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Abstract

Interior-point methods offer a highly versatile framework for convex optimization that is
effective in theory and practice. A key notion in their theory is that of a self-concordant barrier.
We give a suitable generalization of self-concordance to Riemannian manifolds and show that
it gives the same structural results and guarantees as in the Euclidean setting, in particular
local quadratic convergence of Newton’s method. We analyze a path-following method for
optimizing compatible objectives over a convex domain for which one has a self-concordant
barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We provide
general constructions of barriers, and show that on the space of positive-definite matrices and
other symmetric spaces, the squared distance to a point is self-concordant. To demonstrate the
versatility of our framework, we give algorithms with state-of-the-art complexity guarantees for
the general class of scaling and non-commutative optimization problems, which have been of
much recent interest, and we provide the first algorithms for efficiently finding high-precision
solutions for computing minimal enclosing balls and geometric medians in nonpositive curvature.
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1 Introduction and summary of results

The development of interior-point methods is one of the greatest successes in convex optimization,
and by now has a long history dating back to the works of Frisch [Fri55], Karmarkar [Kar84a, Kar84b],
Gill et al. [GMS+86] and many others. It led to one of the first polynomial-time algorithms for linear
programming (in contrast with the simplex algorithm due to Dantzig [Dan63]), the other being the
ellipsoid method due to Khachiyan [Kha80]. In the seminal work of Nesterov and Nemirovskii [NN94],
it was shown that the key property to the analysis of interior-point methods is the notion of self-
concordance. Essentially every convex programming problem is in principle amenable to interior-point
methods, which follows from constructions of self-concordant barriers for arbitrary (bounded) convex
domains, cf. [NN94, Hil14, Fox15, BE19, Che21]. Furthermore, interior-point methods are eminently
practical, and currently give the best algorithms for linear programming [LS20, vdB19].

So far, these successes have been restricted to convex optimization on Euclidean space. While
there is a strong connection between self-concordance-based interior-point methods and Riemannian
geometry [Dui99, NT02, NN08], the framework of interior-point methods has not yet been generalized
to objectives which are geodesically convex, i.e., convex on Riemannian manifolds. Indeed, while there
have been previous attempts at extending interior-point methods to this setting [Udr97, Ji07, JMJ07],
a satisfactory generalization of the Euclidean theory had still been elusive – in particular, the natural
quadratic convergence analysis of Newton’s method for self-concordant functions, which in turn
enables efficient path-following methods with global guarantees.

Instead, research on Riemannian optimization has so far largely focused on different approaches.
There is extensive literature on first- and second-order methods for convex and non-convex opti-
mization, see e.g. [Udr94, AMS09, Sat21, Bou23] for comprehensive overviews and [FS02, DPM03,

2



ABM08, SH15, ZS16, AS20, WS22, SW22]. Recently, [LY22] gave a path-following method for non-
convex constrained manifold optimization which does not use self-concordance. In another direction,
geodesic updates can also be useful for Euclidean convex optimization problems [Per20, Per22].

Structural results: In this work, we extend the interior-point method framework to Riemannian
manifolds. We generalize the key notion of self-concordance, and show that (unlike prior
definitions) it gives the same structural results and guarantees as in the Euclidean setting, in
particular local quadratic convergence of Newton’s method. This allows us to give a path-following
method for optimizing suitable objective functions over domains for which a self-concordant
barrier is available, and we give complexity guarantees that match the Euclidean ones.

These results are already very interesting from a theoretical perspective. To put the framework
to use, however, one still has to find explicit self-concordant barriers. To this end, we give general
constructions of barriers, as well as several explicit examples, and we show that our framework is
indeed applicable to a wide variety of problems, including (but not limited to):

(A) Geometry: Given points p1, . . . , pm on a Riemannian manifold, what is the minimum radius ball
that contains all these points? What is their geometric median, i.e., the point that minimizes
the sum of distances to each pi?

(B) Quantum marginals: Given density matrices ρ1, . . . , ρk, each describing the quantum state of
one party, does there exist a k-party pure quantum state with marginals equal to the ρk?

(C) Tensor networks: Given a (2d+ 1)-leg tensor, does it ever define a non-zero tensor network
state of PEPS type? And how can one efficiently compute a canonical form?

(D) Brascamp–Lieb inequalities: Given linear maps Lk : Rm → Rmk and numbers qk > 0 for k ∈ [n],
what is the optimal constant C > 0 such that

∫
Rm

∏n
k=1 fk(Lkx) dx ≤ C

∏n
k=1‖fk‖1/qk for all

non-negative functions fk on Rmk? Many classical integral inequalities fall into this setting,
such as the Hölder, Young, Loomis–Whitney, and certain hyper-contractivity inequalities.

The first question in Problem (A) on finding a minimum enclosing ball has been studied before in the
Riemannian setting [AN13, NH15], and [NH15] gave an algorithm for the specific case of hyperbolic
space, yielding a ball with radius at most a factor 1 + δ larger than the optimal radius in O(1/δ2)
iterations. The geometric median problem has been studied in [FVJ09, Yan10], and [Yan10] gave an
explicit subgradient algorithm on general manifolds, finding a point whose squared distance to the
point achieving minimal sum of distances to the pi is at most ε in O(1/ε) iterations. Interestingly, the
other problems are not even obviously related to geodesically convex optimization in the first place.
Problem (B) is not currently known to be solvable in polynomial time in all parameters, although
partial results are known [BFG+18], and there is complexity-theoretic evidence that polynomial-time
algorithms might exist, as it is in NP ∩ coNP [BCMW17]. Problem (C) arose very recently in
quantum information [AMN+22], and again no algorithms are known that run in polynomial time in
all parameters, except for d = 1. Problem (D) was studied in [GGOW17], but current methods have
an exponential dependence on the bit complexity of the coefficients qj .

What connects problems (B)–(D) to each other, and to geodesically convex optimization, is that
they all belong to the broad class of scaling problems. In particular, problem (B) can be reduced
to tensor scaling [BFG+18], and problems (C) and (D) generalize respectively reduce to operator
scaling (but not efficiently so) [AMN+22, GGOW17]. There has been much recent progress on this
class of problems [LSW00, Gur04, WDGC13, Wal14, GGOW20, GGOW16, GGOW17, CMTV17,
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ALOW17, AGL+18, BFG+18, BGO+18, BFG+19], and the quest of finding better algorithms is
one key motivation for our work. Scaling problems have strong connections to many different areas
in mathematics and theoretical computer science beyond those mentioned above: they are related
to approximating permanents [LSW00], non-commutative rational identity testing [GGOW16],
Horn’s problem on spectra of sums of Hermitian matrices [Fra18], the Paulsen problem [KLLR18,
HM21b], canonical forms and zero-testing of tensor networks [AMN+22], strengthening the Sylvester–
Gallai theorem [BDWY12, DSW14, DGOS18], approximating optimal transport plans in machine
learning [Cut13], maximum-likelihood estimation in statistics [AKRS21b, AKRS21a, FORW21], the
asymptotic non-vanishing of Kronecker coefficients in representation theory [IMW17, BFG+18], and
geometric invariant theory [KN79, NM84, MFK94]. As elucidated in a long sequence of works,
see [BFG+19], these are all related to a norm minimization problem: given a linear action of a nice
(complex reductive) Lie group G on a vector space V , and a vector v ∈ V , the goal is to minimize the
norm over the orbit G · v (see Section 1.4). When G is commutative, such as in the case of matrix
scaling, these problems reduce to geometric programming (a well-known generalization of linear
programming) and hence they can be solved efficiently [CMTV17, ALOW17, SV14, BLNW20]. In
the most difficult situations, however, including in most of the mentioned applications, the group G
is non-commutative; hence this class of problems has also been called non-commutative (group)
optimization problems. In this case, efficient algorithms are known only in special cases, which have
recently been understood to all satisfy a certain total unimodularity [GGOW20, AGL+18, BFG+19].
For general non-commutative optimization, and in particular for problems (B)–(D), there are currently
no algorithms that run in time polynomial in all parameters.

Algorithmic applications: For problem (A), our framework gives (to the best of our knowledge)
the first algorithms for efficiently finding high-precision solutions in nonpositive curvature. For
the entire class of scaling or non-commutative optimization problems, and in particular for
problems (B)–(D), our framework yields new algorithms that match the complexity guarantees of
the state-of-the-art algorithms [BFG+19], while not obviously suffering from the same obstructions
as those methods, opening up a new avenue for future research.

Indeed, the current state-of-the-art methods are fundamentally incapable of providing algorithms
that run in polynomial time in all parameters for the general scaling problem, and in particular for
problems (B)–(D). The main reason that we lack the kind of sophisticated optimization methods
that are known in the Euclidean setting, as reviewed earlier, is due to the geometry of the spaces
that one has to optimize over, which poses fundamental new challenges and obstructions.

To make this more concrete, we consider the quantum marginal problem (B). For simplicity,
we take k = 3 parties of the same dimension n ≥ 2. Let G = SL(n,C) × SL(n,C) × SL(n,C)
act on 3-tensors in V = Cn ⊗ Cn ⊗ Cn by simultaneous base change or tensor scaling, i.e.,
(g1, g2, g3) · v = (g1⊗ g2⊗ g3)v for gj ∈ SL(n,C) and v ∈ V . Then the relevant optimization problem
amounts to minimizing the (for convenience squared) `2-norm over all such scalings:1

inf
g1,g2,g3∈SL(n)

‖(g1 ⊗ g2 ⊗ g3)v‖22. (1.1)

1To see that this is related to quantum marginals, consider the pure quantum state ρ = ww∗ with w := g · v/‖g · v‖.
Then the (logarithmic) gradient of the objective is given by (ρ1 − I/n, ρ2 − I/n, ρ3 − I/n), where ρ1, ρ2, ρ3 are the
one-body reduced density matrices or marginals of ρ. Therefore, minimizers of Eq. (1.1) correspond to quantum
state with maximally mixed marginals. The general quantum marginal problem amounts to characterizing the set of
possible gradients for generic v. See [BFG+18] for more detail.
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We can reduce the optimization to M = SPD(n)× SPD(n)× SPD(n), where SPD(n) denotes the
complex positive-definite matrices of unit determinant. Indeed, since Pj := g∗j gj is an arbitrary
matrix in SPD(n), we see that Eq. (1.1) is equivalent to:

inf
P1,P2,P3∈SPD(n)

〈v|P1 ⊗ P2 ⊗ P3|v〉 (1.2)

Unfortunately, the domain is non-convex as a subset of the Euclidean space of triples of Hermitian
matrices, and in any case the objective is not a convex function of the variables.

However, a key observation is that the objective becomes convex when SPD(n) and hence M is
given a natural non-Euclidean geometry, namely the so-called affine-invariant metric, which also
appears as the Fisher-Rao metric for Gaussian covariance matrices in statistics (see Section 1.3 for
a precise definition). Then the straight lines of Euclidean space get replaced by the geodesics of
the new metric, which take the form Pj(t) =

√
Pje

Hjt
√
Pj for traceless Hermitian matrices Hj and

clearly remain in SPD(n). It is easy to verify that the objective in Eq. (1.2) is convex along such
geodesics (in fact, log-convex). The same phenomenon occurs for any scaling or non-commutative
optimization problem; while non-convex in the Euclidean sense, these problems become convex when
formulated appropriately [BFG+19]. In most applications, the domain is given by the positive-definite
matrices PD(n), by SPD(n), or by products of these spaces.

A key property of these domains is that they have non-positive curvature, in contrast with
Euclidean space, which has zero curvature. This gives rise to significant geometric challenges for
optimization algorithms. For example, Rusciano [Rus19] gave a (non-constructive) cutting-plane
method in non-positive curvature, with a logarithmic dependence on the volume of the domain.
Unfortunately, the volume of balls in manifolds of non-positive curvature grows exponentially with
the radius (in constant dimension). In a black-box setting, where one can make queries to a
function- and gradient oracle, the same geometric fact implies that any algorithm that wants to
find an approximate minimizer must make a number of queries that is linear in the distance to the
approximate minimizer [HM21a, CB22]. This again suggests that efficient algorithms for geodesic
convex optimization in non-positive curvature in general, and for non-commutative optimization
problems in particular, must make use of additional structure beyond diameter bounds, as the
distance to an approximate minimizer is in general exponential in the input size [FR21]. The best
current algorithms for non-commutative optimization [BFG+19] also only have a linear dependence
on these diameter bounds. The reason is that they are box-constrained Newton methods, i.e., a
Newton-type method where the steps are constrained to a subdomain of essentially fixed size. To
traverse the in general exponentially large distance to the approximate minimizer, such algorithms
must perform exponentially many iterations.

To overcome these challenges and obstructions, it is natural to resort to methods which are
capable of better exploiting the structure of the optimization problem at hand. Interior-point
methods offer a powerful such framework in the Euclidean case, and they have already proved
successful for commutative scaling problems [CMTV17, BLNW20]. With this work, we hope to
contribute a first clear step towards generalizing this powerful framework to the manifold setting.

Indeed, we believe that our results suggest several interesting directions for follow-up research. For
instance, does every convex domain admit a self-concordant barrier, as is the case in the Euclidean
setting? Do there exist self-concordant barriers with better barrier parameters which can be used for
these applications, leading to better algorithms? Alternatively, can it be shown that our constructions
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are essentially optimal? Can interior-point methods on manifold always be initialized efficiently, and
is there a suitable notion of duality?2 We discuss these questions in more detail in Section 7.

1.1 Self-concordance and Newton’s method on manifolds

In the remainder of this introduction, we give a more detailed overview of our results, starting with
our proposed notion of self-concordance. Throughout, f : D → R is a smooth function defined on a
convex subset D ⊆M of a connected, geodesically complete Riemannian manifold M . Then f is
called convex if it is convex along geodesics. Let ∇ denote the covariant derivative (or Levi–Civita
connection), which allows taking derivatives of vector and tensor fields, and in particular to define
Hessians ∇2f and higher derivatives (we review the required Riemannian geometry in Section 2).
Then our proposed generalization of self-concordance to possibly curved manifolds is as follows.

Definition 1.1 (Self-concordance). For α > 0, a convex function f is called α-self-concordant if,
for all p ∈ D and for all tangent vectors u, v, w ∈ TpM , we have

|(∇3f)p(u, v, w)| ≤ 2√
α

√
(∇2f)p(u, u)

√
(∇2f)p(v, v)

√
(∇2f)p(w,w). (1.3)

If f is closed convex, meaning its epigraph is closed, then f is called strongly α-self-concordant.

Self-concordance can be interpreted as giving a bound on the norm of the third derivative (∇3f)p,
that is, on the change of the Hessian (∇2f)p, with respect to the (possibly degenerate) inner product
defined by the Hessian itself. We say that f is α-self-concordant along geodesics if one requires the
above bound only for u = v = w, that is, if for all p ∈ D and for all u ∈ TpM , we have

|(∇3f)p(u, u, u)| ≤ 2√
α

((∇2f)p(u, u))3/2. (1.4)

When M = Rn, the third derivative is a symmetric tensor and hence the two notions coincide.
However, in general, the third derivative is not symmetric in all its arguments, and indeed its
asymmetry is precisely related to the manifold’s curvature via the Ricci identity [Lee18, Thm. 7.14],
as we discuss in Section 3. Prior work only considered self-concordance along geodesics [Ji07] (which
suffices for a damped Newton method) and did not take the asymmetry into account [Udr97, JMJ07].

Here we show explicitly that self-concordance is in general strictly stronger than self-concordance
along geodesics (cf. Section 1.3), and it is the stronger notion that allows for the desired quadratic
convergence of Newton’s method – a cornerstone of the interior point theory. Assume for simplicity
that the Hessian (∇2f)p is positive definite for all p ∈ D. Then the Newton iterate of f at p ∈ D is
defined by minimizing the local quadratic approximation:

pf,+ := Expp(u
∗), u∗ = argmin

u∈TpM

(
f(p) + dfp(u) +

1

2
(∇2f)p(u, u)

)
.

The progress is quantified in terms of the Newton decrement, which is directly related to the gap
between the original function value and the minimum of the local quadratic approximation. It is
defined for any α > 0 and p ∈ D as

λf,α(p) = sup
06=u∈TpM

|dfp(u)|√
α(∇2f)p(u, u)

. (1.5)

Then we prove following result on general Riemannian manifolds in Theorem 3.16:
2The lack of nontrivial linear functions in the presence of curvature poses significant challenges.
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Theorem 1.2 (Quadratic convergence). Let f : D → R be a strongly α-self-concordant function
defined on an open convex set D ⊆ M , with positive definite Hessian. Let p ∈ D be a point such
that λf,α(p) < 1. Then the Newton iterate remains in the domain, i.e., pf,+ ∈ D, and moreover

λf,α(pf,+) ≤
(

λf,α(p)

1− λf,α(p)

)2

.

To relate the Newton decrements at p and pf,+, we control the change in the Hessian of f along
the geodesic from p to pf,+. This crucially uses the notion of self-concordance of Eq. (1.3), rather
than the weaker definition along geodesics as in Eq. (1.4). This is because there are two directions
involved: the one of the geodesic, and the one corresponding to the subsequent Newton decrement.

1.2 Barriers and a path-following method on manifolds

Interior-point methods provide a natural and modular approach for minimizing an objective f
constrained to a bounded convex domain D ⊆M . The key idea is to rather minimize, for t > 0,

Ft : D → R, Ft := tf + F,

where F is a self-concordant “barrier” that is finite on D and diverges to ∞ on its boundary.3

This automatically ensures the constraint, as Ft is finite only on D, and for large t the objective
dominates. One then starts with an approximate minimizer of F and t ≈ 0, and follows the central
path z(t) := argminp∈D Ft(p) by iteratively performing two steps: increase t to some t′ such that the
current point is still not too far from z(t′) , and then take a Newton step for Ft′ to move closer to it.
For large enough t > 0, we arrive at an approximate minimizer of f on D ⊆M .

More precisely, the function F : D → R is required to be a (non-degenerate strongly self-
concordant) barrier for D, with barrier parameter θ ≥ 0, which means that F is strongly 1-self-
concordant, has positive definite Hessian, and λF (p)2 ≤ θ for all p ∈ D. The barrier parameter θ
controls how rapidly t can be increased in every iteration.

In order to guarantee that Newton’s method indeed moves closer to the central path, we are
interested in conditions on f that ensure that the functions Ft are self-concordant for every t > 0, with
a constant independent of t. One way to guarantee this is to assume that the objective f : D → R is
compatible with the barrier F in the following sense: there are constants β1, β2 ≥ 0 such that, for
all p ∈ D and u, v ∈ TpM ,

|(∇3f)p(u, v, v)| ≤ 2β1

√
(∇2F )p(u, u)(∇2f)p(v, v)

+ 2β2

√
(∇2F )p(v, v)

√
(∇2f)p(u, u)

√
(∇2f)p(v, v).

In particular, linear and quadratic functions are compatible with arbitrary self-concordant barriers,
but these are not the only examples, and we crucially use this level of generality to give algorithms
for the general scaling or non-commutative optimization problem. We expand on compatibility
in Section 4.2, and show that it is also useful for constructing new self-concordant barriers, for
instance for the epigraph of a function compatible with a self-concordant barrier (Theorem 4.11).4

3In the Euclidean setting, the barrier F (x) = − log x models the constraint that x > 0, and F (X) = − log detX
defines the constraint that X is a positive-definite matrix [NN94, Ren01]. Constraints are combined simply by adding
the respective barriers. In the manifold setting, barriers are much harder to come by, but we give general constructions
and concrete examples in Sections 4 to 6.

4While optimizing a function f on a domain D can always be reduced to optimizing a linear function over its
epigraph {(p, t) ∈ D ×R : f(p) < t}, this requires a barrier for the epigraph. We construct such a barrier precisely
when f is compatible with F . However, it may be more difficult to initialize the path-following method on the epigraph
rather than directly on D, so it can be advantageous to optimize f directly. See Section 6.1.
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Our notion of compatibility is inspired by a similar notion in the Euclidean setting, as is our analysis
of the path-following method [NN94]. Its precise guarantees match those from the Euclidean setting,
and are given in the following theorem, which we prove in Theorem 4.17:

Theorem 1.3 (Path-following method). Let D ⊆ M be an open, bounded, and convex domain,
and let f, F : D → R be smooth convex functions, such that F is a self-concordant barrier with
barrier parameter θ ≥ 0 and f has a closed convex extension. Let α > 0 be such that Ft := tf + F

is α-self-concordant for all t ≥ 0. Let p ∈ D be such that λF (p) ≤
√
α

8 , and let ε > 0. Then, using

O

((
1 +

√
θ

α

)
log

(
(θ + α)‖dfp‖∗F,p

ε
√
α

))

Newton iterations, one can find a point pε ∈ D such that

f(pε)− inf
q∈D

f(q) ≤ ε.

The quantity ‖dfp‖∗F,p is a lower bound on the variation supq∈D f(q)− infq∈D f(q) of f over D
(Lemma 4.18), and hence imposes a natural notion of scale in the complexity bound.

1.3 Examples of self-concordance: Squared distance in non-positive curvature

Self-concordance on manifolds is much more difficult to verify than for Euclidean space, and this begs
the question whether nontrivial examples even exist. A natural candidate is f(p) = d(p, p0)2, the
squared distance function to some point p0 ∈M . On Euclidean space, f is trivially self-concordant,
as its third derivative vanishes identically. In the presence of curvature the third derivative can be
nonzero. Nevertheless, we prove that the squared distance is self-concordant on PD(n) and, as a
corollary, also on a broad class of manifolds with non-positive curvature.

We now discuss this in more detail. As in the introduction, we denote by PD(n) = PD(n,C) the
complex positive-definite matrices, endowed with the well-known affine-invariant Riemannian metric,
which is given as follows. Since PD(n) is an open subset of Herm(n), the Hermitian n×n-matrices, we
can identify the tangent space TPPD(n) at every P ∈ PD(n) with Herm(n). Then the Riemannian
metric is defined as follows: for any two tangent vectors U, V ∈ TPPD(n), their inner product is

〈U, V 〉P = Tr
[
P−1UP−1V

]
.

With this metric, PD(n) is a Hadamard manifold, i.e., a simply connected geodesically complete
Riemannian manifold with non-positive curvature. Its geodesics, parallel transport, covariant
derivatives, and so forth all have well-known closed-form expressions, which are amenable to tools
from matrix analysis. For example, the geodesics through P ∈ PD(n) are of the form t 7→

√
PetH

√
P

for H ∈ Herm(n), and geodesic midpoints are the same as operator geometric means. The distance
between two matrices P,Q ∈ PD(n), defined as the minimum length of any path connecting them, is

d(P,Q) = ‖log(P−1/2QP−1/2)‖HS,

where ‖·‖HS denotes the Hilbert–Schmidt (i.e., Frobenius) norm. In Theorem 5.15 we show:

Theorem 1.4 (Self-concordance of squared distance). For any P0 ∈ PD(n), the squared dis-
tance f : PD(n)→ R to P0, defined by f(P ) = d(P, P0)2, is 2-self-concordant.
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We conjecture that the squared distance is actually 8-self-concordant, see Remark 5.14. Self-
concordance on PD(n,C) implies the same result for the squared distance on any convex subset of it.
Therefore, the self-concordance holds on any Hadamard manifold that is also a so-called symmetric
space;5 we will call this a Hadamard symmetric space. In particular, using [BH99, Prop. 10.58] we
obtain the following result, which covers most non-positively curved spaces of import in applications,
including the general scaling or non-commutative optimization problem (cf. Section 6.1):

Corollary 1.5. Let G ⊆ GL(n,R) be an algebraic subgroup6 such that gT ∈ G for every g ∈ G.
Set M := {gT g : g ∈ G} ⊆ PD(n,R). Then M ⊆ PD(n,R) is a convex subset, and for every p0 ∈M ,
the function f : M → R, f(p) = d(p, p0)2 is 2-self-concordant.

Hyperbolic space Hn is a paradigmatic example of a manifold with non-positive curvature in this
class. Corollary 1.5 implies that the squared distance function to a point in Hn is 1-self-concordant,
as one has to rescale the curvature by a factor 2 to obtain an isometric embedding into PD(n,C).
Similarly, the conjectured 8-self-concordance on PD(n,C) would imply 4-self-concordance on Hn.

We are able to prove the stronger result that the squared distance on Hn is in fact 8-self-
concordant, and that this is optimal, see Theorem 5.16. In contrast, the squared distance on
hyperbolic space is 27

2 -self-concordant along geodesics, as was shown previously in [Ji07, Lem. 11].7

It is an interesting open question whether there exists a universal constant C > 0 such that if M is a
Hadamard manifold with all sectional curvatures in [−κ, 0], then for every p0 ∈M , f(p) = d(p, p0)2

is C/κ-self-concordant.
Using the self-concordance of the squared distance, it is easy to construct a self-concordant

barrier for its epigraph (cf. Theorem 4.11). To this end we provide the following result, which applies
in particular to PD(n), hyperbolic space, and all other Hadamard symmetric spaces.

Theorem 1.6 (Epigraph barrier). Let M be a Hadamard manifold, and let p0 ∈M . Assume that the
function f : M → R, f(p) = d(p, p0)2 is α-self-concordant. Let D = {(p, S) ∈M ×R : f(p) < S}.
Then, the function F : D → R defined by

F (p, S) = − log
(
S − d(p, p0)2

)
+

1

α
d(p, p0)2 (1.6)

is strongly 1-self-concordant, and λF (p, S)2 ≤ 1 + 2
α d(p, p0)2.

The reason that the proposition does not state that F is a barrier is that the Newton decre-
ment λF (p, S) is not bounded by a constant, but rather depends on the distance to the point p0. To
obtain a barrier, on needs to impose an additional constraint on the domain to force it to be bounded,
for instance by requiring that S < S0, which can be implemented by adding a logarithmic barrier
term − log(S0 − S) to F . The dependence of the Newton decrement on the distance to p0 is caused
by the term 1

αd(p, p0)2 in Eq. (1.6), but without this term the function would not be self-concordant.
See also Theorem 4.14, where we construct a barrier for the sublevel set of a self-concordant function,
with barrier parameter depending on the gap in function value.

We also provide a strengthening of the above theorem for hyperbolic space (see Theorem 5.22):
5Any such space is the product of a symmetric space of non-compact type and a Euclidean space [Hel79, Prop. V.4.2],

and embeds, possibly after rescaling the metric on each of its de Rham factors, as a complete convex submanifold
of PD(n,R) for some n ≥ 1, and hence also in PD(n,C) [Ebe97, Thm. 2.6.5]. See [Hel79] for more background.

6This means that G is a subset of GL(n,R) determined by polynomial equations in the matrix entries.
7They prove that Mf =

√
16/27, where the constant Mf is related to the constant α in our definition of

self-concordance along geodesics by Mf = 2/
√
α.
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Theorem 1.7. Let M = Hn, p0 ∈ M , and define f : M → R by f(p) = d(p, p0)2. Let D =
{(p,R, S) ∈M ×R>0 ×R>0 : RS − f(p) > 0}. Then the function F : D → R by

F (p,R, S) = − log(RS − f(p)) + f(p)

is strongly 1
2 -self-concordant. Furthermore, λF, 1

2
(p,R, S)2 ≤ 4 + 4f(p).

The significance of this result is that it can be used to construct a barrier for the epigraph of
the distance to a point, rather than the squared distance, by restricting to the subspace defined by
the equation S = R. This is essential for applying the framework to the geometric median problem,
see Section 1.6. In the Euclidean setting, the additional f -term is unnecessary; see for instance
the proof of [NN94, Prop. 5.4.3]. In our setting the proof is more complicated, as it involves a
strengthening of the self-concordance estimate on the third derivative of the squared distance. The
key estimates which enable our proof of the above theorem are given in Theorem 5.16.

1.4 Application I: Non-commutative optimization and scaling problems

Our first application is the one which motivated us to extend the framework in the first place. To
state our result in full generality requires a bit of setup [BFG+19]. Let G ⊆ GL(n,C) be a connected
algebraic subgroup such that g∗ ∈ G for all g ∈ G. Let π : G→ GL(V ) be a rational representation on
a finite-dimensional complex vector space V . Assume V is endowed with an inner product such that
the unitary matrices in G act unitarily. The general norm minimization problem asks to minimize
the norm over the orbit of a given vector v ∈ V . That is, we wish to minimize ‖π(g)v‖ over g ∈ G.
As described earlier, this problem subsumes the class of non-commutative optimization or scaling
problems that have been of much interest in the recent literature. Note that ‖π(g)v‖2 = 〈v|π(g∗g)|v〉.
Accordingly, it suffices to minimize the so-called log-norm or Kempf–Ness function defined by

φv : M → R, φv(p) = log 〈v|π(p)|v〉

over M = {g∗g : g ∈ G} = G ∩ PD(n). This function is convex along the geodesics of M . It is also
N(π)2-smooth in the convexity sense, where N(π) is the so-called weight norm of the action, which is
easy to compute and at most polynomially large (see Section 6.1 and [BFG+19] for details). Therefore,
if φv is bounded from below, a simple gradient descent algorithm can be used to find a point p ∈M
such that ‖grad(φv)p‖ ≤ δ within O(N(π)2[φv(I)− infq∈M φv(q)]/δ

2) iterations [BFG+19, Thm. 4.2].
A more sophisticated box-constrained Newton method is able to find an ε-approximate minimizer pε
of φv within O((1 + R0)N(π) log[(φv(I) − infq∈M φv(q))/ε]) iterations, where R0 > 0 is an upper
bound on the distance to such a minimizer [BFG+19, Thms. 5.1 & 5.7]. Using our interior-point
path-following method we prove the following result in Theorem 6.9:

Theorem 1.8 (Non-commutative optimization). Let 0 6= v ∈ V and R0, ε > 0. Let M = {g∗g : g ∈
G} ⊆ PD(n) and D = {p ∈ M : d(p, p0) ≤ R0}, and define φv : M → R by φv(p) = log 〈v|π(p)|v〉.
Then there is an algorithm that within O((1 +R0)N(π) log(N(π)R0/ε)) iterations of the path-
following method finds pε ∈ D such that

φv(pε)− inf
p∈D

φv(p) ≤ ε.

This essentially matches the complexity of the box-constrained Newton method mentioned above,
which is currently the state-of-the-art. There is a small difference, in that our complexity has N(π)R0

in the logarithm, rather than the potential gap φv(I) − infq∈M φv(q); these are related since φv
is N(π)-Lipschitz. The approach we take to obtain this result is to use the barrier on M which
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arises from Corollary 1.5 and Theorem 1.6, and to show that the Kempf–Ness function is compatible
with the squared distance function, which is enough to implement the path-following method, as
explained earlier. It would be very interesting to find a suitable barrier for this problem with a
smaller barrier parameter (or prove that no such barrier exists).

