
Why we couldn’t prove SETH hardness of the Closest Vector

Problem for even norms!

Divesh Aggarwal
CQT, National University of Singapore

dcsdiva@nus.edu.sg

Rajendra Kumar
Weizmann Institute of Science, Israel

rjndr2503@gmail.com

Abstract

Recent work [BGS17, ABGS21] has shown SETH hardness of CVP in the ℓp norm for any p
that is not an even integer. This result was shown by giving a Karp reduction from k-SAT on
n variables to CVP on a lattice of rank n. In this work, we show a barrier towards proving a
similar result for CVP in the ℓp norm where p is an even integer. We show that for any c > 0, if
for every k > 0, there exists an efficient reduction that maps a k-SAT instance on n variables to
a CVP instance for a lattice of rank at most nc in the Euclidean norm, then coNP ⊂ NP/Poly.
We prove a similar result for CVP for all even norms under a mild additional promise that the
ratio of the distance of the target from the lattice and the shortest non-zero vector in the lattice
is bounded by exp(nO(1)).

Furthermore, we show that for any c > 0, and any even integer p, if for every k > 0, there
exists an efficient reduction that maps a k-SAT instance on n variables to a SVPp instance for
a lattice of rank at most nc, then coNP ⊂ NP/Poly.1

While prior results have indicated that lattice problems in the ℓ2 norm (Euclidean norm)
are easier than lattice problems in other norms, this is the first result that shows a separation
between these problems.

We achieve this by using a result by Dell and van Melkebeek [DvM14] on the impossibility of
the existence of a reduction that compresses an arbitrary k-SAT instance into a string of length
O(nk−ε) for any ε > 0.

In addition to CVP, we also show that the same result holds for the Subset-Sum problem
using similar techniques.

1The result for SVP does not require any additional promise.

ar
X

iv
:2

21
1.

04
38

5v
2

 [
cs

.C
C

]
 2

5
N

ov
 2

02
3

Contents

1 Introduction 1
1.1 Lattice Problems . 1
1.2 Subset Sum Problem . 2
1.3 Instance Compression . 3
1.4 Our Results . 4
1.5 Our Techniques . 6
1.6 Comparison to previous works . 8
1.7 Other Conclusion and Open Questions. 8

2 Preliminaries 9
2.1 Lattice Problems . 10
2.2 LLL Algorithm . 10
2.3 k-SAT and Subset Sum . 11
2.4 Instance Compression . 11

3 CVP inner product, CVP multi vector product: variants of CVP 13

4 Instance compression for almost exact-CVP 14

5 Instance compression for all even norms 19
5.1 Instance compression for SVP . 23

6 Compression for exact-CVP in Even norms 24

7 Implication to SETH hardness of CVP 26

8 Barrier for SETH-hardness of Subset-Sum 29

A Proof of Theorem 2.13 33

i

1 Introduction

1.1 Lattice Problems

A lattice L is the set of integer linear combination of n linearly independent vectors b1, b2, · · · , bn ∈
Rm, i.e.

L(b1, b2, · · · , bn) :=


n∑

i=1

zibi : ∀i ∈ [n], zi ∈ Z

 .

We call n as the rank of the lattice, m as the dimension of the lattice and B = {b1, b2, · · · , bn} is
a basis of the lattice. There exist many different basis of a lattice.

The two most important computational problems on lattices are the Shortest Vector Problem
(SVP) and the Closest Vector Problem (CVP). In the Shortest Vector Problem, given a basis for a
lattice the goal is to output a shortest non-zero lattice vector. For γ > 1, in the γ-approximation
of SVP (γ-SVP) the goal is to output a nonzero lattice vector whose length is at most γ times the
length of shortest non-zero lattice vector. In the Closest Vector Problem, given a target vector and
basis for a lattice, the goal is to output a closest lattice vector to the target vector. For γ > 1, in
the γ-approximation of CVP, (γ-CVP) the goal is to output a lattice vector whose distance from
target vector is at most γ times the minimum distance between the target vector and lattice. In this
work, we only consider the length and distance in the ℓp norms, defined as follows. For 1 ≤ p < ∞

∥x∥p:=

 m∑
i=1

|xi|p
1/p

and for p = ∞,
∥x∥∞:=

m
max
i=1

{|xi|}.

We write SVPp and CVPp for the respective problems in ℓp norm. The most commonly used norm
is the ℓ2 norm which is also called the Euclidean norm. The CVP is known to be at least as hard
as SVP (in the same norm). More specifically, there is an efficient polynomial-time reduction from
SVPp to CVPp, which preserves the dimension, rank, and approximation factor [GMSS99].

Computational problems on lattices are particularly important due to their connection to lattice-
based cryptography. Most specifically, the security of many cryptosystems [Ajt96, MR04, Reg09,
Reg06, MR08, Gen09, BV14] is based on the hardness of polynomial approximation of lattice
problems. Other than the design of cryptosystems, from the 80’s the solvers for lattice problems
has its application in algorithmic number theory [LLL82], convex optimization [Kan87, FT87], and
cryptanalytic tools [Sha84, Bri84, LO85].

Algorithms for CVP have been extensively studied for a long time. Kannan gave an enumeration
algorithm [Kan87] for CVP that works for any norm and takes nO(n) time and requires poly(n)
space. Micciancio and Voulgaris gave a deterministic algorithm for CVP2 that takes 22n+o(n) time
and requires 2n+o(n) space. Aggarwal, Dadush, and Stephens-Davidowitz [ADS15] gave the current
fastest known algorithm for CVP2; it takes 2n+o(n) time and space. However, there is no progress
in solving exact CVPp in ℓp norm; still, Kannan’s algorithm is the fastest for exact CVPp for any
arbitrary p. For a small approximation of CVPp, Blomer and Seifert [BN09] gave an algorithm that
runs in 2O(m) time. Later, Dadush [Dad11] improved it by giving a 2O(n) time algorithm. For p = ∞,
Aggarwal and Mukhopadhyay [AM18] gave a 22m+o(m) time algorithm. Recently, Eisenbrand and

1

Venzin [EV22], gave an algorithm for a (large enough) constant-factor approximation of CVP for
any ℓp norm in 20.802m+o(m) time.

The CVP in any norm is NP-hard [vEB81]. It is also known to be NP-hard for almost polynomial
approximation nc/log logn for some constant c > 0[DKRS03, Din02]. All of these hardness results do
not say anything about the fine-grained hardness of lattice problems. In particular, it is not possible
to say anything about possibility/impossibility of a 2

√
n or a 2n/100 time algorithm for CVP. All

known cryptanalytic attacks on lattice-based cryptosystems proceed via solving near exact lattice
problems in a small dimensional lattice, and so, if one were to find an algorithm for CVP or SVP
that runs in, say, 2n/100-time, then it will break all lattice-based cryptosystems currently considered
to be practical. This immediately leads to the question whether such attacks can be ruled out by
giving appropriate lower bounds for lattice problems under reasonable assumptions.

Motivated by the above question, Bennett, Golovnev, and Stephens-Davidowitz [BGS17] initi-
ated the study of the fine-grained hardness of CVP and its variants. They showed that, for any con-
stant ε > 0 and p ̸∈ 2Z, if there exists an algorithm for CVPp that runs in time 2(1−ε)n then it refutes
the Strong Exponential Time Hypothesis (SETH). The authors additionally also showed that for any
p ≥ 1, there exists no algorithm for CVPp that runs in time 2o(n) under the Exponential Time Hy-
pothesis. Later, these results were extended to other lattice problems [AS18, AC21, BP20, BPT21].
Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz [ABGS21], improved the fine-grained hard-
ness of CVP and showed that even approximating CVPp to a factor slightly bigger than 1 is not
possible in time 2(1−ε)n under the Gap variant of the Strong Exponential Time Hypothesis. This
result was again only shown for p ̸∈ 2Z. This immediately leads to the question whether such a
hardness result is possible for p ∈ 2Z, or if there is a fundamental barrier that does not allow such
a result. This is particularly important/interesting for the Euclidean norm (i.e., p = 2) since the
security of lattice-based cryptosystems is typically based on the hardness of lattice problems in the
Euclidean norm. The authors [ABGS21] made a small progress towards answering this question by
proving that there are no “natural” reductions from k-SAT on n variables to CVP2 on a lattice of
rank at most 4n/3.2

Motivated by the fact that the computational problems in lattices run in time exponential in the
dimension of the lattice, [ACK+21] initiated the study of exponential time reductions (reductions
that run in time 2εm, for some small constant ε) between CVP and SVP in ℓp norms for different
p. The techniques used to obtain the results in this work were based on [EV20]. Together, these
results have shown that for large constant approximation factors, both CVPp and SVPp for any
p ≥ 1 are almost equivalent.

Unfortunately, our main result (almost) rules out the possibility of an efficient reduction from
k-SAT on n variables to CVPp for any even integer p with rank bounded by a fixed polynomial in n.
We achieve this result by proving that a CVPp instance for any even integer p can be compressed
to size that is roughly a fixed polynomial in the rank of the lattice, while k-SAT is only known to
be compressible in O(nk) bits.

1.2 Subset Sum Problem

Motivated by the difficulty in proving SETH hardness for CVP for even norms, we consider the
closely related but relatively simpler Subset Sum problem. The Subset Sum problem is among

2A reduction is said to be natural if there is a bijective mapping between the set of satisfying assignments, and
the set of closest vectors in the lattice.

2

the most fundamental computational problems described as follows. Given n positive integers
x1, . . . , xn, and a target value t, the goal is to decide whether there exists a subset of the n positive
integers that sums to t. The classical algorithms for this problem run in time O(tn) via dynamic
programming [Bel66], and in time 2n/2 · poly(log t, n) using meet-in-the-middle approach [HS74].
An important open question in the theory of exact exponential time algorithms for hard prob-
lems [Woe08] is whether any of these algorithms for Subset Sum can be improved.

It has been shown in [JLL16, BLT15] that under the Exponential Time Hypothesis, there is
no 2o(n) · to(1) algorithm for Subset Sum. In another line of work, it has been shown that there
is no O(t1−εpoly(n))-time algorithm under the Set cover conjecture [CDL+16], and also under
SETH [ABHS22].

This still leaves open the question whether one can rule out the possibility of a 2cn · poly(log t)-
time algorithm for Subset Sum for some fixed constant c < 1/2 under a reasonable conjecture such
as the Set Cover conjecture or SETH.

