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Abstract

We aim to understand the extent to which the noise distribution in a planted signal-plus-
noise problem impacts its computational complexity. To that end, we consider the planted clique
and planted dense subgraph problems, but in a different ambient graph. Instead of Erdős-Rényi
G(n, p), which has independent edges, we take the ambient graph to be the random graph
with triangles (RGT) obtained by adding triangles to G(n, p). We show that the RGT can
be efficiently mapped to the corresponding G(n, p), and moreover, that the planted clique (or
dense subgraph) is approximately preserved under this mapping. This constitutes the first
average-case reduction transforming dependent noise to independent noise. Together with the
easier direction of mapping the ambient graph from Erdős-Rényi to RGT, our results yield a
strong equivalence between models. In order to prove our results, we develop a new general
framework for reasoning about the validity of average-case reductions based on low sensitivity
to perturbations.
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1 Introduction

Most modern statistical inference problems exhibit a striking phenomenon: the best efficient algo-
rithm requires substantially more data, or lower noise level, than the information-theoretic limit
achieved by inefficient algorithms. Such problems are said to exhibit a statistical-computational
gap. In this paper we are interested in average-case planted problems, meaning that their inputs
are sampled according to some probability distribution with planted structure. In order to develop
methodology for rigorously reasoning about the computational complexity of these average-case
problems, a vibrant line of research at the interface of statistics, probability, and computational
complexity has emerged. There are two main approaches to substantiating computational limits:
hardness against specific classes of algorithms and average-case reductions.

The first approach attempts to determine the best possible performance for restricted classes of
algorithms, such as low-degree polynomials [Hop18, Wei22], sum-of-squares (SoS) relaxations [BHK+16],
[HKP+17], statistical query algorithms [FGR+13, FPV15, DKS17], first-order methods [CMW20],
or classes of circuits [Ros08, Ros14]. Beyond hardness against specific classes of algorithms, the
overlap gap method introduced in [GS14] and refined in [HS22] has revealed how structural prop-
erties of a solution landscape can rule out multiple classes of algorithms. The power of distinct
classes of algorithms for solving families of statistical problems have been related: low-degree poly-
nomials vs. statistical query [BBH+20], low-degree polynomials vs. approximate message passing
[MW22], and SoS vs. spectral applied to matrices of low-degree polynomials [HKP+17]. This broad
approach continues to see intense activity and yields insight into the limits of current algorithms.
However, it has the drawbacks that (1) each given class of algorithms is known to be suboptimal
in certain settings [KM22, WEAM19, ZSWB22], which reduces confidence in lower bounds against
any specific class, and (2) one must prove fresh lower bounds for each problem of interest and for
each new class of algorithms that emerges.

The second approach entails devising average-case reductions that map one statistical problem
to another using a polynomial-time algorithm, whereby hardness of the first problem is transferred
to the second. The reduction approach is a foundational tool across complexity theory and cryp-
tography for elucidating relationships between problems and constructing complexity hierarchies.
Moreover, it provides insights applicable to all algorithms. The main drawback of this approach is
that in the average-case setting, one must precisely map not just problem instances, but rather en-
tire probability distributions over inputs. This is notoriously challenging due to a lack of techniques,
as emphasized by Goldreich [Gol11], Barak [Bar17], and Bogdanov and Trevisan [BT06].

A common starting hardness assumption in the literature on average-case reductions is the
Planted Clique (PC) Conjecture. This conjecture posits that no polynomial-time algorithm can
detect a planted clique of size k in an Erdős-Rényi random graph with edge density p, when p is con-
stant and k = o(

√
n). Many problems have been shown to be computationally hard based on this as-

sumption including sparse principle component analysis [BR13a, WBS16, GMZ17, BBH18, BB19],
submatrix detection or biclustering [MW15, BBH18, BBH19], planted dense subgraph [HWX15,
BBH18]. A variety reduction techniques were introduced in [BBH18] and [BB20], resulting in a web
of reductions from PC to problems including robust sparse mean estimation, tensor PCA, general
planted dense subgraph, dense stochastic block model, mixtures of sparse linear regressions, robust
sparse mean estimation, and many others. Some works show reductions from hypergraph planted
clique or hypergraph planted dense subgraph to other problems, including tensor clustering [LZ22]
and SVD for random 3-tensors [ZX17]. Another line of research has also explored reductions to
statistical problems based on cryptographic assumptions [GVV22, SZB21, CGKM22, DV21].
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Despite these advances, the current literature on average-case reductions for statistical problems
exhibits a notable limitation: the absence of two-way equivalences. Most reductions rely on a single
hardness assumption, such as the Planted Clique Conjecture or Learning Parity with Noise (LPN),
and demonstrate a statistical-computational gap for other problems. Going beyond this, one might
dream of partitioning statistical problems into equivalence classes, just as has been done so fruitfully
in worst-case complexity. We mention here, only briefly, that the notion of equivalence is itself
nontrivial because each statistical “problem” is itself an entire parameterized family of problems.
We rigorously define what we mean by strong computational equivalence in Section 3.

The primary obstacle to proving equivalence between statistical problems, just as for one-way
reductions, is that average-case reductions are challenging: we must transform one noise distribu-
tion into another while preserving the planted signal. To date, all reductions have converted models
with independent noise to models with either independent or dependent noise. The challenge in es-
tablishing equivalence between planted problems is therefore in developing techniques for removing
dependence in the noise of high-dimensional distributions. In this paper, we introduce a general
framework for the validity of reductions based on low sensitivity to perturbations and apply it to
show the first non-trivial computational equivalence between two statistical problems.

A second (related) motivation for the present paper is towards developing an understanding
of how general are the phenomena observed in planted statistical problems. For planted matrices
or tensors with independent entries, a reduction was devised from planted clique or planted dense
subgraph to a broad class of entry distributions by [BBH19], thereby showing that the observed
phenomena are universal for this class. Thus, we understand how to change the distribution of
the entries, but as of yet there are no general techniques for connecting problems with different
dependence between the entries1.

1.1 The Problems We Consider

General Hypothesis Testing Setup In a simple-versus-simple hypothesis testing problem there
is a pair of distributions P0 and P1 on space Ω, and one observes X generated according to one of
the distributions. The task is to decide between the two hypotheses

H0 : X ∼ P0 versus H1 : X ∼ P1 .

We consider noisy signal detection problems indexed by problem size parameter n, where the space
is Ωn, P0,n represents the pure noise distribution, and P1,n is the distribution with planted signal.
We often keep the dependence on n implicit. An algorithm Φ : Ω → {0, 1} solves the hypothesis
testing problem if the sum of type I and type II errors asymptotically vanish, i.e.,

IPX∼P0(Φ(X) = 1) + IPX∼P1(Φ(X) = 0) → 0 as n → ∞ .

Planted Dense Subgraph Problem In this paper, we consider a slight generalization of Planted
Clique known as the Planted Dense Subgraph (PDS) problem. Here, the pure noise distribution is
the simple Erdős-Rényi random graph, G(n, p). The alternative hypothesis, denoted byG(n, p, k, q),
is generated by starting with G(n, p), choosing a uniformly random subset S of size k from [n],
erasing all edges in S, and independently resampling the edges in S to be included with probability

1The exception is sparse PCA, which has a very specific dependence structure.
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q. The PDS problem is, given a graph G, to distinguish between the two hypotheses

H0 : G ∼ G(n, p) and H1 : G ∼ G(n, p, k, q) .

It is believed that the PDS problem with constant p and q has the same k = o(
√
n) computa-

tional threshold as the planted clique problem [BHK+16], [Hop18].

Random Graph with Triangles Next, instead of the ambient graph being Erdős-Rényi, we
consider a simple graph distribution with dependent edges.

Definition 1 (Random Graph with Triangles). The random graph with triangles distribution
RGT(n, p, p′) is the law of a graph generated as follows. Let G ∼ G(n, p) be an Erdős-Rényi
random graph and for every triple of nodes {i, j, k} ∈

([n]
3

)

with probability p′ independently add
the triangle consisting of the three edges (i, j), (j, k), and (i, k) to E(G).

Remark 1. The expected edge density of G(n, p, p′) is p + (1 − p)
(

1− (1− p′)n−2
)

. It is always
assumed that p′ = O(1/n) so that the edge density remains bounded away from 1.

Remark 2. In certain parameter regimes, the RGT model is close in total variation distance to
the Random Intersection Graph, a model inspired by real-world networks. This will be explained
in more depth in Section 1.2.

Planted Dense Subgraph in Random Graph with Triangles We plant a signal in the ran-
dom graph with triangles (planted RGT ) to obtain RGT(n, p, p′, k, q), the law of a graph generated
as follows. Start with RGT(n, p, p′), choose a random subset S of k vertices, erase all edges within S
and then independently include each edge within S with probability q. The Planted RGT problem
is, given a graph G, to distinguish between the two hypotheses

H0 : G ∼ RGT(n, p, p′) and H1 : G ∼ RGT(n, p, p′, k, q) .

Remark 3. There are multiple options for the definition of Planted RGT. We will discuss a
substantial generalization in the next section. One could also, for example, plant a smaller RGT
with different edge or triangle densities within a larger RGT. We leave this for future work.

1.2 Our results

Our main result is a strong computational equivalence between the planted dense subgraph (PDS)
and planted random graph with triangles (Planted RGT) problems. To achieve this, we must design
transformations that connect these problems in both directions. Here, and throughout the paper,
for two distributions µ and ν we use µ ≈ǫ ν as shorthand for dTV(µ, ν) ≤ ǫ.

Theorem 1.1. For any k = o(n1/4 log−17/4 n), p′ ≤ 1/(n log n) and 0 < p, q < 1, there are efficient
algorithms A△ and A that satisfy the following transition properties.

1. A△ maps both H0 and H1 hypotheses of PDS to planted RGT with parameter map f :

A△(G(n, p)) ≈on(1) RGT(n, p, p
′) , and A△(G(n, p, k, q)) ≈on(1) RGT(n, p, p

′, k, f(q)) ,
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2. A maps both H0 and H1 hypotheses of planted RGT to PDS with parameter map g:

A(RGT(n, p, p′)) ≈on(1) G(n, p) , and A(RGT(n, p, p′, k, q)) ≈on(1) G(n, p, k, g(q)) .

Moreover, the parameter mappings f and g satisfy f ◦ g(q) = q + on(1) and g ◦ f(q) = q + on(1).

Part 1 entails transforming from PDS to planted RGT, i.e., an independent noise model to a
dependent noise model. In the case of G(n, p) to RGT(n, p, p′), the mapping itself is straightforward
based on the definition of RGT: one simply adds each triangle with probability p′. However, the
fact that the planted distributions are mapped correctly via the very same procedure does still
require a nontrivial argument.

In Part 2, the other direction, we show how to map from RGT to Erdős-Rényi. Here the
mapping even in the unplanted pure-noise case is not obvious, and we describe it in Section 2.2.
It is obtained by viewing the triangle addition procedure as a Markov transition kernel on graphs,
and implementing its time-reversal.

To constitute a valid reduction from Planted RGT to PDS, the same mapping must also work
when a dense subgraph has been planted. We face a delicate balance between two competing
objectives: (1) maintaining the algorithm’s behavior outside of the dense subgraph, ensuring that
its performance remains approximately invariant to the placement of the dense subgraph, and
(2) removing the dependence between triangles, which inherently necessitates dependence in the
algorithm’s behavior.

Validity of both reductions is proved via application of a general framework that we develop,
stated as Theorem 2.1 in Section 2. Applying our general theorem presents a number of techni-
cal challenges in the form of bounding total variation distances between perturbed distributions.
Methods for proving the proximity of two high-dimensional distributions in total variation distance
are notably limited, and even more so when neither of them is a product distribution. To this end,
we introduce several technical innovations that will be discussed in detail in the next section.

We conjecture that the statement of Theorem 1.1 holds for k up to Õ(
√
n), while our result

only applies for Õ(n1/4). The range of p′ is optimal up to log factors: if p′ ≥ 2.1n−1 lnn, then
with high probability the RGT is the complete graph and planted RGT is information-theoretically
impossible, so the planted RGT cannot be equivalent to PDS in this regime. We leave open the
problem of obtaining a similar result for the full range of k, p, q, and p′.

General Planted Signal Our results not only demonstrate that the detection of planted dense
subgraphs problem is equivalent in Erdős-Rényi graphs and RGT, but also reveal that a wide
range of planted signal detection problems are equivalent in both models. Let us define the general
planted signal (GPS) model.

Definition 2 (General Planted Signal (GPS)). For edge sequence ~e = (e1, . . . , eK) and ~p =
(p1, · · · , pK) let GPS~e,~p take as input a graph, and for each 1 ≤ i ≤ K, edge ei is resampled
to be included in the graph with probability pi. For a pure-noise distribution P0, let GPS(P0)
denote the distribution of GPS(G) where G ∼ P0.

Planted dense subgraph is a special case of GPS with e1, · · · , e(k2) being the edges inside the

dense subgraph, and pi = q is the planted edge density. The GPS problem in random graph
distribution P0 is the hypothesis testing problem between P0 and GPS(P0).

Our bi-directional reduction result holds also in this general setting.

4



Theorem 1.2. Let GPSn = GPS~e,~p be a sequence of general planted signal problems. For any K =

o(
√
n log−17/2 n), p′ ≤ 1/(n log n) and p1, . . . , pK each bounded away from 0 and 1 by a constant,

there are distributions GPSgn = GPS~e,g(~p) and GPSfn = GPS~e,f(~p) (where f(~p) stands for f : R →
R applied to all elements of the vector) and efficient algorithms A, A′ satisfying the transition
properties.

1. A(G(n, p)) ≈on(1) RGT(n, p, p
′) and A(GPSn(G(n, p))) ≈on(1) GPS

f
n(RGT(n, p, p

′)), and

2. A′(RGT(n, p, p′)) ≈on(1) G(n, p) and A′(GPSn(RGT(n, p, p′))) ≈on(1) GPS
g
n(G(n, p)).

Moreover, the parameter mappings f and g satisfy f ◦ g(q) = q + on(1) and g ◦ f(q) = q + on(1).

Remark 4. GPS includes Subgraph Stochastic Block Model (SSBM), which has a rank-1 signal
(i.e., a small SBM) on k vertices planted inside an Erdős-Rényi graph. Its complete phase diagram
was determined by [BBH18], with computationally hard region obtained via reduction from the
planted clique conjecture. Our result shows that for k = o(n1/4 log−17/4 n), the computational
complexity of SSBM is the same in ambient graph being Erdős-Rényi or RGT.

Approximation of Random Intersection Graph Aside from RGT being intrinsically inter-
esting as a natural random graph model with low-order dependence, it turns out that the RGT
non-trivially approximates the random intersection graph.

Definition 3 (Random Intersection Graph). A sample from RIG(n, d, δ) is defined by sampling n
sets S1, · · · , Sn ⊂ [d] where each Si includes each element of [d] independently with probability δ.
Vertices i and j are connected in G if and only if Si and Sj have non-empty intersection.

Theorem 1.3. For an RIG with constant edge density, i.e., d = Θ(1/δ2), if d ≫ n2.5, then

dTV(RIG(n, d, δ),RGT(n, 1− e−dδ2+(n−2)dδ3(1−δ)n−3
, 1− e−dδ3(1−δ)n−3

)) = o(1).

It was shown in [BBN19] that the threshold for distinguishing RIG from Erdős-Rényi occurs
at d ∼ n3. Thus, the RGT is close in total variation in the range n2.5 ≪ d ≪ n3, whereas in this
range the RIG and Erdős-Rényi have total variation distance close to 1.

2 General Result and Application to RGT

We start by introducing a general theorem that shows how a mapping between unplanted distri-
butions yields a mapping also in the planted case if the mapping satisfies a certain perturbation
invariance. We then describe our specific mappings between Erdős-Rényi and RGT. After that, in
the following section, we give the main ideas for showing that our mappings satisfy the conditions
of our general perturbation theorem, which constitutes the bulk of the paper’s technical innovation.

2.1 Reductions and Sensitivity to Perturbation

We introduce a novel and general framework for validity of a reduction from one general graph model
to another. The general result will be used to show that planted dense subgraph is computationally
equivalent in Erdős-Rényi and in RGT. In this section, the graph models and transformations are
abstract and specific constructions will be discussed in Section 2.2.
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Let P0 and P0
′ be two distributions of random graphs on vertex set [n] and consider the general

planted signal GPS~e,~p on both random graphs.
Suppose that A is a randomized algorithm (equivalently, a Markov kernel) satisfying A(P0) =

P0
′. The following theorem gives a general sufficient condition for A to approximately correctly

map the planted distribution P1 := GPS~e,~p(P0) to the planted distribution P′
1
:= GPS~e,~q(P0

′). For
each 0 ≤ i ≤ K, let P1i (or P

′
1i) be the planted version of P0 (or P0

′), defined by starting with P0

(or P0
′) and resampling edges e1, e2, · · · , ei ∈

([n]
2

)

, respectively, with probability p1, p2 · · · , pi (or
q1, q2 · · · , qi).

Theorem 2.1. Let G be a set of graphs on n vertices such that for any 0 ≤ i ≤ K, IPG∼P1i
(G ∈

G) ≥ 1− δ. Let A be a randomized mapping between graphs on n vertices satisfying A(P0) = P0
′.

Suppose that for each e ∈
(

[n]
2

)

, there exists pe−, p
e
+ ∈ [0, 1] such that for every G ∈ G:

C1 Presence of edge e in the input to A has little influence on the other edges in the output of A:

A(G− e)|∼e ≈ǫ A(G+ e)|∼e .

C2 In the output graph, edge e is approximately independent of the rest of the edges:

A(G− e) ≈ǫ A(G− e)|∼e ×A(G− e)|e and A(G+ e) ≈ǫ A(G+ e)|∼e ×A(G+ e)|e .

C3 The marginal probability on edge e is approximately constant as a function of the input graph:

∣

∣ IP(e ∈ A(G− e))− pe−
∣

∣ ≤ ǫ and
∣

∣ IP(e ∈ A(G+ e))− pe+
∣

∣ ≤ ǫ .

Then we have
dTV

(

A(GPS~e,~p(P0)),GPS~e,~q(P0
′)
)

= O(K(ǫ+ δ)) ,

where qi = pip
ei
+ + (1− pi)p

ei
− for each i ∈ [K].

The main technical challenge of this paper is to prove that our proposed mapping A from RGT
to Erdős-Rényi satisfies conditions C1 and C2. The mapping is given in Section 2.2.

Remark 5. It turns out that the conditions in the theorem are equivalent (up to constant factors)
to the following more compact conditions:

dTV
(

A(G− e),A(G − e)|∼e × Bern(pe−)
)

≤ ǫ and dTV
(

A(G+ e),A(G − e)|∼e × Bern(pe+)
)

≤ ǫ .

We state Theorem 2.1 in the form above because it corresponds to how we apply it.

2.1.1 Proof of Theorem 2.1 via Single Edge Lemma

The idea is to resample edges of the input one at a time and bound the effect of each step on the
output of A. Let Respe be the operation of resampling edge e to be present with probability p.

Lemma 2.1 (Single Edge Lemma). Under the conditions of Theorem 2.1, for any 1 ≤ i ≤ K,

dTV
(

A ◦ Respiei (P1i−1),Res
qi
ei ◦ A(P1i−1)

)

= O(ǫ+ δ) .
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Thus, the operations of applying A and resampling edge ei approximately commute, with pi
being replaced by qi.

Note that P1i = RespieiP1i−1, so Lemma 2.1 equivalently states that

dTV
(

A(P1i),Res
qi
ei ◦ A(P1i−1)

)

= O(ǫ+ δ) .

Applying the triangle inequality K times and using the last display for each term yields

dTV
(

Resq1e1 ◦ · · · ◦ ResqKeK ◦ A(P0),A(P1K)
)

= O(K(ǫ+ δ)) .

Note that A(P0) = P0
′, and by definition Resq1e1 · · ·ResqKeKP0

′ = P1
′
K , so Theorem 2.1 is proved. It

remains to prove Lemma 2.1.

2.1.2 Proof of Single Edge Lemma 2.1

Proof. Suppose Gi−1 ∼ P1i−1 and Gi = RespieiGi−1. Let Aei(G) be the following transformation
that decouples edge ei with rest of the edges,

1. Sample a graph from A(G− e).

2. If e /∈ G, resample edge e to be present with probability pe−. Otherwise, resample edge e to
be present with probability pe+.

In other words, Aei(G) = Res
p
ei
−1{e/∈G}+p

ei
+1{e∈G}

ei ◦ A(G − e). From C2, A(G) ≈ǫ A(G)|∼ei ] ×
A(G)|ei . From C3, if e ∈ G, A(G)|ei ≈ǫ Bern(pei+), if e /∈ G, A(G)|ei ≈ǫ Bern(pei−). Therefore,
dTV(Aei(G),A(G)) ≤ 2ǫ. If Gi−1 ∈ G, we have

Resqiei ◦ A(Gi−1) ≈2ǫ Res
qi
ei ◦ Res

p
ei
−1{ei /∈Gi−1}+p

ei
+1{ei∈Gi−1}

ei ◦ A(Gi−1 − e) = Resqiei ◦ A(Gi−1 − e) .

Because Gi−1 ∈ G with probability at least 1− δ, Resqiei ◦ A(P1i−1) ≈2ǫ+δ Res
qi
ei ◦ A(P1i−1 − e).

Similarly, fixing Gi ∈ G, we have A(Gi) ≈ǫ Aei(Gi). Therefore,

A(P1i) ≈2ǫ+δ Aei(P1i) .

Use P1i = Respiei (P1i−1) = IEGi−1 [Res
pi
eiGi−1] and the definition of Aei , the left-hand side is equal to

A ◦ Respiei (P1i−1) and the right-hand side is equal to

IE
Gi−1

[

Res
p
ei
−1{e/∈Res

pi
ei
(Gi−1)}+p

ei
+ 1{e∈Res

pi
ei
(Gi−1)}

ei ◦ A(Gi − e)
]

= IE
Gi−1

[

Res
pip

ei
++(1−pi)p

ei
−

ei ◦ A(Gi−1 − e)
]

= IE
Gi−1

[

Resqiei ◦ A(Gi−1 − e)
]

= Resqiei ◦ A(P1,i−1 − e) .

In other words, we have

A ◦ Respiei (P1,i−1) ≈4ǫ+2δ Res
qi
ei ◦ A(P1,i−1 − e) .
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2.2 Mapping between Erdős-Rényi and RGT

To use Theorem 2.1 to relate ordinary PDS to the version in RGT, we first need to specify trans-
formations between the ambient graph models. Our mapping from G(n, p) to RGT(n, p, p′) simply
applies the definition of RGT.

Definition 4 (Forward Transition). Given any graph G, let A△(G) be the graph obtained from G
by the following process: independently for each set of three vertices, add the three edges between
them with probability p′. This defines a Markov transition kernel on the space of graphs.

By the definition of random graph with triangles, A△ transfers G(n, p) to RGT(n, p, p′). The
reverse transition is more complicated. We will first describe the distribution of the set of triangles

that were added to G0, conditioned on observing G = A△(G0). Let X ∈ {0, 1}([n]
3 ) be an indicator

of a set of triangles. We use |X| to denote the size of this set, E(X) to denote the set of edges
included in at least one of the triangles, and e(X) = |E(X)| to denote the total number of edges.

Definition 5 (Triangle Distribution). For a given graph G, the triangle distribution µG is a dis-

tribution over subsets of triangles x ∈ {0, 1}([n]
3 ). The probability mass function µG is given by

µG(x) =
1

ZG

( p′

1− p′
)|x|

p−e(x) ,

if E(x) ⊆ G and µG(x) = 0 if E(x) 6⊆ G. Here ZG =
∑

x:E(x)⊂G

( p′

1−p′

)|x|
p−e(x) normalizes µG.

It will be convenient to let Y ∈ {0, 1}([n]
2 ) be the indicator vector of the edge set E(X),

Ye = 1{e ∈ E(X)} for each e ∈
(

[n]

2

)

.

To distinguish between different graphs, we use LG(Y ) to denote the law of Y for a given graph G.

Definition 6 (Reverse Transition). Given any graph G, let G′ = A(G) be the graph obtained from
G by the following process:

1. Sample a set of triangles X ∼ µG

2. Let G′ be equal to G on the set E(X)c

3. For each e ∈ E(X), include e in G′ independently with probability p.

Remark 6. The reverse transition is only analyzed for p′ = 1/(n log n), not for any p′ ≤ 1/(n log n).
Nonetheless, we can still construct a reverse map that works for any p′ ≤ 1/(n log n) by first adding
triangles to increase p′ to 1/(n log n), and then applying A. This is formalized in Corollary 7.1.

Lemma 2.2. The reverse transition A maps RGT(n, p, p′) to the Erdős-Rényi G(n, p) distribution.

Proof. Recall the definition of RGT(n, p, p′): we start with G(n, p) and add triangles. Let T denote
the set of triangles that are selected, and G denote the random graph after adding triangles. Let
|G| be the number of edges in graph G.
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Let P (G|G′) denote the distribution on graphs G obtained by applying the forward transition
on G′, i.e., the distribution of A△(G′). We will show that the reverse transition is exactly the chain
given by the posterior distribution P (G′|G). To start,

P (G′|G) ∝ P (G|G′)P (G′) =
∑

X

1{G = G′ + E(X)}p′|X|(1− p′)(
n
3)−|X|p|E(G′)|(1− p)(

n
2)−|E(G′)|

∝
∑

X

1{G = G′ + E(X)}
( p′

1− p′

)|X|( p

1− p

)|E(G′)|
.

