graph D with major apex vertex set A that is equipped with
a neat ℓ-layered partition (P , L) of D − A is called a (k, ℓ)-drape, and we say that
D is described by (P , L).5 A (k, ℓ)-pre-curtain G described by a tree-decomposition
T := (Bx : x ∈ V (T )) is a (k, ℓ)-curtain if for each x ∈ V (T ), the torso G⟨Bx⟩ is a
(k, ℓ)-drape. A (k, ℓ)-curtain G described by T := (Bx : x ∈ V (T )) is upward-connected
if, for each x ∈ V (T ), the ℓ-layered partition (Px, Lx) that describes the drape G⟨Bx⟩ is
upward-connected.

A tree of curtains is defined similarly as a tree of pre-curtains, except that each pre-
curtain is now replaced by a curtain. Explicitly, a graph G is a tree of (k, ℓ)-curtains if
it has a rooted tree-decomposition T := (Bx : x ∈ V (T )) such that:

• for each x ∈ V (T ), G⟨Bx⟩ is a (k, ℓ)-curtain,
• for each edge xy of T where y is the parent of x, Bx ∩ By has size at most k + 3

and is contained in the top of the root torso of G⟨Bx⟩.

Again, we say that G is a tree of (k, ℓ)-curtains described by T . If every torso in a tree
of (k, ℓ)-curtains is upward-connected, then we say that it is a tree of upward-connected
(k, ℓ)-curtains.

The following version of Lemma 14 for curtains has the exact same proof as that of
Lemma 14 (replacing each occurrence of (k, ℓ)-pre-curtain in the proof by (k, ℓ)-curtain
or upward-connected (k, ℓ)-curtain, depending on the version).

Lemma 21. Let G be a graph that is a tree of (k, ℓ)-curtains described by T := (Bx :
x ∈ V (T )) and such that, for any (k, ℓ)-curtain G⟨Bx⟩ of G, any precolouring of a set S

of at most k + 3 vertices in the top of the root torso of G⟨Bx⟩ can be properly extended
to an m-colouring of G[Bx] with clustering at most c. Then G has an m-colouring with
clustering at most c.

5In reality it is rather D −A that is described by (P, L), but writing D instead of D −A is sometimes
convenient, since it allows us to avoid naming the major apex set systematically.
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The following theorem, which is an immediate consequence of Lemmas 13 and 20, is
a new structural description of graphs excluding a fixed minor, which we believe is of
independent interest and might have further applications.

Theorem 22. For any integer k ⩾ 1 and for any k-apex graph X, there is an integer
ℓ ⩾ 2 such that every X-minor-free graph G is a lower-minor-closed tree of upward-
connected (k − 1, ℓ)-curtains.

L3
. . .

L1
L2

Figure 5: A curtain (above) and a raised curtain (below). We think of the layers as
drawn from top to bottom (with the top of the root torso of the curtain being depicted
in green). All torsos of the decomposition are glued on a subset of their first and second
layers (and on a subset of their major apex vertices, which are depicted in blue–or green,
for the major apex vertices Ar of the root torso–on the figure and are not part of the
layerings).

From a (k, ℓ)-curtain G, we obtain the raised curtain G↑ as follows (see Figure 5): For
each x ∈ V (T ), let (Px, Lx) be the ℓ-layered partition that describes the (k, ℓ)-drape
G⟨Bx⟩ and write Lx = (Lx

1 , Lx
2 , . . .). For each x ∈ V (T ), let Gx

↑ be the graph obtained
from the induced subgraph G[Bx] by contracting each component C of G[P ∩ Lx

⩾6] into
a single vertex vC , for each P ∈ Px. Let Lx

↑ := V (Gx
↑) \ (⋃5

i=1 Lx
i ) be the set of vertices

obtained from these contractions.

For each edge xy ∈ E(T ) where y is the parent of x, the adhesion set Bx ∩By is contained
in (Ax ∪ Lx

1) ∩ (Ay ∪ Ly
1 ∪ Ly

2). So for distinct x, y ∈ V (T ), the connected subgraphs
contracted to create Gx

↑ and the connected subgraphs contracted to create Gy
↑ have no
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vertices in common. The raised curtain is the graph G↑ := ⋃
x∈V (T ) Gx

↑ obtained from G

by applying all the above edge contractions (for each x ∈ V (T )).

Lemma 23. Let G be a (k, ℓ)-curtain and let G↑ be the corresponding raised curtain.
Then G↑ is a minor of G, G↑ is a (k, ℓ)-curtain with 6 layers in each drape, and the
treewidth of G↑ is at most 6ℓ(ℓ + 1) + k − 1.

Proof. It is immediate from the definition that G↑ is a minor of G and that it is a
(k, ℓ)-curtain with 6 layers per drape.

For each x ∈ V (T ), let Hx := (G⟨Bx⟩ − Ax)/Px and write {Cy : y ∈ V (Hx)} := Px to
highlight the relationship between Hx and Px, so Cy is the part of Px whose contraction
creates the vertex y in Hx. For each y ∈ V (Hx), let Dy be the set consisting of the at
most 5ℓ vertices in Cy ∩ Lx

⩽5, plus the vertices vC ∈ V (Gx
↑) obtained by contracting a

component C of G[Cy ∩Lx
⩾6]. There are at most ℓ such components, since if G[Cy ∩Lx

⩾6] is
not connected, Cy must intersect Lx

⩽5 and all the connected components C of G[Cy ∩Lx
⩾6]

must intersect Lx
6 . So |Dy| ⩽ 6ℓ. Let Qx := {Dy : y ∈ V (Hx)} (and recall that when we

define partitions of graphs we can omit singletons in the description for convenience).
It follows that Gx

↑ is isomorphic to a subgraph of (G⟨Bx⟩ − Ax)/Qx. Therefore, in any
tree-decomposition of Hx, each occurrence of y ∈ V (Hx) in a bag can be replaced by the
contents of Dy, to obtain a tree-decomposition of Gx

↑ − Ax in which each bag increases
in size by a factor of at most 6ℓ. Since tw(Hx) ⩽ ℓ, this implies that Gx

↑ − Ax has a
tree-decomposition in which each bag has at most 6ℓ(ℓ + 1) vertices. Adding the vertices
in Ax to every bag shows that tw(Gx

↑) ⩽ 6ℓ(ℓ + 1) + |Ax| − 1 ⩽ 6ℓ(ℓ + 1) + k − 1.

For each edge xy ∈ E(T ), Bx∩By is a clique in G⟨Bx⟩[Ax∪Lx
1 ] and in G⟨By⟩[Ay∪Ly

1∪Ly
2].

Thus no vertex in Bx ∩ By is in an edge contraction in the construction of Gx
↑ or Gy

↑.
Hence (Bx ∩By)\Ax appears in some bag in the tree-decomposition of Gx

↑ −Ax, implying
that Bx ∩ By appears in some bag in the tree-decomposition of Gx

↑ . Similarly, Bx ∩ By

appears in some bag in the tree-decomposition of Gy
↑. Adding an edge between the nodes

corresponding to these two bags (for each xy ∈ E(T )) creates a tree-decomposition of
G↑. Thus tw(G↑) ⩽ 6ℓ(ℓ + 1) + k − 1.

Lemma 24. Let G be a lower-minor-closed tree of (k, ℓ)-curtains described by a tree-
decomposition T := (Bx : x ∈ V (T )). Then, for each x ∈ V (T ), the graph H↑ obtained
from G{Bx} by performing the same contractions used to raise the curtain G⟨Bx⟩ is a
minor of G.

Proof. Let (L, P) be the layered partition of G⟨Bx⟩ − Ax, where L := (L1, L2, . . .), let
G⟨Bx⟩↑ be the graph obtained by raising the curtain G⟨Bx⟩, and let L↑ := (L1, . . . , L5, L↑)
be the resulting layering of G⟨Bx⟩↑. Each vertex v ∈ L↑ is obtained by contracting

29



α

· · ·

Figure 6: Adding the vertex α adjacent to the bottom layer of H↑.

a connnected subgraph Xv of G⟨Bx⟩[L⩾6]. Since V (Xv) ⊆ L⩾6, every edge of Xv in
G⟨Bx⟩ is also an edge of G{Bx}. Thus, H↑ is a graph that can be obtained from G{Bx}
by contracting connected subgraphs. Therefore H↑ is a minor of G{Bx}. Since G is
lower-minor-closed, G{Bx} is a minor of G, so H↑ is a minor of G.

2.5 Theorem 7: Proof for s ⩾ 4

Recall Theorem 7 which states that for any apex graph X, any X-minor-free Ks,t-
subgraph-free graph is (s+1)-colourable with clustering at most some function f(X, s, t).
Theorem 7 holds for all t ⩾ s ⩾ 3. Here we prove it for t ⩾ s ⩾ 4. The case s = 3
requires some more sophisticated tools that are also used to establish Theorems 1, 2
and 4, so will be proven later, in Section 4.3.

Proof of Theorem 7 for s ⩾ 4. Let J be a X-minor-free Ks,t-subgraph-free graph. By
Theorem 22, J is a a tree of (0, ℓ)-curtains for some ℓ := ℓ(X). We will prove that, for
each curtain G := J⟨Bτ ⟩ of J , any (s + 1)-colouring of s vertices in the top of the root
torso of G can be properly extended to an (s+1)-colouring of H := J [Bτ ] with clustering
at most some function c(s, t). Lemma 21 then implies that J is (s + 1)-colourable with
clustering c(s, t).

Let T := (Bx : x ∈ V (T )) be the tree-decomposition that describes G. For each
x ∈ V (T ), let (Px, Lx) be the ℓ-layered partition that describes the (0, ℓ)-drape G⟨Bx⟩,
where Lx =: (Lx

1 , Lx
2 , . . .). For each integer i ⩾ 1, let Li := ⋃

x∈V (T ) Lx
i . Observe that

(L1, L2, . . .) is an upward-connected layering of G. Let G↑ be the graph obtained by
raising G, let L↑ := V (G↑)\V (G), and let L↑ := (L1, . . . , L5, L↑) be the resulting layering
of G↑. Let H↑ be the graph obtained from H by performing the same contractions used
to obtain G↑ from G. Let H+

↑ be the graph obtained from H↑ by adding a single vertex
α adjacent to every vertex in L↑, as illustrated in Figure 6. Assign the colour a := s + 1
to α.

We will apply Lemma 15 to H+
↑ with the precoloured set P := S ∪ {α}. To do this, we
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must verify that H+
↑ has bounded treewidth and is Ks,t-subgraph-free. Observe that

each vertex of L↑ has only one neighbour, α, in P . Each vertex in V (G) \ L↑ has at most
s neighbours (all contained in S) in P . Consider the induced graph H↑[L5 ∪ L↑]. Each
component of this graph is embedded in a surface of Euler genus at most g = g(X). It
follows from Euler’s Formula that H↑[L5 ∪ L↑] is K3,2g+3-subgraph-free. Since s ⩾ 4,
this implies that H+

↑ is Ks,max{t,2g+3}-subgraph-free. By Lemma 23, H↑ has treewidth at
most k := k(X) and the addition of the vertex α to make H+

↑ increases the treewidth
by at most 1. Therefore, H+

↑ satisfies all the requirements of Lemma 15, so H+
↑ has an

(s + 1)-colouring that properly extends the precolouring of P and has clustering at most
c := f(k + 1, s, max{t, 2g + 3}, s + 1).

Extend the colouring of H↑ to a colouring of H in the obvious way: For each vertex
v ∈ V (H↑) \ V (G) there is a connected subgraph Xv of G that was contracted to create
v. Assign each vertex in Xv the colour of v. The resulting colouring of H does not
necessarily have bounded clustering because Xv can be arbitrarily large. However, by
the definition of (·, ℓ)-curtain, V (Xv) is ℓ-skinny with respect to L. This implies that
each monochromatic component of H is cℓ-skinny with respect to L. Furthermore, since
our colouring properly extends the precolouring P = S ∪ {α}, each vertex in L⩾6 avoids
the colour a = s + 1 of α. Therefore, by Lemma 19, H has an (s + 1)-colouring with
clustering at most (2s + 7)cℓ.

The proof of Theorem 7 uses many of the elements that are ultimately used in our proof
of Theorem 4. Specifically, the proof of Theorem 4 uses the same strategy of decomposing
our graph into a tree of curtains, and then colouring each curtain G by first introducing
extra vertices to the raised curtain G↑ whose colours are used to break long skinny
monochromatic components into short skinny monochromatic components (Lemma 19).
The main difference is that, in the Js,t-minor-free setting, G is an (s − 3, ℓ)-curtain, so
each drape of G has up to s − 3 major apex vertices.

The presence of major apex vertices causes considerable complications. Even a single
major apex vertex a in a torso ruins the component breaking strategy used in the proof
of Lemma 19. To avoid this, we will colour the curtain G↑ so that, for each component
C of G↑[L5 ∩ L↑], the colour assigned to any vertex v in V (C) ∩ L↑ is distinct from the
colour assigned to each neighbour of v in Ax, as well one additional extra vertex αC ,
whose colour is different from all vertices in Ax. This way, the colour of αC can later be
used as a breaker. This motivates the introduction of admissible sets that appear in the
next section.

However, this highlights another difficulty we will eventually encounter. This difficulty
is most obvious in the context of Kh-minor-free graphs, which Theorem 1 promises to
colour with h−1 colours. In this setting, the major apex set Ax of the drape G⟨Bx⟩ that

31



contains C can have size up to h − 5. After excluding the colours used by Ax ∪ {αC}
this may leave only (h − 1) − (h − 5) − 1 = 3 colours available for each vertex in C. In
general, this would not be possible since the graph C[L↑] may not have a 3-colouring
with bounded clustering. For example, all graphs in the graph class G3 described in
Proposition 9 are planar and have treewidth 3, so G↑[Lx

↑ ] could contain arbitrarily
large members of G3. In this case, we will be forced to produce a 3-colouring of G↑[Lx

↑ ]
that has arbitrarily large monochromatic components. Using some new and old tricks,
we show that each monochromatic component in G↑ corresponds to a monochromatic
component in G that is skinny with respect to L, so it can be broken into bounded size
monochromatic components using Lemma 19.

3 Bounded Treewidth Lemmas

This section proves two lemmas about bounded treewidth graphs that exclude certain
subgraphs. Both lemmas depend on the following sequence of definitions.

A list-assignment of a graph G is a function L such that L(v) is a set of ‘colours’ for
each vertex v ∈ V (G). An L-colouring is a colouring of G where each vertex v ∈ V (G)
is assigned a colour in L(v).

Fix an integer s ⩾ 1. For a list-assignment L of a graph G, let
P (L) := {v ∈ V (G) : |L(v)| = 1} and
Q(L) := {v ∈ V (G) \ P (L) : |NG(v) ∩ P (L)| ∈ {1, 2, . . . , s − 1}}.

The vertices in P (L) are said to be precoloured by L. We say L is (s, p)-good if:

(g1) |P (L)| ⩽ p,
(g2) |L(v)| ⩾ s + 1 − |NG(v) ∩ P (L)| for all v ∈ Q(L);
(g3) |L(v)| ⩾ 2 for all v ∈ NG(P (L)) \ Q(L);
(g4) |L(v)| ⩾ s + 1 for all v ∈ V (G) \ NG[P (L)]; and
(g5) L(v) ∩ L(u) = ∅ for all v ∈ Q(L) and u ∈ NG(v) ∩ P (L).

Note that by the definition of P (L), property (g3) above could be equivalently stated as
L(v) ̸= ∅ for all v ∈ NG(P (L)) \ Q(L), or equivalently (using the other properties) as
L(v) ̸= ∅ for all v ∈ V (G).

For two list-assignments L and L′ of G, we say that L′ is a specialization of L if
L(v) ⊇ L′(v) for each v ∈ V (G), written as L ⊇ L′. In this case, any L′-colouring of G

is also an L-colouring of G.

As illustrated in Figure 7, for an integer k ⩾ 0, a set S := {(α1, A1), . . . , (αr, Ar)} is
k-admissible in a graph G if:
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(t1) Aj is a set of at most k vertices in G, for each j ∈ {1, . . . , r},
(t2) αj is a vertex of G and NG[αj] ∩ Aj = ∅, for each j ∈ {1, . . . , r},
(t3) (⋃r

j=1 Aj) ∩ (⋃r
j=1 Sj) = ∅ where Sj := N2

G−Aj
[αj], and

(t4) S1, . . . , Sr are pairwise disjoint.

A1
A2

A3

α1

α2

α3

S1 S2

S3

Figure 7: A k-admissible set.

To avoid any possible confusion, we emphasise that the neighbourhoods in (t2) and (t3)
above are defined in different graphs (G in (t2) and G − Aj in (t3)).

We call Sj the j-trigger set, since in the colouring procedure below, colouring the first
vertex in Sj triggers the colouring of all uncoloured vertices in Aj ∪ {αj}.

A list-assignment L and a k-admissible set S = {(α1, A1), . . . , (αr, Ar)} for a graph G

are compatible if for each j ∈ {1, . . . , r}:

(c1) if Sj ∩ P (L) ̸= ∅, then Aj ∪ {αj} ⊆ P (L);
(c2) if Sj ∩ P (L) ̸= ∅, then L(a) ∩ L(αj) = ∅ for each a ∈ Aj; and
(c3) if Sj ∩ P (L) ̸= ∅, then L(a) ∩ L(x) = ∅ for each a ∈ Aj ∪ {αj} and each

x ∈ NG(αj) ∩ NG(a).

In words, whenever a vertex of a trigger set Sj is precoloured, we require that αj and all
the vertices of Aj are also precoloured (with αj having a colour distinct from the colours
of the vertices from Aj), and moreover the colour of each vertex of Aj ∪ {αj} does not
appear in the list of its neighbours from NG(αj). In our applications, Aj will be the set
of major apex vertices of an almost-embedded graph, and αj is a dummy vertex added
to a raised curtain arising from the embedded part of the almost-embedded graph, such
that αj is adjacent to no apex vertex, and Sj is adjacent to no vortex and no non-major
apex vertex. The colour assigned to αj (which by (c2) and (c3) is not used by a vertex
in NG(αj) ∪ Aj) then serves as an extra colour that can be used in Lemma 19 to break
up large (but skinny) monochromatic components when we lower the curtain.

We use the following result by Liu and Wood [43], which has a simple proof implicit in
the earlier work of Ossona de Mendez et al. [52].

Lemma 25 ([43, Lemma 6]). For every integer ℓ ⩾ 2, every s ∈ {1, . . . , ℓ − 1}, every
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integer t ⩾ s, there exists an integer c := c(s, t, ℓ) ⩾ 1, such that for every graph G with
treewidth less than ℓ and with no Ks,t subgraph, and for every P ⊆ V (G),∣∣∣{u ∈ V (G) \ P : |NG(u) ∩ P | ⩾ s}

∣∣∣ ⩽ c|P | .

3.1 Ks,t-Subgraph-Free Bounded Treewidth Graphs

We now reach the first of our two lemmas for bounded treewidth graphs. Say a
function f : R+ → R+ is reasonable if f(x) ⩾ x for all x ∈ N, f is increasing, and
limx→∞ x/ log f(x) = ∞. The following lemma is the technical extension of Lemma 15
mentioned earlier.

Lemma 26. For any integers s, t, ℓ ⩾ 2, there is a reasonable function f : R+ → R+

such that for every integer p ⩾ f(1) the following holds: Let G be a graph with treewidth
less than ℓ and with no Ks,t subgraph. Let L be an (s, p)-good list-assignment for G that
is compatible with an (s − 2)-admissible set S := {(α1, A1), . . . , (αr, Ar)} in G. Then G

has an L-colouring φ : V (G) → ⋃
v∈V (G) L(v) with clustering f(p), such that:

(a) the union of the monochromatic components that intersect P (L) has at most
f(|P (L)|) vertices;

(b) φ(a) ̸= φ(αj) for each j ∈ {1, . . . , r} and a ∈ Aj.
(c) φ(a) ̸= φ(x) for each j ∈ {1, . . . , r}, a ∈ Aj ∪ {αj} and x ∈ NG(αj) ∩ NG(a).

Liu and Wood [42] prove a result similar to Lemma 26 with r = 0 and in the more
general setting of tangles (rather than bounded treewidth). Rewriting their result
without reference to tangles (assuming bounded treewidth instead) results in a lemma
statement equivalent to Lemma 26 with r = 0, and a proof that has roughly the same
structure as the one given below. The main differences between the two are the technical
modifications required to achieve (b) and (c) when r > 0.

Proof. Define f by f(x) := xlog4/3 212ℓs(c + 1)12ℓs, where c = c(t, ℓ, s) is defined as in
Lemma 25. So f is reasonable. Fix p ⩾ f(1). We prove this result by induction on
(|V (G)|, |V (G)| − |P (L)|) in lexicographical order. Since the result is vacuous when
V (G) = ∅, we may assume that |V (G)| ⩾ 1. Let P := P (L) and Q := Q(L). There are
two easy cases to deal with before arriving at the two main cases.

Case A. P = ∅: If Aj ̸= ∅ for some j ∈ {1, . . . , r}, then let v be any vertex in
Aj. Otherwise, if r ⩾ 1, then let v := α1. Otherwise, let v be any vertex of G. Set
P ′ := {v} and define L′(v) to be a 1-element subset of L(v). For each w ∈ NG(v), let
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L′(w) := L(w) \ L′(v). Since each L(w) has size at least s + 1, |L′(w)| ⩾ s, as desired.
For each vertex x ∈ V (G) \ NG[v], let L′(x) := L(x). Note that L′ is an (s, p)-good
list-assignment, with P (L′) = {v} and either Q(L′) = ∅ (if s = 1) or Q(L′) = NG(v) (if
s ⩾ 2).