1.3 Instance Compression

Harnik and Naor [HN10] studied instance compression of NP decision problems. They focus on the
problem with long instances but relatively small witness sizes, and ask whether the instance size
can be reduced while preserving the information whether the input instance is in the language or
not. Moreover, a compressed instance may not be of the same problem. This compressed instance
can then be used to solve the problem in the future, maybe by using technological advances or
with some algorithmic improvement. A problem is said to be efficiently instance compressible if
there exists a compression in size polynomial in the witness size, and polylogarithmic in the length
of input size. They introduce new subclasses of NP depending on the compression size. They
also study the implication of compression in cryptography. If we can have instance compression of
problems like OR-SAT, we can use these compressions to get cryptographic primitives, for example,
collision-resistant hash functions.

It is easy to construct an efficient compression of a GapSAT instance when the gap is
(
1− 1

poly(n)

)
.

Create an instance of SAT by sampling a subset of clauses of poly(n) size from GapSAT instance
uniformly at random. This instance is satisfiable if GapSAT instance is satisfiable; otherwise, it is
unsatisfiable with high probability. Inspired by this compression, Harnik and Naor proposed the
following problem: “Can we have an efficient reduction from SAT to GapSAT for which the number
of variables in GapSAT depends only on the number of variables in the input SAT instance?” Note
that a positive answer to this question will give a succinct PCP for the SAT problem. Later, Fort-
now and Santhanam [FS11] gave a negative answer to the above question. More specifically, they
showed that we could not have an instance compression for SAT problem unless coNP ⊆ NP/Poly.
They also point out that it will imply an impossibility of instance compression for Clique, Domi-
nating set, and Integer Programming because of the known efficient reductions from SAT to these
problems.

However, above mentioned results do not say anything about the compression of the k-SAT
problem. It is easy to see that we can compress a k-SAT in Õ(nk) bits by removing the duplicate
clauses. Dell and van Melkebeek [DvM14] showed that this is almost the best possible compression
we can hope to get. They showed that, for any ε > 0, there is no compression algorithm that takes
as input an arbitrary k-SAT instance, and outputs an equivalent instance of size O(nk−ε) of some
language L′, unless coNP ⊆ NP/Poly.

3

Figure 1: [BGS17, ABGS21] gave a Karp reduction from k-SAT to CVPp for p ∈ [1,∞] \ 2Z.

Figure 2: [This work] For p ∈ 2Z+, it is impossible to get a polynomial-time Turing reduction from
k-SAT on n variables to CVPp on nc rank lattice unless coNP ⊂ NP/Poly.

These barriers for instance compression of SAT only holds for probabilistic polynomial time
reduction with no false negatives. Drucker [Dru15] introduced the notion of probabilistic instance
compression which allows bounded errors on both side and showed that there is no non-trivial
probabilistic instance compression for OR-3-SAT unless there are non-uniform, statistical zero-
knowledge proofs for all language in NP.

1.4 Our Results

We focus on the fine-grained hardness of CVP in the ℓp norm for p ∈ 2Z+. We say that a probabilistic
reduction does not have false negatives if, for any oracle call that is made with a YES instance, the
oracle responds YES with probability 1. We show the following impossibility result about reduction
from satisfiability problem:

Theorem 1.1 (Informal, see Theorems 7.1 and 7.2). For any even positive integer p and constant
c > 0, there exists a constant k0 such that for all k > k0, there is no polynomial time probabilistic
reduction without false negatives from k-SAT on n-variables to CVPp on O(nc) rank lattice that
make at most O(nc) calls to CVPp oracle, unless coNP is in NP/Poly.

For even p greater than 2, we need an additional promise on CVPp instance that the target’s
distance from the lattice is at most exp(nO(1)) factor large than the shortest non-zero vector in the
lattice. For SVPp for all even p, we show the barrier for exact-SVPp(without any additional promise
needed).

Our result says that for any even integer p and constant c > 0, it is not possible to get 2cn

SETH-hardness by a deterministic polynomial time Karp reduction from k-SAT to CVPp unless
the polynomial hierarchy collapses to the third level. We also rule out Turing reductions, which

4

Figure 3: [BGS17] gave exp(n) time reduction from k-SAT on n variables to CVPp instance of
O(n) rank lattice. It implies 2o(n)-hardness of CVPp under ETH. It is an open problem to show
2cn-hardness of CVPp for even p under SETH.

makes less than nk calls to CVPp oracle. These impossibility results also hold for a probabilistic
reduction, as long as the oracle does not output false negatives. This result, in particular, explains
why [BGS17, ABGS21] could not prove SETH-hardness of CVPp for even p. They showed SETH-
hardness of CVPp for non-even p by a Karp-reduction (shown in Figure 1) from k-SAT on n-variables
to CVPp on lattice of rank n. The above theorem says (under a complexity-theoretic assumption)
that there exists a constant k for which it is impossible to get a polynomial time-reduction Karp
reduction from k-SAT to CVPp on O(n) rank lattice for even p. On the contrary, our result does
not rule out all fine-grained polynomial-time reductions. For example, it does not mention the
possibility of Turing reductions, which make nk calls to CVPp oracle. Note that there also exists
a polynomial time reduction from k-SAT to CVPp on the lattice of rank nO(k), but this reduction
does not say anything about 2cn fine-grained hardness of CVP.

Notice that the above theorem does not say anything about the possibility of a super-polynomial
time reduction. We know that CVPp for any p ≥ 1 is 2o(n)-hard (shown in Figure 3) assuming the
Exponential Time Hypothesis [BGS17]. This reduction from k-SAT makes exponential number of
calls to the CVPp oracle.

If we believe that coNP is not contained in NP/poly, then we can only hope to get SETH-
hardness for CVPp for even p by a super-polynomial time reduction. Moreover, we give a barrier
for a specific class of super-polynomial time reductions. We generalize our result for a range of
different running times.

Theorem 1.2 (Informal, see Theorems 7.4 and 7.5). For any even positive integer p and constant
c > 0, there exists a constant k0 such that for all k > k0 and T , there is no T -time probabilistic
reduction with no false negatives from k-SAT on n-variables to CVPp on O(nc) rank lattice that

make at most O(nc) calls to a CVPp oracle, unless coNP is in NTIME(poly(n)·T)
Poly .

Notice that the above result shows a barrier for super-polynomial time-reductions that make
only polynomial number of calls to the CVPp oracle. We also study the barriers for probabilistic
polynomial time reductions. However, we are only able to show this barrier for a non-adaptive
reduction from k-SAT to CVPp for even p.

Theorem 1.3 (Informal, see Theorems 7.7 and 7.8). For any even positive integer p and constant
c > 0, there exists a constant k0 such that for all k > k0, there is no polynomial time probabilistic

5

non-adaptive reduction from k-SAT on n-variables to CVPp on O(nc) rank lattice that make at most
O(nc) calls to the CVPp oracle, unless there are non-uniform, statistical zero-knowledge proofs for
all languages in NP.

We also observe that we can conclude the (im)possibility of SETH-hardness of Subset-Sum to
get the following result.

Theorem 1.4 (Informal, see Theorem 8.2). For any constant c > 0, there exists a constant k0
such that for all k > k0, there is no polynomial time probabilistic reduction without false negatives
from k-SAT on n-variables to Subset-Sum on O(nc) numbers that make at most O(nc) calls to
Subset-Sum oracle, unless coNP is in NP/Poly.

1.5 Our Techniques

Instance compression of computational problems has interesting connection in fixed-parameter-
tractable algorithms [DF12, GN07] and Cryptography [HN10]. In this work, we initiate the study
of instance compression for lattice problems, and shows its consequences to SETH hardness.

Instance compression and Fine-grained hardness: We show a connection between the
SETH-hardness and Instance compression. Let’s say we are interested in fine-grained SETH-
hardness of problem A for which there exists a polynomial time algorithm that gives instance
compression of polynomial size. Note that, to show SETH-hardness we need efficient reduction
from k-SAT for all constant k. If there exists a fine-grained polynomial time reduction from k-SAT
to problem A then it will immediately give an algorithm for polynomial size compression (inde-
pendent of k) of k-SAT. However, Dell and van Melkebeek [DvM14] showed that there does not
exist any non-trivial compression for k-SAT problems unless the polynomial hierarchy collapses to
the third level. In other words, if a computational problem has a polynomial size compression
then it is impossible to get SETH-hardness by a polynomial time reduction unless the polynomial
hierarchy collapses to the third level. Moreover, [DvM14] gives the barrier for non-trivial oracle
communication protocol for k-SAT. Oracle communication protocol (Definition 2.11) can be seen
as a generalized notion of instance compression. Using the impossibility of oracle communication
protocol, we show a barrier for adaptive fine-grained reductions from k-SAT to a problem with
polynomial size compression.

We also give barriers for SETH hardness of instance compressible problem by bounded error
polynomial time probabilistic reduction. Drucker [Dru15] showed that it is impossible to get a
non-trivial probabilistic instance compression of k-SAT unless there are non-uniform, statistical
zero-knowledge proofs for all languages in NP. Using a similar argument as above, we show a
barrier for polynomial time probabilistic reduction from k-SAT to a problem that has a probabilistic
algorithm for instance compression. However, we don’t know any barrier for the probabilistic oracle
communication protocol, so we can only show a barrier for probabilistic non-adaptive fine-grained
reduction.

Moreover, our work suggests that all computational problems can be classified into two classes:
(i) problems that have a fixed polynomial size instance compression and (ii) problems for which
it is not possible to find such compression. It is impossible to get polynomial-time fine-grained
reductions from problems in (ii) class to problems in (i) by a polynomial time reduction.

6

Instance compression of CVP in even norm: We present a polynomial time algorithm that
gives O(np+3) bit-length instance compression for almost exact CVPp for even p on rank n lattice.
For this purpose, we introduce variants of CVPp; CVP

IP and CVPmvp. In CVPIP, given the inner
product of basis vectors and target vector, the goal is to find the coefficient of a closest lattice
vector to the target. This problem is well-defined from the fact that the euclidean distance between
any lattice point and target vector can be computed, given the inner products of basis vectors and
target, and coefficient of the lattice point in the underlying basis. So, there is also a trivial reduction
from CVP2 to CVPIP. CVPmvp is an extension of the CVPIP for ℓp norms when p is even. We show
a polynomial time algorithm that reduces arbitrary CVPp instance for even p to CVPIP/CVPmvp

p

instance of fixed polynomial size.
For simplicity, here we will only present a sketch of compression algorithm for Euclidean norm.