Now, let Q(G′|G) be the distribution given by applying the reverse transition with input G,
i.e., the distribution of A(G):

Q(G′|G) =
∑

X

1{G = G′ +E(X)}µG(X)pe(X)−|E(G)|+|E(G′)|(1− p)|E(G)|−|E(G′)| ,

where µG(X) ∝
( p′

1−p′

)|X|
p−e(X). Dropping the factor depending only on |G| shows that Q(G′|G) =

P (G′|G) and proves the lemma.

For the purpose of reasoning about polynomial-time algorithms, it is crucial that our reduction
A can be implemented in polynomial time. Fortunately, producing a sample X ∼ µG can be done
efficiently via the Glauber dynamics Markov chain.

Lemma 2.3. For any fixed graph G over n vertices, p′ ≪ 1/n and constant p, the Glauber dynamics
on µG mixes in O(n3 log n) time.

The Glauber dynamics is defined in Section 9.1 and the lemma is proved in Section 9.2.

2.3 Applying Theorem 2.1 to Triangle Removal Algorithm

Having Theorem 2.1 and the transformations in hand, we are ready to prove Theorem 1.1. In this
section we focus on the reverse transition, A, as it contains a wider range of technical ideas. The
proof for the forward transition A△, provided in Section 5, is significantly easier and follows the
same high-level outline.

To begin, for the unplanted case Lemma 2.2 states that A(RGT(n, p, p′)) = G(n, p), so it remains
to prove that A(RGT(n, p, p′, k, q)) ≈on(1) G(n, p, k, g(q)). We focus here on the case p′ = Θ̃(1/n).

Theorem 2.2 (Triangle Removal in Planted Case). For k = o(n1/4 log−17/4 n), p′ = 1/(n log n)
and 0 < p < q < 1 being constant,

dTV
(

A(RGT(n, p, p′, S, q)), G(n, p, S, q · pe)
)

= on(1) ,

where pe = IEG∼RGT(n,p,p′) IPA(e ∈ A(G+ e)) for an arbitrary edge e.

Here RGT(n, p, p′, S, q) stands for the random graph generated by planting a dense subgraph
G(k, q) at vertex set S in RGT(n, p, p′). Similarly, G(n, p, S, q · pe) stands for the random graph
generated by planting a dense subgraph G(k, q · pe) at vertex set S in G(n, p).

To apply our general Theorem 2.1, we need to specify two items: the intermediate planted RGT
models and the class of graphs G. We will then check conditions C1, C2, and C3.
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2.3.1 Intermediate Planted Models

Define RGTi(n, p, p
′S, q) to be a random graph generated by starting with RGT(n, p) and indepen-

dently resampling each edge e1, e2, · · · , ei to be included with probability q.

2.3.2 Defining Class of Graphs G
It is not hard to devise examples of graphs G for which each of the conditions C1, C2, C3 are
violated. We define the class of graphs G to avoid these bad examples.

The class of graphs G is chosen to be G1 ∩ G2, where these are as follows:

G1 is the set of graphs that are p2/3-uniformly 2-star dense, where a graph is c-uniformly 2-star
dense if for any pair of nodes i, j, there are at least c(n− 2) nodes k such that both (i, k) and
(j, k) are in the graph; and

G2 is the set of graphs G that satisfy for every e ∈
([n]
2

)

that

∣

∣µG+e(Ye = 1)− p+e
∣

∣ = Cpn
−5/2p′−2

√

log n , where p+e = IE
G′∼RGT(n,p,p′)

[µG′+e(Ye = 1)] ,

and Cp is a fixed constant depending on p.

The following lemma states that G is a high probability set for each RGTi as required by
Theorem 2.1. It is proved in Section 7.5.

Lemma 2.4. For any RGTi, IPG∼RGTi
(G ∈ G) = 1− o(1/n).

2.3.3 Checking the Conditions of Theorem 2.1

We now state the main lemma needed to verify the conditions in Theorem 2.1. The lemma shows
insensitivity of A to perturbing the input by a single edge, and contains the bulk of our technical
contributions. The key ideas will be presented in Section 2.4 with the full proof deferred to Section 7.

Lemma 2.5 (Perturbation Insensitivity). If G ∈ G1, then

LG−e(Y∼e) = LG+e(Y∼e|Ye = 0) ≈O(log17/2 n/
√
n) LG+e(Y∼e|Ye = 1) ,

and from this it follows that

LG+e(Y ) ≈O(log17/2 n/
√
n) LG+e(Y∼e)× LG+e(Ye) .

We first check that condition C1 follows from the lemma. Since LG+e(Y∼e) is a mixture of the
laws LG+e(Y∼e|Ye = 0) and LG+e(Y∼e|Ye = 1), [change every Õ or only change it in thm

statements]Lemma 2.5 implies LG+e(Y∼e) ≈Õ(1/
√
n) LG−e(Y∼e). Note that A simply resamples

edges in Y , so by the data processing inequality for TV,

A(G+ e)|∼e ≈Õ(1/
√
n) A(G− e)|∼e .

Condition C2 for G− e is trivial: A(G− e) has no edge in position e, so for any G,

A(G− e) = A(G− e)|∼e × Bern(0) .
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For G+ e, the second display of Lemma 2.5 implies, again by data processing inequality, that

A(G+ e) ≈Õ(1/
√
n) A(G+ e)|∼e ×A(G+ e)|e .

Lastly, condition C3 is immediate for G− e, since A(G− e)|e = Bern(0) for all G. For G+ e, it
follows from the definition of G2: For any G ∈ G2, we have by conditioning on the value of Ye that

A(G+ e)|e ∼ µG+e(Ye = 1) · Bern(p) + [1− µG+e(Ye = 1)] · Bern(1)
= Bern

(

1− (1− p)µG+e(Ye = 1)
)

≈Õ(1/
√
n) Bern

(

1− (1− p) · IE
G′∼RGT(n,p,p′)

[µG′+e(Ye = 1)]
)

.

The last step used the fact that dTV(Bern(a),Bern(b)) = |a − b|. Let pe = IEG′∼RGT(n,p,p′) IP(e ∈
A(G′+e)) = 1−(1−p)·IEG′∼RGT(n,p,p′)[µG′+e(Ye = 1)]. Combining the last two displayed equations,

A(G+ e) ≈Õ(1/
√
n) A(G+ e)|∼e × Bern(pe) .

Therefore, the conditions of Theorem 2.1 hold with q′ = q · pe, proving Theorem 2.2.

2.4 Showing Perturbation Insensitivity: Main Ideas Behind Lemma 2.5

Let us examine more closely the generation of variables in Lemma 2.5. We fix G and let X ∼
µG+e( · |Ye = 0) = µG−e and X+ ∼ µG+e( · |Ye = 1), where recall that Y and Y + are the corre-
sponding edge indicator vectors as defined in Section 2.2. Without loss of generality, assume e /∈ G,
so G− e = G. Our objective is to show that Y∼e and Y +

∼e are close in total variation.
Let XT (e), X

+
T (e), and X∼T (e), X

+
∼T (e) be the triangle indicator vectors restricted to the set of

triangles that contain and do not contain e, respectively. The proof of Lemma 2.5 is divided into
two conceptual parts: (1) insensitivity to perturbing Ye of triangles X∼T (e) that do not include e,
and (2) conditioning on X∼T (e), addressing the difference of edges brought about by triangles XT (e)

that include e. We decompose dTV(Y∼e, Y
+
∼e) into two terms (using Lemma 4.3 in Section 4.3):

dTV(Y∼e, Y
+
∼e) ≤ dTV(X∼T (e),X

+
∼T (e)) + dTV

(

Y∼e, IE
X′∼X∼T (e)

L(Y +
∼e|X+

∼T (e) = X ′)
)

. (1)

We next describe how to bound each of the two terms on the right-hand side.

2.4.1 Edge e Has Low Influence on Non-Containing Triangles

We first bound dTV(X∼T (e),X
+
∼T (e)). Only in Section 2.4.1 we will pretend that X+ ∼ µG+e rather

than µG+e( · |Ye = 1), and this turns out to be valid as the two distributions have roughly the same
variation distance to X∼T (e) because µG+e is a constant-weight mixture of µG+e( · |Ye = 1) and
µG−e.

Note that because e /∈ G, XT (e) is always 0, so X∼T (e) has the same distribution as X, defined

by µG. As for X
+
∼T (e), letting Te be the set of triangles containing e,

L(X+
∼T (e)) =

∑

x∈{0,1}Te
IP(X+

T (e) = x)L(X+
∼T (e)|X

+
T (e) = x)
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is a mixture of Gibbs distributions indexed by the value of X+
T (e). By Pinsker’s inequality we have

dTV(X∼T (e),X
+
∼T (e))

2 ≤ χ2(X∼T (e)‖X+
∼T (e)), and we bound the latter quantity via Ingster’s 2nd

moment method [IS03]. We emphasize that both L(X∼T (e)) and L(X+
∼T (e)) are complicated depen-

dent distributions, while all prior works to the best of our knowledge have always shown bounds
between mixtures of product distributions (see, for instance, [IS03, BR13b, HWX15, BBN19]). We
show that despite this dependence it is still possible to derive a tractable bound.

Lemma 2.6 (χ2-divergence for mixture of Gibbs measures). Let P be a distribution defined by

P (X) = f(X)/Z.

Let U be a discrete random variable and Q be a mixture of Gibbs distributions defined by

Q(X) = IE
U
[fU(X)/ZU ] .

Letting ρU (X) = fU (X)/f(X), we have that

χ2(Q‖P ) + 1 = IE
U,U ′

IEX∼P ρU (X)ρU ′(X)

IEX∼P ρU (X) IEX∼P ρU ′(X)
,

where U ′ is an independent and identically distributed copy of U .

It turns out that when applying Lemma 2.6 to X∼T (e) versus X+
∼T (e), we can bound the χ2-

divergence via marginal influences of the edge distribution L(Y ). Here the marginal influence IMA′→e

characterizes how much configurations on A′ can affect the conditional marginal probability on edge
e. A formal definition of marginal influence can be found in Definition 9.

Lemma 2.7. Suppose G ∈ G and consider LG(Y ) for Y as in Section 2.2 and p′ = o(1/n). Let
IMA′→e be the marginal influence of A′ on e for LG(Y ). Letting X̃+

T (e) be an independent copy of

X+
T (e), we have

χ2(X+
∼T (e)‖X∼T (e))+1 ≤ IE

X+
T (e)

,X̃+
T (e)

min

{

(

1+
1− p

p
sup

A′⊂A∪B
e∈(A∪B)\A′

IMA′→e

)|B|
(1/p)|A∩B|, (1/p)|A|+|B|

}

,

where A = E(X̃+
T (e))− e and B = E(X+

T (e))− e.

The marginal influence IMA′→e can be bounded by exploiting the fact that µG has small marginal
probabilities under arbitrary conditioning, and we prove a general bound to this effect in Section 8.

Lemma 2.8. Suppose G ∈ G and consider LG(Y ) for Y as in Section 2.2 and p′ = o(1/n). Let
IMA→e be the marginal influence of A on e for LG(Y ). For an edge set A ⊂ E(G) with |A| = O(n),

IMA→e = Õ(|A|/n) .

With high probability, |A| and |B| each have size Õ(1) and |A ∩ B| = 0, so the right hand of
Lemma 2.7 is 1 + Õ(1/n) with high probability. Of course, the tail distribution of |A| and |B| is
important, and we will make the bound rigorous in Section 7 to get that χ2(X∼T (e)‖X+

∼T (e)) =

Õ(1/n). By Pinsker’s inequality, this shows dTV(X∼T (e),X
+
∼T (e)) = Õ(1/

√
n).
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2.4.2 Triangles Including e and TV Between Projections of Distributions

Recalling the decomposition (1), we now aim to bound the second term,

dTV
(

Y∼e, IE
X′∼X∼T (e)

L(Y +
∼e|X+

∼T (e) = X ′)
)

. (2)

This can be rewritten as the more symmetric expression

dTV
(

IE
X′∼X∼T (e)

L(Y∼e|X∼T (e) = X ′), IE
X′∼X∼T (e)

L(Y +
∼e|X+

∼T (e) = X ′)
)

.

Since Y∼e|X and Y +
∼e|X+ are projections of triangle variables X and X+ onto the edge space, the

most natural approach to establish their closeness is to show that L(XT (e)|X∼T (e)) and L(X+
T (e)|X

+
∼T (e))

are close and appeal to data processing inequality. However, this is not true: As mentioned earlier,
XT (e) = ~0 since e /∈ G, and in contrast X+

T (e) is non-zero with non-negligible probability, since there

are Θ(n) triangles containing to e and each is selected with probability approximately p′ = Θ̃(1/n).
Nevertheless, the fact that we are proving a statement about projection onto the edge space,

Y∼e and Y +
∼e, allows us to carry out manipulations in the triangle space before projection. We will

design an auxiliary distribution Xaux over the same support as X∼T (e) that when added to X+
∼T (e)

results in the identical edge projection as X+
e , i.e.,

E(Xaux ∨X+
∼T (e))− e = E(X+

T (e) ∨X+
∼T (e))− e .

This means the edge indicator vector of Xaux ∨ X+
∼T (e), which we denote by Ỹ∼e, is the same as

Y +
∼e. Thus, instead of comparing Y∼e and Y +

∼e in (2), it suffices to compare Y∼e and Ỹ∼e, and by
data processing inequality it in turn suffices to compare X∼T (e) and X+

∼T (e) ∨Xaux (see Fig. 1):

dTV
(

Y∼e, Y
+
∼e

)

≤ dTV
(

X∼T (e),X
+
∼T (e) ∨Xaux

)

(3)

We now define Xaux. Each triangle in X+
T (e) adds at most two edges to Y +

∼e. To simulate this
change without using any triangles containing e, we add a triangle to Xaux for each new edge
introduced by X+

T (e). Crucially, this is done without adding other new edges, see Fig. 2. Avoiding

adding new edges is possible with high probability as long as the graph G is sufficiently dense (here
c-uniformly 2-star dense plays a role) and p′ = Θ̃(1/n), which implies that the edge set of X+

∼T (e)
has sufficient coverage of relevant triangles that we might potentially add to Xaux.

From the previous section, we have X∼T (e) ≈Õ(1/
√
n) X

+
∼T (e)

, so to show (3) it remains to prove
that X∼T (e) ≈ X∼T (e) ∨Xaux, i.e., the addition of Xaux must be undetectable. We show this via
concentration of the likelihood ratio between X∼T (e) ∨ Xaux and X∼T (e). In Section 8, we prove
that Lipschitz functions over µG concentrate. The likelihood ratio under consideration is not quite
Lipschitz – it is Lipschitz only over a high probability subset – but this turns out to suffice for it
to concentrate.

3 Strong Equivalence Between Parameterized Problems

Each problem we consider is actually an entire family of problems. Our results turn out to imply a
strong form of computational equivalence between families of problems. This form of equivalence
is new, so we carefully introduce the relevant definitions.
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X = X∼e ∨~0 X∼e ∨Xaux ≈ X+
∼e ∨Xaux X+ = X+

∼e ∨X+
e

E
(

X+
∼e ∨Xaux

)

− e E
(

X+
∼e ∨X+

e

)

− e

Ỹ∼e Y +
∼e

Y∼e

(1)

(2)

=

Figure 1: Relation between variables. By the data processing inequality, which implies that total
variation shrinks under projection, closeness of (1) implies closeness of (2).

X+
∼e

X+
e

Xaux

e

Figure 2: Design of Xaux. For each edge in E(X+
T (e))−E(X+

∼T (e))− e (purple edges), Xaux includes

a triangle (in red) containing the edge, without adding other edges not already in E(X+
∼T (e)) (in

green).
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Average-Case Reduction in Total Variation Let P = {(P0,n, P1,n), n ∈ N} be a hypothesis
testing problem between

H0 : X ∼ P0,n and H1 : X ∼ P1,n ,

and P ′ = {(P ′
0,n, P

′
1,n), n ∈ N} be another hypothesis testing problem between

H0 : X ∼ P ′
0,n and H1 : X ∼ P ′

1,n .

An average-case reduction from P to P ′ is a randomized mapping A : Ω → Ω, computable in
polynomial time, such that dTV(A(P0,n), P

′
0,n) = on(1) and dTV(A(P1,n), P

′
1,n) = on(1).

2

It is clear that if there exists an average case reductionA from P to P ′, then any polynomial-time
algorithm Φ that has vanishing error on P ′ yields a polynomial-time algorithm Φ◦A with vanishing
error on P. Therefore, if P is computationally hard (or information-theoretically impossible), then
P ′ is also computationally hard (or information-theoretically impossible).

Parameterized Problems and Reductions Most statistical problems have several parameters.
In our case of planted RGT, for a given graph size n we have parameters for the dense-subgraph
size k, ambient edge probability p, triangle probability p′, and edge density q in the dense subgraph.
Each tuple of parameters describes a distinct problem instance from within the larger family, and
a reduction maps between a problem at a specific parameter to another problem at some param-
eter. We use P(~αn) = {(P0,n(~αn), P1,n(~αn)), ~αn ∈ S, n ∈ N} to denote a family of parameterized
problems. Here S ⊂ R

a is assumed to be compact, which can be achieved for all problems we know
of by using an appropriate parameterization. For instance, for PDS with constant p and q, one can
take ~αn = (logn k, p, q). For the regime p = cq and q = n−b for b > 0 as studied in [HWX15] one
can take ~αn = (logn k, logn(1/q), c).

Phase Diagram In the literature on the computational complexity of statistics problems, fea-
sibility of solving a problem is usually described in the language of phase diagrams (see, e.g.,
[MW15, HWX15, BBH18, SW22]). These diagrams divide the parameter space into regions corre-
sponding to efficiently solvable, computationally hard, or information-theoretically impossible. In
order to describe the relation between families of problems, we need to introduce a precise definition
that captures the meaning of existing phase diagrams.

For a parameterized family of hypothesis testing problems P = {(P0,n(~αn), P1,n(~αn)), ~αn ∈
S, n ∈ N}, the Phase Diagram is a mapping PDP : S → {easy, hard, impossible,⊥}:

• PDP(~α) = easy if and only if for any sequence ~αn converging to ~α, P(~αn) can be solved
efficiently with vanishing error as n → ∞.

• PDP(~α) = hard if and only if for any sequence ~αn converging to ~α, P(~αn) can only be solved
by super-polynomial algorithms.

• PDP(~α) = impossible if and only if for any sequence ~αn converging to ~α, solving P(~αn) is
information-theoretically impossible.

2This notion of reduction is based on Le Cam deficiency [LC12] and has been (sometimes implicitly) used in the
recent line of work on average-case reductions for statistical problems, e.g., [BR13a, MW15, HWX15, CLM16, BBH18,
BB19, BB20]. Levin’s [Lev86] notion of average-case reduction is similar but tailored for dist-NP completeness results,
and is more stringent in the error probability and less stringent in the distance between distributions.
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• PDP(~α) =⊥, otherwise.

Remark 7. It is important to note that the phase diagram of a problem depends on the parame-
terization: Some parameterizations lead to meaningless phase diagrams.

For example, for the PDS problem with constants p 6= q, if the parameters are chosen to be
~αn = (k/n, p, q), then the phase diagram becomes trivial. For any 0 < c ≤ 1, PDP(c, p, q) = easy as
it suffices to count the number of edges and tell the difference between the two hypothesises. And
PDP(0, p, q) =⊥, because we know the problem is information-theoretically impossible for constant
k and easy for k = Θ(

√
n), and k/n converges to 0 in both regimes. On the other hand, if we use

the parameterization ~αn = (logn k, p, q), the conjectured non-trivial phase transition will appear
when logn k = 1/2. If we believe the computational threshold happens at k = Θ̃(

√
n), then

PDP(c, p, q) =











hard if 0 < c < 1/2

easy if 1/2 < c ≤ 1

⊥ if c = 1/2 .

One can also study the more refined behavior near the phase transition by introducing extra
parameters. For instance, in the case of PDS, one can use the parameterization ~αn = (a, b, p, q)
where k = na logb n. This allows the study of more fine-grained phase transition at k =

√
n logb n.

Remark 8. Although ~αn belongs to S for every n, it is crucial that S remains a compact set,
independent of n. In the case of PDS, the size of the planted subgraph, k, cannot be selected
directly as a parameter, as it would diverge with n. To ensure that the asymptotic behavior of
the problem is represented by a single point on the phase diagram, ~αn should remain constant or
converge to a constant as n increases.

Strong Equivalence Between Problems To describe the relation between the phase diagrams
of two parameterized families of problems, P(~αn) where ~αn ∈ S and P ′(~βn) where ~β ∈ S′, we say
that ~α ∈ S maps to ~β ∈ S′ if

• for any sequence ~αn converging to ~α, there exists a sequence ~βn converging to ~β with an
average case reduction from P(~αn) to P ′(~βn), and

• for any sequence ~βn converging to ~β, there exists a sequence ~αn converging to ~α with an
average case reduction from P(~αn) to P ′(~βn).

This definition yields the following correspondence of phase diagrams.

Lemma 3.1. Let P(~αn), where ~αn ∈ S, be a parameterized family of problems with phase diagram
PDP . And P ′(~βn), where ~βn ∈ S′, is a parameterized family of problems with phase diagram PDP ′.
If ~α ∈ S maps to and can be mapped from ~β ∈ S′, then

PDP(~α) = PDP ′(~β) .

Proof. In this proof, we use the convention that information-theoretically impossible is harder than
computationally hard, which is harder than efficiently solvable. If two problem are in the same
category, they are considered to have same hardness.

Let P(~αh
n) (or P(~αe

n)) be one of the hardest (or easiest) problems where ~αn converges to ~α.
P ′(~βh

n) and P ′(~βe
n) are defined in the same way. Since ~α maps to ~β, there exists a problem P ′(~βn)
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that can be reduced from P(~αh
n) with

~βn converging to ~β. So P ′(~βh
n) is at least as hard as P ′(~βn),

and therefore, at least as hard as P(~αh
n). Similarly, we can conclude that P ′(~βh

n) is at least as hard
as P(~αh

n), which means they have the same hardness.
On the other hand, since ~α maps to ~β, there exists a problem P(~αn) where ~αn converges to ~α

that P(~αn) reduces to P ′(~βe
n). So P ′(~βe

n) is at least as hard as P(~αn), and therefore, at least as
hard as P(~αe

n). We can also conclude that P(~αe
n) and P ′(~βe

n) have the same hardness. It is not
hard to see from the definition of PD that PDP(~α) = PDP ′(~β).

We say two families of problems P and P ′ are strongly equivalent if for any point ~α ∈ S, there
exists ~β ∈ S′ such that ~α maps to and can be mapped from ~β, and similarly, for any point ~β ∈ S′,
there exists ~α ∈ S such that ~β maps to and can be mapped from ~α.

Fact 1. If two problems are strongly equivalent, then the phase diagram of either one of the problems
determines the phase diagram of the other problem.

Remark 9. The phase diagrams of the same problem under different parameterizations may not
be strongly equivalent. One such example was discussed in Remark 7.

The main result of the paper, Theorem 1.1, can be re-stated as the following.

Theorem 3.1. Consider the PDS problem, i.e., hypothesis testing between G(n, p) and G(n, p, k, q),
parameterized by ~αn = (logn k, p, q), restricted to the parameter region logn k < 1/4, 0 < p, q < 1.
The Planted RGT problem has hypotheses RGT(n, p, p′) and RGT(n, p, p′, k, q) and is parameterized
by ~β = (p, logn p

′, logn k, q) where the parameter region is logn p
′ < −1, logn k < 1/4, 0 < p, q < 1.

The PDS and Planted RGT problems are strongly equivalent in the given parameter regimes.

4 Preliminaries

4.1 Probability Notation

The probability law of a random variable X is denoted by L(X). It will often be necessary to
condition on a graph G for a jointly distributed X and G, and we use the shorthand LG(X) in
place of L(X|G).

Any randomized algorithm A defines a Markov kernel where the distribution of the output for
given input x follows the law of A(x). When an algorithm A is applied to a distribution µ, A(µ)
stands for the law of A(X) where X ∼ µ. For random variables X,Y we use dTV(X,Y ) in place of
dTV(L(X),L(Y )). For the ease of presentation, we use dTV(P,Q) ≤ ǫ and P ≈ǫ Q interchangeably.

For two vectors X and Y , X ∨ Y is the coordinate-wise max.
We say that an event occurs with high probability if its probability is at least 1 − 1

nc for a
large enough constant c, i.e., large enough for subsequent use (which in our case entails losing some
numerical constant in c and still having the probability tend to one).

4.2 Graph Theory Notation

G is always used to denote a graph. In general we call a pair of vertices e = {i, j} ∈
([n]
2

)

= Kn an
edge, regardless of whether e is actually in the particular graph G under consideration. If it is, then
we say that edge e is present, or included, in G. A graph G is considered a subset of edges in Kn,
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or a set of indicators in {0, 1}Kn for whether an edge is included in G. We also use the convention
that for any E ⊂ Kn, G|E stands for the intersection G ∩ E.

Let Nk(v) stands for the set all vertices in G with distance at most k to v without v itself.
Two triangles in the graph are considered adjacent or having distance 1 if they share an edge. The
distance between two triangles are defined by the length of a shortest path between them. Similarly,
two edges in a graph are adjacent or having distance 1 if they share a node. The distance between
two edges are defined by the length of a shortest path between them.

For a set of triangles T (as a binary vector with 1 indicating that a triangle is present), E(T )
denotes the edge set of the union of the triangles in T .