We now show that L′ is compatible with S. If r = 0 then (c1)–(c3) are vacuous.
Otherwise, v ∈ Aj ∪ {αj} for some j ∈ {1, . . . , r}. If v = αj then, by the choice
of v, Aj = ∅ (and j = 1), so Aj ∪ {αj} ⊆ {v} = P (L′) which satisfies (c1); (c2)
is vacuous; and Q(L′) = NG(v) so (g5) implies (c3). Otherwise v ∈ Aj so, by (t3),
P (L′) ∩ Sj = {v} ∩ Sj = ∅, so (c1)–(c3) are vacuous.

Since |P ′| > |P |, by induction, G has an L′-colouring φ that satisfies the requirements
of the lemma for (G, L′, S). Since L ⊇ L′ and P = ∅, φ is an L-colouring that satisfies
the requirements of the lemma for (G, L, S), as desired.

Case B. NG(P ) = ∅: Let G′ := G − P . Since Case A does not hold, P ̸= ∅ and
|V (G′)| < |V (G)|. By induction, there is a colouring φ of G′ satisfying the conditions
of the lemma for (G′, L, S) (where we consider the natural restrictions of L and S to
G′). Extend φ to G by assigning to each vertex v ∈ P the unique colour in L(v). Since
NG(P ) = ∅, each monochromatic component intersecting P in G is contained in P ,
and thus the union of the monochromatic components intersecting P has size at most
|P | ⩽ p = f(1) ⩽ f(|P |), while the size of the remaining monochromatic components is
the same in G and G′. Therefore φ satisfies requirement (a). Since L is compatible with
S, (c2) and (c3) imply that φ satisfies (b) and (c), respectively. Therefore, we obtain an
L-colouring that satisfies the requirements of the lemma for (G, L, S), as desired.

Case C. |P | < 12ℓs: Let p̂ := |P | and let v1, . . . , vp̂ be the vertices of P . Define
P0 := P and Q0 := Q. We will define a sequence of good list-assignments L = L0 ⊇ L1 ⊇
· · · ⊇ Lp̂ =: L′ that are all compatible with S. We will ensure that |P (L′)| > |P (L)| so
that we can apply induction to (G, L′, S), and obtain an L′-colouring φ of G that satisfies
(b) and (c). Of course, φ also satisfies (a) with respect to L′, but this is not sufficient to
ensure that it satisfies (a) with respect to L since |P (L′)| > |P (L)|. The main difficulty,
therefore, is to construct L1, . . . , Lp̂ so that the union of the monochromatic components
that intersect P has size at most f(|P |).

We will construct a sequence of precoloured sets P1 ⊆ · · · ⊆ Pp̂ and three related
sequences (U−

i )i∈[p̂], (Ui)i∈[p̂], and (Qi)i∈[p̂] of vertices of G and these will be used to
define L1, . . . , Lp̂. In order to ensure that U−

1 is non-empty, it is treated slightly differently
than the other sets U−

i : If NG(P ) contains at least one vertex that is adjacent to at
least s vertices of P = P0, then U−

1 := {u ∈ NG(P ) : |NG(u) ∩ P0| ⩾ s}. Otherwise,
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U−
1 := {u} where u is an arbitrary vertex in NG(P0). The set U−

1 is well-defined and
non-empty because P is non-empty (otherwise Case A would apply) and NG(P ) is
non-empty (otherwise Case B would apply). Consider the following sets (illustrated in
Figure 8 and explained below):

J1 := {j ∈ {1, . . . , r} : U ′
1 ∩ Sj ̸= ∅, Pi−1 ∩ Sj = ∅}

U1 := U−
1 ∪

⋃
j∈Ji

(Aj ∪ {αj} \ P0)

P1 := P0 ∪ U1

Q1 := {q ∈ NG(P1) : |NG(q) ∩ P1| ∈ {1, 2, . . . , s − 1}} .

For each i = 2, 3, . . . , p̂, let

U−
i := {u ∈ NG(Pi−1) : |NG(u) ∩ Pi−1| ⩾ s} (1)
Ji := {j ∈ {1, . . . , r} : U−

i ∩ Sj ̸= ∅, Pi−1 ∩ Sj = ∅} (2)
Ui := U−

i ∪
⋃

j∈Ji

(Aj ∪ {αj} \ Pi−1) (3)

Pi := Pi−1 ∪ Ui (4)
Qi := {q ∈ NG(Pi) : |NG(q) ∩ Pi| ∈ {1, 2, . . . , s − 1}} .

Note that the i = 1 case only differs from the i ∈ {2, . . . , p̂} case in the definition of U−
i .

⩾ s

⩾ s
Pi−1

U−
i

< s

< s

Qi−1

Sj

Aj

αj Pi

Figure 8: An illustration of the different sets defined in Case C.

These definitions warrant some explanation. Suppose we have already constructed (s, p)-
good list assignments L0 ⊇ L1 ⊇ · · · ⊇ Li−1 where Pj = P (Lj) and Lj is compatible
with S for each j ∈ {0, . . . , i − 1}. Now consider the construction of Li ⊆ Li−1 and
Pi = P (Li) = Pi−1 ∪ Ui. At this point, the set Pi−1 is precoloured. The set U−

i consists
of those non-precoloured vertices with at least s precoloured neighbours (step (1)), with
some exceptions in the i = 1 case. We are about to precolour all the vertices in U−

i ,
hence they are added to Pi (step (4)). If the j-trigger set Sj includes some vertex in
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U−
i and no vertex in the j-trigger set is currently precoloured, then j is included in Ji

(step (2)), and we say that j is triggered. In this case, Aj ∪ {αj} \ Pi−1 is added to Ui

and Pi (step (4)); subsequently we will also precolour the vertices in Aj ∪ {αj} that are
not already precoloured. In particular, αj is added to Pi, implying Pi ∩ Sj ≠ ∅ and j is
triggered at most once (that is, J1, . . . , Jp̂ are pairwise disjoint). This algorithm ensures
that the precoloured set Pi satisfies (c1); that is, Aj ⊆ Pi whenever Pi ∩ Sj ̸= ∅.

Now it is time to assign colours to the vertices of Ui = Pi \ Pi−1. For each j ∈ Ji and
each a ∈ Aj ∩ Ui choose any colour in Li−1(a) distinct from the colour of vi. This is
possible since |Li−1(a)| ⩾ 2 by (g3), (g2) and (g4). Next, for each j ∈ J choose a colour
for αj that is different from every colour used by any of the at most (s − 2) + 1 = s − 1
vertices in Aj ∪ {vi}. This is possible since j ∈ Ji implies that NG(αj) ∩ Pi−1 = ∅, so
|Li−1(αj)| ⩾ s + 1 by (g4). This ensures that Li satisfies (c2).

Before colouring the remaining vertices of Ui we pause to consider each vertex x ∈ NG(αj)
for each j ∈ Ji. By definition, NG(x) ⊆ Aj ∪ {αj} ∪ Sj and, since j ∈ Ji, Sj ∩ Pi−1 = ∅.
Therefore, at this moment the only neighbours of x that have been assigned their final
colour are in Aj ∪ αj. We will remove all these colours from Li−1(x) before continuing,
which will ensure that Li(x) satisfies (c2) and still leaves at least s + 1 − (s − 1) = 2
colours in Li−1(x). Finally, we assign colours to all the remaining vertices of Ui. For
each such vertex v, (g3), (g2) and (g4) imply that |Li−1(v)| ⩾ 2 and this allows us to
choose a colour for v that is distinct from vi. Lastly, we remove colours from the lists of
vertices in Qi so that they avoid their newly-precoloured neighbours in Ui.

Shortly, we will give a more careful definition of the list-assignments L1, . . . , Lp̂. We
will want to prove that each of these is an (s, p)-good list-assignment for G (that is,
a list-assignment satisfying (g1)–(g5) above). Before explicitly defining the contents
of these lists, we can already verify that they will satisfy (g1) by bounding the size of
Pi = P (Li) for each i ∈ {1, . . . , p̂}. By Lemma 25, |U−

i | ⩽ c|Pi−1|. By (t4), the trigger
sets S1, . . . , Sr are pairwise disjoint, so each element of U−

i is responsible for adding
the contents of at most one set Aj ∪ {αj} (of size at most s − 1) to Ui. Therefore
|Ui| ⩽ s|U−

i | ⩽ cs|Pi−1|. (We think of each u ∈ U−
i as contributing itself and up to s − 1

elements of Aj ∪ {αj} to Ui; for a total of s elements.) Hence Pi satisfies the recurrence
|Pi| = |Pi−1| + |Ui| ⩽ (cs + 1)|Pi−1|. Therefore |Pi| ⩽ |P0|(1 + cs)i < 12ℓs(cs + 1)12ℓs =
f(1) ⩽ p.

We are now ready to carefully define L1, . . . , Lp̂. Let L0 := L and for each i ∈ {1, . . . , p̂},
let ci be the unique element in L(vi). While defining L1, . . . , Lp̂ we will prove that each
is (s, p)-good and compatible with S. By assumption, L0 is (s, p)-good and compatible
with S. Therefore, in the following definition of Li, we may inductively assume that
Li−1 is (s, p)-good and compatible with S. We start by defining the lists of the vertices
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in Pi, and then we consider vertices in Qi, vertices in NG(Pi) \ Qi, and finally vertices
in V (G) \ NG[Pi].

1. For v ∈ Pi−1 set Li(v) := Li−1(v). Consider a vertex v ∈ Ui = Pi \ Pi−1. We need
Li(v) to be a singleton set, so that P (Li) = Pi. We distinguish three cases, which
we handle in the following order:
1.1 If v ̸∈ ⋃r

j=1 NG[αj ] then let Li(v) be a singleton set consisting of an arbitrary
element of Li−1(v) \ {ci}. Since Li−1 is (s, p)-good and v ̸∈ Pi−1, (g2)–(g4)
imply that |Li−1(v)| ⩾ 2. Therefore Li−1(v) \ {ci} is non-empty and Li(v) is
well-defined.

1.2 If v = αj for some j ∈ {1, . . . , r} then (c1) implies that Ui ∩ Sj ̸= ∅. So,
Aj ⊆ Pi−1 ∪ Ui by the definition of Ui. In particular, for each a ∈ Aj,
|Li(a)| = 1 since a ∈ Pi−1 (so |Li−1(a)| = 1) or a ∈ Ui (so Li(a) was assigned
in 1.1, above). If v is adjacent to some vertex u ∈ Pi−1, then u ∈ NG(αj) ⊆ Sj ,
and v ∈ Pi−1 by (c1), which is a contradiction. Thus v ̸∈ NG(Pi−1). By (g4),
|Li−1(v)| ⩾ s + 1. In this case, let Li(v) be a singleton set consisting of an
arbitrary colour in Li−1(v) \ (⋃

a∈Aj
Li(a)) \ {ci}. This is well-defined because

|Aj| ⩽ s − 2 by (t1), and |Li(a)| = 1 for each a ∈ Aj. Furthermore, this
choice of Li(v) ensures that Li satisfies (c2).

1.3 Otherwise, v ∈ NG(αj) for some j ∈ {1, . . . , r} and we must take extra care to
ensure that Li(v) satisfies (c3). In particular, each time we set Li(v) for some
v ∈ NG(αj) ∩ Ui we ensure that Aj ∪ {αj} ⊆ Pi and that Li(v) ∩ Li(a) = ∅
for each a ∈ NG(v) ∩ (Aj ∪ {αj}). This ensures that (c3) is satisfied. There
are two cases to consider:

(i) The ‘typical’ case: Some u ∈ NG(Pi−1) has at least s neighbours in Pi−1.
In this case, the inclusion of v ∈ Ui implies that |NG(v) ∩ Pi−1| ⩾ s. On
the other hand, |NG(v)∩Pi−1| ⩽ |Aj ∪{αj}|+ |Sj ∩Pi−1| ⩽ s−1+ |Sj ∩
Pi−1| by (t1). Therefore, |Sj ∩ Pi−1| ⩾ 1. By (c1) and (c3), Aj ∪ {αj} ⊆
Pi−1 and Li−1(a) ∩ Li−1(v) = ∅ for each a ∈ (Aj ∪ {αj}) ∩ NG(v).
Choose Li(v) to be a singleton set that contains an arbitrary element of
Li−1(v) \ {ci} As in the previous case, (g2)–(g4) ensure that this is well-
defined. By (c1) and (c3), Aj ∪ {αj} ⊆ Pi−1 and Li−1(a) ∩ Li−1(v) = ∅
for each a ∈ (Aj ∪ {αj}) ∩ NG(v). Therefore, Li(v) satisfies (c3).

(ii) The ‘exceptional’ case: Every u ∈ NG(Pi−1) has at most s−1 neighbours
in Pi−1. If i ⩾ 2, this implies that U−

i , Ji and Ui are empty, and
thus Li = Li−1 and there is nothing to prove. Otherwise, i = 1,
U−

1 := {v}, J1 = {j}, and |NG(v) ∩ P0| ∈ {1, . . . , s − 1}. In this case,
U1 = ({v} ∪ Aj ∪ {αj}) \ P0. This implies that v ∈ Q0, so (g5) implies
that L0(v)∩L0(u) = ∅ for each u ∈ NG(v)∩P0. If Aj ∪{αj} ⊆ P0 then
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L0(a)∩L0(v) = ∅ for each a ∈ NG(v)∩ (Aj ∪{αj}) by (g5), and we can
again let L1(v) be a singleton set that contains an arbitrary element of
L0(v) \ {ci}. Now assume Aj ∪ {αj} ̸⊆ P0. Then Sj ∩ P0 = ∅ by (c1).
Since NG(v) ⊆ Aj ∪Sj , we have NG(v)∩P0 = NG(v)∩P0 ∩Aj . By (g2),
|L0(v)| ⩾ s + 1 − |NG(v) ∩ P0 ∩ Aj|. Since v ∈ P1 and v ∈ NG(αj) ⊆ Sj ,
we have Aj ∪{αj} ⊆ U1 ⊆ P1. For each a ∈ Aj \P0, (t3) implies that a ̸∈⋃r

j′=1 NG[αj′ ], so L1(a) is assigned in Case (1.1) above. Similarly, L1(αj)
is assigned in Case (1.2) above. Thus |L1(a)| = 1 for each a ∈ Aj ∪{αj}.
Therefore, |L0(v) \ ⋃

a∈Aj∪{αj} L1(a)| ⩾ (s + 1) − |Aj ∪ {αj}| ⩾ 2 by (t1).
Let L1(v) be any singleton subset of (L0(v) \ ⋃

a∈Aj∪{αj} L1(a)) \ {ci}.

We now show that (c3) holds for each x ∈ NG(αj) for each j ∈ {1, . . . , r}. If
x ̸∈ NG(Pi) then (c3) holds since Li−1 and S are compatible. Now assume
that x ∈ NG(αj) ∩ NG(Pi). If Pi ∩ Sj = ∅, then (c3) is vacuous for Li, so we
can assume that Pi ∩ Sj ̸= ∅, which by (3) implies that Aj ∪ {αj} ⊆ Pi. We
need to ensure that Li(x) ∩ Li(a) = ∅ for each a ∈ NG(x) ∩ (Aj ∪ {αj}).

• If x ∈ Qi, then the steps taken in Step 2 below to ensure that Li satisfies
(g5) will ensure that Li(x) ∩ Li(a) = ∅ for each a ∈ NG(x) ∩ (Aj ∪ {αj}).

• Otherwise x ∈ NG(Pi) \ Qi. If Aj ∪ {αj} ⊆ Pi−1 then since Li−1 satisfies
(c3) and (g5) we have Li(x)∩Li(a) = ∅ for each a ∈ NG(x)∩ (Aj ∪{αj}).
Otherwise (Aj ∪ {αj}) ∩ Ui ≠ ∅, in which case (c3) for Li will also be
ensured when defining Li(x) in Step 3 below.

Thus Li will satisfy (c3). We have already argued above that Li satisfies (c1)
and (c2), so Li will be compatible with S.

At this point, we have already defined Li(v) for each v ∈ Ui so that |Li(v)| = 1.
This ensures that Pi ⊆ P (Li). In the following, any further lists we define will
have size at least 2, so Pi = P (Li).

2. For each q ∈ Qi, define Li(q) := Li−1(q) \ ⋃
v∈Ui∩NG(v) Li(v). The fact that Li−1

satisfies (g5) and that Pi := Pi−1 ∪ Ui ensures Li satisfies (g5). To check that Li

satisfies (g2), first observe that q ̸∈ NG(Pi−1)\Qi−1 since this would imply that q ∈
Ui ⊆ Pi. Therefore, one of (g2) or (g4) implies that |Li−1(q)| ⩾ s+1−|NG(q)∩Pi−1|.
Since Pi−1 and Ui are disjoint, |NG(q)∩Pi| = |NG(q)∩Pi−1|+|NG(q)∩Ui|. Therefore,
|Li(v)| ⩾ |Li−1(v)| − |NG(v) ∩ Ui| = s + 1 − |NG(v) ∩ Pi|, so Li satisfies (g2).

3. The purpose of this step is to ensure that (c3) will eventually be satisfied for
vertices v ∈ NG(Pi) \ Qi (even though we are not ready to precolour such vertices).
We consider two cases:
3.1 If v ∈ NG(αj) and NG(v) ∩ (Aj ∪ {αj}) ∩ Ui ̸= ∅, then set

Li(v) := Li−1(v) \
⋃

a∈NG(v)∩(Aj∪{αj})∩Ui

Li(a).
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As discussed above, this ensures that Li satisfies (c3). We simply need to
check that Li(v) still satisfies the conditions of an (s, p)-good list-assignment.
All the lists Li(a), for a ∈ NG(v) ∩ (Aj ∪ {αj}) ∩ Ui, have been set at Step 1.1
or Step 1.2 and therefore have size 1. It follows that |Li(v)| ⩾ |Li−1(v)| −
|NG(v) ∩ (Aj ∪ {αj}) ∩ Ui|.
If v ̸∈ Qi−1 then v ̸∈ NG(Pi−1) \ Qi−1 since v ̸∈ Ui. Thus, |Li−1(v)| ⩾ s + 1 by
(g4), and thus |Li(v)| ⩾ s + 1 − |Aj ∪ {αj}| ⩾ 2.
Now assume that v ∈ Qi−1. Then |Li−1(v)| ⩾ s+1−|NG(v)∩Pi−1| by (g2). If
Pi−1∩Sj ≠ ∅, then Aj∪{αj} ⊆ Pi−1 by (c1), contradicting (Aj∪{αj})∩Ui ̸= ∅.
Thus Pi−1 ∩ Sj = ∅. Since NG(v) ⊆ Sj ∪ Aj, we have NG(v) ∩ Pi−1 ⊆ Aj.
Since Pi−1 ∩ Ui = ∅, it follows that

|Li(v)| ⩾ |Li−1(v)| − |NG(v) ∩ (Aj ∪ {αj}) ∩ Ui|
⩾ s + 1 − |NG(v) ∩ Pi−1| − |NG(v) ∩ (Aj ∪ {αj}) ∩ Ui|
⩾ s + 1 − |Aj ∪ {αj}|
⩾ 2 ,

so Li satisfies (g3).
3.2 Otherwise, set Li(v) := Li−1(v). Since v ̸∈ Pi−1, (g2)–(g4) imply that

|Li−1(v)| ⩾ 2. Therefore, Li(v) ⩾ 2, so Li satisfies (g3).
4. For each v ∈ V (G) \ NG[Pi], define Li(v) := Li−1(v). Since NG[Pi] ⊇ NG[Pi−1],

(g4) implies that |Li−1(v)| ⩾ s + 1. Therefore |Li(v)| = |Li−1(v)| ⩾ s + 1 and Li

satisfies (g4).

Let L′ := Lp̂ and let P ′ := P (L′) = Pp̂. We previously established that L′ is (s, p)-good
and is compatible with S. Since U−

1 ⊆ U1 ⊆ P1 ⊆ P ′ is non-empty, |P ′| ⩾ |P | + 1.
Therefore, by induction applied to (G, L′, S), G has an L′-colouring φ : V (G) →⋃

v∈V (G) L(v) that satisfies the requirements of the lemma for (G, L′, S). Since L′ is a
specialization of L, φ is also an L-colouring that satisfies (c).

It remains to show that φ satisfies (a). To accomplish this, we now prove that any
monochromatic component that intersects P is contained in P ′. Consider the monochro-
matic component Ci of G that contains vi for an arbitrary i ∈ {1, . . . , p̂}, so every
vertex in Ci is coloured ci. We claim that V (Ci) ⊆ Pi−1. If not, there are neighbours
w ∈ Pi−1 and v ∈ N(Pi−1) such that v, w ∈ V (Ci). Since v ∈ N(Pi−1), v is either in
Ui or in Qi−1. If v ∈ Ui then, by definition φ(v) ̸= ci. Thus, v ∈ Qi−1 and by (g5),
Li−1(v) ∩ Li−1(w) = ∅. Since φ(v) ∈ Li−1(v), φ(w) ∈ Li−1(w), and φ(w) = φ(w).
This contradiction shows that Ci is contained in Pi−1 ⊆ P ′. By (g1), the union of all
monochromatic components intersecting P has size at most |P ′| ⩽ p = f(1) ⩽ f(|P |),
as required.
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Therefore φ is an L-colouring of G that satisfies the requirements of the lemma, as
desired.