As mentioned above any CVP2 instance can be compressed by just storing the (n + 1)2 pairwise
(with repetitions) inner products of the basis vectors b1, . . . , bn, and the target vector t. The
instance compression for CVP would be immediate from this if all co-ordinates of the vectors are
bounded by 2n

c
for some constant c, since that would imply a compression of (exact) CVP to an

instance of CVPIP of size (n+1)2 log
(
m · 22nc

)
= (n+1)2(2nc + logm). In the following, we show

how to decrease all the co-ordinates of the CVP instance while still retaining information of whether
the instance is a YES/NO. For this, we need to consider approximate-CVP (with an approximation
factor very close to 1) rather than exact CVP.

First, we transform the basis and target vector such that the coefficients of the closest lattice
vector to the target vector are bounded by 2n

2
. To do this, we use the LLL algorithm [LLL82].

Next, we want to bound the distance from the closest lattice vector by 2n
2
. To achieve this, we

divide the lattice basis vectors and target vector by a carefully chosen large integer and ignore the
fractional part of the vectors. As long as we only allow lattice vectors with coefficients bounded by
2n

2
, we show that this truncation of lower-order bits does not introduce any other close vectors.

This implies that CVP reduces to a variant of CVP where the goal is to find a closest lattice vector
whose coefficient is bounded by 2n

2
, and the distance from target is also bounded by 2n

2
. This

step essentially uses the (small) gap between the Yes and NO instance3. Then, we reduce this to
an instance where the basis and target vector coordinates are bounded by 2n

2
. For this, we choose

a prime number significantly larger than the distance of the target from closest lattice vector and
reduce all coordinates of the basis and target vector modulo the prime. The randomness of the prime
is sufficient to guarantee that, with high probability, we do not introduce any new close vectors
with bounded coefficients. So, finally, we reduce CVP to a variant of CVP with all coordinates
bounded by O(n2). More specifically, we reduce it to the problem of finding closest lattice vector
with bounded coefficients. Now we reduce it to CVPIP by computing the inner products of basis
vectors and target.

We also demonstrate an another technique for instance compression for CVP2 by utilizing a
theorem from [FT87]. First, we apply a trivial reduction from CVP2 to CVPIP. Then, we employ
a result from the theorem in [FT87] as a black-box to reduce it into a CVPIP instance with inner
products bounded by 2O(n2). It’s worth noting that this instance compression technique is applicable
to exact-CVP2. Furthermore, this technique can be extended to any even norm but requires an
additional promise: that the distance of the target from the lattice is at most exp(nc) times the
length of the shortest non-zero lattice vector.

3Note that if the distance from target vector is bounded by 2n
2

then we get instance compression for exact-CVP2

7

1.6 Comparison to previous works

In literature, there are results [CGI+16, BGK+23, ABB+23] that show the barrier for getting
SETH-hardness of problems. In [CGI+16], authors propose Non-deterministic Strong Exponential
Time Hypothesis(NSETH), which states that for every ε > 0 there exists a k so that k-taut is not in
NTIME(2n(1−ε)), where k-taut is the language of all k-DNF which are tautologies. They gave faster
co-nondeterministic algorithms for 3-SUM, APSP and model checking of a large class of first-order
graph properties. They show that it is unlikely to get a fine-grained deterministic reduction from
k-SAT to these problems. If there is a fine-grained reduction then it implies that k-taut has faster
non-deterministic algorithm which contradicts NSETH.

In [BGK+23], the authors investigate the barriers to proving the SETH-hardness of Hamilto-
nian Path, Graph Coloring, Set Cover, Independent Set, Clique, Vertex Cover, and 3d-Matching.
Specifically, they show that if a fine-grained reduction exists from k-SAT to any of these problems,
it would imply new circuit lower bounds. In comparison to these results, our work focuses on rul-
ing out fine-grained reductions for lattice problems and Subset-Sum under weaker conditions than
those used in previous techniques. However, it should be noted that our conclusion is relatively
weaker, as we cannot rule out Fine-grained Turing reductions that make superpolynomial calls.

Recently, in [ABB+23], authors shows barriers for SETH-hardness of constant approximation of
CVP. This result does not say anything about SETH-hardness of near exact-CVP.

1.7 Other Conclusion and Open Questions.

There are several interesting observations that can be made about our main result in light of prior
work. In the following, let q be quantified over [1,∞) \ 2Z, and p be quantified over 2Z+.

• It was shown in [ABGS21] that for all q, (1 + ε)-approximate k-SAT on n variables can be
reduced to (1 + ε/poly(k))-CVPq on a rank n lattice. Notice that without loss of generality,
one may assume that the number of clauses of a k-SAT instance is at most O(nk), and thus
(1 + 1/nk)-approximate k-SAT is the same as k-SAT. This implies that, from our result, one
can conclude that there does not exist a poly(n)-time reduction from (1 + 1/poly(n))-CVPq

on a rank n lattice to CVP2 on a poly(n)-rank lattice for any q ∈ [1,∞) \ 2Z. Our result
provides evidence that shows that CVP2 might be easier than CVPq for q ∈ [1,∞) \ 2Z. This
conclusion can also be made with CVP2 replaced by CVPp, with a mild caveat that the CVPp

instance must satisfy the promise that the distance of the target from the lattice is at most
an exp(nO(1)) factor larger than the shortest non-zero vector in the lattice.

• This result should be contrasted with [RR06] which showed that, approximate CVP2 is re-
ducible to approximate CVPp with almost the same approximation factor, which also gave
evidence that CVP2 might be easier than CVPp in other ℓp norms.

Our work helps take further our understanding of the limitations of the fine-grained hardness
of CVP and SVP under the Strong Exponential Time Hypothesis. Some of the questions left open
by our work are as follows.

• One interesting question that emerges from our work is the following. Prior work has
shown that it is much easier to make algorithmic progress for CVP, SVP in the Euclidean
norm [MV13, ADRS15, ADS15], as opposed to the corresponding problems in other ℓp norms.

8

To our understanding, this was partially because our understanding of the Euclidean norm
is much better than that for other norms. This work suggests that perhaps computational
problems in the ℓ2 norm (and other even norms) are inherently easier, which suggests trying
to find faster algorithms for SVP,CVP in ℓp norms where p is an even integer.

• We need to introduce an additional promise on the CVPp instance for p > 2 for our compres-
sion algorithm to work. This doesn’t seem inherent, and is likely just a consequence of our
techniques. The problem of removing this restriction is left open.

• While our work rules out the possibility of poly(n)-time reduction from k-SAT to CVPp and
to the Subset-Sum problem, we do not rule out the possibility of such a reduction that makes
more than poly(n) calls to the oracle for the respective problems. Ruling out such a reduction
under a reasonable conjecture is a very interesting open question.

Organization: We give the preliminaries in Section 2. In Section 3, we propose the problems
CVPIP and CVPmvp. In Section 4, we give an instance compression algorithm for CVP in the
Euclidean norm. We extend this and give an instance compression algorithm for CVPp for even p
in Section 5. In Section 6, we present compression algorithm for exact-CVP in even norm. These
results are significantly better than previous two sections but uses a theorem from [FT87] as black-
box. We present the barriers for SETH-hardness of CVP in ℓp norms for even p in Section 7. We
show barrier for SETH hardness of Subset-Sum problem in Section 8.

2 Preliminaries

We use the notation R, Q and Z to denote the set of real numbers, rational numbers and integers
respectively. For any integer n > 0, we use [n] to denote the set {1, . . . , n}. For any integers
a, b(> a+1), we use [a, b] to denote the set {a+1, . . . , b−1}. We will use the boldfaced letters (for
example x) to denote a vector and, denote x’s coordinate by xi indices. We use bold capital letters
(for example B) to denote a matrix. We will use the notation ⌊a⌉ to denote the closest integer to
a, and ⌊a⌋ to denote the greatest integer less than equal to a. For any vector v, we will use the
notation ⌊v⌋ to denote the vector representing the floor of each coordinate of the vector. For any
p ∈ [1,∞), the ℓp norm on Rm is defined as follows:

∥x∥p:=

 m∑
i=1

|xi|p
1/p

,

and ℓ∞ norm is defined as
∥x∥∞= max{|xi|}.

We will use the following inequality between different ℓp norms,

for any p ≤ q, x ∈ Rm, ∥x∥q≤ ∥x∥p≤ m
1
p
− 1

q ∥x∥q.

We will usually drop the subscript and use ∥x∥ to denote ∥x∥2. We often shorthand p ∈ [1,∞)∪{∞}
by p ∈ [1,∞].

For any v1, . . . ,vi ∈ Rm, we denote by proj{v1,···,vi−1}⊥ vi, the vector formed by projecting vi

orthogonal to the subspace spanned by v1, · · · ,vi−1.

9

Lattices: Let B = {b1, · · · , bn} be a set of n linearly independent vectors from Rm for some
positive integers m,n with m ≥ n. The lattice L generated by basis B is defined as follows:

L(B) :=


n∑

i=1

zibi : zi ∈ Z

 .

Here n is called the rank of the lattice and, m is called the dimension of the lattice. Note that
a lattice has infinitely many bases. We often write the basis B as a matrix in Rm×n. For any

p ∈ [1,∞], we use λ
(p)
1 (L) to denote the length of a shortest non-zero vector in ℓp norm,

λ
(p)
1 (L) := min

{
∥v∥p: v ∈ L and v ̸= 0

}
.

For any vector t ∈ Rm, we use distp(L, t) to denote the distance in ℓp norm of the target vector
from the lattice L,

distp(L, t) := min
{
∥v − t∥p : v ∈ L

}
.

For the purpose of computational problems (and hence for the rest of the paper), we restrict
our attention to lattices with basis entries in Q.

2.1 Lattice Problems

In the following, we introduce lattice problems that we study in this paper.

Definition 2.1 (γ-GapCVPp). For any γ = γ(m,n) ≥ 1 and p ∈ [1,∞], the γ-GapCVPp (Closest
Vector Problem) is the decision problem defined as follows: Given a basis B ∈ Qm×n of lattice L, a
target vector t ∈ Qm and a number d > 0, the goal is to distinguish between a YES instance, where
distp(L, t) ≤ d and a NO instance, where distp(L, t) > γd.