For a graph G and a pair of vertices u, v, the set of wedge vertices WG(u, v) is the set of vertices
that are adjacent to both u and v (excluding u and v themselves):

WG(u, v) = {w ∈ [n]|(w, u), (w, v) ∈ G} . (4)

4.3 Total Variation Distance

The total variation distance between two distributions P and Q on the same space Ω is defined
as dTV(P,Q) = supA⊆Ω P (A) − Q(A). The total variation is convex as function of the pair of
distributions (P,Q). We state several lemmas that will be used to bound total variation distance.

Lemma 4.1 (Data Processing Inequality (DPI)). For any two random variables X,Y on space Ω
and any randomized algorithm (Markov transition kernel) R : Ω → Ω′ for arbitrary space Ω′, we
have

dTV
(

R(X), R(Y )
)

≤ dTV(X,Y ) .

Lemma 4.2 (Convexity and Mixtures). Let P and Q be two distributions over the same space Ω.
If there is a joint distribution (X,X ′, Y ) where the marginal distributions of X and X ′ are P and
Q, respectively, we have

dTV(P,Q) ≤ IE
Y
dTV(PX|Y , QX′|Y ) .

Proof. Since IEY PX|Y = P and IEY PX′|Y = Q, the statement follows from convexity of dTV.

Lemma 4.3 (TV Decomposition). Consider two pairs of random variables, (X,Y ) and (X ′, Y ′).
We have

dTV(Y, Y
′) ≤ dTV(X,X ′) + dTV

(

Y, IE
Z∼L(X)

L(Y ′|X ′ = Z)
)

.

Proof. Consider an intermediate distribution IEZ∼L(X)L(Y ′|X ′ = Z). By the triangle inequality,

dTV
(

Y, Y ′) ≤ dTV
(

Y , IE
Z∼L(X)

L(Y ′|X ′ = Z)
)

+ dTV
(

IE
Z∼L(X′)

L(Y ′|X ′ = Z) , IE
Z∼L(X)

L(Y ′|X ′ = Z)
)

.

By the data processing inequality, the second term is bounded by dTV(X,X ′).

Lemma 4.4. Let P and Q be two distributions over the same space Ω, and suppose that Q is
absolutely continuous with respect to P . For any event A ⊆ Ω,

dTV(P,Q) ≤ 2(P (A) +Q(A)) + (1−Q(A))dTV(P |Ac , Q|Ac) .
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Proof. Several applications of the triangle inequality yield

dTV(P,Q) = IE
P

∣

∣

∣

dQ

dP
− 1

∣

∣

∣

= IE
P

[

1A

∣

∣

∣

dQ

dP
− 1

∣

∣

∣

]

+ IE
P

[

1Ac

∣

∣

∣

dQ

dP
− 1

∣

∣

∣

]

= IE
P

[

1A

∣

∣

∣

dQ

dP
− 1

∣

∣

∣

]

+ IE
P

[

1Ac

∣

∣

∣

Q(Ac)

P (Ac)
· dQ|Ac

dP |Ac
− 1

∣

∣

∣

]

≤ Q(A) + P (A) + IE
P

[

1Ac
Q(Ac)

P (Ac)
·
∣

∣

∣

∣

dQ|Ac

dP |Ac
− 1

∣

∣

∣

∣

+ 1Ac

∣

∣

∣

∣

Q(Ac)

P (Ac)
− 1

∣

∣

∣

∣

]

≤ Q(A) + P (A) +Q(Ac) · IE
P |Ac

∣

∣

∣

∣

dQ|Ac

dP |Ac
− 1

∣

∣

∣

∣

+ |P (A)−Q(A)|

≤ 2(P (A) +Q(A)) +Q(Ac) · dTV(P |Ac , Q|Ac)

Lemma 4.5 (Bounding TV via Concentration of Likelihood Ratio). Let P and Q be two distri-
butions over the same space Ω, with Q absolutely continuous with respect to P . Let dQ

dP be the

likelihood ratio (or Radon-Nikodym derivative) between the two distributions. If
∣

∣

dQ
dP (X) − 1

∣

∣ ≤ ǫ
with probability at least 1− δ for X ∼ P , then

dTV(P,Q) ≤ 2ǫ+ 2δ .

Proof. Let A be the event that
∣

∣

dQ
dP (X) − 1

∣

∣ > ǫ, so P (A) ≤ δ from the assumption. Since
dQ
dP (X) ≥ 1− ǫ on Ac, Q(Ac) ≥ (1− ǫ)P (Ac) ≥ 1− ǫ− δ. So Q(A) ≤ ǫ+ δ. We have

dTV(P,Q) = IE
∣

∣

∣

dQ

dP
(X) − 1

∣

∣

∣
= IE

[

1A

∣

∣

∣

dQ

dP
(X)− 1

∣

∣

∣

]

+ IE

[

1Ac

∣

∣

∣

dQ

dP
(X) − 1

∣

∣

∣

]

≤ P (A) +Q(A) + ǫ ≤ 2ǫ+ 2δ .

Lemma 4.6 (Many Steps of Markov Kernel in Terms of One Step). Let X be a random variable
over space Ω, K be a Markov kernel from Ω to Ω. Then for any m ∈ Z

+,

dTV(X,Km(X)) ≤ m · dTV(X,K(X)) .

Proof. We do an induction on m. The case of m = 1 is trivial. For m > 1, by triangle inequality,

dTV(X,Km(X)) ≤ dTV(X,Km−1(X)) + dTV(K
m−1(X),Km(X))

≤ (m− 1)dTV(X,K(X)) + dTV(K
m−1(X),Km(X)) .

From data processing inequality, the second term can also be bounded by

dTV(K
m−1(X),Km(X)) ≤ dTV(X,K(X)) .

Lemma 4.7. Let X be a real-valued random variable satisfying 0 ≤ X ≤ M almost surely. If there
exists a ∈ R that |X − a| ≤ σ with probability at least 1− δ, then

|X − IEX| ≤ 2σ + δM

with probability at least 1− δ.

Proof. We have
a− σ ≤ IEX ≤ (a+ σ)(1− δ) + δM ≤ a+ σ + δM .

Combining this with |X − a| ≤ σ, we get −2σ − δM ≤ X − IEX ≤ 2σ.
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4.4 Chernoff Bound and Mcdiarmid’s Inequality

Lemma 4.8 (Chernoff Bound for Independent Binary Variables). Let X1, · · · ,Xn be random binary
variables. Let X denote their sum and µ = IE[X]. We have for any δ ≥ 0,

IP(X ≥ (1 + δ)µ) ≤ e−δ2µ/(2+δ) and IP(X ≤ (1− δ)µ) ≤ e−δ2µ/2 .

Lemma 4.9 (Mcdiarmid’s Inequality [McD98]). Consider a real-valued martingale X0,X1, . . . Xn

adapted to filtration F . If |Xk −Xk−1| ≤ R and Var(Xk|Fk−1) ≤ σi almost surely for any k, then

IP(Xn − IEXn ≥ t) ≤ exp
( −t2/2
∑

σ2
i +Rt/3

)

.

Lemma 4.10 (Alternative form of McDiarmid’s Inequality). Consider f : X n → R. Let X =
(X1, . . . ,Xn) with Xi ∼ Pi sampled independently, where Pi has probability mass at least pi on one
element. If there exists Y such that for any x, x′ ∈ Y,

|f(x)− f(x′)| ≤
∑

i:xi 6=x′
i

ci

and IP(X ∈ Y) = 1− p, then for any t ≥ p
∑

i ci,

IP(f(X)− IE f(X) > t) ≤ p+ exp
(−(t− p

∑

i ci)
2/2

σ2 +maxi cit/3

)

,

where σ2 =
∑

i pi(1− pi)c
2
i .

Proof. The proof is the same as [Com15] but instead of using the version of Mcdiarmid’s inequality
in [Com15], we use the more general version of Mcdiarmid’s inequality stated in Lemma 4.9.

5 Forward Map Preserves Planted Signal

This section aims to show the first part of Theorem 1.1 by applying Theorem 2.1 on the forward
process A△ described in Defn. 4.

In this section only, we use X ∈ {0, 1}([n]
3 ) to denote the indicator vector of the set of triangles

added by A△ and use Z ∈ {0, 1}([n]
2 ) to denote the indicator for the set of edges in A△(G), i.e., the

indicator of G ∪ E(X). From the definition of A△, X ∼ Bern(p′)⊗(
n
3).

Theorem 5.1 (A△ Increases Triangle Density in Planted RGT). Let p′1 < p′2 ≤ 1/n, k := |S| =
O(n1/4 log−5/4 n), and 0 < p, q < 1 constant. If A△ includes each triangle with probability p′ =
p′2−p′1
1−p′1

, then

dTV
(

A△(RGT(n, p, p′1, S, q)),RGT(n, p, p
′
2, S, q

′)
)

= on(1) ,

where q′ = q + (1− q)
(

1− (1− p′)n−2
)

.

By choosing p′1 = 0 we get the reduction from planted dense subgraph to planted RGT.
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Corollary 5.1. For p′ ≤ 1/n, k := |S| = O(n1/4 log−5/4 n) and p, q being constant,

dTV
(

A△(G(n, p, S, q)),RGT(n, p, p′2, S, q
′)
)

= on(1) ,

where q′ = q + (1− q)
(

1− (1− p′)n−2
)

.

Remark 10. The statement of the corollary is actually true all the way up to k = O(
√
n). This can

be proved by calculating the χ2-divergence induced by adding a single triangle to an Erdős-Rényi
random graph, with or without resampling edges in S. (A similar calculation appears in [BBN19].)
We instead use our general result, Theorem 2.1, as this gives a unified view on how to deal with
correlation in planted models.

Remark 11. In Section 1.2, Theorem 1.1 is stated without explicitly giving the mapping function
f(q). This corollary shows that f(q) = q+ (1− q)

(

1− (1− p′)n−2
)

. Because we assume p′ ≪ 1/n,
we have f(q) = q+O(np′) = q+ on(1). The parameter mapping g for the reverse map also satisfies
g(q) = q + on(1) (see Cor. 7.1 in Section 7). So as claimed in Theorem 1.1, f ◦ g(q) = q + on(1).

Proof of Theorem 5.1. We proof follows by checking the conditions of Theorem 2.1, which we do
in the next three subsections. Here the two pure-noise models are RGT(n, p, p′1) and RGT(n, p, p′2),
and the transformation between them is A△. We also need to describe the partially planted version
of the model, which we do similarly to Section 2.3.1. Let e1, e2, · · · , e(k2) be an enumeration of edges

with both endpoints in S. Let RGTi(n, p, p
′
1, S, q) be a random graph generated by starting with

RGT(n, p, p′1) and resampling edges e1, e2, · · · , ei to be each included with probability q.

5.1 Class of Graphs G
Define the class of graphs G to be the set of graphs that are p2/2-uniformly 2-star dense.

Lemma 5.2. Assume that k = o(
√
n). Both G(n, p) and all RGTi(n, p, p

′) for 1 ≤ i ≤
(k
2

)

are

p2/2-uniformly 2-star dense with probability at least 1− e−Ω(n).

Proof. Let i, j be an arbitrary pair of nodes. For any k 6∈ {i, j}, the probability that both (i, k) and
(j, k) are in the graph is p2. Recalling the wedge vertices WG(i, j) = {w ∈ [n]|(w, i), (w, j) ∈ G}
from Section 4.2, IE |WG(i, j)| = p2(n − 2). Since the event that both (i, k) and (j, k) are in the
graph is independent for each k, we can use a Chernoff bound (Lemma 4.8) to get

IP
(

|WG(i, j)| < 2p2(n− 2)/3
)

≤ e−p2(n−2)/18 .

By the union bound over all pairs, we get that the probability that there is exists i, j with
|WG(i, j)| < 2p2(n − 2)/3 is at most

(

n
2

)

e−p2(n−2)/18 = e−Ω(n). The same holds for RGT(n, p, p′)
because the property of being c-uniformly 2-star dense is preserved under addition of edges. Finally,
note that changing o(n) edges preserves the property, so the conclusion holds for RGTi(n, p, p

′).

5.2 Checking Conditions in Theorem 2.1

C1 of Theorem 2.1 is immediate, as A△(G−e) = G−e+E(X) and A△(G+e) = G+e+E(X) are

the same on
(

[n]
2

)

−e. Condition C3 is also easy to check and holds with ǫ = 0: IP(e ∈ A△(G−e)) =
IP(e ∈ E(X)) = 1− (1− p′)n−2 =: pe−. Since A△ only adds edges, IP(e ∈ A△(G+ e)) = 1 =: pe+.
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Verifying condition C2 is more technical. For G+e, e ∈ A△(G+e) always holds so A△(G+e) =
A△(G+ e)|∼e ×Bern(1). For G− e, we will show condition C2 assuming the following lemma. Let

Z ∈ {0, 1}([n]
2 ) be the indicator vector for the set of edges in A△(G− e).

Lemma 5.3. Fix 0 < c < 1. For a c-uniformly 2-star-dense graph G with e /∈ G,

dTV
(

L(Z∼e),L(Z∼e|Ze = 0)
)

= O(n−1/2 log5/2 n) .

The proof is deferred until the next subsection, and we proceed with checking condition C2.
Note that

L(Z∼e) = pe−L(Z∼e|Ze = 1) + (1− pe−)L(Z∼e|Ze = 0) .

Manipulating the relevant p.m.f.s, it follows that

dTV
(

L(Z∼e),L(Z∼e|Ze = 1)
)

≤ 1

pe−
· dTV

(

L(Z∼e),L(Z∼e|Ze = 0)
)

= Õ
( 1

pe−
√
n

)

.

Combining with Lemma 5.3,

L(Z) = pe−L(Z|Ze = 1) + (1− pe−)L(Z|Ze = 0)

≈O(n−1/2 log5/2 n) p
e
−L(Z∼e)× Bern(1) + pe−L(Z∼e)× Bern(0)

= L(Z∼e)× Bern(pe−) .

This completes the proof for condition C2.
Therefore, Theorem 2.1 applies with ǫ = O(n−1/2 log5/2 n) and δ = O(e−Ω(n)). When k =

O(n1/4 log−5/4 n), there are at most O(n1/2 log−5/2 n) planted edges and the theorem follows from
Theorem 2.1 with q′ = qpe+ + (1− q)pe− = q + (1− q)(1− (1− p′)n−2).

5.3 Perturbation Insensitivity of A△ and Proof of Lemma 5.3

It only remains to prove the lemma. The idea of the proof is similar to Section 2.4.2. In the forward
mapping, we do not need to worry about the influence of non-incident triangles in Section 2.4.1, as
all the triangles are independent. This section thus serves as a warm up for the proof of Lemma 2.5.

In this proof, we will apply the projection idea as in Section 2.4.2 and design an auxiliary
triangle distribution Xaux that will allow us to compare Z∼e and L(Z∼e|Ze = 0) indirectly, by
comparing certain triangle distributions. Finally, these triangle distributions will be bounded by
showing that their likelihood ratio concentrates.

Proof of Lemma 5.3. Let Te be the set of triangles in G that contain e. Define Z = A△(G) =
G + E(X) to be the output graph, so that L(Z∼e|Ze = 0) is the conditional distribution of the
output graph given that all triangles in Te are not selected in X. Let X ′ be the same as X on
(

[n]
3

)

\Te and 0 on Te. We have

E(Z∼e)
d
= G+ E(X)− {e} and E(Z∼e|Ze = 0)

d
= G+E(X ′)− {e} . (5)

22



X ′ X ′ ∨Xaux X

G+ E
(

X ′ ∨Xaux
)

− e G+ E(X) − e

Z∼e|Ze = 0Z∼e

(1)

(2)

=

Figure 3: Relation between X,X ′,Xaux and the corresponding edge sets used in proving Lemma 5.3.
Closeness of (1) implies closeness of (2).

Design of Auxiliary Triangle Distribution Xaux To prove the lemma, it would be convenient
if X and X ′ were close in distribution, but this is unfortunately not true as X includes a triangle
in Te with constant probability. Luckily, it is the edge set E(X)− e and E(X ′) that we care about.
Our approach is to construct another set of triangles Xaux that includes the extra edges in E(X)−e
that are missing in E(X ′), by adding in triangles that could plausibly be in X ′. The relation between
X,X ′ and Xaux is shown in Figure 3. In order to define Xaux we first require a lemma.

Recall that G is c-uniformly 2-star-dense and e = (u, v) /∈ G. We can choose for each w /∈ {u, v}
a subset W̄G(u,w) of WG(u,w) such that the collection satisfies two conditions.

Lemma 5.4. Let G be a c-uniformly two-star dense graph with n vertices, u, v are vertices in G
and (u, v) /∈ G. There exists n0 > 0 such that for any n > n0, we can choose for every w /∈ {u, v}
a set W̄G(u,w) ⊂ WG(u,w) such that

• For every w 6∈ {u, v}, |W̄G(u,w)| = cn/3, and

• For every pair w1, w2 6∈ {u, v}, either w1 /∈ W̄G(u,w2) or w2 /∈ W̄G(u,w1).

The proof of the lemma can be found in Appendix C. We apply the lemma with v in place of
u to also find sets W̄G(v,w) satisfying the conditions.

We can now define Xaux:

1. Start with Xaux = ~0.

2. For each w /∈ {u, v}, with probability p′ do the following:

• Sample w1 ∼ Unif(W̄G(u,w)) and w2 ∼ Unif(W̄G(v,w)).

• Set Xaux

(u,w,w1)
= Xaux

(v,w,w2)
= 1.

Since w1 ∈ WG(u,w) and w2 ∈ WG(v,w), the only possible new edges introduced by Xaux are
(u,w) and (v,w), which has the same effect on

(

[n]
2

)

\{e} as adding triangle (u, v, w) to the graph.
Therefore, we have

E(Z∼e) = G+ E(X)− {e} d
= G+ E(X ′ ∨Xaux)− {e} . (6)
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G+ E(X ′)

X

Xaux

e

Figure 4: Illustration of Xaux. It includes edges that are in G+E(X)−{e} but not in G+E(X ′).

An illustration of Xaux is given in Figure 4. Comparing (6) with (5), we have by data processing
inequality that

dTV
(

L(Z∼e),L(Z∼e|Ze = 0)
)

≤ dTV
(

L(X ′),L(X ′ ∨Xaux)
)

, (7)

and we now turn to bounding the latter quantity by adding triangles in Xaux to X ′ one at a time.

Adding one triangle at a time Let K be the following channel acting on any input X ∈
{0, 1}([n]

3 ). Sample w ∼ Unif
(

[n]\{u, v}
)

, w1 ∼ Unif
(

W̄G(u,w)
)

and w2 ∼ Unif
(

W̄G(v,w)
)

. Set
Xaux

(v,w,w1)
= Xaux

(v,w,w2)
= 1. It turns out that X ′ ∨Xaux is closely approximated by repeating K on

X ′ a Binomial(n− 2, p′) number of times: we show in Lemma C.1 in the appendix that

X ′ ∨Xaux ≈O(p′2n) K
m(X ′) , for m ∼ Binomial(n− 2, p′) . (8)

The only difference between applying Km and adding triangles in Xaux is that Km may sample the
same triangle twice, which gives rise to the O(p′2n) error.

Let us use Q and P to denote the p.m.f. of K(X ′) and X ′, respectively. Let A(x) denote the
set of possible triples w,w1, w2 that could have been chosen by K if x = K(X ′) for some X ′, i.e.,

A(x) = {(w,w1, w2) : w ∈ [n]\{u, v}, w1 ∈ W̄G(u,w), w2 ∈ W̄G(v,w), x(u,w,w1) = x(v,w,w2) = 1} .

Note that

IE |A(X ′)| =
∑

w∈[n]\{u,v},
w1∈W̄G(u,w),
w2∈W̄G(v,w)

IP(X(u,w,w1) = X(v,w,w2) = 1) = p′2(n− 2)(c/3)2n2 . (9)

Using this, we can write the likelihood ratio between Q and P as

dQ

dP
(X ′) =

∑

(w,w1,w2)∈A(X′)

p′|X
′|−2(1−p′)(

n
3)−|X′|

(n−2)(c/3)2n2

p′|X′|(1− p′)(
n
3)−|X′|

=
|A(X ′)|

p′2(n− 2)(c/3)2n2
=

|A(X ′)|
IE |A(X ′)| . (10)

Concentration of the Likelihood Ratio The idea is to use Lemma 4.5 to bound the total
variation between P and Q by showing that |A(X ′)| (and hence dQ/dP ) concentrates.
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Let T̄ (u,w) = {(u,w,w1) : w1 ∈ W̄G(u,w)} and T̄ (v,w) = {(u,w,w2) : w2 ∈ W̄G(v,w)}. Note
that

|A(X ′)| =
∑

w∈[n]\{u,v}
|X ′

T̄ (u,w)| · |X ′
T̄ (v,w)| :=

∑

w∈[n]\{u,v}
Hw .

By construction of W̄G(u,w) and W̄G(v,w) in Lemma 5.4, T̄ (u,w) and T̄ (v,w) are disjoint sets of
triples, so the Hw = |X ′

T̄ (u,w)
| · |X ′

T̄ (v,w)
| variables are independent. Let H be the vector of all Hw.

To show concentration of |A(X ′)| one natural approach is to apply McDiarmid’s inequality to
|A(X ′)| = f(H). This does not work, because X ′

T̄ (u,w)
and X ′

T̄ (v,w)
can have size cn/3, which

leads to a Θ(n2) Lipschitz constant. The key is to use the fact that these sets are typically much
smaller, since each coordinate is 1 only with probability p′. In fact, by a Chernoff bound, X ′

T̄ (u,w)

and X ′
T̄ (v,w)

are with high probability of size on the order of log n. Each coordinate of X ′
T̄ (u,w)

is

independent Bern(p′), and there are cn/3 coordinates, so we have

IP(|X ′
T̄ (u,w)| > 10 log n) ≤ exp

(

− δ2cnp′

3(2 + δ)

)

,

where δ = 30 logn
cnp′ − 1. Since δ > 2, we have δ2/(2 + δ) ≥ δ/2 and therefore,

exp
(

− δ2cnp′

3(2 + δ)

)

≤ e−δcnp′/6 = e−5 logn+cnp′/6 ≤ n−4 .

By the union bound, |X ′
T̄ (u,w)

| ≤ 10 log n and |X ′
T̄ (v,w)

| ≤ 10 log n for all pairs u,w and v,w with

probability at least 1− 2/n2. Hence, with high probability, Hw ≤ 100 log2 n for all w.
Now we can use the modified McDiarmid’s inequality (Lemma 4.10). Let Y = {h : hw ≤

100 log2 n for all w}. By the calculation above, IP(H ∈ Y) ≥ 1 − 2/n2. On the other hand, for
any H,H ′ ∈ Y, |A(X ′)| =

∑

w Hw := f(H) satisfies |f(H) − f(H ′)| ≤ ∑

w:Hw 6=H′
w
100 log2 n.

By Markov’s inequality, IP(|X ′
T̄ (u,w)

| > 0) ≤ IE |X ′
T̄ (u,w)

| = cnp′/3, so IP(Hw 6= 0) ≤ (cnp′/3)2.
Applying Lemma 4.10 now yields

IP
(
∣

∣ |A(X ′)| − IE |A(X ′)|
∣

∣ ≥ t
)

≤ 4/n2 + 2exp
( −(t− 200(n − 2) log2 n/n2)2/2

1002(n− 2)(cnp′/3)2 log4 n+ 100t log2 n/3

)

.

Choosing t = O(n3/2p′ log5/2 n) makes this probability at most 1/n. Combining this with
IE |A(X ′)| in (9), we get that with probability at least 1− 1/n the likelihood ratio dQ/dP in (10) is

dQ

dP
(X ′) =

|A(X ′)|
IE |A(X ′)| = 1 +O

(n3/2p′ log5/2 n
n3p′2

)

= 1 +O
( log5/2 n

n3/2p′

)

. (11)

Putting the Pieces Together By Lemma 4.5, (11) implies that

dTV
(

K(X ′),X ′) = dTV(Q,P ) = O
( 1

n

)

+O
( log5/2 n

n3/2p′

)

.

By Lemma 4.6 and convexity of total variation distance,

dTV(K
m(X ′),X ′) = O

(IE[m] log5/2 n

n3/2p′

)

= O(n−1/2 log5/2 n) ,
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where in the last step we used thatm ∼ Binomial(n−2, p′). This further implies by (8) that dTV(X
′∨

Xaux,X ′) = O(n−1/2 log5/2 n) and hence by (7), dTV(L(Z∼e),L(Z∼e|Ze = 0)) = O(n−1/2 log5/2 n).

6 Properties of Triangle Distribution µG

Recall the triangle distribution µG from Defn. 5. To prepare for proving Theorem 2.2 in the next
section, we introduce some notation associated to µG and show some basic properties.

In the remainder of the paper, for any events A,B over X, we will use the notation

µG(A) := IP(X ∈ A) and µG(A|B) := IP(X ∈ A|B)

to distinguish distributions defined on different graphs.

Remark 12 (Graphical Model of µG). The graphical model of µG is the graph over the set of all
triangles in

(

[n]
3

)

with two triangles being adjacent if and only if they share an edge. We assign
variables also for triangles that are not in G for convenience in the proofs.

Remark 13 (Conditioning Property of µG). For any two graphsG and G′ such that E(G′) ⊃ E(G),

µG = µG′( · |YE(G′)−E(G) = 0)

and hence also LG(Y ) = LG′(Y |YE(G′)−E(G) = 0).

Below are a few properties of µG that will be used later in the proof. We next define two
properties of a distribution and show that µG satisfies these properties.