Case D. |P | ⩾ 12ℓs: Robertson and Seymour [56, (2.6)] proved that for any graph
G of treewidth less than ℓ and for any P ⊆ V (G) there exists V1, V2 ⊆ V (G) such that
G = G[V1] ∪ G[V2] and:

|V1 ∩ V2| ⩽ ℓ, |P \ V2| ⩽ 2|P \ V1| and |P \ V1| ⩽ 2|P \ V2|.

Apply this result to G and the set P := P (L) of precoloured vertices. Note that

|P \ V1| ⩽ 2
3(|P \ V1| + |P \ V2|) ⩽ 2

3 |P |. (5)

Similarly, |P \ V2| ⩽ 2
3 |P |. Let Z := V1 ∩ V2.

Let J := {j ∈ {1, . . . , r} : Sj ∩ Z \ P ̸= ∅}; that is, j ∈ J if there is a non-precoloured
vertex in the j-trigger set and in Z. By (t4), |J | ⩽ |Z| ⩽ ℓ. Let

P ′ := P ∪ Z ∪
⋃
j∈J

(Aj ∪ {αj}).

We now define a list-assignment L′ of G that is compatible with S, and such that
P (L′) = P ′. By the definition of J and P ′, and since P (L′) = P ′, the first requirement
(c1) for L′ to be compatible with S is satisfied.

1. For each v ∈ (Z ∪ ⋃
j∈J Aj) \ (P ∪ ⋃r

j∈1 NG[αj]), set L′(v) to be an arbitrary
singleton subset of L(v). This is analogous to Case C (Step 1.1), above.

2. For each j ∈ J , let L′(αj) be an arbitrary singleton subset of L(αj)\
⋃

a∈Aj
L′(a). As

in the analysis of Case C (Step 1.2) above, this is possible because |L(αj)| ⩾ s + 1,
(after the completion of Step 1) |L′(a)| = 1 for each a ∈ Aj , and |Aj| ⩽ s − 2. This
step ensures that L′ satisfies (c2).

3. For each j ∈ {1, . . . , r} and each x ∈ NG(αj) ∩ Z \ P , let L′(x) be an arbitrary
singleton subset of L(x)\ ⋃

a∈NG(x)∩(Aj∪{αj}) L′(a). To see that this is possible, note
that j ∈ J since x ∈ Sj ∩ Z \ P , and after Steps 1 and 2, |L′(a)| = 1 for each
a ∈ Aj ∪ {αj}. Now, as in the analysis of Case C (Step 1.3), (c1)–(c3) and (g2)
and (g4) ensure that |L(x)| ⩾ s + 1 − |NG(x) ∩ (Aj ∪ {αj}) ∩ P | and (g5) implies
L(x)∩L(a) = ∅ for each a ∈ (Aj ∪{αj})∩P , so |L(x)\⋃

a∈NG(x)∩(Aj∪{αj}) L′(a)| ⩾
s + 1 − |Aj ∪ {αj}| ⩾ 2 by (t1). Furthermore, this ensures that L′ satisfies (c3) so
that L′ is compatible with S.

4. Let Q′ := {v ∈ V (G) \ P ′ : |NG(v) ∩ P ′| ∈ {1, . . . , s − 1}}. For each q ∈ Q′, set
L′(q) := L(q) \ ⋃

v∈NG(q)∩P ′ L′(v). As in the analysis of Case C (Step 2) above, this
ensures that L′ satisfies (g2) and (g5) and does not make L′ incompatible with S.
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5. For each j ∈ J and x ∈ (NG(P ) ∩ NG(αj)) \ (Z ∪ Q′ ∪ P ), set L′(x) := L(x) \⋃
v∈NG(x)∩(Aj∪{αj}) L′(v). As in the analysis of Case C (Step 3) above, this ensures

that L′ satisfies (g4) and does not make L′ incompatible with S.
6. For any vertex v ∈ V (G) not covered by any of the preceding cases, set L′(v) :=

L(v). This ensures that L′ satisfies (g3) and (g4) and does not make L′ incompatible
with S.

Thus L′ is a list-assignment for G that satisfies (g2)–(g5) and is compatible with S.
However, L′ is not necessarily (s, p)-good for G since P ′ = P (L′) may be too large to
satisfy (g1). Instead, we use divide and conquer. Let

P1 := (P \ V2) ∪ Z ∪
⋃
j∈J

(Aj ∪ {αj}) and P2 := (P \ V1) ∪ Z ∪
⋃
j∈J

(Aj ∪ {αj}).

Note that P1 ∪ P2 = P ′. By (t1) and (5),

|P1| ⩽ |P \ V2| + |Z| +
∑
j∈J

|Aj ∪ {αj}| ⩽ 2
3 |P | + ℓ + ℓ(s − 1) = 2

3 |P | + ℓs.

Similarly, |P2| ⩽ 2
3 |P | + ℓs. Since ℓs ⩽ |P |

12 , for each i ∈ {1, 2},

|Pi| ⩽ 3
4 |P | < |P | ⩽ p.

For i ∈ {1, 2}, let Gi := G[Vi ∪ Pi]. Thus L′ satisfies (g1) in Gi. Since L′ satisfies
(g2)–(g5) and is compatible with S in G, the same properties hold in Gi. Hence L′

restricted to Gi is (s, p)-good.

Since |P1| < |P | and P1 ⊇ P ∩ V1, there exists at least one vertex v ∈ P ∩ V2 that is
not in Z ∪ ⋃

j∈J(Aj ∪ {αj}), and thus v is not in G1. Therefore, by induction applied to
(G1, L′, S) and (G2, L′, S), each of G1 and G2 has an L′-colouring, φ1 and φ2, respectively,
that satisfies (a)–(c). Since |L′(v)| = 1 for each v ∈ Z, φ1(v) = φ2(v) for each v ∈ Z,
so these two colourings of G can be combined to produce an L′-colouring φ of G that
satisfies (b) and (c).

It remains to show that φ also satisfies (a) and that monochromatic components of
G have size at most f(12ℓs(c + 1)12ℓs). We start by establishing (a). Let C denote
the union of the monochromatic components intersecting P ′ in G, and for i ∈ {1, 2},
let Ci be the union of the monochromatic components intersecting P ′

i in Gi. Then
V (C) ⊆ V (C1) ∪ V (C2), so

|C| ⩽ |C1| + |C2| ⩽ f(|P1|) + f(|P2|) ⩽ 2f(3
4 |P |) ⩽ 2 · (3

4 |P |)log4/3 212ℓs(c + 1)12ℓs

= |P |log4/3 212ℓs(c + 1)12ℓs

= f(|P |) .
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Thus, φ is an L-colouring of G that satisfies (a).

Finally, we verify the bound on the clustering. Since φ1 and φ2 satisfy (b) and (c), each
monochromatic component of G that is completely contained in Gi, for some i ∈ {1, 2},
has size at most f(p). Any monochromatic component of G not contained entirely in
G1 or in G2 contains a vertex in Z ⊆ P ′, and we have argued above that each such
component has size at most f(|P |) ⩽ f(p). Thus, φ is an L-colouring of G that satisfies
all the requirements of the lemma, which concludes the proof.

3.2 Js,t-Minor-Free Bounded Treewidth Graphs

Recall that k-admissible sets {(α1, A1), . . . , (αr, Ar)} were defined at the beginning of
Section 3, and that we defined Sj := N2

G−Aj
[αj] for each j ∈ {1, . . . , r}.

The following is our second lemma for bounded treewidth graphs. In comparison with
Lemma 26, this lemma makes a weaker admissibility assumption, but adds several new
requirements related to K2,t and K3,t subgraphs in (or close to) G[Sj]. Each of the
sets Sj will come from the larger numbered layers in a layering of some torso, which
means that Sj is contained in the embedded part of some torso. This limits the size
of K3,t-subgraphs, but not the size of K2,t-subgraphs. Therefore, before we can apply
Lemma 27 we will, in Section 4.1, develop some tools for eliminating K2,t subgraphs in
embedded graphs.

Lemma 27. For any integers ℓ ⩾ 1, s ⩾ 3, t ⩾ s + 2, and k ⩾ s − 2 there exists an
integer p0 and a function f : R → R such that the following holds for every integer
p ⩾ p0. Let G be a graph with treewidth less than ℓ. Let S := {(α1, A1), . . . , (αr, Ar)} be
an (s − 3)-admissible set in G such that:

(x1) G − {α1, . . . , αr} is Js,t-minor-free;
(x2) for each j ∈ {1, . . . , r}, G[Sj \ {αj}] is connected;
(x3) for each j ∈ {1, . . . , r}, G[Sj \ {αj}] is K2,k−s+3-subgraph-free; and
(x4) for each j ∈ {1, . . . , r}, G[N4

G−Aj
[αj] \ {αj}] is K3,k−s+3-subgraph-free.

Let L be an (s, p)-good list-assignment for G that is compatible with S. Then G has an
L-colouring φ with clustering f(p) such that:

(a) the union of the monochromatic components that intersect P (L) has at most
f(|P (L)|) vertices;

(b) φ(a) ̸= φ(αj) for each j ∈ {1, . . . , r} and a ∈ Aj; and
(c) φ(a) ̸= φ(x) for each j ∈ {1, . . . , r}, a ∈ A ∪ {αj} and x ∈ NG(αj) ∩ NG(a).

Proof. This proof in the r = 0 case closely follows the proof of Liu and Wood [44,
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Lemma 18], which is a statement about Kh-minor-free graphs. Here, various mod-
ifications are needed to establish (b) and (c), and because this theorem is about
Js,t-minor-free graphs.

Let p0 be the minimum integer satisfying p0 ⩾ s + t − 1 and one other inequality below.
Let f0 : R → R be defined as f0(x) := tx/(t−s−1) and let f(x) := f0(max{p0, x}). We
prove the result by induction on |V (G)|, with this choice of f fixed. Let P := P (L), so
|P | ⩽ p. Let t′ := max{k, t(t − 1)}.

First consider the easy case in which G is Ks,t′-subgraph-free. Since S is (s−3)-admissible,
it is also (s − 2)-admissible. Since L is (s, p)-good and compatible with S, we can apply
Lemma 26 and obtain an L-colouring φ of G that satisfies (b) and (c), has clustering
at most f ′(p), and for which the union of monochromatic components that intersect
P has size at most f ′(|P |), where f ′ : R → R is the reasonable function that appears
as f in Lemma 26 for Ks,t′-subgraph-free graphs with treewidth less than ℓ. Taking
logarithms, we see that f0(x) ⩾ f ′(x) provided that x/ log(f ′(x)) ⩾ (t − s − 1)/ log t.
Since f ′ is reasonable, the left-hand side of this equation is increasing without bound as
x increases, so there exists some p0 := p0(s, t, ℓ) such that this inequality is satisfied for
all x ⩾ p0. It follows that f(|P |) ⩾ f ′(|P |) for all |P |, as required.

We can now assume that G contains a Ks,t′-subgraph. Consider any copy H of Ks,y

with y ⩾ t′, implying y ⩾ k ⩾ k − s + 3 and y ⩾ t(t − 1). Let {X, Y } be the bipartition
of H with |X| = s and |Y | = y.

The following claim is critical in order to establish that requirements (b) and (c) do not
interfere with the structure of the original proof of Liu and Wood [44].

Claim 27.1. For each j ∈ {1, . . . , r}, (X ∪ Y ) ∩ Sj = ∅.

Proof. Since S is (s − 3)-admissible, |Aj| ⩽ s − 3 by (t1).

First suppose that Aj ∪ {αj} ⊆ X. Then, since αj ∈ X, Y ⊆ NG(αj). By (t2) and (t3),
X ⊆ NG(Y ) ⊆ N2

G[αj ] ⊆ Sj ∪ Aj and |X ∩ Sj| = |X \ Aj| ⩾ |X| − |Aj| ⩾ s − (s − 3) = 3,
which implies that G[Sj \ {αj}] contains a K2,y-subgraph (since Sj ∩ Aj = ∅ by (t3)),
contradicting (x3) (since y ⩾ k − s + 3).

Now suppose that Aj ∪ {αj} ̸⊆ X and assume, for the sake of contradiction, that
(X∪Y )∩Sj ̸= ∅. Since Aj∪{αj} ̸⊆ X, we have |(Aj∪{αj})∩X| ⩽ |Aj∪{αj}|−1 ⩽ s−3.
Let X ′ := X\(Aj∪{αj}) and Y ′ := Y \(Aj∪{αj}). Thus |X ′| = |X|−|(Aj∪{αj})∩X| ⩾
s − (s − 3) = 3 and |Y ′| ⩾ |Y | − |Aj ∪ {αj}| ⩾ y − (s − 2) ⩾ k − s + 3. Thus G[X ′ ∪ Y ′]
contains a K3,k−s+3-subgraph. Since X ∪ Y intersects Sj, and Sj ∩ Aj = ∅ by (t3), we
have that X ′ ∪Y ′ intersects Sj . By construction, αj ̸∈ X ′ ∪Y ′. Thus G[N2

G−Aj
[Sj ]\{αj}]

contains a K3,k−s+3 subgraph, which contradicts (x4). ♢
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The next claim shows that X does an excellent job of separating Y . The proof of this
simple result is the only place where the specific structure of graphs in Js,t is used.

Claim 27.2. Each component of G − X contains at most t − 1 vertices in Y .

Proof. Suppose, for the sake of contradiction, that some component C of G − X has
at least t vertices in Y . Choose a tree T in C with |V (T ) ∩ Y | ⩾ t to lexicographically
minimise (|V (T ) ∩ {α1, . . . , αr}|, |V (T )|). This is well-defined since any spanning tree T

of C satisfies |V (T ) ∩ Y | ⩾ t.

We claim that V (T )∩{α1, . . . , αr} = ∅. Otherwise T contains αj for some j ∈ {1, . . . , r}.
By Claim 27.1, αj ̸∈ Y . Now, NT (αj) is contained in Sj \{αj}, which induces a connected
subgraph of G by (x2). So G[(V (T ) ∪ Sj) \ {αj}] is connected. Let T ′ be a spanning
tree of G[(V (T ) ∪ Sj) \ {αj}]. By Claim 27.1, Sj ∩ X = ∅, so T ′ is a subtree of C. By
construction, V (T ) ∩ Y ⊆ V (T ′) ∩ Y , so |V (T ′) ∩ Y | ⩾ t. By (t4), Sj \ {αj} avoids
{α1, . . . , αr}. So T ′ has fewer vertices in {α1, . . . , αr} than T , contradicting the choice
of T . Hence V (T ) ∩ {α1, . . . , αr} = ∅.

If a leaf x of T is not in Y , then T − x contradicts the minimality of T . So every leaf x

of T is in Y . If |V (T ) ∩ Y | > t and x is any leaf of T , then T − x again contradicts the
minimality of T . So |V (T ) ∩ Y | = t.

Let T1, . . . , Tt be a partition of T into t pairwise disjoint subtrees, each with exactly
one vertex in Y . Contract each Ti into a vertex zi. The graph induced by {z1, . . . , zt}
is connected and thus contains a spanning tree. Since |V (T ) ∩ Y | = t and |Y | ⩾ t + s,
there is a matching M = {e1, . . . , es} between X and Y \ V (T ), which avoids α1, . . . , αr

by Claim 27.1. Contract each ei into a vertex xi. In the resulting graph, the subgraph
induced by {x1, . . . , xs, z1, . . . , zt} contains a graph in Js,t. Since V (T ) ∩ {α1, . . . , αr} =
∅ and M avoids α1, . . . , αr, we have found a graph in Js,t as a minor of G−{α1, . . . , αr}.
This contradiction shows that every component of G − X has at most t − 1 vertices in
Y . ♢

For the remainder of the proof, consider a copy H of Ks,y in G that maximises y (in
particular, y ⩾ t′ and the two claims above apply). We again write the bipartition of H

as {X, Y }, with |X| = s and |Y | = y.

Let C1, . . . , Cq be the components of G − X. By Claim 27.2, each of C1, . . . , Cq has at
most t − 1 vertices in Y . So q ⩾ |Y |

t−1 = y
t−1 ⩾ t ⩾ s + 2. We now consider two cases.

Case A. Some component Ci of G − X contains no vertex in P : Write C := Ci

for brevity. Let G′ := G − V (C), and let S ′ be the restriction of S to G′. Since G′ is a
subgraph of G, it satisfies (x1), (x3) and (x4). By Claim 27.1 and (x2), G[Sj] = G′[Sj]
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or G′[Sj] is empty for each j ∈ {1, . . . , r}. In the former case, G′ satisfies (x2). In the
latter case, (αj, Aj) plays no role in S ′, so G′ also satisfies (x2). Since G′ has fewer
vertices than G, we may apply induction to (G′, L′, S ′), so G′ has an L′-colouring φ′

that satisfies (a), (b), and (c). We show how to extend L′ to a colouring of G. To ensure
that monochromatic components in G′ do not grow, our colouring of C will properly
extend φ′ to G.

Let GC := G[V (C) ∪ X]. Then GC satisfies (x1)–(x4) for the same reasons G′ does. Let
UC := {v ∈ V (C) : |NG(v)∩X| = s} = Y ∩V (C) by the maximality of y. By Claim 27.2,
|UC | ⩽ t−1 and, by Claim 27.1, UC ∩Sj = ∅ for each j ∈ {1, . . . , r}. Let PC := X ∪UC .
Observe that, for each v ∈ V (C), NG(v) ∩ P ⊆ X. So |L(v)| ⩾ s + 1 − |P ∩ X| by
(g2)–(g4). This is helpful in verifying the claims about |LC(v)| for the list-assignment
LC that we now define:

• For each x ∈ X, let LC(x) := {φ′(x)}.
• For each of the at most t − 1 vertices v ∈ UC , let LC(v) be a singleton subset of

L(v) \ ⋃
x∈X∩NGC

(v) LC(x). This is possible since v has exactly s neighbours in X.
• Let QC := {v ∈ NGC

(PC) : |NGC
(v) ∩ PC | ∈ {1, . . . , s − 1}}. For each v ∈ QC , let

LC(v) := L(v) \ ⋃
w∈NGC

(v)∩PC
LC(w). The fact that L satisfies (g2), (g4) and (g5)

implies that |LC(v)| ⩾ s + 1 − |NGC
(v) ∩ PC | for each v ∈ QC .

• For each v ∈ NGC
(PC) \ QC , let LC(v) := L(v) \ ⋃

x∈X∩NG(v) LC(x). Observe
that v ̸∈ PC , so v is adjacent to at most s − 1 vertices in X. Since L satisfies
(g2)–(g5) and |LC(x)| = 1 for each x ∈ X, this implies that |LC(v)| ⩾ 2 for each
v ∈ NGC

(PC) \ QC .
• For each v ∈ V (C) \ NGC

[PC ], let LC(v) := L(v). Since L satisfies (g4), |LC(v)| =
|L(v)| ⩾ s + 1.

The only vertices assigned singleton lists in LC are in X ∪ UC = PC , so PC = P (LC)
and, by definition, QC = Q(LC). We now verify that, for any p ⩾ p0 ⩾ s + 1, LC is an
(s, p)-good list-assignment for GC .

(g1): |PC | = |X| + |UC | ⩽ s + t − 1 ⩽ p0 ⩽ p;
(g2): |LC(v)| ⩾ s + 1 − |NG(v) ∩ PC | for each v ∈ QC , as discussed above;
(g3): |LC(v)| ⩾ 2 for all v ∈ NGC

(PC) \ QC , as discussed above;
(g4): |LC(v)| ⩾ s + 1 for all v ∈ V (GC) \ NGC

[PC ] since LC(v) = L(v); and
(g5): LC(v) ∩ LC(u) = ∅ for all v ∈ QC and u ∈ NGC

(v) ∩ PC .

Each of the rules above explicitly ensures that LC(v)∩LC(x) = ∅ for each x ∈ X∩NGC
(v).

Therefore, any LC-colouring of GC properly extends the precolouring of X given by
φ′. Let SC be the restriction of S to GC . By Claim 27.1, (X ∪ UC) ∩ Sj = ∅ for each
j ∈ {1, . . . , r}. So Sj ∩ P (LC) ̸= ∅ if and only if Sj ∩ P (L) ̸= ∅ and Sj ⊆ V (C). So
LC trivially satisfies the requirements for being compatible with SC .
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Since G − X has at least two components, |V (GC)| < |V (G)|. By induction applied
to (GC , LC , SC), there exists an LC-colouring φC of GC that satisfies (a), (b), and (c).
For each x ∈ X, φC(x) = φ′(x), so φC and φ′ can be combined to give a colouring φ of
G. The colouring φ inherits (b) and (c) from φ′ and φC . It also satisfies (a) since each
vertex in NGC

(X) is assigned a colour distinct from the colours of its neighbours in X,
so the monochromatic components that intersect P are contained in G′. Therefore, the
colouring φ of G satisfies all requirements of the lemma.

Case B. Each component Ci of G − X contains at least one vertex in P :
In this case, X plays a similar role to that of the separator Z used in Case D of the
proof of Lemma 26. For each i ∈ {1, . . . , q}, let Gi := G[V (Ci) ∪ X] and let Si be the
restriction of S to Gi. Since Gi is a subgraph of G it satisfies (x1), (x3) and (x4) and,
by Claim 27.1 and (x2), Gi and Li also satisfy (x2).