Definition 2.2 (γ-GapCVPϕ
p). For any γ = γ(m,n) ≥ 1, p ∈ [1,∞] and a positive real-valued

function ϕ on lattice, the γ-GapCVPϕ
p (Closest Vector Problem) is the decision problem defined

as follows: Given a basis B ∈ Qm×n of lattice L, a target vector t ∈ Qm and a number d > 0
with the promise that distp(L, t) ≤ ϕ(L), the goal is to distinguish between a YES instance, where
distp(L, t) ≤ d and a NO instance, where distp(L, t) > γd.

Definition 2.3 (γ-GapSVPp). For any γ = γ(m,n) ≥ 1 and p ∈ [1,∞], the γ-GapSVPp (Shortest
Vector Problem) is the decision problem defined as follows: Given a basis B ∈ Qm×n of lattice L,
and a number d > 0, the goal is to distinguish between a YES instance, where λ

(p)
1 (L) ≤ d and a

NO instance, where λ
(p)
1 (L) > γd.

We omit the parameter γ if γ = 1 and the parameter p if p = 2.

2.2 LLL Algorithm

For any set of vectors B = {b1, · · · , bn} ∈ Qm×n, we define the Gram Schmidt Orthogonalization
(GSO) of B as b∗1, · · · , b∗n, where

b∗i := proj{b∗1,···,b∗i−1}⊥ bi.

10

and the Gram Schmidt coefficients as

µij :=
⟨bi, b∗j ⟩
∥b∗j∥2

.

Here {b∗1, · · · , b∗i−1}⊥ denotes the subspace of Rm which is orthogonal to space formed by b∗1, · · · , b∗i−1.

Theorem 2.4 ([LLL82]). For any positive integers m and n, there exists an algorithm that given
a basis C = {c1, · · · , cn} ∈ Qm×n of lattice L, outputs a basis B = {b1, · · · , bn} ∈ Qm×n of lattice
L whose GSO vectors and coefficients satisfy the following conditions:

1. ∀ n ≥ i > j ≥ 1, |µij |≤ 1
2 .

2. ∀ n ≥ i > 1, ∥b∗i ∥2≥ 1
2∥b

∗
i−1∥2.

3. ∥b1∥≤ 2n/2 · λ1(L).

We call the output basis as an LLL-reduced basis. The algorithm runs in time polynomial in the
size of the input basis.

2.3 k-SAT and Subset Sum

Definition 2.5 (k-SAT). For any positive integers k, n,m, given a CNF formula Ψ of m clauses
over n Boolean variables and each clause of Ψ contains at most k literals, the goal is to distinguish
between a YES instance, where there exists an assignment that satisfies Ψ and a NO instance, where
does not exist any satisfying assignment.

Impagliazzo and Paturi [IP01] gave the following two hypotheses about the hardness of k-SAT.
These two hypotheses are widely used to prove the fine-grained hardness of many computational
problems.

Definition 2.6 (Exponential Time Hypothesis (ETH)). The Exponential Time Hypothesis says the
following: for any k ≥ 3 there exists a constant ε > 0 such that k-SAT can not be solved in 2εn

time. In particular, 3-SAT can not be solved in 2o(n) time.

Definition 2.7 (Strong Exponential Time Hypothesis (SETH)). The Strong Exponential Time
Hypothesis says the following: for any constant ε > 0, there exists a constant k such that k-SAT
can not be solved in 2(1−ε)n time.

We also define the Subset-Sum problem.

Definition 2.8 (Subset-Sum). For any positive integer n > 0, given a set of integers S = {a1, · · · , an}
and target t, the goal is to decide whether there exists a subset of S, whose elements sums to t.

2.4 Instance Compression

In this work, we will use two variants of instance compression, probabilistic instance compression
with no false negative and probabilistic instance compression that allows both side error. We will
use instance compression for probabilistic instance compression with no false negative.

11

Definition 2.9 (Instance Compression). A decision problem P is (f, g, ξ) instance compressible
with soundness error bound ξ if there exists an f -time randomized reduction from any arbitrary
instance x of P to some instance x′ of size g of decision problem P ′ such that, if x is a YES
instance of P then x′ is a YES instance of P ′, and if x is a NO instance of P then x′ is a NO
instance of P ′ with probability at least 1− ξ. Here, f and g can be a functions of the witness size
and the bit length of x.

Definition 2.10 (Probabilistic Instance Compression). A decision problem P is (f, g, ξ) probabilis-
tic instance compressible with error bound ξ if there exists an f -time randomized reduction from
any arbitrary instance x of P to some instance x′ of size g of decision problem P ′ such that, if x
is a YES instance of P then x′ is a YES instance of P ′ with probability at least 1− ξ, and if x is a
NO instance of P then x′ is a NO instance of P ′ with probability at least 1− ξ. Here, f and g can
be a functions of the witness size and the bit length of x.

We use the definition of Oracle Communication protocol from [DvM14]. It can also be seen as
a generalization of instance compression.

Definition 2.11 (Oracle Communication protocol). An (f, g) oracle communication protocol for
a language L is a communication protocol between two players. The first player is given the input
x and has to run in time f : the second player is computationally unbounded but not given any
part of x. At the end of the protocol, the first player outputs YES or NO. It always outputs YES if
x ∈ L and outputs NO with probability atleast constant if x ̸∈ L. The cost of the protocol g is the
number of bits of communication from the first player to the second player. Again, f, g can be a
functions of the witness size and the bit length of x. The first player is allowed to use randomness
but the output by the first player is assumed to be a deterministic function of the communication
transcript.4

We will use the following theorem given by the Dell and van Melkebeek [DvM14] about the
sparsification of the Satisfiability problem.

Theorem 2.12. Let k ≥ 3 and ε > 0 a positive real. There is no oracle communication protocol
for k-SAT of cost O(nk−ε) that runs in time poly(n), unless coNP ⊆ NP/poly.

Our definition of Oracle communication protocol allows the first player to do randomized oper-
ations. The Dell and van Melkebeek’s proof still holds for this generalized definition. We generalize
the impossibility of oracle communication protocol for k-SAT within any time T .

Theorem 2.13. Let k ≥ 3 and ε > 0 a positive real. For any T = T (n) > 0, there is no
oracle communication protocol for k-SAT, of cost O(nk−ε) that runs in time T , unless coNP ⊆
NTIME(poly(n) · T)/poly.

We defer the proof of generalized theorem to Section A.
It is considered unlikely that coNP ⊆ NP/Poly, it also implies that polynomial hierarchy col-

lapses to third level.

Theorem 2.14 ([Yap83]). If coNP ⊆ NP/Poly, then polynomial hierarchy collapses to third level.

4We include randomness in our definition of the oracle communication protocol, since our instance compression
algorithms require randomness.

12

We will require the following results from [DvM14].

Lemma 2.15. [DvM14][Lemma 2] For any integer k ≥ 2, there is a polynomial time reduction
from OR(3-SAT) to k-Clique that maps t tuples of instances of bitlength n each to an instance of
O(n ·max(n, t1/k+o(1))) vertices.

Lemma 2.16. [DvM14][Lemma 5] For any k ≥ 3, there is a polynomial time reduction from k-
Vertex Cover to k-SAT that maps a k-uniform hypergraph on n vertices to k-CNF formula on O(n)
variables.

For the definitions of Hypergraph problems, k-Vertex Cover and k-Clique, we refer the reader
to the preliminaries section of [DvM14]. Note that there is a trivial reduction from k-Clique to
k-Vertex Cover, which also preserves the number of vertices.

3 CVP inner product, CVP multi vector product: variants of
CVP

We introduce the following new variant of the problems, γ-GapCVPIP, where the input lattice and
the target vectors are not given directly but as pairwise inner products. More precisely, the input
is αi,j ∈ Q for 1 ≤ j < i ≤ n, and βi ∈ Q for 1 ≤ i ≤ n+ 1 such that the corresponding lattice and
the target vector satisfies the following. For 1 ≤ j ≤ i ≤ n

αi,j = ⟨bi, bj⟩ ,

βi = ⟨bi, t⟩ ,

and
βn+1 = ⟨t, t⟩ .

Note that the square of the ℓ2 distance between any integer combinations of the basis vectors and
the target is an integer combination of αi,j ’s and βi’s.

For any p ∈ 2Z+, we extend the notion of inner product to multi vector product (mvp) defined
as follows:

∀v1,v2, · · · ,vp ∈ Rm, mvp(v1,v2, · · · ,vp) :=
m∑
i=1

 p∏
j=1

vij


We call these variants of the problems as γ-GapCVPmvp

p where the input lattice and the target
vector are not given directly but as (n+ 1)p multi vector products. Let bn+1 = t. Then, the input
is αi1,i2,···,ip for 1 ≤ i1 ≤ i2 · · · ≤ ip ≤ n + 1, such that the corresponding lattice and the target
vector satisfies the following. For 1 ≤ i1 ≤ i2 · · · ≤ ip ≤ n+ 1

αi1,i2,···,ip = mvp(bi1 , bi2 , · · · , bip) .

Lemma 3.1. For any p ∈ 2Z+, and vectors v1, · · · ,vn, for any a1, · · · , an ∈ Z, ∥a1v1+· · ·+anvn∥pp
can be computed in polynomial time given only a1, · · · , an, and mvp(vi1 , · · · ,vip) for all i1, · · · , ip ∈
[n].

13

Proof. From the definition of the ℓp norm, we get

∥a1v1 + · · ·+ anvn∥pp

=

m∑
i=1

|a1v1i + · · ·+ anvni|p (by ℓp norm definition)

=

m∑
i=1

(a1v1i + · · ·+ anvni)
p (because p is a positive even integer)

=

m∑
i=1

∑
(j1,···,jp)∈[n]p

(aj1vj1i) · (aj2vj2i) · · · (ajpvjpi)

=
m∑
i=1

∑
(j1,···,jp)∈[n]p

(aj1 · aj2 · · · ajp)(vj1i · vj2i · · · vjpi)

=
∑

(j1,···,jp)∈[n]p
(aj1 · aj2 · · · ajp)

m∑
i=1

(vj1i · vj2i · · · vjpi)

=
∑

(j1,···,jp)∈[n]p
(aj1 · aj2 · · · ajp) ·mvp(vj1 , · · · ,vjp) (by definition of mvp)

The lemma follows from the above equation.

Notice that the above lemma implies that for even p, pth power of the ℓp distance between
any integer combinations of the basis vectors and the target is an integer linear combination of
the (n + 1)p integers αi1,i2,···,ip ’s. Hence, for even p, we can efficiently reduce γ-GapCVPp to γ-
GapCVPmvp

p .
We define variants of CVPmvp

p , (r, q)-CVPmvp
p and r-CVPmvp

p .