Definition 7. A distribution P over {0, 1}N is said to be q-marginally small (or large) if the
marginal at any coordinate i of P is bounded by q under arbitrary conditioning x∼i:

P (xi = 1|x∼i) ≤ q (or P (xi = 1|x∼i) ≥ q) .

Lemma 6.1 (µG has bounded marginals). µG is O(p′)-marginally small and Ω(p′)-marginally large.

Proof. Let t be a triangle in TG and let X∼t be an arbitrary {0, 1} configuration on the other
triangles. Let X+t be defined by setting (X+t)t = 1, (X+t)∼t = X∼t, and let X−t be defined
analogously with (X−t)t = 0. Then

µG(Xt = 1|X∼t) =

( p′

1−p′

)|X+t|
p−e(X+t)

( p′

1−p′

)|X−t|
p−e(X−t) +

( p′

1−p′

)|X+t|
p−e(X+t)

.

Note that |X+t| = |X−t|+ 1 and |e(X+t)− e(X−t)| ≤ 3. It follows that

p′ ≤ µG(Xt = 1|X∼t) ≤
p′p−3

1− p′ + p′p−3
.

Here we used that p is a constant with respect to n.

We restate the definition of uniformly 2-star dense graphs.
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Definition 8 (Uniformly 2-star Dense). A graph G is c-uniformly 2-star dense if for any pair
{i, j} ∈

([n]
2

)

, the wedge set WG(i, j) = {w ∈ [n]|(w, u), (w, v) ∈ G} has size |WG(i, j)| ≥ c(n − 2).

Corollary 6.2. For any c-uniformly 2-star dense graph G and for any e ∈ G, µG(Ye = 1) = Θ(np′).

Proof. For any edge e ∈ G, let Te = {t1, t2, · · · , tk} be the set of triangles in G that contain e.
Since G is c-uniformly 2-star dense, k = Θ(n). First, µG(Ye = 1) = µG(XTe 6= ~0), and

µG(XTe 6= ~0) = µG(Xt1 = 1) + µG(Xt2 = 1|Xt1 = 0) + · · · + µG(Xtk = 1|Xt1 = · · · = Xtk−1
= 0) .

From Lemma 6.1, each term is Θ(p′). So the probability is Θ(kp′) = Θ(np′).

As a consequence of the marginal smallness of µG, it has concentration of measure and also the
edge distribution LG(Y ) has low influence. The proofs are deferred to Sections 8 and 9.

Definition 9 (Marginal Influence). For a binary distribution over {0, 1}X , the marginal influence
of S ⊂ X on S′ ⊂ X is defined by

IMS→S′ = sup
xa
S ,x

b
S∈{0,1}S

dTV(PxS′ |xa
S
, PxS′ |xb

S
) .

For x, y ∈ X , use IMx→y to denote IM{x}→{y}.

Lemma 6.3. Suppose G is a c-uniformly 2-star dense graph for a constant c > 0. Consider
distribution LG(Y ) as in Definition 5. For A ⊂ E(G) with |A| ≤ cn/4 and any edge e /∈ A,

IMA→e = O(|A|/(n3p′2)) = Õ(|A|/n) .

For any pair of edges e, e′ ∈ E(G) that do not share common nodes,

IMe′→e = O(1/(n3p′)) = Õ(1/n2) .

Corollary 6.4. For any c-uniformly 2-star dense graph G and any e 6= e′,

|µG(Ye = 1)− µG+e′(Ye = 1)| = Õ(1/n) .

Corollary 6.5. Let f : {0, 1}([n]
3 ) → R be an L-Lipschitz function. Let T be a subset of

([n]
3

)

with
size

(n
3

)

−m and xT ∈ {0, 1}T be a configuration on T . If X ∼ µG( · |XT = xT ), then

|f(X)− IE f(X)| = O(
√

mp′L2 logm)

holds with high probability.
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RGT(n, p, p′) RGT(n, p, p′, S, q)

G(n, p) G(n, p, S, q · pe)

A A

resample edges in S

resample edges in S

Figure 5: Exchange Diagram. Theorem 2.2 states that A(RGT(n, p, p′, S, q)) is close to G(n, p, S, q ·
pe). An equivalent way of looking at the result is that the operations of resampling edges and
mapping A (approximately) commute when applied to RGT(n, p, p′).

7 Reverse Map Preserves Planted Signal

In this section we prove our main result, restated here for convenience.

Theorem 2.2 (Triangle Removal in Planted Case). For k = o(n1/4 log−17/4 n), p′ = 1/(n log n),
and 0 < p < q < 1 being constant,

dTV
(

A(RGT(n, p, p′, S, q)), G(n, p, S, q · pe)
)

= on(1) ,

where pe = IEG∼RGT(n,p,p′) IPA(e ∈ A(G+ e)) for an arbitrary edge e.

Remark 14. In Theorem 1.1, we assumed p′ = Õ(1/n). In order to simplify the proof, we only
consider p′ = 1/(n log n) = Θ̃(1/n), which is the most challenging case. For smaller p′, we map from
RGT(n, p, p′, S, q) to G(n, p, S, qpe) by first adding triangles independently via A△ to increase p′ up
to Θ̃(1/n) and then apply the reverse transition A. This is the content of the following corollary.

Corollary 7.1. For k = o(n1/4 log−17/4 n), p′ = O(1/(n log n)) and 0 < p < q < 1 being constant,
there exists an algorithm Ar (taking a graph and both p and p′ as inputs) such that

dTV
(

Ar(RGT(n, p, p
′, S, q), G(n, p, S, q′)

)

= on(1) ,

where we let p′∗ = 1/(n log n) and

q′ =
(

q + (1− q)
(

1−
(

1− p′∗ − p′

1− p′

)n−2))

· IE
G∼RGT(n,p,p′∗)

IPA
(

e ∈ A(G+ e)
)

= q + o(1) .

Proof. We can first apply A△ as stated in Theorem 5.1 with p′1 = p′ and p′2 = p′∗, and then apply A
stated in Theorem 2.2. The resulting edge density in the planted dense subgraph after A△ would

be (q + (1− q)(1− (1− p′∆)
n−2), where p′∆ = p′∗−p′

1−p′ . So after A, the density becomes

q′ =
(

q + (1− q)(1 − (1− p′∆)
n−2)

)

· IE
G∼RGT(n,p,p′∗)

IPA
(

e ∈ A(G+ e)
)

.

We verify in Appendix B that the resulting edge density q′ = q · pe is still q + o(1).

Lemma 7.2. The parameter pe in Theorem 2.2 satisfies

pe = 1−O(np′) = 1 + on(1) .
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In the rest of the section, we will prove Theorem 2.2. Recall that in Section 2.3 we proved
Theorem 2.2 given Lemma 2.4 (that the graphs G have high probability) and Lemma 2.5 (that
A satisfies perturbation insensitivity). What remains is to prove both lemmas. We will prove
Lemma 2.4 in Section 7.5 via a concentration argument. We start with Lemma 2.5.

Lemma 2.5. If G ∈ G1, then LG−e(Y∼e) = LG+e(Y∼e|Ye = 0) ≈O(log17/2 n/
√
n) LG+e(Y∼e|Ye = 1).

In this section we always focus on G and G+ e where e = (u, v) /∈ G. Let Te = TG+e\TG denote
the set of triangles in G + e containing edge e. For an indicator x of triangles, we will always use
xe to denote xTe and x∼T (e) to denote xTG

. Let W denote the set of edges in G that are incident
to e.

Fix G and let X ∼ µG+e( · |Ye = 0) and X+ ∼ µG+e( · |Ye = 1), with Y and Y + the correspond-
ing edge distributions. Lemma 2.5 is equivalent to Y∼e and Y +

∼e being close in distribution, i.e. we
want to prove that

dTV(Y∼e, Y
+
∼e) = O(log17/2 n/

√
n) . (12)

Outline of Proof of Lemma 2.5. We actually do not work with X+ and Y +, instead replacing these
by X∗ and Y ∗, which we define later in Section 7.2 and will turn out to be easier to work with. We
will show that

dTV(Y∼e, Y
+
∼e) = Θ(dTV(Y∼e, Y

∗
∼e)/ log n)

dTV
(

X∼T (e),X
+
∼T (e)) = Θ(dTV

(

X∼T (e),X
∗
∼T (e))/ log n

)

.
(13)

Now, similar to the decomposition (1), we decompose dTV(Y
∗
∼e, Y∼e) using Lemma 4.3 to obtain

dTV(Y∼e, Y
∗
∼e) ≤ dTV

(

(Y∼e,X∼T (e)), (Y
∗
∼e,X

∗
∼T (e))

)

≤ dTV
(

X∼T (e),X
∗
∼T (e)) + dTV

(

Y∼e, IE
X′∼X∼T (e)

L(Y ∗
∼e|X∗ = X ′)

)

. (14)

Section 7.1 follows the sketch in Section 2.4.1 to bound dTV
(

X∼T (e),X
+
∼T (e)) which by (13) bounds

the first term in (14) by O(log n/
√
n). Section 7.3 uses the ideas in Section 2.4.2 to bound the

second term in (14) by O(log15/2 n/
√
n).

7.1 Influence of an Edge on Non-Containing Triangles

We will now bound dTV
(

X∼T (e),X
+
∼T (e)). In Section 7.1 only, we will overload notation and take

X+ ∼ µG+e rather than µG+e( · |Ye = 1). This is justified by the following lemma, which is
immediate from the definitions.

Lemma 7.3. Let X ∼ µG, X
+,1 ∼ µG+e( · |Ye = 1), and X+,2 ∼ µG+e. Then,

dTV
(

X∼T (e),X
+,1
∼T (e)) =

1

IP(Ye = 1)
dTV

(

X∼T (e),X
+,2
∼T (e)) .

Lemma 7.4. Let G be a c-uniformly 2-star dense graph for a constant c > 0. Let e ∈
([n]
2

)

be any
edge and let X ∼ µG+e( · |Ye = 0) and X+ ∼ µG+e. Emphasizing that X∼T (e) = X, we have

dTV
(

X∼T (e),X
+
∼T (e)

)

= O(log n/
√
n) .
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This rest of this section is structured as follows: First, in Section 7.1.1, we establish the rela-
tionship between χ2(X+

T (e)‖X∼T (e)) and the influence of the distribution LG(Y ), as presented in
Lemma 2.7. Subsequently, in Section 7.1.2, we combine Lemma 2.7 with the bound on influence
obtained in Lemma 6.3 to compute the desired upper bound in Lemma 7.4.

7.1.1 Bounding χ2-divergence In Terms of Influence

The entirety of Section 7.1.1 is dedicated to showing Lemma 2.7, which states that the χ2-divergence
between X∼T (e) and X+

T (e) is bounded in terms of influence.

Lemma 2.7. Suppose G ∈ G and consider LG(Y ) for Y as in Section 2.2 and p′ = o(1/n). Let
IMA′→e be the marginal influence of A′ on e for LG(Y ). Letting X̃+

T (e) be an independent copy of

X+
T (e)

, we have

χ2(X+
∼T (e)‖X∼T (e))+1 ≤ IE

X+
T (e)

,X̃+
T (e)

min

{

(

1+
1− p

p
sup

A′⊂A∪B
e∈(A∪B)\A′

IMA′→e

)|B|
(1/p)|A∩B|, (1/p)|A|+|B|

}

,

where A = E(X̃+
T (e))− e and B = E(X+

T (e))− e.

We restate the lemma that bounds chi-square divergence for a mixture of Gibbs distributions.

Lemma 2.6 (χ2-divergence for mixture of Gibbs measures). Let P be a distribution defined by

P (X) = f(X)/Z.

Let U be a discrete random variable and Q be a mixture of Gibbs distributions defined by

Q(X) = IE
U
[fU(X)/ZU ] .

Letting ρU (X) = fU (X)/f(X), we have that

χ2(Q‖P ) + 1 = IE
U,U ′

IEX∼P ρU (X)ρU ′(X)

IEX∼P ρU (X) IEX∼P ρU ′(X)
,

where U ′ is an independent and identically distributed copy of U .

Proof. By definition of chi-square divergence,

χ2(Q‖P ) + 1 = IE
X∼P

(dQ

dP
(X)

)2
= IE

X∼P

IEU [fU(X)/ZU ] IEU ′ [fU ′(X)/ZU ′ ]

(f(X)/Z)2

= IE
U,U ′

[ Z2

ZUZU ′
· IE
X∼P

fU (X)fU ′(X)

(f(X))2

]

.

Notice that
ZU

Z
=

∑

X

fU (X)

f(X)

f(X)

Z
= IE

X∼P
ρU (X) .

Taking this into the previous expression finishes the proof.
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Applying the above lemma to X∼T (e) and X+
∼T (e) gives us the following upper bound on their

chi-square distance.

Corollary 7.5. Let A = E(X̃+
T (e)) − e, and B = E(X+

T (e)) − e. Recall that Y is the indicator of

E(X), we have

χ2
(

X+
∼T (e)

‖X∼T (e)

)

+ 1 ≤ IE
X+

T (e)
,X̃+

T (e)

IE
[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] . (15)

Proof. Let P = L(X∼T (e)) = L(X) = µG and Q = L(X+
∼T (e)

). Define f(x) :=
( p′

1−p′

)|x|
p−e(x) so

that P (x) = f(x)/ZG by Defn. 5 of µG.
The distribution of X+

∼T (e) can be viewed as a mixture of Gibbs distribution given X+
T (e). We

have

µG+e(X
+
∼T (e)

|X+
T (e)

) ∝ p
′|X+

∼T (e)
|+|X+

T (e)
|
p
−e(X+

∼T (e)
)−e(X+

T (e)
)
p
|E(X+

∼T (e)
)∩E(X+

T (e)
)|

∝ p
′|X+

∼T (e)
|
p
−e(X+

∼T (e)
)
p
|E(X+

∼T (e)
)∩E(X+

T (e)
)|
.

We can define

fX+
T (e)

(X) = p′nXp−e(X)p
|E(X)∩E(X+

T (e)
)|
= f(X)p

|E(X)∩E(X+
T (e)

)|

and
ZX+

T (e)
=

∑

X∈{0,1}TG
fX+

T (e)
(X)

so that
µG+e(X

+
∼T (e)|X

+
T (e)) = fX+

T (e)
(X+

∼T (e))/ZX+
T (e)

.

So µG+e can be viewed as the mixture of Gibbs distributions, i.e.,

µG+e(X) = IE
X+

T (e)

[fX+
T (e)

(X+
∼T (e))/ZX+

T (e)
] .

Note that fX+
T (e)

(X)/f(X) = p
|E(T )∩E(X+

T (e)
)|
. We can let X̃+

T (e) be an independent copy of

X+
T (e), and apply Lemma 2.6 to obtain

χ2(Q‖P ) + 1 = IE
X+

T (e)
,X̃+

T (e)

IEX∼P p
|E(X)∩E(X+

T (e)
)|
p
|E(X)∩E(X̃+

T (e)
)|

IEX∼P p
|E(X)∩E(X+

T (e)
)|
IEX∼P p

|E(X)∩E(X̃+
T (e)

)|

= IE
X+

T (e)
,X̃+

T (e)

IE
[

p
|Y

E(X+
T (e)

)
|
p
|Y

E(X̃+
T (e)

)
|]

IE p
|Y

E(X+
T (e)

)
|
IE p

|Y
E(X̃+

T (e)
)
| .

For simplicity of notation, let A = E(X̃+
T (e)) − e, B = E(X+

T (e)) − e (e /∈ E(X) so Ye = 0). The
above expression can be written as

IE
X+

T (e)
,X̃+

T (e)

IE
[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] .
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From Corollary 7.5, we can derive Lemma 2.7 by showing two upper bounds for the expression
within IEX+

T (e)
,X̃+

T (e)
in (15).

Lemma 7.6. Let IM denote the marginal influence of distribution LG(Y ). For any A,B ⊂ E(G),
we have

IE
[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] ≤ (1/p)|A|+|B|

and
IE

[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] ≤
(

1 +
1− p

p
sup

A′⊂A∪B
e∈(A∪B)\A′

IMA′→e

)|B|
(1/p)|A∩B| .

Proof. The first upper bound is straightforward. On the one hand, IE
[

p|YA| IE
[

p|YB||YA

]

]

≤ 1, and

on the other hand, IE
[

p|YA|] IE
[

p|YB|] ≥ p|A|+|B|, so we have

IE
[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] ≤ (1/p)|A|+|B| .

For the second upper bound, we compare the difference between IE
[

p|YB||YA

]

and IE
[

p|YB|] by
constructing a coupling between YB and YB |YA = yA. The reason that influence is useful to us,
is that a good coupling can be constructed for a distribution with low influence, as stated in the
following lemma.

Lemma 7.7. Let X be a random variable on {0, 1}N . A,B ⊂ [N ] are disjoint. If for any subset
A′ ⊂ A ∪B and i ∈ (A ∪B)\A′,

IMA′→i ≤ q,

then for any xA, x
′
A ∈ {0, 1}B , there exists coupling (XB ,X

′
B) between L(XB |XA = xA) and

L(XB |XA = x′A) such that |XB −X ′
B | is stochastically dominated by Binomial(|B|, q).

We prove the lemma later in the section. Now use Im to denote sup A′⊂A∪B
e∈(A∪B)\A′

IMA′→e and apply

Lemma 7.7 on A and B\A. There exists a coupling (YB\A, Y
′
B\A) between LG(YB\A|YA = yA) and

LG(YB\A) such that |YB\A − Y ′
B\A| is stochastically dominated by Binomial

(

|B\A|, Im
)

. Therefore,

we can couple YA∩B arbitrarily and obtain a coupling (YB , Y
′
B) between LG(YB |YA = yA) and

LG(YB) where |YB − Y ′
B| is stochastically dominated by Binomial

(

|B\A|, Im
)

+ |A ∩B|.
Let M(θ) = IE[eθZ ] be the moment generating function (MGF) of Z ∼ Binomial(|B|, q∗(|A| +

|B|))+ |A∩B|. By the MGF of binomial distribution, M(θ) = (1− Im+ eθIm)|B|eθ|A∩B|. We have

IE
[

p|Y
′
B|−|YB|] ≤ IE

[

(1/p)|YB−Y ′
B|] ≤ M(log(1/p)) =

(

1 +
1− p

p
Im

)|B|
(1/p)|A∩B| .

So for any yA,

IE
[

p|YB||YA = yA
]

= IE
[

p|Y
′
B|] ≤ IE

[

pYB
]

(

1 +
1− p

p
Im

)|B|
(1/p)|A∩B| .

Hence
IE

[

p|YA| IE
[

p|YB||YA

]

]

IE
[

p|YA|] IE
[

p|YB|] ≤
(

1 +
1− p

p
Im

)|B|
(1/p)|A∩B| .
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Proof of Lemma 7.7. SupposeB = {i1, · · · , ik}. We couple one coordinate at a time. Since IMA→i1
≤

q,
∣

∣ IP(Xi1 = 1|XA = xA)− IP(Xi1 = 1|XA = x′A)
∣

∣ ≤ q .

Let (Xi1 ,X
′
i1
) be the optimal coupling between the two distributions. IP(Xi1 6= X ′

i1
) ≤ q. The

coupling for other coordinates can be defined similarly one by one. Again from the assumption,

IMA∪{i1,··· ,ij−1}→ij
≤ q .

So
∣

∣ IP
(

Xij = 1|XA = xA,X{i1,··· ,ij−1}
)

− IP
(

Xij = 1|XA = x′A,X
′
{i1,··· ,ij−1}

)
∣

∣ ≤ q ,

so we can set (Xij ,X
′
ij
) conditioned on X{i1,··· ,ij−1},X

′
{i1,··· ,ij−1} to be the optimal coupling between

the two distributions and have

IP(Xij 6= X ′
ij |X{i1,··· ,ij−1},X

′
{i1,··· ,ij−1}) ≤ q .

Equivalently, |Xij − X ′
ij
| conditioned on X{i1,··· ,ij−1},X

′
{i1,··· ,ij−1} is stochastically dominated by

Bern(q). So |XB −X ′
B | is stochastically dominated by Binomial(|B|, q).

7.1.2 Plugging Influence Bound into Lemma 2.7 to Obtain Lemma 7.4

Proof of Lemma 7.4. To evaluate the bound in Lemma 2.7, we use the bound on the marginal
influence of LG(Y ) in Lemma 6.3. Let q∗ = O(1/(n3p′2)) = Õ(1/n) be the factor in the bound
in Lemma 6.3, i.e., IMA→e ≤ q∗|A|/n for any A such that |A| ≤ cn/4. It then follows that for
|A|+ |B| ≤ cn/4,

sup
A′⊂A∪B

e∈(A∪B)\A′

IMA′→e ≤ q∗(|A| + |B|) .

We now evaluate the bound in Lemma 2.7 in terms of q∗.
Noting that the part within IEX+

T (e)
,X̃+

T (e)
in the right-hand side is monotone in |A| and |B|, we

begin by showing an upper bound on their distributions. For any triangle t in Te, IP(t ∈ X+
T (e)) ≤

c0 · p′ for some c0 > 0 since µG+e is O(p′) marginally small. It follows that the distribution of
|X+

T (e)| (and |X̃+
T (e)|) is stochastically dominated by Binomial(|Te|, c0p′). As |Te| ≤ n, they are also

stochastically dominated by Binomial(n, c0p
′).

Note that A and B do not include edge e, |A| = 2|X+
T (e)|, and |B| = 2|X̃+

T (e)|, so |A ∩ B| =
2|X+

T (e) ∩ X̃+
T (e)|. By using the first bound in the minimum in the conclusion of Lemma 2.7 when
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|A|, |B| are not larger than 2 log n and using the second bound otherwise, we obtain

χ2(X+
∼T (e)‖X∼T (e))

≤
∑

1≤i,j≤2 logn

min{i,j}
∑

k=0

IP
(

|X̃+
T (e)| = i, |X+

T (e)| = j, |X+
T (e) ∩ X̃+

T (e)| = k
)

·
((

1 +
1− p

p
q∗(2i+ 2j)

)2j
(1/p)2k − 1

)

+
∑

i≥2 logn or
j≥2 logn

IP
(

|X̃+
T (e)| = i, |X+

T (e)| = j
)

(

(1/p)2i+2j − 1
)

≤
∑

1≤i,j≤2 logn

min{i,j}
∑

k=0

(

n

k

)(

n− k

i− k

)(

n− i− k

j − k

)

(c0p
′)i+j

((

1 +
1− p

p
q∗(2i+ 2j)

)2j
(1/p)2k − 1

)

+
∑

i≥2 logn or
j≥2 logn

(

n

i

)(

n

j

)

(c0p
′)i+j(1/p)2i+2j .

Because
(

n
i

)

≤ ni and
(

n
j

)

≤ nj, the second summation is bounded by

∑

i≥2 logn or
j≥2 logn

(c0np
′

p

)i+j
.

Since np′ ≪ 1, this sum is o(1/n2).
For the first summation, we can use

(

n
k

)(

n−k
i−k

)(

n−i−k
j−k

)

≤ ni+j−k and separate the k = 0 summand
to bound it by

∑

1≤i,j≤2 logn

{

(c0np
′)i+j

((

1+
1− p

p
q∗(2i+2j)

)2j
−1

)

+
(

1+
1− p

p
q∗(2i+2j)

)2j ∑

k≥1

(np2)−k

}

. (16)

Since q∗ = Õ(1/n), we have 2j · 1−p
p q∗(2i+ 2j) ≪ 1, so

(

1 +
1− p

p
q∗(2i + 2j)

)2j
≤ 1 +

8(1− p)

p
q∗j(i+ j) ≤ 2 .

Therefore, for large enough n, the quantity in (16) can be upper bounded by

∑

i,j≥1

8(1− p)

p
q∗(c0np

′)i+jj(i + j) +
8 log2 n

np2
.

As np′ ≪ 1, we have
∑

i≥1(c0np
′)ii = O(np′) and

∑

i≥1(c0np
′)ii2 = O(np′). So (16) is bounded by

O(np′q∗) +O(log2 n/n) = O(log2 n/n). Now that we proved χ2(Q‖P ) = O(log2 n/n), by Pinsker’s
inequality,

dTV(P,Q) ≤
√

2χ2(Q‖P ) = O(n−1/2 log n) .

This finishes the proof for Lemma 7.4.
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7.2 Replacing X+ and Y + by X∗ and Y ∗

As compared to the sketch in Section 2.4.2, there are a number of additional steps. Instead of
working with X and X+, we replace X+ by a new random variable X∗ constructed as a mixture of
the distributions of X and X+ so that the conditional distribution on X∗

e given X∗
∼T (e) is a product

distribution. As shown in the proof, it will suffice to bound the total variation between Y∼e and
Y ∗
∼e. We first define X∗.

X∗ as a mixture of L(X) and L(X+) to make L(X∗
e |X∗

∼T (e)) a product distribution The
conditioning on edge e introduces dependence between triangles in Te. We modify Definition 5 to
yield a new distribution over sets of triangles in G+ e. Let

g∗G+e(x) ,
( p′

1− p′

)|x|
p−|E(x)−e| and µ∗

G+e(X
∗ = x) =

g∗G+e(x)

Z∗(G+ e)
.

Here Z∗(G + e) =
∑

x:E(x)⊂G+e g
∗(x) is the normalizing factor. The benefit of defining µ∗ is that

now

µ∗
G+e(Xe|X∼T (e)) ∝

( p′

1− p′

)nXe
p−|E(Xe)−E(X∼T (e))−e| .

Because triangles in Te only intersect at e, |E(Xe)−E(X∼T (e))− e| = ∑

t∈Te
Xt|E(t)−E(X∼T (e))|.