Let L1 be the restriction of L to G1. Then L1 is (s, p)-good for G1 (since L is (s, p)-good
for G) and L1 is compatible with S1 (since L is compatible with S). Let P1 := P (L1).
Observe that |P1| ⩽ |P |−q+1 since P1 avoids at least one vertex of P in each component
of G − X other than C1. Recall that q ⩾ 2, so G1 has fewer vertices than G. Thus we
may apply induction to (G1, L1, S1), so G1 has a colouring φ1 that satisfies (b) and (c)
and such that the union of monochromatic components of G1 that intersect P1 has size
at most f(|P1|) ⩽ f(|P | − q + 1).

We now define a list-assignment Li for each i ∈ {2, . . . , q}. This is similar to the list-
assignment LC used in the proof of Case A except that we cannot prevent monochromatic
components in P from entering Ci (since P already contains vertices of Ci). Instead,
we use the fact that Pi := P (Li) is much smaller than P to control the growth of these
components.

For each i ∈ {2, . . . , q}, let Pi := (P ∩V (Gi))∪X, let Qi := {v ∈ NGi
(Pi) : |NGi

(v)∩Pi| ∈
{1, . . . , s − 1}}, and define the list-assignment Li as follows:

• For each x ∈ X, let Li(x) := {φ1(x)}.
• For each v ∈ Qi, let Li(v) := L(v) \ ⋃

w∈Pi∩NGi
(v) Li(w). The fact that L satisfies

(g2), (g4) and (g5) ensures that |Li(v)| ⩾ s + 1 − |Pi ∩ NGi
(v)|.

• For each v ∈ V (Gi) \ (Pi ∪ Qi), let Li(v) := L(v).

From these definitions, it follows immediately that Pi := P (Li) and Qi := Q(Li). We
now verify that Li is an (s, p)-good list-assignment for Gi.

(g1): |Pi| ⩽ |P | − q + |X| + 1 = |P | + s − q + 1 ⩽ |P | ⩽ p (since q ⩾ s + 1);
(g2): |Li(v)| ⩾ s + 1 − |NGi

(v) ∩ Pi| for each v ∈ Qi;
(g3): |Li(v)| ⩾ 2 for each v ∈ NGi

(Pi) \ Qi, since Li(v) = L(v);
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(g4): |Li(v)| ⩾ s + 1 for all v ∈ V (Gi) \ NGi
[Pi], since Li(v) = L(v); and

(g5): L(v) ∩ L(u) = ∅ for all v ∈ Qi and u ∈ NGi
(v) ∩ Pi, by definition.

Let Si be the restriction of S to Gi. Since Pi \ P ⊆ X, Claim 27.1 implies that any
j-trigger set intersected by Pi is also intersected by P , so Li is compatible with Si

because L is compatible with S.

We are almost done. By assumption, P contains at least one vertex in each of C1, . . . , Cq,
so |Pi| ⩽ |P | + s + 1 − q. Since Gi has fewer vertices than G, we may apply induction
to (Gi, Li, Si), so Gi has an Li-colouring φi that satisfies (b) and (c). Furthermore, the
union of monochromatic components of Gi has size at most f(|P | + s + 1 − q).

Since φi(x) = φj(x) for each i, j ∈ {1, . . . , q} and each x ∈ X, the colourings φ1, . . . , φq

can be combined to give a colouring φ of G that satisfies (b) and (c). In this colouring,
each monochromatic component that intersects P intersects Pi for some i ∈ {1, . . . , q}.
Therefore, the total number of vertices in all monochromatic components that intersect
P is at most

q · f(|P | + s + 1 − q) = q · f0(max{p0, |P |} + s + 1 − q)

= q · t
max{p0,|P |}+s+1−q

t−s−1

= t
max{p0,|P |}+s+1−q

t−s−1 + log q
log t

= t
max{p0,|P |}

t−s−1 + s+1−q
t−s−1 + log q

log t

⩽ t
max{p0,|P |}

t−s−1 (proved below)
= f0(max{p0, |P |} = f(|P |) .

The above inequality is proved as follows. Since q ⩾ t ⩾ s+2 ⩾ 5, we have t(q −s−1) ⩾
q(t − s − 1) and q

log q
⩾ t

log t
, which together imply q−s−1

t−s−1 ⩾ q
t
⩾ log q

log t
and s+1−q

t−s−1 + log q
log t

⩽ 0.
Thus φ is an L-colouring of G that satisfies (a), (b), and (c), as desired.

4 Proofs of the Main Results

This section completes the proofs of Theorem 4 and Theorem 7 in the s = 3 case. A key
ingredient is the next section on K2,t-subgraphs.
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4.1 K2,t-Subgraphs in Embedded Graphs

This section introduces some old and some new tools for eliminating K2,t subgraphs in
surface embedded graphs, so that we can eventually apply Lemma 27.

A d-island of a graph G is a non-empty subset I of V (G) such that |NG(v) \ I| ⩽ d for
each v ∈ I. A d-island I of G is a (d, c)-island of G if |I| ⩽ c. The concept of islands
was introduced in the context of clustered colouring by Esperet and Ochem [24], who
made the following simple but important observation.

Observation 28 ([24]). For any (d, c)-island I of a graph G, any (d + 1)-colouring of
G − I with clustering at most c can be properly extended to a (d + 1)-colouring of G with
clustering at most c by colouring each vertex v ∈ I by a colour not used on NG(v) \ I.

Recall Theorem 8 by Dvořák and Norin [20], which says that every graph of bounded
Euler genus has a 4-colouring with bounded clustering. To prove this, Dvořák and
Norin [20] showed that graphs of bounded Euler genus have 3-islands of bounded size
and applied Observation 28 inductively (see [69, Section 3.5] for a concise exposition).
Their proof uses strongly sublinear separators, and we adapt it to show the following.

Lemma 29. There is a constant c > 0 such that for every graph G of Euler genus
at most g, and for every set Y ⊆ V (G) such that |Y | ⩾ 4|NG(Y )| + 4g, there exists a
(3, c(g + 1))-island I of G with I ⊆ Y .

Proof. The following lemma is folklore (see Lemma 15 in [69]): Let G be a graph such
that for fixed α > 0 and β ∈ (0, 1), every subgraph H of G has a balanced separator of
size at most α|V (H)|1−β. Then for every ε ∈ (0, 1] there exists S ⊆ V (G) of size at most
ε|V (G)| such that each component of G − S has at most f(α, ε, β) := ⌈2( α

ε(2β−1))
1/β⌉

vertices. Here a balanced separator in a graph G is a set S ⊆ V (G) such that every
component of G − S has at most 1

2 |V (G)| vertices.

Let G and Y be as defined in the lemma. We may delete vertices not in NG[Y ]. Now
assume that V (G) = NG[Y ]. The above lemma with β = 1

2 and α = Θ(
√

g + 1) is
applicable to G and its subgraphs by a separator result of Gilbert, Hutchinson, and
Tarjan [27]. We now apply the method of Dvořák and Norin [20]. By the above lemma
applied to G[Y ] with ε := 1

16 , there exists X ⊆ Y of size at most 1
16 |Y | such that

if K1, . . . , Kr are the components of G[Y \ X], then each Ki has at most f(α, 1
16 , 1

2)
vertices, which is at most c(g + 1) for some constant c. Let e(Ki) be the number of
edges of G with at least one endpoint in Ki. By Euler’s formula,

r∑
i=1

e(Ki) ⩽ |E(G)| < 3(|V (G)| + g) = 3(|Y | + |NG(Y )| + g) ⩽ 15
4 |Y | ⩽ 4 |Y \ X|
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= 4
r∑

i=1
|V (Ki)|.

Hence e(Ki) < 4 |V (Ki)| for some i. Repeatedly remove vertices from Ki with at least
four neighbours outside Ki. Doing so maintains the property that e(Ki) < 4 |V (Ki)|.
Thus the final set I is non-empty. By construction, I ⊆ Y and I is a 3-island of G of
size at most |V (Ki)| ⩽ c(g + 1).

Consider the following loose interpretation of Lemma 29 obtained by setting X := NG(Y ).
If X is small compared to G − X, then V (G − X) contains a small 3-island of G.
Unfortunately, a few parts in a layered partition (L, P) of a bounded genus graph G

may contain the vast majority of the vertices of G. The following lemma shows that
removing a constant number of (arbitrarily large) parts from a layered partition (P , L)
of a bounded genus graph G, leaves components that contain (3, c)-islands of G or that
are skinny with respect to L.

Lemma 30. Let ℓ ⩾ 1 and k, g ⩾ 0 be integers, and let c be the constant from Lemma 29.
Let G be a graph of Euler genus g, let (P , L) be a (w, ℓ)-layered partition of G, and
let P1, . . . , Pk ∈ P. Let C be a component of G − ⋃k

i=1 Pi such that V (C) contains no
(3, c(g + 1))-island of G. Then V (C) is (44ℓk + 4g)-skinny with respect to L.

Proof. Assume for the sake of contradiction that |V (C) ∩ L| ⩾ 44ℓk + 4g for some layer
L ∈ L. For any set R ⊆ L, let CR be the set of all vertices in C that are in layers in R.
Let R be a consecutive set of layers with

|CR| ⩾ 4ℓk(|R| + 10) + 4g (6)

and |R| maximum. This is well-defined since R = {L} satisfies this condition, since
|C{L}| ⩾ 4ℓk(1 + 10) + 4g.

If |CR| ⩾ 4|NG(CR)| + 4g then CR contains a 3-island of G with size at most c(g + 1)
by Lemma 29. So |CR| < 4|NG(CR)| + 4g. If R = L then

1
4 |CR| − g < |NG(CR)| ⩽ |

k⋃
i=1

Pi| ⩽ kℓ |R|,

and thus |CR| < 4ℓk|R| + 4g, which contradicts the choice of R. So R ̸= L. Let R′ be
the set of layers in R plus the layers before and after R (at least one of these exist). By
the choice of R, R′ fails (6). Thus

|CR′ | < 4ℓk(|R′| + 10) + 4g ⩽ 4ℓk(|R| + 12) + 4g ⩽ |CR| + 8ℓk.
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Since C is a component of G − ⋃k
i=1 Pi,

|CR| + 8ℓk > |CR′| ⩾ |CR| + |NG(CR)| − |NG(CR) ∩ (
k⋃

i=1
Pi)|

⩾ |CR| + 1
4 |CR| − g − ℓk(|R| + 2)

= 5
4 |CR| − g − ℓk(|R| + 2).

Thus 1
4 |CR| < 8ℓk + g + ℓk(|R| + 2) and |CR| < 4g + 4ℓk(|R| + 10), which contradicts

the choice of R. Hence |V (C) ∩ L| < 44ℓk + 4g for each layer L ∈ L.

For any surface Σ and any region ∆ ⊆ Σ, let ∂∆ denote the boundary of ∆ and let
Int(∆) := ∆ \ ∂∆ denote the interior of ∆. We say that two subsets ∆1 and ∆2 of Σ
overlap if Int(∆1) ∩ Int(∆2) ̸= ∅, and ∆1 and ∆2 strictly overlap if they overlap, but
neither Int(∆1) nor Int(∆2) contains the other.

In the following, we treat the vertices and edges of a graph G embedded in a surface Σ
as points and curves in Σ, respectively. Consequently, paths in G are treated as simple
curves in Σ and cycles in G are treated as simple closed curves in Σ. For a region R ⊆ Σ,
let G[R] := G[V (G) ∩ R] and G − R := G[V (G) \ R]. Here we include an edge uv in
G[R] if and only if both u and v are in R (the edge uv is not necessarily contained in
R). A d-disc ∆ in G (with respect to Σ) is a closed subset of Σ that is homeomorphic
to a disc and whose boundary is a cycle of length d in G. Note that each contractible
cycle of length d in G bounds at least one d-disc.

Lemma 31. For any integer g ⩾ 0 and for any embedding of K2,3g+2 in a surface Σ of
Euler genus g, there exists a 4-disc in K2,3g+2 with respect to Σ.

Proof. It is known that if x and y are two vertices in a graph G that is cellularly
embedded in Σ, and P1, . . . , Pk are internally disjoint paths with ends x and y, such
that for any 1 ⩽ i < j ⩽ k, the cycle Pi ∪ Pj is non-contractible in Σ, then k ⩽ 3g + 1
(see [46, Proposition 4.2.7]).

Now consider any (not necessarily cellular) embedding of a copy of K2,3g+2 in Σ. Let
{{x, y}, {v1, . . . , v3g+2}} be the bipartition of K2,3g+2. Assume for the sake of contradic-
tion that there is no pair i < j such that the embedding contains a 4-disc bounded by
xviyvj. Triangulate all faces of the embedding that are not homeomorphic to a disc, so
that each resulting triangular face bounds a disc (see for example [46, Section 3.1]).

The resulting supergraph G is cellularly embedded in Σ. The copy of K2,3g+2 under
consideration is a subgraph of G, with the property that the paths Pi := xviy of K2,3g+2

are internally disjoint, and Pi ∪ Pj is a non-contractible cycle for any i < j, which
contradicts the above property.
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F F F

G G◦ G−
•

Figure 9: The graphs G, G◦ and G−
• in Lemmas 32 and 35.

The following lemma, illustrated in Figure 9, will allow us to eliminate K2,t subgraphs
that contain vertices in the bottom layer Lx

↑ of the raised drape Gx
↑ without disturbing

the upper layers Lx
1 , . . . , Lx

5 . (This lemma will be applied with F := F x := Lx
⩽4 so that

NG↑ [F ] = Lx
⩽5.)

Consider a graph G embedded in a surface Σ and a subset F ⊆ V (G). We say that a
d-disc ∆ in G with respect to Σ is F -avoiding if ∆ has no vertex of F on its boundary
and no vertex of NG[F ] in its interior. An F -simplification G◦ of G is obtained as
follows: let C be a set of closed discs in Σ such that:

(a) each ∆ ∈ C is a 3-disc or a 4-disc in G with respect to Σ;
(b) no pair of discs in C overlap;
(c) every disc in C is F -avoiding;
(d) |V (G) ∩ (⋃

∆∈C Int(∆))| is maximised.

Then G◦ := G − (⋃
∆∈C Int(∆)) is an F -simplification of G.

Lemma 32. Let G be a graph embedded in a surface Σ of Euler genus g, let F ⊆ V (G)
be such that G[F ] has at most c connected components, and let G◦ be an F -simplification
of G. Then there exists an integer t := t(g, c) such that G◦ − F is K2,t-subgraph-free.

Proof. A chord in a d-disc ∆ of G having a boundary cycle v1, . . . , vd is an edge vivj

of G with endpoints in {v1, . . . , vd} such that the interior of vivj is contained in the
interior of ∆. A d-disc is chord-free if it has no chords. We may assume that each 4-disc
in C is chord-free since each non-chord-free 4-disc ∆ can be replaced by two interior
disjoint 3-discs ∆1 and ∆2 whose union is ∆ and whose intersection is a chord of ∆.
This operation preserves (a)–(d) and does not change V (G) ∩ (⋃

∆∈C Int(∆)).

We may assume that ⋃
∆∈C ∆ contains every F -avoiding chord-free 4-disc of G. Indeed,

the only reason not to include such a disc ∆ would be that it overlaps one or more other
discs in C. Since all discs in S are 3-discs or chord-free 4-discs, no disc in C strictly
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overlaps ∆.6 Therefore, all discs in C that overlap ∆ are contained in ∆ so we can
remove them all and replace them with ∆. This does not change V (G) ∩ (⋃

∆∈C Int(∆))
since this set is already of maximum size, and thus it does not change the simplification
G◦.

Suppose that G◦ − F contains a subgraph Z isomorphic to K2,t. Let X := {v, w}
and Y := {y1, . . . , yt} be the two parts in the bipartition of V (Z). Define a graph J

with vertex set V (J) := Y that contains an edge yiyj if and only if the cycle vyiwyj is
contractible. By Ramsey’s Theorem [54], for any integer k there exists a sufficiently
large integer t := R(2c + 6, 3g + 2) such that the graph J contains a clique of size 2c + 6
or a stable set of size 3g + 2. In the latter case, this stable set Y ′ defines a subgraph of
G◦[X ∪ Y ′] isomorphic to K2,3g+2 such that no 4-cycle in this subgraph bounds a 4-disc.
This contradicts Lemma 31. Therefore we may assume that J contains a clique of size
2c + 6 with vertex set Y ′.

Let k := 2c + 6. Then G◦[X ∪ Y ′] contains a subgraph L isomorphic to K2,k in which
every 4-cycle bounds a 4-disc of L with respect to Σ. By Lemma 10, it follows that L is
embedded in a closed 4-disc ∆ of L with respect to Σ. Let Y ′ := {y′

1, . . . , y′
k} where the

boundary of ∆ is the cycle vy′
1wy′

k and, for each i ∈ {1, . . . , k − 1}, the 4-cycle vyiwyi+1

bounds a face of L.

For each i ∈ {1, . . . , ⌊(k − 1)/2⌋}, consider the 4-disc ∆2i bounded by vy2i−1wy2i+1 that
contains y2i in its interior. Since y2i ∈ V (G◦), ∆2i ̸∈ C. Therefore, ∆2i contains a vertex
of NG[F ] in its interior (and is therefore not F -avoiding) or ∆2i contains the edge vw

(and is therefore not chord-free).7

• Since G is a simple graph, there is at most one value of i such that ∆2i contains
vw.

• If ∆2i contains a vertex of NG[F ] in its interior then, since V (Z) ∩ F = ∅, the
interior of ∆2i contains an entire component of F . Therefore there are at most c

values of i for which ∆2i contains a vertex of NG[F ].

Therefore, ⌊(k − 1)/2⌋ ⩽ c + 1 which implies that k < 2c + 6, a contradiction. Therefore,
G◦ − F does not contain a subgraph isomorphic to K2,t for t ⩾ R(2c + 6, 3g + 1).

For distinct vertices v and w in a graph G, we say that v is dominated by w (in G) if
NG(v) ⊆ NG(w). (Note that by this definition a vertex cannot dominate its neighbour).
If v is dominated in G by w, then w dominates v in G. We say that v is dominated in G

6This uses the fact that if two chord-free 4-discs ∆1 and ∆2 strictly overlap, then ∆1 ∪ ∆2 is also
a chord-free 4-disc whose interior contains stricly more vertices than Int(∆1) ∪ Int(∆2), so C would
contain neither ∆1 nor ∆2.

7The fact that ∆2i cannot contain the edge y2i−1y2i+1 follows from the Jordan Curve Theorem.
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if there exists w ∈ V (G) \ {v} that dominates v in G. Two properties of this definition
are immediate: (i) If v is a dominated vertex of a connected graph G, then G − v is also
connected. (ii) If v is dominated by w in G then v is dominated by w in any induced
subgraph of G that includes both v and w. For any R ⊆ V (G) and any v ∈ V (G) we
say that v is R-dominated in G if there exists some w ∈ R \ {v} that dominates v in G.

Observation 33. Let G be a graph embedded in the plane having an outer face bounded
by a cycle F in G. Let R := V (G) \ V (F ) be such that NG(x) ⊆ V (F ) for each x ∈ R.
Then any R-dominated vertex in R has degree at most 2.

Proof. If x ∈ R has three or more neighbours in F then the only face of G[V (F ) ∪ {x}]
with three neighbours of x on its boundary is the outer face. Thus, no vertex y ∈ R can
dominate x.

Observation 34. Let G be a graph embedded in the plane having an outer face bounded
by a cycle F in G and such that NG(x) ⊆ V (F ) for each x ∈ V (G) \ V (F ). Let v and
w be distinct vertices of F , and let R := NG(v) ∩ NG(w) \ V (F ). Then |R| ⩽ 2 or some
vertex of R is R-dominated in G.

Proof. Suppose that R contains three vertices x, y, and z. By definition, each of these
vertices is adjacent to both v and w, and thus has at least two neighbours in F . If any of
these vertices has exactly two neighbours in F then it is dominated by the other two and
we are done, so assume each of x, y, z has a neighbour in F that is distinct from v and w.
By symmetry, we can assume that y lies in the interior of the 4-disc bounded by vxwz.
Since this cycle only intersects F in {v, w}, it follows from the Jordan Curve Theorem
that y has no neighbour in F distinct from v and w, which is a contradiction.

For an embedded graph G and F ⊆ V (G), an F -contraction G• of G is obtained as
follows: Let G◦ be an F -simplification of G obtained by a set C of 3- and 4-discs. In
the original graph G, contract each component C of G − V (G◦) into a single vertex vC ,
and call the resulting graph G•. An F -compression G−

• of G is obtained as follows: Let
R ⊆ V (G•)\V (G◦) be such that, for each ∆ ∈ C, no vertex of R∩∆ is (R∩∆)-dominated
in G•. Then G−

• := G[V (G◦) ∪ R] is an F -compression of G.

To make the end of this section more concrete, we explain how the notions of F -
contraction and F -compression will be used in Section 4.2. Once we have raised a
curtain, our aim is to clean its embedded part to avoid large copies of K2,t. It is safe to
remove components C that are attached to at most two vertices of the embedded part
of the raised curtain, because these can be coloured easily using our strategy of breaking
skinny components using one additional colour. These components C correspond to
the vertices of G• − V (G−

• ) (to which they have been contracted), and Observations 33
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and 34 tell us that they are indeed attached to the embedded part by at most two
vertices. We now prove that once these vertices are removed, the maximum size of a
copy of K2,t disjoint from F is bounded.