1.5 Application II: Minimum-enclosing ball problem on PD(n)

Next we consider the minimum enclosing ball (MEB) problem: given distinct points p1, . . . , pm ∈M ,
find p such that R(p) := maxi d(p, pi) is minimal. When M = Rn is Euclidean space, this is a
well-studied problem in computational geometry. There, it can be formulated as a second-order cone
problem, to which interior-point methods are applicable (see, e.g., [KMY04]).

When M is a Hadamard manifold, the distance to a point is convex, and hence the MEB problem
is a convex optimization problem. In particular, for hyperbolic space M = Hn, there has been
previous work on the MEB problem [AN13, NH15]. The only algorithm with explicit complexity
bounds that we are aware of is due to Nielsen and Hadjeres [NH15]. If R∗ is the minimal radius
of an MEB and δ > 0, then they can find a point p ∈ Hn such that maxi d(p, pi) ≤ (1 + δ)R∗
within O(1/δ2) iterations of an algorithm, each of which is simple to implement.

To find MEBs using interior-point methods, it is sufficient to have a barrier for the epigraph of
the squared distance. In particular, the barrier constructed using Theorems 1.4 and 1.6 can be used
to solve this problem on PD(n), and we prove the following result in Theorem 6.15

Theorem 1.9 (Minimum enclosing ball). Let p1, . . . , pm ∈ PD(n) be m ≥ 3 points, and set
R0 = maxi 6=j d(pi, pj). Let R(p) = maxi d(p, pi), set R∗ = infp∈M R(p), and let ε > 0. Then
with O((m+ 1)R2

0) iterations of a damped Newton method and

O
(√

1 +m(R2
0 + 1) log

(
m(R2

0 + 1)

ε

))
iterations of the path following method, one can find pε ∈ PD(n) such that

R(pε)−R∗ ≤ ε.

A similar result can be obtained on arbitrary Hadamard symmetric spaces. We also note that the
optimal radius R∗ satisfies R0 ≤ 2R∗ (Lemma 6.12), so that the above also yields a multiplicative
error guarantee. Compared to the results of [NH15], we have a logarithmic dependence on the
precision ε, but a linear dependence on R0 (as opposed to no dependence).

1.6 Application III: Geometric median on hyperbolic space

Our last application is the geometric median problems. In the Euclidean setting this is also known as
the Fermat–Weber problem [CLM+16]. It is formally defined as follows: given points p1, . . . , pm ∈M ,
not all contained in a single geodesic, find p0 ∈M such that

p0 ∈ argmin
p∈Hn

s(p) :=
m∑
j=1

d(p, pj).

The objective function s is convex on Hadamard manifolds M . In contrast with the geometric mean
(or barycenter) problem, which is to find the minimizer of

∑m
j=1 d(p, pj)

2, finding the geometric
median is non-trivial even on M = Rn. The first and one of the best-known algorithms for this
problem on Euclidean space is Weiszfeld’s algorithm [Wei37], which is a simple iterative procedure
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based on solving the first-order optimality condition grad(s)p =
∑m

j=1(p − pj)/d(p, pj) = 0 for p,
while treating the d(p, pj) as constants. Unfortunately, the update rule is not well-defined when p is
one of the pj ’s (which can be fixed, see e.g. [Ost78]), and it may converge very slowly in general.
In [XY97] it was observed that one can also apply interior-point methods, by viewing the geometric
median problem as a second-order cone program. More recent work [CLM+16] has shown that
a specialized long-step interior-point method is capable of solving the geometric median problem
on Rn in nearly-linear time, and we refer the reader to their paper for a broader literature review.
Weiszfeld’s approach has been generalized to the Riemannian setting [FVJ09]. A sub-gradient
approach [Yan10] can find a point with squared distance to the minimizer of s at most ε in O(1/ε)
iterations; however, in the negatively curved setting, it suffers from an exponential dependence on
the quantity R0 = maxi 6=j d(pi, pj).

We can solve the geometric median problem on hyperbolic space Hn by using our interior-point
framework and our barrier for the epigraph of the distance constructed using Theorem 1.7, which
serve as analogs of the second-order cone and the associated barrier. In Theorem 6.20 we prove:

Theorem 1.10 (Geometric median). Let p1, . . . , pm ∈ Hn be m ≥ 3 points, not all on one geodesic,
and set R0 = maxi 6=j d(pi, pj). Define s : Hn → R by s(p) =

∑m
j=1 d(p, pj), and let ε > 0. Then

with O((m+ 1)R2
0) iterations of a damped Newton method and

O
(√

m(R2
0 + 1) log

(
mR0(R2

0 + 1)

ε

))
iterations of the path following method, one can find pε ∈ Hn such that

s(pε)− inf
q∈Hn

s(q) ≤ ε.

For not too small ε, the cost is dominated by the damped Newton method, which we use to find a
good starting point for the path-following method. We leave it as an open problem as to whether this
can be avoided. Furthermore, the above applies only to Hn rather than to PD(n): it relies on the
barrier constructed using Theorem 1.7, which uses a non-trivial strengthening of the self-concordance
estimates for the squared distance. We expect that such a strengthening can also be obtained more
generally, and this would immediately generalize the algorithmic result from Theorem 1.10 to these
spaces; we also leave this as a problem for future work.

1.7 Organization of the paper

In Section 2, we review standard concepts from Riemannian geometry and convexity that we use
later. In Section 3 we define self-concordance and analyze Newton’s method, showing its quadratic
convergence for self-concordant functions. In Section 4, we define self-concordant barriers and the
notion of compatibity, discuss how to construct new self-concordant functions out of old ones, and
analyze a path-following method. In Section 5 we describe general properties of the distance function
on Hadamard manifolds, show that the squared distance is self-concordant on PD(n), and give
refinements of the self-concordance estimate on the model spaces for constant negative sectional
curvature, which are used to construct a barrier for the epigraph of the distance function. In Section 6,
we discuss our applications: the first is on norm minimization and noncommutative optimization,
the second is on computing the minimum enclosing ball on Hadamard symmetric spaces, and the
third is on computing geometric medians on model spaces. We also briefly discuss an application to
the Riemannian barycenter problem. We conclude in Section 7, where we mention interesting open
problems and future research directions.
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2 Preliminaries in Riemannian geometry

In this section, we recall and fix our notation for some basic concepts in Riemannian geometry
that we will need in the remainder. We follow the conventions of [Lee18]. See [Lee18, BH99] for
comprehensive introductions to Riemannian geometry and non-positive curvature, respectively.

2.1 Metric, lengths, distances

Throughout this paper, we let M denote a connected Riemannian manifold. Unless specified
otherwise, all differential geometric objects (manifolds, functions, sections, etc.) are assumed to be
C∞-smooth. We write TpM and T ∗pM for the tangent and cotangent space at a point p ∈M , and
write TM and T ∗M the tangent and cotangent bundle of M , respectively. The space of sections of a
vector bundle E on M is denoted by Γ(E). Sections of the (co)tangent bundle are called (co)vector
fields. Given a function f , we write df for its differential, which is a covector field. Then Xf = df(X)
is the directional derivative of f in direction X for any vector field X. The Lie bracket of two vector
fields X and Y is the vector field [X,Y ] that acts as [X,Y ]f = X(Y f)− Y (Xf) on any function f .
More generally, for k, l ≥ 0, a (k, l)-tensor field is by definition a section of the bundle T (k,l)M :=
(TM)⊗k ⊗ (T ∗M)⊗l or, equivalently, a C∞(M)-multilinear map Γ(T ∗M)k × Γ(TM)l → C∞(M);
when k = 1 we can also think of it as a C∞(M)-multilinear map Γ(TM)l → Γ(TM).

The Riemannian metric on M is a smoothly varying family of inner products on the tangent
spaces, i.e., for every p ∈M we have an inner product 〈·, ·〉p on TpM such that the map p 7→ 〈·, ·〉p
is a section of the bundle T (0,2)M . The induced norm on TpM is denoted by ‖·‖p. We write 〈X,Y 〉
and ‖X‖ for the functions computing the pointwise inner product and norm, respectively, of vector
fields X, Y .

Using the Riemannian metric, we can define the length of a piecewise regular (meaning smooth
and non-zero derivative) curve by L(γ) =

∫ b
a ‖γ̇(t)‖γ(t)dt. This is independent of the parameterization.

In particular, we may always reparameterize such that the curve has unit speed, i.e., ‖γ̇(t)‖ = 1,
except for finitely many points; in this case the length is L(γ) = b− a. Given a notion of length,
we define the Riemannian distance d(p, q) between any two points p, q ∈M as the infimum of the
lengths of all piecewise regular curves from p to q. In this way, M becomes a metric space. Its
topology is the same as the original topology of the manifold M .

2.2 Covariant derivative and curvature

The Riemannian metric determines the Levi-Civita connection ∇. It assigns to any two vector
fields X and Y the covariant derivative ∇XY of Y along X, which is again a vector field, and is
determined uniquely by being a connection on the tangent bundle (meaning it is C∞-linear in X,
R-linear in Y , and satisfies the product rule ∇X(fY ) = f∇XY + (Xf)Y for all functions f) which
is compatible with the metric in the sense that X〈Y,Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉 and symmetric,
meaning ∇XY − ∇YX = [X,Y ], where [X,Y ] denotes the Lie bracket. The C∞(M)-linearity
in X implies that ∇XY

∣∣
p
depends only on the tangent vector v := Xp at the point p ∈ M and

the values of Y in an arbitrarily small neighbourhood of p; accordingly we will also write ∇vY .
Moreover, X 7→ ∇XY defines a (1,1)-tensor field, called the total covariant derivative ∇Y of Y .

One can uniquely extend the above to define connections and covariant derivatives for all tensor
bundles T (k,l)M by demanding that for functions it agrees with the differential, that it satisfies a
product rule with respect to tensor products, ∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS) for all vector
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fields X and tensor fields T , S, and that it commutes with all contractions. As a consequence,

X(T (ω1, . . . , ωk, Z1, . . . , Zl)) = (∇XT )(ω1, . . . , ωk, Z1, . . . , Zl)

+ T (∇Xω1, ω2, . . . , ωk, Z1, . . . , Zl) + . . .+ T (ω1, . . . , ωk, Z1, . . . , Zl−1,∇XZl)
(2.1)

for any (k, l)-tensor field T , vector fields X, Z1, . . . , Zl, and covector fields ω1, . . . , ωk. Again, we
write ∇vT := (∇XT )p as this only depends on the tangent vector v := Xp at the point p ∈ M .
For any (k, l)-tensor field T , the map (ω1, . . . , ωk, X, Z1, . . . , Zl) 7→ (∇XT )(ω1, . . . , ωk, Z1, . . . , Zl)
defines a (k, 1 + l)-tensor field, called the total covariant derivative and denoted by ∇T . We note
that [Lee18] uses a different convention. In particular, we can define the Hessian of a function f
as ∇2f = ∇(∇f), which is a (0, 2)-tensor field that turns out to be symmetric for the Levi-Civita
connection; see Section 2.4.

Let M̃ ⊆M be an embedded submanifold, equipped with the induced metric, and let ∇̃ denote its
Levi-Civita connection. If X,Y are vector fields on M̃ that are extended arbitrarily to a neighborhood
of M̃ in M , then the Gauss formula holds on M̃ :

∇XY = ∇̃XY + II(X,Y ), (2.2)

where II(X,Y ) := π⊥(∇XY ) is the shape tensor or second fundamental form II of M̃ , with
π⊥ : TM |M̃ → (TM̃)⊥ the orthogonal projection [Lee18, Thm. 8.2].

While the covariant derivative itself is not a tensor field, it can be used to define the so-called
Riemann curvature tensor which is a fundamental local invariant of Riemannian manifolds. Given
vector fields X, Y , Z, we can define the vector field

R(X,Y )Z := ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z.

We may think of R(X,Y ) as a C∞-linear operator on the tangent bundle; hence R is a (1, 3)-tensor
field. The operator R(X,Y ) is skew-symmetric, and it is a skew-symmetric function of X and Y . It
further satisfies the algebraic Bianchi identity R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. It can also
be useful to define R(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉, which is a (0, 4)-tensor field.

A closely related object is the sectional curvature, which given two linearly independent tangent
vectors v, w ∈ TpM at the same point p ∈M is defined by

K(v, w) =
〈R(v, w)w, v〉p

〈v, v〉p 〈w,w〉p − 〈v, w〉
2
p

.

It only depends on the two-dimensional tangent plane spanned by v and w. The sectional curvature
determines the Riemann curvature tensor uniquely. Its sign is an important characteristic of a
Riemannian manifold. We say that M has non-positive (sectional) curvature if K(v, w) ≤ 0 for
all v, w ∈ TpM and p ∈M . The next lemma records how these notions behave under rescaling of
the Riemannian metric.

Lemma 2.1. Let M be a Riemannian manifold with Riemannian metric 〈·, ·〉, and let c > 0. Let M ′

be the same manifold but with Riemannian metric given by 〈·, ·〉′ = c 〈·, ·〉. Then M ′ has the same
Levi–Civita connection as M , and hence the same (1, 3)-curvature tensor. For every p, q ∈M , one
has dM ′(p, q) =

√
c dM (p, q). Furthermore, for all p ∈ M and linearly independent v, w ∈ TpM =

TpM
′, the sectional curvature satisfies KM ′(v, w) = KM (v, w)/c.
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2.3 Parallel transport, geodesics, completeness

All definitions given so far restrict naturally to open subsets. However, it is often useful to restrict
to curves in a manifold and differentiate a vector or tensor field along it. If γ is a curve defined
on an interval I ⊆ R, then a (k, l)-tensor field along γ is a function Y : I → T (k,l)M such that
Y (t) ∈ T

(k,l)
γ(t) M for every t ∈ I, i.e., a section of the pullback bundle γ∗T (k,l). Then there is a

unique R-linear operator Dt, called the covariant derivative along γ, that satisfies the product
rule Dt(fY ) = ḟY + fDtY for f ∈ C∞(I) for f ∈ C∞(I), and which agrees with ∇γ̇(t) for every
tensor field that extends to a neighborhood of γ.

A vector or tensor field Y along a curve γ is called parallel if its covariant derivative along γ
vanishes identically, i.e., DtY ≡ 0. For any curve γ : I → M , 0 ∈ I, and any tensor y0 ∈ T (k,l)

γ(0) M ,
standard results in ordinary differential equations imply that there always exists a unique parallel
tensor field Y along γ such that γ(0) = y0, called the parallel transport of y0 along γ. For any t ∈ I,
we get a linear isomorphism τγ,t : T

(k,l)
γ(0) M → T

(k,l)
γ(t) M by setting τγ,t(y0) = Y (t) called a parallel

transport map. This is useful to compute covariant derivatives: if T is a (k, l)-tensor field then for all
p ∈M , v ∈ TpM , η1, . . . , ηk ∈ T ∗pM , and w1, . . . , wl ∈ TpM we have

∇vT (η1, . . . , ηk, w1, . . . , wl) = ∂t=0Tγ(t)(τγ,tη1, . . . , τγ,tηk, τγ,tw1, . . . , τγ,twl), (2.3)

where γ is an arbitrary curve such that γ(0) = p and γ̇(0) = v. We are often interested in parallel
transport along the manifold’s geodesics, which we introduce next.

A curve γ is called a geodesic if it is parallel to its own tangent vector field, i.e., Dtγ̇ ≡ 0. For
every p ∈ M and v ∈ TpM , there is a unique geodesic γ : I → M with γ(0) = p and γ̇(0) = v,
defined on some maximal open interval I containing 0. Note that γ̇(t) = τγ,t(γ̇(0)) for all t ∈ I. If
1 ∈ I, we define Expp(v) := γv(1). We call M geodesically complete if I = R, i.e., if geodesics with
arbitrary initial data exist for arbitrary times. Then the exponential map is defined on the whole
tangent space, Expp : TpM →M . The Hopf–Rinow theorem states that if M is connected, geodesic
completeness is equivalent to completeness with respect to the Riemannian distance function, as
well as to the Heine–Borel property (bounded closed subsets are compact).

Any length-minimizing curve is a geodesic when parameterized with unit speed. In general,
geodesics are only locally length-minimizing, but when M is connected and complete then any two
points p, q ∈M are connected by a length-minimizing geodesic, although there may be many other
geodesics. However, if M is not only complete but also has non-positive sectional curvature, then by
the Cartan–Hadamard theorem the exponential map at each point is a covering map. In particular,
if M also is simply connected, then the exponential map is a diffeomorphism, so there is a unique (up
to reparameterization) geodesic connecting any two points p and q. We will denote the corresponding
parallel transport by τp→q. Manifolds that are simply connected, geodesically complete, and have
non-positive sectional curvature are called Hadamard manifolds. This includes a great variety of
spaces of import in applications, such as Euclidean and hyperbolic spaces, the positive definite
matrices, and other symmetric spaces with non-positive curvature (see Sections 5 and 6).

2.4 Gradient and Hessian

Given a function f : D → R defined on an open subset D ⊆M , we define its gradient as the vector
field grad(f) that is dual to its differential. That is, for all vector fields X we have

〈grad(f), X〉 = df(X) = Xf.

The Hessian of f is defined as the second covariant derivative ∇2f = ∇(∇f) = ∇df , which is
a (0, 2)-tensor field, that is, a smoothly varying family of bilinear forms. By definition and using
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Eq. (2.1), we have for any two vector fields X and Y that

(∇2f)(X,Y ) = (∇Xdf)(Y ) = X(df(Y ))− df(∇XY ) = X(Y f)− (∇XY )f, (2.4)

which implies that Hessian is a symmetric tensor, by the symmetry of the Levi-Civita connection.
Since the Hessian is a symmetric tensor, it is determined by the associated quadratic form. The
latter can be conveniently calculated in terms of geodesics: for any p ∈M and v ∈ TpM ,

(∇2f)p(v, v) = ∂2
t=0f(Expp(tv)). (2.5)

Using metric compatibility, one can write (∇2f)(X,Y ) = 〈∇X grad(f), Y 〉, which shows that the
(1, 1)-tensor field Hess(f) := ∇ grad(f) is the natural operator definition of the Hessian.

One can similarly consider higher covariant derivatives, but these need no longer be symmetric
as a consequence of the non-vanishing of the curvature tensor. In particular, the third covariant
derivative is no longer captured by its diagonal (∇3f)p(v, v, v) = ∂3

t=0f(Expp(tv)). This complicates
the theory of self-concordance, as we will discuss in Section 3.

2.5 Convexity

Finally we recall here some basic notions of convexity on Riemannian manifolds. We first discuss
convexity of subsets and then turn to convexity of functions. We assume that M is connected and
geodesically complete, so that any two points are connected by a (length-minimizing) geodesic.

A subset D ⊆ M is called (totally) convex if for every geodesic γ : [0, 1] → M with γ(0) ∈ D
and γ(1) ∈ D, it holds that γ(t) ∈ D for all t ∈ [0, 1]. We remark that, in general, two points can
be connected by more than one geodesic; accordingly there is more than one natural definition of
convexity. We are primarily interested in applications to Hadamard spaces, where any two points
are connected by a unique geodesic, just like in Euclidean space.

A (not necessarily continuous) function f : D → R defined on a convex subset D ⊆M is called
convex if for every geodesic γ : [0, 1]→M with γ(0) ∈ D and γ(1) ∈ D, it holds that f ◦γ : [0, 1]→ R
is convex. That is, f is convex along all geodesics in its domain. Equivalently, f is convex if and
only if its epigraph

Ef = {(p, t) ∈ D ×R : f(p) ≤ t} (2.6)

is a convex subset of M ×R. If the epigraph is also closed as a subset of M ×R, then f is called
closed convex. This useful condition controls the behavior of a convex function at its boundary,
as in the following lemma, which thanks to the Hopf-Rinow theorem can be proved just like in
the Euclidean case [Nes18, Thm. 3.1.4]. In particular, any continuous convex function on a closed
domain is closed convex. Parts (i) and (ii) state that any closed convex function f : D → R is lower
semicontinuous, also if we extend it to M by setting f(p) =∞ for p 6∈ D (in fact, this characterizes
when a convex function is closed, but we will not need this).

Lemma 2.2. Let f : D → R be a (not necessarily continuous) closed convex function defined on a
convex subset D ⊆M . Then:

(i) If (pk) ⊆ D is a sequence such that p∞ := limk→∞ pk ∈ D, then lim infk→∞ f(pk) ≥ f(p∞).

(ii) If (pk) ⊆ D is a sequence such that limk→∞ pk 6∈ D, then limk→∞ f(pk) =∞.

(iii) If for some L ∈ R the level set L = {p ∈ D : f(p) ≤ L} is non-empty and bounded, then f
attains its minimum.
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Proof. (i) We need to show: for any subsequence (pkj ) such that limj→∞ f(pkj ) = f∞ for some
f∞ ∈ R ∪ {±∞}, we have that f∞ ≥ f(p∞). If f∞ = ∞ there is nothing to show. If f∞ ∈
R then we have limj→∞(pkj , f(pkj )) = (p∞, f∞) ∈ Ef , since the epigraph is closed, and
hence f∞ ≥ f(p∞). Finally, we note f∞ = −∞ cannot occur. Indeed, if f∞ = −∞
then f(pkj ) ≤ f(p∞)− 1 for j large enough, hence (pkj , f(p∞)− 1) ∈ Ef for j large enough
and hence limj→∞(pkj , f(p∞)− 1) = (p∞, f(p∞)− 1) ∈ Ef , which is a contradiction.

(ii) Assume this is not so. Then there are a subsequence (pkj ) and L ∈ R such that f(pkj ) ≤ L for
all j. Now, limj→∞(pkj , L) = (p∞, L), where p∞ := limk→∞ pk, but each (pkj , L) is contained
in the epigraph, and hence the same must be true for the limit. It follows that p ∈ D, which is
a contradiction.

(iii) Since the level set L is non-empty, it contains a sequence (pk) such that limk→∞ f(pk) =
f∗ := infp∈D f(p). Because the epigraph is a closed subset of M × R, the same is true for
L × {L} = Ef ∩ (M × {L}), and hence L is a closed subset of M . It is also bounded by
assumption. By the Hopf–Rinow theorem, which is applicable because we assume that M is
geodesically complete, it follows that L is compact. After passing to a subsequence, we may
therefore assume that p∞ := limk→∞ pk exists and is in L ⊆ D. For continuous f , we then
have f(p∞) = f∗ and this concludes the proof. If f is not continuous then we can proceed as
follows. First suppose that f∗ = −∞. Fix any p0 ∈ L. Because M is geodesically complete
and L is bounded, there exists a constant C > 0 such that we can write pk = Expp0(uk) for
some uk ∈ Tp0M such that ‖uk‖p0 = d(p0, pk) ≤ C for all k. Then we can choose αk ∈ (0, 1)
such that αk → 0 and αkf(pk)→ −∞. Then the points qk := Expp0(αkuk) satisfy

f(qk) ≤ (1− αk)f(p0) + αkf(pk) = f(p0) + αk(f(pk)− f(p0))→ −∞,

where the first inequality holds by geodesic convexity. In particular, there is some constant K ∈
R such that f(qk) ≤ K < f(p0) for large enough k. Now, (qk,K) is in the epigraph and
converges to (p0,K), because αk → 0 and ‖uk‖p0 ≤ C for all k. But f(p0) > K, so (p0,K)
is not in the epigraph. This contradicts the assumption that the epigraph is closed. Thus
we must have that f∗ > −∞. Then, limk→∞(pk, f(pk)) = (p∞, f∗) and since the epigraph is
closed, it must contain the latter, meaning that f(p∞) ≤ f∗ and hence f(p∞) = f∗.

We will later (in Section 4) be in the situation that D ⊆ M is open and we are interested in
smooth objective functions f : D → R that have a closed convex extension, meaning that f extends
to a closed convex function on some convex superset of D. This is the case in particular if f extends
to a continuous convex function on the closure D.

Just like in the Euclidean setting [Nes18, Thm. 3.1.5], one can see that the sum of two closed
convex functions is again closed convex.

Lemma 2.3. Let f1 : D1 → R, f2 : D2 → R be closed convex functions defined on convex sub-
sets D1, D2 ⊆M . Then the function f1 + f2 is a closed convex function on D1 ∩D2.

Proof. It is clear that f1 + f2 is a convex function on D := D1 ∩ D2. To see that it is closed,
consider an arbitrary convergent sequence (pk, tk) in Ef1+f2 , with limit point (p∞, t∞) ∈ M ×R.
By Lemma 2.2, since f1 and f2 are closed convex, we have

lim inf
k→∞

f1(pk) ≥ f1(p∞) and lim inf
k→∞

f2(pk) ≥ f2(p∞),

and hence

t∞ = lim
k→∞

tk ≥ lim inf
k→∞

f1(pk) + lim inf
k→∞

f2(pk) ≥ f1(p∞) + f2(p∞),
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which means that (p∞, t∞) ∈ Ef1+f2 . Hence f1 + f2 is closed.

As in the Euclidean setting, one can also characterize convexity differentially. In particular, a
C2-smooth function f : D → R defined on an open convex subset D ⊆M is convex if and only if
the quadratic forms defined by the Hessian are positive semidefinite, i.e.,

(∇2f)p(v, v) ≥ 0 (2.7)

for all v ∈ TpM and p ∈ D. We discuss two refinements of the notion of convexity (for simplicity
only in the C2-smooth setting): If f is strictly convex along any geodesic in the domain, then f is
called strictly convex. A sufficient condition for strict convexity is the following: for every p ∈ D,
the Hessian (∇2f)p is positive definite, i.e., Eq. (2.7) holds with equality only for v = 0 ∈ TpM .
Similarly, we say that f is µ-strongly convex for some µ > 0 if it is so along any unit-speed geodesic
in the domain. This is the case if and only if, for all v ∈ TpM and p ∈ D,

(∇2f)p(v, v) ≥ µ‖v‖2p.

In convex optimization, upper bounds on the Hessian of a convex function are often also useful.
We say that f is ν-smooth (not to be confused with smoothness in the sense of C∞) if it is so along
any unit-speed geodesic in the domain, that is, if and only if

(∇2f)p(v, v) ≤ ν‖v‖2p

for all v ∈ TpM and p ∈ D. When M is a Hadamard space then it is well-known that the
distance d(·, p0) to any fixed point p0 ∈M is convex, and that 1

2d
2(·, p0) is 1-strongly convex, just

like in Euclidean space. However, the latter will in general no longer be smooth. We discuss these
important functions in Section 5.

Let D ⊆ M be a convex subset (not necessarily open) that is also an embedded submanifold.
Equip D with the induced metric and let ∇̃ denote its Levi-Civita connection. Then D is a totally
geodesic submanifold, so its shape tensor II vanishes [Lee18, Prop. 8.12]. Now let T be a (0, l)-tensor
field on D that is extended arbitrarily to a neighborhood of D in M . Then by Eqs. (2.1) and (2.2)
we find that ∇̃T = ∇T |(TD)⊗(1+l) , where the right-hand side notation means that we restrict ∇T to
a (0, 1 + l)-tensor field on D. In particular, we inductively see that for every function f : M → R
and every l ≥ 0, the following holds on D:

∇̃lf̃ = ∇lf |(TD)⊗l . (2.8)

3 Self-concordance and Newton’s method on manifolds

In this section we generalize the notion of self-concordance and the corresponding analysis of Newton’s
method from the Euclidean setting to the Riemannian setting, and we comment on complications
incurred by curvature. For expositions of the Euclidean theory of self-concordance and interior-point
methods we refer to [NN94, Nes18, Ren01]. Throughout this section we assume thatM is a connected
and geodesically complete Riemannian manifold.

3.1 Self-concordance

Let f : D → R be a convex function defined on an open convex subset D ⊆M . Then the Hessian is
positive semidefinite, by Eq. (2.7), hence induces a (semi-)norm at each point. The rate of change of
the Hessian is captured by the third covariant derivative, ∇3f = ∇(∇(∇f)) = ∇(∇2f). A function
is called self-concordant if the latter can be bounded in terms of the former, as follows:
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Definition 3.1 (Self-concordance). Let f : D → R be a convex function defined on an open convex
subset D ⊆ M , and let a > 0. We say that f is α-self-concordant if, for all p ∈ D and for
all u, v, w ∈ TpM , we have

|(∇3f)p(u, v, w)| ≤ 2√
α

√
(∇2f)p(u, u)

√
(∇2f)p(v, v)

√
(∇2f)p(w,w), (3.1)

It is called strongly α-self-concordant if is not just convex but closed convex, that is, if its epigraph (2.6)
is a closed subset of M ×R.

Here we follow the conventions of [NN94]. To interpret the definition, let us for a convex
function f , a point p in its domain, and α > 0 define the positive semidefinite bilinear form and
seminorm

〈v, w〉f,p,α =
(∇2f)p(v, w)

α
and ‖u‖f,p,α =

√
(∇2f)p(u, u)

α
. (3.2)

When the Hessian is positive definite (as is the case, e.g., when f is strongly convex), these endow M
with a new Riemannian metric. In convex optimization, 〈·, ·〉f,p,α is called the “local inner product”
and ‖·‖f,p,α the “local norm”, but we will refrain from using this terminology as it is ambiguous in the
Riemannian setting. For α = 1, we will usually abbreviate 〈·, ·〉f,p := 〈·, ·〉f,p,1 and ‖·‖f,p := ‖·‖f,p,1.
We can now rewrite Eq. (3.1) as follows:

|(∇3f)p(u, v, w)| ≤ 2α‖u‖f,p,α‖v‖f,p,α‖w‖f,p,α. (3.3)

Thus self-concordance can be interpreted as a boundedness of the third covariant derivatives at each
point with respect to the seminorms defined by the Hessian.

We record some basic properties. Recall that self-concordant functions are defined on an open
and convex domain, by definition.

Lemma 3.2. (i) Let f be a (strongly) α-self-concordant function and let c > 0. Then cf is
(strongly) cα-self-concordant.

(ii) Let fk : Dk → R be αk-self-concordant functions for k = 1, 2, and suppose D := D1 ∩D2 is
non-empty. Then f := f1 + f2 : D → R is α-self-concordant, with α := min(α1, α2). If the
functions fk are strongly αk-self-concordant, then f is strongly α-self-concordant.

(iii) Let fk : Dk → R be α-self-concordant functions for k = 1, 2. Then the function f : D1×D2 → R
defined by f(p1, p2) := f1(p1) + f2(p2) is α-self-concordant. If both functions fk are strongly
α-self-concordant, then so is f .