So

µ∗
G+e(Xe|X∼T (e)) ∝

∏

t∈Te

(p′p−|E(t)−E(X∼T (e))|

1− p′

)Xt

(17)

is now a product distribution on triangles in Te.
Note by definition of g∗ that

g∗G+e(X) =

{

pgG+e(X) if e ∈ E(X)

gG+e(X) otherwise .

Thus, µ∗ re-weights by p those X with e ∈ E(X), which is the same as Ye = 1. It follows that µ∗
G+e

is equal to the mixture

µ∗
G+e( · ) =

pµG+e(Ye = 1)µG+e( · |Ye = 1) + µG+e(Ye = 0)µG+e( · |Ye = 0)

pµG+e(Ye = 1) + µG+e(Ye = 0)
. (18)

Let X∗ ∼ µ∗
G+e, and Y ∗ be the corresponding edge distribution of X∗ on {0, 1}E(G+e). Recalling

that Y + has law LG+e(Y |Ye = 1) and L(Y ) = LG+e(Y |Ye = 0), we also have

L(Y ∗) =
pµG+e(Ye = 1)L(Y +) + µG+e(Ye = 0)L(Y )

pµG+e(Ye = 1) + µG+e(Ye = 0)
. (19)

Why we can replace X+ and Y + with X∗ and Y ∗ The utility of introducing X∗ and Y ∗

is that they are easier to work with, due the product structure in (17), and we now show that
we can replace X+ and Y + by X∗ and Y ∗ in the arguments that follow, as promised in (13). By
Corollary 6.2, we have that µG+e(Ye = 1) = Θ̃(1), and it follows from (19) that

dTV(Y∼e, Y
+
∼e) =

pµG+e(Ye = 1) + µG+e(Ye = 0)

pµG+e(Ye = 1)
dTV(Y∼e, Y

∗
∼e)

= Θ(dTV(Y∼e, Y
∗
∼e)/(np

′)) = Θ̃(dTV(Y∼e, Y
∗
∼e)) .
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As far as replacing X+ by X∗, the identical argument as above gives from (18) that

dTV(X
∗
∼T (e),X∼T (e)) = Θ(np′ · dTV(X+

∼T (e),X∼T (e))) = Θ̃
(

dTV(X
+
∼T (e),X∼T (e))

)

.

It remains is to bound the second term in (14) using the ideas from Section 2.4.2.

7.3 Perturbation Insensitivity and Proof of Lemma 2.5

In this section bound the second term of (14). The ideas sketched in Section 2.4.2 are implemented,
transforming the comparison between edge variables back into a comparison between triangle dis-
tributions. Then we compare the triangle distributions by accounting for one triangle addition at
a time, and finally, we bound the total variation induced by a single triangle via concentration of
the likelihood ratio.

For the simplicity of discussion, let us create a random variable that follows distribution
IEX′∼X∼T (e)

L(Y ∗
∼e|X∗ = X ′). Specifically, letX ′′ be generated fromX∼T (e) by channel µ

∗
G+e( · |X∼T (e)),

and Y ′′ be the corresponding edge distribution, so L(Y ) = IEX′∼X∼T (e)
L(Y ∗

∼e|X∗ = X ′). This way,
the second term of (14) is equal to

dTV
(

Y∼e, IE
X′∼X∼T (e)

L(Y ∗
∼e|X∗ = X ′)

)

= dTV(Y∼e, Y
′′
∼e) .

The goal of this subsection is to bound the latter quantity.

Lemma 7.8. dTV(Y∼e, Y
′′
∼e) = O

(

log3 n
n5p′9/2

)

= O(log15/2 /
√
n).

7.3.1 Step 1: Projection of Distributions and Defining Xaux

Although we will show that Y∼e and Y ′′
∼e are close, X and X ′′ are actually very different distribu-

tions, in fact, they have Ω̃(1) TV-distance in general. Indeed, Xe = ~0, but X ′′
e |X∼T (e) follows (17).

X ′′
e might bring new edges that makes Y ′′ different from Y . We will construct an auxiliary triangle

distribution X̃ with Y ′′
∼e = Ỹ∼e, and by data-processing inequality it suffices to bound dTV(X, X̃)

(see Figure 1):

Lemma 7.9. If X̃ is such that Y ′′
∼e = Ỹ∼e, then dTV(Y∼e, Y

′′
∼e) = dTV(Y∼e, Ỹ∼e) ≤ dTV(X, X̃).

Specifically, Xaux will be constructed such that when added to X, it results in the same edge
projection as X ′′, i.e.,

E(X ′′)− {e} = E(Xaux ∨X) , (20)

We can set X̃ = Xaux ∨X. Note that Y ′′
∼e is the indicator for edge set E(X ′′) − {e}, this means

Y ′′
∼e = Ỹ∼e.
We now formally define Xaux by its distribution conditioned on X ′′ = X ∨X ′′

e (see Figure 2).
To satisfy (20), Xaux needs to include the set of new edges that are in E(X ′′) but not in E(X),

Enew := E(X ′′)−E(X) − {e} = E(X ′′
e )− E(X)− {e} ⊂ W .

Start with Xaux being 0. Recall the definition of wedge set in (4). For each edge (u,w) (or (v,w)) in
Enew, pick a node w′ uniformly at random from WE(X)(u,w) (or WE(X)(v,w)) and let Xaux

(u,w,w′) = 1

(or Xaux

(v,w,w′) = 1).
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Lemma 7.10. Enew = E(Xaux)−E(X).

Proof. Let (u,w) be an edge in E(X ′′) − E(X) − {e}, and w′ be the pick from WE(X)(u,w) that
Xaux

(u,w,w′) = 1. We have (u,w) ∈ E(X ′′). By (4), (u,w′), (w,w′) ∈ E(X). So E(Xaux) ⊂ E(X ′′). As

e /∈ E(X), u or v are not in WE(X)(u,w), we have E(Xaux) ⊂ E(X ′′)− {e}, so

E(Xaux)− E(X) ⊂ E(X ′′)− E(X)− {e} .

Since each edge in Enew is included in Xaux, we know

E(Xaux)− E(X) ⊃ Enew .

Using this lemma we have E(Ỹ∼e) = E(Xaux ∨X) = E(X ′′)− {e} = E(Y ′′
∼e).

The remainder of this section shows that X and X̃ = X ∨Xaux are close in total variation.

Lemma 7.11. X and X̃ = X ∨Xaux satisfy the total variation bound

dTV(X, X̃) = O
( log3 n

n5p′9/2

)

= Õ
( 1√

n

)

.

7.3.2 Step 2: Representation of Xaux

To prove the lemma, we need to know the distribution of Xaux|X. Because Xaux is defined through
Enew, we first consider its distribution. By definition, upon conditioning on X∼T (e), X

′′
e has distri-

bution

µ∗
G+e(Xe|X∼T (e)) ∝

∏

t∈Te

(p′p−|E(t)−E(X∼T (e))|

1− p′

)Xt

.

So for t = (w, u, v) ∈ Te,

X ′′
t |X∼T (e) ∼











Bern(p0) if none of (w, u) and (w, v) are in E(X)

Bern(p1) if one of (w, u) and (w, v) are in E(X)

Bern(p2) if both (w, u) and (w, v) are in E(X) .

Here pi =
p′p−3+i

1−p′+p′p−3+i is Θ(p′), ∀i = 0, 1, 2. Define

Vv(X) , {w : (w, u) ∈ E(X), (w, v) ∈ G\E(X)}
Vu(X) , {w : (w, v) ∈ E(X), (w, u) ∈ G\E(X)}
Vuv(X) , {w : (w, u), (w, v) ∈ G\E(X)} .

So Enew has the following distribution conditioned on X:

For w ∈ Vv(X), Y(v,w) ∼ Bern(p1);

For w ∈ Vu(X), Y(v,w) ∼ Bern(p1);

For w ∈ Vuv(X), Y(v,w) = Y(u,w) ∼ Bern(p0) .

37



E(X) E(Kv(X))

u uv v

w w′
w

w′

Figure 6: Illustration of Kv

Recalling the definition of Xaux, its conditional distribution on X is therefore generated by

For w ∈ Vv(X), sample w′ ∼ Unif(WE(X)(v,w)), Xaux

(v,w,w′) ∼ Bern(p1);

For w ∈ Vu(X), sample w′ ∼ Unif(WE(X)(u,w)), Xaux

(u,w,w′) ∼ Bern(p1);

For w ∈ Vuv(X), sample w′ ∼ Unif(WE(X)(v,w)), Xaux

(v,w,w′) ∼ Bern(p0),

sample w′′ ∼ Unif(WE(X)(u,w)), Xaux

(u,w,w′′) ∼ Bern(p0) .

7.3.3 Step 3: Adding one triangle at a time

We next aim to describe Xaux in terms of single triangle additions. To this end we define a few
kernels from {0, 1}TG to the same space. First,

Kv(X) : Pick w ∼ Unif(Vv(X)), w′ ∼ Unif(WE(X)(v,w)), set X(v,w,w′) = 1 ,

as depicted in Figure 6. Similarly,

Ku(X) : Pick w ∼ Unif(Vu(X)), w′ ∼ Unif(WE(X)(u,w)), set X(u,w,w′) = 1 ,

and

Kuv(X) : Pick w ∼ Unif(Vuv(X)), w′ ∼ Unif(WE(X)(v,w)), set X(v,w,w′) = 1

Pick w′ ∼ Unif(WE(X)(u,w)), set X(u,w,w′) = 1 .

Then
X ∨Xaux d

= (Kuv)
m3(Ku)

m2(Kv)
m1(X) ,

where m1 ∼ Binomial(|Vv(X)|, p1), m2 ∼ Binomial(|Vu(X)|, p1) and m3 ∼ Binomial(|Vuv(X)|, p0).
We will show thatKu(X), Kv(X) andKuv(X) are all Õ(1/

√
n)-close toX in total variation distance

in Lemmas 7.12 and 7.13 just below.

Lemma 7.12. We have the bounds dTV(Ku(X),X) = O(log n/(n4p′7/2)) and dTV(Kv(X),X) =
O(log n/(n4p′7/2)).

Lemma 7.13. We have that dTV(Kuv(X),X) = O(log3 n/(n6p′11/2)).

We prove Lemma 7.12 in the next subsection and defer the proof of Lemma 7.13 to Appendix B,
as the proofs are similar. With these lemmas, we can prove Lemma 7.8.
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Proof of Lemma 7.8. From Lemma 4.6, Lemmas 7.12 and 7.13 imply that

dTV((Kuv)
m3(Ku)

m2(Kv)
m1(X),X) = O

((m1 +m2) log n

n4p′7/2

)

+O
(m3 log

3 n

n6p′11/2

)

.

Note that |Vv(X)|, |Vu(X)|, |Vuv(X)| ≤ n and pi = Θ(p′), so we have IE[mi] = O(np′). Hence
from convexity of total variation,

dTV(X, X̃) = O(np′) ·O
( log3 n

n6p′11/2

)

= O
( log3 n

n5p′9/2

)

.

This completes the proof of Lemma 2.5.

It remains to prove Lemmas 7.12 and 7.13.

7.4 Proof of Lemma 7.12 via Likelihood Concentration

The definitions of Ku and Kv are symmetric with respect to swapping u and v, so it suffices to
prove the claim for one of them, e.g., Kv.

The intuition behind Lemma 7.12 is that Kv adds a triangle to X on v,w,w′ in order to add
edge (v,w) without introducing other new edges (see Figure 6). Here (u,w) is already in E(X) and
(v,w) /∈ E(X) (but is in G), and moreover, each of the edges (v,w′) and (w,w′) are in E(X). Now,
if (i) there are Ω̃(n) such (v,w) with triangle (v,w,w′) already present in X, and (ii) there are Ω̃(n)
possible positions to add an additional one, then we expect adding the new triangle to induce a
total variation Õ(1/

√
n)3. Item (i) is shown later in Lemma 7.19 and Item (ii) is shown shortly in

Lemma 7.14. The conclusion, the Õ(1/
√
n) total variation bound, is stated as Lemma 7.15.

7.4.1 Conditioning on Non-Incident Triangles

Define a partition of TG as follows:

T 0
G , {t ∈ TG : t does not contain u or v} ,

T v
G , {t ∈ TG : t contains v} , and T u

G , {t ∈ TG : t contains u} .
Before bounding the total variation difference, we will condition on triangles in T 0

G. This will
be helpful as the concentration results we use (Theorem 9.1) depend on the dimension of the
distribution. By conditioning on XT 0

G
, the dimension of the distribution changes from |TG|, which

typically has size Θ(n3), to |T u
G ∪ T v

G|, which has size at most O(n2).

Lemma 7.14. Let G be c-uniformly 2-star dense. With high probability over the randomness of
XT 0

G
, for any w /∈ {u, v}, there are Θ(n2p′) different w′ such that (w′, v) ∈ G and (w′, w) ∈ E(XT 0

G
).

3This is by the heuristic of computing the shift in mean and comparing to the standard deviation, which for
Gaussians and other well-behaved distributions is well-known to give the correct total variation.
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w

v

w′

E(XT 0
G
) E(G)

· · ·

Figure 7: Lemma 7.14 states that with high probability, XT 0
G
satisfies that for any w /∈ {u, v}, there

are Ω̃(n) different w′ such that (w′, v) ∈ G and (w′, w) ∈ E(XT 0
G
).

Proof. Fix w /∈ {u, v}. By definition of c-uniformly 2-star density, there are Θ(n) different w′

that both (w′, w), (w′, v) ∈ G. Each edge (w′, w) is contained in Ω(n) triangles in T 0
G. Since

µG is Ω(p′)-marginally large, the number of w′ that (w′, w) ∈ E(XT 0
G
) stochastically dominates

Binomial(Ω(n),Ω(np′)). So it is Ω(n2p′) with high probability by the Chernoff bound. µG is also
Ω(p′)-marginally small, so by similar argument, the number of w′ that (w′, w) ∈ E(XT 0

G
) is also

O(n2p′) with high probability.

We will prove the following lemma, which implies Lemma 7.12.

Lemma 7.15. For any XT 0
G
satisfying the conclusion of Lemma 7.14,

dTV
(

Kv(X)|XT 0
G
,X|XT 0

G

)

= O
( log n

n4p′7/2

)

= Õ
( 1√

n

)

.

Proof of Lemma 7.12. The XT 0
G

satisfying the conclusion of Lemma 7.14 occur with high proba-
bility, hence the total variation bound in Lemma 7.15 occurs with high probability, and the result
follows by applying Lemma 4.4.

In the remainder of Section 7.4 we prove Lemma 7.15.

7.4.2 Lemma 7.15 via Likelihood Ratio Concentration

To use Lemma 4.5 to prove Lemma 7.15, we will show that the likelihood ratio between the two
distributions concentrates. We start by determining the likelihood ratio.

Likelihood Ratio Note that the distribution of X|XT 0
G

is just µG(X|XT 0
G
). We can write the

density of both distributions.

IP(Kv(X) = x|XT 0
G
)

=
∑

t=(v,w,w′):t∈x
w∈Vv(x−t),w′∈WE(x−t)(v,w)

1

|Vv(x− t)|
1

|WE(x−t)(v,w)|
µG(X = x− t|XT 0

G
) , (21)
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and
IP(X = x|XT 0

G
) = µG(X = x|XT 0

G
) .

Here x− t stands for the vector that is the same as x except xt is set to 0. So the likelihood radio
is

L(x) :=
IP(Kv(X) = x|XT 0

G
)

IP(X = x|XT 0
G
)

=
∑

t=(v,w,w′):t∈x
w∈Vv(x−t),w′∈WE(x−t)(v,w)

1

|Vv(x− t)|
1

|WE(x−t)(v,w)|
µG(X = x− t)

µG(X = x)
. (22)

Lemma 7.16 (Concentration of Likelihood Ratio). For any XT 0
G

that satisfies the conclusion of
Lemma 7.14, we have that

|L(X)− 1| = O
( log n

n4p′7/2

)

= Õ(1/
√
n) ,

with high probability.

With Lemma 4.5, Lemma 7.16 immediately implies Lemma 7.15. In the remainder of the
section, our focus will be on proving Lemma 7.16.

7.4.3 Concentration of Components of Likelihood Ratio

The proof will follow from three concentration statements for factors in the likelihood ratio (22):

(a) µG(X=x−t)
µG(X=x) is constant with respect to x,

(b) |Vv(X)| and |WE(X)(v,w)| concentrate around their mean,

(c) the total number of terms in (22) also concentrates.

(a) µG(X=x−t)
µG(X=x) is constant with respect to x To start, note that if t is chosen by Kv to be

added to X, it always increases the number of edges by 1, i.e., e(x)− e(x− t) = 1 if t satisfies the
summation in (22). So

µG(X = x− t)

µG(X = x)
=

p′|x−t|p−e(x−t)

p′|x|p−e(x0)
=

p

p′
,

which is constant as claimed.

(b) Concentration of |Vv(X)| and |WE(X)(v,w)| By Corollary 6.5, any Lipschitz function of
a marginally small random variable concentrates. From the definitions, |Vv(X)| and |WE(X)(v,w)|
are O(1)-Lipschitz, yielding the following lemma.

Lemma 7.17. Conditioned on any XT 0
G
satisfying the condition in Lemma 7.14, with high proba-

bility,
∣

∣ |Vv(X)| − IE |Vv(X)|
∣

∣ = O(
√

n2p′ log n)

and
∣

∣ |WE(X)(v,w)| − IE |WE(X)(v,w)|
∣

∣ = O(
√

n2p′ log n) .
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Proof. L(X|XT 0
G
) is a conditional distribution of µG over O(n2) triangles. So we can apply Corol-

lary 6.5. With high probability, any O(1)-Lipschitz function is within distance O(
√

n2p′ log n) from
its mean with high probability.

To use the concentration result, we also need to show that the means of |Vv(X)| and |WE(X)(v,w)|
are large relative to their variances.

Lemma 7.18. For any XT 0
G
satisfying the condition in Lemma 7.14,

IE
[

|Vv(X)|
∣

∣XT 0
G

]

= Θ(n2p′) = Θ̃(n) ,

and for any w 6= u, v
IE

[

|WE(X)(v,w)|
∣

∣XT 0
G

]

= Θ(n3p′2) = Θ̃(n) .

Proof. Recall that Vv(X) consists of vertices w that (w, u) ∈ E(X), (w, v) /∈ E(X). Fix any
w ∈ Wu,v(G). From Lemma 6.2,

IP((w, v) /∈ E(X)) = Ω(1− np′) = Θ(1) .

By Lemma 8.2,
IP((u,w) ∈ E(X)|(w, v) /∈ E(X)) = Θ(np′) .

So IP(w ∈ Vv(X)) = Θ(np′). We have IE[|Vv(X)|] = |Wu,v(G)| ·Θ(np′) = Θ(n2p′).
Fix any w 6= u, v. Consider a vertex w′ such that (w,w′) ∈ E(XT 0

G
), (v,w′) ∈ G, since G is

c-uniformly 2-star dense, (v,w′) is included in Θ(n) triangles, each having probability Θ(p′) of
being in X. So

IP((v,w′) ∈ E(X)|XT 0
G
) = Θ(np′) .

From the assumption on XT 0
G
, there are Θ(n2p′) such w′, so

IE
[

|WE(X)(v,w)|
∣

∣XT 0
G

]

= Θ(n2p′) ·Θ(np′) = Θ(n3p′2) .

Note that WE(X)(v,w) ≥ |WE(X
T0
G
)(v,w)| = Θ(n), so IE

[

|WE(X)(v,w)|
∣

∣XT 0
G

]

= Θ(n). By

Lemma 7.17 and Lemma 7.18, for any v and w, conditioned on any XT 0
G
,

∣

∣

∣

|Vv(X)| − IE |Vv(X)|
IE |Vv(X)|

∣

∣

∣
= O

( log n

np′1/2

)

and
∣

∣

∣

|WE(X)(v,w)| − IE |WE(X)(v,w)|
IE |WE(X)(v,w)|

∣

∣

∣
= O

( log n

n2p′3/2

)

holds with high probability.
Note |Vv(X − t)| and |Vv(X)| differ by at most one, and the same holds for |Wv,w(X − t)| and

|WE(X)(v,w)|. So with high probability, each term in (22) concentrates,

∣

∣

∣

1

|Vv(X − t)|
1

|Wv,w(X − t)|
µG(X − t)

µG(X)
− 1

IE |Vv(X)|
1

IE |WE(X)(v,w)|
p

p′

∣

∣

∣

= O
( log n

n2p′3/2

)

· 1

IE |Vv(X)|
1

IE |WE(X)(v,w)|
p

p′
= O(

log n

n7p′11/2
) = Õ(n−3/2) .

(23)
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(v,w,w′) ∈ X

u v

w

w′

E(X − t)

(w, v) /∈ E(X − t)

Figure 8: Definition of S(X). A pair w,w′ is in S(X) if t = (v,w,w′) ∈ X, (w, u), (w,w′), (v,w′) ∈
E(X − t), (w, v) /∈ E(X − t).

(c) Concentration of the Number of Terms in (22). It remains to show that the number of
terms also concentrates. Let S be the set of ordered vertices

S(X) = {(w,w′) : t = (v,w,w′), t ∈ X,w ∈ Vv(X − t), w′ ∈ Wv,w(X − t)} ,

as illustrated in Figure 8 Each triangle (v,w,w′) in the summation of (22) corresponds a pair of
vertices (w,w′) in S(X).

Lemma 7.19. |S(X)| is O(1)-Lipschitz, and under L(X|XT 0
G
),

IE
[

|S(X)|
∣

∣XT 0
G

]

= Θ(n5p′4) = Θ̃(n) .

Proof. From the definition of Vv and Wv,w, S can be alternatively written as

S(X) = {(w;w′) : t = (v,w,w′), t ∈ X, (w, u), (w,w′), (v,w′) ∈ E(X − t), (w, v) /∈ E(X − t)}.

Suppose X and X ′ differ at one triangle, X ′ = X ∨ et0 , we want to show S(X ′) and S(X) differ by
O(1) elements.

First consider S(X)\S(X ′). Suppose (w;w′) ∈ S(X) but (w;w′) /∈ S(X + t0). Then we must
have (w, v) /∈ E(X − t) but (w, v) ∈ E(X + t0 − t). Since E(X + t0 − t) and E(X − t) differ by
at most 3 edges, we have |{w : ∃w′, (w;w′) ∈ S(X)\S(X ′)}| ≤ 3. Notice that each for each w, at
most one w′ satisfy (w;w′) ∈ S(X), otherwise (w, v) ∈ E(X − t). So |S(X)\S(X ′)| ≤ 3.

Then consider S(X ′)\S(X). If (w;w′) ∈ S(X ′)\S(X), either (w, u) ∈ E(X+ t0− t)−E(X− t),
(w,w′) ∈ E(X + t0 − t)− E(X − t) or (v,w′) ∈ E(X + t0 − t)− E(X − t). Let

S1 = {(w;w′) : (w;w′) ∈ S(X ′), (w, u) ∈ E(X + t0 − t)− E(X − t)} ,

S2 = {(w;w′) : (w;w′) ∈ S(X ′), (w,w′) ∈ E(X + t0 − t)− E(X − t)} ,
and

S3 = {(w;w′) : (w;w′) ∈ S(X ′), (v,w′) ∈ E(X + t0 − t)− E(X − t)} .
Then

S(X ′)\S(X) ⊂ S1 ∪ S2 ∪ S3 .

Still note that for each w, at most one w′ satisfies (w;w′) ∈ S(X ′), and E(X + t0 − t)− E(X − t)
has at most 3 edges, we have |S1| ≤ 3, |S2| ≤ 3. For S3, notice that each w′ has at most one w such
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that (w;w′) ∈ S(X ′) and (v,w′) ∈ E(X + t0 − t) − E(X − t). Otherwise by definition of S(X ′),
at least two triangles in X contains edge (v,w′). So (v,w′) would belong to E(X − t) for any t,
contradicting that (v,w′) ∈ E(X + t0 − t) − E(X − t). Therefore, |S3| ≤ 3 also holds. We have
|S(X ′)\S(X)| ≤ 9.

Next we show that IE |S(X)| = Θ(n5p′4). It is sufficient to prove there are Θ(n3p′) pairs (w;w′)
that (w;w′) is in S(X) with probability Θ(n2p′3). Since G is a c-uniformly 2-star dense graph, there
are Θ(n) vertices w such that (w, u), (w, v) ∈ G. From the assumption that |WE(X

T0
G
)(v,w)| =

Θ(n2p′), there are Θ(n3p′) pairs (w;w′) that (w, u), (w, v) ∈ G and (w,w′) ∈ E(XT 0
G
).

Next we show that for such (w;w′), it is in S(X) with probability Θ(n2p′3). Consider the event
that (w;w′) ∈ S(X), i.e.,

t = (v,w,w′), t ∈ X, (w, u), (w,w′), (v,w′) ∈ E(X − t), (w, v) /∈ E(X − t) .

Since E(X − t) ⊃ E(XT 0
G
), (w,w′) ∈ E(X − t) always holds. First, t ∈ X with probability Θ(p′),

next consider the event conditioning on this. (w, v) are included in at most n − 2 triangles, each
being included with probability Θ(p′). (w, v) /∈ E(X − t) with probability at least

(1−Θ(p′))n−2 = Θ(1) .

Graph G is c-uniformly 2-star dense, so there are Θ(n) triangles contains (w, u) and (v,w′) and do
not contain (w, v). By Lemma 6.1, conditioning on the all the events above, each triangle is included
in X with probability Θ(p′), so (w, u), (v,w′) ∈ E(X − t) with probability Θ(n2p′2). Therefore, the
event (w;w′) ∈ S(X) happens with probability Θ(n2p′3).