Definition 3.2 ((r, q)-CVPmvp
p). For any positive integers q = q(m,n) and r = r(m,n), the (r, q)-

CVPmvp
p is the promise problem defined as follows: Given mvp form of a basis B ∈ Qm×n and a

target vector t ∈ Qm and a number d > 0, the goal is to distinguish between a ‘YES’ instance,
where ∃z ∈ [−r, r]n ∥B z − t∥pp mod q ≤ d and a ‘NO’ instance, where ∀z ∈ [−r, r]n, ∥B z − t∥pp
mod q > d.

When p = 2 we will also denote (r, q)-CVPmvp
p by (r, q)-CVPIP.

Definition 3.3 (r-CVPmvp). For any positive integer r = r(m,n), the (r)-CVPmvp is the promise
problem defined as follows: Given mvp form of a basis B ∈ Qm×n and a target vector t ∈ Qm and a
number d > 0, the goal is to distinguish between a ‘YES’ instance, where ∃z ∈ [−r, r]n ∥B z−t∥pp≤ d
and a ‘NO’ instance, where ∀z ∈ [−r, r]n, ∥B z − t∥pp> d.

When p = 2 we will also denote r-CVPmvp
p by r-CVPIP.

4 Instance compression for almost exact-CVP

In this section, we present an instance compression algorithm for CVP in the Euclidean norm. We
show that, for any c > 0, and for any ε ≥ 2−nc

, we can reduce an instance of (1 + ε)-GapCVP

14

with rank n, and dimension m to an instance of (r, q)-CVPIP, such that the size of the (r, q)-CVPIP

instance is ncε for some cε > 0. The reduction takes time polynomial in the input size.
In the following lemma, we show using Babai’s algorithm [Bab86] that without loss of generality,

we may assume that given a CVP instance (B, t), the coefficient vector of the vector closest to t
has all co-ordinates bounded by 2O(n2).

Lemma 4.1 (Bounding the coefficients of closest lattice vector). For any positive integers m,n,
there exists an algorithm that given a basis B ∈ Qm×n and target vector t ∈ Qm of total bitlength η
as input, outputs a basis C ∈ Qm×n, target vector t′ ∈ Qm such that t′ ∈ t+ L(B), L(C) = L(B),
the total bitlength of C, t′ is at most poly(η,m, n), and for any z ∈ Zn if

∥Cz − t′∥2 = dist2
(
L(C), t′

)
then

∥z∥∞< 2n
2
.

The algorithm runs in poly(η, n,m) time and requires poly(η, n,m) space. Furthermore, C is a
LLL-reduced basis of basis B.

Proof. The algorithm does the following. The algorithm runs the LLL algorithm (from Theorem 2.4)

on basis B, and gets an LLL reduced basis C =
[
c1 . . . cn

]
∈ Qm×n as output. Then the

algorithm computes the Gram-Schmidt Orthogonalization(GSO) of basis C as C∗ = [c∗1, . . . , c
∗
n].

The algorithm then computes xi =
⟨t,c∗

i ⟩
⟨c∗

i ,c∗
i ⟩

∈ Q for all i ∈ [n]. Finally, the algorithm computes

t′ = t−
n∑

i=1

wici, where wn = ⌊xn⌉, ∀i < n,wi =

xi + n∑
k=i+1

wkµki

 .

The algorithm then outputs C, t′.
The algorithm runs in poly(η, n,m) time and all vectors ci for 1 ≤ i ≤ n, and t′ can be

represented in poly(η, n,m) bits. For more details on the computation time of LLL basis, we refer
the reader to [Reg04]. We will now prove that t′ ∈ t + L(B) and the coefficients of the closest
vector in L(C) to t′ are bounded.

As C is an LLL reduced basis, from Theorem 2.4 we get the following conditions:

∀i ∈ [n− 1], ∥c∗i ∥2≤ 2∥c∗i+1∥2 (1)

and

∀i > j, |µi,j |≤
1

2
. (2)

Notice that we can represent the target vector t′ as t′ =
∑n

i=1 x
∗
i c

∗
i + c∗n+1, where c∗n+1 lies in a

vector space orthogonal to c∗1, . . . , c
∗
n in Rm. We emphasize here that c∗n+1 could be 0 if the target

vector lies in the linear span of the basis vectors. We note that the coefficients wi are chosen so
that, we get that ∀i ≤ n, x∗i ∈ (−1/2, 1/2]. Also, t− t′ ∈ L(C) as wi’s are integers, and

dist(L(B), t) = dist(L(C), t) = dist(L(C), t′) ≤ ∥t′∥ (3)

15

Let v =
n∑

i=1
zici be a closest lattice vector to target t′. We prove by induction on i that

|zn−i+1|≤ 2n·i. Without loss of generality, we assume c∗n+1 = 0. This does not change the closest
vector in the lattice since c∗n+1 is orthogonal to the lattice.

We first show that zn is bounded. To see this, note that

|zn − x∗n|∥c∗n∥≤ ∥v − t′∥2 ≤

1

4

n∑
i=1

∥c∗j∥2
1/2

≤ 1

2
∥c∗n∥(2n−1 + 2n−2 + · · ·+ 1)

< 2n−1∥c∗n∥ .

Thus, |zn|≤ 1
2+2n−1 < 2n, thereby proving the base case i = 1. We now assume that |zn−j+1|< 2n·j

for j ≤ i.
For any fixed zn, . . . , zn−i+1, we now bound |zn−i| corresponding to the vector v that minimizes

∥v − t′∥. Let u =
∑n

ℓ=n−i+1 zℓcℓ. For any vector x, let π(x) denote the projection of x in the
linear span of c∗1, . . . , c

∗
n−i. Note that the projection of v− t′ in the linear span of c∗n−i+1, . . . , c

∗
n is

the same as that of u− t′. Thus, ∥π(v − t′)∥≤ ∥π(u− t′)∥. This implies that∣∣∣∣∣∣∣∣
zn−i +

 n∑
ℓ=n−i+1

µn−i,ℓzℓ

− xn−i


∣∣∣∣∣∣∣∣
2

∥c∗n−i∥2 ≤ ∥π(v − t′)∥2

≤ ∥π(u− t′)∥2

≤
n−i∑
k=1

 n∑
ℓ=n−i+1

µℓ,kzℓ − xk

2

∥c∗k∥2

<

n−i∑
k=1

(
2n + 22n + · · ·+ 2in

2
+

1

2

)2

∥c∗k∥2

≤
n−i∑
k=1

(
2in
)2

∥c∗k∥2

≤
(
2in
)2

· (1 + 2 + · · ·+ 2n−i−1)∥c∗n−i∥2

≤
(
2in
)2

· 2n · ∥c∗n−i∥2 ,

using Equations (1) and (2).

16

Thus, by triangle inequality,

|zn−i| <
|zn|+ · · ·+ |zn−i+1|

2
+

1

2
+ 2in+n/2

<
2n + · · ·+ 2in

2
+

1

2
+ 2in+n/2

≤ 2in + 2in+n/2

≤ 2(i+1)n .

In the following theorem, we give an instance compression algorithm for CVP2. We also show
a instance compression with better parameters for CVP2 in Theorem 6.2 using a Theorem from
[FT87].

Theorem 4.2. For any positive integers m,n, and constant c1 ∈ R+, given a
(
1 + 2−nc1

)
-

GapCVP(B, t, d) instance where B ∈ Qm×n is a basis of a lattice L, target t ∈ Qm and d > 0.
The bit-length of the input is at most η. There exists a poly(n,m, η) time probabilistic algorithm
that reduces it to a (r, q)-CVPIP instance of size at most O(nc2 log2(n + m + T)) for constant
c2 = max{c1 + 3, 5}.

Furthermore, ‘YES’ instance always reduces to ‘YES’ instance and ‘NO’ instance reduces to ‘NO’
instance with at least 1− 2−n3

probability i.e. the reduction does not give false negative.

Proof. Let γ := 1 + 2−nc1 and r = 2n
2
. We are given a basis B ∈ Qm×n, target t ∈ Qm and a

distance d > 0 with a promise that either dist(B, t) > γd or dist(B, t) ≤ d. From Lemma 4.1, we
can assume that we are given a γ-GapCVP(C, t̃, d) instance such that t̃ ∈ t+ L(B), L(C) = L(B)
and for all z ∈ Zn, if

∥Cz − t̃∥= dist(C, t̃)

then
z ∈ [−r, r]n.

As C ∈ Qm×n and t̃ ∈ Qm, we can scale the basis vector to make all the coordinates integers
and it will not even increase the bit-representations. So, without loss of generality, we assume that
C ∈ Zm×n and t̃ ∈ Zm. Let c := max{c1 + 1, 3}. First, we reduce the problem to one where in
YES instance the distance of target from lattice is at most 24n

c
. Let n′ be an integer such that

2n
′+1 > d ≥ 2n

′
. Let’s assume that n′ > 4nc. Later, we will analyze the case when n′ ≤ 4nc.

We remove the n′ − 4nc least significant bits of basis vectors ci’s and target vector t̃. Consider
C′ = {c′1, . . . , c′n} and t′ be the vectors after removing the least significant bits i.e.

∀i ∈ [n], c′i =

⌊
1

2n′−4nc · ci
⌋

and t′ =

⌊
1

2n′−4nc · t̃
⌋
.

We define a new measure of distance from the target, where we only focus on the distance of
the target vector from the integer combination of basis vector whose coefficients are less than 2n

2
.

dist∗(C′, t′) := min
z∈[−r,r]n

{
∥C′z − t′∥

}
.

17

We know that closest lattice vector of target vector t̃ in lattice L(C) is of form v =
∑n

i=1 zici
where ∀i ≤ n, |zi|< r. Therefore, we get∣∣∣∣(2n′−4nc · dist∗(C′, t′)

)
− dist(L(C), t̃)

∣∣∣∣ ≤ max
z∈[−r,r]n

{∣∣∣(2r · ∥C′z − t′∥
)
− ∥Cz − t̃∥

∣∣∣}
≤ m · n · 2n′−4nc · 2n2

< 2n
′−2nc

.

From triangle inequality, we get, if dist(L(C), t̃) ≤ d then dist∗(C′, t′) ≤ d+2n
′−2nc

2n′−4nc ; otherwise

dist∗(C′, t′) is greater than γd−2n
′−2nc

2n′−4nc . Let d′ := d+2n
′−2nc

2n′−4nc ≤ 24n
c+1 and our choice of c implies

that
γd− 2n

′−2nc

d+ 2n′−2nc > 1 .