Property (i) follows from the definition, and (iii) follows from (ii). Before we prove (ii), we give a
simpler characterization of self-concordance. As the Hessian is symmetric, third covariant derivatives
are symmetric in the last two arguments. This can also be seen explicity from the following formula
for the third covariant derivative ∇3f , which follows from Eq. (2.1) and holds for any three vector
fields X, Y , Z:

(∇3f)(X,Y, Z) = X
(
(∇2f)(Y,Z)

)
− (∇2f)(∇XY,Z)− (∇2f)(Y,∇XZ). (3.4)

This leads to the following simplification:
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Lemma 3.3. A convex function f : D → R defined on an open convex subset D ⊆M is α-self-con-
cordant if, and only if, for all p ∈M and u, v ∈ TpM , we have

|(∇3f)p(u, v, v)| ≤ 2√
α

√
(∇2f)p(u, u) (∇2f)p(v, v) (3.5)

or, equivalently,

|(∇3f)p(u, v, v)| ≤ 2α‖u‖f,p,α‖v‖2f,p,α. (3.6)

However, third covariant derivatives are not symmetric when M is a curved manifold, as follows
from the Ricci identity [Lee18, Thm. 7.14]. To see this, we combine Eqs. (2.4) and (3.4) to see that
for any three vector fields X, Y , Z:

(∇3f)(X,Y, Z) = X(Y (Zf))−X((∇Y Z)f)− (∇XY )(Zf) + (∇∇XY Z)f

− Y ((∇XZ)f) + (∇Y (∇XZ))f.

Using symmetry of the Levi-Civita connection, one finds that

(∇3f)(X,Y, Z)− (∇3f)(Y,X,Z) = −(R(X,Y )Z)f = −〈R(X,Y )Z, grad(f)〉 (3.7)

Accordingly, the third covariant derivative is in general not symmetric. Indeed, the asymmetry is
precisely related to the nonvanishing of the Riemann curvature tensor!

Due to this asymmetry, to establish self-concordance, we have to show Eq. (3.5) for possibly
different u, v ∈ TpM , whereas we could assume u = v in the Euclidean case; see Section 3.2 for
more details. The following proof of Lemma 3.2(ii) is a generalization of [Nes18, Thm. 5.1.1] to our
setting.

Proof of Lemma 3.2(ii). For p ∈ D = D1 ∩D2 and u, v ∈ TpM , we have

|(∇3f)p(u, v, v)|
2
√

(∇2f)p(u, u)(∇2f)p(v, v)
≤ |(∇3f1)p(u, v, v)|+ |(∇3f2)p(u, v, v)|

2
√

(∇2f1)p(u, u) + (∇2f2)p(u, u)((∇2f1)p(v, v) + (∇f2)p(v, v))

≤
x1ω1/

√
α1 + x2ω2/

√
α2√

x2
1 + x2

2(ω1 + ω2)
, (3.8)

where we let xi :=
√

(∇2fi)p(u, u) and ωi := (∇2fi)p(v, v) for i = 1, 2, and for the last estimate we
used αi-self-concordance of fi. We now upper bound the quantity in Eq. (3.8). Observing invariance
under the change (x1, x2, ω1, ω2) → (sx1, sx2, tω1, tω2) for s, t > 0, we may consider the following
optimization problem:

maximize ω1x1/
√
α1 + ω2x2/

√
α2

s.t. x2
1 + x2

2 = 1, ω1 + ω2 = 1,

x1, x2, ω1, ω2 ≥ 0.

First we fix ωi, and maximize over the choice of xi. This is a linear maximization over the intersection
of the unit circle with the positive orthant, with objective given by (ω1/

√
α1, ω2/

√
α2), which is

itself in the positive orthant. Therefore the maximum is attained at

(x1, x2) =
(ω1/
√
α1, ω2/

√
α2)√

ω2
1/α1 + ω2

2/α2

,
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where the value of the objective is
√
ω2

1/α1 + ω2
2/α2. This reduces the problem to

maximize
√
ω2

1/α1 + ω2
2/α2 s.t. ω1 + ω2 = 1, ω1, ω2 ≥ 0.

By convexity of the objective, the maximum is attained at (ω1, ω2) = (1, 0) or (ω1, ω2) = (0, 1).
Therefore Eq. (3.8) is at most max(1/

√
α1, 1/

√
α2), and f is α-self-concordant for α = min(α1, α2).

The claim that f is strongly α-self-concordant whenever the fi are strongly αi-self-concordant then
follows from Lemma 2.3.

We now state a key property that is required for the analysis of Newton’s method of self-
concordant functions. It quantifies the change of the Hessian or local norm as a function of the
distance, measured with respect to the norm (3.2), providing a finitary version of Definition 3.1.
Then the following result is a direct translation of the Euclidean argument in [NN94, Thm. 2.1.1]
along with the notion of self-concordance from Definition 3.1.

Theorem 3.4 (Stability of Hessians). Let f : D → R be an α-self-concordant function defined on
an open convex subset D ⊆ M , and let p ∈ D. Let u ∈ TpM be such that r := ‖u‖f,p,α < 1. If
q := Expp(u) ∈ D, then we have the following estimate: for all v ∈ TpM ,

(1− r)2 (∇2f)p(v, v) ≤ (∇2f)q(τγ,1v, τγ,1v) ≤ 1

(1− r)2 (∇2f)p(v, v), (3.9)

or, equivalently,

(1− r)2 (∇2f)p � τ∗γ,1(∇2f)q �
1

(1− r)2 (∇2f)p,

where τγ,1 denotes the parallel transport along the geodesic γ(t) := Expp(tu) from p to q.

Proof. Since the domain is convex, we know that γ(t) = Expp(tu) ∈ D for all t ∈ [0, 1]. Consider
the following two functions:

φ : [0, 1]→ R, φ(t) = (∇2f)γ(t)(τγ,tv, τγ,tv),

ψ : [0, 1]→ R, ψ(t) = (∇2f)γ(t)(τγ,tu, τγ,tu).

Using Eq. (2.3), with T = ∇2f and using that γ̇(t) = τγ,tu, we have

φ̇(t) =
(
∇γ̇(t)(∇2f)

)
(τγ,tv, τγ,tv) = (∇3f)(τγ,tu, τγ,tv, τγ,tv).

Hence, using α-self-concordance as in Eq. (3.1),

|φ̇(t)| ≤ 2√
α

√
ψ(t)φ(t). (3.10)

Similarly,

ψ̇(t) =
(
∇γ̇(t)(∇2f)

)
(τγ,tu, τγ,tu) = (∇3f)(τγ,tu, τγ,tu, τγ,tu).

and hence using only α-self-concordance along the geodesic γ, as in Eq. (3.13), we find that

|ψ̇(t)| ≤ 2√
α
ψ(t)3/2. (3.11)
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With these estimates in place we can proceed as in the proof of [NN94, Thm. 2.1.1]. By Grönwall’s
inequality, there are two cases: either ψ vanishes identically on the interval [0, 1], or it is everwhere
positive. In the former case, Eq. (3.10) implies that φ is constant and hence φ(1) = φ(0), which in
turn implies the claim. In the latter case, we can write Eq. (3.11) as∣∣∣∂tψ(t)−1/2

∣∣∣ =
1

2

|ψ̇(t)|
ψ(t)3/2

≤ 1√
α
, (3.12)

from which it follows that

ψ(t)−1/2 ≥ ψ(0)−1/2 − t√
α

=
1√

α‖u‖f,p,α
− t√

α
=

1− rt
r
√
α

and hence, since r < 1, √
ψ(t) ≤ r

√
α

1− rt
.

Thus Eq. (3.10) implies

|φ̇(t)| ≤ 2r

1− rt
φ(t).

Similarly to the above, either φ vanishes identically on [0, 1], in which case there is nothing to prove,
or it is everywhere positive, in which case we have

|∂t log φ(t)| ≤ 2r

1− rt
and hence ∣∣∣∣log

φ(t)

φ(0)

∣∣∣∣ ≤ 2 log
1

1− rt
.

For t = 1 this yields the desired inequality.

3.2 Self-concordance along geodesics

WhenM = Rn is a Euclidean space, then the third derivative is symmetric in all three arguments, and
standard results on trilinear forms [Ban38] imply that the above is equivalent to

∣∣∂3
t=0f(p+ tv)

∣∣ =
|(∇3f)p(v, v, v)]| ≤ 2α‖v‖3f,p,α for all p, v ∈ Rn, which shows that self-concordance is equivalent to
self-concordance along the geodesics of Euclidean space. This characterization is highly useful for
showing that functions are self-concordant. The richness of the family of self-concordant functions is
a key reason for the wide applicability of interior-point methods [NN94, Hil14, Fox15, BE19, Che21].

This notion can also be generalized naturally to the Riemannian setting:

Definition 3.5 (Self-concordance along geodesics). Let f : D → R be a convex function defined on
an open convex subset D ⊆M , and let α > 0. We say that f is α-self-concordant along geodesics if,
for all p ∈ D and for all v ∈ TpM , we have∣∣∂3

t=0f(Expp(tv))
∣∣ = |(∇3f)p(v, v, v)]| ≤ 2√

α

(
(∇2f)p(v, v)

)3/2 (3.13)

or, equivalently, ∣∣∂3
t=0f(Expp(tv))

∣∣ = |(∇3f)p(v, v, v)]| ≤ 2α‖v‖3f,p,α. (3.14)

It is called strongly α-self-concordant along geodesics if is not just convex but closed convex, that is,
if its epigraph (2.6) is a closed subset of M ×R.
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In other words, f is (strongly) α-self-concordant along geodesics if and only if for every
geodesic γ : R → M , the function f ◦ γ : I → R is (strongly) α-self-concordant on I := γ−1(D).
There is also a version of Lemma 3.2 as a direct consequence of the Euclidean result.

Definition 3.5 had been proposed in [Ji07, JMJ07] as a suitable notion of self-concordance in the
Riemannian setting. Clearly, any (strongly) self-concordant function is also (strongly) self-concordant
along geodesics. However, since third covariant derivatives are not symmetric in all arguments
when M is a curved manifold, as we saw in Eq. (3.7), self-concordance along geodesics need not
imply self-concordance in the stronger sense of Definition 3.1, in contrast to what was suggested
in [JMJ07, Eq. (3) and Prop. 1]. While self-concordance along geodesics already allows lifting several
useful results from the Euclidean theory, it is the stronger notion of Definition 3.1 that is required to
prove the fundamental Theorem 3.4, which underpins the analysis of the Newton method in the
quadratic convergence regime in Theorem 3.16. We give non-trivial examples of self-concordant
functions on curved spaces in Sections 5 and 6.

In the remainder of this section we discuss a number of useful results for functions that are
self-concordant along geodesics. These follow directly from the Euclidean theory. While some of
these were already proved in [Ji07, JMJ07], we give all proofs to keep the exposition self-contained.
We start with a version of [Nes18, Thm. 5.1.5].

Proposition 3.6 (Stability of second derivative along geodesic). Let f : D → R be α-self-concordant
along geodesics, with D ⊆M open and convex, and let p ∈ D. Consider any geodesic γ(t) = Expp(tu)
such that γ(1) ∈ D, and set r := ‖u‖f,p,α. Then the α-self-concordant function g(t) := f(γ(t)) for
t ∈ [0, 1] satisfies the lower bound

g̈(t) ≥ g̈(0)

(1 + tr)2 =
αr2

(1 + tr)2 , (3.15)

and if rt < 1 also the upper bound

g̈(t) ≤ g̈(0)

(1− tr)2 =
αr2

(1− tr)2 . (3.16)

Proof. As in the proof of Theorem 3.4, we consider the function

ψ : [0, 1]→ R, ψ(t) = g̈(t),

and find from Eq. (3.11) that it either vanishes identically on [0, 1], in which case the claim holds
trivially, or it is everywhere positive, in which case Eq. (3.12) holds, namely for all t ∈ [0, 1],∣∣∣∂tψ(t)−1/2

∣∣∣ ≤ 1√
α
.

Accordingly,

ψ(0)−1/2(1− tr) = ψ(0)−1/2 − t√
α
≤ ψ(t)−1/2 ≤ ψ(0)−1/2 +

t√
α

= ψ(0)−1/2(1 + tr),

which implies both bounds.

The lower bound strengthens the one in Eq. (3.9) in the special case that v = u. The upper
bound implies that any function that is strongly self-concordant along geodesics must contain a
certain region in its domain. We first define the region and then state the result.
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Definition 3.7 (Dikin ellipsoid). Let f : D → R be a convex function defined on an open convex
subset D ⊆M , and let α > 0. Then the (open) Dikin ellipsoid of radius r > 0 at p ∈M is

B◦f,p,α(r) =
{

Expp(u) : u ∈ TpM, ‖u‖f,p,α < r
}
.

For α = 1, we abbreviate B◦f,p := B◦f,p,1.

The following result is easily generalized from the Euclidean setting. The proof is essentially the
same as in [NN94, Thm. 2.1.1].

Corollary 3.8 (Dikin inclusion). Let f : D → R be strongly α-self-concordant along geodesics,
defined on an open convex subset D ⊆M . Then B◦f,p,α(1) ⊆ D for every p ∈ D.

Proof. Take any v ∈ TpM such that r := ‖v‖f,p,α < 1. Let σ be the supremum of those s ≥ 0 such
that γ(s) := Expp(sv) ∈ D. Since p ∈ D and D is open, we know that σ > 0, and since D is convex,
we know that γ(s) ∈ D for all s ∈ [0, σ).

We need to show that γ(1) ∈ D and claim that in fact σ > 1/r > 1 (with 1/0 =∞). For sake of
finding a contradiction, assume that this is not so, i.e., that σ ≤ 1/r. For every s ∈ [0, σ) we can
apply Proposition 3.6 with u := sv, which satisfies ‖u‖f,p,α = sr < σr ≤ 1. Then the upper bound
in Eq. (3.16) gives

g̈(s) ≤ 1

(1− sr)2 g̈(0),

where g(s) = f(γ(s)). Accordingly, the function g has bounded derivative on [0, σ), thus it is itself
bounded on this interval, say g(s) ≤ L for some L ∈ R. As f is strongly self-concordant, the level
set {q ∈ D : f(q) ≤ L} is closed in M , and hence it must contain γ(σ) = lims↑σ γ(s). But D is
open, so this in turn implies there must also exist some t > σ such that γ(t) ∈ D, contradicting the
definition of σ.

In other words, for any p ∈ D and u ∈ TpM such that ‖u‖f,p,α < 1 it is automatically true that
Expp(u) ∈ D, so we do not have to assume this in Theorem 3.4 and Proposition 3.6.

The above also implies that a strongly-self-concordant function can only have a degenerate
Hessian if its domain contains a geodesic.

Corollary 3.9 (Domain). If a strongly α-self-concordant function f : D → R contains no (infinite)
geodesic in its domain, then (∇2f)p is positive definite for all p ∈ D. In particular, this is the case
if M is a Hadamard manifold and the domain is bounded.

Proof. If (∇2f)p(u, u) = 0 for some p ∈ D and u ∈ TpM , then Expp(Ru) ⊆ B◦f,p,α(1). Thus
Corollary 3.8 shows that D contains the geodesic γ(t) = Expp(tu) for t ∈ R.

The following results bound a self-concordant function in terms of its linear approximation at
some arbitrary point, in terms of the quantity

ρ : (−∞, 1)→ R, ρ(r) = −r − log(1− r), (3.17)

which is ρ(r) = 1
2r

2 +O(r3) for small r. The first result lifts [Nes18, Thm. 5.1.8] to the geodesic
setting and follows directly by integrating the lower bound in Proposition 3.6.
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Corollary 3.10 (Lower bound). Let f : D → R be α-self-concordant along geodesics, defined on an
open convex subset D ⊆M , and let p ∈ D. Then, for every u ∈ TpM such that q := Expp(u) ∈ D,
we have

dfq(τγ,tu)− dfp(u) ≥ αtr2

1 + tr
(3.18)

where r := ‖u‖f,p,α and τγ,t denotes the parallel transport along the geodesic γ(t) := Expp(tu) from p
to q, and

f(q) ≥ f(p) + dfp(u) + αρ(−r).

Proof. By Proposition 3.6, we see that g(t) := f(Expp(tu)) satisfies

g̈(t) ≥ αr2

(1 + tr)2

for all t ∈ [0, 1]. By integrating,

ġ(t)− ġ(0) ≥
∫ t

0

αr2

(1 + sr)2ds =
αtr2

1 + tr
.

Since ġ(0) = dfp(u) and ġ(1) = dfq(τγ,1u), this proves the first bound. One more integral yields

g(1)− g(0)− ġ(0) ≥
∫ 1

0

αsr2

1 + sr
ds = α(r − log(1 + r)) = αρ(−r).

The second result generalizes [Nes18, Thm. 5.1.9] to the geodesic setting and follows by similarly
integrating the upper bound in Proposition 3.6.

Corollary 3.11 (Upper bound). Let f : D → R be α-self-concordant along geodesics, defined on an
open convex subset D ⊆M , and let p ∈ D. Then, for every u ∈ TpM such that q := Expp(u) ∈ D
and r := ‖u‖f,p,α < 1, we have

dfq(τγ,tu)− dfp(u) ≤ αtr2

1− rt
,

where τγ,t denotes the parallel transport along the geodesic γ(t) = Expp(tu) from p to q, and

f(q) ≤ f(p) + dfp(u) + αρ(r).

If f is strongly α-self-concordant along geodesics, then the requirement that q ∈ D is automatic (by
Corollary 3.8).

Proof. Similarly to the proof of Corollary 3.10, we can apply Proposition 3.6 to see that the function
g(t) := f(Expp(tu)) satisfies

g̈(t) ≤ αr2

(1− tr)2

for all t ∈ [0, 1]. By integration,

ġ(t)− ġ(0) ≤
∫ t

0

αr2

(1− sr)2ds =
αtr2

1− tr

and

g(1)− g(0)− ġ(0) ≤
∫ 1

0

αsr2

1− sr
ds = α(−r − log(1− r)) = αρ(r).
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3.3 Newton’s method

We are now ready to give an analysis of Newton’s method for self-concordant functions. In particular,
as in the Euclidean case, we are able to provide quadratic guarantees on the changes in the so-called
Newton decrement (Theorem 3.16). This key result requires self-concordance. Afterwards we also
recall some useful results due to [Ji07, JMJ07] which only rely on self-concordance along geodesics.

Recall Newton’s method (cf. [Udr94, §7.5]): given a convex function f and a point p in its domain,
consider its local quadratic approximation

f(Expp(v)) ≈ f(p) + dfp(v) +
1

2
(∇2f)p(v, v)

and minimize the right-hand side over all v ∈ TpM . If (∇2f)p is non-degenerate and hence positive
definite, as we will assume for convenience, there is a unique minimizer called the Newton step.

Definition 3.12 (Newton step and Newton iterate). Let f : D → R be a convex function defined
on an open convex set D ⊆M , and let p ∈ D be a point such that (∇2f)p is positive definite. Then
we define the Newton step of f at p as the unique vector nf,p ∈ TpM such that

(∇2f)p(nf,p, ·) = −dfp (3.19)

and the Newton iterate of f at p is defined as

pf,+ := Expp(nf,p) ∈M,

which need not be in D. We can also write

nf,p = −Hess(f)−1
p grad(f)p and pf,+ = Expp(−Hess(f)−1

p grad(f)p).

in terms of the gradient vector and Hessian operator (cf. Section 2.4).

The gap between the function value and the minimum of the quadratic approximation is

1

2
(∇2f)p(nf,p, nf,p) =

α

2
‖nf,p‖2f,p,α =

α

2
λf,α(p)2,

where λf,α is the so-called Newton decrement, which we define next.

Definition 3.13 (Newton decrement). Let f : D → R be a convex function defined on an open
convex set D ⊆M , let p ∈ D be a point such that (∇2f)p is positive definite, and let α > 0. Then
we define the Newton decrement of f at p by

λf,α(p) := ‖nf,p‖f,p,α = 1
α‖dfp‖

∗
f,p,α = max

06=v∈TpM

|dfp(v)|
α‖v‖f,p,α

= max
06=v∈TpM

|dfp(v)|√
α(∇2f)p(v, v)

,

where ‖ω‖∗f,p,α := max06=v∈TpM
|ω(v)|
‖v‖f,p,α is the dual norm on T ∗pM induced by ‖·‖f,p,α. That is,8

λf,α(p) = min
{
λ ≥ 0 : dfp ⊗ dfp � λ2α (∇2f)p

}
(3.20)

= min{λ ≥ 0 : −dfp(u)− 1

2
(∇2f)p(u, u) ≤ λ2α

2
∀u ∈ TpM}. (3.21)

For α = 1, we abbreviate λf := λf,1 and ‖·‖∗f,p := ‖·‖∗f,p,1.
8To see the second equality, replace u by tu for t ∈ R, and maximize over t.
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The Newton decrement is invariant under rescaling f in the sense that λf,α = λcf,cα for any
constant c > 0 (cf. Lemma 3.2). When (∇2f)p is degenerate, the Newton decrement can still be
defined as λf,α(p) = inf{c ≥ 0 : |dfp(v)| ≤ αc‖v‖f,p,α ∀v ∈ TpM}, which has the same interpretation
as explained above; but we will mostly not need this.

Just like in the Euclidean case the Newton decrement provides a certificate for the existence
of minimizers and the function gap. This essentially follows from the Euclidean argument [Nes18,
Thm. 5.1.13].

Proposition 3.14 (Existence of minimizers). Let f : D → R be α-self-concordant along geodesics,
defined on an open convex subset D ⊆M . If p ∈ D is such that λf,α(p) < 1, then f is bounded from
below: we have

f∗ := inf
q∈D

f(q) ≥ f(p)− αρ(λf,α(p)), (3.22)

where ρ is the quantity defined in Eq. (3.17). If in addition f is strongly α-self-concordant along
geodesics and (∇2f)p is positive definite, then the function attains its minimum at some p∗ ∈ D.

Proof. We abbreviate λ := λf,α(p) and r := ‖u‖f,p,α. For every q = Expp(u) ∈ D, we have using
Corollary 3.10 and the definition of the Newton decrement the lower bound

f(q)− f(p) ≥ dfp(u) + αρ(−r) ≥ −αrλ+ αρ(−r) = αδ(r), (3.23)

where

δ(r) = r(1− λ)− log(1 + r).

If λ < 1, δ(r) is minimized at r = λ/(1− λ), and we obtain

f(q)− f(p) ≥ α(λ+ log(1− λ)) = −αρ(λ).

This implies Eq. (3.22).
On the other hand, δ(r)→∞ as r →∞, so Eq. (3.23) shows that the level set {q ∈ D : f(q) ≤

f(p)} is contained in a Dikin ellipsoid of some suitable radius. If we assume that (∇2f)p is positive
definite then Dikin ellipsoids are bounded. Thus if f is also α-strongly self-concordant along geodesics
then Lemma 2.2 (iii) shows that f attains its minimum at some p∗ ∈ D.

The minimizer in Proposition 3.14 is unique assuming strict convexity, as follows, e.g., if ∇2f is
positive definite throughout the domain. The Newton decrement also certifies closeness to minimizers
if they exist:

Lemma 3.15. Let f : D → R be α-self-concordant along geodesics, defined on an open convex
subset D ⊆ M , and let p ∈ D be such that λf,α(p) < 1. If f attains a minimum at p∗ = Expp(u)
for u ∈ TpM , then

‖u‖f,p,α ≤
λf,α(p)

1− λf,α(p)
.

Proof. Consider the geodesic γ(t) = Expp(tu) from p to p∗. Then by Corollary 3.10, we have

αr2

1 + r
≤ dfp∗(τγ,1u)− dfp(u) = −dfp(u) ≤ |dfp(u)| ≤ αrλf,α(p),
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where r := ‖u‖f,p,α; the equality follows because dfp∗ = 0 because p∗ is a minimizer of f . Thus we
have

r

1 + r
≤ λf,α(p)

and for λf,α(p) < 1 this implies the desired bound.

The following theorem is key to the analysis of Newton’s method for self-concordant functions. It
bounds the Newton decrement after one Newton step quadratically in terms of the original Newton
decrement. This requires self-concordance in the sense of Definition 3.1, rather than the weaker
notion along geodesics, as its proof involves comparing the length of the new Newton step transported
along the geodesics given by the previous Newton step, i.e., there are two natural directions. The
proof adapts the Euclidean argument in [Ren01, Thm. 2.2.4].

Theorem 3.16. Let f : D → R be a strongly α-self-concordant function defined on an open convex
set D ⊆ M , with positive definite Hessian. Let p ∈ D be a point such that λf,α(p) < 1. Then the
Newton iterate remains in the domain, i.e., pf,+ ∈ D, and moreover

λf,α(pf,+) ≤
(

λf,α(p)

1− λf,α(p)

)2

.

Proof. We abbreviate the Newton step, iterate, and increment by np := nf,p, p+ := pf,+, and λ :=
λf,α(p), respectively. Corollary 3.8 along with the definitions shows that p+ ∈ D. Then the entire
geodesic segment γ(t) := Expp(tnp) for t ∈ [0, 1] is contained in the domain D. We now prove the
desired estimate, starting with Theorem 3.4, which gives the upper bound

λf,α(p+) = max
w∈Tp+M

|dfp+(w)|
α‖w‖f,p+,α

= max
v∈TpM

|dfp+(τγ,1v)|
α‖τγ,1v‖f,p+,α

≤ 1

1− λ
max
v∈TpM

|dfp+(τγ,1v)|
α‖v‖f,p,α

, (3.24)

where τγ,1 denotes parallel transport along the geodesic γ from p to p+. Next, we observe that by
the fundamental theorem of calculus, Eq. (2.3), and Eq. (3.19), for all v ∈ TpM ,

dfp+(τγ,1v) = dfp+(τγ,1v)− dfp(v) + dfp(v)

=

∫ 1

0
∂tdfγ(t)(τγ,tv) dt+ dfp(v)

=

∫ 1

0
(∇γ̇(t)df)γ(t)(τγ,tv) dt+ dfp(v)

=

∫ 1

0
(∇2f)γ(t)(τγ,tnp, τγ,tv) dt+ dfp(v)

=

∫ 1

0
[(∇2f)γ(t)(τγ,tnp, τγ,tv)− (∇2f)p(np, v)] dt

= β(np, v), (3.25)

where we have introduced the symmetric bilinear form

β : TpM × TpM → R, β(u, v) =

∫ 1

0

[
(∇2f)γ(t)(τγ,tu, τγ,tv)− (∇2f)p(u, v)

]
dt.

By Theorem 3.4 and using ‖tnp‖f,p,α = tλ, we have, for all v ∈ TpM ,[
(1− tλ)2 − 1

]
(∇2f)p(v, v) ≤ (∇2f)γ(t)(τγ,tv, τγ,tv)− (∇2f)p(v, v) ≤

[
1

(1− tλ)2 − 1

]
(∇2f)p(v, v).
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By integrating the lower and upper bounds from t = 0 to t = 1,

−
(
λ− λ2

3

)
(∇2f)p(v, v) ≤ β(v, v) ≤

(
λ

1− λ

)
(∇2f)p(v, v).

One may verify that max{λ− λ2/3, λ/(1− λ)} = λ/(1− λ) as λ < 1. Together with the Cauchy-
Schwarz inequality, this implies that for all u, v ∈ TpM ,

|β(u, v)| ≤ λ

1− λ

√
(∇2f)p(u, u)

√
(∇2f)p(v, v) =

αλ

1− λ
‖u‖f,p,α‖v‖f,p,α.

Together with Eqs. (3.24) and (3.25), we obtain the upper bound

λf,α(p+) ≤ 1

1− λ
max
v∈TpM

|β(np, v)|
α‖v‖f,p,α

≤ λ

(1− λ)2
‖np‖f,p,α =

λ2

(1− λ)2
.

Theorem 3.16 implies that the Newton method converges quadratically for sufficiently small λ.
For example, suppose that λ ≤ λ∗ := 1− 1√

2
. Then we have

(
λ

1− λ

)2

≤
(

λ

1− λ∗

)2

= 2λ2 ≤ λ∗, (3.26)

meaning the Newton decrement decreases quadratically and stays below λ∗, so we can iterate. This
implies the following result (cf. [NN94, Thm. 2.2.3]):

Theorem 3.17 (Quadratic convergence of the Newton method). Let f : D → R be a strongly
α-self-concordant function defined on an open convex set D ⊆M , with positive definite Hessian. Let
p0 ∈ D be a point such that λf,α(p0) ≤ λ∗ := 1− 1/

√
2 ≈ 0.293. Then the Newton iterations

pt+1 := Exppt(nf,pt)

are well-defined for all t ∈ N (i.e., each pt ∈ D) and we have

λf,α(pt) ≤
1

2
(2λf,α(p0))2t ≤ 1

2
(2λ∗)

2t .

In particular, O(log log α
ε ) Newton iterations suffice to find a point pt such that f(pt) ≤ f∗ + ε, for

ε < α/e.

Proof. We abbreviate λt := λf,α(pt). By Theorem 3.16 and Eq. (3.26), one can see inductively that
pt ∈ D is well-defined for all t ∈ N and that we have λt ≤ λ∗ and

2λt ≤ (2λt−1)2 ≤ . . . ≤ (2λ0)2t ≤ (2λ∗)
2t ,

as claimed. This also implies the last statement, since to achieve f(pt) ≤ f∗ + ε it suffices to have
ρ(λt) ≤ ε/α, by Proposition 3.14, and we have ρ(λt) ≤ λ2

t for λt ≤ λ∗.

What if we have a starting point such that the Newton decrement does not guarantee quadratic
convergence? In this case it is well-known that one can employ a damped Newton method, with a
step size that ensures that one stays inside the Dikin ellipsoid (and hence in the domain) at each
step. This works just the same in the Riemannian setting and only requires self-concordance along
geodesics (cf. [Nes18, Thm. 5.1.15]):
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Theorem 3.18 (Damped Newton method). Let f : D → R be strongly α-self-concordant along
geodesics, defined on an open convex set D ⊆M , with positive definite Hessian. Let p0 ∈ D be an
arbitrary starting point. Then the damped Newton iterations

pt+1 := Exppt(ut) where ut :=
1

1 + λf,α(pt)
nf,pt

are well-defined for all t ∈ N (i.e., each pt ∈ D) and we have

f(pt+1) ≤ f(pt)− αρ(−λt),

where ρ is the quantity defined in Eq. (3.17). In particular, if f is bounded from below and we
set f∗ := infp∈D f(p), then O((f(p0) − f∗)/α) damped Newton iterations suffice to find a point pt
such that λf,α(pt) ≤ λ∗ (or any other constant).

Proof. We abbreviate λt := λf,α(pt). Using Corollary 3.11 one can see inductively that r :=
‖ut‖f,p,α = λt/(1 + λt) < 1 and pt ∈ D is well-defined for all t ∈ N. Moreover,

f(pt+1) ≤ f(pt) + dfpt(ut) + αρ(r)

= f(pt)− (∇2f)p(nf,pt , ut) + αρ(r)

= f(pt)− α
(

λ2
t

1 + λt
− ρ(r)

)
= f(pt)− α(λt − log(1 + λt))

= f(pt)− αρ(−λt).

In particular, Theorem 3.18 and Corollary 3.8 have the following structural consequence.

Corollary 3.19. Let f : D → R be strongly α-self-concordant along geodesics, defined on an open
convex set D ⊆ M , with positive definite Hessian. Then f is bounded from below if and only if it
attains its minimum (necessarily at a unique minimizer, by strict convexity).