7.4.4 Proof of Concentration of the Likelihood Ratio

Proof of Lemma 7.16. Because S(X) is Lipschitz by Lemma 7.19, Corollary 6.5 applies to yield
∣

∣|S(X)| − IES(X)
∣

∣ = Õ(
√
n) with high probability. So S(X) = Õ(n) with high probability.

Now for any w,
1

IE |Vv(X)|
1

IE |WE(X)(v,w)|
p

p′
= Θ

( 1

n5p′4

)

,

so again because S(X) is Lipschitz we have that the following function is O(1/(n5p′4))-Lipschitz,
as each term in the right hand side is O(1/(n5p′4)):

f(x) ,
∑

(w;w′)∈S(x)

1

IE |Vv(X)|
1

IE |WE(X)(v,w)|
p

p′
.

Again by Corollary 6.5, f(X) concentrates around its mean with distance at most O(log n/(n4p′7/2))
with high probability.

Now combining this with (23), we get for any fixedXT 0
G
that satisfies the conclusion of Lemma 7.14,

the likelihood ratio

L(x) =
IP(Kv(X) = x|XT 0

G
)

IP(X = x|XT 0
G
)

concentrates as

|L(X)− IE f(X)| = O
( log n

n4p′7/2

)

+O
(

|S(X)| log n

n7p′11/2

)

.
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This is O(log n/(n4p′7/2)) = Õ(1/
√
n) with high probability since |S(X)| = Θ(n5p′4) with high

probability.
We can use Lemma 4.7 (which states that concentration implies concentration about the mean

for bounded random variables), as it is not hard to check that the likelihood ratio is always bounded
by Õ(n3). Hence, with high probability,

|L(X)− IEL(X)| = O
( log n

n4p′7/2

)

= Õ(1/
√
n) .

This completes the proof of Lemma 7.16, using that IEL(X) = 1.

7.5 The class of graphs G has high-probability

The goal of this section is to show Lemma 2.4, i.e.,

IP(RGTi ∈ G) = 1− o(1) .

Recall the definition of G in Section 2.3, G = G1 ∩ G2. Here G1 is the set of graphs that are
p2/3-uniformly 2-star dense and G2 is the set of graphs that satisfy

∣

∣µG+e(Ye = 1)− p+e
∣

∣ = Cpn
−5/2p′−2

√

log n , where p+e = IE
G′∼RGT(n,p,p′)

[µG′+e(Ye = 1)] ,

where Cp is a large enough constant depending on p. We can prove that G2 is a high-probability
event under RGT(n, p, p′) through concentration.

Lemma 7.20. If G ∼ RGT(n, p, p′), then IP(G ∈ G2) = 1− o(1).

Let us first show why Lemma 2.4 holds given Lemma 7.20.

Proof of Lemma 2.4. First, RGT0 is p2/2-uniformly 2-star dense by Lemma 5.2 with probability
1 − e−Ω(n). For any RGTi, i ∈ [K], and any j, k ∈ [n], the number of vertices l such that (j, l) or
(k, l) are different from RGT0 is at most K. So when K = Õ(n1/4), RGTi is p

2/3-uniformly 2-star
dense if RGT0 is p

2/2-uniformly 2-star dense. Thus, RGTi ∈ G1 for all i ∈ [K] with high probability.
Lemma 7.20 shows that RGT0 ∈ G2 with high probability. If RGTi ∈ G1 for any i, then by

Corollary 6.4,
∣

∣µRGTi+e(Ye = 1)− µRGT0+e(Ye = 1)
∣

∣ = Õ(i/n) .

Therefore, with high probability,

∣

∣µRGTi+e(Ye = 1)− IE
G′∼RGT(n,p,p′)

[µG′+e(Ye = 1)]
∣

∣ = Õ(1/
√
n) + Õ(k2/n) = Õ(1/

√
n) .

Next we prove Lemma 7.20. The idea is to use Mcdiarmid’s inequality and the fact that the
marginal probability of L(Y ) is a Lipschitz function due to bounded influence.

Proof of Lemma 7.20. Since RGT(n, p, p′) is generated by adding triangles to random graphs, we
can view it as a function over the original random graph and the triangles added. Let x ∼
Bern(p)⊗(

[n]
2 ) be the indicator of edges in G(n, p) and y ∼ Bern(p′)⊗(

[n]
3 ) be the indicator of whether
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a triangle is added to the graph. We use RGT(x, y) to denote the graph generated by choice x and
y. Then µG+e(Ye = 1) can be viewed as a function of (x, y),

f(x, y) , µRGT(x,y)+e(Ye = 1) .

By Lemma 2.8, µG+e(Ye = 1) is Lipschitz as a function of a c-uniformly 2-star dense graph G.
Indeed, for any e′ /∈ G,

µG+e+e′(Ye = 1) = µG+e+e′(Ye′ = 1)µG+e+e′(Ye = 1|Ye′ = 1)

+ µG+e+e′(Ye′ = 0)µG+e+e′(Ye = 1|Ye′ = 0) .

As µG+e+e′(Ye = 1|Ye′ = 0) = µG+e(Ye = 1), we have

|µG+e+e′(Ye = 1)− µG+e(Ye = 1)| ≤ |µG+e+e′(Ye = 1|Ye′ = 1)− µG+e+e′(Ye = 1|Ye′ = 0)|
≤ IMe′→e.

So for any c-uniformly 2-star dense graph G, and edge e′ incident to e,

|µG+e+e′(Ye = 1)− µG+e(Ye = 1)| = O(1/(n3p′2)) = Õ(1/n) ,

and for other edge e′ not incident to e,

|µG+e+e′(Ye = 1)− µG+e(Ye = 1)| = O(1/(n3p′)) = Õ(1/n2) .

This implies that if RGT(x, y) is a c-uniformly 2-star dense graph, we have

∣

∣

∣

∂f

∂xe′
(x, y)

∣

∣

∣
=

{

Õ(1/n) if e′ ∩ e 6= ∅

Õ(1/n2) otherwise
,

and
∣

∣

∣

∂f

∂yt
(x, y)

∣

∣

∣
=

{

Õ(1/n) if t ∩ e 6= ∅

Õ(1/n2) otherwise
.

Denote the quantities on the right hand side by ce′ and ct. To use Lemma 4.10, we need to check

that f is Lipschitz. For any x1, x2 ∈ {0, 1}([n]
2 ) and y1, y2 ∈ {0, 1}([n]

3 ) such that RGT(x1, y1) and
RGT(x2, y2) are c-uniformly 2-star dense graphs,

|f(x1, y1)− f(x2, y2)|
≤ |f(x1, y1)− f(x1 ∨ x2, y1 ∨ y2)|+ |f(x2, y2)− f(x1 ∨ x2, y1 ∨ y2)|
≤

∑

e′:(x1)e′ 6=(x1∨x2)e′

ce′ +
∑

t:(y1)t 6=(y1∨y2)t
ct +

∑

e′:(x2)e′ 6=(x1∨x2)e′

ce′ +
∑

t:(y2)t 6=(y1∨y2)t
ct

=
∑

e′:(x1)e′ 6=(x2)e′

ce′ +
∑

t:(y1)t 6=(y2)t

ct .

Here we used that RGT(x1 ∨ x2, y1 ∨ y2) = RGT(x1, y1) ∪ RGT(x2, y2) is c-uniformly 2-star dense.
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We can set Y in Lemma 4.10 to be the set of x, y such that RGT(x, y) is c-uniformly 2-star dense.
The probability of G ∼ RGT(n, p, p′) being not c-uniformly 2-star dense is bounded by e−Ω(n) by
Lemma 5.2. So for t > 0, we have

IPG

(

∣

∣µG+e(Ye = 1)− IE
G′∼RGT(n,p,p′)

µG′+e(Ye = 1)
∣

∣ > t
)

≤ e−Ω(n) + exp
(−(t− e−Ω(n))2

σ2 + Õ(t/n)

)

. (24)

Here

σ2 = p(1− p)
(

∑

e′∈([n]
2 ):e

′ shares node with e

O
( 1

n6p′4

)

+
∑

e′∈([n]
2 ):e

′ does not node with e

O
( 1

n6p′2

))

+ p′(1− p′)
(

∑

t∈([n]
3 ):t shares nodes with e

( 1

n6p′4

)

+
∑

t∈([n]
3 ):t does not node with e

O
( 1

n6p′2

))

= p(1− p)
(

n · O
( 1

n6p′4

)

+ n2 ·O
( 1

n6p′2

))

+ p′(1− p′)
(

n2 · O
( 1

n6p′4

)

+ n3 ·O
( 1

n6p′2

))

= O(n−5p′−4) .

We can choose t = Θ(n−5/2p′−2
√
log n) so that the right hand side of (24) is 1/nc for a large enough

constant c.

8 Low Influences for Marginally Small Distributions

The distribution µG studied in the paper, as proven in Lemma 6.1, is marginally small (Defn. 7). In
this section, we carry out a general investigation of marginally small distributions and show, under
an assumption on the underlying graphical model, that they have low influences. The influence
bound on distribution LG(Y ) is then derived as a result of low influence in µG.

We start by formally defining influence.

Definition 10 (Influence). For a binary distribution over {0, 1}X , the influence of S ⊂ X on
S′ ⊂ X is defined by

IS→S′ = sup
xa
S ,x

b
S∈{0,1}S

ω∈{0,1}A,A⊂X−S−S′

dTV(PxS′ |xa
S ,ω

, PxS′ |xb
S ,ω

) ,

where ω represents an arbitrary fixing (“pinning”) of variables in A.
For x, y ∈ X , use Ix→y to denote I{x}→{y}.

Remark 15. Definition 10 is different from the marginal influence defined in Definition 9 in the
sense that it allows arbitrary pinning of the variables.

Remark 16. The notion of influence plays a prominent role in the line of work using spectral
independence to bound the mixing time of Markov chains, examples include [ALG21, CGŠV21].
The influence used in these works are usually the marginal influence, but a separate influence
defined for each possible pinning. We instead maximize over all possible pinnings, which turns out
to be more convenient. Another notion of influence appears in Dobrushin uniqueness conditions
[Dob70], where the pinning is over X − S − S′, not over an arbitrary subset as in Defn. 10.
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8.1 Low Influences for Marginally Small Distributions

Theorem 8.1. Let P be a distribution over {0, 1}N , and G be the graphical model of P with
maximum degree ∆. Suppose that P is q-marginally small where q < 1

2∆ and let

C = sup
k

sup
i,j:d(i,j)=k

|Nk−1(i) ∩N1(j)| .

Then for any S ⊂ [N ] and i ∈ [N ] such that d(S, i) ≥ d, we can bound the influence of S on i as

IS→i ≤ |S|
( 2Cq

1− 2q∆

)d
.

In particular, if C = O(1) and 1− 2q∆ = Ω(1), then Ij→i = O(qd(i,j)).

Proof. Noticing that all properties of P are maintained under arbitrary conditioning, it is without
loss of generality to prove

IMS→i ≤ |S|
( 2Cq

1− 2q∆

)d
.

Let us fix vertex i, consider the possible influence on i by a set S that d(S, i) ≥ d and also
|S ∩Nd(i)| ≤ k. Define

Id(k) = sup
d(S,i)≥d,|S∩Nd(i)|≤k

IMS→i .

We will show that Id(k) ≤ k
(

2Cq
1−2q∆

)d
by induction on d.

First, note that P is q-marginally bounded, by definition of the influence, I∼i→i ≤ q. So
I1(k) ≤ q ≤ 2kCq

1−2q∆ for arbitrary k.

Now assume Id−1(k) ≤ k
(

2Cq
1−2q∆

)d−1
. Suppose the supremum in Id(k) is given by set S and

two marginal conditions xaS and xbS , so that

Id(k) = dTV(Pxi|xS
( · |xaS), Pxi|xS

( · |xbS)) .

Let Xa ∼ PxN1(S)|xS
( · |xaS) and Xb ∼ PxN1(S)|xS

( · |xaS) be independent of each other. Note that
G is the graphical model of P , so xi and xS are independent of each other conditioned on xN1(S).
This means

Pxi|xS
( · |xaS) = IE

[

Pxi|xS ,xN1(S)
( · |xaS ,Xa)

]

= IE
[

Pxi|xN1(S)
( · |Xa)

]

.

Similarly, Pxi|xS
( · |xbS) = IE

[

Pxi|xN1(S)
( · |Xb)

]

. Then by convexity of total variation (Lemma 4.2),
we have

dTV(Pxi|xS
( · |xaS), Pxi|xS

( · |xbS)) ≤ IE
[

dTV
(

Pxi|xN1(S)
( · |Xa), Pxi|xN1(S)

( · |Xb)
)]

.
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By the induction assumption,

IE
[

dTV
(

Pxi|xN1(S)
( · |Xa), Pxi|xN1(S)

( · |Xb)
)]

≤
∑

j≥1

IPXa,Xb

(

∥

∥Xa
Nd−1(i)

−Xb
Nd−1(i)

∥

∥

1
= j

)

Id−1(j)

+
∑

j≥1

IPXa,Xb

(

Xa
Nd−1(i)

= Xb
Nd−1(i)

,
∥

∥Xa
Nd(i)

−Xb
Nd(i)

∥

∥

1
= j

)

Id(j)

≤
∑

j≥1

IPXa,Xb

(

∥

∥Xa
Nd−1(i)

∥

∥

1
+

∥

∥Xb
Nd−1(i)

∥

∥

1
= j

)

· j ·
( 2Cq

1− 2q∆

)d−1

+
∑

j≥1

IPXa,Xb

(

∥

∥Xa
Nd(i)

∥

∥

1
+

∥

∥Xb
Nd(i)

∥

∥

1
= j

)

Id(j) .

Because d(S, i) = d, |N1(S) ∩ Nd−1(i)| ≤ |S ∩ Nd(i)|C ≤ kC, and P is q-marginally small, the
distribution of

∥

∥Xa
Nd−1(i)

∥

∥

1
+

∥

∥Xb
Nd−1(i)

∥

∥

1
is stochastically dominated by Binomial(2kC, q). Simi-

larly, |N1(S)| ≤ k∆, so
∥

∥Xa
Nd(i)

∥

∥

1
+

∥

∥Xb
Nd(i)

∥

∥

1
≤ ‖Xa‖1 + ‖Xb‖1 is stochastically dominated by

Binomial(2k∆, q). We have

Id(k) ≤
( 2Cq

1− 2q∆

)d−1
2ka
∑

j=0

Binomial(2kC, q, j) · j +
2k∆
∑

j=0

Binomial(2k∆, q, j)Id(j)

= 2kCq
( 2Cq

1− 2q∆

)d−1
+

2k∆
∑

j=0

Binomial(2k∆, q, j)Id(j) .

For simplicity of notation, let Ĩd(k) =
(1−2q∆)d−1

(2Cq)d
Id(k). We get a recursion

Ĩd(k) ≤ k +

2k∆
∑

j=0

Binomial(2k∆, q, j)Ĩd(j) .

We compare this recursion with percolation on a tree with branching factor 2∆ and branching
probability q. Let mk be the total number of nodes in k such independent trees. We have

IEmk = k +

2k∆
∑

j=0

Binomial(2k∆, q, j) IEmj .

By comparing both recursions, we can couple the recursion of Ĩd(k) with the branching process and
conclude that Ĩd(k) ≤ IEmk. By linearity of expectation, IEmk = k

1−2q∆ . So from the definition of

Ĩd(k), we have

Id(k) ≤ k
( 2Cq

1− 2q∆

)d
.

Corollary 8.1. Let µG be the distribution in Definition 5. For any two triangles t and t′ in graph
G such that d(t, t′) ≥ k,

It→t′ = O(p′k) .
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Proof. We only need to verify that µG satisfies all the properties in Theorem 8.1 In the graphical
model of µG, any two triangles are connected if and only if they share an edge. So the maximum
degree of the graphical model of µG is at most 3(n− 2). From Lemma 6.1, µG is O(p′)-marginally
small. Because p′ ≪ 1/n, we have that p′ < 1/2n.

By induction one can verify that two triangles have distance k if and only if they share 3 − k
common vertices. So for two triangles t, t′ that d(t, t′) = 2, t and t′ share 1 vertex. N1(t) ∩N1(t

′)
are the vertices that share 2 vertices with both t and t′. Therefore, N1(t) ∩N1(t

′) = 2.
Suppose two triangles t, t′ satisfy d(t, t′) = 3, i.e., t and t′ do not share vertex. N2(t) ∩N1(t

′)
are the triangles that share 1 vertex with t and 2 vertices with t′. There are 3 of them in total.

We have
sup
k

∑

t,t′:d(t,t′)=k

|Nk−1(t) ∩N1(t
′)| ≤ 3 .

8.2 Influences in LG(Y )

In this section, we will apply the conclusions from the previous section about µG to bound the
influence of LG(Y ). We start with a technical lemma on the marginals of µG and LG(Y ).

Lemma 8.2. Suppose G is a c-uniformly 2-star dense graph. Let A ⊂ E(G) be an edge set that
|A| ≤ cn/4 and T ⊂ TG be a triangle set that |T | ≤ cn/4. Let yA ∈ {0, 1}A, xT ∈ {0, 1}T be
arbitrary consistent configurations on A and T . For any edge e /∈ A,

µG(Ye = 1|YA = yA,XT = xT ) = Ω(np′) ,

If further Te ∩ T = ∅ or xTe∩T = ~0, then

µG(Ye = 1|YA = yA,XT = xT ) = Θ(np′) .

For any triangle t /∈ T such that (yA)E∗ = ~1 where E∗ = E(t) ∩A, we have

µG(Xt = 1|YA = yA,XT = xT ) = O
( 1

n3p′2

)

.

Proof. For the first statement, consider all triangles in G that contains e, denoted by Te. If
Te ∩ T = 6= ∅ and xTe∩T 6= ~0, then one of the triangles in T that contain e is already in xT , which
means

µG(Ye = 1|YA = yA,XT = xT ) = 1 .

Now we only consider the case when Te ∩ T = ∅ or xTe∩T = ~0. As G is c-uniformly 2-star dense,
there are at least c(n− 2) such triangles. Let T ∗ ⊂ Te be the set of triangles that does not contain
any edge from A or any triangles in T . We have |T ∗| ≥ c(n − 2) − cn/4 − cn/4 = Θ(n). Suppose
T ∗ = {t1, · · · , tk}, k = |T ∗|. We have

µG(Ye = 1|YA = yA,XT = xT ) =
k

∑

i=1

µG(Xti = 1|YA = yA,XT = xT ,Xtj = 0,∀j < i)

= Θ(kp′) = Θ(np′) .

The first equality is because µG is Ω(p′)-marginally large, and the conditioning is an event on
triangles other than Xti .
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Now let’s look at the second statement.

µG(Xt = 1|YA = yA,XT = xT ) =
µG(Xt = 1|YA\E∗ = (yA)A\E∗ ,XT = xT )

µG(YE∗ = ~1|YA\E∗ = (yA)A\E∗ ,XT = xT )
.

Let E∗ = {e1, · · · , ek}, k ≤ 3. From the first statement, the denominator can be bounded as
follows,

µG(YE∗ = ~1|YA\E∗ = (yA)A\E∗ ,XT = xT )

=
k
∏

i=1

µG(Ye = 1|YA\E∗ = (yA)A\E∗ ,XT = xT , Yj = 1,∀j < k)

= Ω
(

(np′)k
)

= Ω(n3p′3) .

Since µG is O(p′)-marginally small, the nominator is bounded by O(p′). We have

µG(Xt = 1|YA = yA,XT = xT ) = O(1/(n3p′2)) .

Lemma 6.3. Suppose G is a c-uniformly 2-star dense graph for a constant c > 0. Consider
distribution LG(Y ) as in Definition 5. For A ⊂ E(G) with |A| ≤ cn/4 and any edge e /∈ A,

IMA→e = O(|A|/(n3p′2)) = Õ(|A|/n) .

For any pair of edges e, e′ ∈ E(G) that do not share common nodes,

IMe′→e = O(1/(n3p′)) = Õ(1/n2) .

Proof. The proof idea is to consider edge variable Y as function of the triangle variable X, and
use Lemma C.2 to bound influence between one pair edges as the sum of influences between many
pairs of triangles.

Let TA be the set of triangles that contain edges in A, Te be the set of triangles that contain
edges in e. Let To = TA ∩ Te, Since any triangle in To have at least one edge in A, |To| ≤ |A|.

Suppose X ∼ µG, Y be the corresponding edge distribution, L(Y ) = µG. Suppose I
M
A→e is given

by conditioning yaA and ybA, i.e.,

IMA→e = dTV
(

µG(Ye|YA = yaA), µG(Ye|YA = ybA)
)

.

From Lemma 4.4,

IMA→e ≤ 2
(

µG(XTo 6= ~0|YA = yaA) + µG(XTo 6= ~0|YA = ybA)
)

+ dTV
(

µG(Ye|YA = yaA,XTo = ~0), µG(Ye|YA = ybA,XTo = ~0)
)

.

From Lemma 8.2, we can bound the first two terms.

µG(XTo 6= ~0|YA = yaA) ≤
∑

t∈To

µG(Xt = 1|YA = yaA) = O(|A|/(n3p′2)) ,

and similarly, µG(XTo 6= ~0|YA = ybA) = O(|A|/(n3p′2)).
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Let Xa ∼ X|YA = yaA,XTo = ~0, Xb ∼ X|YA = ybA,XTo = ~0 be independent, TC = {t|t ∈
TA,X

a
t = 1 or Xb

t = 1} we can use Lemma 4.2,

IMA→e ≤ IE
Xa

TA
,Xb

TA

dTV(µG(Ye|Xa
TA

,XTo = ~0), µG(Ye|Xb
TA

,XTo = ~0)) +O(|A|/(n3p′2))

≤ IE
Xa

TA
,Xb

TA

dTV(µG(XTe |Xa
TA

,XTo = ~0), µG(XTe |Xb
TA

,XTo = ~0)) +O(|A|/(n3p′2))

≤ IE
Xa

TA
,Xb

TA

I{t|Xa
t 6=Xb

t }→Te
+O(|A|/(n3p′2))

≤ IE
Xa

TA
,Xb

TA

ITC→Te +O(|A|/(n3p′2)) .

By Lemma C.2, ITC→Te ≤
∑

t∈Te
ITC→t.

Now we need to bound ITC→t for t ∈ Te. From Corollary 8.1, if TC and t are adjacent then
ITC→t = O(p′), otherwise, ITC→t = O(|TC |p′2). So

∑

t∈Te

ITC→t = O(|N1(TC) ∩ Te|p′ + |Te||TC |p′2) .

By the definition of Xa,Xb and TC , TC ⊂ TA\Te. So for any t ∈ TC , t share at most 1 vertex
with e. There are at most 2 triangles that contains edge e and is adjacent to t. Therefore,
|N1(TC) ∩ Te| ≤ 2|TC |. We have

∑

t∈Te

ITC→t = O(|TC |p′) .

Here we used that |Te| ≤ n− 2, np′ = o(1).

Now we have IMA→e = O
(

p′ IEXa
TA

,Xb
TA

|TC |+|A|/(n3p′2)
)

, and it remains to bound IEXa
TA

,Xb
TA

|TC |.
By linearity of expectation,

IE
Xa

TA
,Xb

TA

|TC | ≤
∑

t∈TA

(

µG(X
a
t = 1|YA = yaA,XTo = ~0) + µG(X

b
t = 1|YA = yaA,XTo = ~0)

)

.

By Lemma 8.2, each term on the right hand side is O(1/n3p′2). So

IE
Xa

TA
,Xb

TA

|TC | = O
( |TA|
n3p′2

)

= O
( |A|
n2p′2

)

and hence IMA→e = O(|A|/(n3p′2)).
Let Te and Te′ be the set of triangles that contains e and e′ respectively. Note that e and e′ do

not share common nodes, so Te and Te′ are disjoint. Similar to the previous argument, suppose

IMe′→e = dTV
(

µG(Ye|Ye′ = 1), µG(Ye|Ye′ = 0)
)

.

Let Xa ∼ X|Ye′ = 1, Xb ∼ X|Ye′ = 0 be independent, TC = {t|t ∈ Te′ ,X
a
t = 1}, we have

IMe′→e ≤ IE
Xa

ITC→Te .

Again by Lemma C.2, ITC→Te ≤ ∑

tc∈TC ,te∈Te
Itc→te . Now let’s bound Itc→te for possible pairs of

te and tc. From Corollary 8.1, this is bounded by p′d(tc,te).
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Let To be the set of triangles

To = {t : t ∈ Te′ , d(t, Te) = 1} .

This is equivalent to triangles that contains e′ and share a node with e. There are at most 2 such
triangles. For tc ∈ To, there is at most 1 triangle in Te with distance 1, so

∑

te∈Te

Itc→te ≤ O(p′ + np′2) = O(p′) .

For tc ∈ Te′\To, there is at most 1 triangle in Te with distance 2, so

∑

te∈Te

Itc→te ≤ O(p′2 + np′3) = O(p′2) .

Combining the two cases, we get

ITC→Te = O
(

1{TC ∩ To 6= ∅}p′ + |TC |p′2
)

.

Now we have IMe′→e = O
(

p′2 IE |TC | + p′ IP(TC ∩ To 6= ∅)
)

, where the randomness is from Xa.
From Lemma 8.2, we have

IE |TC | =
∑

t∈Te′

µG(Xt = 1|Ye′ = 1) = O(1/(n2p′2)) ,

and
IP(TC ∩ To 6= ∅) ≤

∑

t∈To

µG(Xt = 1|Ye′ = 1) = O(1/(n3p′2)) .