Lemma 35. Let G be a graph embedded in a surface Σ of Euler genus g, let F ⊆ V (G)
be such that G[F ] has at most c connected components, and let G−

• be an F -compression
of G. Then there exists an integer t := t(g, c) such G−

• − F is K2,t-subgraph-free.

Proof. Let G◦ be the F -simplification of G used to create G−
• , obtained from some set

C of 3 and 4-discs, and let R := V (G−
• ) \ V (G◦). The vertices in R form an independent

set in G−
• and each vertex in R is adjacent to at most four vertices on the boundary

cycle of some 3- or 4-disc in C. Therefore, each vertex in R has degree at most 4. Let
Z be a K2,t subgraph in G−

• with parts X := {v, w} and Y := {y1, . . . , yt}. Then each
vertex in X has degree at least t. Therefore, {v, w} ⊂ V (G◦) or t ⩽ 4. In the latter
case, we are done, so now assume that {v, w} ⊂ V (G◦).

Suppose that V (Z) ∩ F = ∅. By Lemma 32, |Y ∩ V (G◦)| ⩽ t′ for some t′ := t′(g, c).
Therefore, |Y ∩ R| ⩾ t − t′. By Observation 34, for each disc ∆ ∈ C there are at most
two vertices of R in the interior of ∆. Therefore, there are at least (r − t′)/2 discs in
C that contain both v and w on their boundary cycles. There are at most two such
discs in which v and w are consecutive in the boundary cycles. Therefore there are
d ⩾ (r − t′)/2 − 2 4-discs in C with v and w on, but not consecutive on, their boundary
cycles. Each of these d discs defines two length-2 paths in G◦ from v to w and each of
these length-2 paths is shared by at most two discs. Therefore G◦ − F contains a K2,d

subgraph, so d < t′. Thus, (t − t′)/2 − 2 ⩽ d < t′ so t < 3t′ + 4. Therefore G−
• − F does

not contains a K2,t subgraph for t := 3t′ + 4.

4.2 Theorem 4: Js,t-Minor-Free Graphs

This section finished the proof of our main theorem, Theorem 4, which says that Js,t-
minor-free graphs are (s + 1)-colourable with bounded clustering. We use the same
general strategy used in the proof of Theorem 7 (for s ⩾ 4) given in Section 2.5, with
some additional steps. The following lemma shows that we can restrict our attention to
trees of (s − 3, ℓ)-curtains.

Lemma 36. For integers s ⩾ 3 and t ⩾ 2, every Js,t-minor-free graph is a lower-minor-
closed tree of (s − 3, ℓ)-curtains for some ℓ = ℓ(s, t).

Proof. Let Ks ⊕ Pt be the complete join of Ks and a t-vertex path, which is an element
of Js,t. Observe that K2 ⊕ Pt is planar, implying Ks ⊕ Pt is (s − 2)-apex. By definition,
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every Js,t-minor-free graph G is (Ks ⊕ Pt)-minor-free. Therefore, by Theorem 22, G is
a lower-minor-closed tree of (s − 3, ℓ)-curtains for some ℓ = ℓ(s, t).

By Lemma 21, we can focus on the case where G is a single (s − 3, ℓ)-curtain with some
set S of at most s precoloured vertices in the top of its root. As a first step, we will use
Observation 28 along with the following lemma to eliminate small 3-islands in the lower
layers of each drape.

Lemma 37. Let G be an (s − 3, ℓ)-drape described by (P , L) where L =: (L1, L2, . . .).
If I ⊆ L⩾6 is a 3-island in G[L⩾5], then I is an s-island in G.

Proof. Let A be the major apex set of G. For each v ∈ I, NG(v) ⊆ L⩾5 ∪ A. Therefore,
|NG(v) \ I| ⩽ |NG[L⩾5](v) \ I| + |A| ⩽ 3 + (s − 3) = s.

In the following, we work with a drape G and the raised drape G↑.8 The contractions
performed in G to obtain G↑ involve edges in the surface-embedded part G0 of G.
Equivalently, each vertex v in V (G↑) \ V (G) is obtained by contracting a subset Qv ⊆
V (G0) such that G0[Qv] is connected. Thus, Q := {Qv : v ∈ V (G↑) \ V (G)} is a set of
disjoint subsets of V (G0) and G↑ := G/Q is a minor of G. Using this interpretation, we
will let G̃↑ := G0/Q denote the graph obtained from G0 by performing the same set of
edge contractions used to create G↑. Observe that G̃↑ is a surface-embedded graph that
inherits an embedding from the embedding of G0.

The next step is to raise the curtain, as in the proof of Theorem 7. However, before
immediately applying a bounded treewidth result (Lemma 27), we will perform an
F -contraction and an F -compression on (the surface-embedded part of) each raised
drape in order to eliminate K2,t-subgraphs in the bottom layers of each raised drape. In
order for this to be useful, we require that each vertex of the F -contraction be obtained
by contracting a connected subgraph of G that is skinny with respect to the layering L.
That is what we show in the following lemma.

Lemma 38. Let G be an upward-connected (s − 3, ℓ)-drape with (s − 3, ℓ)-almost-
embedding E := (A, Â, G0, G1, . . . , Gℓ) and described by (P , L) with L =: (L1, L2, . . .)
and such that L⩾6 contains no (3, ℓ)-island of G. Let G↑ be the (s − 3, ℓ)-drape obtained
by raising G, let F := V (G0) ∩ L⩽4, and let G̃↑• be an F -contraction of G̃↑. Then each
v ∈ V (G̃↑•) is the result of contracting a connected subgraph Xv in G and V (Xv) is
ℓ′-skinny with respect to L, for some ℓ′ := ℓ′(ℓ).

8Technically, we are raising the curtain G whose description uses a tree-decomposition T that
contains a single bag B := V (G).
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Proof. That each v ∈ V (G̃↑•) \ V (G̃↑) is obtained by contracting a connected subgraph
Xv of G follows immediately from the definitions of G↑ (a raised curtain) and G↑• (an
F -contraction of G↑).

For v ∈ V (G̃↑•) ∩ V (G̃↑), Xv is contained in a single part Pv ∈ P , so V (Xx) is ℓ-skinny
with respect to L, since (P , L) is an ℓ-layered partition describing G.

Let G̃↑◦ be the F -simplification of G̃↑ used to create G̃↑•. For v ∈ V (G̃↑•) \ V (G̃↑),
N

G̃↑•
(v) ⊆ V (G̃↑◦) and |N

G̃↑•
(v)| ⩽ 4, since v is obtained by contracting a component

Cv of G̃↑ − V (G̃↑◦). In particular, Cv is contained in the interior of a 3- or 4-disc of
G̃↑◦. Therefore, there exists a subset Pv ⊆ P of size at most 4 such that NG0(Xv) ⊆⋃

P ∈Pv
P . In other words, Xv is a component of G0 − ⋃

P ∈Pv
P . Furthermore, Xv ⊆ L⩾6

and, by assumption, L⩾6 contains no (3, ℓ)-island of G0. Therefore Lemma 30 with
Pv = {P1, . . . , Pj} (j ⩽ 4) implies that V (Xv) is ℓ′-skinny with respect to L, for some
ℓ′ := ℓ′(ℓ).

We continue with our convention of using a tilde (̃ ) to distinguish between surface-
embedded minors of G obtained from G0 and minors of G. In the following, G̃−

↑• is an
F -compression of G̃↑ obtained from G̃↑ by edge contractions and vertex deletions, so
G−

↑• denotes the graph obtained by performing the same operations in G↑.

Lemma 39. Let G, (A, Â, G0, G1, . . . , Gr), (P , L), L =: (L1, L2, . . .), G↑, and F be
defined as in Lemma 38 and let G̃−

↑• be an F -compression of G̃↑. Then G−
↑• − (A ∪ L⩽4)

is K2,t′-subgraph-free for some t′ := t′(ℓ).

Proof. This would immediately follow from Lemma 35 if the number of components of
G0[F ] were bounded by some t′(ℓ). This may not be the case, so an extra step is required.
Recall that G0[L1] contains exactly the vertices of G0 that participate in the vortices
G1, . . . , Gℓ and that each vortex Gi is defined in terms of a G0-clean disc Di. Define the
embedded graph H↑ by starting with G↑ and adding a vertex vi in the interior of Di that
is adjacent to each vertex in V (Gi) ∩ V (G0), for each i ∈ {1, . . . , ℓ}. Define the graph
H−

↑• analogously, starting from the graph G−
↑•. Let L0 := {v1, . . . , vℓ}. Then H↑[L0 ∪ L1]

has at most ℓ components and, since L is upward-connected, Observation 18 implies that
H↑[L0 ∪ F ] has at most ℓ components. Furthermore, H−

↑• is an (L0 ∪ F )-compression of
H↑. By Lemma 35, H−

↑• − (A ∪ L⩽4) is K2,t′-subgraph-free for some t′ := t′(ℓ). Since
G−

↑• − (A ∪ L⩽4) is a subgraph of H−
↑• − (A ∪ L⩽4), this completes the proof.

Lemma 40. Let G, (A, Â, G0, G1, . . . , Gr), (P , L), L =: (L1, L2, . . .), G↑, F , G↑• and
G−

↑• be defined as in Lemmas 38 and 39 and let L↑• := V (G̃↑•) \ L⩽5. Then, for any
component C of G↑•[L5 ∪ L↑•], G−

↑•[V (C)] is connected.
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Proof. This follows from the fact that removing a dominated vertex from a connected
graph does not disconnect the graph. The graph G−

↑• can be obtained from G↑• by
repeatedly removing a L↑•-dominated vertex. Therefore G−

↑•[V (C)] can be obtained
from C by repeatedly removing a L↑•-dominated vertex.

The next lemma will ensure that vertices added to each drape do not introduce K3,t-
subgraphs in the lower layers of the drape.

Lemma 41. Let G, (A, Â, G0, G1, . . . , Gr), (P , L), L =: (L1, L2, . . .), G↑, F , G↑•, G−
↑•,

and L↑• be defined as in Lemmas 38 and 39. Let G̃−+
↑• be the graph obtained from G̃−

↑•
by adding, for each component C of G−

↑•[L5 ∪ L↑•] a vertex αC adjacent to every vertex
in V (C) ∩ L↑•. Then, for each vertex αC added this way, G̃+−

↑• [N4
G̃+−

↑•
[αC ] \ {αC}] is

K3,k′-subgraph-free for some k′ := k′(ℓ).

Proof. Let H := G̃+−
↑• [N4

G̃+−
↑•

[αC ] \ {αC}]. Then H is K3,k′-subgraph-free (for some
k′ := k′(ℓ)) because the vertices of H are contained in ⋃

i∈{3,4,5,↑•} Li, so H is a minor
of G0. The graph G0 is embedded in a surface of genus g ⩽ ℓ and is therefore K3,2g+3-
minor-free (by Euler’s Formula).

Lemma 42. Let G be a graph of treewidth at most k, and let C1, . . . , Cr be pairwise
disjoint connected subgraphs in G. Let G+ be the graph obtained from G by adding, for
each i ∈ {1, . . . , r}, a new vertex vi whose neighbourhood is a subset of V (Ci). Then G+

has treewidth at most 2k + 1.

Proof. Consider a tree-decomposition (Bx : x ∈ V (T )) of G, such that |Bx| ⩽ k + 1
for each node x ∈ V (T ). Let B′

x := Bx ∪ {vi : V (Ci) ∩ Bx ̸= ∅} for each x ∈ V (T ).
Since Ci is connected, the set {x ∈ V (T ) : Bx ∩ Ci ̸= ∅} induces a subtree of T . Thus
(B′

x : x ∈ V (T )) is a tree-decomposition of G+. If a new vertex vi is in B′
x, then Bx

contains a vertex of Ci. Since C1, . . . , Cℓ are pairwise disjoint, |B′
x| ⩽ 2|Bx| ⩽ 2k + 2

for each x ∈ V (T ). This shows that G+ has treewidth at most 2k + 1, as desired.

We are now ready to prove the following lemma, which is the last big step in the proof
of Theorem 4.

Lemma 43. Let s ⩾ 3, t ⩾ s + 2 and ℓ ⩾ 2 be integers. Let J be a Js,t-minor-free
lower-minor-closed tree of (s − 3, ℓ)-curtains described by T0 := (Bτ : τ ∈ V (T0)), let
G := J{Bτ } be the lower torso of a curtain J⟨Bτ ⟩ in J , and let S be a set of at most s

vertices contained in the top of the root torso of J⟨Bτ ⟩. Then for any (s + 1)-colouring
of S, there is an (s + 1)-colouring of G that properly extends the given precolouring of S

and has clustering at most some function f(s, t, ℓ).
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Proof. Let T := (Bx : x ∈ V (T )) be the tree-decomposition that describes the curtain
J⟨Bτ ⟩. For each x ∈ V (T ), let E := (Ax, Âx, Gx

0 , Gx
1 , . . . , Gx

ℓ ) be the (s − 3, ℓ)-almost-
embedding of the (s − 3, ℓ)-drape J⟨Bx⟩ and let (Px, Lx) be the ℓ-layered partition that
describes J⟨Bx⟩, where Lx := (Lx

1 , Lx
2 , . . .). Since G is a spanning subgraph of J⟨Bτ ⟩, T

is a tree-decomposition of G and E is an (s−3, ℓ)-almost-embedding of G. By Lemma 37
and Observation 28, we may assume that, for each drape G⟨Bx⟩, Gx

0 [Lx
⩾6] contains no

(3, ℓ)-island of Gx
0 .

Raise the curtain J⟨Bτ ⟩ to obtain the raised (s − 3, ℓ)-curtain J⟨Bτ ⟩↑ with layering
L↑ := (L↑

1, . . . , L↑
5, L↑). Let G↑ be graph obtained from G = J{Bτ } by applying the

same contractions used to obtain J⟨Bτ ⟩↑ from J⟨Bτ ⟩. By Lemma 24, G↑ is a minor of J

and is therefore Js,t-minor free. For each x ∈ V (T ), let G̃x
↑ be the graph obtained from

Gx
0 by applying the same contractions used to obtain Gx

↑ .

For each x ∈ V (T ), let Fx := Lx
⩽4, and let G̃x

↑• and G̃x−
↑• be the Fx-contraction and Fx-

compression, respectively, of G̃↑. For each x ∈ V (T ), apply all of the edge contractions
used to obtain Gx

↑• to G to obtain a graph G↑•. Define the graph G−
↑• similarly, by

applying the vertex deletions used to obtain each Gx−
↑• to G↑•. For each x ∈ V (T ), let

Lx
↑• := V (G̃↑•) \ Lx

⩽5. For each i ∈ N, let Li := ⋃
x∈V (T ) Lx

i , and let Li := ⋃
x∈V (T ) Lx

↑•.

Let R1, . . . , Rr be the vertex sets of the connected components of G↑•[L5 ∪ L↑•]. For
each i ∈ {1, . . . , r}, let xi be the unique node of T such that Ri[L5] ⊆ Bxi

and let
Ai := Axi

. Starting with G↑•, define the graph G+
↑• by introducing vertices α1, . . . , αr,

where αi is adjacent to every vertex in Ri ∩ L↑•, for each i ∈ {1, . . . , r}. Let G+−
↑• :=

G+
↑•[V (G−

↑•) ∪ {α1, . . . , αr)]. In words, G+−
↑• is obtained from G+

↑• by deleting the vertices
that are created in some Fx-contraction, but are not present in the corresponding
Fx-compression. For each j ∈ {1, . . . , r}, let Sj := N2

G+
↑•−Aj

[αj] ⊆ Rj ∪ {αj} and let
S−

j := N2
G+−

↑• −Aj
[αj] = Sj ∩ V (G+−

↑• ). Observe that Sj and S−
j agree with the definition

of Sj in property (t3) of admissible set for the graphs G+
↑• and G+−

↑• , respectively.

The set S := {(α1, A1), . . . , (αr, Ar)} is (s − 3)-admissible with respect to G+−
↑• because:

(t1): |Aj| ⩽ s − 3, by the definition of (s − 3, ℓ)-curtain;
(t2): αj is a vertex of G+−

↑• and NG+−
↑•

[αj] ∩ Aj ⊆ (L↑• ∪ {αj}) ∩ Aj = ∅, for each
j ∈ {1, . . . , r}.

(t3): We need to show that
(⋃r

j=1 Aj

)
∩

(⋃r
j=1 S−

j

)
= ∅. Suppose otherwise, so that

v ∈ Aj ∩ S−
j′ for some j, j′ ∈ {1, . . . , r}. Then j ̸= j′ and xj ̸= xj′ since Aj = Axj

does not intersect L
xj

5 ∪ L
xj

↑• ∪ {αj} = S−
j . Therefore, by the definition of curtain,

v ∈ (Lxj

1 ∪ Axj
) ∩ (Lxj′

1 ∪ Axj′ ), which contradicts the assumption that v ∈ Sj′ ⊆
L

xj′
5 ∪ L

xj′
↑• .

(t4): S−
1 , . . . , S−

r are pairwise disjoint because R1, . . . , Rr are pairwise disjoint.
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We want to apply Lemma 27 to G+−
↑• with S as our (s − 3)-admissible set. As required

by Lemma 27, the graph G+−
↑• has treewidth at most some function c1 := c1(s, ℓ), by

Lemma 23 and since G↑•[Rj ] is connected for each j ∈ {1, . . . , r}. Lemma 42 shows that
the addition of α1, . . . , αr to G↑• creates a graph G+

↑• with treewidth at most 2c1 + 1.
The removal of vertices in Sj \ S−

j to obtain G+−
↑• does not increase treewidth.

In addition to having bounded treewidth, Lemma 27 requires that G+−
↑• satisfy several

additional conditions, which we now verify.

(x1): G+−
↑• − {α1, . . . , αr} is Js,t-minor-free because G+−

↑• − {α1, . . . , αr} = G−
↑• (by

definition) and G−
↑• is a minor of G↑ which, by Lemma 24 is a minor of J , which

is Js,t-minor-free.
(x2): For each j ∈ {1, . . . , r}, G+−

↑• [S−
j \ {αj}] is connected by Lemma 40.

(x3): For each j ∈ {1, . . . , r}, G+−
↑• [S−

j \ {αj}] is K2,t′-subgraph-free (for some t′ = t′(ℓ))
by Lemma 39.

(x4): For each j ∈ {1, . . . , r}, G+−
↑• [N4

G+−
↑• −Aj

[αj ] \ {αj}] = G̃+−
↑• [N4

G̃+−
↑•

[αj ] \ {αj}] and is
therefore K3,k′-subgraph-free (for some k′ := k′(s, t)) by Lemma 41.

Define the list-assignment L0 : V (G+−
↑• ) → 2{1,...,s+1} for G+−

↑• as follows: For each
v ∈ S, let L0(v) be the singleton set that contains the colour assigned to v by the given
precolouring of S. For each w ̸∈ S, L0(w) := {1, . . . , s+1}\∪{L0(v) : v ∈ NG+−

↑•
(w)∩S}.

Since |S| ⩽ s, this ensures that each vertex has a non-empty list L0 and that any L0-
colouring of G+−

↑• properly extends the precolouring of S.

Let P := P (L0) be the set of vertices precoloured by L0 and let Q := Q(L0). We now
define a second list-assignment L. The need for L0 and L comes from the existence
of vertices with less than s neighbours in S but at least s neighbours in P ; we do not
want to precolour these vertices, but we require them to avoid colours used by their
neighbours in S. For each v ∈ Q, let L(v) := {1, . . . , s+1}\∪{L(w) : w ∈ NG+−

↑•
(v)∩P}.

For each v ̸∈ Q, let L(v) := L0(v). Clearly P = P (L) and therefore Q = Q(L). The
list-assignment L is a specialization of L0, so any L-colouring of G+−

↑• properly extends
the precolouring of S.

We claim that L is trivially compatible with S because P does not contain any vertex
of any trigger set Sj. Indeed, P consists of S along with vertices of G+−

↑• that have
s neighbours in S. No vertex of any trigger set is in S because S is a subset of⋃

x∈V (T )(Lx
1 ∪ Ax), but vertices of S−

j are in L
xj

5 ∪ L
xj

↑• ∪ {αj}, for each j ∈ {1, . . . , r}. For
each j ∈ {1, . . . , r}, the neighbours of αj are all contained in S−

j . For each j ∈ {1, . . . , r},
each vertex in S−

j has at most s − 3 neighbours in L
xj

1 ∪ Axj
(all contained in Axj

) and
each vertex of S ∩ NG+−

↑•
(S−

j ) is in L
xj

1 . Therefore, P ∩ S−
j = ∅ for each j ∈ {1, . . . , r}.

Now we check that L satisfies conditions (g2)–(g5) for being (s, p)-good.
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(g2): |L(v)| ⩾ s + 1 − |NG+−
↑•

(v) ∩ P |, by definition, for all v ∈ Q(L);
(g3): |L(v)| ⩾ 2 for all v ∈ NG+−

↑•
(P ) \ Q since each such vertex has at most s − 1

neighbours in S and therefore has a list of size at least (s + 1) − (s − 1) = 2;
(g4): |L(v)| = s + 1 for all v ∈ V (G+−

↑• ) \ NG+−
↑•

[P ]; and
(g5): L(v) ∩ L(u) = ∅ for all v ∈ Q and u ∈ NG+−

↑•
(v) ∩ P by definition.