By combining Theorems 3.17 and 3.18, we see that we can approximately minimize any strongly
α-self-concordant function with positive definite Hessian by first using damped Newton steps from
an arbitrary starting point p0 until we arrive at point with Newton decrement ≤ λ∗; then we
are in the quadratic convergence regime and we can take ordinary Newton steps until we arrive
at a point pt with ρ(λf,α(pt)) ≤ ε/α, so that pt is an ε-approximate minimizer. This requires
O((f(p0)− f∗)/α+ log log(α/ε)) Newton iterations.

4 Barriers, compatibility, path-following method on manifolds

The methods developed in Section 3 are sufficient to optimize strongly self-concordant functions.
However, it is difficult to guarantee that one starts in the quadratic convergence regime for Newton’s
method, and the damped Newton method has a worst-case complexity which depends on the gap in
function value. Moreover, most convex optimization problems do not take the form of a minimization
of a strongly self-concordant function over its natural domain. Rather, one is given a convex
objective f and a domain D and wants to minimize the former over the latter.

In this section, we show how to circumvent these two issues, assuming one has a self-concordant
barrier for the domain over which one optimizes. To this end, we generalize the analysis of so-called
path-following (interior point) methods [NN94] from the Euclidean to the Riemannian setting. We
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treat not only the case of geodesically linear objectives, but the more general class of objectives
that are compatible with the given self-concordant barrier. This will be useful for the applications
discussed in Section 6. Throughout this section we assume that M is a connected and geodesically
complete Riemannian manifold.

4.1 Self-concordant barriers

We first define the notion of a self-concordant barrier. The estimates in this section only require the
self-concordance to be along geodesics, and we make explicit whenever this is the case. However, the
path-following method presented in Section 4.3 requires the stronger notion.

Definition 4.1 (Barrier). Let D ⊆M be an open and convex subset, and let θ ≥ 0. We say that a
function F : D → R is a non-degenerate strongly self-concordant barrier with parameter θ, or in
short a θ-barrier, if F is a strongly 1-self-concordant function with positive definite Hessian such
that λF (p) ≤

√
θ for all p ∈ D, with λF = λF,1 the Newton decrement (Definition 3.13). We say

that F is a θ-barrier along geodesics if it is only strongly 1-self-concordant along geodesics.

The parameter of a barrier plays an important role in the complexity analysis of the path-following
method that we discuss in Section 4.3. The following lemma follows readily from the definition:

Lemma 4.2. Let F1 : D1 → R be a θ1-barrier and let F2 : D2 → R be a θ2-barrier. Then F1 + F2

is a (θ1 + θ2)-barrier for D := D1 ∩D2, assuming D is non-empty.

Next, we prove an important inequality which involves the barrier parameter. To state the
result, we define a Riemannian version of the so-called Minkowski function(al) or gauge function. It
measures the inverse distance from a point to the boundary of the domain.

Definition 4.3 (Minkowski functional). Let D ⊆M be an open convex subset. For p ∈ D, we define
the Minkowski functional by

πD,p : TpM → R≥0, πD,p(u) = inf
{
s ≥ 0 : Expp

(
1
su
)
∈ D

}
.

This is well-defined since D is open and hence πD,p(u) < ∞ for every u ∈ TpM . Note that
if s := πD,p(u) = 0, then the entire infinite geodesic ray γ(t) = Expp(tu) is contained in the domain,
while if s > 0 then Expp(

1
su) is a point in its boundary ∂D = D \D. Moreover, if u ∈ TpM is such

that Expp(u) ∈ D, then πp(u) ≤ 1.
Then we have the following result, which can be deduced directly from its Euclidean version [NN94,

§2.3.2]. We provide a self-contained proof for convenience.

Proposition 4.4. Let D ⊆M be open and convex, and let F : D → R be a θ-barrier along geodesics.
Then one has, for all p ∈ D and u ∈ TpM ,

dFp(u) ≤ θ πD,p(u).

In particular, if q = Expp(u) ∈ D then

dFp(u) ≤ θ.

Proof. The second statement follows from the first by the preceding discussion. To prove the first,
let p ∈ D and u ∈ TpM . If dFp(u) ≤ 0 then there is nothing to prove, so we assume that dFp(u) > 0.
Define

g(t) := F (Expp(tu)).
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Then g is well-defined on the interval I = [0, πD,p(u)−1), where we interpret 0−1 =∞. By definition
of the Newton decrement and recalling that g̈(t) > 0 as F has positive definite Hessian, we have

(ġ(t))2

g̈(t)
≤ λ2

F (p) = θ.

Since we assumed that ġ(0) = dFp(u) > 0, we find that θ > 0, as well as ġ(t) > 0 for all t ∈ I, by
convexity. Accordingly, we can write the above as

∂t

(
1

ġ(t)

)
= − g̈(t)

(ġ(t))2
≤ −1

θ
,

which implies that

1

ġ(t)
=

1

ġ(0)
+

∫ t

0
∂t

(
1

ġ(t)

)
≤ 1

ġ(0)
− t

θ
,

and hence

ġ(t) ≥ 1
1
ġ(0) −

t
θ

=
θġ(0)

θ − tġ(0)
.

As the right-hand side diverges as t approaches θ/ġ(0), we must have t < θ/ġ(0) for all t ∈ I. Hence

πD,p(u)−1 ≤ θ

ġ(0)
,

which is the desired bound.

As a consequence, non-trivial barriers must have positive parameter:

Corollary 4.5. Let D ⊆M be open and convex, and let F : D → R be a θ-barrier along geodesics
with θ = 0. Then F is constant and D = M .

Proof. Proposition 4.4 shows that dF = 0, hence F is locally constant and ∇2F = 0. Because F is
strongly self-concordant, we may apply Corollary 3.8 to conclude that Expp(TpM) ⊆ D and hence
D = M , since M is connected and geodesically complete.

The minimizer of a barrier, which if it exists is necessarily unique (recall that barriers have
positive definite Hessians by definition), plays a special role in the theory.

Definition 4.6 (Analytic center). Let D ⊆M be open and convex, and let F : D → R be a θ-barrier
along geodesics. If F attains its minimum, then the unique minimizer is called the analytic center
of D.

Recall that a barrier attains its minimum if and only if it is bounded from below (Corollary 3.19).
The following result shows that the domain is necessarily enclosed in a Dikin ellipsoid about the
analytic center, with radius given by the barrier’s parameter. It adapts the Euclidean argument
(cf. [Nes18, Thm. 5.3.9], [NN94, Prop. 2.3.2 (iii)]) to the Riemannian setting.

Proposition 4.7 (Enclosing Dikin ellipsoid). Let D ⊆M be open and convex, and let F : D → R
be a θ-barrier along geodesics. If θ > 0 and F is bounded from below, with analytic center p∗ ∈ D,
then

D ⊆ B◦F,p∗(2θ + 1),

where B◦F,p∗ = B◦F,p∗,1 denotes the Dikin ellipsoid (Definition 3.7). That is, the domain is contained
in the Dikin ellipsoid with radius 2θ + 1 about p∗.
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Proof. Let u ∈ Tp∗M be such that ‖u‖F,p∗ = 1, and let γ(t) := Expp∗(tu). By Corollary 3.8, we
know that B◦F,p∗(1) ⊆ D, hence g(t) := F (γ(t)) is well-defined for t ∈ [0, 1).

To show that D ⊆ B◦F,p∗(2θ+ 1), by convexity of D it suffices to show that γ(1 + 2θ) 6∈ D. From
Eq. (3.18) in Corollary 3.10 and p∗ being a minimizer of F , it follows that, for t ∈ [0, 1),

dFγ(t)(τγ,tu) = dFγ(t)(τγ,tu)− dFp∗(u) = ġ(t)− ġ(0) ≥ t

1 + t
.

Proposition 4.4 on the other hand implies that for

dFγ(t)(τγ,tu) ≤ θ πD,γ(t)(τγ,tu).

Together, we obtain that, for every t ∈ [0, 1),

θ πD,γ(t)(τγ,tu) ≥ t

1 + t
.

Now, by the definition of the Minkowski functional, for every s ∈ [0, πD,γ(t)(τγ,t(u))), we have

γ
(
t+ 1

s

)
= Expp∗

((
t+ 1

s

)
u
)

= Expγ(t)

(
1
sτγ,tu

)
6∈ D.

Therefore, for every t ∈ [0, 1) and s ∈ [0, t
θ(1+t)), we have

γ
(
t+ 1

s

)
6∈ D.

Letting t→ 1 and s→ 1/(2θ) gives that γ(1 + 2θ) 6∈ D, since M \D is closed.

4.2 Compatibility

Given a barrier F , for which convex functions f is it the case that tf + F is self-concordant for
all t ≥ 0, with parameter independent of t? This is clearly the case if f is (affine) linear or quadratic
in the sense that the third covariant derivative ∇3f vanishes. We now define the more general notion
of compatibility, which suffices for this, as shown in Proposition 4.10 below.

Definition 4.8 (Compatibility). Let D ⊆ M be open and convex, let f, F : D → R be convex
functions. For β1, β2 ≥ 0, we say that f is (β1, β2)-compatible with F if for all p ∈ D and u, v ∈ TpM ,
one has

|(∇3f)p(u, v, v)| ≤ 2β1

√
(∇2F )p(u, u)(∇2f)p(v, v)

+ 2β2

√
(∇2F )p(v, v)

√
(∇2f)p(u, u)

√
(∇2f)p(v, v).

(4.1)

For β ≥ 0, we say that f is β-compatible with F along geodesics if for all p ∈ D and v ∈ TpM ,

|(∇3f)p(v, v, v)| ≤ 2β
√

(∇2F )p(v, v)(∇2f)p(v, v). (4.2)

Clearly, if f is a linear or a convex quadratic function, in the sense that its second or third covariant
derivative vanishes, then it is clearly automatically compatible with any convex F . Moreover, any
α-self-concordant function is (β1, β2)-compatible with itself, for β1 + β2 = 1/

√
α. As we show in

Proposition 4.10, given a barrier F for a domain D and a convex objective function f , compatibility
guarantees that tf +F is self-concordant for all t ≥ 0, with a parameter independent of t, and hence
one can use the path-following method presented in Section 4.3 below to optimize f over D. We
apply this theory in Section 6.
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Compatibility along geodesics reduces to the well-known Euclidean notion, see [NN94, Def. 3.2.1]
or [Nes18, Def. 5.4.2]. In these works it is also explained how to generalize the notion of compatibility
to vector-valued functions f , which is useful for constructing new barriers out of old ones; see [NN94,
§5.1.2] or [Nes18, §5.4.6] for details. We do not provide such a generalization here. Clearly, if f is
(β1, β2)-compatible with F then it is also β-compatible with F along geodesics for β := β1 + β2. Yet
the latter does not imply the former, even in the Euclidean setting.

We may equivalently write Eqs. (4.1) and (4.2) as follows in terms of the seminorms ‖·‖g,p = ‖·‖g,p,1
induced by the inner products 〈·, ·〉g,p = 〈·, ·〉g,p,1 defined in Eq. (3.2):

|(∇3f)p(u, v, v)| ≤ 2β1‖u‖F,p‖v‖2f,p + 2β2‖v‖F,p‖u‖f,p‖v‖f,p (4.3)

and

|(∇3f)p(v, v, v)| ≤ 2β‖v‖F,p‖v‖2f,p. (4.4)

We now state some basic properties of compatibility. The following result holds analogously for
compatibility along geodesics.

Lemma 4.9. Let D ⊆M be open and convex, F : D → R a convex function, and β ∈ R2
≥0.

(i) Let f : D → R be a convex function that is β-compatible with F and let c ≥ 0. Then cf is
β-compatible with F .

(ii) Let f1, f2 : D → R be two convex functions that are each β-compatible with F . Then their
sum f1 + f2 is β-compatible with F .

Proof. Property (i) is clear from the definition, as both sides of Eq. (4.1) are positively homogeneous
in f . To prove property (ii), we note that for every p ∈ D and u, v ∈ TpM ,

|(∇3(f1 + f2))p(u, v, v)| ≤ |(∇3f1)p(u, v, v)|+ |(∇3f2)p(u, v, v)|

≤ 2β1

√
(∇2F )p(u, u)(∇2f1)p(v, v) + 2β1

√
(∇2F )p(u, u)(∇2f2)p(v, v)

+ 2β2

√
(∇2F )p(v, v)

(√
(∇2f1)p(u, u)

√
(∇2f1)p(v, v) +

√
(∇2f2)p(u, u)

√
(∇2f2)p(v, v)

)
≤ 2β1

√
(∇2F )p(u, u)(∇2f1)p(v, v) + 2β1

√
(∇2F )p(u, u)(∇2f2)p(v, v)

+ 2β2

√
(∇2F )p(v, v)

√
(∇2f1)p(u, u) + (∇2f2)p(u, u)

√
(∇2f1)p(v, v) + (∇2f2)p(v, v)

= 2β1

√
(∇2F )p(u, u)(∇2(f1 + f2))p(v, v)

+ 2β2

√
(∇2F )p(v, v)

√
(∇2(f1 + f2))p(u, u)

√
(∇2(f1 + f2))p(v, v).

The first inequality holds by compatibility of f1 and of f2 with F , and the second inequality uses
the Cauchy-Schwarz inequality.

We now show if a convex function f is compatible with a self-concordant function F (e.g., a
barrier), then tf + F is self-concordant for every t ≥ 0, with a self-concordance constant that is
independent of t. We emphasize that it is not necessary for f itself to be self-concordant. The proof
is inspired by [NN94, Prop. 3.2.2] in the Euclidean setting. The result holds analogously if we use
compatibility and self-concordance along geodesics in the hypothesis and conclusion.
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Proposition 4.10. Let D ⊆ M be open and convex and let f, F : D → R be convex functions.
Suppose that f is (β1, β2)-compatible with F and F is 1-self-concordant. Then tf + F : D → R is
α-self-concordant for every t ≥ 0, with

α :=


4(β2

2−(β1−1)2)
β2
2(β2

2+4β1)
if β2

2 > 2 max{β1(β1 − 1), 1− β1},
1

max{β2
1 ,1}

otherwise.

If in addition F is strongly 1-self-concordant and f has a closed convex extension, then tf+F : D → R
is strongly α-self-concordant for every t ≥ 0.

Proof. We abbreviate Ft := tf + F . Clearly, Ft is convex for every t ≥ 0, so it remains to prove the
self-concordance estimate. For any p ∈ D and u, v ∈ TpM , using Eqs. (3.6) and (4.3),

|(∇3Ft)p(u, v, v)| ≤ t|(∇3f)p(u, v, v)|+ |(∇3F )p(u, v, v)|
≤ 2tβ1‖u‖F,p‖v‖2f,p + 2tβ2‖v‖F,p‖u‖f,p‖v‖f,p + 2‖u‖F,p‖v‖2F,p
= 2
(√

t‖u‖f,p
(√

tβ2‖v‖F,p‖v‖f,p
)

+ ‖u‖F,p
(
tβ1‖v‖2f,p + ‖v‖2F,p

))
≤ 2
√
t‖u‖2f,p + ‖u‖2F,p

√(√
tβ2‖v‖F,p‖v‖f,p

)2
+
(
tβ1‖v‖2f,p + ‖v‖2F,p

)2

= 2‖u‖Ft,p

√
tβ2

2‖v‖2F,p‖v‖2f,p +
(
tβ1‖v‖2f,p + ‖v‖2F,p

)2

using the Cauchy-Schwarz inequality in the second-to-last step. To show that Ft is α-self-concordant,
by Eq. (3.5) it therefore suffices to show that (note we use ‖·‖g,p,1 rather than ‖·‖g,p,α!)√

tβ2
2‖v‖2F,p‖v‖2f,p +

(
tβ1‖v‖2f,p + ‖v‖2F,p

)2
≤ 1√

α
‖v‖2Ft,p. (4.5)

Without loss of generality, we can assume that ‖v‖2Ft,p = 1. Writing x := ‖v‖2f,p and y := ‖v‖2F,p, we
see that Eq. (4.5) holds provided we can prove that

β2
2txy + (β1tx+ y)2 ≤ 1

α
(4.6)

for all x, y ≥ 0 subject to the constraint tx+ y = 1. Eliminating t and x using this constraint, the
left-hand side can be written as

q(y) := β2
2(1− y)y + (β1(1− y) + y)2

=
(
(1− β1)2 − β2

2

)
y2 +

(
2β1 − 2β2

1 + β2
2

)
y + β2

1 ,

so we wish to show that q(y) ≤ 1/α for all y ∈ [0, 1]. Note that q(y) is a quadratic polynomial. We
distinguish two cases:

If (1− β1)2 < β2
2 , then q is strictly concave and attains its maximum on R at

y∗ =
2β1 − 2β2

1 + β2
2

2
(
β2

2 − (1− β1)2
) .

Note that y∗ ∈ (0, 1) if and only if

0 < 2β1 − 2β2
1 + β2

2 < 2
(
β2

2 − (1− β1)2
)
,
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which is equivalent to

β2
2 > 2 max{β1(β1 − 1), 1− β1}.

If y∗ ∈ (0, 1), then the maximum of q(y) on [0, 1] is given by

q(y∗) =

(
2β1 − 2β2

1 + β2
2

)2
4
(
β2

2 − (1− β1)2
) + β2

1 =
β4

2 + 4β1β
2
2

4
(
β2

2 − (1− β1)2
) ,

while otherwise it is attained at the boundary, where q(0) = β2
1 and q(1) = 1.

If (1− β1)2 ≥ β2
2 , then q(y) is convex and hence attains its maximum always at the boundary.

Summarizing both cases, we find that

max
y∈[0,1]

q(y) =


β4
2+4β1β2

2

4(β2
2−(1−β1)2)

if (β1 − 1)2 < β2
2 and β2

2 > 2 max{β1(β1 − 1), 1− β1},

max{β2
1 , 1} otherwise.

The condition of the first case is equivalent to

β2
2 > 2 max{β1(β1 − 1), 1− β1},

and hence we have confirmed Eq. (4.6). Thus we have proved that Ft = tf+F is an α-self-concordant
function on D. Finally, the last claim follows from Lemma 2.3

Finally, we construct a self-concordant barrier for the epigraph of any function compatible with
a barrier for its domain. This result generalizes the Euclidean result [Nes18, Thm. 5.3.5], which
constructs a self-concordant barrier for the open epigraph

E◦f := {(p, t) ∈ D ×R : f(p) < t} (4.7)

of a self-concordant barrier. As before, it holds analogously if we use the notions along geodesics in
the hypothesis and conclusion.

Theorem 4.11 (Barriers for epigraphs). Let D ⊆M be open and convex and let f, F : D → R be
convex functions. Suppose that f is (β1, β2)-compatible with F and F is 1-self-concordant. Then, the
function

G : E◦f → R, G(p, t) = − log(t− f(p)) + F (p)

defined on the open epigraph E◦f , see Eq. (4.7), is convex and α-self-concordant, with

α :=
1

max
{

1 + β2
1 , β1 + 1

2β
2
2 ,

2
3β

2
2

} . (4.8)

Furthermore, for every (p, t) ∈ E◦f one has

λG,α(p, t)2 =
λG(p, t)2

α
≤ 1 + λF (p)2

α
. (4.9)

If in addition F is strongly 1-self-concordant and f has a closed convex extension, then G is strongly
α-self-concordant. In particular, if F is a θ-barrier for D and f has a closed convex extension, then
G/α is a (1 + θ)/α-barrier for E◦f .
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Proof. We identify v ∈ T(p,t)E
◦
f
∼= TpD⊕R and write v = (vp, vt), with vp ∈ TpD and vt ∈ R. Then

the differential of G is given by

dG(p,t)(v) = − 1

t− f(p)
(vt − dfp(vp)) + dFp(vp) (4.10)

and the Hessian of G by

(∇2G)(p,t)(v, v) =
1

(t− f(p))2 (vt − dfp(vp))2

︸ ︷︷ ︸
=:A2

v

+
1

t− f(p)
(∇2f)p(vp, vp)︸ ︷︷ ︸
=:B2

v

+ (∇2F )p(vp, vp)︸ ︷︷ ︸
=:C2

v

. (4.11)

The underbraced terms are all non-negative as t > f(p) and both f and F are convex, hence we
can write them as squares of real numbers Av, Bv, Cv. This also shows that G is convex. We now
prove that G is self-concordant. The third covariant derivative can be computed as follows: for
all u, v ∈ T(p,t)E

◦
f , we have

(∇3G)(p,t)(u, v, v) = − 2

(t− f(p))3 (ut − dfp(up))(vt − dfp(vp))2

− 2

(t− f(p))2 (vt − dfp(vp))(∇2f)p(up, vp)

− 1

(t− f(p))2 (ut − dfp(up))(∇2f)p(vp, vp)

+
1

t− f(p)
(∇3f)p(up, vp, vp) + (∇3F )p(up, vp, vp)

= −2AuA
2
v − 2Av

1

t− f(p)
(∇2f)p(up, vp)−AuB2

v

+
1

t− f(p)
(∇3f)p(up, vp, vp) + (∇3F )p(up, vp, vp).

Now, we have

1

t− f(p)
(∇2f)p(up, vp) ≤ BuBv

by the Cauchy-Schwarz inequality,

1

t− f(p)

∣∣(∇3f)p(up, vp, vp)
∣∣ ≤ 2

t− f(p)

(
β1‖u‖F,p‖v‖2f,p + β2‖v‖F,p‖u‖f,p‖v‖f,p

)
= 2
(
β1B

2
vCu + β2BuBvCv

)
by compatibility of f with F as in Eq. (4.3), and finally∣∣(∇3F )p(up, vp, vp)

∣∣ ≤ 2CuC
2
v

by 1-self-concordance of F (Eq. (3.5)). Combining these estimates, we can upper bound the third
covariant derivative of G in absolute value as∣∣(∇3G)(p,t)(u, v, v)

∣∣ ≤ 2AuA
2
v + 2AvBuBv +AuB

2
v + 2

(
β1B

2
vCu + β2BuBvCv

)
+ 2CuC

2
v

= Au(2A2
v +B2

v) +Bu(2AvBv + 2β2BvCv) + Cu(2β1B
2
v + 2C2

v )
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≤
√
A2
u +B2

u + C2
u

√
(2A2

v +B2
v)2 + (2AvBv + 2β2BvCv)2 + (2β1B2

v + 2C2
v )2

≤ 2
√

(∇2G)(p,t)(u, u)
√

max
{

1 + β2
1 , β1 + 1

2β
2
2 ,

2
3β

2
2

}
(∇2G)(p,t)(v, v)

=
2√
α

√
(∇2G)(p,t)(u, u) (∇2G)(p,t)(v, v),

where the last inequality holds due to 2xy ≤ x2 + y2, as in

1

4

[
(2A2

v +B2
v)2 + (2AvBv + 2β2BvCv)

2 + (2β1B
2
v + 2C2

v )2
]

= A4
v +

(
1
4 + β2

1

)
B4
v + C4

v + 2A2
vB

2
v + 2

(
β1 + 1

2β
2
2

)
B2
vC

2
v + 2β2AvB

2
vCv

= A4
v +

(
1
4 + β2

1

)
B4
v + C4

v + 2A2
vB

2
v + 2

(
β1 + 1

2β
2
2

)
B2
vC

2
v + 2

(√
3

2 B
2
v

)(
2√
3
β2AvCv

)
≤ A4

v +
(

1
4 + β2

1

)
B4
v + C4

v + 2A2
vB

2
v + 2

(
β1 + 1

2β
2
2

)
B2
vC

2
v + 3

4B
4
v + 4

3β
2
2A

2
vC

2
v

= A4
v +

(
1 + β2

1

)
B4
v + C4

v + 2A2
vB

2
v + 2

(
β1 + 1

2β
2
2

)
B2
vC

2
v + 22

3β
2
2A

2
vC

2
v

≤ max
{

1 + β2
1 , β1 + 1

2β
2
2 ,

2
3β

2
2

}(
A2
v +B2

v + C2
v

)2
.

We conclude that G is indeed α-self-concordant with α as in Eq. (4.8).
Next, we prove the bound on the differential. Using Eq. (4.10) and with Av, Bv as in Eq. (4.11),

we have

|dG(p,t)(v)| ≤ Av + |dFp(vp)| ≤ Av + λF (p)Cv

≤
√

1 + λF (p)2
√
A2
v + C2

v ≤
√

1 + λF (p)2
√

(∇2G)(p,t)(v, v),

by definition of the Newton decrement and the Cauchy-Schwarz inequality. Thus we find that

λG,α(p, t) ≤
√

1 + λF (p)2

α
.

which establishes Eq. (4.9).
Finally, if F is strongly 1-self-concordant, hence closed convex on D, and if f has a closed convex

extension then it is easy to see that G is closed convex on E◦f , using that (s, t) 7→ − log(t − s) is
closed convex on {(s, t) ∈ R2 : s < t}.

In particular, we can apply this construction to any self-concordant function:

Corollary 4.12. Let D ⊆ M be open and convex and let f : D → R be 1-self-concordant. Then
g(p, t) = − log(t− f(p)) + f(p) is a convex and 1-self-concordant function on the open epigraph E◦f
of f , see Eq. (4.7). It satisfies λg(p, t) ≤

√
1 + λf (p)2 for all (p, t) ∈ E◦f . If f is strongly self-

concordant, so is g. In particular, if f is a θ-barrier, g is a (1 + θ)-barrier for E◦f .

To end this section, we provide a variant of the above barrier for level sets of a convex function
which does not use the notion of compatibility, but has a parameter that depends on the variation of
the function. For a convex function f : M → R and η ∈ R for which there is p ∈M with f(p) < η,
the open level set L◦f,η ⊆M is defined by

L◦f,η = {p ∈M | f(p) < η}. (4.12)

Define the logarithmic barrier Fη : L◦f,η → R by

Fη(p) = − log(η − f(p)) (p ∈ L◦f,η). (4.13)

The logarithmic barrier is convex and has bounded Newton decrements as follows.
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Lemma 4.13. The function F = Fη defined in Eq. (4.13) is smooth, closed convex, and satisfies

dFp(u)2 ≤ (∇2F )p(u, u) (u ∈ TpM, p ∈ L◦f,η). (4.14)

Proof. Let ω(p) := η − f(p) > 0. Then we have

dFp(u) =
dfp(u)

ω(p)
, (∇2F )p(u, u) =

(∇2f)p(u, u)

ω(p)
+
dfp(u)2

ω(p)2
. (4.15)

Then by convexity of f , (∇2F )p(u, u) ≥ 0 and hence F is convex, and satisfies (∇2F )p(u, u) ≥
dFp(u)2.

The closedness of F is seen as follows: Consider a sequence (pk, zk) in the epigraph of F , that
converges to (p∞, z∞) ∈ M × R. Note that f is smooth on M , and hence so is F on L◦f,η. By
continuity of f , L◦f,η is open, hence disjoint from its boundary in M . Therefore any boundary
point q of L◦f,η satisfies f(q) ≥ η. Therefore, it is impossible for p∞ to belong to the boundary
of L◦f,η: that would imply f(p∞) ≥ η, which would imply z∞ ≥ ∞. Hence p∞ ∈ L◦f,η, and
F (z∞) = limk→∞ F (pk) ≤ limk→∞ zk = z∞.

If an α-self-concordant function F satisfies Eq. (4.14), then F/α is an α-barrier. The following is
an extension of [Nes18, Thm. 5.1.4] to our setting:

Theorem 4.14 (Barriers for level sets). Suppose that f : M → R is α-self-concordant. Then
Fη : L◦f,η → R is α′-self-concordant for

α′ =
4(η − f∗)/α+ 1

(2(η − f∗)/α+ 1)2
(4.16)

where f∗ := infx∈M f(x). In particular, Fη/α′ is an O((η − f∗)/α)-barrier for L◦f,η.

When only considering self-concordance along geodesics, the constant α′ can be taken as α/((η−
f∗) + α), which is exactly what is proven in [Nes18, Thm. 5.1.4]. For self-concordance, however, a
little modification is required, which leads to a weaker constant.

Proof. Our starting point is Eq. (4.15), where we recall that ω(p) = η− f(p). Since dfp(u)2 = (dfp⊗
dfp)(u, u), and (∇v(df ⊗ df))p(u, u) = ((∇vdf)p ⊗ dfp + dfp ⊗ (∇vdf)p)(u, u) = 2dfp(u)(∇2f)p(u, v),
the covariant derivative of ∇2F is given by (suppressing p’s for convenience)

∇3F (v, u, u) =
∇3f(v, u, u)

ω
+
df(v)∇2f(u, u)

ω2
+

2df(u)∇2f(u, v)

ω2
+

2df(v)df(u)2

ω3
. (4.17)

Hence we have

|∇3F (v, u, u)| ≤
2
√
∇2f(v, v)∇2f(u, u)√

αω
+
|df(v)|∇2f(u, u)

ω2

+
2|df(u)|

√
∇2f(v, v)

√
∇2f(u, u)

ω2
+

2|df(v)|df(u)2

ω3
.

Define τ1, τ, ξ1, ξ by

τ1 :=
√
∇2f(v, v)/ω, τ :=

√
∇2f(u, u)/ω, ξ1 := |df(v)|/ω, ξ := |df(u)|/ω.

Then we have

|∇3F (v, u, u)|
2
√
∇2F (v, v)∇2F (u, u)

≤ (1/
√
α)ω1/2τ1τ

2 + (1/2)ξ1τ
2 + ξτ1τ + ξ1ξ

2

(τ2
1 + ξ2

1)1/2(τ2 + ξ2)
. (4.18)
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We bound the right-hand side as follows. By homogeneity, we may consider the optimization problem:

maximize (1/
√
α)ω1/2τ1τ

2 + (1/2)ξ1τ
2 + ξτ1τ + ξ1ξ

2 s.t. τ2
1 + ξ2

1 = 1, τ2 + ξ2 = 1.

For fixed (τ, ξ), optimizing with respect to (τ1, ξ1) is a linear optimization over the unit circle. The
optimum is ((1/

√
α)ω1/2τ2 +ξτ, (1/2)τ2 +ξ2)/

√
((1/
√
α)ω1/2τ2 + ξτ)2 + ((1/2)τ2 + ξ2)2. Then the

problem reduces to

maximize
√

((1/
√
α)ω1/2τ2 + ξτ)2 + ((1/2)τ2 + ξ2)2 s.t. τ2 + ξ2 = 1.

This optimization problem can be solved using the method of Lagrange multipliers. For convenience
set c =

√
ω/α, and define q(τ, ξ) = (

√
ω/ατ2 + ξτ)2 + (τ2/2 + ξ2)2. The system of equations

∂τq(τ, ξ) = µτ, ∂ξq(τ, ξ) = µξ, τ2 + ξ2 = 1, µ ∈ R

has six solutions (τ, ξ, µ), given by

(0,±1, 4),
1√

4c2 + 1
(2c, 1, 16c4 + 16c2 + 4),

1√
4c2 + 1

(−2c,−1, 16c4 + 16c2 + 4),

1√
4c2 + 9

(3,−2c, 16c2 + 9),
1√

4c2 + 9
(−3, 2c, 16c2 + 9)

and the largest value attained of q(τ, ξ) attained at any of these points is (2c2 + 1)2/(4c2 + 1).
Therefore, the right-hand side of Eq. (4.18) is at most√

(2(ω/α) + 1)2

4(ω/α) + 1
.