Combining the above equations, we have IMe′→e = O(1/(n3p′)).

Corollary 6.4. For any c-uniformly 2-star dense graph G and any e 6= e′,

|µG(Ye = 1)− µG+e′(Ye = 1)| = Õ(1/n) .

Proof. If e′ ∈ G, this is trivial. So assume e′ 6∈ G. Because

µG+e′(Ye = 1) = µG+e′(Ye′ = 1)µG+e′(Ye = 1|Ye′ = 1) + µG+e′(Ye′ = 0)µG+e′(Ye = 1|Ye′ = 0) ,

and µG(Ye = 1) = µG+e′(Ye = 1|Ye′ = 0), we have

|µG(Ye = 1)− µG+e′(Ye = 1)| ≤ |µG+e′(Ye = 1|Ye′ = 1)− µG+e′(Ye = 1|Ye′ = 0)| ≤ IMe′→e .

9 Concentration and Mixing for Marginally Small Distributions

In this section we continue our study of marginally small distributions, and show concentration of
Lipschitz functions and fast mixing of Glauber dynamics.
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9.1 Glauber Dynamics and Path Coupling

Glauber Dynamics is a simple and commonly used discrete-time Markov chain to sample from
distributions with local structures. Consider a distribution µ over Ω = X [N ]. Starting with arbitrary
initial configuration X ∈ Ω, at each time step, the Glauber dynamics sample a uniformly random
location i ∈ [N ] and resamples Xi according to the conditional distribution given other locations,
µ(xi|x∼i = X∼i). Let Dgl(X) denote the variable generated by applying one step of Glauber
dynamics on X.

When applying Glauber dynamics, the crucial property we care about is the mixing time, i.e.,
the time it takes for the dynamics to converge to the stationary distribution. There are many
approaches to prove the mixing speed of Glauber dynamics, in this paper we will be using the path
coupling technique introduced in [BD97].

Definition 11 (Weighted Hamming Distance). A path distance over Ω is a weighted hamming
distance where d(X,Y ) =

∑

i:Xi 6=Yi
ci.

Lemma 9.1 (Path Coupling, [BD97]). Let d(X,Y ) denote the path distance between a pair of
configurations X,Y ∈ Ω. If for any pair of X,Y that differs at one coordinate, there is a coupling
(Dgl(X),Dgl(Y )) such that

IE d(Dgl(X),Dgl(Y )) ≤ (1− α)d(X,Y ) ,

then the coupling can be extended to any pair of configurations that same inequality holds.

We say the Glauber dynamics satisfies path coupling with constant α with respect to distance
d if the above holds. Path coupling imply mixing of Glauber dynamics.

Lemma 9.2. If the Glauber dynamics of µ satisfies path coupling with constant α with respect to
distance d defined in Definition 11, then for any starting configuration X0, we have

dTV(D
t
gl(X0), µ) ≤ δ

when t ≥ log1−α(ǫmini ci/(
∑

i ci)).

Proof. Now imagine X0 is the initial configuration chosen by the algorithm and Y0 ∼ µ. Let
Xt = Dt

gl(X0) and Yt = Dt
gl(Y0) denote the random variables we get after applying t steps of

Glauber dynamics on X0 and Y0. Using the Lemma above for t times, we get after t time steps,

IE d(Xt, Yt) ≤ (1− α)t
∑

i

ci .

Since the distance d(X,Y ) is at least mini ci when X 6= Y , we get an upper bound on the total
variation distance between the law of Xt and µ:

dTV(Xt, µ) ≤ IP(Xt 6= Yt) ≤
IEd(Xt, Yt)

mini ci
≤ (1− α)t

∑

i ci
mini ci

.

It follows that to generate a sample that is ǫ close to µ in total variation, we can start with arbitrary
initial configuration and run Glauber dynamics for log1−α(ǫmini ci/(

∑

i ci)) time-steps.
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9.2 Concentration from Mixing

In this section we show that if a function can be chosen to represent the distance in path coupling,
the function must concentrates.

Lemma 9.3 (Concentration From Path Coupling). Let µ be a distribution over Ω = {0, 1}N . Let
Dgl be the Glauber dynamics of µ. Suppose function f : {0, 1}N → R satisfies

sup
x1,·,xN ,x′

i

|f(x1, · · · , xi, · · · , xN )− f(x1, · · · , x′i, · · · , xN )| ≤ Li

Let D be the path distance on Ω defined by

D(x, x′) =
∑

i:xi 6=x′
i

Li .

Suppose that D satisfies path coupling with constant α, i.e., suppose that for x, x′ that differ at
precisely one coordinate, there exists a coupling between Dgl(x) and Dgl(x

′) such that

IED(Dgl(x),Dgl(x
′)) ≤ (1− α)D(x, x′) .

Then for any δ > 0, t > 0,

µ(f − IE
µ
(f) > t) ≤ exp

( −t2/2

4T‖L‖22/N + ‖L‖∞t/3

)

+ δ ,

where T = log1−α
δ infi Li
‖L‖1 is the mixing time of Dgl. Further, if µ is q-marginally small,

µ(f − IE
µ
(f) > t) ≤ exp

( −t2/2

8Tq‖L‖22/N + ‖L‖∞t/3

)

+ δ .

Proof. Consider running Glauber dynamics with initial condition X0 = ~0. Let Xt = Dt
gl(X0), where

t = 0, 1, · · · , T . Define a sequence of martingale

gt = IE[f(XT )|Xt] .

The martingale difference Yt = gt − gt−1 can be written as

Yt = f
(

DT−t
gl (Xt)

)

− IE
X′

t|Xt−1

f
(

DT−t
gl (X ′

t)
)

.

From the definition of D, for any x, x′ ∈ Ω, D(x, x′) ≥ |f(x)− f(x′)|, hence

Yt ≤ IE
X′

t|Xt−1

D
(

DT−t
gl (Xt),D

T−t
gl (X ′

t)
)

≤ IE
X′

t|Xt−1

D(Xt,X
′
t)

≤ D(Xt,Xt−1) + IE
X′

t|Xt−1

D(X ′
t,Xt−1) .
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The second inequality is by the data processing inequality and the third inequality is by the triangle
inequality. Since Xt and Xt−1 differ in at most one coordinate, Yt ≤ 2‖L‖∞ almost surely. Also,
by the upper bound above,

IE[Y 2
t |Xt−1] ≤ IE

[

D(Xt,Xt−1)
2
]

+ 3
(

IE[D(Xt,Xt−1)|Xt−1]
)2 ≤ 4 IE[D(Xt,Xt−1)

2|Xt−1] .

The Glauber dynamics chooses a location i ∈ [N ] uniformly at random, when i is chosen, D(Xt,Xt−1) ≤
Li. So

IE[Y 2
t |Xt−1] ≤ 4

∑

i

L2
i /N = 4‖L‖22/N .

When µ is q-marginally small, the probability that we change coordinate i in the Glauber dynamics
is at most

IP((Xt−1)i = 0)q + IP((Xt−1)i = 1)

N
.

Note that IP((Xt−1)i = 1) ≤ q is maintained when we run Glauber dynamics. So the above quantity
is bounded by 2q/N . We have

IE[Y 2
t |Xt−1] ≤ 4

∑

i

2qL2
i /N = 8q‖L‖22/N .

Therefore, we can apply Mcdiarmid’s inequality (Lemma 4.9), yielding

IP(gT − IE gT > t) ≤ exp
( −t2/2

8qT‖L‖22/N + ‖L‖∞t/3

)

.

By a standard path coupling argument, Lemma 9.2, dTV(L(XT ), µ) ≤ δ. Since gT = f(XT ) by
definition, we have

µ(f − µ(f) > t) ≤ exp
( −t2/2

8qT‖L‖22/N + ‖L‖∞t/3

)

+ δ .

It turns out that we can apply path coupling to any q-marginally small distribution as long as
q is much less than the inverse degree of its graphical model.

Theorem 9.1. Let P be a distribution over {0, 1}N and let G be the graphical model of P with
maximum degree ∆. If P is q-marginally small for q ≪ 1/∆, then:

1. If X ∼ P , then for any f that is L-Lipschitz on {0, 1}N , |f(X)−IE f(X)| = O(
√

NqL2 logN)
with high probability.

2. The Glauber dynamics for P mixes in O(N logN) time.

Proof. We can use Lemma 9.3 by definingD(x, x′) = L for adjacent configurations. In the following,
we show that D satisfies the path coupling condition with constant α = Ω(1/N).

Suppose x and x′ differ only at position i, xi = 1, x′i = 0. Consider the following coupling
between Dgl(x) and Dgl(x

′). The Glauber dynamics chooses the same location in x and x′, say
j ∈ [N ]. If j = i or j is not adjacent to i in G, since xj|x∼i and xj |x′∼i have the same distribution,
we can couple them by the same choice of xj. If j is a neighbor of i, we couple them arbitrarily.

When the Glauber dynamics chooses i, the new distance is 0. When Glauber dynamics chooses
a neighbor j of i, the new distance is either L or 2L depending on whether Dgl(x) and Dgl(x

′)
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chooses the same value on j. Since the distribution is q-small, they both choose xj = 0 with
at least 1 − 2q probability, from the union bound. When Glauber dynamics chooses any other
coordinate, the new distance is still L. Therefore, under this coupling,

IED(Dgl(x),Dgl(x
′)) ≤ N −∆− 1

N
· L+

∆

N
· (1− 2q) · L+

∆

N
· (2q) · (2L)

≤
(

1− 1− 6q∆

N

)

L

=
(

1− 1− 6q∆

N

)

D(x, x′) .

Hence, D satisfies the contraction required by path coupling with constant (1−6q∆)/N = Ω(1/N).
Now we can apply Lemma 9.3. For any constant c and δ = N−c, the mixing time T is

log(1−6q∆)/N (N−c−1) = O(N logN). Choosing t =
√

cqTL2 logN = O(
√

NqL2 log2 N), we have

IP(f(X)− IE f(X) > t) ≤ exp
( cqTL2 logN/2

8qTL2 + L
√

cqTL2 logN/3

)

+ δ ≤ 2N−c/32 .

By considering −f(X), the same bound applies to IP(f(X)− IE f(X) < −t).

We have the following corollary as an immediate result, noting that µG is O(p′)−marginally
small under arbitrary conditioning.

Corollary 6.5. Let f : {0, 1}([n]
3 ) → R be an L-Lipschitz function. Let T be a subset of

([n]
3

)

with
size

(n
3

)

−m and xT ∈ {0, 1}T be a configuration on T . If X ∼ µG( · |XT = xT ), then

|f(X)− IE f(X)| = O(
√

mp′L2 logm)

holds with high probability.

A similar result can be obtained for functions that are not everywhere Lipschitz, but are when
restricted to a high probability set.

Corollary 9.4. Under the assumptions of Theorem 9.1, if there exists a Y ⊂ {0, 1}N such that f
restricted to Y is L-Lipschitz, X is in Y with high probability, and 1/q is polynomially bounded by
N , we still have |f(X)− IE[f(X)]| = O(

√

NqL2 logN) with high probability.

Proof. By assumption, IP(X ∈ Y) ≥ 1− 1/N c for some sufficiently large constant c. We take

f̄(x) = inf
y∈Y

f(y) + dH(x, y) · L ,

where dH(x, y) = |{i : xi 6= yi}| is the Hamming distance. Note that (i) if x ∈ Y, then f(x) = f̄(x),
and (ii) f̄ is everywhere L-Lipschitz. Thus, we can apply Theorem 9.1 to f̄ . Since IE f(X) and
IE f̄(X) differ by at most supx |f(x) − IE f(X)|/N c ≤ L/N c−1, we have that when X ∈ Y and
|f̄(X)− IE f̄(X)| = O(

√

NqL2 logN), which happens with high probability,

|f(X)− IE f(X)| = |f̄(X)− IE f(X)| ≤ |f̄(X)− IE f̄(X)| + L/N c−1 = O(
√

NqL2 logN) + L/N c−1 .

This last quantity is O(
√

NqL2 logN) whenever c is a large enough constant.
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Lemma 2.3. For any fixed graph G over n vertices, p′ ≪ 1/n and constant p, the Glauber dynamics
on µG mixes in O(n3 log n) time.

Proof. The graphical model of µG has
(n
3

)

variables. Two triangles are connected if and only if they
share an edge, so each variable has degree at most 3(n− 2). Now, µG is O(p′)-marginally small by
Lemma 6.1, so Theorem 9.1 implies that the Glauber dynamics mixes in O(n3 log n) time.
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A Relation Between Models

We will analyze the parameter regimes where each of the three models, Erdős-Rényi, RIG and RGT
are close to each other. The RGT can be thought of as partway between RIG and Erdős-Rényi.

A.1 RGT vs Erdős-Rényi

RGT is close to Erdős-Rényi with equal edge density when p′ ≪ n−3/2.

Theorem A.1. If p is a positive constant, then

• When p′ ≫ n−3/2,

dTV

(

RGT(n, p, p′), G
(

n, p+ (1− p)
(

1− (1− p′)n−2
)))

= 1− on(1)

and there is an efficient algorithm to distinguish the two distributions with vanishing error.
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• When p′ ≪ n−3/2,

dTV

(

RGT(n, p, p′), G
(

n, p+ (1− p)
(

1− (1− p′)n−2
)))

= on(1) .

The lower bound on total variation is established through statistical testing using a signed
version of triangle count. This test has also been employed to distinguish between Erdős-Rényi
and random intersection graphs [BBN20], as well as between Erdős-Rényi and random geometric
graphs [BDER16].

The ordinary triangle count with adjacency matrix A is given by
∑

{i,j,k}⊂[n]

AijAjkAik .

Let q = p + (1 − p)
(

1− (1− p′)n−2
)

= 1 − (1 − p)(1 − p′)n−2 be the edge density. The signed
triangle count is given by

τ(A) =
∑

{i,j,k}⊂[n]

(Aij − q)(Ajk − q)(Aik − q)

It is not hard to show that for Erdős-Rényi,

Lemma A.1. For A being the adjacency matrix of an Erdős-Rényirandom graph G(n, q),

IE[τ(A)] = 0 and Var[τ(A)] =

(

n

3

)

q3(1− q)3 ,

The calculation is straightforward and can be found in Section 3 of [BDER16]. For RGT, we
will prove

Lemma A.2. For RGT(n, p, p′),

IE[τ(A)] =

(

n

3

)

p′(1− q)3 +O(1) and Var[τ(A)] = O(n3) .

Proof. Let τijk = (Aij − q)(Ajk − q)(Aik − q). Let T be the set of triangles add in the construction
of RGT(n, p, p′). Each triple is in T independently with probability p′. Let Xijk to be the indicator
of whether the triple is included in T . Note that Given Xijk, edges (i, j), (j, k) and (k, i) become
independent since all other triangles do not contain two of them. We have

IE τijk = IP(Xijk = 1)(1 − q)3 + IP(Xijk = 0)
(

IE[Aij − q|Xijk = 0]
)3

= p′(1− q)3 + (1− p′)
(

p+ (1− p)(1− (1− p′)n−3)
)3

= p′
[

(1− q)3 − p′2(1− p)3(1− p′)3n−8
]

Since p′ ≤ 1/n, we have IE τijk = p′(1− q)3 +O(1/n3). So IE τ(A) =
(n
3

)

p′(1− q)3 +O(1).
Now let’s bound the variance. One can attempt to calculate the exact value, but here we only

upper bound it by O(n3) for simplicity. Note that if two triples i, j, k and i′, j′, k′ do not overlap,
τijk and τi′,j′,k′ are independent.

Var[τ(A)] =
∑

{i,j,k}⊂[n]

∑

{i′,j′,k′}⊂[n]

Cov[τijk, τi′j′k′ ]

=

(

n

3

)

Var[τ123] +

(

n

4

)(

4

2

)

Cov[τ123, τ124] +

(

n

5

)(

5

2

)(

3

1

)

Cov[τ123, τ145]
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The first term is trivially bounded by O(n3) since Var[τ123] is at most constant. It remains to bound
the second and third term.

Let T0 be a set of triangles of constant size that contains i, j, we have

IE[(Aij − q)2|XT0 = ~0] = O(1) and IE[q −Aij |XT0 = ~0] = O(p′) (25)

The first equation is trivial as all the variables are bounded by constant, the second equation is
equal to (1− p)(1− p′)n−2−|T0| − (1− p)(1− p′)n−2 = O(|T0|p′) = O(p′).

For the second term, Cov[τ123, τ124] Let E1 be the set of edges included in triangle (1, 2, 3) or
triangle (1, 2, 4), let T1 be the set of all triangles that contains at least 2 edges from E1, |T1| = 4.
Now IE[τ123τ124] = IEXT1

[τ123τ124|XT1 ]. Notice that given XT1 , all the edges becomes independent.
So

IE[τ123τ124] = IE
XT1

[τ123τ124|XT1 ]

= IE
XT1

[

IE
[(

1{(1, 2) ∈ E(XT1)}(1 − q)2 + 1{(1, 2) /∈ E(XT1)}(A12 − q)2
)

|XT1

]

∏

e∈E(XT1
)\{1,2}

(1− q)
∏

e∈E1\E(XT1
)\{1,2}

IE[(Ae − q)|XT1 ]
]

= O(1) ·
∑

XT1

IP(XT1)
∏

e∈E(XT1
)\{1,2}

(1− q)
∏

e∈E1\E(XT1
)\{1,2}

IE[(Ae − q)|XT1 ]

The third equality is because the term on edge (1, 2) is always bounded by O(1). When |XT1 | ≥ 2,
IP(XT1) ≤ p′2, the term inside summation is O(p′). When |XT1 | ≤ 1, there are at least two edges
in E1\E(XT1)\{1, 2}, so by (25), the term inside summation is still bounded by O(p′). There are
constant number of terms, so we have IE[τ123τ124] = O(p′2).

Similar analysis holds for IE[τ123τ145]. Let E2 be the set of edges included in one of the triangles
and T2 be the set of triangles that contains at least two edges in E2. |T2| = 6.

IE[τ123τ145] = IE
XT2

[τ123τ145|XT2 ]

= IE
XT2

[

∏

e∈E(XT2
)

(1− q)
∏

e∈E2\E(XT2
)

IE[(Ae − q)|XT2 ]
]

= O(1) ·
∑

XT2

IP(XT2)
∏

e∈E(XT2
)

(1− q)
∏

e∈E2\E(XT2
)

IE[(Ae − q)|XT2 ]

When |XT2 | ≥ 2, IP(XT2) ≤ p′2, the term inside summation is O(p′). When |XT2 | ≤ 1, there are
at least three edges in E2\E(XT2), so by (25), the term inside summation is bounded by O(p′3).
There are constant number of terms, so we have IE[τ123τ145] = O(p′2).

Therefore, Var[τ(A)] = O(n3 + n4p′2 + n5p′2). Since p′ = O(1/n), we have Var[τ(A)] = O(n3).

So we can construct a statistical test between

H0 ∼ G(n, p) and H1 ∼ G(n, p, p′)

as follows: Calculate τ(A), if it’s larger than
(

n
3

)

p′(1− q)3/2, output alternative hypothesis, other-

wise output null hypothesis. By Lemma A.1 and Lemma A.2, when p′ ≫ n−3/2, the test success
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with probability 1 − on(1) by Chebyshev Inequality. So the two problem have total variation
distance 1− on(1).

Now we prove the upper bound assuming p′ ≪ n−3/2. The main lemma is given in [BBN20]
that bounds the deviation we have from Erdős-Rényi when one triangle is added at a uniformly
random place.

Lemma A.3 (Lemma 3.1, [BBN20]). Let G(n, t, p) denote the graph generated by an Erdős-Rényi
graph G(n, p) with a clique of size t planted at a uniformly random place. When t and p are
constants,

dTV

(

G(n, t, p), G
(

n, p+ (1− p)
(

t
2

)(

n
2

)−1)
)

= On(n
−3/2) .

We can use data processing inequality to show that adding i cliques instead of one leads to a
TV distance of On(in

−3/2) when compared with Erdős-Rényi with same edge density.

Corollary A.4. Let G(n, i, t, p) denote the graph generated by an Erdős-Rényi graph G(n, p) with
i cliques of size t planted at a random place. When t and p are constants,

dTV
(

G(n, i, t, p), G(n, q)
)

= On(in
−3/2)

where q = p+ (1− p)
[

1−
(

1−
(t
2

)(n
2

)−1)i]
.

Intuitively, when we add o(n3/2) number of triangles, the resulting graph is still close to Erdős-
Rényi. This corresponds to adding each triangle with probability o(n−3/2). Before formally proving
this, let’s introduce a technical lemma.

Lemma A.5 (Corollary 5.1 in [KLN18]). For a positive integer N and 0 < p < q < 1,

dTV(Binomial(N, p),Binomial(N, q)) ≤ γ + 3γ2 .

Here γ = (q − p)
√

N
p(1−p) .

To simulate the process of adding each triangle independently with probability p′, we can add
M ∼ Poisson(

(

n
3

)

log( 1
1−p′ )) number of triangles independently at uniformly random location. By

Poission splitting, each triangle is added Poisson(log( 1
1−p′ )) times, which is equivalent to adding it

with probability p′. By Corollary A.4 and convexity of total variation,

dTV

(

RGT(n, p, p′), IE
M

G (n, q(M))

)

= O(n−3/2 IE
M

M) = O(n3/2p′) = o(1) ,

where q(M) = 1 − (1 − p)
(

1 − (n − 2)
(

n
3

)−1
)M

is the edge density after adding M triangles to

G(n, p).
By Lemma A.5 and convexity of total variation,

dTV
(

G(n, q), IE
M

G (n, q(M))
)

≤ IE
M
[γ(M)] = O(n IE

M
[|q − qM |]) ,

where

γ(M) = |q − q(M)|
√

(n
2

)

min{q(1 − q), q(M)(1 − q(M))} = O(n|q − q(M)|) .
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Now notice that
(n
3

)

log( 1
1−p′ ) = O(n3p′). By Chebyshev’s inequality,

IEM −
√

n3p′ log n ≤ M ≤ IEM +
√

n3p′ log n

with probability O(log−1 n). For any M within the above range,

|q − q(M)| =
∣

∣

∣
(1− p)(1− p′)n−2 − (1− p)

(

1− (n− 2)

(

n

3

)−1
)M ∣

∣

∣

= (1− p)
∣

∣

∣
(n− 2)p′ − (n− 2) log(

1

1− p′
) +O(n2p′2) +O(

√

log nn−1p′)
∣

∣

∣
= o(n−1) .

Here we used that (1− a)b = 1− ab+O(a2b2) when ab ≪ 1. So we have

dTV
(

G(n, q), IE
M

G (n, q(M))
)

≤ IE
M
[γ(M)] = o(1) + log−1 n = o(1) .

Combining this with the fact that RGT(n, p, p′) is close to IEM G (n, q(M)), we have

dTV(G(n, q),RGT(n, p, p′) = o(1)

for p′ ≪ n3/2.

A.2 RGT vs RIG

We now consider random intersection graphs. Using Corollary A.4, we can prove that RIG is close
to RGT when d ≫ n2.5, and is close to Erdős-Rényi when d ≫ n3.

Theorem 1.3. For an RIG with constant edge density, i.e., d = Θ(1/δ2), if d ≫ n2.5, then

dTV(RIG(n, d, δ),RGT(n, 1− e−dδ2+(n−2)dδ3(1−δ)n−3
, 1− e−dδ3(1−δ)n−3

)) = o(1).

Theorem A.2 ([BBN20], Theorem 3.1). When d ≫ n3, we have

dTV (RIG(d, δ), G(n, 1 − (1− δ2)d)) = o(1).

The idea is to provide another viewpoint of generating RIG. We define an n× d matrix M such
that Mij = 1 if Si contains j, and Mij = 0 otherwise. An edge i, j is added to the graph if they
appear on the same column.

Equivalently, we can add d cliques defined by the columns of M . The size of each clique is deter-
mined by a multinomial distribution with size k having probability

(n
k

)

δk(1−δ)n−k . It can be shown
that this distribution is closely approximated by adding a Poisson number of cliques of each size
k. Therefore, we can view RIG as adding Poisson(Θ(dn2δ2)) edges (2-cliques), Poisson(Θ(dn3δ3))
triangles (3-cliques), Poisson(Θ(dn4δ4)) 4-cliques, and so on.

Formally, we can define the following equivalent generation of RIG. Let pj := IP(|Si| = j) =
(

n
j

)

δj(1− δ)n−j .

1. Sample (M0,M1, · · · ,Mn) ∼ Multinomial(d, p0).

2. For all 2 ≤ j ≤ n, independently uniformly sample a random subset of size j from [n] Mj

times and plant a j-clique at those Mj places.
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We can use a series of Poission distribution to simulate the distribution of M2, · · · ,Mn. Define
RIGP(n, d, δ) to be the model generated by the following process.

1. Sample X ∼ Poisson(d(1 − p0 − p1)).

2. Sample M2, · · · ,Mn ∼ Multinomial(X, γp2, · · · , γpn) where γ = (1− p0 − p1)
−1.

3. For all 2 ≤ j ≤ n, independently uniformly sample a random subset of size j from [n] Mj

times and plant a j-clique at those Mj places.

Note that by Poission splitting, the process of generating Mj is equivalent to independent sampling
Mj ∼ Poisson(dpj) for 2 ≤ j ≤ n. It is proven in [BBN20] that RIGP is close to RIG in total
variation distance.

Lemma A.6 ([BBN20], Proposition 3.1). For d ≫ n2 and δ = Θ(1/
√
d), it holds that

dTV(RIG(n, d, δ),RIGP(n, d, δ)) = on(1) .