When n′ ≤ 4nc, we take C′ = C, t′ = t̃ and d′ = d < 2n
′+1 ≤ 24n

c+1. Hence we get basis
C′ ∈ Zm×n, target t′ ∈ Zm and number d′ < 24n

c+1 such that dist∗(C′, t′) ≤ d′ if dist(B, t) ≤ d,
otherwise dist∗(C′, t′) > d′.

Now, we reduce it to a CVP instance with explicit bound on coefficients. Let q be a prime

chosen uniformly at random from
[
210n

c+α, 220n
c+α
]
where α = log2(n+m+ η). Let

∀i ≤ n, hi := c′i mod q , H = {h1, · · · ,hn} and t′′ = t′ mod q

We will show that if dist∗(C′, t′) ≤ d′ then there exists a vector z ∈ [−r, r]n such that ∥Hz−t′′∥2
mod q ≤ (d′)2. Otherwise (when dist∗(C′, t′) > d′), for all z ∈ [−r, r]n, ∥Hz−t′′∥2 mod q > (d′)2.

First, let’s assume that dist∗(C′, t′) ≤ d′. Let z ∈ Zn be a vector such that ∥C′z − t′∥=
dist∗(C, t′) and ∥z∥∞< 2n

2
. From the definition of dist∗ there exist such a vector z. Therefore, we

get
∥∥H′z − (t′′ mod q)

∥∥2 mod q = ∥(C′z − t′)∥2 mod q ≤ (d′)2.
Now, let’s assume that dist∗(C′, t′) > d′ i.e. for all z ∈ [−r, r]n , ∥C′z − t′∥> d′. From

a lower bound on the prime number theorem [Lem] we have that number of primes in range
[210n

c+α, 220n
c+α] is at least

220n
c+α · log 2

2 · (20nc + α)
− 210n

c+α ≥ 219n
c+α/2 .

Also, for any fixed z ∈ [−r, r]n and w ≤ (d′)2,∣∣∣∣∣∣∣
∥∥∥∥∥∥

n∑
i=1

zic
′
i − t′

∥∥∥∥∥∥
p

p

− w

∣∣∣∣∣∣∣ ≤ m · (n+ 1) · 2r · 2δ + (d′)2 ≤ 2poly(n,m,η),

where
δ = max

{
log|c′11|, log|c′12|, · · · , log|c′mn|, log|t′1|, · · · , log|t′m|

}
≤ poly(n,m, η).

Hence, there are at most poly(n,m, η) distinct primes that divide
∣∣∥∑n

i=1 zic
′
i − t′∥pp−w

∣∣. Hence,
with probability, at most

poly(n,m, η)

219nc+α/2
≤ 2−19nc

,

18

the prime q is such that ∥C′z − t′∥pp−w = 0 mod q. Therefore, by union bound over all w ≤ (d′)2

and z ∈ [−r, r]n, for uniformly sampled prime q we get

Pr

[
min

∥z∥∞<2n2

{
∥(C′z − t′)∥2 mod q

}
≤ (d′)2

]
≤ 2(n

2)n · 24nc+1 · 2−19nc
< 2−13n3

. (4)

It implies that with overwhelming probability, for all z ∈ [−r, r]n, ∥Hz−t′′∥2 mod q = ∥C′z−t′∥2
mod q > (d′)2.

Now, we construct (r, q)-CVPIP instance of (H, t′′) by storing the inner products of basis H and
target t′′. We reduce the γ-GapCVP instance (B, t, d) to (r, q)-CVPIP, where given inner product
form of (H, t′′), integers d′′ = (d′)2, r and q, the goal is to distinguish between a YES instance where
there exists a z ∈ [−r, r]n for which ∥Hz − t′′∥2 mod q is at most d′′ and a NO instance where
for all vector z ∈ [−r, r]n, ∥Hz − t′′∥2 mod q is greater than d′′. Notice that, in this reduction we
don’t get false negative. The instance size is at most (n+1)2 · log

(
m · q2

)
= O(nc+2 log2(n+m+η))

bits because each coordinate of basis H and target t′′ is less than q. It completes the proof.

5 Instance compression for all even norms

In this section, we present an instance compression algorithm for CVPp for all even p. We show this
for any constant c > 0, (1 + exp(−nc)) approximation of CVPp problem with additional promise

that distance of the target from lattice is bounded by exp(nc) · λ(p)
1 . We will first show that, we

can bound the coefficient of the closest lattice vector by using this additional promise.

Lemma 5.1 (Bounding the coefficients of CVPϕ
p). For any m,n ∈ Z+, (efficiently computable)

τ = τ(m,n) > 0, and p ∈ [1,∞], there exists a randomized algorithm that given an instance of
CVPτλ1

p , basis B ∈ Qm×n and target vector t ∈ Qm of bitlength η as input, outputs a basis C ∈ Qm×n

and target vector t′ ∈ Qm such that L(C) = L(B), t − t′ ∈ L(B) and for all vector z ∈ Zn which
satisfies

∥Cz − t′∥p= distp(L(C), t′),

we have
∥z∥∞< τ ·m · 23n/2.

The algorithm runs in poly(η, n,m) time and requires poly(η, n,m) space.

Proof. We are given a basis B ∈ Qm×n and target vector t ∈ Qm which satisfy

distp(L(B), t) ≤ τλ
(p)
1

(
L(B)

)
(5)

The algorithm runs the LLL algorithm (from Theorem 2.4) on basis B, and gets an LLL reduced

basis C =
[
c1 . . . cn

]
∈ Qm×n as output. Then the algorithm computes Gram-Schmidt Orthog-

onalization (GSO) of basis C as C∗ = [c∗1, . . . , c
∗
n].

The algorithm then computes xi =
⟨t,c∗

i ⟩
⟨c∗

i ,c∗
i ⟩

∈ Q for all i ∈ [n]. Finally, the algorithm computes

t′ = t−
n∑

i=1

wici, where wn = ⌊xn⌉, ∀i < n,wi =

xi + n∑
k=i+1

wkµki

 .

19

The algorithm then outputs C, t′. The algorithm runs in poly(η, n,m) time and all vectors ci for
1 ≤ i ≤ n, and t′ can be represented in poly(η, n,m) bits. For more details on this, we refer the
reader to [Reg04]. We will now prove that distp(L(B), t) = distp(L(C, t′)) and the coefficients of
the closest lattice vector with respect to basis C to target t′ are bounded.

As C is a LLL reduced basis, from Theorem 2.4 we get the following conditions:

∀i ∈ [n− 1], ∥c∗i ∥2≤ 2∥c∗i+1∥2 (6)

and

ci = c∗i +
i−1∑
j=1

µijc
∗
j and ∀i > j, |µi,j |≤

1

2
. (7)

Notice that we can represent the target vector t′ as t′ =
∑n

i=1 x
∗
i c

∗
i + c∗n+1, where c∗n+1 lies in a

vector space orthogonal to c∗1, · · · , c∗n in Rm. We emphasize here that c∗n+1 could be 0 if the target
vector lies in the linear span of the basis vectors. We note that the coefficients wi are chosen so
that, we get that ∀i ≤ n, x∗i ∈ (−1/2, 1/2]. Also, t − t′ ∈ L(C) = L(B) as wi’s are integers, i.e.
distp

(
L(C), t′

)
= distp

(
L(B), t

)
.

Let L′ = L(C). As c1 is a non-zero lattice vector, we know that λ1(L′) ≤ ∥c1∥p. From
Equation 5, we get that

distp
(
L′, t′

)
≤ (1 + τ)λ

(p)
1

(
L′) ≤ τ · ∥c1∥p. (8)

Let v =
∑n

i=1 zici be a closest lattice vector to target vector t′ in ℓp norm. We prove by
induction on i that |zn−i+1|≤ τ · m · i · 2n/2+i. For interchanging between different ℓp norms, we
will be using the fact that for any u ∈ Rm and q ≥ p ≥ 1, ∥u∥p≤ m|1/p−1/q|∥u∥q. We rewrite
v =

∑n
i=1 yic

∗
i and get

∥∥v − t′
∥∥2
2
=

n∑
i=1

(yi − x∗i)
2∥c∗i ∥22+∥c∗n+1∥22≤ m

(
τ · ∥c1∥p

)2 ≤ m2
(
τ · ∥c1∥2

)2
, (9)

where second last inequality follows from Equation (8). Therefore we get

∀i ∈ [n], |yi|≤ τm · ∥c1∥2
∥c∗i ∥2

+
1

2
≤ τm · 2

i−1
2 +

1

2
≤ τm · 2n/2, (10)

using Equation (6). By using the fact that zn = yn we get |zn|< τm ·2n/2, thereby proving the base
case i = 1. We now assume that |zn−j+1|< τm · 2n/2+j for j < i. By using Equation (7), we get

|zn−i+1| ≤ |yn−i+1|+
∑

k>n−i+1

|µk,n−i+1 · zk|

≤ |yn−i+1|+
1

2

∑
k>n−i+1

|zk|

≤ τm · 2n/2 + τm2n/2

2
(2 + 22 + 23 + . . .+ 2i−1)

< τm · 2n/2+i.

Hence, the lemma follows.

20

Now, we show an instance compression algorithm for CVPp when p is an even integer. It follows
the proof technique of Theorem 4.2. For completeness, we also give a proof here. We also show
a instance compression with better parameters for CVPp in Theorem 6.3 using a Theorem from
[FT87].

Theorem 5.2. For any m,n ∈ Z+, p ∈ 2Z+ and constant c1 ∈ R+, given a
(
1 + 2−nc1

)
-

GapCVPϕ
p(B, t, d) instance where B ∈ Qm×n is basis of lattice L, target t ∈ Qm, d > 0 and

ϕ = 2n
c1 · λ(p)

1 . The bit-length of the input is at most η. There exists a poly(n,m, η) time random-
ized algorithm that reduces it to a (r, q)-CVPmvp

p instance of size O(p · np+c2 · log(n +m + η)) for
constant c2 = max{c1 + 2, 3}.

Furthermore, ‘YES’ instance always reduces to ‘YES’ instance and ‘NO’ instance reduces to ‘NO’
instance with at least 1− 2−nc2 probability i.e. the reduction does not give false negatives.