In other words, this gives that α′ = (4(ω/α)+1)/(2(ω/α)+1)2 is a suitable self-concordance constant
at p. Taking the maximum over p ∈ L◦f,η yields the choice of α′ in Eq. (4.16).

4.3 Path-following method

We now discuss a path-following method for objectives which are compatible with a barrier. To this
end, we consider the approach of [NN94, Ch. 3]. Their Euclidean framework is rather general, and
deals with self-concordant families. We specialize to self-concordant families generated by a barrier,
and generalize the corresponding path-following method to the Riemannian setting. The goal is to
minimize a convex objective function f over an open convex domain D, that is, to find p ∈ D such
that f(p) ≈ infq∈D f(q). The running assumption we shall make is that we have a barrier F for the
domain D such that the function

Ft := tf + F : D → R

is α-self-concordant for all t ≥ 0, with a parameter α that is independent of t. One way to guarantee
this is to assume that f is compatible with F , as shown before in Proposition 4.10.

The basic idea of the path-following method is as follows. The algorithm keeps track of two pieces
of data, a point p in the domain D and a time parameter t. The initial data to the algorithm is
specified by a point p−1 ∈ D such that λF,α(p−1) is small. We then choose a time parameter t0 > 0
such that we are in the quadratic convergence regime for Newton’s method for Ft0 as determined
by Theorem 3.17, say λFt0 ,α(p−1) < λ∗ = 1− 1/

√
2. Such initial data can be obtained for instance

by using the damped Newton method of Theorem 3.18, or in the Euclidean setting by a similar
(reverse) path-following method. We then iterate the following procedure for k = 0, 1, 2, . . . :
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(i) Update pk−1 to pk ∈ D by taking one Newton step with respect to Ftk , so that λFtk ,α(pk+1)
becomes smaller.

(ii) Increase tk to some tk+1 by a constant factor such that one still has λFtk+1
,α(pk) < λ∗.

Throughout the algorithm, pk will be an approximate minimizer of Ftk . One can also show that if tk
is large enough, approximate minimizers of Ftk are approximate minimizers of f .

We first determine by what factor one can increase t while keeping the Newton decrement below
some threshold. The following result is a translation of [NN94, Thm. 3.1.1] to our setting. Note that
here, we do not assume that tf + F is self-concordant.

Lemma 4.15. Let D ⊆M be open and convex, let F : D → R be a θ-barrier along geodesics, and
let f : D → R be a convex function. Furthermore, let t, t′, α, c > 0 and p ∈ D be such that(

1 +

√
θ

c
√
α

)∣∣∣∣log
t′

t

∣∣∣∣ ≤ 1−
λFt,α(p)

c
.

Then λFt,α(p) ≤ c implies that λFt′ ,α(p) ≤ c.

Proof. Let p ∈ D. Throughout the proof, all derivatives of functions defined on M will be taken at
the point p, hence we shall omit the subscript. We will assume that t′ ≥ t, but the proof for t′ ≤ t is
analogous. For every 0 6= u ∈ TpM , define a function φu : [t, t′]→ R by

φu(s) =
dFs(u)√
∇2Fs(u, u)

.

To prove the lemma, it suffices to show that |φu(t′)| ≤ c
√
α for all u 6= 0. Since φ−u = −φu, we may

assume without loss of generality that φu(t′) ≥ 0. We first compute the derivative of φu:

∂sφu(s) =
df(u)√
∇2Fs(u, u)

− 1

2

dFs(u) · ∇2f(u, u)

(∇2Fs(u, u))3/2

=
1

s
φu(s)− 1

s

dF (u)√
∇2Fs(u, u)

− 1

2

dFs(u) · ∇2f(u, u)

(∇2Fs(u, u))3/2

=
1

2s
φu(s)− 1

s

dF (u)√
∇2Fs(u, u)

+
1

2s

dFs(u) · ∇2F (u, u)

(∇2Fs(u, u))3/2

=
1

2s
φu(s)

(
1 +
∇2F (u, u)

∇2Fs(u, u)

)
− 1

s

dF (u)√
∇2Fs(u, u)

.

Let t0 be the largest s ∈ [t, t′] such that φu(t0) = 0; if such an s does not exist, then set t0 = t.
Let t∗ ∈ [t0, t

′] be such that φu(t∗) is maximal over this interval, and set φ∗u = φu(t∗). Then,

φ∗u = φu(t0) +

∫ t∗

t0

∂sφ(s) ds

≤ φu(t0) +

∫ t∗

t0

[
1

2s
φu(s)

(
1 +
∇2F (u, u)

∇2Fs(u, u)

)
+

1

s

|dF (u)|√
∇2Fs(u, u)

]
ds

≤ |φu(t0)|+
∫ t∗

t0

[
1

s
φu(s) +

1

s

√
θ

]
ds

≤ |φu(t)|+ (φ∗u +
√
θ) log

t∗

t0
;
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the second inequality follows since ∇2Fs ≥ ∇2F as f is convex and using that F is a θ-barrier; the
last inequality is ensured by our choice of t0. Using |φu(t)| ≤

√
αλFt,α(p), we obtain

φ∗u

(
1− log

t∗

t0

)
≤
√
αλFt,α(p) +

√
θ log

t∗

t0
, (4.19)

On the other hand, since t ≤ t0 ≤ t∗ ≤ t′, our assumption implies that(
1 +

√
θ

c
√
α

)
log

t∗

t0
≤

(
1 +

√
θ

c
√
α

)∣∣∣∣log
t′

t

∣∣∣∣ ≤ 1−
λFt,α(p)

c
,

or equivalently

√
αλFt,α(p) +

√
θ log

t∗

t0
≤ c
√
α

(
1− log

t∗

t0

)
. (4.20)

Combining Eqs. (4.19) and (4.20) gives φ∗u ≤ c
√
α, implying that |φu(t′)| ≤ c

√
α as desired.

We now show that for large t > 0, approximate minimizers of Ft correspond to approximate
minimizers of f . The proposition and proof we give below are adapted from [NN94, Prop. 3.2.4].

Proposition 4.16. Let D ⊆M be open and convex, let F : D → R be a θ-barrier along geodesics
for D, and let f : D → R be a smooth convex function which has a closed convex extension. For
some fixed t > 0, suppose that Ft := tf + F is α-self-concordant along geodesics for some α > 0 and
that it is bounded from below. Then for every p ∈ D such that λFt,α(p) < 1

3 , we have

f(p)− inf
q∈D

f(q) ≤
2θ + αρ(λFt,α(p))

t
,

where we recall from Eq. (3.17) that ρ(r) = −r − log(1− r).

Proof. By Lemma 2.3, Ft is closed convex and hence strongly α-self-concordant along geodesics.
Because it also has positive definite Hessians and we have λFt,α(p) < 1, Proposition 3.14 implies
that Ft attains its minimum at a unique minimizer pt,∗ ∈ D and moreover

Ft(p)− Ft(pt,∗) ≤ αρ(λFt,α(p)). (4.21)

Furthermore, Lemma 3.15 shows that if u ∈ TpM is such that Expp(u) = pt,∗, then

‖u‖Ft,p,α ≤
λFt,α(p)

1− λFt,α(p)
<

1

2

where the last inequality follows from λFt,α(p) < 1
3 . Using Corollary 3.11, we obtain that

Exppt,∗(v) = Expp(2u) ∈ D,

where v = τγ,1u is the parallel transport of u from p to pt,∗ along the geodesic γ(t) := Expp(tu). By
Proposition 4.4, it follows that

dFpt,∗(v) ≤ θ

and hence, using convexity of F and Exppt,∗(v) = p,

F (pt,∗)− F (p) ≤ −dFpt,∗(−v) = dFpt,∗(v) ≤ θ. (4.22)
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Together, Eqs. (4.21) and (4.22) then show that

f(p) =
Ft(p)− F (p)

t

≤
Ft(pt,∗) + αρ(λFt,α(p))− F (p)

t

= f(pt,∗) +
F (pt,∗)− F (p) + αρ(λFt,α(p))

t

≤ f(pt,∗) +
θ + αρ(λFt,α(p))

t
. (4.23)

We will now give an upper bound on f(pt,∗) − f(q) for every q ∈ D. Let v ∈ Tpt,∗M be
such that Exppt,∗(v) = q. Using the convexity of f , the fact that pt,∗ is a minimizer of Ft, and
Proposition 4.4 (in this order) gives

f(pt,∗)− f(q) ≤ −dfpt,∗(v) =
dFpt,∗(v)

t
≤ θ

t
.

Combining this with Eq. (4.23) and optimizing over q ∈ D gives the desired bound.

We now come to the main result of this section, giving a path-following method which converges
to a minimizer of the objective, generalizing [NN94, Prop. 3.2.4] to our setting.

Theorem 4.17. Let D ⊆M be an open, convex, and bounded domain. Let F : D → R be a θ-barrier
for D, and let f : D → R be a smooth convex function with a closed convex extension. Let α > 0
be such that Ft := tf + F is α-self-concordant for all t ≥ 0. Choose 1 > λ(1) > λ(2) > 0 such that(

λ(1)

1−λ(1)

)2
≤ λ(2) < 1

3 ; a suitable choice is given by λ(1) = 1
4 , λ

(2) = 1
9 . Finally, let p ∈ D be given

such that λF,α(p) < λ(1), and assume that p is not a minimizer of f . Define a sequence of time
parameters

t0 =

√
αλ(1) − λF (p)

‖dfp‖∗F,p
, t` = t0 · exp

(
`
λ(1) − λ(2)

λ(1) +
√
θ/α

)
for ` = 0, 1, 2, . . . ,

and a sequence of points

p−1 = p, p` = (p`−1)Ft` ,+ for ` = 0, 1, 2, . . . .

i.e., p` is the Newton iterate of p`−1 with respect to Ft`. Then this sequence is well-defined, in the
sense that p` ∈ D for all ` ≥ 0, and it satisfies

f(p`)− inf
q∈D

f(q) ≤ 2(θ + α)

t`
=

2(θ + α)‖dfp‖∗F,p√
αλ(1) − λF (p)

exp

(
−` · λ(1) − λ(2)

λ(1) +
√
θ/α

)
.

Proof. By the assumptions on f and strong self-concordance of F , we see from Lemma 2.3 that Ft is
strongly α-self-concordant on D for all t ≥ 0. We shall prove by induction on ` that for every ` ≥ 0,
we have p` ∈ D and

λFt` ,α(p`−1) ≤ λ(1), λFt` ,α(p`) ≤ λ(2).

Let us first check that λFt0 ,α(p−1) = λFt0 ,α(p) ≤ λ(1). For every u 6= 0, we have

|d(Ft0)p(u)| ≤ t0|dfp(u)|+ |dFp(u)|
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= (
√
αλ(1) − λF (p))

|dfp(u)|
‖dfp‖∗F,p

+ |dFp(u)|

≤ (
√
αλ(1) − λF (p))‖u‖F,p + ‖dFp‖∗F,p‖u‖F,p

=
√
αλ(1)‖u‖F,p

≤
√
αλ(1)‖u‖Ft0 ,p,

hence ‖d(Ft0)p‖∗Ft0 ,p ≤
√
αλ(1), which is equivalent to λFt0 ,α(p) ≤ λ(1). Next, if λFt` ,α(p`−1) ≤ λ(1)

for some ` ≥ 0, then by applying Theorem 3.16, we find that the Newton iterate p` is in D satisfies

λFt` ,α(p`) ≤

(
λ(1)

1− λ(1)

)2

≤ λ(2).

Lastly, it remains to verify that if λFt` ,α(p`) ≤ λ(2) for some ` ≥ 0, then λFt`+1
,α(p`) ≤ λ(1). The t`

are chosen exactly so that(
1 +

√
θ

λ(1)
√
α

)∣∣∣∣log
t`
t`+1

∣∣∣∣ =

(
1 +

√
θ

λ(1)
√
α

)(
λ(1) − λ(2)

λ(1) +
√
θ/α

)
= 1− λ(2)

λ(1)
.

We conclude that λFt`+1
,α(p) ≤ λ(1) by Lemma 4.15. Lastly, the bound on f(pl)− infq∈D f(q) follows

from Proposition 4.16, where we use that λ(2) < 1
3 and ρ(1

3) ≈ 0.072 ≤ 2.

We end with a simple but useful lemma to upper bound the quantity ‖dfp‖∗F,p.

Lemma 4.18. Let p ∈ D, and f, F : D → R be such that f is convex and F is strongly 1-self-
concordant on D. Then

‖dfp‖∗F,p ≤ sup
q∈D

f(q)− f(p) ≤ sup
q∈D

f(q)− inf
q∈D

f(q).

Proof. By Corollary 3.8, the Dikin ellipsoid B := B◦F,p(1) of radius 1 is contained in D. Then the
convexity of f gives

‖dfp‖∗F,p = sup
u∈TpM
‖u‖F,p<1

|dfp(u)| = sup
u∈TpM
‖u‖F,p<1

dfp(u) ≤ sup
u∈TpM
‖u‖F,p<1

f(Expp(u))− f(p) = sup
q∈B

f(q)− f(p),

which is at most supq∈D f(q)− f(p) as B ⊆ D.

5 The squared distance function

In this section we discuss self-concordance of the squared distance function to a point. In Section 5.1
we recall some useful formulas that apply for arbitrary Hadamard manifolds. In Section 5.2 we
focus on the space PD(n) of positive-definite complex n× n matrices and prove that the distance
squared to any point is self-concordant. This relies on explicit computations of higher covariant
derivatives. Next, in Section 5.3 we use these same formulas to deduce stronger self-concordance
estimates in the case of hyperbolic space Hn, and use these to construct a barrier for the distance
function rather than its square; all this generalizes readily to the model spaces of arbitrary constant
negative curvature. The results of this section are applied in Section 6.
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5.1 Hadamard manifolds

Let M be a Hadamard manifold, i.e., a simply-connected geodesically-complete Riemannian manifold
with non-positive sectional curvature (cf. Section 2.3). Fix p0 ∈M and consider the function that
computes the squared distance to the point p0, that is,

f : M → R, f(p) = d(p, p0)2.

Then it is known that f is 2-strongly convex (which follows from variational principles for the energy
of a curve, cf. [Lee18, Thm. 10.22]). In fact, this is a defining property of the more general class
of CAT(0)-spaces [BH99]. It will also be useful to consider the distance to p0,

g : M → R, g(p) = d(p, p0),

which is still convex. The following lemma summarizes well-known properties of these functions.

Lemma 5.1. Let M be a Hadamard manifold, let p0 ∈ M , and define f, g : M → R by f(p) =
d(p, p0)2 and g(p) = d(p, p0). Then f is 2-strongly convex and g is convex. For every p 6= p0, g is
smooth at p, and the differentials and Hessians satisfy

dfp = 2g(p)dgp = −2 〈Exp−1
p (p0), ·〉

p
, (5.1)

∇2f = 2g∇2g + 2 dg ⊗ dg � 2 dg ⊗ dg =
df ⊗ df

2f
. (5.2)

Proof. The strong convexity of f and convexity of g hold on any CAT(0)-space [BH99, Cor. II.2.5].
Whenever p 6= p0, f(p) 6= 0 and hence g =

√
f is smooth at p. By the chain rule, df = 2g dg.

To compute these, note that g is 1-Lipschitz by the triangle inequality, so |dgp(u)| ≤ ‖u‖p for
all u ∈ TpM . But since the geodesic from p in the direction Exp−1

p (p0) has constant speed and
reaches p0 at time 1, it follows that

dgp(Exp−1
p (p0)) = −g(p).

As ‖Exp−1
p (p0)‖p = g(p), this means that the Cauchy–Schwarz inequality applied to

g(p) = |dgp(Exp−1
p (p0))| = |〈(grad g)p,Exp−1

p (p0)〉| ≤ ‖(grad g)p‖p‖Exp−1
p (p0)‖p ≤ ‖Exp−1

p (p0)‖p

holds with equality, hence (grad g)p = −g(p)−1Exp−1
p (p0) and dgp = −g(p)−1 〈Exp−1

p (p0), ·〉,
and dfp = −2 〈Exp−1

p (p0), ·〉
p
follows. We finally derive the formulas for the Hessians. Apply-

ing the product rule to df = 2g dg yields

(∇2f)p = 2g(p)(∇2g)p + 2 dgp ⊗ dgp,

The lower bound in Eq. (5.2) follows since (∇2g)p � 0, as a consequence of the convexity of g.

Corollary 5.2. The Newton decrement of f(p) = d(p, p0)2 is given by λf (p) =
√

2 d(p, p0).

Proof. Recall the variational characterization of the Newton decrement in Eq. (3.20):

λf (p) = min
{
λ ≥ 0 : dfp ⊗ dfp � λ2 (∇2f)p

}
.

Thus, λf ≤
√

2f by Eq. (5.2). As g is linear in the direction Exp−1
p (p0), its Hessian vanishes in this

direction and so we in fact have equality, by the first equality in Eq. (5.2).
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We use Lemma 5.1 to prove the following result, which is used later to prove Theorem 5.22.

Lemma 5.3. Let Ψ: M ×R×R>0 → R be the function defined by

Ψ(p,R, S) = R− S−1d(p, p0)2.

Then Ψ is concave, with Hessian given by

∇2Ψ = −
2
(
S−1g dS − dg

)⊗2
+
(
∇2f − 2dg ⊗ dg

)
S

� 0,

where f, g are as in Lemma 5.1, dS is the differential of the projection (p,R, S) 7→ S, and we write dg
for the differential of (p,R, S) 7→ g(p) by a slight abuse of notation. Moreover, for u = (up, uR, uS)
and w = (wp, wR, wS) tangent vectors at (p,R, S), one has

∇3Ψ(w, u, u) = −2
uS
S
∇2Ψ(w, u)− wS

S
∇2Ψ(u, u)− 1

S
∇3f(wp, up, up).

Proof. Clearly,
dΨ = dR+ S−2f dS − S−1 df.

Since ∇dR ≡ 0 ≡ ∇dS, this yields

∇2Ψ = −2S−3f dS ⊗ dS + S−2 df ⊗ dS + S−2 dS ⊗ df − S−1∇2f. (5.3)

We now use Eqs. (5.1) and (5.2) to rewrite the above as

∇2Ψ = −2S−3g2 dS ⊗ dS + 2S−2g dg ⊗ dS + 2S−2g dS ⊗ dg − S−1(2g∇2g + 2 dg ⊗ dg)

= −2S−1(S−1g dS − dg)⊗2 − 2S−1g∇2g.

Taking one more derivative in Eq. (5.3), we obtain

∇3Ψ(w, u, u) = 6S−4f dS(w) dS(u)2 − 2S−3df(w) dS(u)2 − 4S−3dS(w) df(u) dS(u)

+ 2S−2∇2f(w, u) dS(u) + S−2dS(w)∇2f(u, u)− S−1∇3f(w, u, u)

= −2S−1dS(u)∇2Ψ(w, u)− S−1dS(w)∇2Ψ(u, u)− S−1∇3f(w, u, u).

Corollary 5.4. Let D = {(p,R, S) ∈M×R>0×R>0 : RS−f(p) > 0}. Then the function F : D →
R defined by F (p,R, S) = − log(R− S−1d(p, p0)2) is convex.

5.2 Positive definite matrices

In this subsection, we specialize to the space PD(n) = PD(n,C) of positive definite Hermitian n× n
matrices, which is a Hadamard manifold when endowed with a well-known Riemannian metric.
We collect a number of well-known results from the literature and then derive explicit formulas
for the higher derivatives of the squared distance on this space by using techniques from matrix
analysis. The main result of this section is Theorem 5.15, where we show that the squared distance
is self-concordant on PD(n). As explained in the introduction, this implies that the squared distance
is self-concordant on arbitrary Hadamard symmetric spaces.

We will often use notation of the form h(P ) where h : R>0 → R is some scalar-valued function,
which refers to the Hermitian matrix obtained by expanding P in an eigenbasis and applying h to
its eigenvalues. Examples include but are not limited to expressions of the form P t with t ∈ R,
P + λ = P + λI where λ ∈ R, log(P ), et cetera.
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We think of PD(n) as an open submanifold of the n×n Hermitian matrices Herm(n) ⊆ Cn×n, so
that we can identify TPPD(n) ∼= Herm(n) at any P ∈ PD(n). Concretely, X ∈ Herm(n) corresponds
to the tangent vector of the curve t 7→ P + Xt = P 1/2(I + tP−1/2XP−1/2)P 1/2 at t = 0. These
curves would be geodesics if we equipped PD(n) with the Euclidean metric inherited from Herm(n).
Instead, we introduce the following Riemannian metric on PD(n):

〈X,Y 〉P := Tr
[
(P−1/2XP−1/2)(P−1/2Y P−1/2)

]
= Tr

[
P−1XP−1Y

]
(5.4)

for X,Y ∈ TPPD(n). This is real-valued as the Hilbert-Schmidt inner product of two Hermitian
matrices. Interstingly, 〈·, ·〉P is also the Euclidean Hessian of the function P 7→ − log det(P ), which
is a Euclidean self-concordant barrier for PD(n).

It is immediate from the definition that for every P ∈ PD(n), the bijection Q 7→ P 1/2QP 1/2 is a
Riemannian isometry of PD(n), meaning it preserves inner products between tangent vectors. Then
it also preserves the distance between any two points: for any P,Q,Q′ ∈ PD(n), we have

d(Q,Q′) = d(P 1/2QP 1/2, P 1/2Q′P 1/2).

Therefore, if one is interested in properties of squared distance f(P ) = d(P, P0)2, one may choose P0 =
I without loss of generality. This will be convenient for our purposes.

We now give explicit formulas for the geodesics on PD(n). For any P ∈ PD(n), the exponential
map at P reads

ExpP (X) = P 1/2eP
−1/2XP−1/2

P 1/2 (5.5)

and hence the geodesics through P take the form

P (t) = ExpP (tX) = P 1/2etP
−1/2XP−1/2

P 1/2.

In particular, the geodesics through P = I are of the form ExpI(tX) = etX . From the description of
the exponential map above it follows that ExpP : TPPD(n)→ PD(n) is a smooth bijection for all P ,
with smooth inverse given by

Exp−1
P (Q) = P 1/2 log(P−1/2QP−1/2)P 1/2.

By the Hopf–Rinow theorem, there exists a length-minimizing geodesic, which is unique by the
bijectivity of the exponential map; hence the distance induced by the Riemannian metric is

d(P,Q) = ‖log(P−1/2QP−1/2)‖HS = ‖log(Q−1/2PQ−1/2)‖HS.

where ‖·‖HS denotes the Hilbert–Schmidt (Frobenius) norm, because d(P,Q) = ‖Exp−1
P (Q)‖P .

The geodesics on PD(n) can be naturally described using the operator geometric mean, which is
defined for P,Q = PD(n) and t ∈ [0, 1] to be

P#tQ := P 1/2(P−1/2QP−1/2)tP 1/2.

The above formula for the geodesics through P shows that this is equal to ExpP (tExp−1
P (Q)), and

so it is the “time-t”-geodesic-midpoint between P and Q.
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One can also explicitly describe the parallel transport along geodesics. For P,Q ∈ PD(n), the
parallel transport of X ∈ TPPD(n) along the unique geodesic from P to Q is given by9

τP→Q(X) = P 1/2(P−1/2QP−1/2)1/2P−1/2XP−1/2(P−1/2QP−1/2)1/2P 1/2. (5.6)

This may be conveniently restated as

τP→ExpP (tY )(X) = P 1/2(e
t
2
P−1/2Y P−1/2

)P−1/2XP−1/2(e
t
2
P−1/2Y P−1/2

)P 1/2 (5.7)

which for the geodesics emanating from the identity specializes to

τI→etZ (X) = e
t
2
ZXe

t
2
Z ,

i.e.,

τI→Q(X) = Q1/2XQ1/2.

Now consider a function f : PD(n) → R. It follows from the previous considerations and the
discussion in Section 2.3 that the third derivative at I ∈ PD(n) can be computed as follows for
X,Z ∈ TIPD(n):

(∇3f)I(Z,X,X) = ∂t=0(∇2f)I(τI→expI(tZ)(X), τI→expI(tZ)(X))

= ∂t=0(∇2f)I(e
t
2
ZXe

t
2
Z , e

t
2
ZXe

t
2
Z).

Although we will not need it explicitly, one can also use the above to determine the covariant
derivative of a general vector field. More precisely, the covariant derivative∇XY , whereX ∈ TPPD(n)
and Y (t) is a vector field defined along the curve P (t) = ExpP (tX), is given by

∇XY = ∂t=0τP (t)→P (Y (t)).

For P = I, we have

∇XY = ∂t=0τetX→I(Y (t)) = ∂t=0e
− t

2
XY (t)e−

t
2
X = Ẏ (0)− 1

2
{X,Y (0)}

where we write {X,Y } = XY + Y X for the anticommutator of X and Y .
Lastly, we have an explicit expression for the Riemann curvature tensor on PD(n). The fact

that the curvature tensor is of this form follows from [Hel79, Thm. IV.4.2], and the prefactor
of 1

4 can be deduced from the fact that SPD(2,C) is a model space for constant curvature −1
2

(the prefactor appears because we work directly with positive-definite matrices, rather than the
quotient GLn(C)/U(n)). Alternatively, one may consult the self-contained explicit proof available
in [DP14]:

9One way of proving Eq. (5.6) is as follows [Sak96, Lem. IV.6.2]: for every P ∈ PD(n), the geodesic inversion
map sP : PD(n) → PD(n) given by sP (Q) = ExpP (−Exp−1

P (Q)) = PQ−1P is an isometry (more generally, the
maps Q 7→ Q−1 and Q 7→ AQA∗ are isometries for every A ∈ GL(n,C)). Let P0, P1 ∈ PD(n), and let γ : R→M be
the unique geodesic such that γ(0) = P0 and γ(1) = P1. Then sP0(γ(t)) = γ(−t) and sP1(γ(t)) = γ(1 − t). If Xt
is a parallel vector field along γ, then so is d(sP0)(X−t), as sP0 is an isometry; but d(sP0)P0 = −ITP0

PD(n), and
so d(sP0)(X−t) = −Xt by the uniqueness of parallel vector fields. Similarly, d(sγ(1/2))(X1/2−t) = −X1/2+t, and so
d(sγ(1/2) ◦ sP0)(X0) = X1 = τP0→P1(X0). Expanding the definition of sγ(1/2) ◦ sP0 (also called a transvection), it is
easy to see that its derivative is exactly the right-hand side in Eq. (5.6).
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Lemma 5.5. The Riemann curvature (1, 3)-tensor at P ∈ PD(n) is given by

R(X,Y )Z = −1

4
[[P−1/2XP−1/2, P−1/2Y P−1/2], P−1/2ZP−1/2]

for every X,Y, Z ∈ TPPD(n). In particular, the curvature tensor is parallel along any geodesic.

This last property may be more succinctly stated as follows: if one thinks of R as a (0, 4)-tensor,
then ∇R ≡ 0. Therefore PD(n) is a locally symmetric space, see [Lee18, Thm. 10.19], and because it
is simply connected, it is also a globally symmetric space. A simple computation using the above
lemma shows that PD(n) has sectional curvatures bounded by an n-independent constant with our
normalization of the metric:

Lemma 5.6. The space PD(n) has all sectional curvatures in [−1
2 , 0].

Proof. Let X,Y ∈ TIPD(n) = Herm(n) have ‖X‖I = ‖Y ‖I = 1 and 〈X,Y 〉I = Tr[XY ] = 0.
Assume without loss of generality that Y is diagonal. Then

〈R(X,Y )Y,X〉 = −1

4

n∑
i,j=1

|Xij |2(Yjj − Yii)2.

This is clearly at most 0, and

n∑
i,j=1

|Xij |2(Yjj − Yii)2 ≤ 2

n∑
i,j=1, i 6=j

|Xij |2(Y 2
jj + Y 2

ii ) ≤ 2

n∑
i,j=1

|Xij |2‖Y ‖2I = 2‖X‖2I‖Y ‖2I = 2,

so K(X,Y ) ≥ −1
2 .

We now turn to the task of computing higher derivatives of the squared distance on PD(n). Recall
from Section 5.2 that the distance between P,Q ∈ PD(n) is given by d(P,Q)2 = ‖log(P−1/2QP−1/2)‖2HS.
To differentiate this, we use the following integral expression for the operator logarithm: for Q ∈
PD(n), one has

log(Q) =

∫ ∞
0

(
1

I + λ
− 1

Q+ λ

)
dλ, (5.8)

where Q+ λ is shorthand for Q+ λI, and 1
Q+λ = (Q+ λ)−1. The advantage of this expression is

that it is an integral of rational functions of Q, which is straightforward to differentiate using the
Leibniz integral rule and the following rule for differentiating matrix inverses: if t 7→ Qt ∈ PD(n) is
a smooth curve defined on an open interval containing 0, then

∂t=0(Q−1
t ) = −Q−1

0 (∂t=0Qt)Q
−1
0 , (5.9)

as can be seen from differentiating the identity QtQ−1
t = I.

We now use this integral representation to compute derivatives of the squared distance. For
convenience, we consider only the squared distance to the identity I ∈ PD(n), but this is without
loss of generality; to compute the derivatives of d(·, P )2 for P ∈ PD(n), one may use the fact that
Q 7→ P 1/2QP 1/2 is an isometry sending I to P . First, we record the formula for the first derivative.

Proposition 5.7. Let f(Q) = d(Q, I)2 = ‖log(Q)‖2HS. Then for U ∈ TQPD(n),

dfQ(U) = 2 Tr[Q−1 log(Q)U ] = 2 〈Q1/2 log(Q)Q1/2, U〉Q ,

where 〈·, ·〉Q is the Riemannian metric in PD(n) defined in Eq. (5.4).
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Proof. Let Qt = ExpQ(tU) be the geodesic through Q in the direction U . Then by Eq. (5.5), we
have

Qt = Q1/2etQ
−1/2UQ−1/2

Q1/2,

and so

∂t=0f(Qt) = ∂t=0‖log(Qt)‖2HS = 2 Tr[log(Q) · ∂t=0 log(Qt)].

To evaluate ∂t=0 log(Qt), we use Eq. (5.8) and Eq. (5.9) to obtain

∂t=0 log(Qt) = ∂t=0

∫ ∞
0

(
1

I + λ
− 1

Qt + λ

)
dλ =

∫ ∞
0

1

Q+ λ
U

1

Q+ λ
dλ.