To compare it with RIG, we separate the process of adding 3-cliques and define RIGP4(n, d, δ)
by the distribution of RIGP conditioned on M3 = 0. Similar to the argument of Theorem 3.1 in
[BBN20], we can prove it is close to Erdős-Rényi random graph when d ≫ n2.5.

Lemma A.7. For d ≫ n2.5 and constant edge density, i.e., δ = Θ(1/
√
d), it holds that

dTV(RIGP4(n, d, δ), G(n, 1 − e−dδ2+(n−2)dδ3(1−δ)n−3
)) = on(1) .

The proof is deferred to Appendix B as it is similar to the proof of Theorem A.1.
Notice that to transform from RIGP4 to RIGP, we only need to sample M3 ∼ Poisson(dp3) and

add a uniformly random triangle to RIGP4 independently for M3 times. By Poission splitting, if
we let Xijk be the number of times that triple i, j, k is sampled, we have Xijk ∼ Poisson(dp3

(n3)
) =

Poisson(dδ3(1 − δ)n−3). This means each triple is added to RIGP4 independently with probability
1 − e−dδ3(1−δ)n−3

. Combine this observation with Lemma A.7, we immediately have the following
corollary.

Corollary A.8. For d ≫ n2.5 and constant edge density, i.e., δ = Θ(1/
√
d), we have

dTV(RIGP(n, d, δ),RGT(n, 1− e−dδ2+(n−2)dδ3(1−δ)n−3
, 1− e−dδ3(1−δ)n−3

))

Combining this and Lemma A.6, we have proved Theorem 1.3.

B Deferred Proofs

B.1 Proof of Lemma 7.13 on the distance between Kuv(X) and X

Proof. Recall that we define a partition of TG as follows.

TG0 , {t ∈ TG : t do not contain u or v}

TGv , {t ∈ TG : t contains v}
TGu , {t ∈ TG : t contains u}

Recall the following lemma.
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Lemma 7.14. Let G be c-uniformly 2-star dense. With high probability over the randomness of
XT 0

G
, for any w /∈ {u, v}, there are Θ(n2p′) different w′ such that (w′, v) ∈ G and (w′, w) ∈ E(XT 0

G
).

The same holds by exchanging u and v, so we have the the following by combining both condi-
tions.

Lemma B.1. With high probability over the randomness of XTG0
, for any w 6= u, v, there are

Θ(n2p′) different w′ that (w′, v) ∈ G and (w′, w) ∈ E(XTG0
), and Ω̃(n) different w′ that (w′, u) ∈ G

and (w′, w) ∈ E(XTG0
)

We will prove the following claim. For any XTG0
satisfying the condition in Lemma B.1,

dTV(Kuv(X)|XTG0
,X|XTG0

) = O
( log3 n

n6p′11/2

)

= Õ
( 1√

n

)

. (26)

This would then imply Lemma 7.13 as the condition in Lemma B.1 happens with high probability.
To use Lemma 4.5, we will show that the likelihood ratio between the two distributions con-

centrates. Note that the distribution of X|XTG0
is just µG(X|XTG0

). We can write the density of
both distributions as

IP(Kuv(X) = x|XTG0
)

=
∑

t1=(v,w,w1),t2=(u,w,w2):t1,t2∈x
(w,w1),(v,w1),(w,w2),(u,w2)∈E(x−)

(w,u),(w,v)/∈E(x−)

1

|Vuv(x−)| · |WE(x−)(v,w)| · |WE(x−)(u,w)|
µG(x

−|XTG0
) ,

where x− stands for x− t1 − t2, and

IP(X = x|XTG0
) = µG(X = x|XTG0

) .

So the derivative is

IP(Kuv(X) = x|XTG0
)

IP(X = x|XTG0
)

=
∑

t1=(v,w,w1),t2=(u,w,w2):t1,t2∈x
(w,w1),(v,w1),(w,w2),(u,w2)∈E(x−)

(w,u),(w,v)/∈E(x−)

1

|Vuv(x−)| · |WE(x−)(v,w)| · |WE(x−)(u,w)|
µG(x

−)
µG(x)

(27)

Similarly to the proof of Lemma 7.12, we will show each term on the right hand side is close to
constant with high probability, and the number of terms also concentrates.

Note that if t is chosen in Kuv to be added to X, it always increases the number of edges by 2,
i.e., e(x)− e(x− t1 − t2) = 2. So

µG(x− t1 − t2)

µG(x)
=

p′|x−t1−t2|p−e(x−t1−t2)

p′|x|p−e(x)
=

p2

p′2
.

From definition, |Vuv(X)|, |WE(X)(v,w)| and |WE(X)(u,w)| are O(1)-Lipschtz, so we have the
following lemma
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Lemma B.2. With high probability,

∣

∣ |WE(X)(u,w)| − IE |WE(X)(u,w)|
∣

∣ = O(
√

n2p′ log n),

∣

∣|WE(X)(v,w)| − IE |WE(X)(v,w)|
∣

∣ = O(
√

n2p′ log n) ,

and
∣

∣ |Vuv(X)| − IE |Vuv(X)|
∣

∣O(
√

n2p′ log n) .

Proof. L(X|XTG0
) is a distribution over O(n2) triangles that is Θ(p′)-marginally small. So we

can apply Corollary 6.5. With high probability, any O(1) Lipschtz function is within distance
O(

√

n2p′ log n) from its mean with high probability.

Lemma B.3. For any XTG0
satisfying condition in Lemma 7.14,

IE[Vuv(X)|XTG0
] = Θ(n) ,

and for any w 6= u, v

IE[WE(X)(u,w)|XTG0
] = Θ(n3p′2) and IE[WE(X)(v,w)|XTG0

] = Θ(n3p′2) .

Proof. Recall that Vuv(X) consists of vertices w that (w, u), (w, v) /∈ E(X). Fix any w ∈ Wu,v(G).
Both (w, u) and (w, v) are included in at most n − 2 triangles in G, each being one on X with
probability O(p′) as shown in Lemma 6.1. So

IP[(w, u), (w, v) /∈ E(X)|XTG0
] ≥ 1− 2(n − 2)O(p′) = Ω(1) ,

as p′ ≪ 1/n. Because |Wu,v(G)| ≥ cn, we have

IE[WE(X)(u,w)|XTG0
] =

∑

w∈Wu,v(G)

IP((w, u), (w, v) /∈ E(X)|XTG0
) = Ω(n) .

Fix any w 6= u, v. Consider a vertex w′ such that (w,w′) ∈ E(XTG0
), (v,w′) ∈ G, since G

is c-uniformly 2-star dense, (v,w′) is included in Θ(n) triangles, each having probability Θ(p′) of
being in X. So

IP[(v,w′) ∈ E(X)|XTG0
] = Θ(np′) .

From the assumption on XTG0
, there are Θ(n2p′) such w′, so

IE[WE(X)(v,w)|XTG0
] = Θ(n2p′) ·Θ(np′) = Θ(n3p′2) .

The same holds for IE[WE(X)(u,w)|XTG0
]

Note that WE(X)(v,w) ≥ |WE(XTG0
)(v,w)| = Θ(n), so IE[WE(X)(v,w)|XTG0

] = Θ(n). By
Lemma B.2 and Lemma B.3, for any v and w, conditioned on any XTG0

,

∣

∣

∣

|Vuv(X)| − IE |Vuv(X)|
IE |Vuv(X)|

∣

∣

∣
= O(

√

p′ log n) ,
∣

∣

∣

|WE(X)(v,w)| − IE |WE(X)(v,w)|
IE |WE(X)(v,w)|

∣

∣

∣
= O

( log n

n2p′3/2

)

,

and
∣

∣

∣

|WE(X)(u,w)| − IE |WE(X)(u,w)|
IE |WE(X)(u,w)|

∣

∣

∣
= O

( log n

n2p′3/2

)
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holds with high probability.
As |Vuv(X

−)| = |Vuv(X − t1 − t2)| and |Vuv(X)| differ by at most 2, so are |WE(X−)(v,w)| and
|WE(X)(u,w)|. So with high probability, each term in (27) concentrates,

1

|Vuv(X−)| · |WE(X−)(v,w)| · |WE(X−)(u,w)|
µG(X

−)
µG(X)

=
1

IE |Vuv(X−)| · |WE(X−)(v,w)| · IE |WE(X−)(u,w)|
p2

p′2

(

1 +O
( log n

n2p′3/2

))

.

(28)

It remains to show that the number of terms also concentrates. Let S be a set of ordered vertices

S(X) = {(w;w1;w2) : t1 = (v,w,w1) ∈ X, t2 = (u,w,w2) ∈ X,

(w,w1), (v,w1), (u,w2), (w,w2) ∈ E(X − t1 − t2), (u,w), (v,w) /∈ E(X − t1 − t2)} .

Lemma B.4. |S(X)| is O(log2 n)-Lipschitz with high probability. under L(X|XTg0),

IE[|S(X)||XTG0
] = Θ(n7p′6) = Θ̃(n) ,

and with high probability,

∣

∣|S(X)| − IE[|S(X)||XTG0
]
∣

∣ = O(n
√

p′ log3 n) = Õ(
√
n) .

Proof. We first prove that |S(X)| is Lipschitz. SupposeX andX ′ differ at one triangle, X ′ = X∨et0 .
Let T (u,w) denote the set of triangles that contains u,w, and similarly T (v,w) for triangles that
contain v,w. Let Sw(X) := {(w;w1;w2) : (w;w1;w2) ∈ S(X)}. Since t1 and t2 have to be
in X, we have |Sw(X)| ≤ |XT (u,w)||XT (v,w)|. We will show S(X ′) and S(X) differ by at most

O(supw |XT (u,w)||XT (v,w)|) elements, and |XT (u,w)||XT (v,w)| = Õ(1) with high probability.
First consider S(X)\S(X ′). Suppose (w;w1;w2) ∈ S(X) but (w;w1;w2) /∈ S(X + t0). Then

we must have either (w, v) ∈ E(X + t0 − t1 − t2) − E(X − t1 − t2) or (w, u) ∈ E(X + t0 −
t1 − t2) − E(X − t1 − t2). With loss of generality, assume it is (w, v) ∈ E(X + t0 − t1 − t2) −
E(X − t1 − t2). Since E(X + t0 − t1 − t2) and E(X − t1 − t2) differ by at most 3 edges, we
have |{w : ∃w′, (w;w1;w2) ∈ S(X)\S(X ′)}| ≤ 3. Notice that each for each w, at most |Sw(X)| of
pairs w1, w2 satisfy (w;w1;w2) ∈ S(X), otherwise (w, v) ∈ E(X − t1 − t2). So |S(X)\S(X ′)| ≤
3 supw |XT (u,w)||XT (v,w)|.

Then consider S(X ′)\S(X). If (w;w1;w2) ∈ S(X ′)\S(X), either (w1, v) ∈ E(X+ t0− t1− t2)−
E(X−t1−t2), (w,w1) ∈ E(X+t0−t1−t2)−E(X−t1−t2), (w2, u) ∈ E(X+t0−t1−t2)−E(X−t1−t2),
or (w,w2) ∈ E(X + t0 − t1 − t2)− E(X − t1 − t2). Let

S1 = {(w;w1;w2) : (w;w1;w2) ∈ S(X ′), (w1, v) ∈ E(X + t0 − t1 − t2)− E(X − t1 − t2)} ,

S2 = {(w;w1;w2) : (w;w1;w2) ∈ S(X ′), (w,w1) ∈ E(X + t0 − t1 − t2)− E(X − t1 − t2)} ,
S3 = {(w;w1;w2) : (w;w1;w2) ∈ S(X ′), (w2, u) ∈ E(X + t0 − t1 − t2)− E(X − t1 − t2)} ,

and

S4 = {(w;w1;w2) : (w;w1;w2) ∈ S(X ′), (w,w2) ∈ E(X + t0 − t1 − t2)− E(X − t1 − t2)} .
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Then
S(X ′)\S(X) ⊂ S1 ∪ S2 ∪ S3 ∪ S4 .

Still note that for each |Sw| ≤ |XT (u,w)||XT (v,w)|, and E(X+t0−t1−t2)−E(X−t1−t2) has at most 3
edges, we have |S2|, |S4| ≤ 3 supw |XT (u,w)||XT (v,w)|. For S1 and S3, notice that each w1 has at most
2 different w such that ∃w2, (w;w1;w2) ∈ S(X ′) and (v,w1) ∈ E(X + t0− t1− t2)−E(X − t1− t2).
Otherwise by definition of S(X ′), at least 3 triangles in X ′ contains edge (v,w1), so (v,w1) would
belong to E(X−t1−t2) for any t1, t2, contradicting that (v,w1) ∈ E(X+t0−t1−t2)−E(X−t1−t2).
Therefore, |S2| ≤ 6 supw |XT (u,w)||XT (v,w)|, similarly, |S4| ≤ 6 supw |XT (u,w)||XT (v,w)|. We have
|S(X ′)\S(X)| ≤ 18 supw |XT (u,w)||XT (v,w)|.

We have proven |S(X)| changes by at most 18 supw |XT (u,w)||XT (v,w)| when changing one trian-
gle. Notice that by Lemma 6.1, |XT (u,w)| and |XT (v,w)| are stochastically dominated by Binomial(n−
2, O(p′)), so both quantities are O(log n) with high probability. This means |S(X)| is O(log2 n)-
Lipschitz with high probability. From Corollary 9.4, there are O(n2) triangles in L(X|XTG0

),
the distribution is O(p′) marginally small, so |S(X)| concentrates around its mean with distance
O(n

√
p′ log3 n) with high probability.

Next we show that IE |S(X)| = Θ(n7p′6) = Θ̃(n). It is sufficient to prove there are Θ(n5p′2)
pairs (w;w1;w2) that (w;w1;w2) is in S(X) with probability Θ̃(1/n2). Since G is a c-uniformly
2-star dense graph, there are Ω(n) vertices w such that (w, u), (w, v) ∈ G. From the assumption
that for any w, |WE(XTG0

)(v,w)| = Θ(n2p′) and |WE(XTG0
)(u,w)| = Θ(n2p′), there are Θ(n5p′2)

pairs (w;w1;w2) that (w, u), (w, v) ∈ G and (w,w1), (w,w2) ∈ E(XTG0
).

Next we show that for such (w;w1;w2), it is in S(X) with probability Ω̃(1/n2). Consider the
event that (w;w1;w2) ∈ S(X), i.e.,

t1 = (v,w,w1), t2 = (u,w,w2), t1 ∈ X, t2 ∈ X,

(u,w2), (w,w2), (v,w1), (w,w1) ∈ E(X − t), (w, u), (w, v) /∈ E(X − t) .

Since E(X − t1 − t2) ⊃ E(XTG0
), (w,w1), (w,w2) ∈ E(X − t) always holds. First, t1, t2 ∈ X with

probability Θ(p′2), next consider the event conditioning on this. (w, v) and (w, u) are included in
at most n − 3 triangles, each being included with probability Θ(p′). So (w, v), (w, u) /∈ E(X − t)
with probability at least

IP((w, v), (w, u) /∈ E(X − t)|t1, t2 ∈ X) ≥ (1−Θ(p′))2n−6 = Θ(1).

Graph G is c-uniformly 2-star dense, so there are Θ(n) triangles contains (u,w2) and (v,w1) and
do not contain (w, v) or wu. By Lemma 6.1, conditioning on the all the events above, each triangle
is included in X with probability Θ(p′), so (u,w2), (v,w1) ∈ E(X − t) with probability Θ(n2p′2).
Therefore, the event (w;w1;w2) ∈ S(X) happens with probability Θ(n2p′4).

As for any w,

1

IE |Vuv(X)| · IE |WE(X)(u,w)| · IE |WE(X)(v,w)|
p2

p′2
= O

( 1

n7p′6

)

.

Lemma B.4 shows the following function is O(log2 n/(n7p′6))-Lipschitz with high probability.

f(X) ,
∑

(w;w1;w2)∈S(X)

1

IE |Vuv(X)| · IE |WE(X)(u,w)| · IE |WE(X)(v,w)|
p2

p′2
.
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Again by Corollary 9.4, f(X) concentrates around its mean with distance at mostO(log3 n/(n6p′11/2)))
with high probability.

Now combine this with (28), we get for any XTG0
satisfying condition in Lemma B.1, the

likelihood ratio

L(x) :=
IP(Kuv(X) = x|XTG0

)

IP(X = x|XTG0
)

concentrates as

|L(X)− IE f(X)| = O
( log3 n

n6p′11/2

)

+O
(

|S(X)| log n

n9p′15/2

)

,

which is O
(

log3 n
n6p′11/2

)

with high probability since |S(X)| = Θ(n7p′6) with high probability.

We can use Lemma 4.7 (which states that concentration implies concentration about the mean
for bounded random variables), as it is not hard to check that the likelihood ratio is always bounded
by Õ(n3). Hence, with high probability,

|L(X)− IEL(X)| = O
( log3 n

n6p′11/2

)

.

This completes the proof of (26), using that IEL(X) = 1 and Lemma 4.5. (26) then implies
Lemma 7.13 as stated before.

B.2 Proof of Lemma A.7

Recall that RIGP4(n, d, δ) is generated by sampling Mj ∼ Poisson(dpj) for j = 2, 4, 5, · · · , n where
pj =

(n
j

)

δj(1 − δ)n−j . And then add a j-clique uniformly for Mj times. Denote (M4, · · ·M12)

by ~M . The event that Mj > 0 for j > 12 happens with probability O(dn13δ13) ≪ 1, so we
can only consider the distribution conditioned on this event. By Poisson splitting, the addition
of 2-cliques is equivalent to the following. For each (i, j) ∈

([n]
2

)

, add edge (i, j) with probability

1− e−dp2/(n2) = 1− e−dδ2(1−δ)n−2
. This results in a Erdős-Rényi graph, G(n, 1− e−dδ2(1−δ)n−2

).
By Corollary A.4, and convexity of total variation distance,

dTV

(

RIGP4(n, d, δ), IE
~M
G(n, q( ~M )

)

= O(n−3/2 IE
~M
‖ ~M‖1) . (29)

where

1− q( ~M) = e−dδ2(1−δ)n−2
12
∏

j=4

(

1−
(

n− 2

j − 2

)(

n

j

)

)Mj

= e−dδ2(1−δ)n−2
12
∏

j=4

(

1− j(j − 1)

n(n− 1)

)Mj

is the edge density of RIGP4 conditioned on ~M . The right hand side of (29) is IE ~M ‖ ~M‖1 ≤
∑

j≥4 dpj = O(dn4δ4) ≪ 1 for d ≫ n5/2 and δ = Θ(
√

1/d).

Now it remains to show that IE ~M
G(n, q( ~M ) is close to Erdős-Rényi. Let q = 1−e−dδ2+(n−2)dδ3(1−δ)n−3

,
by Lemma A.5,

dTV(G(n, q), IE
~M
G(n, q( ~M )) = O(n IE

~M
|q − q( ~M)|) .
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SinceMj follows Poisson distribution, we have that with probability O(1/ log n), for any 4 ≤ j ≤ 12,

IEMj −
√

dpj log n ≤ Mj ≤ IEMj +
√

dpj log n .

For any ~M within the above range,

|q − q( ~M)| =
∣

∣

∣
e−dδ2+(n−2)dδ3(1−δ)n−3 − e−dδ2(1−δ)n−2

12
∏

j=4

(

1− j(j − 1)

n(n− 1)

)Mj
∣

∣

∣

= e−dδ2(1−δ)n−2
∣

∣

∣

n
∏

j=4

e
−(n−2

j−2)dδ
j (1−δ)n−j

12
∏

j=4

(

1− j(j − 1)

n(n− 1)

)IEMj

+O(
√

dp4 log n/n2)
∣

∣

∣

= o(n−1) .

Combining this with (29), we have

dTV(G(n, q),RIGP4(n, d, δ)) = o(1) .

B.3 Proof of Lemma 7.2

Consider IEG∼RGT(n,p,p′) IPA[e ∈ A(G + e)]. Fix any edge e inside S. The probability that reverse
transition A resamples e is bounded by O(np′) by Corollary 6.2 when G + e is c-uniformly 2-star
dense. And by Lemma 5.2, G ∼ RGT(n, p, p′) is p2/2 uniformly 2-star dense with high probability.
Overall, e gets resampled with probability O(np′), which means pe = 1−O(np′).

C Technical Lemmas

Lemma 5.4. Let G be a c-uniformly two-star dense graph with n vertices, u, v are vertices in G
and (u, v) /∈ G. There exists n0 > 0 such that for any n > n0, we can choose for every w /∈ {u, v}
a set W̄G(u,w) ⊂ WG(u,w) such that

• For every w 6∈ {u, v}, |W̄G(u,w)| = cn/3, and

• For every pair w1, w2 6∈ {u, v}, either w1 /∈ W̄G(u,w2) or w2 /∈ W̄G(u,w1).

Proof. We will use a random process to generate W̄G(u,w) for all w and argue the desired properties
is satisfied with non-zero probability. Consider the following process.

1. Start with W̄G(u,w) = ∅ for any w 6∈ {u, v}.

2. Loop through all pairs of different vertices w1, w2 /∈ {u, v} and do the following.
If w1 ∈ WG(u,w2) but w2 /∈ WG(u,w1), put w1 in W̄G(u,w2).
If w2 ∈ WG(u,w1) but w1 /∈ WG(u,w2), put w2 in W̄G(u,w2).
If w1 ∈ WG(u,w2) and w2 ∈ WG(u,w1), with 1/2 probability put w1 in W̄G(u,w2) and 1/2
probability put w2 in W̄G(u,w1).

3. If there exists w with W̄G(u,w) < cn/3, declare failure of the process. Otherwise, for all
w ∈ {u, v}, delete an arbitrary set of vertices in W̄G(u,w) so that it has size cn/3 after
deletion.
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It is clear that the second condition of the lemma is always satisfied through the process, and if
the algorithm does not fail in step 3, the first condition is also satisfied. It remains to prove that
the probability of failure is less than 1.

Consider a fixed vertex w /∈ {u, v} and the set W̄G(u,w) after step 2 of the algorithm. Since G
is c-uniformly 2-star dense, we know WG(u,w) ≥ c(n − 2). For each w′ ∈ WG(u,w), it is included
in W̄G(u,w) in step 2 either with probability 1 or with probability 1/2, independently. Therefore,
the size of W̄G(u,w) stochastically dominates Binomial(c(n−2), 1/2). And by Chernoff bound, this
is smaller than cn/3 with probability e−Ω(n). So by union bouding over all w, the probability of
failure of the algorithm is bounded by ne−Ω(n), which is smaller than 1 for sufficiently large n.

Lemma C.1. Sampling with replacement for Binomial(n, p) times and sampling without replace-
ment for Binomial(n, p) times have total variation distance at most p(1− p) + np2.

Proof. For sampling with replacement k times, the probability of having a collision is

1− n− 1

n
· n− 2

n
· · · n− k + 1

n
≤

∑k
j=1 j

n
≤ k2

n
.

Conditioned on not colliding, sampling with replacement has the same distribution as sampling
without replacement, so the total variation distance is bounded by IE[k2/n] where k ∼ Binomial(n, p).
The lemma follows from that the second moment of Binomial(n, p) is np(1− p) + n2p2.

Lemma C.2. Consider a distribution on {0, 1}X . Suppose S and S′ can be partitioned as S =
S1 ∪ S2 and S′ = S′

1 ∪ S′
2. Then

(i) IS→S′ ≤ IS1→S′ + IS2→S′,

(ii) IS→S′ ≤ IS→S′
1
+ IS→S′

2
,

(iii) IS→S′ ≤ ∑

x∈S,x∈S′ Ix→x′.

Proof. Suppose
IS→S′ = dTV(PxS′ |xa

S ,ω
, PxS′ |xb

S ,ω
) .

For the first statement, we can use the triangle inequality to upper bound the last display by

dTV(PxS′ |xa
S1

,xa
S2

,ω, PxS′ |xa
S1

,xb
S2

,ω) + dTV(PxS′ |xa
S1

,xb
S2

,ω, PxS′ |xb
S1

,xb
S2

,ω) ≤ IS2→S′ + IS1→S′ .

For the second statement, we will design a coupling (xaS′ , xbS′) between PxS′ |xa
S ,ω

and PxS′ |xb
S ,ω

so that IP[xaS′ 6= xbS′ ] is bounded by IS→S′
1
+ IS→S′

2
. First let (xaS′

1
, xbS′

1
) be an optimal coupling

between PxS′
1
|xa

S,ω
and PxS′

1
|xb

S ,ω
, so that

IP[xaS′
1
6= xbS′

1
] ≤ IS→S1 .

When xaS′
1
= xbS′

1
= xS′

1
, let the conditional distribution of (xaS′

2
, xbS′

2
) be the optimal coupling

between PxS′
2
|xS′

1
,xa

S ,ω
and PxS′

2
|xS′

1
,xb

S ,ω
, otherwise, couple (xaS′

2
, xbS′

2
) arbitrarily, so

IP[xaS′
2
6= xbS′

2
|xaS′

1
= xbS′

1
] ≤ IS→S2 .
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Therefore, we have

IP[xaS′ 6= xbS′ ] = IP[xaS′
1
6= xbS′

1
] + IP[xaS′

2
6= xbS′

2
|xaS′

1
= xbS′

1
] ≤ IS→S1 + IS→S2 .

The proof for IMS→S′ ≤ IMS→S′
1
+ IMS→S′

2
is identical, except ω is fixed to be empty. Finally, item (iv)

follows by repeatedly applying (i) and (ii).
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