Proof. Let γ := 1 + 2−nc1 . We are given a basis B ∈ Qm×n, target t ∈ Qm and a distance d > 0
with a promise that either distp(B, t) ≤ d or distp(B, t) > γd. We are also given a guarantee that

distp(B, t) ≤ 2n
c1λ

(p)
1 (L(B)) = (γ− 1)−1λ

(p)
1 (L(B)). We first apply the algorithm from Lemma 5.1

with τ = 1
γ−1 , and get basis C ∈ Qm×n and target vector t̃ ∈ Qm which satisfies L(C) = L(B),

t̃− t ∈ L(B),
and for all vector z ∈ Zn which satisfies

∥Cz − t̃∥p= distp

(
L(C), t̃

)
,

we have

∥z∥∞<

(
1

γ − 1

)
·m · 23n/2 < 2n

c1+1
. (11)

As C ∈ Qm×n and t̃ ∈ Qm, we can scale the basis vector to make all the coordinates integers and
it will not even increase the bit-representations. So, without loss of generality, we assume that
C ∈ Zm×n and t̃ ∈ Zm. Let c := max{c1 + 1, 2}. We define a new measure of distance from the
target, where we only focus on the distance of the target vector from the integer combination of
basis vector whose coefficients are less than 2n

c
.

dist∗p(C, t̃) := min
z∈Zn and ∥z∥∞<2nc

{
∥Cz − t̃∥

}
.

Hence, if distp(B, t) ≤ d then dist∗p

(
C, t̃

)
≤ d, otherwise (when distp(B, t) > γd then)

dist∗p

(
C, t̃

)
> γd.

We first reduce the problem to one where the distance from the target is at most 24n
c
. Let n′

be an integer such that 2n
′+1 > d ≥ 2n

′
. Let’s assume that n′ > 4nc. Later, we will analyze the

case when n′ ≤ 4nc. We remove the n′− 4nc least significant bits of the entries of basis vectors and
target vector. Consider the basis C′ = {c′1, . . . , c′n} and t′ be the lattice and target vector after
removing the least significant bits i.e.

∀i ∈ [n], c′i =

⌊
1

2n′−4nc · ci
⌋

and t′ =

⌊
1

2n′−4nc · t̃
⌋
.

21

Therefore, we get∣∣∣∣(2n′−4nc · dist∗p(C′, t′)
)
− dist∗p(L(C), t̃)

∣∣∣∣ ≤ m · (n+ 1) · 2n′−4nc · 2nc
< 2n

′−2nc
.

Hence, if dist∗p(C, t̃) ≤ d then dist∗p(C
′, t′) ≤ d+2n

′−2nc

2n′−4nc , and when dist∗p(C, t̃) > γd then dist∗p(C
′, t′)

is greater than γd−2n
′−2nc

2n′−4nc . Let d′ := d+2n
′−2nc

2n′−4nc < 24n
c+2 and our choice of c implies that

γd− 2n
′−2nc

d+ 2n′−2nc ≥ 1 .

When n′ ≤ 4nc, we takeC′ = C, t′ = t̃ and d′ = d < 2n
′+1 ≤ 24n

c+1. Hence we get basisC′ ∈ Zm×n,
target t′ ∈ Zm and number d′ < 24n

c+2 such that if dist(B, t) ≤ d then dist∗p(C
′, t′) ≤ d′, and if

distp(B, t) > d then dist∗p(C
′, t′) > d′.

Now, we reduce to CVP instance with explicit bounds on basis and target vectors coordinate. Let

q be a prime chosen uniformly at random from
[
210n

c+1+α, 220n
c+1+α

]
, where α = log2(n+m+ η).

Let
∀i ≤ n, hi := c′i mod q , H = {h1, . . . ,hn} and t′′ = t′ mod q

Let r := 2n
c
. We will show that if dist∗p(C

′, t′) ≤ d′ then there exists a vector z ∈ [−r, r]n

such that ∥Hz − t′′∥pp mod q ≤ (d′)p. Otherwise (when dist∗p(C
′, t′) > d′), for all z ∈ [−r, r]n,

∥Hz − t′′∥pp mod q > (d′)p.
First, let’s assume that dist∗p(C, t′) ≤ d′. Let z ∈ Zn be a vector such that ∥C′z − t′∥=

dist∗p(C, t′) and ∥z∥∞< r. From the definition of dist∗p there exist such a vector z. Hence we get∥∥H′z − (t′′)
∥∥p
p

mod q = ∥(C′z − t′)∥pp mod q ≤ (d′)p.

Now, let’s assume that dist∗p(C, t′) > d′ i.e. for all z ∈ [−r, r]n , ∥C′z − t′∥p> d′. From
a lower bound on the prime number theorem [Lem] we know that number of primes in range
[210n

c+1+α, 220n
c+1+α] is at least

220n
c+1+α · log 2

2 · (20nc+1 + α)
− 210n

c+1+α ≥ 219n
c+1+α/2 .

Also, for any fixed z ∈ [−r, r]n and w ≤ (d′)p,∣∣∣∣∣∣∥
n∑

i=1

zic
′
i − t′∥pp−w

∣∣∣∣∣∣ ≤ m · (n+ 1) · 2r · 2δ + (d′)p ≤ 2poly(n,m,T),

where
δ = max

{
log|c′11|, log|c′12|, . . . , log|c′mn|, log|t′1|, . . . , log|t′m|

}
is bounded by poly(n,m, η). Hence, there are at most poly(n,m, η) distinct primes that divide∣∣∥∑n

i=1 zic
′
i − t′∥pp−w

∣∣. Hence, with probability, at most

poly(n,m, η)

219nc+1+α/2
≤ 2−19nc+1

,

the prime p is such that ∥C′z − t′∥pp−w = 0 mod p.

22

Therefore, by union bound over all z ∈ [−r, r]n and w ≤ (d′)p, we get for uniformly sampled q,

Pr

[
min

∥z∥∞<2nc

{
∥(C′z − t′)∥pp mod q

}
≤ (d′)p

]
≤ 2(n

c)n · 2(4nc+2)p · 2−19nc+1
< 2−13nc+1

.

Last inequality uses the assumption that p = o(n). It implies that with overwhelming probability,
for all z ∈ [−r, r]n, ∥Hz − t′′∥pp mod q = ∥C′z − t′∥pp mod q > (d′)p

Now, we construct a (r, q)-CVPmvp
p instance of (H, t′′) by storing mvp form of basis H and

target t′′. Therefore, we get a randomized reduction from the γ-GapCVPϕ
p instance (B, t, d) to

(r, q)-CVPmvp
p , where a YES instance of γ-GapCVP always reduces to a YES instance and a NO

instance of γ-GapCVPϕ reduces to a NO instance with probability 1 − 2(13n
c+1). In (r, q)-CVPmvp

p ,
given mvp form of (H, t′′), with integers d′′ = (d′)p, r and q, the goal is to distinguish between a
YES instance where there exists a z ∈ [−r, r]n for which ∥Hz − t′′∥pp mod q is at most d′′ and a
NO instance where for all vector z ∈ [−r, r]n, ∥Hz − t′′∥pp mod q is greater than d′′. The instance
size is at most (n+ 1)p · log (m · qp) = O

(
p · np+c+1 log(n+m+ η)

)
.

It completes the proof.

5.1 Instance compression for SVP

We show a instance compression algorithm for SVPp for even p. For SVP we don’t require any
additional promise. For this, we will use a reduction from γ-SVPp to γ-CVPp from [GMSS99].

Theorem 5.3. For any m,n ∈ Z+, p ∈ 2Z+ and constant c1 ≥ 1, given a
(
1 + 2−nc1

)
-GapSVPp(B, d)

instance where B ∈ Qm×n is basis of lattice L, and d > 0. The bit-length of the input is at most η.
There exists a poly(n,m, η) time randomized algorithm that reduces it to a OR of n (r, q)-CVPmvp

p

instances of size O(p · np+c2 · log(n+m+ η)) for constant c2 = max{c1 + 2, 3}.
Furthermore, ‘YES’ instance always reduces to ‘YES’ instance and ‘NO’ instance reduces to ‘NO’

instance with at least 1− exp(−n) probability.

Proof. From Theorem 5.2, we known an instance compression algorithm for
(
1 + 2−nc1

)
-GapCVPϕ

p(B
′, d)

where ϕ = 2n
c1λ

(p)
1 (L(B′)). We will use the reduction from [GMSS99] and show that it reduces to

OR of n instances of
(
1 + 2−nc1

)
-GapCVPϕ

p(B
′, d). It is a YES instance of γ-GapSVP if and only

if at least one instance of γ-GapCVPϕ is a YES instance. It is enough to just store n compressed
CVPmvp

p instances.
Without loss of generality assume that B is a LLL reduced basis. Let Bi = [b1, . . . , 2bi, . . . bn]

and ti = bi. We will show that (Bi, ti, d) is a valid instance of GapCVPϕ
p where ϕ ≥ m

√
n ·23n/4λ(p)

1 .

Notice that for all i ∈ [n] and z ∈ Zn, Biz− ti ∈ L\{0} and λ
(p)
1 (L(Bi)) ≥ λ

(p)
1 (L(B)). Therefore,

it is enough to show that distp(L(Bi), ti) ≤ ∥bi∥p≤ 2n
c1λ1(L). From Theorem 2.4, we get that

∥b1∥2≤ 2n/2λ2
1(L), bi =

∑i
j=1 µijb

∗
j ,and ∀n ≥ i > j ≥ 1, ∥µij∥≤ 1/2 and ∥b∗i ∥22≥ 1/2 · ∥b∗i−1∥22.

23

Therefore, we get

∥bi∥2p≤ m · ∥bi∥22≤ m

 i∑
j=1

∥µij∥2∥b∗j∥22

 ≤ m ·

 i∑
j=1

∥b∗j∥22

 ≤ m · i · 2i/2 · ∥b1∥22

≤ mn · 23n/2
(
λ
(2)
1 (L)

)2
≤ m2n · 23n/2

(
λ
(p)
1 (L)

)2
.

Hence (Bi, ti, d) is a valid instance of GapCVPϕ
p where ϕ ≥ m

√
n · 23n/4λ(p)

1 .
Now we show that if λ1(L) ≤ d then there exist an i ∈ [n] for which distp(L(Bi), ti) ≤ d. Let

v =
∑

zibi be a shortest non-zero lattice vector in ℓp norm. We use the fact the fact that there exists
an index j such that zj is odd integer. Otherwise v/2 is also a lattice vector which contradicts the
assumption that v is shortest lattice vector. Therefore, we get that distp(L(Bj), tj) = λ1(L) ≤ d.
For other direction, if λ1(L) > γd then for all i, distp(L(Bi), ti) > γd. It directly follows from the
fact that for all x ∈ Zn, Bi x− ti ∈ L\{0}. We use Theorem 5.2 and store n instances of a variant
of CVPmvp

p . It completes the proof.