Therefore

∂t=0f(Qt) = 2 Tr

[
log(Q) ·

∫ ∞
0

1

Q+ λ
U

1

Q+ λ
dλ

]
= 2 Tr

[
Q−1 log(Q) · U

]
,

where we used cyclicity of the trace and
∫∞

0
1

(q+λ)2
dλ = q−1.

Remark 5.8. In the above proof, one may also use the curve t 7→ Q+ tU instead of the geodesic,
because they agree in first order: it holds that ∂t=0(Q + tU) = U = ∂t=0ExpQ(tU), and hence
first derivatives of functions are not affected. However, for the second derivative, (∇2f)P (U,U) =
∂2
t=0f(ExpQ(tU)) and ∂2

t=0f(Q + tU) are generally distinct; a simple example is given by the
function f(P ) = Tr[P ], differentiating at Q = I.

Remark 5.9. One may observe that

−Q1/2 log(Q)Q1/2 = Exp−1
Q (I)

so that dfQ(U) = −2 〈Exp−1
Q (I), U〉

Q
, which also follows from Lemma 5.1.

In the next theorem, we compute the higher covariant derivatives of the squared distance. We
write {A,B} := AB +BA for the anticommutator of two matrices.

Theorem 5.10. Let f(Q) = d(Q, I)2, and U,W ∈ TQPD(n). Set Ũ = Q−1/2UQ−1/2 and W̃ =
Q−1/2WQ−1/2. Then the second derivative of f satisfies

(∇2f)Q(U,U) =

∫ ∞
0

dλTr

[
1

Q+ λ
U

1

Q+ λ
{Q−1, U}

]
=

∫ ∞
0

dλTr

[
1

Q+ λ
Ũ

1

Q+ λ
{Q, Ũ}

]
,

and the third derivative is given by

(∇3f)Q(W,U,U)

=

∫ ∞
0

dλTr

[
1

Q+ λ
Ũ

1

Q+ λ
(ŨW̃Q+QW̃Ũ)− 1

Q+ λ
(Ũ

Q

Q+ λ
W̃ + W̃

Q

Q+ λ
Ũ)

1

Q+ λ
{Ũ , Q}

]
.

Proof. For the second derivative, we use the identity (∇2fQ)(U,U) = ∂2
t=0f(Qt) where Qt =

ExpQ(tU). From Proposition 5.7 it follows that

∂tf(Qt) = 2 Tr
[
Q−1
t log(Qt)(∂tQt)

]
.
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As Qt = ExpQ(tU) = Q1/2etQ
−1/2UQ−1/2

Q1/2, we have

∂tQt = UQ−1/2etQ
−1/2UQ−1/2

Q1/2, ∂2
t=0Qt = UQ−1U,

which together with Eq. (5.9) leads to

1

2
∂2
t=0f(Qt) = Tr

[
(−Q−1UQ−1 log(Q)U) +Q−1(∂t=0 log(Qt))U +Q−1 log(Q)(∂2

t=0Qt)
]

= Tr

[
Q−1

∫ ∞
0

1

Q+ λ
U

1

Q+ λ
dλU

]
=

∫ ∞
0

Tr

[
1

Q+ λ
U

1

Q+ λ
UQ−1

]
dλ.

To replace the last UQ−1 by 1
2{U,Q

−1}, note that

Tr[(Q+λ)−1U(Q+λ)−1UQ−1] = Tr[(Q+λ)−1UQ−1(Q+λ)−1U ] = Tr[(Q+λ)−1U(Q+λ)−1Q−1U ]

where we first used cyclicity and next that Q−1 and (Q + λ)−1 commute. Using the definition
Ũ = Q−1/2UQ−1/2 yields the statement in the lemma.

We now turn to the third derivative. Let U,W ∈ TQPD(n), set Qt = ExpQ(tW ) and let
Ut = τQ→Qt(U), explicitly given in Eq. (5.7):

Ut = τQ→Qt(U) = Q1/2(e
t
2
Q−1/2WQ−1/2

)Q−1/2UQ−1/2(e
t
2
Q−1/2WQ−1/2

)Q1/2.

Then
(∇3f)Q(W,U,U) = ∂t=0(∇2f)Qt(Ut, Ut).

The two basic derivatives that we need are

∂t=0Ut =
1

2
(WQ−1U + UQ−1W ), ∂t=0Qt = W.

This yields, again using Eq. (5.9),

∂t=0(∇2f)Qt(Ut, Ut) = ∂t=0

∫ ∞
0

Tr

[
1

Qt + λ
Ut

1

Qt + λ
{Q−1

t , Ut}
]
dλ

=

∫ ∞
0

Tr

[
− 1

Q+ λ
W

1

Q+ λ
U

1

Q+ λ
{Q−1, U}

]
+

1

2
Tr

[
1

Q+ λ
(WQ−1U + UQ−1W )

1

Q+ λ
{Q−1, U}

]
+ Tr

[
− 1

Q+ λ
U

1

Q+ λ
W

1

Q+ λ
{Q−1, U}

]
+ Tr

[
1

Q+ λ
U

1

Q+ λ
{−Q−1WQ−1, U}

]
+

1

2
Tr

[
1

Q+ λ
U

1

Q+ λ
{Q−1,WQ−1U + UQ−1W}

]
dλ

=

∫ ∞
0

Tr
[ 1

Q+ λ
U

1

Q+ λ
WQ−1UQ−1 +

1

Q+ λ
UQ−1W

1

Q+ λ
UQ−1

− 1

Q+ λ
(W

1

Q+ λ
U + U

1

Q+ λ
W )

1

Q+ λ
{Q−1, U}

]
dλ.

Substituting W = Q1/2W̃Q1/2 and U = Q1/2ŨQ1/2 yields the desired expression.
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We now explicitly compute the integral expressions in Theorem 5.10 in terms of the entries of the
matrices Ũ and W̃ . We assume without loss of generality that Q = diag(q1, . . . , qn) by considering
the expression in an eigenbasis of Q. Furthermore, we shall assume that all qi are distinct; expressions
at general Q may be obtained by taking limits, but the inequalities we will derive automatically
hold for all Q by continuity. Let us start with the second derivative. Take U ∈ Herm(n). Then
for Ũ = Q−1/2UQ−1/2 we have

(∇2f)Q(U,U) =

∫ ∞
0

dλTr

[
1

Q+ λ
Ũ

1

Q+ λ
{Ũ , Q}

]
=
∑
k,l

∫ ∞
0

dλ
1

qk + λ
Ũkl

1

ql + λ
Ũlk(qk + ql)

= 2
∑
k

|Ũkk|2 +
∑
k 6=l
|Ũkl|2

(qk + ql) log(qk/ql)

qk − ql
. (5.10)

where we evaluated the integral using the identities∫ ∞
0

1

(x+ λ)2
dλ =

1

x
,

∫ ∞
0

1

(x+ λ)(y + λ)
dλ =

log(x/y)

x− y
(5.11)

for distinct x, y > 0. We now evaluate the third derivative in a similar manner. The only new
difficulty is in performing the integration with respect to λ, for which we record the following lemma.

Lemma 5.11. For distinct x, y, z > 0, one has∫ ∞
0

1

(x+ λ)(y + λ)(z + λ)
dλ =

z(log(x)− log(y)) + y(log(z)− log(x)) + x(log(y)− log(z))

(x− y)(y − z)(x− z)
.

Proof. One can deduce from a partial fraction decomposition that

(x− y)(y − z)(x− z)
(x+ λ)(y + λ)(z + λ)

=
y − z
x+ λ

+
z − x
y + λ

+
x− y
z + λ

,

and the latter integrates to

−
∫ ∞

0

y − z
x+ λ

+
z − x
y + λ

+
x− y
z + λ

dλ =

∫ ∞
0

(y − z)
(

1

1 + λ
− 1

x+ λ

)
dλ

+

∫ ∞
0

(z − x)

(
1

1 + λ
− 1

y + λ

)
dλ

+

∫ ∞
0

(x− y)

(
1

1 + λ
− 1

z + λ

)
dλ

= (y − z) log(x) + (z − x) log(y) + (x− y) log(z).

For convenience we will use the following notation. Define H : R2
>0 → R by

H(x, y) =
(x+ y) log(x/y)

x− y
, (5.12)

if x, y > 0 are distinct, and

H(x, x) = 2. (5.13)
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Next, we define T : R3
>0 → R by

T (x, y, z) =
x+ y

x− y

(
x+ z

x− z
log(x/z)− y + z

y − z
log(y/z)

)
, (5.14)

for distinct x, y, z > 0. Then T extends to a continuous function on R3
>0, such that

T (x, x, z) =
2x2 − 2z2 − 4xz log(x/z)

(x− z)2
,

T (x, y, x) =
2x2 − 2y2 − (x+ y)2 log(x/y)

(x− y)2
,

T (x, x, x) = 0.

(5.15)

Furthermore, T (x, y, z) is symmetric in x and y, for every c > 0 satisfies T (cx, cy, cz) = T (x, y, z),
and T (x−1, y−1, z−1) = −T (x, y, z). Then we have the following proposition.

Proposition 5.12. Let f(Q) = d(Q, I)2 and U,W ∈ TQPD(n). Then for Q = diag(q1, . . . , qn), and
Ũ = Q−1/2UQ−1/2, W̃ = Q−1/2WQ−1/2, one has

(∇2f)Q(U,U) =
n∑

k,l=1

|Ũkl|2H(qk, ql), (5.16)

(∇3f)Q(W,U,U) =
n∑

k,l,m=1

W̃klŨlmŨmkT (qk, ql, qm)

where H : R2
>0 → R and T : R3

>0 → R are defined in Eqs. (5.12) to (5.15), and the subscripts refer
to the respective matrix entries.

Proof. The formula for the Hessian of f was already derived in Eq. (5.10). For the third derivative,
one can evaluate the trace in Theorem 5.10 as

Tr
[
W̃Q(Q+ λ)−1Ũ(Q+ λ)−1Ũ

]
=
∑
k,l,m

W̃kl
ql

ql + λ
Ũlm

1

qm + λ
Ũmk,

Tr
[
W̃ Ũ(Q+ λ)−1Ũ(Q+ λ)−1Q

]
=
∑
k,l,m

W̃klŨlm
1

qm + λ
Ũmk

qk
qk + λ

,

Tr
[
W̃ (Q+ λ)−1{Ũ , Q}(Q+ λ)−1Ũ(Q+ λ)−1Q

]
=
∑
k,l,m

W̃klŨlm
ql + qm

(ql + λ)(qm + λ)
Ũmk

qk
qk + λ

,

Tr
[
W̃Q(Q+ λ)−1Ũ(Q+ λ)−1{Ũ , Q}(Q+ λ)−1

]
=
∑
k,l,m

W̃kl
ql

ql + λ
Ũlm

qm + qk
(qm + λ)(qk + λ)

Ũmk,

so that the third derivative satisfies

(∇3f)Q(W,U,U)

=

∫ ∞
0

dλ
∑
k,l,m

W̃klŨlmŨmk

(
qk

(qk + λ)(qm + λ)

(
1− ql + qm

ql + λ

)
+

ql
(ql + λ)(qm + λ)

(
1− qk + qm

qk + λ

))
.

Using Eq. (5.11) and Lemma 5.11, this integrates to (interpreting expressions as limits whenever not
all qk, ql, qm are distinct)∑

k,l,m

W̃klŨlmŨmk

(
qk log(qk/qm)

qk − qm
+
ql log(ql/qm)

ql − qm

)
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−
∑
k,l,m

W̃klŨlmŨmk
(qk(ql + qm) + ql(qk + qm))(qm log(qk/ql) + ql log(qm/qk) + qk log(ql/qm))

(qk − ql)(ql − qm)(qk − qm)

=
∑
k,l,m

W̃klŨlmŨmk
qk + ql
qk − ql

(
(qk + qm)(ql − qm) log(qk/qm)− (ql + qm)(qk − qm) log(ql/qm)

(ql − qm)(qk − qm)

)

=
∑
k,l,m

W̃klŨlmŨmk
qk + ql
qk − ql

(
qk + qm
qk − qm

log(qk/qm)− ql + qm
ql − qm

log(ql/qm)

)
=
∑
k,l,m

W̃klŨlmŨmkT (qk, ql, qm),

which is exactly the desired expression for the third derivative.

We note here that Proposition 5.12 can be used to verify that the squared distance is 2-strongly
convex, which is a general property of Hadamard manifolds as mentioned before. Indeed, ‖U‖Q =
‖Ũ‖HS by definition of the Riemannian metric, so one has to show that (∇2f)Q(U,U) ≥ 2‖Ũ‖2HS. In
view of Eq. (5.16), it suffices to prove that H(x, y) ≥ 2. This follows directly from the logarithmic-
arithmetic mean inequality: for every x, y > 0, one has

x− y
log(x)− log(y)

≤ x+ y

2
, (5.17)

where the quantity (x − y)/(log(x) − log(y)) is known as the logarithmic mean of x and y (it is
defined as x when x = y). It is known to be inbetween the geometric and arithmetic mean of x
and y [Car72]. A short proof of Eq. (5.17) is as follows. Assume without loss of generality that x < y;
then the lower bound of the Hermite–Hadamard inequality applied to the function z 7→ 1/z yields

log(y)− log(x)

y − x
=

1

y − x

∫ y

x

1

z
dz ≥

(
x+ y

2

)−1

.

One can also reverse this strategy: PD(n) is a Hadamard manifold, hence the squared distance
is 2-strongly convex, which in turn implies the logarithmic-arithmetic mean inequality. It would
be interesting to understand whether there is a more direct relation between the logarithmic-
arithmetic mean inequality and the 2-strong-convexity of the squared distance, for instance via
midpoint-strong-convexity considerations.

We now study the coefficients appearing in Proposition 5.12 to show that the squared distance is
self-concordant on PD(n). Let a = log(qk/qm) and b = log(ql/qm). Then

T (qk, ql, qm) = coth((a− b)/2) (a coth(a/2)− b coth(b/2)) ,

whereas the square root of the product of the coefficients of |W̃kl|2, |Ũlm|2, and |Ũmk|2 in ∇2f is√
H(qk, ql)H(ql, qm)H(qk, qm) =

√
ab(a− b) coth(a/2) coth(b/2) coth((a− b)/2).

Lemma 5.13. The constant C =
√

2 is such that for all a, b ∈ R, one has

|coth((a− b)/2) (a coth(a/2)− b coth(b/2))| ≤ C
√
ab(a− b) coth(a/2) coth(b/2) coth((a− b)/2).

As a consequence, for all x, y, z > 0, we have

|T (x, y, z)| ≤ C
√
H(x, y)H(y, z)H(x, z). (5.18)
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Remark 5.14. We conjecture, based on numerical evidence, that the optimal constant in the above
inequality is C = 1/

√
2. Let A(x, y) = (x + y)/2 and G(x, y) =

√
xy be the arithmetic and

geometric mean, respectively. The inequality for C = 1/
√

2 is equivalent to the following “reverse
arithmetic-geometric mean inequality”: for all a, b ∈ R,

A(a2 coth(a)2, b2 coth(b)2)

G(a2 coth(a)2, b2 coth(b)2)
≤ 1 +

(a− b) tanh(a− b)
2

.

Proof of Lemma 5.13. Consider h(x) = x coth(x/2). Then h is 1-Lipschitz: its derivative is given by

∂xh(x) =
sinh(x)− x
cosh(x)− 1

.

It is clear that |sinh(x)− x| ≤ cosh(x)− 1: for x ≥ 0, the difference is cosh(x)− 1− (sinh(x)− x) =
x+ e−x − 1, which is convex and has zero derivative at x = 0, where it evaluates to 0. For x ≤ 0,
the difference is cosh(x)− 1 + sinh(x)− x = ex − x− 1 ≥ 0.

We rewrite the left- and right-hand sides of the inequality:

coth((a− b)/2) (a coth(a/2)− b coth(b/2)) =
h(a− b)(h(a)− h(b))

a− b

and √
ab(a− b) coth(a/2) coth(b/2) coth((a− b)/2) =

√
h(a)h(b)h(a− b).

Therefore it suffices to prove that ∣∣∣∣h(a)− h(b)

a− b

∣∣∣∣ ≤ C
√
h(a)h(b)

h(a− b)
.

Because h is 1-Lipschitz, the left-hand side is at most 1.
We now claim that the following lower- and upper bounds on h hold: h(x) ≥ 1 + |x|

2 , and h(x) ≤
2 + |x|. The upper bound follows from h being 1-Lipschitz and h(0) = 2. For the lower bound,
we restrict to x ≥ 0, in which case it suffices to prove x cosh(x/2) ≥ (1 + x/2) sinh(x/2). This is
simple: we have x cosh(x/2) ≥ 2 sinh(x/2) (by a power series comparison for x cosh(x) and sinh(x)),
and x cosh(x/2) ≥ x sinh(x/2) since cosh(x/2) ≥ sinh(x/2). Therefore x cosh(x/2) is greater than
their average.

We now finish up the argument: we have

h(a)h(b)

h(a− b)
≥

1 + |a|+|b|
2 + |ab|

4

2 + |a|+ |b|
≥ 1

2
,

so we conclude that

C

√
h(a)h(b)

h(a− b)
≥ C√

2
≥ 1 ≥ h(a)− h(b)

a− b
.

holds for C =
√

2.

This directly implies that the squared distance is self-concordant (with an n-independent constant),
hence also proving Theorem 1.4.
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Theorem 5.15. Let C ≥ 0 be such that the inequality in Lemma 5.13 holds. Then the func-
tion f : PD(n)→ R defined by f(Q) = d(Q, I)2 satisfies for Q ∈ PD(n) and U,W ∈ TQPD(n) the
inequality ∣∣(∇3f)Q(W,U,U)

∣∣ ≤ C√(∇2f)Q(W,W ) (∇2f)Q(U,U)

In particular, from the choice C =
√

2 it follows that f is 2-self-concordant.

Proof. By Eq. (5.18) and consecutive applications of Cauchy–Schwarz, we have∣∣(∇3f)Q(W,U,U)
∣∣

≤
∑
k,l,m

|W̃klŨlmŨmk||T (qk, ql, qm)|

≤ C
∑
k,l,m

|W̃klŨlmŨmk|
√
H(qk, ql)H(ql, qm)H(qk, qm)

≤ C
√∑

k,l

|W̃kl|2H(qk, ql)

√√√√∑
k,l

(∑
m

|ŨlmŨmk|
√
H(ql, qm)H(qk, qm)

)2

≤ C
√∑

k,l

|W̃kl|2H(qk, ql)

√√√√∑
k,l

(∑
m

|Ũlm|2H(ql, qm)

)(∑
m

|Ũmk|2H(qk, qm)

)

= C

√∑
k,l

|W̃kl|2H(qk, ql)

√√√√√
∑

l,m

|Ũlm|2H(ql, qm)

2

= C
√

(∇2f)Q(W,W )(∇2f)Q(U,U).

One can use this to construct a strongly self-concordant function on the open epigraph of the
squared distance using Theorem 4.11, hence also proving Theorem 1.6. By imposing an additional
upper bound on the value of the squared distance one can use this to construct a barrier for the
epigraph, albeit with a distance-dependent barrier parameter; see Section 6 for similar constructions.

5.3 Constant negative curvature

In this subsection, we prove that the squared distance on n-dimensional hyperbolic space Hn is self-
concordant with a larger self-concordance parameter, and other refinements of the self-concordance
estimate. We use this to construct a barrier for the epigraph of the (squared) distance in Theorem 5.22,
which is useful for our applications in Section 6. Instead of dealing just with Hn, we consider,
more generally, the model spaces Mn

−κ with constant sectional curvature −κ < 0 (we recall that Hn

is Mn
−1). The main result of this subsection is the following.

Theorem 5.16. Let n ≥ 2, κ > 0, set M = Mn
−κ, let p0 ∈M , and consider f, g : M → R defined

by f(p) = d(p, p0)2 and g(p) = d(p, p0). One has the following estimates:

(i) |(∇3f)p(w, u, u)| ≤
√
κ

2

√
(∇2f)p(w,w)(∇2f)p(u, u), so f is 8

κ -self-concordant, and this con-

stant cannot be improved.
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(ii) |(∇3f)p(u, u, u)| ≤
√

8κ

27
((∇2f)p(u, u))3/2, so f is 27

2κ -self-concordant along geodesics, and this
constant cannot be improved.

(iii) |(∇3f)p(w, u, u)| ≤ 2ζ
√
κ|dgp(w)|((∇2f)p(u, u)− 2dgp(u)2)

+ 2
√
κ|dgp(u)|

√
(∇2f)p(u, u)− 2dgp(u)2

√
(∇2f)p(w,w)− 2dgp(w)2

≤ 2ζ
√
κ‖w‖p(∇2f)p(u, u) + 2

√
κ‖u‖p

√
(∇2f)p(u, u)

√
(∇2f)p(w,w),

where ζ = supx∈R|sinh(x)−1 − x−1| ≤ 1
2 .

By Lemmas 2.1 and 3.2 it suffices to prove the above estimates for M = Mn
−1 and then to

appropriately rescale the estimate when the curvature changes. The estimate in (iii) is a refinement
of self-concordance for f (albeit with different constants), because 2‖W‖2Q ≤ ‖W‖2f,Q by the 2-strong-
convexity of f (and in the presence of curvature, these norms can differ by a factor that scales with
the distance to the base point and the curvature). The estimate also implies that, in the terminology
of Section 4.2, the squared distance is compatible with every strongly convex function, which is
relevant for computing geometric means on Mn

−κ as discussed in Section 6.4. The presence of the
“correction terms” −2dgp(u)2 and similar for w will also be useful for proving Theorem 5.22, which
we use later for the purpose of computing geometric medians.

Before starting with the proof of Theorem 5.16, we provide estimates on some single-variable
functions which we use.

Lemma 5.17. (i) Define Φ: R→ R by

Φ(x) := ∂x(x coth(x)) = coth(x) + x− x coth(x)2, x 6= 0, (5.19)

and Φ(0) = 0. Then Φ is smooth, and for x ∈ R≥0, it holds that

0 ≤ Φ(x) ≤ min(x, 1), (5.20)

and limx→∞Φ(x) = 1.

(ii) It holds that

ζ := sup
x∈R≥0

Φ(x)

2x coth(x)
= sup

x∈R

∣∣∣∣ 1

sinh(x)
− 1

x

∣∣∣∣ < 1

2
. (5.21)

We note here that numerical evaluation suggests the value of ζ is approximately 0.23536, which
is slightly smaller than 1

3
√

2
≈ 0.23570.

Proof. We first prove (i). By sinh(x) = x+ (1/3!)x3 + · · · and cosh(x) = 1 + (1/2!)x2 + · · · , and by
the identities cosh(x)2 − sinh(x)2 = 1, 2 cosh(x) sinh(x) = sinh(2x), and 2 sinh(x)2 = cosh(2x)− 1,
it holds that

Φ(x) =
cosh(x)

sinh(x)
+ x(1− coth(x)2) =

sinh(x) cosh(x)− x
sinh(x)2

=
sinh(2x)− 2x

cosh(2x)− 1
=

(2x)3/3! + · · ·
(2x)2/2! + · · ·

.

From this, we deduce that Φ(x) ≥ 0 for x ≥ 0, and

lim
x→0

Φ(x) = 0 = Φ(0).

Therefore Φ is continuous at 0. The above argument shows that Φ is a ratio of the analytic
functions sinh(2x)− 2x and cosh(2x)− 1, and the continuity at 0 shows that Φ has no singularity
at 0, which is the only zero of cosh(2x)− 1; hence Φ must in fact be smooth on R.
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We now show that Φ(x) ≤ min(x, 1) for x ≥ 0. We have

lim
x→0

x coth(x) = lim
x→0

x(1 + x2/2! + · · · )
x+ x3/3! + · · ·

= 1.

By ∂x(x cothx) = Φ(x) ≥ 0 for x ≥ 0, we have

x coth(x) ≥ 1.

This implies that Φ is nondecreasing, since

∂xΦ(x) =
2(x coth(x)− 1)

sinh(x)2
≥ 0.

Thus we have
sup

x∈[0,∞)
Φ(x) = lim

x→∞
Φ(x) = lim

x→∞
cothx− x/ sinh2 x = 1.

Lastly, Φ(x) ≤ x follows from

x− Φ(x) = coth(x) (x coth(x)− 1) ≥ 0.

We now prove (ii). Observe that limx→0 sinh(x)−1 − x−1 = 0 by two applications of L’Hôpital’s
rule, so sinh(x)−1 − x−1 has a continuous extension to all of R. A similar argument shows that
coth(x)− x−1 can be continuously extended to x = 0 with value 0. For both inequalities it suffices
to treat the case x > 0. The inequality |sinh(x)−1 − x−1| ≤ 1

2 is equivalent to

|x− sinh(x)| = sinh(x)− x ≤ x sinh(x)

2
.

We have equality for x = 0, and

∂x(sinh(x)− x) = cosh(x)− 1, ∂x sinh(x) = sinh(x) + x cosh(x)

agree for x = 0 as well. Differentiating once more yields

∂2
x(sinh(x)− x) = sinh(x), ∂2

x(x sinh(x)) = 2 cosh(x) + x sinh(x).

Clearly, 1
2(2 cosh(x) + x sinh(x)) ≥ cosh(x) ≥ sinh(x), and so we have proven ζ ≤ 1

2 .

Although there are several models of Mn
−κ in which explicit computations can be performed (such

as SPD(2,C), which is M3
−1/2), for proving Theorem 5.16, we take a “model-free" approach based on

Jacobi fields. For a geodesic γ : [0, l]→M , a Jacobi field along γ is a vector field X = (X(t))t∈[0,l]

along γ, where X(t) ∈ Tγ(t)M satisfies the Jacobi equation:10

∇γ̇(t)∇γ̇(t)X(t) +R(X(t), γ̇(t))γ̇(t) = 0, t ∈ [0, l]. (5.22)

This is a linear differential equation. Therefore, the solution X(t) is uniquely determined by the
initial values X(0),∇γ̇(0)X(0), or by its boundary values X(0), X(l). Jacobi fields are relevant to
the task of differentiating the squared distance because they arise variation fields of geodesics: the
distance d(p0, p) is the minimal length of a geodesic between p0 and p, and varying p leads to a
family of geodesics. More precisely, one has the following classical result:

10The meaning of ∇γ̇(t) here is slightly different from its previous meaning: instead of acting on tensor fields on an
open subset of M , it acts on tensor fields along the curve γ. The two notions they agree whenever X(t) is locally the
restriction of a vector field on M , see [Lee18, Ch. 4] for more information.
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Lemma 5.18 (see [Sak96, p.35, 36]). Let α : [0, l] × (−ε, ε) → M be a smooth map such that the
curve t 7→ α(t, s) is a geodesic for each s ∈ (−ε, ε). Then dα(t, 0)( ∂∂s) is a Jacobi field along geodesic
t 7→ α(t, 0).

It can also be shown that every Jacobi field (along a geodesic on a compact interval) arises
in this way [Lee18, Prop. 10.4], but we will not need this fact. The derivative and the Hessian of
p 7→ f(p) = d(p, p0)2 can be determined using Jacobi fields as follows.

Lemma 5.19 (see [Sak96, p.108–110]). Let p, p0 ∈ M be distinct points, let γ : [0, l] → M be the
unique unit-speed geodesic with γ(0) = p0, γ(l) = p, and l := g(p) = d(p, p0). For u ∈ TpM , it holds
that:

(i) dgp(u) = 〈γ̇(l), u〉p,

(ii) dfp(u) = 2l〈γ̇(l), u〉p, and

(iii) (∇2f)p(u, u) = 2l 〈∇γ̇(l)X(l), u〉p, where X is the Jacobi field along γ under the boundary
condition

X(0) = 0, X(l) = u.

Note that (i) and (ii) are reformulations of Eq. (5.1), and in light of Eq. (5.2), (iii) is essentially
a claim about (∇2g)p.

We shall use the following fact about spaces of constant curvature −κ [Sak96, Lem. II.3.3]: their
Riemann curvature tensor R satisfies

R(X,Y )Z = −κ(〈Y,Z〉X − 〈X,Z〉Y ), (5.23)

where we recall that 〈·, ·〉 is the Riemannian metric. This allows one to explicitly write down the
solutions of the Jacobi equation, as given in the following lemma. While this, and explicit expressions
for the Hessian of the (squared) distance are well-known (see e.g. [Sak96, p. 136, p. 154] or [Lee18,
Prop. 10.12, Prop. 11.3]), we provide a proof for completeness.

Lemma 5.20. Let p, p0 ∈ M = Hn with p 6= p0, and let γ : [0, l] → M be the unit-speed geodesic
from p0 to p with l := g(p) = d(p, p0). Let u ∈ TpM and decompose u = u> + u⊥ such that u> =
〈u, γ̇(l)〉p γ̇(l) is the part of u parallel to γ̇(l), and u⊥ orthogonal to γ̇, i.e., 〈u⊥, γ̇(l)〉p = 0. Then
the unique Jacobi field X(t) along γ with X(0) = 0 and X(l) = u satisfies

X(t) =
t

l
τγ,t−lu

> +
sinh(t)

sinh(l)
τγ,t−lu

⊥,

where τγ,t−l : Tγ(l)M → Tγ(t)M is the parallel transport along γ.

Proof. It is clear that X(l) = u and X(0) = 0. Therefore it remains to check that X is a Jacobi
field: we have

∇γ̇(t)X(t) =
1

l
τγ,t−lu

> +
cosh(t)

sinh(l)
τγ,t−lu

⊥

and
∇γ̇(t)∇γ̇(t)X(t) =

sinh(t)

sinh(l)
τγ,t−lu

⊥.

From Eq. (5.23) it follows that

R(X(t), γ̇(t))γ̇(t) = −[X(t)− 〈X(t), γ̇(t)〉γ(t) γ̇(t)].
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Therefore

∇γ̇(t)∇γ̇(t)X(t) +R(X(t), γ̇(t))γ̇(t) =
sinh(t)

sinh(l)
τγ,t−lu

⊥ −X(t) + 〈X(t), γ̇(t)〉γ(t) γ̇(t)

= − t
l
τγ,t−lu

> + 〈X(t), γ̇(t)〉γ(t) γ̇(t)

= − t
l
〈u, γ̇(l)〉p γ̇(t) + 〈X(t), γ̇(t)〉γ(t) γ̇(t)

= 0,

where the penultimate equality follows from u> = 〈u, γ̇(l)〉γ(l) γ̇(l) and τγ,t−lγ̇(l) = γ̇(t), and the last
equality follows from τγ,t−l being an isometry and 〈u, γ̇(l)〉 = 〈u>, γ̇(l)〉.

Using this description of the Jacobi fields leads to the following description of the Hessian, and
the third covariant derivative of the squared distance.