We did not establish (g1)—the upper bound on the size of P—because the size of P

cannot be upper bounded by any function of s, t, and ℓ. However, each vertex in P is
either in S or adjacent to each of the s vertices in S. Thus, G+−

↑• [P ] contains a Ks,q

subgraph, where q := |P |−s. This bipartite subgraph has parts S of size s and Y of size
q. By Claim 27.1 (whose proof relies only on (x3) and (x4) and the admissibility of S)
and Claim 27.2 (whose proof relies only on (x1) and the admissibility of S), this implies
that q ⩽ k (where k := k(s, t) is defined as in Lemma 27) or that each component of
G+−

↑• − S contains at most t − 1 vertices of Y . In the former case, |P | ⩽ k + s and
L satisfies (g1) for p ⩾ k + s, so we can apply Lemma 27 to all of G+−

↑• to obtain an
L-colouring with clustering at most some function c2 := c2(c1, s, t, ℓ). In the latter case,
we can apply Lemma 27 independently on GC := G+−

↑• [S ∪ V (C)] for each component
C of G+−

↑• − S. In each application, the size of the precoloured set is at most s + t − 1
(so L is (s, s + t − 1)-good) and we obtain an L-colouring that properly extends the
precolouring of S.9 Therefore, each monochromatic component is either contained in S

or is contained in a single component of G+−
↑• − S. Therefore, all of these colourings can

be combined to provide an L-colouring of G+−
↑• with clustering at most some function

c3 := c3(c1, s, t, ℓ).

In either case, we obtain an L-colouring φ of G+−
↑• with clustering at most c4 :=

max{c2, c3}, and where φ(x) ̸= φ(a) for each j ∈ {1, . . . , r}, each a ∈ Aj ∪ {αj} and
each x ∈ NG+−

↑•
(a). Since G−

↑• is a subgraph of G+−
↑• , φ is also a colouring of G−

↑•. We
now extend φ to obtain a colouring of G:

1. Let Y2 := V (G↑•) \ V (G−
↑•). Each x ∈ Y2 belongs to NG+

↑•
(αj) ⊂ L

xj

↑• for exactly
one j ∈ {1, . . . , r}. By Observation 33, each x ∈ Y2 has degree at most 2 in
G̃

xj

↑•. Therefore, |NG↑•(x)| ⩽ 2 + |Axj | ⩽ s − 1. Set φ(x) to an arbitrary colour in
{1, . . . , s + 1} \ {φ(v) : v ∈ NG↑•(x) ∪ {αj}}. (Note that φ(x) ̸= φ(αj)).

This extends the colouring φ to a colouring of G↑•, that still has clustering at
most c4, since each vertex in Y2 has a colour different from all its neighbours.
Furthermore, this colouring has the property that φ(x) ̸= φ(a) for each j ∈
{1, . . . , r}, each x ∈ NG+

↑•
(αj), and each a ∈ {αj} ∪ (Aj ∩ NG↑•(x)).

2. Each v ∈ V (G↑•) \ V (G) is obtained by contracting a connected subgraph Xv of
9The colouring of each graph GC is similar to the colouring of the graph GC in Case A of the proof

of Lemma 27.
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G. Extend the colouring φ to a colouring of G by setting φ(w) := φ(v) for each
v ∈ V (G↑•) \ V (G) and each w ∈ V (Xv). Now the φ-monochromatic components
in G may have unbounded size, because |V (Xv)| is unbounded.

We now argue that we are in a position to apply Lemma 19. Let A be a φ-monochromatic
component in G and let A↑• be the corresponding φ-monochromatic component in G↑•.
Then V (A) = ⋃

v∈V (A↑•) V (Xv). Since A↑• is φ-monochromatic, |V (A↑•)| ⩽ c4. By
Lemma 38, each V (Xv) is c5-skinny with respect to L, for some c5 := c5(ℓ). Therefore,
V (A) is c4c5-skinny with respect to L. For each component C of G[L⩾5], none of
the vertices of C[L⩾6] receive the colour φ(αC). Therefore, by Lemma 19, G has an
(s + 1)-colouring with clustering at most (2s + 7)c4c5.

We now prove the main theorem.

Proof of Theorem 4. First consider the case s ⩾ 3. We may assume that t ⩾ s + 2.
Let J be a Js,t-minor-free graph. By Lemma 36, J is a lower-minor-closed tree of
(s − 3, ℓ)-curtains for some ℓ = ℓ(s, t). Lemma 43 implies that for each curtain J⟨Bτ ⟩
of J , any (s + 1)-colouring of s vertices in the top of the root torso of J⟨Bτ ⟩ can be
properly extended to an (s + 1)-colouring of the lower torso J{Bτ } with clustering at
most some function c(s, t). Since J [Bτ ] is a subgraph of J{Bτ }, Lemma 21 then implies
that J is (s + 1)-colourable with clustering c(s, t).

Now consider the s = 2 case. Let G be a J2,t-minor-free graph. Since the complete join
K2 ⊕ Pt is a planar graph in J2,t, by the Grid Minor Theorem [57], G has treewidth at
most some ℓt. We want to apply Lemma 27 with s = 2 and r = 0. However, Lemma 27
assumes s ⩾ 3 (which is required since the lemma assumes S is (s − 3)-admissible).
However, in the case s = 2 and r = 0 the admissibility assumption is vacuous, and
the proof is correct. Here we sketch the ideas. We may assume that G contains a
K2,y-subgraph for some large y, otherwise Lemma 26 can be applied directly. Claim 27.1
is vacuously true. Claim 27.2 is still true: each component of G − X has at most t − 1
vertices of Y , or we can find a minor of G in J2,t. Cases A and B still work because the
only role played by S is when we argue that PC (or Pi) avoids ⋃r

j=1 Sj, which is now
trivially true since r = 0. It now follows that G is 3-colourable with clustering bounded
by a function of t.

For the case s = 1, we may assume that G is connected. Select an arbitrary vertex v

in G. Let Li := {x ∈ V (G) : distG(v, x) = i}. So (L0, L1, . . . ) is a layering of G. For
each i ⩾ 0, colour each vertex in Li by i mod 2. Any monochromatic component C of
G is contained in some layer Li, and every vertex in C has a path to v whose internal
vertices are in L2 ∪ . . . ∪ Li−1. The union of these paths and the component C contains
a minor in J1,|V (C)|. Therefore |V (C)| < t.
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4.3 Theorem 7: The s = 3 Case

We now complete the proof of Theorem 7. Section 2.5 already establishes Theorem 7 for
s ⩾ 4. Observe that, in this proof, the restriction s ⩾ 4 appears because the graph H+

↑
obtained from H↑ by adding a vertex α may contain arbitrarily large K3,t-subgraphs.
This is because G[L5 ∪ L↑] may contain arbitrarily large K2,t-subgraphs with the t ‘right-
part’ vertices in L↑. The additional vertex α then completes this into a K3,t-subgraph,
so Lemma 15 cannot be applied with s = 3. We encountered a similar issue in the proof
of Lemma 43 and used Lemma 39 to eliminate K2,t-subgraphs from G[L5 ∪ L↑]. The
following paragraph explains how the same techniques can be incorporated into the
proof of Theorem 7 in order to handle the case s = 3.

Proof sketch of Theorem 7 for s = 3. By Lemma 13, the X-minor-free K3,t-subgraph
free graph J that we want to colour is a lower-minor-closed tree of (0, ℓ)-curtains
described by T0 := (Bi : i ∈ V (T0)), for some ℓ := ℓ(X). By Lemma 21, it suffices to
show that for each curtain J⟨Bi⟩ any precolouring of any set S of at most 3 vertices in
the top of the root torso of J⟨Bi⟩ can be properly extended to an (s + 1)-colouring of
G := J{Bi} with clustering at most c.

Let L := (L1, L2, . . .) be the layering of G. By Observation 28, we may assume that
L⩾6 contains no (3, ℓ)-islands of G. We raise the (0, ℓ)-curtain J⟨Bi⟩ as in the proof
of Theorem 7 and perform the same contractions in G to obtain G↑. Next, define the
graphs G↑•, and G−

↑• exactly as in the proof of Lemma 43. The graph G+−
↑• is then

obtained from G−
↑• by adding a single vertex α that dominates L↑• and setting the colour

of α to be m := 4. By Lemma 39, G−
↑•[L5 ∪L↑•] is K2,t′-subgraph-free for some t′ := t′(ℓ).

Therefore G+−
↑• is K3,max{t′,t}-subgraph-free. The treewidth of G+−

↑• is not more than the
treewidth of G↑ which, by Lemma 23 is at most k := k(ℓ).

Since G+−
↑• has bounded treewidth and is K3,max{t′,t}-subgraph-free, it can be 4-coloured

using Lemma 15 with the precoloured set S ∪ {α}. Since no vertex in G+−
↑• has more

than 3 neighbours in S, the resulting colouring properly extends the precolouring of
S ∪ {α} and has clustering at most some f(ℓ). We extend this to a 4-colouring of G

as before: for each connected subgraph Xv of G that is contracted to obtain a vertex
v of G+−

↑• , set the colour of each vertex in Xv to the colour of v. By Lemma 38, each
monochromatic component in the resulting colouring of G is ℓ′-skinny with respect to
the layering L of G. Each vertex in L⩾6 avoids the colour, 4, of α. We finish by applying
Lemma 19 to obtain a 4-colouring of G with clustering at most some f(ℓ).
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5 Algorithms

All of the results in this paper are algorithmic and give polynomial-time algorithms for
finding the colourings promised by Theorems 1, 2, 4 and 7. More specifically, there
exists a constant c such that

• the colouring in Theorem 1 can be found in f(h) · nc time for some f : N → N;
• the colourings in Theorems 2 and 4 can be found in f(s, t) · nc time for some

f : N2 → N; and
• the colouring in Theorem 7 can be found in f(|X|, s, t)·nc time for some f : N3 → N.

We now elaborate on the steps required to compute these colourings:

1. The tree decomposition and almost-embeddings of Theorem 11 can be computed
in f(|X)) · nc time [21].

2. From this decomposition we easily derive the tree-of-curtains decomposition. The
decomposition itself is read off from the previous tree decomposition. The layering
of each drape is obtained using existing algorithms for product structure of almost-
embedded graphs without major apex vertices [5, 17].

3. Before raising each curtain G, we eliminate small 3-islands from the lower layers
of each drape G⟨Bx⟩ of G. This is done to ensure that some subgraph that we are
about to contract in order to eliminate K2,t-subgraphs is not skinny with respect
to the layering Lx of the drape G⟨Bx⟩. For the drape G⟨Bx⟩, any such subgraph
would be contained in a component of Gx

0 − R, where R is the union of at most
4 parts in the partition Px of G⟨Bx⟩. Thus, we can first compute Px and iterate
over all O(n4) choices of R. For each, we check if any component of Gx

0 − R is not
skinny with respect to L. If so, this component contains a small 3-island that can
be found and eliminated using the separator method of Dvořák and Norin [20,
Theorem 8] outlined in Lemma 29. This reduces the number of vertices in the
drape, so we can repeat the process a total of at most n times to obtain a drape
with a layering in which any set of parts we contract to eliminate K2,t subgraphs
will be skinny.

4. Raising each curtain is easily done in time linear in the size of the curtain.
5. In each raised curtain we identify a maximal set of disjoint 3-discs and 4-discs.

These can easily be identified in O(n8) time by enumerating all of the 3- and
4-cycles (each of which defines at most two discs) and making a directed acyclic
graph with these discs as vertices in which the direction of each edge is determined
by the containment relationship. The set of sources in this graph gives the desired
set of discs.

6. The bounded treewidth results in Lemmas 26 and 27 are applied to each simplified
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raised curtain. The proofs of these two results are inductive and give easy recursive
polynomial-time algorithms.

7. Lowering the curtains, extending the colouring, and breaking long skinny compo-
nents using Lemma 19 is easy to implement in linear time.

Acknowledgements

This research was initiated at the Barbados Graph Theory Workshop held at the Bellairs
Research Institute in April 2019. Thanks to the other workshop participants for creating
a productive working atmosphere. We would also like to thank Francis Lazarus for the
helpful discussion about the proof of Lemma 10.

References
[1] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable, vol. 98 of

Contemporary Math. Amer. Math. Soc., 1989.
[2] Marthe Bonamy, Nicolas Bousquet, Louis Esperet, Carla Groenland, Chun-Hung

Liu, François Pirot, and Alex Scott. Asymptotic dimension of minor-closed families and
Assouad–Nagata dimension of surfaces. J. European Math. Soc., 2023. arXiv:2012.02435.

[3] Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). 2022, arXiv:2202.11858.

[4] Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, and Pat Morin. Asymptotically
optimal vertex ranking of planar graphs. 2020, arXiv:2007.06455.

[5] Prosenjit Bose, Pat Morin, and Saeed Odak. An optimal algorithm for product structure
in planar graphs. In Artur Czumaj and Qin Xin, eds., Proc. 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2022), vol. 227 of LIPIcs, pp. 19:1–19:14. Schloss
Dagstuhl, 2022.

[6] Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey,
Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane
Tan, and David R. Wood. Product structure of graph classes with bounded treewidth. 2022,
arXiv:2206.02395.

[7] Yves Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité. J.
Combin. Theory Ser. B, 50(1):11–21, 1990.

[8] Yves Colin de Verdière. On a new graph invariant and a criterion for planarity. In Graph
structure theory, vol. 147 of Contemp. Math., pp. 137–147. Amer. Math. Soc., 1993.

[9] Lenore J. Cowen, Robert Cowen, and Douglas R. Woodall. Defective colorings of
graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187–195,
1986.

[10] Michelle Delcourt and Luke Postle. Reducing linear Hadwiger’s conjecture to coloring
small graphs. 2021, arXiv:2108.01633.

[11] Reinhard Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer, 5th
edn., 2018.

[12] Michał Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds
for centered colorings. Adv. Comb., #8, 2021.

65

http://dx.doi.org/10.1090/conm/098
https://doi.org/10.4171/jems/1341
https://doi.org/10.4171/jems/1341
https://arxiv.org/abs/2202.11858
https://arxiv.org/abs/2202.11858
https://arxiv.org/abs/2007.06455
https://arxiv.org/abs/2007.06455
https://doi.org/10.4230/LIPIcs.SWAT.2022.19
https://doi.org/10.4230/LIPIcs.SWAT.2022.19
https://arxiv.org/abs/2206.02395
http://dx.doi.org/10.1016/0095-8956(90)90093-F
http://dx.doi.org/10.1090/conm/147/01168
https://doi.org/10.1002/jgt.3190100207
https://doi.org/10.1002/jgt.3190100207
https://arxiv.org/abs/2108.01633
https://arxiv.org/abs/2108.01633
http://dx.doi.org/10.19086/aic.27351
http://dx.doi.org/10.19086/aic.27351


[13] Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and
Pat Morin. Adjacency labelling for planar graphs (and beyond). J. ACM, 68(6):42, 2021.

[14] Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R.
Wood. Planar graphs have bounded nonrepetitive chromatic number. Adv. Comb., #5, 2020.

[15] Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood.
Clustered 3-colouring graphs of bounded degree. Combin. Probab. Comput., 31(1):123–135, 2022.

[16] Vida Dujmović, Robert Hickingbotham, Jędrzej Hodor, Gweanël Joret, Hoang La,
Piotr Micek, Pat Morin, Clément Rambaud, and David R. Wood. The grid-minor
theorem revisited. in preparation.

[17] Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and
David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):#22, 2020.

[18] Vida Dujmović, Pat Morin, and David R. Wood. Layered separators in minor-closed graph
classes with applications. J. Combin. Theory Ser. B, 127:111–147, 2017.

[19] Zdenek Dvorák and Ken-ichi Kawarabayashi. Additive non-approximability of chromatic
number in proper minor-closed classes. J. Comb. Theory, Ser. B, 158(Part):74–92, 2023.

[20] Zdeněk Dvořák and Sergey Norin. Islands in minor-closed classes. I. Bounded treewidth
and separators. 2017, arXiv:1710.02727.

[21] Zdeněk Dvořák and Robin Thomas. List-coloring apex-minor-free graphs. 2014,
arXiv:1401.1399.

[22] Katherine Edwards, Dong Yeap Kang, Jaehoon Kim, Sang-il Oum, and Paul Seymour.
A relative of Hadwiger’s conjecture. SIAM J. Discrete Math., 29(4):2385–2388, 2015.

[23] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27(3–
4):275–291, 2000.

[24] Louis Esperet and Pascal Ochem. Islands in graphs on surfaces. SIAM J. Discrete Math.,
30(1):206–219, 2016.

[25] Louis Esperet and David R. Wood. Colouring strong products. 2022, arXiv:2205.04953.
[26] Pierre Fraigniaud and Nicolas Nisse. Connected treewidth and connected graph searching.

In José R. Correa, Alejandro Hevia, and Marcos A. Kiwi, eds., Proc. 7th Latin American
Symposium on Theoretical Informatics (LATIN 2006), vol. 3887 of Lecture Notes in Comput. Sci.,
pp. 479–490. Springer, 2006.

[27] John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for
graphs of bounded genus. J. Algorithms, 5(3):391–407, 1984.

[28] Carla Groenland, Gwenaël Joret, Wojciech Nadara, and Bartosz Walczak. Ap-
proximating pathwidth for graphs of small treewidth. ACM Trans. Algorithms, 19(2), 2023.
arXiv:2008.00779.

[29] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory,
vol. 47 of Lecture Notes in Logic. Cambridge University Press, 2017.

[30] Martin Grohe, Ken-ichi Kawarabayashi, and Bruce A. Reed. A simple algorithm for
the graph minor decomposition - logic meets structural graph theory. In Sanjeev Khanna, ed.,
Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 414–431.
SIAM, 2013.

[31] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges.
Zürich, 88:133–142, 1943.

[32] Ryan B. Hayward and Bjarne Toft. Hex, inside and out—the full story. CRC Press, 2019.
[33] Dong Yeap Kang and Sang-il Oum. Improper coloring of graphs with no odd clique minor.

Combin. Probab. Comput., 28(5):740–754, 2019.
[34] Ken-ichi Kawarabayashi. A weakening of the odd Hadwiger’s conjecture. Combin. Probab.

Comput., 17(6):815–821, 2008.

66

http://dx.doi.org/10.1145/3477542
http://dx.doi.org/10.19086/aic.12100
http://dx.doi.org/10.1017/S0963548321000213
http://dx.doi.org/10.1145/3385731
http://dx.doi.org/10.1016/j.jctb.2017.05.006
http://dx.doi.org/10.1016/j.jctb.2017.05.006
https://doi.org/10.1016/j.jctb.2020.09.003
https://doi.org/10.1016/j.jctb.2020.09.003
http://arxiv.org/abs/1710.02727
http://arxiv.org/abs/1710.02727
http://arxiv.org/abs/1401.1399
http://dx.doi.org/10.1137/141002177
http://dx.doi.org/10.1007/s004530010020
http://dx.doi.org/10.1137/140957883
https://arxiv.org/abs/2205.04953
https://doi.org/10.1007/11682462_45
https://doi.org/http://dx.doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/http://dx.doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.1145/3576044
https://doi.org/10.1145/3576044
https://doi.org/10.1137/1.9781611973105.30
https://doi.org/10.1137/1.9781611973105.30
http://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf
http://dx.doi.org/10.1201/9780429031960
https://doi.org/http://dx.doi.org/10.1017/S0963548318000548
http://dx.doi.org/10.1017/S0963548308009462


[35] Ken-ichi Kawarabayashi and Bojan Mohar. A relaxed Hadwiger’s conjecture for list colorings.
J. Combin. Theory Ser. B, 97(4):647–651, 2007.

[36] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for the
graph minor decomposition. In Lance Fortnow and Salil P. Vadhan, eds., Proc. 43rd ACM
Symposium on Theory of Computing (STOC 2011), pp. 451–458. ACM, 2011.

[37] Jon M. Kleinberg, Rajeev Motwani, Prabhakar Raghavan, and Suresh Venkatasub-
ramanian. Storage management for evolving databases. In 38th Annual Symp. on Foundations
of Computer Science (FOCS ’97), pp. 353–362. IEEE, 1997.

[38] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica, 4(4):307–316, 1984.

[39] Nathan Linial, Jiří Matoušek, Or Sheffet, and Gábor Tardos. Graph colouring with
no large monochromatic components. Combin. Probab. Comput., 17(4):577–589, 2008.

[40] Chun-Hung Liu. Defective coloring is perfect for minors. 2022, arXiv:2208.10729.
[41] Chun-Hung Liu and Sang-il Oum. Partitioning H-minor free graphs into three subgraphs

with no large components. J. Combin. Theory Ser. B, 128:114–133, 2018.
[42] Chun-Hung Liu and David R. Wood. Clustered coloring of graphs excluding a subgraph and

a minor. 2019, arXiv:1905.09495.
[43] Chun-Hung Liu and David R. Wood. Clustered graph coloring and layered treewidth. 2019,

arXiv:1905.08969.
[44] Chun-Hung Liu and David R. Wood. Clustered variants of Hajós’ conjecture. J. Combin.