Proposition 5.21. Let p, p0 ∈ M = Hn with p 6= p0 and let γ : [0, l] → M be the unique geodesic
from p0 to p with l := g(p) = d(p, p0). Then f(p) = d(p, p0)2 satisfies

(∇2f)p(u, u) = 2(l coth l)
(
〈u, u〉p − 〈u, γ̇(l)〉2p

)
+ 〈u, γ̇(l)〉2p, (5.24)

(∇3f)p(w, u, u) = 2Φ(l)〈w, γ̇(l)〉p
(
〈u, u〉p − 〈u, γ̇(l)〉2p

)
+ 4 (l − Φ(l)) 〈u, γ̇(l)〉p (〈w, γ̇(l)〉p〈u, γ̇(l)〉p − 〈u,w〉p) . (5.25)

Proof. By Lemma 5.20, the Jacobi field X(t) along γ with X(0) = 0 and X(l) = u satisfies

X(t) =
t

l
τγ,t−lu

> +
sinh(t)

sinh(l)
τγ,t−lu

⊥

where u = u>+u⊥ is a decomposition with u> = 〈u, γ̇(l)〉p γ̇(l) parallel and u⊥ = u−u> orthogonal
to γ̇(l), respectively. Therefore

∇γ̇(l)X(l) =
1

l
u> +

cosh(l)

sinh(l)
u⊥ =

1

l
〈u, γ̇(l)〉p γ̇(l) +

cosh(l)

sinh(l)
(u− u>) (5.26)

Now apply Lemma 5.19(iii) to obtain Eq. (5.24).
Consider the geodesic s 7→ c(s) := Expp(sw). Let γs : [0, l]→M be the geodesic from p to c(s)

(not necessarily parametrized by the arc-length). For s ∈ (−ε, ε), let ls := d(c(s), p0) and us := τc,su.
Applying Eq. (5.24) to the reparametrized geodesic t 7→ γs((l/ls)t) (t ∈ [0, ls]), we obtain

(∇2f)c(s)(us, us) = 2(ls coth(ls))〈us, us〉+ 2 (1− ls coth(ls)) (l/ls)
2〈us, γ̇s(l)〉2. (5.27)

By Eq. (2.3), the covariant derivative (∇3f)p(w, u, u) is obtained by computing the s-derivative of
Eq. (5.27) at s = 0. We use that

∂s=0ls = 〈γ̇(l), w〉, ∂s=0〈us, us〉 = 0, ∂s=0〈us, γ̇s(l)〉 = 〈u, ∇ċ(s)γ̇s(l)
∣∣
s=0
〉,

where the first equality follows from Lemma 5.19(i), and the other two follow from X〈Y, Z〉 =
〈∇XY,Z〉+ 〈Y,∇XZ〉 and ∇ċ(s)us = 0. Hence we have

(∇3f)p(w, u, u) = 2Φ(l)〈γ̇(l), w〉〈u, u〉+ 2 (−Φ(l)− 2/l + 2 coth l) 〈γ̇(l), w〉〈u, γ̇(l)〉2

+ 4 (1− l coth l) 〈u, γ̇(l)〉〈u, ∇ċ(s)γ̇s(l)
∣∣
s=0
〉
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= 2Φ(l)〈γ̇(l), w〉(〈u, u〉 − 〈u, γ̇(l)〉2)

+ 4 (1− l coth l) 〈u, γ̇(l)〉 [〈u, ∇ċ(s)γ̇s(l)
∣∣
s=0
〉 − 〈w, γ̇(l)〉〈u, γ̇(l)〉/l].

(5.28)

To compute ∇ċ(s)γ̇s(l)|s=0, consider the (smooth) map α : [0, l]× (−ε, ε) = M given by (t, s) 7→ γs(t).
Let ∂α

∂s (t, s) := dα(t,s)(
∂
∂t) and ∂α

∂t (t, s) := dα(t,s)(
∂
∂s). Then ∇ċ(s)γ̇s(l)

∣∣
s=0

= ∇ ∂α
∂s

∂α
∂t (l, 0) =

∇ ∂α
∂t

∂α
∂s (l, 0), since ∇ ∂α

∂s

∂α
∂t = ∇ ∂α

∂t

∂α
∂s + [∂α∂s ,

∂α
∂t ] and [∂α∂s ,

∂α
∂t ] = dα([ ∂∂s ,

∂
∂t ]) = 0; see [Sak96,

Lem. II.2.2] or [Lee18, Lem. 6.2]. By Lemma 5.18, Y (t) := ∂α
∂s (t, 0) is a Jacobi field along the

geodesic γ, and satisfies Y (0) = 0 and Y (l) = w. Therefore Eq. (5.26) yields

∇ċ(s)γ̇s(l)
∣∣
s=0

= ∇γ̇(l)Y (l) =
1

l
γ̇(l)〈w, γ̇(l)〉+ coth(l)(w − γ̇(l)〈w, γ̇(l)〉).

By substituting this into Eq. (5.28), we obtain Eq. (5.31).

We are now ready to prove Theorem 5.16.

Proof of Theorem 5.16. We first restrict to the case κ = −1. We are going to bound

σp(u,w) :=
|(∇3f)p(w, u, u)|√

(∇2f)p(w,w)(∇2f)p(u, u)
, u, v ∈ TpM \ {0}.

From d(p, p0) = l, it holds that ‖γ̇(l)‖ = 1. We can also assume that ‖u‖p = ‖w‖p = 1. Therefore,
u, v, γ̇(l) can be assumed to be unit vectors in R3, and represented in the spherical coordinate
system as γ̇(l) = (0, 0, 1), u = (sin θ, 0, cos θ), w = (sinϕ cosα, sinϕ sinα, cosϕ) for θ, ϕ ∈ [0, π] and
α ∈ [0, 2π]. By Proposition 5.21, we have

(∇2f)p(w,w) = 2 cos2 ϕ+ 2l coth l sin2 ϕ, (5.29)

(∇2f)p(u, u) = 2 cos2 θ + 2l coth l sin2 θ, (5.30)

(∇3f)p(w, u, u) = 2Φ(l) cosϕ sin2 θ + 4 (l − Φ(l)) cos θ sinϕ sin θ(− cosα). (5.31)

By Lemma 5.17(i) the quantities Φ(l), l−Φ(l), sin(θ), and sin(ϕ) in Eq. (5.31) are all non-negative.
Thus

|(∇3f)p(w, u, u)| ≤ 2Φ(l)|cos(ϕ)| sin(θ)2 + 4 (l − Φ(l)) sin(ϕ) sin(θ)|cos(θ)|. (5.32)

For C := l coth(l) ≥ 1, observe that

max
φ∈[0,π]

|cosφ|√
cos2 φ+ C sin2 φ

= 1, max
φ∈[0,π]

sinφ√
cos2 φ+ C sin2 φ

=
1√
C
,

max
θ∈[0,π]

sin θ|cos θ|
cos2 θ + C sin2 θ

= max
θ∈[0,π]

|tan θ|
1 + C tan2 θ

= max
z∈[0,∞)

z

1 + Cz2
=

1

2
√
C
.

Therefore

σp(u,w) ≤ max
ϕ,θ∈[0,π]

2Φ(l)|cosϕ| sin2 θ + 4(l − Φ(l)) sinϕ sin θ|cos θ|√
2 cos2 ϕ+ 2C sin2 ϕ

(
2 cos2 θ + 2C sin2 θ

)
≤ Φ(l)√

2C
+
l − Φ(l)√

2C
=

tanh(l)√
2
≤ 1√

2
.

This shows the 8-self-concordance of f on Mn
−1.
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We now show that this estimate is tight. Choose ϕ = π/2, tan2 θ = 1/C, and α ∈ {0, π}. From
Eq. (5.31) we have

σp(u,w) =
2(l − Φ(l))|cos(θ)| sin(θ)√
2C(cos(θ)2 + C sin(θ)2)

=
l − Φ(l)√

2C
=

(l − Φ(l)) tanh(l)√
2l

=
l coth(l)− 1√

2l
.

For l → ∞, it holds that σp(u,w) → 1/
√

2, and so the estimate σp(u,w) ≤ 1/
√

2 is tight. This
completes the proof of (i). Note the choice of α guarantees that we are essentially working
with u,w, γ̇(l) ∈ R2, so the argument is still valid for n = 2.

For (ii), we consider the case of u = w; then ϕ = θ and α = 0. From Eq. (5.31), we have

(∇3f)p(u, u, u) = 2(−2l + 3Φ(l)) cos θ sin2 θ. (5.33)

Then we have

sup
u∈TpM

σp(u, u) = max
θ∈[0,π/2]

|2l − 3Φ(l)| tan2 θ√
2(1 + C tan2 θ)3/2

= max
z∈[0,∞)

|2l − 3Φ(l)|z√
2(1 + Cz)3/2

=

√
2

27

|2l − 3(coth l + l − l coth2 l)|
C

=

√
2

27
|−3/l − tanh l + 3 coth l|,

where the maximum of z/(1+Cz)3/2 is attained at z = 2/C = 2(tanh l)/l. The supremum of the last
quantity is attained at l→∞, and equals

√
2/27. This implies (ii), i.e., that f is 27/2-self-concordant

along geodesics, and that this bound is tight.
Finally we show (iii). Again, we may assume ‖w‖p = ‖u‖p = 1, and we use the above spherical

coordinates. By Eqs. (5.29) and (5.30) and Lemma 5.19(i), we have

|sin θ| =
√

(∇2f)p(u, u)− 2dgp(u)2

2l coth l
, |sinϕ| =

√
(∇2f)p(w,w)− 2dgp(w)2

2l coth l
.

By substituting these into Eq. (5.31) and using dgp(u) = cos θ and dgp(w) = cosϕ we obtain

(∇3f)p(w, u, u) ≤ Φ(l)

l coth l
|dgp(w)|((∇2f)p(u, u)− 2dgp(u)2)

+
2(l − Φ(l))

l coth l
|dgp(u)|

√
(∇2f)p(w,w)− 2dgp(w)2

√
(∇2f)p(u, u)− 2dgp(u)2

≤ 2ζ((∇2f)p(u, u)− 2dgp(u)2)

+ 2
√

(∇2f)p(w,w)− 2dgp(w)2
√

(∇2f)p(u, u)− 2dgp(u)2,

where we used Lemma 5.17 for the second inequality. This implies (iii) for κ = 1.
Finally, the statements for Mn

−κ follow from Lemmas 2.1 and 3.2. Note for part (iii) that
rescaling the Riemannian metric on Mn

−1 by a factor 1/κ yields sectional curvature κ, and rescales
the distance g by a factor 1/

√
κ, so to compensate one must use the prefactors 2ζ

√
κ and 2

√
κ.

We now use Theorem 5.16 to prove the following theorem, which for κ = 1 yields Theorem 1.7:

Theorem 5.22. Let κ > 0, M = Mn
−κ, p0 ∈M , and define f : M → R by f(p) = d(p, p0)2. Define

an open convex set D ⊆M ×R>0 ×R>0 by

D = {(p,R, S) ∈M ×R>0 ×R>0 : RS − f(p) > 0},

and define a function F : D → R by

F (p,R, S) = − log(RS − f(p)) + κ f(p)

Then F is convex and strongly 1
2 -self-concordant. Furthermore, λF, 1

2
(p,R, S)2 ≤ 4 + 4κf(p).
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Proof. Recall from Corollary 5.4 that F is convex. Let u = (up, uR, uS) and w = (wp, wR, wS)
be tangent vectors at (p,R, S) ∈ D. Throughout the rest of this proof, we suppress the base
point (p,R, S) for derivatives. Set

Ψ(p,R, S) = R− S−1d(p, p0)2.

Instead of immediately taking F as stated, we leave the prefactor of f as a quantity ξ > 0 to be
chosen later. The derivative of F = − log Ψ− logS + ξ f is given by

dF (u) = − 1

Ψ
dΨ(u)− uS

S
+ ξ df(up).

Define Au = dΨ(u)/Ψ, Bu =
√
−∇2Ψ(u, u)/Ψ, Cu = S−1uS and Du =

√
ξ∇2f(up, up). We recall

from Lemma 5.3 that Ψ is concave, so that Bu is well-defined. The Hessian of F is then given by

∇2F (u, u) =
1

Ψ2
(dΨ(u))2︸ ︷︷ ︸
=A2

u

− 1

Ψ
∇2Ψ(u, u)︸ ︷︷ ︸
=B2

u

+
1

S2
u2
S︸ ︷︷ ︸

=C2
u

+ ξ∇2f(up, up)︸ ︷︷ ︸
=D2

u

. (5.34)

For convenience we also write Buw = −∇2Ψ(u,w). The third derivative of F is given by

∇3F (w, u, u) =− 2
1

Ψ3
(dΨ(w)) (dΨ(u))2 + 2

1

Ψ2
(dΨ(u)) (∇2Ψ(w, u)) +

1

Ψ2
dΨ(w) (∇2Ψ(u, u))

− 1

Ψ
∇3Ψ(w, u, u)− 2

1

S3
wSu

2
S + ξ∇3f(wp, up, up)

=− 2AwA
2
u − 2AuBuw −AwB2

u − 2CwC
2
u −

1

Ψ
∇3Ψ(w, u, u) + ξ∇3f(wp, up, up).

(5.35)

It is easy to see that the first four terms in Eq. (5.35) are bounded by a constant multiple
of
√
∇2F (w,w)∇2F (u, u), and similar for the last term (by α-self-concordance of f). The term∇3Ψ(w, u, u)/Ψ

requires more effort. Recall from Lemma 5.3, if g = d(p, p0) =
√
f , then

∇2Ψ = −S−1(2(S−1g dS − dg)⊗2 + (∇2f − 2 dg ⊗ dg))),

and the third derivative satisfies

∇3Ψ(w, u, u) = −2S−1uS∇2Ψ(w, u)− S−1wS∇2Ψ(u, u)− S−1∇3f(wp, up, up).

Therefore

∇3F (w, u, u) = = −2AwA
2
u − 2Bwu(Au + Cu)−B2

u(Aw + Cw)− 2CwC
2
u + (

1

ΨS
+ ξ)∇3f

= −2Aw(A2
u −

1

2
B2
u)− 2Bwu(Au + Cu)− 2Cw(

1

2
B2
u + C2

u) + (
1

ΨS
+ ξ)∇3f.

We now use the bound from Theorem 5.16(iii) and the 2-strong-convexity of f :∣∣∣∣∇3f(wp, up, up)

SΨ

∣∣∣∣ ≤ |dg(wp)| · |∇2f(up, up)− 2(dg(up))
2|

SΨ
· C1

+
|dg(up)| ·

√
∇2f(up, up)− 2(dg(up))2 ·

√
∇2f(wp, wp)− 2(dg(wp))2

SΨ
· C2
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≤ 1√
2

√
∇2f(wp, wp)B

2
u · C1 +

1√
2

√
∇2f(up, up)BuBw · C2

where C1 = 2ζ
√
κ and C2 = 2

√
κ, and ζ ≤ 1

2 is defined in Lemma 5.17. Furthermore, f is α-self-
concordant with α = 8/κ (cf. Theorem 5.16(i)). The triangle inequality gives

|∇3F (w, u, u)|

≤ 2|Aw(A2
u −

1

2
B2
u)|+ 2|Bwu||Au + Cu|+ 2|Cw(

1

2
B2
u + C2

u)|

+
√
∇2f(wp, wp)(

C1√
2
B2
u +

2ξ√
α
∇2f(up, up)) +

C2√
2
|Bw||Bu|

√
∇2f(up, up)

= 2|Aw(A2
u −

1

2
B2
u)|+ 2|Bwu||Au + Cu|+ 2|Cw(

1

2
B2
u + C2

u)|

+Dw

∣∣∣∣ C1√
2ξ
B2
u +

2√
αξ
D2
u

∣∣∣∣+ |BwBu|
C2√
2ξ
Du

≤ 2|Aw(A2
u −

1

2
B2
u)|+ 2|Bw||Bu|(|Au + Cu|+

C2

2
√

2ξ
Du) + 2|Cw(

1

2
B2
u + C2

u)|

+Dw

∣∣∣∣ C1√
2ξ
B2
u +

2√
αξ
D2
u

∣∣∣∣
≤ 2
√
A2
w +B2

w + C2
w +D2

w

√
L,

where we applied |Buw| ≤ |Bu||Bw| to get the penultimate inequality, Cauchy–Schwarz to get the
last inequality, and L is defined as

L = (A2
u −

1

2
B2
u)2 + |Bu|2(|Au + Cu|+

C2

2
√

2ξ
Du)2 + (

1

2
B2
u + C2

u)2 +

∣∣∣∣ C1

2
√

2ξ
B2
u +

1√
αξ
D2
u

∣∣∣∣2.
We now show that L ≤ 2(∇2F (u, u))2 for the choice ξ = κ. First, we use that C1 = 2ζ

√
κ, C2 = 2

√
κ

and α = 8/κ. Therefore L is

L = (A2
u −

1

2
B2
u)2 + |Bu|2(|Au + Cu|+

√
κ

2ξ
Du)2 + (

1

2
B2
u + C2

u)2 +

∣∣∣∣ζ√κ√2ξ
B2
u +

√
κ

8ξ
D2
u

∣∣∣∣2
= A4

u −A2
uB

2
u +

1

4
B4
u + |Bu|2(|Au + Cu|2 +

√
2κ

ξ
|Au + Cu|Du +

κ

2ξ
D2
u)

+
1

4
B4
u +B2

uC
2
u + C4

u +
ζ2κ

2ξ
B4
u +

ζκ

2ξ
B2
uD

2
u +

κ

8ξ
D4
u

= A4
u +B4

u

(
1

2
+
ζ2κ

2ξ

)
+ C4

u +
κ

8ξ
D4
u

+ 2B2
u|Au||Cu|+ 2B2

uC
2
u +

√
2κ

ξ
B2
u|Au + Cu|Du +

κ

2ξ
(1 + ζ)B2

uD
2
u.

As ζ ≤ 1
2 , we have ζ2 ≤ 1

4 . Therefore the choice ξ = κ ensures that

L ≤ A4
u +

5

8
B4
u + C4

u +
1

8
D4
u

+ 2B2
u|Au||Cu|+ 2B2

uC
2
u +
√

2B2
u|Au + Cu|Du +

3

4
B2
uD

2
u

≤ A4
u +

5

8
B4
u + C4

u +
1

8
D4
u
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+
1

2
B4
u + 2A2

uC
2
u +

√
2

2
B2
u(A2

u + C2
u + 2D2

u) +
3

4
B2
uD

2
u

≤ 9

8
(∇2F (u, u))2 ≤ 2(∇2F (u, u))2

as ∇2F (u, u) = A2
u +B2

u + C2
u +D2

u. To conclude, we have shown that

|∇3F (w, u, u)| ≤ 2
√

2
√
∇2F (w,w)∇2F (u, u)

and F is 1
2 -self-concordant.

11

We now verify the bound on the Newton decrement. For u = (up, uR, uS) ∈ T(p,R,S)D such
that ∇2F (u, u) 6= 0 and up 6= 0, we have

|dF (u)| = |−Au − Cu + ξdf(up)| ≤
√
A2
u + C2

u +D2
u

√
1 + 1 +

ξ2|df(up)|2
D2
u

,

and
ξ2|df(up)|2

D2
u

=
ξ2|df(up)|2

ξ∇2f(up, up)
≤ ξ λf (p)2 = 2ξ f(p)

by Corollary 5.2. Since we chose ξ = κ, this shows that λF,1/2(p,R, S)2 ≤ 2(2 + 2κf(p)).

6 Applications

In this section, we discuss applications of our interior-point method framework. In Section 6.1 we
show that the framework can be used to solve non-commutative optimization and scaling problems.
In Sections 6.2 to 6.4, we use the previously constructed barriers for the epigraph of the squared
distance on Hadamard symmetric spaces and the epigraph of the distance on the model spaces for
constant negative sectional curvature to the natural geometric problems of computing minimum
enclosing balls, geometric medians, and Riemannian barycenters. To achieve the above, we build on
the results of Sections 4 and 5.

6.1 Non-commutative optimization and scaling problems

In this subsection we show that the problem of minimizing log-norm or Kempf–Ness functions, as
discussed in Section 1.4, can be solved using our interior-point methods. This leads to also naturally
leads to algorithms for scaling problems.

We briefly recap the general setup for the norm minimization problem and refer to [BFG+19]
for more detail. Throughout this section we let G ⊆ GL(n,C) be a connected algebraic Lie
group such that g∗ ∈ G for every g ∈ G. (In mathematics, such groups are known as reductive
and they are particularly well-behaved [Wal17].) We also fix π : G → GL(V ) to be a finite-
dimensional rational complex representation of G. Let K = G ∩ U(n), which is a maximal compact
subgroup of G, and assume that V is endowed with a K-invariant inner product 〈·|·〉.12 For
a non-zero vector 0 6= v ∈ V , the goal is to minimize ‖π(g)v‖2 = 〈v|π(g)∗π(g)|v〉 = 〈v|π(g∗g)|v〉
over g ∈ G, where we used that π(g)∗ = π(g∗).13 Therefore, this is equivalent to minimizing 〈v|π(p)|v〉

11Bounding L by (∇2F (u, u))2 would lead to 1-self-concordance of F , but it is not clear whether there is a choice
of ξ > 0 such that F is 1-self-concordant and its Newton decrement is not too adversely affected.

12Following Dirac notation, we will also write 〈v|A|w〉 := 〈v|Aw〉 for vectors v, w ∈ v and operators A on V .
13Because K acts unitarily and the Lie algebra representation Π = dπI is complex linear, one has Π(X∗) = Π(X)∗

for X ∈ Lie(G). By the Cartan decomposition every g ∈ G is a product g = k exp(H) with k ∈ K and H ∈ iLie(K),
so π(g)∗ = (π(k) exp(Π(H)))∗ = exp(Π(H))π(k)−1 = exp(Π(H))π(k−1) = π(g∗) (cf. [BFG+19, Hir22]).
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over p ∈M = {g∗g : g ∈ G} = G∩PD(n) ⊆ PD(n). The log-norm or Kempf–Ness function computes
the logarithm of this quantity:14

Definition 6.1 (Kempf–Ness function). Let M = {g∗g : g ∈ G} = G ∩ PD(n) ⊆ PD(n). For 0 6=
v ∈ V , the Kempf–Ness function φv is defined by

φv : M → R, φv(p) = log 〈v|π(p)|v〉. (6.1)

For the special case where G = GL(n,C), V = Cn and π is the identity map, we write

fv : PD(n)→ R, fv(P ) = log 〈v|P |v〉 . (6.2)

We note that M is a convex subset of PD(n) [BH99, Thm. 10.58, Lem. 10.59], so the geodesics
in M are precisely the geodesics in PD(n) which lie completely in G. Thus the tangent space TIM
consists of those Hermitian matrices H ∈ Herm(n) = TIPD(n) which also are in Lie(G) := TIG, the
Lie algebra of G. For G = GL(n,C), we simply have that TIM = Herm(n).

Because K acts unitarily, π restricts to a map M → PD(V ), and one can verify that it sends
geodesics to geodesics (i.e., it is geodesically affine). At the identity, we have the explicit description

π (ExpI(tH)) = ExpI(tΠ(H))

for H ∈ TIM and Π: Lie(G)→ End(V ) = Lie(GL(V )) is given by the derivative of π, i.e., Π = dπI .
The linear map Π is also known as the Lie algebra homomorphism induced by π. Therefore, the
Kempf–Ness function is the composition of the geodesically affine map M → PD(V ), p 7→ π(p), and
the map PD(V ) → R given by P 7→ log 〈v|P |v〉, i.e., the Kempf–Ness function for the definining
representation of GL(V ). To establish bounds on the derivatives of φv, it therefore suffices to prove
bounds on the derivatives of fv, and to translate the results via Π.

Below, we prove the well-known fact that the Kempf–Ness functions are convex on M (see,
e.g., [BFG+19]). As explained above it suffices to prove this for the special case where G = GL(n,C)
and V = Cn, with π : G→ GL(V ) given by the identity map.

Proposition 6.2. For 0 6= v ∈ Cn, the Hessian of the function fv : PD(n)→ R defined in Eq. (6.2)
satisfies for every P ∈ PD(n) and U ∈ TPPD(n) the identity

(∇2fv)P (U,U) =
〈ṽ| (Ũ − 〈ṽ|Ũ |ṽ〉〈ṽ|ṽ〉 I)2 |ṽ〉

〈ṽ|ṽ〉
,

where we use the notation ṽ = P 1/2v and Ũ = P−1/2UP−1/2. As a consequence, all Kempf–Ness
functions are convex.

Proof. We compute the Hessian of f := fv. First off, we have

∂tf(ExpP (tU)) = ∂t log 〈v|ExpP (tU)|v〉 =
〈ṽ|ŨetŨ |ṽ〉
〈ṽ|etŨ |ṽ〉

.

The second derivative is given by

∂2
t=0f(ExpP (tU)) =

〈ṽ|Ũ2|ṽ〉 〈ṽ|ṽ〉 − 〈ṽ|Ũ |ṽ〉2

〈ṽ|ṽ〉2
=
〈ṽ| (Ũ − 〈ṽ|Ũ |ṽ〉〈ṽ|ṽ〉 I)2 |ṽ〉

〈ṽ|ṽ〉
,

hence is non-negative.
14Alternatively, because of the K-invariance, g 7→ ‖π(g)v‖2 descends to a map on the quotient K\G. This space is

naturally isometric to M via the map Kg 7→ g∗g: for G = GL(n,C) one can prove this using the polar decomposition,
which generalizes to the Cartan decomposition for reductive G. As such, this is the same as Definition 6.1.
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The expression for the first- and second derivatives can be understood in terms of the expectation
and variance of corresponding random variables, as pointed out in [BFG+19].15 This will be useful
for bounding the third derivative. Define a linear map Φv : Cn×n → C by

Φv(A) =
〈v|A|v〉
〈v|v〉

. (6.3)

Then Φv is what is known as a completely positive and unital map.16 Such a map is to be interpreted
as taking the expectation with respect to a random variable, where the random variable is now
specified by a complex matrix. One can define the covariance between two matrices A,B ∈ Cn×n as

Covv(A,B) = Φv(A
∗B)− Φv(A)∗Φv(B). (6.4)

The variance of A is defined accordingly as Varv(A) = Covv(A,A). With this notation, we can more
succinctly write

(∇2fv)P (U,U) = Varṽ(Ũ),

where ṽ = P 1/2v and Ũ = P−1/2UP−1/2 as before. Then the third derivative can be computed as
follows.

Proposition 6.3. Let 0 6= v ∈ Cn and let fv : PD(n) → R be as defined in Eq. (6.2). Then for
every U,W ∈ TIPD(n) = Herm(n), its third derivative satisfies

(∇3fv)I(W,U,U)

=
1

2

〈v|{W,U2}|v〉
〈v|v〉

− 〈v|U
2|v〉 〈v|W |v〉
〈v|v〉2

− 〈v|U |v〉 〈v|{W,U}|v〉
〈v|v〉2

+ 2
〈v|U |v〉2 〈v|W |v〉

〈v|v〉3

= Re
(
Cov(W,U2 − 2Φ(U)U)

)
.

Proof. To compute the third derivative of f := fv at I ∈ PD(n), note that

∂t=0(∇2f)ExpI(tW )(τI→ExpI(tW )U, τI→ExpI(tW )U)

= ∂t=0

(
〈v| e

t
2
WU2e

t
2
W |v〉

〈v|etW |v〉
− 〈v|e

t
2
WUe

t
2
W |v〉

2

〈v|etW |v〉2

)

=
1

2

〈v|{W,U2}|v〉
〈v|v〉

− 〈v|U
2|v〉 〈v|W |v〉
〈v|v〉2

− 〈v|U |v〉 〈v|{W,U}|v〉
〈v|v〉2

+ 2
〈v|U |v〉2 〈v|W |v〉

〈v|v〉3
.

Using the map Φ and the associated covariance defined in Eqs. (6.3) and (6.4) , we may rewrite the
above more succinctly as

(∇3f)I(W,U,U) =
1

2
Φ({W,U2})− Φ(U2)Φ(W )− Φ(U)Φ({W,U}) + 2Φ(U)2Φ(W )

=
1

2
(Cov(W,U2) + Cov(U2,W ))− Φ(U)(Cov(U,W ) + Cov(W,U))

= Re
(
Cov(W,U2 − 2Φ(U)U)

)
.

15Similarly, the higher derivatives along geodesics can be related to higher cumulants, see [BFG+19, Rem. 3.16].
16This means that Φv(I) = 1, and the complete positivity refers to the fact that for every n′ ≥ 1, the map Φv ⊗

I
Cn′×n′ : C

n×n ⊗Cn
′×n′ → Cn

′×n′ sends positive-semidefinite operators to positive-semidefinite operators.
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Remark 6.4. The Kempf–Ness functions are not necessarily self-concordant, even along geodesics.
To see this, consider v = 1√

2
(e1 − e2) and for z ∈ R the matrix Uz ∈ Herm(2) given by

Uz =

[
1 z
z 0

]
.

Then
(∇2fv)I(Uz, Uz) =

1

4
, (∇3fv)I(Uz, Uz, Uz) =

z

2
,

so |(∇3fv)I(Uz, Uz, Uz)| can be arbitrarily large compared to (∇2fv)I(Uz, Uz)
3/2.

Although self-concordance does not hold, we do have the following bound on its third derivative,
which implies that it is compatible (in the sense of Section 4.2) with any strongly convex function.
This generalizes [BFG+19, Prop. 3.15] beyond the case W = U .

Theorem 6.5. Let 0 6= v ∈ Cn and let fv : PD(n)→ R be as defined in Eq. (6.2). For every P ∈
PD(n) and U,W ∈ TPPD(n) = Herm(n), one has the estimate∣∣(∇3fv)P (W,U,U)

∣∣ ≤ 4‖Ũ‖∞
√

(∇2fv)P (W,W )
√

(∇2fv)P (U,U)

≤ 4‖U‖P
√

(∇2fv)P (W,W )
√

(∇2fv)P (U,U)

= 4‖U‖P ‖W‖fv ,P ‖U‖fv ,P .

where Ũ = P−1/2UP−1/2, and ‖·‖∞ is the spectral norm.

Proof. We prove the statement for P = I, and set f := fv. Writing Var(A) = Cov(A,A), an operator
version of the Cauchy–Schwarz inequality [BD00] yields∣∣(∇3f)I(W,U,U)

∣∣2 ≤ ∣∣Cov(W,U2 − 2Φ(U)U)
∣∣2 ≤ Var(W ) Var(U2 − 2Φ(U)U).

Using that for every A,B ∈ Cn×n,

Var(A+B) = Var(A) + Var(B) + Cov(A,B) + Cov(B,A) ≤ 2(Var(A) + Var(B)),

one can deduce for Hermitian A that

Var(U2 − 2Φ(U)U) ≤ 2 Var(U(U − Φ(U))) + 2 Var(Φ(U)U)

≤ 2‖U2‖∞Var(U − Φ(U)) + 2Φ(U)2 Var(U)

≤ 4‖U‖2∞Var(U)

where the second inequality follows from

Var(U(U − Φ(U))) ≤ Φ((U − Φ(U))UU(U − Φ(U)))

=
〈v|(U − Φ(U))UU(U − Φ(U))|v〉

〈v|v〉

≤ 2‖U2‖∞
〈v|(U − Φ(U))2|v〉

〈v|v〉
= 2‖U2‖∞Var(U − Φ(U)).