Theory, Ser. B, 152:27–54, 2022.
[45] Chun-Hung Liu and David R. Wood. Clustered coloring of graphs with bounded layered

treewidth and bounded degree. European J. Combin., 2023.
[46] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins University Press,

2001.
[47] Sergey Norin. Conquering graphs of bounded treewidth. 2015. Unpublished manuscript.
[48] Sergey Norin, Luke Postle, and Zi-Xia Song. Breaking the degeneracy barrier for coloring

graphs with no Kt minor. Adv. Math., 422:109020, 2023.
[49] Sergey Norin, Alex Scott, Paul Seymour, and David R. Wood. Clustered colouring in

minor-closed classes. Combinatorica, 39(6):1387–1412, 2019.
[50] Sergey Norin, Alex Scott, and David R. Wood. Clustered colouring of graph classes with

bounded treedepth or pathwidth. Combin. Probab. Comput., 32:122–133, 2023.
[51] Sergey Norin and Robin Thomas. Kt-minors. 2008, presented at the Banff Graph Minors

Workshop.
[52] Patrice Ossona de Mendez, Sang-il Oum, and David R. Wood. Defective colouring of

graphs excluding a subgraph or minor. Combinatorica, 39(2):377–410, 2019.
[53] Luke Postle. An even better density increment theorem and its application to Hadwiger’s

conjecture. 2020, arXiv:2006.14945.
[54] Frank P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30(1):264–286, 1930.
[55] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. The four-colour

theorem. J. Combin. Theory Ser. B, 70(1):2–44, 1997.
[56] Neil Robertson and Paul Seymour. Graph minors. II. algorithmic aspects of tree-width. J.

Algorithms, 7(3):309–322, 1986.
[57] Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. J. Combin.

Theory Ser. B, 41(1):92–114, 1986.
[58] Neil Robertson and Paul Seymour. Graph minors. XVI. Excluding a non-planar graph. J.

Combin. Theory Ser. B, 89(1):43–76, 2003.

67

http://dx.doi.org/10.1016/j.jctb.2006.11.002
https://doi.org/10.1145/1993636.1993697
https://doi.org/10.1145/1993636.1993697
https://doi.org/http://dx.doi.org/10.1109/SFCS.1997.646124
https://doi.org/10.1007/BF02579141
https://doi.org/10.1007/BF02579141
http://dx.doi.org/10.1017/S0963548308009140
http://dx.doi.org/10.1017/S0963548308009140
https://arxiv.org/abs/2208.10729
http://dx.doi.org/10.1016/j.jctb.2017.08.003
http://dx.doi.org/10.1016/j.jctb.2017.08.003
http://arxiv.org/abs/1905.09495
http://arxiv.org/abs/1905.09495
http://arxiv.org/abs/1905.08969
https://doi.org/10.1016/j.jctb.2021.09.002
https://doi.org/10.1016/j.ejc.2023.103730
https://doi.org/10.1016/j.ejc.2023.103730
https://doi.org/10.1016/j.aim.2023.109020
https://doi.org/10.1016/j.aim.2023.109020
http://dx.doi.org/10.1007/s00493-019-3848-z
http://dx.doi.org/10.1007/s00493-019-3848-z
http://dx.doi.org/10.1017/S0963548322000165
http://dx.doi.org/10.1017/S0963548322000165
http://dx.doi.org/10.1007/s00493-018-3733-1
http://dx.doi.org/10.1007/s00493-018-3733-1
https://arxiv.org/abs/2006.14945
https://arxiv.org/abs/2006.14945
http://dx.doi.org/10.1112/plms/s2-30.1.264
http://dx.doi.org/10.1006/jctb.1997.1750
http://dx.doi.org/10.1006/jctb.1997.1750
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/http://dx.doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/http://dx.doi.org/10.1016/S0095-8956(03)00042-X


[59] Neil Robertson, Paul Seymour, and Robin Thomas. Hadwiger’s conjecture for K6-free
graphs. Combinatorica, 13(3):279–361, 1993.

[60] Alexander Schrijver. Minor-monotone graph invariants. In Surveys in combinatorics, vol. 241
of London Math. Soc. Lecture Note Ser., pp. 163–196. Cambridge Univ. Press, 1997.

[61] Paul Seymour. Hadwiger’s conjecture. In John Forbes Nash Jr. and Michael Th. Rassias,
eds., Open Problems in Mathematics, pp. 417–437. Springer, 2016.

[62] Robin Thomas. Kt minors in large t-connected graphs. In Jiří Fiala, Jan Kratochvíl, and
Mirka Miller, eds., Proc. 20th Int’l Workshop on Combinatorial Algorithms (IWOCA 2009),
vol. 5874 of Lecture Notes in Comput. Sci., p. 19. Springer, 2009.

[63] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge
Philos. Soc., 95(2):261–265, 1984.

[64] Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Combin.
Theory Ser. B, 48:155–177, 1990.

[65] Jan van den Heuvel and David R. Wood. Improper colourings inspired by Hadwiger’s
conjecture. J. London Math. Soc., 98:129–148, 2018. arXiv:1704.06536.

[66] Hein van der Holst, László Lovász, and Alexander Schrijver. The Colin de Verdière
graph parameter. In Graph theory and Combinatorial Biology, vol. 7 of Bolyai Soc. Math. Stud.,
pp. 29–85. János Bolyai Math. Soc., 1999.

[67] Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570–590, 1937.
[68] David R. Wood. Contractibility and the Hadwiger conjecture. European J. Combin., 31(8):2102–

2109, 2010.
[69] David R. Wood. Defective and clustered graph colouring. Electron. J. Combin., DS23, 2018.

Version 1.
[70] David R. Wood and Svante Linusson. Thomassen’s choosability argument revisited. SIAM

J. Discrete Math., 24(4):1632–1637, 2010.

A Proof of Lemma 12

In this appendix, we prove Lemma 12. We begin with a version that requires only
moderate changes to the tree-decomposition of Theorem 11.

Lemma 44. For every integer k ⩾ 1 and every k-apex graph X there exists an integer
ℓ such that every X-minor-free graph G has a rooted tree-decomposition (Bx : x ∈ V (T ))
such that:

(1) for each x ∈ V (T ), the torso G⟨Bx⟩ is a (k − 1, ℓ)-almost-embedded graph; and
(2) for each edge xy of T where y is the parent of x;

(a) Bx ∩ By is contained in the top of G⟨Bx⟩,
(b) Bx ∩ By is contained in the near-top of G⟨By⟩ or |Bx ∩ By| ⩽ k + 2; and
(c) Bx ∩ By contains at most three vertices not in the top of G⟨By⟩.

Proof. First, apply Theorem 11 to obtain a tree-decomposition (Bx : x ∈ V (T )) of
G in which each torso G⟨Bx⟩ satisfies (i) and (ii). For each x ∈ V (T ), denote by
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(Ax, Âx, Gx
0 , Gx

1 , . . . , Gx
r ) the (k − 1, ℓ0)-almost-embedding of G⟨Bx⟩. For convenience,

assume the number of vortices equals ℓ0. We keep the same tree-decomposition (Bx : x ∈
V (T )). In order to establish (2) we will, for each node x ∈ V (T ), create at most five
additional vortices in G⟨Bx⟩ that are vertex-disjoint from each other and from existing
vortices. After these modifications, G⟨Bx⟩ is (k − 1, ℓ0 + 5)-almost-embeddable, so (1)
is satisfied with ℓ = ℓ0 + 5.

Let x be a non-root node of T and let y be the parent of x. Suppose that Bx ∩ By is
not contained in the top of G⟨Bx⟩. Let C be the set of non-top vertices of Bx ∩ By. By
definition, C induces a complete subgraph K in G⟨Bx⟩ and, since C contains no vertices
in the top of G⟨Bx⟩, the vertices and edges of K are all contained in the embedded part
Gx

0 of G⟨Bx⟩. By (ii), every 3-cycle in Gx
0 bounds a 2-cell face. Thomassen’s 3-Path

Property [64, Proposition 3.5] states that if any three internally disjoint paths P1, P2, P3

from a vertex u to a vertex v in an embedding (Gx
0 in our case) are such that two of

the three cycles Ci,j := Pi ∪ Pj (1 ⩽ i < j ⩽ 3) are contractible, then all three cycles
Ci,j are contractible (or equivalently, bound an open disc on the surface). Assume for
the sake of contradiction that K contains a cycle, J , that does not bound a disc in
the embedding of Gx

0 and let J be a shortest such cycle. By (ii), |J | ⩾ 4. Since J is a
subgraph of the clique K, J has a chord in K. The two cycles defined by the chord and
the two half-cycles of J are contractible, by the minimality of J . Thus by Thomassen’s
3-Path Property, J is also contractible, which is a contradiction. It then follows from
Lemma 10 that the embedding of K in Gx

0 is in a disc. Since no complete graph on five
or more vertices has an embedding in a disc, |V (K)| ⩽ 4. For each vertex v ∈ C, define
a trivial vortex that contains only v. Doing this for each x ∈ V (T ) ensures that (2a) is
satisfied and introduces at most four new vortices in each torso G⟨Bx⟩.

To establish (2b), suppose that Bx ∩By contains a vertex v not in the near-top of G⟨By⟩.
Then C := (Bx ∩ By) \ Ay ⊆ NGy

0
(v). If |C| ⩽ 3, then |Bx ∩ By| ⩽ |Ay| + |C| ⩽ k + 2

and there is nothing more to prove. Suppose, therefore, that |C| ⩾ 4. Now C induces a
complete subgraph K in Gx

0 so, by the argument in the previous paragraph, |C| = 4.
Since each of the four triangles of K is the boundary of a 2-cell face, Gy

0 is embedded in
the sphere, and V (Gy

0) = V (K) = C. In this case, we create a trivial vortex in G⟨By⟩
that contains one vertex of Gy

0. With this new vortex, every vertex of By is contained
in the near-top of G⟨By⟩, so (2b) is again trivially satisfied.

To establish (2c), suppose that Bx ∩ By contains a set C of four vertices not in the top
of G⟨By⟩. Since no vertex of C is in the top of G⟨By⟩, each edge of the complete graph
G⟨By⟩[C] is an edge of Gy

0. By the argument above, this implies that Gy
0 = K4 and is

embedded on the sphere. As in the previous paragraph we handle this by creating a
trivial vortex that contains a single vertex of C. (Note that establishing both (2b) and
(2c) requires the addition of at most one vertex per torso.)
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For an edge xy in a tree T , let Tx:y be the component of T − xy that contains x. For a
tree-decomposition T := (Bx : x ∈ V (T )) of a graph G, let G+

x:y := G[⋃z∈V (Tx:y) Bz] and
let Gx:y := G+

x:y − (Bx ∩By). The next lemma shows that subgraphs of almost-embedded
graphs are also almost-embedded.

Lemma 45. Let G be a graph, let G′ be a subgraph of G, and let (A, Â, G0, G1, . . . , Gr)
be an (a, ℓ)-almost-embedding of G. Then G′ has an (a, 2ℓ + 1)-almost-embedding
(A′, Â′, G′

0, G′
1, . . . , G′

r), on the same surface Σ as G, where A′ = A ∩ V (G′), Â′ =
Â ∩ V (G′), and G′

i = Gi[V (G′)] for each i ∈ {1, . . . , r}.

Proof. First, consider the case when G′ is an induced subgraph of G. The statement of
the lemma already defines A′, Â′, and the graphs G′

1, . . . , G′
r that form the vortices of

G′. There are two related issues: (i) the statement of the lemma does not define the
graph G′

0, and (ii) each vortex Gi has a path-decomposition whose bags are indexed
by V (Gi) ∩ V (G0), so removing vertices in Gi makes (the path-decompositions of)
G′

i undefined. We use the freedom provided by (i) to deal with the problem raised
by (ii). The only thing we change is that for some vortices Gi some interior vertices
in Gi − V (G0) will be moved to G′

0 in order to ensure that the vortices G′
i have an

appropriate path-decomposition of width at most 2ℓ + 1.

Let X := V (G) \ V (G′) be the set of vertices that are removed from G to obtain G′.
For each i ∈ {1, . . . , r}, let Xi := X ∩ V (Gi) be the vertices removed from vortex Gi

and let Yi := Xi ∩ V (G0) be the set of vertices removed from the boundary of Gi.

Fix some i ∈ {1, . . . , r}, let Bi := {v1, . . . , vp} := V (Gi) ∩ V (G0) be the vertices on the
boundary of Gi, and let (C1, . . . , Cp) be the path-decomposition of Gi, where Cj is the
bag associated with vj for each j ∈ {1, . . . , p}. First remove the elements of Xi \ Yi from
Gi and from each C1, . . . , Cp. Now C1, . . . , Cp is a path-decomposition of Gi − (Xi \ Yi)
whose width has not increased. It remains to remove the vertices in Yi.

First consider the easy case: If vj ∈ Yi and Cj contains a vertex w ̸∈ Bi, then redefine w

to be a vertex of G′
0 and embed it at the same location as vj . Leave the contents of the

bag Cj unchanged (but Cj is now associated with w). Now w is still a vertex of G′
i, but

it is a boundary vertex of G′
i so it is added to Bi. Note that each of the edges incident

to w belongs to G′
i or has an endpoint in Â, so w is an isolated vertex of G′

0 placed at
the same point as vj, which is not a vertex of G′

0. This modification does not increase
the width of the path-decomposition (C1, . . . , Cp).

After handling all of the easy cases described in the previous paragraph, we are in
the situation where Cj ⊆ Bi for each vj ∈ Yi. We handle these deletions in batches.
Consider a maximal interval {a, a + 1, . . . , b} such that {va, va+1, . . . , vb} ⊆ Yi. If a = 1
and b = p then G′

i = Gi − Yi is the empty graph and we just remove it.
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We can therefore assume without loss of generality that b < p. If a = 1 then, for
any j ⩽ b, Cj \ {v1, . . . , vb} ⊆ Cb+1 and we can simply remove v1, . . . , vb from all bags
and remove the bags C1, . . . , Cb from the path-decomposition. What remains is still a
path-decomposition since, for any edge vw of G′

i with v, w ∈ Cj and j ⩽ b, v and w are
also contained in Cb+1.

Thus, we may assume 1 < a ⩽ b < p. Then, for any edge vw of G′
i with v, w ∈ Cj

and a ⩽ j ⩽ b, {v, w} ⊆ Ca−1 ∪ Cb+1. To handle this case, we remove va, . . . , vb

from all bags, we remove the bags Ca, . . . , Cb from the path-decomposition, and we set
Ca−1 := Ca−1 ∪ Cb+1. This modification ensures that if some bag Ci with a ⩽ i ⩽ b

contains two vertices vc, vd, with c < a and d > b, then the new set Ca−1 contains
both vc and vd, thus after the removal of the vertices va, . . . , vb and bags Ca, . . . , Cb,
the resulting sequence of bags is still a path-decomposition. The bag Ca−1, which
immediately precedes the interval {a, . . . , b}, now contains the union of two of the
original bags of the decomposition so its size is at most 2(ℓ + 1).

The step described in the preceding paragraph removes the interval {a, . . . , b} and
modifies Ca−1 so that its size is at most 2(ℓ + 1). Repeat this, handling the intervals
{{aj, . . . , bj}}q

j=1 by increasing order of left endpoint aj. After removing {aj, . . . , bj},
Caj−1 has size at most 2(ℓ + 1) and Caj′ has size at most ℓ + 1 for each j′ ⩾ j + 1.
When this process completes, no bag has size greater than 2(ℓ + 1), so it gives a
(a, 2ℓ + 1)-almost-embedding of G′ that satisfies the conditions of the lemma.

Finally, suppose that G′ is not an induced subgraph of G. First, suppose G and G′

differ by the deletion of exactly one edge. Then the given (a, ℓ)-almost-embedding of
G is also an (a, ℓ)-almost-embedding of G′ that satisfies the conditions of the lemma.
Since the parameters a and ℓ of the almost-embedding do not change, we can use this
fact repeatedly for any G′ in which V (G′) = V (G). To handle the (general) case where
V (G′) ̸= V (G) and G′ is not an induced subgraph of G, we apply the first argument
above on the induced graph G[V (G′)] to obtained an (a, 2ℓ + 1)-almost-embedding
of G[V (G′)] that satisfies the requirements of the lemma. Then G′ is a subgraph of
G[V (G′)] with V (G′) = V (G[V (G′)]) so the given embedding of G[V (G′)] is also an
embedding of G′ that satisifies the requirements of the lemma.

The first step in proving Lemma 12 is to ensure that some of the subgraphs Gx:y are
connected (see [26, 28] for related results that are proven using similar techniques).

Lemma 46. Let T := (Bx : x ∈ V (T )) be a rooted tree-decomposition of a graph G.
Then G has a rooted tree-decomposition T ′ := (B′

x : x ∈ V (T ′)) such that:

1. for any xy ∈ E(T ′) with y the parent of x,
(a) Gx:y is connected and non-empty; and
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(b) NG(V (Gx:y)) = B′
x ∩ B′

y;
2. there is a mapping ρ : V (T ′) → V (T ) such that:

(a) for x ∈ V (T ′), B′
x ⊆ Bρ(x); and

(b) for each xy ∈ E(T ′), ρ(x)ρ(y) ∈ E(T ).

Proof. If each edge xy of T satisfies (1a) and (1b) then the tree-decomposition T and
the identity mapping ρ(x) := x already satisfies the requirements of the lemma, and we
are done. Otherwise, let y be a minimum-depth node in T that has a child x such that
Gx:y is not connected or NG(V (Gx:y)) ̸= Bx ∩ By. Let C1, . . . , Ck be the components of
Gx:y. (Note that, if Bx ⊆ By, then Gx:y has no vertices, so k = 0, and the subtree Tx:y

will not contribute anything to T ′.)

For each i ∈ {1, . . . , k}, let Ti be a copy of Tx:y, let xi be the copy of x in Ti, and let
Ti := (Bz ∩ NG[V (Ci)] : z ∈ V (Ti)).10 Create a new tree T ′ by joining Ty:x to each of
T1, . . . , Tk using the edge xiy. Then T ′ := (Bz : z ∈ V (T ′)) is a tree-decomposition of G

and the edges x1y, . . . , xky satisfy (1a) and (1b). Note that each node x′ in T ′ is either
a node of T or a copy of some node x of T . In the former case we set ρ(x′) := x′ and in
the latter case we set ρ(x′) := x. Clearly the mapping ρ satisfies (2a) and (2b). Repeat
this step as long as some edge does not satisfy (1a) or (1b).

This process eventually eliminates all edges yx incident to y that do not satisfy (1a)
or (1b) since the number of such edges is reduced by 1 at each iteration. The process
eventually eliminates all edges whose upper endpoint has the same depth as y because
there are a finite number of nodes with the same depth as y and this process does not
introduce any new nodes at this depth. After this any subsequent nodes processed
have depth greater than y. This process eventually terminates because every tree-
decomposition it produces uses a tree whose height is no more than that of T .

We also make use of the following result. For a graph G and distinct vertices u, v, w ∈
V (G), we say G has a {u, v, w}-rooted K3 minor if there are pairwise disjoint pairwise
adjacent connected subgraphs A, B, C in G with u ∈ V (A), v ∈ V (B) and w ∈ V (C).

Lemma 47 ([70]). Let G be a graph with three distinguished vertices u, v, and w. If G

does not contain a {u, v, w}-rooted K3 minor then G contains a vertex q such that each
component of G − q contains at most one of u, v, or w.

We now prove the main result of this appendix, which we restate for convenience.

10Since each Ti is a copy of Tx:y ⊆ T , we abuse notation slightly here and use vertices of Ti as indices
for the bags of T .

72



Lemma 12. For every integer k ⩾ 1 and every k-apex graph X there exists an integer
ℓ such that every X-minor-free graph G has a rooted tree-decomposition T := (Bx : x ∈
V (T )) such that:

(1) for each x ∈ V (T ), the torso G⟨Bx⟩ is a (k − 1, ℓ)-almost-embedded graph;
(2) for each edge xy of T where y is the parent of x;

(a) Bx ∩ By is contained in the top of G⟨Bx⟩,
(b) Bx ∩ By is contained in the near-top of G⟨By⟩ or |Bx ∩ By| ⩽ k + 2, and
(c) Bx ∩ By contains at most three vertices not in the top of G⟨By⟩; and

(3) T is lower-minor-closed.

Proof of Lemma 12. Let T be the rooted tree-decomposition of G guaranteed by apply-
ing Lemma 46 to the tree-decomposition given by Lemma 44. Suppose that T does not
satisfy the requirements of the lemma. Therefore, there exists y ∈ V (T ) of minimum
depth such that there is no faithful G{By}-model in G in which each vertex in the
top of G⟨By⟩ is in a branch set of size one. We will repeatedly choose an edge uv in
G{By} and show the existence of a subgraph in G[Gx:y ∪ {u, v}] that represents the
edge uv (and possibly some other edges). The subgraphs assigned this way are pairwise
disjoint, except for the vertices in By, so that the union of all such graphs contains a
model of G{By}. This process may fail for some child x of y, in which case we will
make adjustments to a subtree rooted at one of the children x of y that will lift a vertex
q ∈ V (Gx:y) into By. This will introduce new edges (incident to q) in G{By}. We will
be able to represent these new edges and this change will eliminate the edges of the
clique Bx ∩ By that we are unable to represent.

Consider any edge uv of G{By} that is not yet represented. If uv is an edge of G[By]
then we say that uv is represented (by uv). Note that this applies in particular to any
edge uv of G{By} for which u or v is in the top of G⟨By⟩. This will ensure that the
branch set Gv for any vertex v in the top of G⟨By⟩ consists of a single vertex.