The theorem now follows from the observation that (∇2f)I(U,U) = Var(U − Φ(U)) = Var(U).
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Corollary 6.6. For 0 6= v ∈ V , the Kempf–Ness function φv defined in Eq. (6.1) satisfies for
all p ∈M and u,w ∈ TpM the inequality∣∣(∇3φv)p(w, u, u)

∣∣ ≤ 4‖dπp(u)‖π(p)

√
(∇2φv)p(w,w)

√
(∇2φv)p(u, u).

The quantity ‖dπp(u)‖π(p) can be understood by observing that

dπp(u) = ∂t=0π(Expp(tu)) = ∂t=0π
(
p1/2etp

−1/2up−1/2
p1/2

)
= π(p1/2)Π(p−1/2up−1/2)π(p1/2).

Therefore ‖dπp(u)‖π(p) = ‖Π(p−1/2up−1/2)‖I . For convenience, we writeN(π) = ‖Π‖ for the operator
norm of Π: Lie(G) → End(V ). This quantity is known as the weight norm of π in [BFG+19], as
it is determined as the largest norm of any highest weight appearing in the decomposition of the
representation π into irreducible components. Then the above computation shows that the operator
norm of dpπ with respect to ‖·‖p and ‖·‖π(p) is exactly the weight norm N(π).

Corollary 6.7. Let N(π) = ‖Π‖ the weight norm of π. Then for 0 6= v ∈ V , the Kempf–Ness
function φv defined in Eq. (6.1) satisfies for all p ∈M and u,w ∈ TpM the inequality∣∣(∇3φv)p(w, u, u)

∣∣ ≤ 4N(π) ‖u‖p
√

(∇2φv)p(w,w)
√

(∇2φv)p(u, u).

We now apply the above to obtain an algorithmic result for optimizing Kempf–Ness functions
over balls of fixed radius. Recall from Theorem 5.15 that h(p) = 1

2d(p, I)2 is 1-self-concordant
on PD(n). Therefore, the same holds on M . It directly follows from Theorem 4.11 that one can
construct a strongly self-concordant function on its open epigraph, as h is (0, 1)-compatible with
itself:

Proposition 6.8. Let h : M → R be defined by h(p) = 1
2d(p, I)2. Let S0 > 0 and consider D =

{p ∈M : h(p) < S0}. Then the function F : D → R defined by

F (p) = − log(S0 − h(p)) + h(p)

is a self-concordant barrier for D with barrier parameter θ = 1 + S0.

The claim that it has barrier parameter at most 1 + S0 follows from λF (p)2 ≤ 1 + λh(p)2 and
Corollary 5.2. Since h is 1-strongly convex, we see that the Kempf–Ness function φv is (0, 2N(π))-
compatible with F in the sense of Definition 4.8. Therefore by Proposition 4.10, for every t ≥ 0, the
function Ft := tφv + F is α-self-concordant, where α is given by

α =

{
4N(π)2−1

4N(π)4
if 2N(π)2 > 1,

1 otherwise.
(6.5)

Lastly, we can exactly give the analytic center of F : one easily verifies that it is given by p = I. We
obtain the following algorithmic result.

Theorem 6.9. For 0 6= v ∈ V , let φv : M → R be the Kempf–Ness function defined in Eq. (6.1).
Let α ≥ 0 be as in Eq. (6.5). Then for every S0 > 0, using(

9

5
+

36

5

√
1 + S0

α

)
log

(
8(1 + S0 + α)√

αε

)
iterations of the path-following method, one can compute a point Pε ∈M such that

φv(pε)− inf
p∈D

φv(p) ≤ ε.
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Proof. Set λ(1) = 1
4 and λ(2) = 1

9 . Let pi be the sequence of points defined in Theorem 4.17 with
these choices of λ(i). These satisfy

φv(pi)− inf
p∈D

φv(p) ≤
2(1 + S0 + α)‖dφv‖∗F,p√

αλ(1)
exp

(
−i λ(1) − λ(2)

λ(1) +
√

(1 + S0)/α

)
where we used that the barrier parameter θ of F is 1 + S0. The norm ‖d(φv)p‖∗F,p is at most N(π),
because F is strongly 1-convex and d(φv)p is N(π)-Lipschitz: fv is easily checked to be 1-Lipschitz,
and π is N(π)-Lipschitz. Therefore we just need to ensure that

i
λ(1) − λ(2)

λ(1) +
√

(1 + S0)/α
≥ log

(
2(1 + S0 + α)
√
αλ(1)ε

)
,

which amounts to

i ≥
λ(1) +

√
(1 + S0)/α

λ(1) − λ(2)
log

(
2(1 + S0 + α)
√
αλ(1)ε

)
=

(
9

5
+

36

5

√
1 + S0

α

)
log

(
8(1 + S0 + α)√

αε

)
.

Corollary 6.10. For 0 6= v ∈ V , let φv be the Kempf–Ness function defined in Eq. (6.1). Then for
every ε > 0 and R0 > 0, an ε-approximate minimizer of φv over a ball of radius R0 around I ∈M ⊆
PD(n) can be found using

O
(

(1 +R0)(1 +N(π)) log

(
R0N(π)

ε

))
iterations of the path-following method.

We shall not explicitly relate the norm minimization problem to the scaling problem here, but
note that approximate minimizers of the Kempf–Ness function necessarily have small gradient
(hence their moment map image is close to zero), and determining whether the gradient can become
arbitrarily close to zero is the null-cone problem, to which the general scaling problem can be reduced.
See [BFG+19] for details.

We briefly comment on the geometric meaning of the Kempf–Ness functions. For the purpose
of optimization, it is natural to consider whether there exists an analogue of (non-constant) linear
functions on Rn. This is generally not the case; in fact, if M is a complete Riemannian manifold
with a non-constant smooth function h : M → R such that ∇2h = 0, then M is isometric to
a product M ′ × R, such that after this identification, h is some multiple of the projection onto
the second coordinate [Inn82].17 There does exist another useful generalization, namely the class
of Busemann functions; see [BH99, II.8] for general background. These may be defined on any
Hadamard manifold M (and also more generally) as follows [Hir22]: for a (not necessarily unit-speed)
geodesic γ : R→M with γ̇ 6= 0, define bγ : M → R by

bγ(p) := ‖γ̇(0)‖
(

lim
t→∞

d(p, γ(t/‖γ̇(0)‖))− t
)
. (6.6)

This limit is well-defined and the resulting function turns out to be convex, and in the specific
case of M = Rn, reduces to an arbitrary (suitably normalized) affine function. For M = PD(n),

17For Hadamard M , this may be deduced as follows: ∇2h = 0 implies that ‖dh‖ is a constant function on M .
Since h is non-constant, ‖dh‖ is nonzero. The gradient flow of h is by isometries, without fixed points. If z : M →M
denotes the map given by following the gradient flow for time 1, then d(z(p), p) is also constant as a function of p ∈M ,
and the subgroup of the isometries of M generated by z acts properly by semi-simple isometries on M , in the sense
of [BH99, Def. I.8.2, Def. II.6.1]. Hence by [BH99, Thm. 7.1], M splits as a product M ′ ×R.
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whenever γ converges to a rational point at infinity, the Busemann function is a multiple of the
Kempf–Ness function associated with a highest weight vector for an irreducible representation
of GL(n). This follows, e.g., by comparing [Hir22, Lem. 2.34] and [FW22, Thm. 5.7]. The Kempf–
Ness functions for v ∈ Cn with ‖v‖ = 1, considered as a vector in the defining representation
of GL(n), correspond to those γ for which γ̇(0) is −vv∗, which may also be deduced from e.g. [BH99,
Prop. 10.69].

6.2 The minimum enclosing ball problem

In the remainder of this section we show to apply the results of Sections 4 and 5 to various geometric
problems, all of which involve the distance function or its square.

We first study the minimum enclosing ball problem (MEB) on a manifold M : given m ≥ 3
distinct points p1, p2, . . . , pm in M , find the smallest ball containing all of them. More formally,
finding the MEB amounts to solving the following nonsmooth optimization problem:

minimize R s.t. (p,R) ∈M ×R, d(p, pi) ≤ R (i = 1, 2, . . . ,m). (6.7)

In the case of Euclidean space M = Rn, MEB is a well-studied problem in computational geometry,
and can be formulated as a second-order cone program to which an interior-point method is applicable;
see e.g. [KMY04].

Nielsen and Hadjeres [NH15] addressed this problem for a hyperbolic space M . We shall assume
that M is a complete convex submanifold of PD(n), but we note that similar results may be obtained
for products of (rescalings of) these spaces, hence for all Hadamard symmetric spaces as explained
in Section 1.3. To apply our framework, we reformulate Eq. (6.7) as a convex optimization problem
over the following bounded domain.

Lemma 6.11. Set S0 = maxi 6=j d(pi, pj)
2. Let D ⊆M ×R be defined by

D = {(p, S) ∈M ×R | d(p, pi)
2 < S < 2S0 (i = 1, 2, . . . ,m)}. (6.8)

Then D is convex, open, bounded and non-empty, as (pj ,
3
2S0) ∈ D for every j = 1, . . . ,m.

Proof. Since D is the intersection of open epigraphs of squared distance functions and an open
halfspace defined by S < 2S0, it is open and convex. The boundedness of D is clear, as is the
containment (pj ,

3
2S0) ∈ D for every j = 1, . . . ,m.

Clearly, the optimal radius of a MEB is at most R0 := maxi 6=j d(pi, pj) =
√
S0. It is also at least

half of that:

Lemma 6.12. Let R∗ be the optimum of Eq. (6.7) and R0 = maxi 6=j d(pi, pj). Then 2R∗ ≥ R0.

Proof. For every p ∈M , we have

d(pi, pj) ≤ d(pi, p) + d(p, pj) ≤ 2 max
k

d(pk, p).

Minimizing the right-hand side with respect to p ∈M yields d(pi, pj) ≤ 2R∗ for every i, j; maximizing
over i 6= j gives the desired bound.

Replacing the objective function R by R2 = S, finding the MEB is equivalent to solving

minimize S s.t. (p, S) ∈ D. (6.9)

As a natural application of our results, we obtain a self-concordant barrier for D.
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Proposition 6.13. Let D be as in Lemma 6.11. Define G : D → R by

G(p, S) = − log(2S0 − S) +

m∑
i=1

(
− log(S − d(p, pi)

2) +
1

2
d(p, pi)

2

)
.

Then G is a self-concordant barrier for D, with barrier parameter θ = 1 +m(1 + 2S0).

Proof. Let Fi(p, S) := − log(S − d(p, pi)
2) + 1

2d(p, pi)
2. By Corollary 1.5 and Theorem 1.6, Fi is is

1-self-concordant. Furthermore, it satisfies λFi(p, S)2 ≤ 1 + d(p, pi)
2 ≤ 1 + 2S0. As − log(2S0 − S)

is 1-self-concordant, so is G. The Newton decrement of G then satisfies λG(p, S)2 ≤ 1 +m(1 + 2S0).
Hence G is a self-concordant barrier with the claimed parameter.

To initialize the path-following method, we use the damped Newton method from Theorem 3.18.
To estimate its iteration complexity, we need a lower bound on G.

Lemma 6.14. For every (p, S) ∈ D, we have

G(p, S) ≥ −(1 +m) log(2S0).

Proof. Since x 7→ − log(x) is decreasing, d(p, pi)
2 ≥ 0 and S > 0, we have G(p, S) ≥ − log(2S0)−

m log(2S0) = −(1 +m) log(2S0).

The main result of this subsection is then the following.

Theorem 6.15. Let p1, p2, . . . , pm ∈ M , and let R∗ denote the radius of the minimum enclosing
ball for these points. Set R0 = maxi 6=j d(pi, pj). For ε > 0, with O(mR2

0) iterations of a damped
Newton method and

O
(√

1 +m(R2
0 + 1) log

(
m(R2

0 + 1)

ε

))
iterations of the path following method, one can find (pε, Rε) ∈M ×R such that Rε ≤ R∗ + ε, and
the ball with center pε and radius Rε includes p1, p2, . . . , pm.

Proof. Set λ(1) = 1
4 , λ

(2) = 1
9 . The damped Newton method of Theorem 3.18 with starting

point (pj ,
3
2S0) yields a point (q, S) with λG(q, S) ≤ 1

2λ
(1) within the order of

G(pj ,
3
2S0)− inf(p,S)∈DG(p, S)

1
2λ

(1)

≤
− log(S0/2) +

∑m
i=1(− log((3/2)S0 − d(pj , pi)

2) + (1/2)d(pj , pi)
2) + (1 +m) log(2S0)

1
2λ

(1)

≤ − log(S0/2)−m log(S0/2) + (m/2)S0 + (1 +m) log(2S0)
1
2λ

(1)

=
(1 +m) log 4 + (m/2)S0

1
2λ

(1)

iterations. Consider the path-following method in Theorem 4.17 from the initial point (q, S), with
objective s : D → R defined by (p, S) 7→ S. Since this is a linear map, t s+G is 1-self-concordant
for all t > 0. The starting time t0 is given by

t0 =
λ(1) − λG(q, S)

‖ds(q,S)‖∗G,(q,S)

≥ λ(1) − λG(q, S)

2S0
,
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where ‖ds(q,S)‖∗G,(q,S) is bounded by 2S0 by Lemma 4.18. Thus the path-following method yields a
sequence of points (ql, Sl) such that

Sl −R2
∗ ≤

8S0(θ + 1)

λ(1)
exp

(
−l λ

(1) − λ(2)

λ(1) +
√
θ

)
,

where θ = 1 +m(1 + 2S0) is the barrier parameter of G and we used λ(q, S) ≤ λ(1)/2. For ε′ > 0,
after

l ≥
1
4 +
√
θ

1
4 −

1
9

log

(
32(θ + 1)

ε′

)
iterations, we have

Sl −R2
∗ ≤ ε′S0.

For Rl =
√
Sl, it holds that

Rl −R∗ ≤ ε′S0/(Rl +R∗) ≤ ε′S0/2R∗ ≤ ε′S0/R0,

where the last inequality follows from Lemma 6.12. Therefore, choosing ε′ = εR0/S0 = ε/R0 yields
the desired estimate.

6.3 The geometric median on model spaces

In this subsection we show how to apply the methods from Section 4 to compute geometric medians
on the model spaces Mn

−κ for constant sectional curvature −κ, where κ > 0. For now, we shall work
with general M ; later, we restrict to the model spaces because it is there that we have a barrier for
the epigraph of the distance function (cf. Theorem 5.22). Recall from the introduction that the
geometric median problem is as follows: given m ≥ 3 points p1, . . . , pm ∈M , not all contained in a
single geodesic, find p0 ∈M such that

p0 ∈ argmin
p∈M

s(p) :=
m∑
i=1

d(p, pi). (6.10)

This is a convex optimization objective, as the distance to a point is convex by Lemma 5.1. Let us
first construct define a suitable domain to optimize over.

Lemma 6.16. Set R0 = maxi 6=j d(pi, pj). Let D ⊆M ×R be defined by

D = {(p,R) ∈M ×Rm : R2
i > d(p, pi)

2, 2R0 > Ri > 0}.

Then D is convex, open, and non-empty: for every j ∈ [m], we have (pj ,
3
2R0 111) ∈ D, where 111 ∈ Rm

is the all-ones vector.

Proof. The convexity of D follows from the convexity of the distance function, see Lemma 5.1. The
fact that D is open is obvious. Lastly, the given points are in D because

d(pj , pi) ≤ R0 <
3

2
R0.

Lemma 6.17. Define c : M×Rm → R by c(p,R) =
∑m

i=1Ri, and let s : M → R be as in Eq. (6.10).
Then

inf
(p,R)∈D

c(p,R) = inf
p∈M

s(p)
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The proof relies on the fact that the geometric median of p1, . . . , pm is contained in the convex
hull of these points, for which we essentially follow the argument given in [Yan10, Prop. 2.4], where
this fact is proven for more general distributions (rather than just discrete distributions).

Proof. First, we observe that for fixed (p,R) ∈ D,

inf
R′:(p,R′)∈D

c(p,R′) =
m∑
i=1

d(p, pi) = s(p).

Thus it suffices to prove that if p0 ∈ argminp∈M s(p), then there exists some R ∈ Rm such
that (p0, R) ∈ D. We claim that any such p0 is in the convex hull of the pj . From this claim
one immediately deduces that (p0, R) ∈ D for R = 3

2R0111, since by Lemma 6.16, D is convex and
(pj ,

3
2R0111) ∈ D for every j ∈ [m].
We now establish the claim by proving its contrapositive. Suppose p is not in the convex hull C

of the points p1, . . . , pm, and let q be the projection of p onto C, which is automatically distinct
from p. We use the notion of Alexandrov angle, which for three points a, b, c ∈M with a 6= b, c is
defined as the unique ∠a(b, c) ∈ [0, π] such that

cos∠a(b, c) =
〈Exp−1

a (b),Exp−1
a (c)〉a

d(a, b) d(a, c)
.

Suppose first that q = pj for some j ∈ [m]. Then ∠p(q, pj) = 0. On the other hand, if q 6= pj ,
by [BH99, Prop. II.2.4], we have ∠q(p, pj) ≥ π/2. On a Hadamard manifold, the angles of a triangle
add to at most π, hence ∠p(q, pj) ≤ π/2. Since we have m ≥ 3, there must exist at least two j such
that q 6= pj . Furthermore, for at least one such j, the inequality must be strict: if the inequality is
not strict then we must have ∠pj (q, p) = 0, so p, q, pj all lie on a single geodesic. Since p is distinct
from all pj , s is differentiable at p, and it follows from Lemma 5.1 that

grad(s)p = −
m∑
j=1

Exp−1
p (pj)

d(p, pj)
.

Since we have shown that ∠p(q, pj) ≤ π/2 for every j ∈ [m], with strict inequality for at least one j,
we have

〈grad(s)p,Exp−1
p (q)〉

p
= −d(p, q)

m∑
j=1

cos∠p(q, pj) < 0

because d(p, q) 6= 0. In particular, grad(s)p 6= 0 and p is not a minimizer of s.

We now construct a barrier for the domain D. From here onwards, we assume that M = Mn
−κ

with κ > 0.

Proposition 6.18. Let D be as in Lemma 6.16. Define G : D → R by

G(p,R) =

m∑
i=1

(
− log(2R0 −Ri)− 2 log(R2

i − d(p, pi)
2) + 2κ d(p, pi)

2
)
.

Then G is a self-concordant barrier for D, with barrier parameter θ = 5m+ 16mκR2
0.
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Proof. Let Ψ(r) = − log(2R0 − r) and recall from Theorem 5.22 that Fi(p,R, S) = − log(RS −
d(p, pi)

2) + κ d(p, pi)
2 is strongly 1

2 -self-concordant. Using Lemma 3.2 and the strong 1-self-
concordance of − log(2R0 − R), we deduce that G is strongly 1-self-concordant. Then for ev-
ery (p,R) ∈ D, we have

d((p,R), (p1, R0))2 = d(p, p1)2 + |R−R0|2 ≤ 2R2 − 2R0R+R2
0 ≤ 8R2

0 − 4R2
0 +R2

0 = 5R2
0.

where d on the left-hand side refers to the distance on M ×R. Furthermore, for every (p,R) ∈ D,
the bound on λFi,1/2(p,R, S) = λ2Fi,1(p,R, S) from Theorem 5.22 implies that

λG(p,R)2 ≤
m∑
i=1

λΨ(Ri)
2 + λ2

2Fi,1(p,R,R) ≤ m+

m∑
i=1

(4 + 4κ d(p, pi)
2) ≤ 5m+ 16mκR2

0.

Therefore G is a self-concordant barrier with barrier parameter θ = 5m+ 16mκR2
0.

We now consider how to initialize the path-following method for the objective

c(p,R) =
m∑
i=1

Ri,

which is such that tc + G is 1-self-concordant for every t ≥ 0, because c is linear. To apply
Theorem 4.17, we need to find a point (q, S) ∈ D such that λG(q, S) < λ(1).18 We can do this using
the damped Newton method from Theorem 3.18. To bound the number of iterations, we must bound
the potential gap of G.

Lemma 6.19. For every (p,R) ∈ D, we have

G(p,R) ≥ −m log(32R5
0).

Proof. The function x 7→ − log(x) is decreasing. BecauseRi > 0 for every i ∈ [m], we have− log(2R0−
Ri) ≥ − log(2R0). Similarly, because Ri < 2R0 and d(p, pi) ≥ 0 for every i ∈ [m], each − log(R2

i −
d(p, pi)

2) term is at least − log(4R2
0). Hence G(p,R) ≥ −m log(2R0)−2m log(4R2

0) = −m log(32R5
0),

concluding the proof.

We now prove the main result of this subsection.

Theorem 6.20. Let p1, . . . , pm ∈ Mn
−κ with κ > 0 be m ≥ 3 points, not all on one geodesic, and

set R0 = maxi 6=j d(pi, pj). Define s(p) =
∑m

j=1 d(p, pj), and let ε > 0. Then with O((m + 1)κR2
0)

iterations of a damped Newton method and

O
(√

m(κR2
0 + 1) log

(
mR0(κR2

0 + 1)

ε

))
iterations of the path following method, one can find pε ∈Mn

−κ such that

s(pε)− inf
q∈M

s(q) ≤ ε.
18For fixed q, it is easy to determine the optimal S, by explicitly solving the first-order optimality conditions.
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Proof. Set λ(1) = 1
4 , λ

(2) = 1
9 . The damped Newton method of Theorem 3.18 with starting

point (pj ,
3
2R0111) yields a point (q, S) with λG(q, S) ≤ 1

2λ
(1) within the order of

G(pj ,
3
2R0111)− inf(p,R)∈DG(p,R)

1
2λ

(1)

≤
G(pj ,

3
2R0111) +m log(32R5

0)
1
2λ

(1)

=
−m log(R0

2 )− 2
∑m

i=1 log(9
4R

2
0 − d(pj , pi)

2) +m log(32R5
0) + 2κ

∑m
i=1 d(pj , pi)

2

1
2λ

(1)

≤
−m log(R0

2 )− 2
∑m

i=1 log(5
4R

2
0) +m log(32R5

0) + 8κmR2
0

1
2λ

(1)

=
m log(1024

25 ) + 8mκR2
0

1
2λ

(1)

iterations. A suitable choice of starting time is for the path-following method from Theorem 4.17 is
then

t0 =
λ(1) − λG(q, S)

‖dc(q,S)‖∗G,(q,S)

.

It remains to be shown that this is not too small. We give an upper bound on ‖dc(q,S)‖∗G,(q,S). The
domain D is constructed so that c(p,R) ≤ 2mR0 for every (p,R) ∈ D, and c(q, S) ≥ 0. It follows by
Lemma 4.18 that

‖dc(q,S)‖∗G,(q,S) ≤ 2mR0,

and so t0 ≥ (λ(1) − λG(q, S))/(2mR0). Therefore, initializing the algorithm from Theorem 4.17 with
initial point (q, S) and the above t0 yields a sequence of points (ql, Sl) such that

c(ql, Sl)− inf
(p,R)∈D

c(p,R) ≤ 4mR0(θ + 1)

λ(1)
exp

(
−l λ

(1) − λ(2)

λ(1) +
√
θ

)

where θ is the barrier parameter of G, and we used that λ(1) − λG(q, S) is at least 1
2λ

(1). Rewriting
the above and using Lemma 6.17 shows that

s(ql)− inf
q∈M

s(q) ≤ c(ql, Sl)− inf
(q,R)∈D

c(q,R) ≤ ε

whenever

l ≥
1
4 +
√
θ

1
4 −

1
9

log

(
4mR0(θ + 1)

ε

)
.

The theorem now follows from filling in θ = 5m+ 16mκR2
0.

6.4 The Riemannian barycenter

We end this section by briefly commenting on the problem of finding the Riemannian barycenter,
first introduced by Cartan, and sometimes also called the Fréchet or Karcher mean, see e.g. [Afs11]
for some historical context on this topic. It is defined as follows: given points p1, . . . , pm ∈ M ,
find p0 ∈M

p0 ∈ argmin
p∈M

f(p) :=

m∑
i=1

d(p, pi)
2.
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The point p0 is known as the barycenter of p1, . . . , pm, and is unique on Hadamard manifolds by
strong convexity of f . It is trivial to find p0 when M = Rn is Euclidean space, as it is given
by p0 = 1

m

∑m
i=1 pi. Furthermore, the solution is unique on any Hadamard manifold, as the

squared distance is 2-strongly convex, and hence f is 2m-strongly convex. Even for hyperbolic
space it is not clear whether one can give a closed-form solution to the above problem. However,
if M has sectional curvatures in [−κ, 0], then f is O(m

√
κR/ tanh(R

√
κ))-smooth at p with R =

maxj d(p, pj), which follows from standard variational arguments [Lee18, Prop. 10.12, Thm. 10.22],
hence the function f is well-conditioned. Therefore a standard gradient descent method gives
an algorithm which converges relatively quickly; one can find an ε-approximate minimizer of f
in O(

√
κR0 log([f(p)− infq f(q)]/ε)/ tanh(

√
κR0)) iterations, where R0 is some a priori bound on

size of the domain one restricts to, and p is the starting point. This can be deduced from a simple
adaptation of the Euclidean argument in [BG19, Thm. 3.8]). We note that one could also apply more
sophisticated first-order methods such as accelerated gradient descent to this problem, see [AS20].

It is natural to determine what complexity our interior-point methods give for this problem. In the
setting of M = Mn

−κ, we can (up to logarithmic factors) recover the above iteration complexity. We
restrict the above optimization problem to a ball of radius R1 = maxj 6=1 d(p1, pj) around the point p1,
and use the barrier F (p) = − log(R2

1−d(p, p1)2)+κd(p, p1)2, which has barrier parameter 1+O(κR2
1).

Then, observe that by Theorem 5.16(iii) and Lemma 4.9, f is (
√

2ζ
√
κ,
√

2κ)-compatible with any
squared distance function, as each of the d(p, pi)

2’s is. As a consequence, f is (
√

2ζ,
√

2)-compatible
with F , and tf + F is O(1)-self-concordant for every t ≥ 1 by Proposition 4.10. The path-following
method, initialized with starting point p1 (which is the analytic center of F ), then yields an ε-
approximate minimizer of f within O((1+

√
κR1) log(mκR1/ε)) iterations. While this specific choice

of barrier may seem odd, it has the advantage that we know its analytic center to be p1, so it is
easy to initialize the path-following method. This shows again that it is useful to have a general
path-following method capable of dealing with compatible objectives, rather than just linear ones: if
one included a barrier term for the epigraph of every d(p, pi)

2, then it would both be harder to find
the analytic center (for initialization), and the barrier parameter would scale with m. We note that
a similar approach works on PD(n) if one suitably generalized Theorem 5.16(iii).

7 Outlook

In this work, we extend the basic theory of interior-point methods to manifolds, and show that the
developed framework is capable of capturing interesting geodesically convex optimization problems.
In particular, we define a suitable version of self-concordance on Riemannian manifolds, and show
that it gives the same guarantees for Newton’s method as in the Euclidean setting. This is used
to analyze a path-following method for the optimization of compatible objectives over domains
for which one has a self-concordant barrier. We exhibit non-trivial examples of self-concordant
functions, namely squared distance functions on PD(n), and more generally symmetric spaces
with non-positive curvature, and construct related self-concordant barriers. The framework is able
to capture the optimization of Kempf–Ness functions, a problem which has connections to many
areas of mathematics and computer science, leading to algorithms with state-of-the-art complexity
guarantees. It also applies to computing the geometric median on hyperbolic space, for which we
give an algorithm capable of finding high-precision solutions. This demonstrates the power of the
framework, and we believe that it encompasses many more problems. Our work suggests several
directions for further investigation:

• It is natural to search for self-concordant barriers for the aforementioned applications which
have better barrier parameters. Alternatively, is it possible to prove lower bounds that show
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that the constructions given in our work are essentially optimal?

• In Euclidean convex optimization, there are universal constructions of self-concordant barriers,
cf. [NN94, Hil14, Fox15, BE19, Che21]. Can one find such a construction for manifolds?
We describe a concrete proposal. Let D ⊆ M be a compact convex subset of a Hadamard
manifold M , with non-empty interior. Denote by CM∞ the cone over the boundary at infinity
ofM [Hir22]. Its elements can be identified with the geodesic rays γ emanating from a fixed base
point and hence determine Busemann functions bγ as in Eq. (6.6). Define F ∗ : CM∞ → R by
F ∗(γ) = log

∫
D exp(−bγ(q)) dvol(q). Then the inverse Legendre–Fenchel conjugate F : D → R

of F ∗, given by F (p) = supγ∈CM∞ −bγ(p)− F ∗(γ), is a natural candidate for a barrier for D.
Indeed, for Euclidean space M = Rn it reduces precisely to the entropic barrier of Bubeck
and Eldan [BE19].

• From the perspective of interior-point methods, we currently only treat the main stage, which
minimizes an objective given a starting point that is well-centered with respect to the barrier F .
Can one give a general procedure for finding such a starting point from an arbitrary feasible
point p ∈ D? In the Euclidean setting, this is achieved by applying the path-following method
with the linear objective f := −〈grad(F )p, ·〉 in reverse, starting at t = 1. This is sensible
as p is exactly a minimizer of Ft = tf + F at t = 1. Busemann functions generalize linear
functions to Hadamard manifolds, hence is natural to instead use f = bγ with γ the geodesic
ray starting at p ∈M with direction grad(F )p. When f is compatible with F (as we show in
Section 6.1 for specific f and F ), then one can use the same time steps as for the main stage,
and switch to the main stage as soon as λF,α ≤ 1

3 . One method for lower bounding the t for
which this happens is as follows: if F is µ-strongly convex and f is ν-smooth, then λF,α(q)
is at most λFt,α(q)

√
1 + tν/µ + t‖dfq‖∗F,q,α/α, and ‖dfq‖∗F,q,α can be bounded (for instance)

using Lipschitzness of f and strong convexity of F . We leave a more careful analysis of this
idea to future work. We note that in the Euclidean setting, the complexity is often bounded in
terms of the asymmetry of domain D with respect to the point p, see [NN94, Eq. (3.2.24)] for
details, but such a bound does not seem to generalize to the Riemannian setting.

• It would be interesting to understand whether there is a suitable notion of primal-dual methods
in the Riemannian setting, or a notion of duality which interacts well with self-concordance.
While there exists a version of Legendre–Fenchel duality for Hadamard manifolds M , where
the dual space is CM∞, the cone over the boundary at infinity of M discussed above, the
conjugate of a convex function need not be convex [Hir22]. Other proposals such as [BHSL+21]
require a stronger notion of convexity.
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