Otherwise uv is not an edge in G[By], and thus the vertices u and v are part of at least
one adhesion set Bx ∩ By for some edge xy of T where y is the parent of x. For each
torso G⟨Bx⟩ in a tree-decomposition, let top(G⟨Bx⟩) denote the top of G⟨Bx⟩. Since
neither u nor v is in the top of G⟨By⟩, Lemma 44(2c) implies that Bx ∩ By \ top(G⟨By⟩)
contains u, v and at most one other vertex.

First, suppose that there exists an edge xy ∈ E(T ) such that Bx ∩ By \ top(G⟨By⟩) =
{u, v}. Since Gx:y is connected and non-empty and {u, v} ⊆ NG(V (Gx:y)), there is a
path in G from u to v whose internal vertices are contained in Gx:y. In this case we say
that uv is represented (by Gx:y).

Otherwise, there exists a 3-cycle uvw in G⟨By⟩ \ top(G⟨By⟩) and an edge xy ∈ E(T )
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such that Bx ∩ By \ top(G⟨By⟩) = {u, v, w}. Suppose that at least one of vw or uw (say
vw) is already represented. The edge vw may be represented by itself or by a subgraph
Gx′:y with Bx′ ∩ By \ top(G⟨By⟩) ⊇ {v, w}. Importantly, vw is not represented by Gx:y.
Since Gx:y is connected, non-empty, and adjacent to each of u, v, w we can contract Gx:y

into a single vertex q that is adjacent to each of u, v, w. Then by contracting the edge
qu we obtain a graph that contains uv and uw. In this case we say that the path vuw

is represented (by Gx:y) and that the edges uv and uw are represented (by Gx:y).

If neither uw nor vw are already represented, but there are distinct edges xy and x′y of
T such that {u, v, w} ⊆ Bx ∩ By and {u, v, w} ⊆ Bx′ ∩ By then the path uvw can be
represented by Gx:y and the path vuw be represented by Gx′:y. In this case we say that
the 3-cycle uvw and the edges uv, vw, and uw are represented (by Gx:y and Gx′:y).

We are left with the case where none of uv, vw, or uw are represented and there is
exactly one edge xy ∈ E(T ) such that Bx ∩ By \ top(G⟨By⟩) = {u, v, w}. Consider the
graph H := G[V (Gx:y)∪{u, v, w}]. Since Gx:y is connected and NG(V (Gx:y)) = Bx ∩By,
H is connected. Since none of the edges of the cycle uvw are represented yet, none
of these edges is present in H, so H contains at least four vertices. If H contains a
{u, v, w}-rooted K3-minor, then we can again contract edges of H to obtain the edges
of uvw. In this case, we say that the 3-cycle uvw, and the edges uv, vw, and uw are
represented (by Gx:y).

Otherwise, by Lemma 47, H contains a vertex q such that each component of H − q

contains at most one of u, v, or w. Since Gx:y is connected and adjacent to each of
u, v, w this implies that q ̸∈ {u, v, w}. In this case, we will lift the vertex q into By by
modifying our tree decomposition T .

We now describe these modifications, first showing how to modify T to obtain a new
tree decomposition T ′ := (B′

τ : τ ∈ V (T ′)) with q ∈ B′
y in a way that preserves the

properties of Lemma 46. We then show how to obtain almost-embeddings of each torso
of T ′ so that these almost-embeddings collectively satisfy the properties of Lemma 44
(with a slightly larger value of ℓ). After this modification, q will be in B′

y and G{B′
y}

will include the edges uq, vq, and wq but will not necessarily include the edges uv, vw,
or uw. We show that each of the edges uq, vq, and wq can be represented by one of the
graphs Gci:y where ci is the root of the one of the trees in T ′ − V (T ) that was introduced
to replaces x.

Modified Tree Decomposition: Let z be the minimum-depth node of T with q ∈ Bz

and let z0, . . . , zp be the path in T from z0 := z to zp := y. We define a sequence of tree
decompositions T0, T1, . . . , Tp where T0 = T , T 0 := T and Ti := (Bi

x : x ∈ V (T i)). Refer
to Figure 10 The tree T i and T i−1 be almost identical except that the node zi−1 that
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Bi−1
zi−1

∩Bi−1
zi

q

Gzi−1:zi

q

q

C1

C2

C3

Ck

Bi−1
zi−1

∩Bi
zi

Figure 10: Adding q to Bzi
may disconnect the graph Gzi−1:zi

.

appears in T i−1 will be replaced with several nodes {c1, . . . , ck} = V (Ti) \ V (Ti−1) in
T i. Each of the children a1, . . . , ad of zi−1 in T i−1 will become the child of a node in
{c1, . . . , ck}. For each node τ ∈ V (T i) ∩ V (T i−1) \ {zi}, we define Bi

τ := Bi−1
τ . For zi

we define Bi
zi

= Bi−1
zi

∪ {q}.

Let C1, . . . , Ck be the connected components of Gzi−1:zi
−{q} and, for each j ∈ {1, . . . , k},

let Gj := G[NG[V (Cj)]]. In T i we replace zi−1 with k new nodes c1, . . . , ck and set
Bcj

:= Bzi−1 ∩ V (Gj) for each j ∈ {1, . . . , k}. Let a1, . . . , ad be the children of zi−1

in T i−1. For each j ∈ {1, . . . , d}, the graph Gaj :zi−1 is connected and its vertex set
is a subset of Gzi−1:zi

− q. Therefore, Gcj :zi−1 is an induced subgraph of Cs for some
s ∈ {1, . . . , d}. In Ti, we make cj a child of as. This completes the definition of Ti and
Ti := (Bτ : τ ∈ V (Ti)).

Connectivity Conditions for Ti: We claim that Ti satisfies properties (2a) and
(2b) of Lemma 46. That is, for each node a ∈ V (T i) with parent b ∈ V (T i), Ga:b

is connected and NG(V (Ga:b)) = {Ba ∩ Bb}. It suffices to check this condition for
a ∈ {a1, . . . , ak} ∪ {c1, . . . , cd}; for any other choice of a, the edge ab appears in Ti−1

and Ga:b is identical independent of whether it is defined in terms of Ti−1 or Ti.

• For each j ∈ {1, . . . , k}, Cj = Gcj :zi
is connected and NG(Cj) = V (Gj) \ V (Cj) =

Bcj
∩ Bzi

.
• Now consider Gaj :cs for some j ∈ {1, . . . , d} and (the relevant) s ∈ {1, . . . , k}.

We will show that Bcj
∩ Bzi−1 ⊆ Baj

∩ Bcs ⊆ Bcj
∩ Bzi−1 , which implies that

Baj
∩ Bcs = Bcj

∩ Bzi−1 . Since Taj :cs = Taj :zi−1 this shows that Gaj :cs is connected
and that NG(V (Gaj :cs)) = Baj

∩ Bcs .
By definition, Bcs ⊆ Bzi−1 , so Baj

∩ Bcs ⊆ Baj
∩ Bzi−1 . On the other hand,

V (Gs) = NG[V (Cs)] ⊇ NG[V (Gaj :zi−1)] ⊇ NG(V (Gaj :zi−1)).
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Therefore Bcs = V (Gs)∩Bzi−1 ⊇ NG(V (Gaj :zi−1))∩Bzi−1 = Baj
∩Bzi−1 . Therefore

Baj
∩ Bcs ⊇ Baj

∩ Bzi−1 .

This process completes with a tree decomposition Tp = (Bp
τ : τ ∈ V (T p)) that satisfies

conditions (2a) and (2b) of Lemma 46 and in which q ∈ By.

Almost-Embedding the New Torsos: Now we explain how to almost-embed each
torso of Ti so that the torsos collectively satisfy the conditions of Lemma 44. First,
consider the torso G⟨Bi

z⟩ = G⟨Bi
z0⟩. This torso inherits an embedding from G⟨Bi−1

z ⟩
that includes q. If q is not in the top of G⟨Bi−1

z ⟩ then we make q a trivial vortex in
G⟨Bi

z⟩, so that q is in the top of G⟨Bz⟩.

Next, consider some torso G⟨Bi
zi

⟩ for some i ∈ {1, . . . , p − 1}. This torso inherits an
embedding from G⟨Bi−1

zi
⟩ that does not include q. In the embedding of G⟨Bi

zi
⟩, we make

q a non-major apex vertex and we make each vertex of Bi−1
zi−1

∩ Bi−1
zi

that is not in the
top of G⟨Bi−1

zi
⟩ a top vertex of G⟨Bi

zi
⟩ by creating a trivial vortex. By Lemma 44(2c),

this results in the creation of at most three new vortices. Note: It is important here
that and each vertex in Bi−1

zi−1
∩ Bi

zi
(including q) is in the top of G⟨Bi

zi
⟩.

Next, consider one of the torsos G⟨Bi
cj

⟩ where cj is one of the vertices in V (Ti) \ V (Ti−1)
that replaces zi−1. Since Bi

cj
⊆ Bi−1

zi−1
This torso inherits an embedding from G⟨Bi−1

zi−1
⟩

that includes q in its top. We use this embedding as is.

Finally, consider the torso G⟨Bp
y⟩ = G⟨Bp

zp
⟩. Recall that uvw is the boundary of a 2-cell

face D in the embedded part of G⟨By⟩. The torso G⟨Bp
y⟩ inherits an embedding from

G⟨Bp
y⟩ that does not contain q. To add q, we make a q a vertex in the embedded part

that is embedded in the interior of D. We also embed each edge qu, qv, and qw in D.
This completes the description of the embedding of G⟨Bi

τ ⟩ for each τ ∈ V (T i).

The New Torso G⟨By⟩: Now T ′ := Tp is a tree decomposition in which each torso is
equipped with an almost-embedding. Let T ′ := T p, and let B′

τ := Bp
τ for each τ ∈ V (T ′).

Consider the torso G⟨B′
y⟩. In T ′, the child x ∈ V (T ) of y has been replaced by nodes

c1, . . . , ck associated with the components C1, . . . , Ck of Gx:y − {q}. Each component
Ci is adjacent to q and to at most one of u, v, or w. Since NG(Bx) = Bx ∩ By, either
uq ∈ E(G) or some component Ci is adjacent to both q and u. In the former case
we say that the edge uq ∈ E(G⟨By⟩) is represented by itself. In the latter case, uq is
represented by Ci := Gci:y. Similar comments hold for the edges vq and wq of G⟨By⟩.

Since each Ci contains at most one of u, v, or w, none of the edges yci causes an edge
of the cycle uvw to to be in G{By}. Some of these edges may be present in G⟨B′

y⟩, but
this is caused by other children of y. Any such edge will be dealt with when we consider
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unrepresented edges of G{B′
y} with the help of some child x′ of y that is not one of

c1, . . . , ck.

Bounding the Increase in ℓ: Let Zy,x := V (T ′) \ V (T ). (Note that this does
not include the node y = zp.) Each vertex in Zy,x is obtained from zi−1 for some
i ∈ {1, . . . , p} by splitting Bi−1

zi−1
into Bi

c1 , . . . , Bi
ck

, so that zi−1 ∈ V (T i−1) is replaced by
c1, . . . , ck ∈ V (T i). For i ∈ {1, . . . , p − 1}, each vertex of Bi

cj
∩ Bi

zi
is contained in the

top of G⟨Bi
zi

⟩. This implies that, for each edge ττ ′ ∈ T ′[Zy,z], B′
τ ∩ B′

τ ′ is in the top of
G⟨B′

τ ⟩ and in the top of G⟨B′
τ ′⟩.

By construction, for each τ ∈ Zy,x, there exists a ρ(τ) ∈ V (T ) such that Bτ ⊆ Bρ(τ) ∪{q}.
The almost-embedding of G⟨Bτ ⟩ inherits an almost-embedding from Bρ(τ) and then
does some modifications that increase the number of vortices by at most three and
the number of non-major apex vertices by at most one. By Lemma 45, the inherited
embedding has at most k − 1 major apex vertices, at most ℓ vortices, each of width
at most 2ℓ + 1, and at most ℓ apex vertices. Since ℓ + 3 ⩽ 2ℓ + 1 for ℓ ⩾ 2, the final
embedding of G⟨Bτ ⟩ is a (k, 2ℓ + 1)-almost embedding, for each τ ∈ Zy,x.

The preceding operation modifies the tree-decomposition T in a way that only affects
the subtree Tx:y of T , and this only occurs at the unique child x of y such that
Bx ∩ By \ top(G⟨By⟩) = {u, v, w}. Therefore, we can perform this operation on each of
the children x1, . . . , xc of y for which it is required, and each such operation will only
affect the subtree Txi:y. Since Tx1:y, . . . , Txc:y are pairwise vertex-disjoint, Zy,x1 , . . . , Zy,xc

are pairwise disjoint. For convenience, we still call the resulting tree T ′ and the resulting
tree-decomposition T ′ := (B′

x : x ∈ V (T ′)). After doing this, every edge of the lower
torso G{By} is represented.11 This ensures that G{By} is a faithful minor of G.

Let Zy := ⋃c
i=1 Zy,xi

. We ran this process at y because it was a minimum-depth node for
which G{By} was not a faithful minor of G. If there exists another node y′ for which
G{By′} is not a faithful minor of G, then run this process again (for the minimum-depth
such y′). Because y was a minimum-depth node, y′ is not an ancestor of y. If y′ ̸∈ Zy

then, again, Zy and Zy′ will be disjoint because T ′[Zy ∪ {y}] and T ′[Zy′ ∪ {y′}] are
each connected and neither contains the root of the other. If y′ ∈ Zy then running
the preceding process on y′ affects subtrees Tx′

1:y′ , . . . , Tx′
c:y′ for one or more children

x′
1, . . . , x′

c of y′. For each i ∈ {1, . . . , c}, By′ ∩ Bx′
i

contains exactly three vertices not
in the top of G⟨By′⟩—namely three vertices u′, v′, w′ that form a K3 in G{By′} but
for which Gx′

i:y′ has no {u′, v′, w′}-rooted K3 minor. Suppose that x′
i = τ ′ for some

i ∈ {1, . . . , c} and τ ′ ∈ Zy. Since y′ ̸= y, the parent τ of τ ′ is also in Zy. This implies
that x′

i ̸∈ Zy since Bτ ∩ Bτ ′ is contained in the top of G⟨Bτ ⟩. Therefore Zy and Zy′ are
11The graphs G⟨By⟩ and G{By} are defined here with respect to the new tree-decomposition T ′.
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disjoint.

Thus we can find a sequence of tree-decompositions T0 = T , T1, . . . , Td where Ti := (Bi
y :

y ∈ V (Ti)) and a sequence y1, . . . , yd of nodes, where yi ∈ ⋂d
j=i−1 V (Tj), G{Bi−1

yi
} is

not a faithful minor of G, but G{Bj
yi

} is a faithful minor of G for each j ∈ {i, . . . , d}.
By construction, for each i ∈ {1 . . . , d}, Zyi

⊆ ⋂d
j=i V (Tj) and the sets Zy1 , . . . , Zyd

are
pairwise disjoint. The end result is a tree-decomposition Td := (Bd

z : z ∈ V (Td)) of G.
For each z ∈ V (Td), the torso G⟨Bz⟩ can be obtained by taking a subgraph of a torso of
T and then adding at most one new non-major apex vertex (referred to as q, above) and
at most three new vortices (one for each vertex in N , above). As discussed above, this
implies that, for ℓ ⩾ 2, the resulting graph is (k − 1, 2ℓ + 1)-almost-embedded. For each
x ∈ V (T ), the faithful G{Bx}-model {Gv : v ∈ Bx} satisfies the “furthermore” clause of
the lemma because the only vertices that are assigned a branch-set Gv with more than
one vertex (the vertices u, v, and w, above) are not in the top of the G⟨Bx⟩. Therefore,
the tree-decomposition T ′ satisfies the requirements of the lemma.

The following theorem and its consequences are not used directly in the current paper,
but have applications to other problems [16].

Theorem 48. For every apex graph X, there exists positive integers ℓ, t such that every
X-minor-free graph G has a tree-decomposition (Bx : x ∈ V (T )) of adhesion at most 3
such that for every x ∈ V (T ):

(1) G{Bx} is a minor of G,
(2) G{Bx} has a connected ℓ-layered partition (Lx, Px), and
(3) if y is the parent of x then

(a) every vertex in Bx ∩ By is contained in the first layer of Lx,
(b) no vertex in Bx ∩ By is contained in the first layer of Ly, and
(c) each vertex in Bx ∩ By is in a singleton part of Px.

Proof. By Theorem 22 with k = 1, G is a lower-minor-closed tree of (0, ℓ0)-curtains
described by T := (Bx : x ∈ V (T )) where each torso G⟨Bx⟩ is equipped with the
connected ℓ0-layered partition (P0

x, Lx) for some ℓ0 := ℓ0(X). This already satisfies
(1), (2), and (3a). Although not stated in Theorem 22, the construction used in the
proof of Theorem 22 only makes x a child of y if Bx ∩ By contains a vertex not in the
near-top of G⟨By⟩ (this is the definition of a k-light edge). This implies that Bx ∩ By

does not contain any vertices in the top of G⟨By⟩, which is the first layer in Ly. Thus,
the construction so far already satisfies (3b) as well.

We now show that a slight modification of Px satisfies (3c) without greatly increasing
the treewidth of Hx := G{Bx}/Px. For each x in V (T ) with parent y in V (T ), each
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v ∈ Bx ∩ By is contained in the top of G⟨Bx⟩ and is therefore contained in the first layer
of Lx. We now modify Px := (Lx

1 , Lx
2 , . . .) by breaking parts that intersect Bx ∩ By so

that each v ∈ Bx ∩ By is in a singleton part, and each part is connected. Let P be a
part in Px that contains a vertex of Bx ∩ By. By definition, |P ∩ Lx

2 | ⩽ ℓ. Since G[P ] is
connected, each of the components C1, . . . , Cr of G[P ] − (P ∩ Lx

1) contains at least one
vertex in P ∩ Lx

2 . Therefore G[P ] − (P ∩ Lx
1) has r ⩽ ℓ connected components. In Px,

replace P with the at most 2ℓ parts in RP := {V (C1), . . . , V (Cr)} ∪ {{v} : v ∈ P ∩ Lx
1}.

In any tree-decomposition of G{Bx}/Px, the vertex that represents P can be replaced
by the vertices that represent each set in RP . By definition, before this modification
of Px, G{Bx}/Px had a tree-decomposition of width at most ℓ0. Therefore, after this
modification, G{Bx}/Px has a tree-decomposition of width at most ℓ := ℓ0(ℓ0+1)−1.

Theorem 48 has several implications:

• For each x ∈ V (T ), Hx := G{Bx}/Px is a minor of G (since G{Bx}/Px is obtained
by contracting connected subgraphs in a minor of G).

• For each x ∈ V (T ), G[Bx]/Px is a minor of G (since G[Bx] is a subgraph of
G{Bx}).

• G[Bx] is isomorphic to a subgraph of Hx ⊠ P , for some path P and some minor
Hx of G whose treewidth is at most ℓ.
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NG[S], 14
NG[v], 14
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χ(G), 3
χ⋆(G), 3
distG(v, S), 14
distG(v, w), 14
Js,t, 5
Js,t-minor-free, 5
tw(G), 14
G⟨Bx⟩, 14
G{Bx}, 17

adhesion, 14
adhesion set, 14
k-admissible, 32
(a, ℓ)-almost-embeddable, 16
(a, ℓ)-almost-embedded, 16
(a, â, g, r, w)-almost-embedding, 15
apex, 7
k-apex, 10, 16
apex vertices, 15
F -avoiding, 52

bags, 14
balanced separator, 49
branch set, 17

chord, 52
chord-free, 52
chromatic number, 3
G0-clean, 14
clustered chromatic number, 3

clustering, 3
colouring, 3
L-colouring, 32
k-colouring, 3
compatible, 33
complete join, 5
F -compression, 54
connected, 23, 26
contractible, 16
F -contraction, 54
curtain, 9
(k, ℓ)-curtain, 27

depth, 14
described by, 18, 19, 27
d-disc, 51
dominated, 53
R-dominated, 54
dominates, 53
(k, ℓ)-drape, 27

embedded part, 15
Euler genus, 8

faithful, 17

(s, p)-good, 32

k-heavy, 19

(d, c)-island, 49
d-island, 10, 49

large, 9
layered partition, 26
(w, ℓ)-layered partition, 26
ℓ-layered partition, 26
layering, 24
k-light, 19
list-assignment, 32
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lower torso, 17
lower torso G{Bx}, 19
lower-minor-closed, 17, 19

major, 15
minor, 3
H-minor-free, 3
H-model, 17
monochromatic component, 3
φ-monochromatic component, 24

near-top, 15, 18
neat, 26
non-major, 15

overlap, 51

part, 23
partition, 23
path-decomposition, 14
(k, ℓ)-pre-curtain, 18
precoloured, 32
proper, 3
properly extends, 21

quotient, 23

raised curtain, 28, 29
reasonable, 34
represented, 73, 74, 76
represents, 73

root, 14
root torso, 14, 18
rooted, 14
{u, v, w}-rooted K3 minor, 72
rooted tree, 14

F -simplification, 52
ℓ-skinny, 24
small, 9
specialization, 32
strictly overlap, 51
X-subgraph-free, 6

top, 15, 18
torso, 14
tree of (k, ℓ)-curtains, 27
tree of (k, ℓ)-pre-curtains, 18
tree of curtains, 9
tree of upward-connected (k, ℓ)-curtains,

27
tree-decomposition, 14
treewidth, 14
j-trigger set, 33
triggered, 37

upward-connected, 24, 26, 27

D-vortex, 15

width, 14
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