6 Compression for exact-CVP in Even norms

We will use the following theorem from [FT87].

Theorem 6.1. [FT87][Theorem 3] For any positive integers m,N , given set of integers Σ =
{a1, . . . , am} there exists a polynomial time algorithm that outputs Σ′ = {a′1, . . . , a′m} where ∀i ∈
[m],|a′i|≤ 24m

3
Nm(m+2) and satisfy the following: for all z ∈ Zm, if ∥z∥1≤ N − 1 then

sign

 m∑
i=1

ziai

 = sign

 m∑
i=1

zia
′
i

 .

Now, we will show a deterministic compression for exact-CVP.

Theorem 6.2. For any positive integers m,n, given a CVP(B, t, d) instance of bitlength η where
B ∈ Zm×n is a basis of a lattice L, target t ∈ Zm and d > 0. There exists a poly(n,m, η) time
algorithm that reduces it to a 2n

2
-CVPIP instance of size O(n8) bits.

Proof. We are given a basis B ∈ Zm×n, target t ∈ Zm and a distance d > 0. Without loss of
generality, by applying Lemma 4.1, we can assume that for any z ∈ Zn,

∥B z − t∥= dist(B, t) =⇒ z ∈
[
−2n

2
, 2n

2
]n

. (12)

Let ∀i, j ∈ [n], αi,j := ⟨bi, bj⟩ and βi := −⟨bi, t⟩, βn+1 := ⟨t, t⟩. It is easy to see that for all
z ∈ Zn,

∥B z − t∥22=
n∑

i=1

 n∑
j=1

(zi · zj)αi,j + ziβi

+ βn+1.

24

Notice that this expression is linear in variables {z1z1, z1z2, . . . , znzn, z1, . . . , zn} ∈ Zn2+n and from
Equation (12) we are only interested in the evaluation of above expression when each component
of this vector has absolute value at most 22n

2
.

Now we will apply the deterministic compression algorithm from [FT87]. Let

Σ = {αi,j , βi, βn+1, d|∀i, j ∈ [n]} ∈ Zn2+n+2 and N = (n2 + n+ 2)22n
2
+ 1 .

By using Theorem 6.1, we get Σ′ = {α′
i,j , β

′
i, β

′
n+1, d

′|∀i, j ∈ [n], } ∈
[
27n

6
]n2+n+2

which satisfies,

for any z ∈ [−2n
2
, 2n

2
]n,

n∑
i=1

 n∑
j=1

(zi · zj)αi,j + ziβi

+ βn+1 ≤ d

if and only if
n∑

i=1

 n∑
j=1

(zi · zj)α′
i,j + ziβ

′
i

+ β′
n+1 ≤ d′.

Hence it reduces to 2n
2
-CVPIP instance with input as inner products ∀i, j ∈ [n], α′

i,j , β
′
i, βn+1 and

number d′. It is also easy to compute that instance size is O(n8) bits.

We also generalize this result to compression of CVPp instance for even integer p. It requires an
additional condition that the distance from the lattice is bounded by some factor times the length
of shortest non-zero lattice vector.

Theorem 6.3. For any m,n ∈ Z+, p ∈ 2Z+ and constant c1 ∈ R+, given a CVPϕ
p(B, t, d) instance

where B ∈ Qm×n is basis of lattice L, target t ∈ Qm, d > 0 and ϕ = 2n
c1 · λ(p)

1 . The bit-length of
the input is at most η. There exists a poly(n,m, η) time algorithm that reduces it to a τ -CVPmvp

p

instance of size O(n4p + n3p(nc1 + logm)) where τ = 2n
c1 ·m · 23n/2.

Proof. We are given a basis B ∈ Zm×n, target t ∈ Zm and a distance d > 0. Without loss of
generality, by applying Lemma 5.1, we can assume that for any z ∈ Zn,

∥B z − t∥= dist(B, t) =⇒ z ∈ [−τ, τ]n , (13)

where τ = 2n
c
1 ·m · 23n/2. Let bn+1 = t, ∀(i1, . . . , ip) ∈ [n+ 1]p

mvp(i1, . . . , ip) =
m∑
k=1

 p∏
j=1

bkj

 .

From Lemma 3.1, we get that for all z ∈ Zn,

∥B z − t∥pp=
∑

(j1,...,jp)∈[n+1]p

(zj1 · · · zjp)mvp(j1, . . . , jp),

where zn+1 = −1. Notice that this expression is linear in variables {∀(j1, . . . , jp) ∈ [n+1]p, zj1 . . . zjp} ∈
Z(n+1)p and from Equation (13) we are only interested in the evaluation of above expression when
each coordinate of coefficient vector has absolute value at most τp i.e. (zj1 · · · zjp) ≤ τp.

25

Now we will apply the deterministic compression algorithm from [FT87]. Let

Σ = {mvp(j1, . . . , jp), d|∀(j1, . . . , jp) ∈ [n+ 1]p} ∈ Z(n+1)p+1 and N = ((n+ 1)p + 1) · τp + 1 .

Let M = 24((n+1)p+1)3 ·N ((n+1)p+1)((n+1)p+3). By using Theorem 6.1, we get

Σ′ = {αi1,...,ip , d
′|∀(i1, . . . , ip) ∈ [n+ 1]p} ∈ [M](n+1)p+1

which satisfies, for any z ∈ [−τ, τ]n, zn+1 = −1,∑
(j1,...,jp)∈[n+1]p

(zj1 · · · zjp)mvp(j1, . . . , jp) ≤ d

if and only if ∑
(j1,...,jp)∈[n+1]p

(zj1 · · · zjp)αj1,...,jp ≤ d′.

Hence it reduces to τ -CVPmvp
p instance with input as multi-vector products ∀(j1, . . . , jp) ∈ [n+1]p,

αj1,...,jp and number d′. It is also easy to compute that instance size is (logM) · ((n + 1)p + 1) =
O(n4p + n3p(nc1 + logm)) bits.

Corollary 6.4. For any m,n ∈ Z+, p ∈ 2Z+ and constant c1 ≥ 1, given a SVPp(B, d) instance
where B ∈ Qm×n is basis of lattice L, and d > 0. The bit-length of the input is at most η.
There exists a poly(n,m, η) time algorithm that reduces it to a OR of n τ -CVPmvp

p instances of size

O(n4p + n3p(n+ logm) where τ = m2√n29n/4.

Proof exactly follows the arguments of Theorem 5.3 and uses Theorem 6.3.

7 Implication to SETH hardness of CVP

In this section, we show that it is not possible to get a polynomial time Turing reduction from
k-SAT to CVP2 instance of nc rank lattice unless polynomial hierarchy collapses to third level.
We also generalize this result for CVPp (distance guarantee) for even p. We extend this result
for exponential time reduction with the restriction that reduction will only make fixed polynomial
number of calls to CVPp oracle. We also give barriers for randomized polynomial time reductions.
However, we are only able to show it for non-adaptive reductions.

Theorem 7.1. For any constants c, c1 > 0, there exists a constant k0 such that for any k > k0
there does not exists a polynomial time probabilistic reduction with no false negatives from k-SAT
on n-variables to CVP2 on nc1 rank lattice that makes at most nc calls to CVP2 oracle, unless
coNP ⊆ NP/Poly.

Proof. Given a CVP2 instance of nc1 rank lattice, by Theorem 6.2, we get a compressed instance
of CVPIP of size Õ(n8c1). Let k0 = c + 8c1. Let’s assume that for some k > k0 there exist a
polynomial time probabilistic reduction without false negative from k-SAT on n-variables to CVP2

on nc1 rank lattice and it makes at most nc calls to CVP2 oracle. The reduction can also be seen as
an oracle communication protocol for k-SAT where for each call to CVP2 instance, first player send

26

the compressed instance to second play (which is computationally unbounded). From definition
of oracle communication protocol, the cost of this protocol is at most nc · Õ(n8c1). Therefore, by
Theorem 2.12, we get coNP ⊂ NP/Poly as k > k0 = c+ 8c1.

Notice that, the above arguments holds for adaptive reduction for k-SAT to CVP2. This com-
pletes the proof.

We also get the similar result for CVPp for all even positive integer p.

Theorem 7.2. For any constants c, c1, c2 > 0 and p ∈ 2Z+, there exists a constant k0 such that for
any k > k0 there does not exists a polynomial time probabilistic reduction with no false negatives

from k-SAT on n-variables to CVPϕ
p on nc2 rank lattice where ϕ = 2n

c1 · λ(p)
1 , that makes at most

nc calls to CV P ϕ
p oracle, unless coNP ⊆ NP/Poly.

Proof. Given a CVPϕ
p instance of nc2 rank lattice, by Theorem 6.3, we get a compressed instance of

CVPmvp of size Õ(nc3) where c3 = c2 ·max{4p, 3p+ c1}. Let k0 = c+ c3. Let’s assume there exist a
polynomial time probabilistic reduction without false negative from k-SAT on n-variables to CVPϕ

p

on nc2 rank lattice and it makes at most nc calls to CVPϕ
p oracle. The reduction can also be seen as

an oracle communication protocol for k-SAT where for each call to CVPϕ
p instance, first player send

the compressed instance to second play (which is computationally unbounded). From definition
of oracle communication protocol, the cost of this protocol is at most nc · Õ(nc3). Therefore, by
Theorem 2.12, we get coNP ⊂ NP/Poly as k > k0 = c+ c3.

Notice that, the above arguments also holds for adaptive reduction for k-SAT to CVPϕ
p . This

completes the proof.

For SVPp, we get the following result.

Theorem 7.3. For any constants c, c1 > 0 and p ∈ 2Z+, there exists a constant k0 such that for
any k > k0 there does not exists a polynomial time probabilistic reduction with no false negatives
from k-SAT on n-variables to SVPp on nc1 rank lattice that makes at most nc calls to SVPp oracle,
unless coNP ⊆ NP/Poly.

Proof directly follows from Corollary 6.4 and Theorem 2.12; it follows the same arguments as
above.

We extend these barrier for exponential time reduction. Specifically, we get the following results.

Theorem 7.4. For any constants c, c1 > 0, there exists a constant k0 such that for any k > k0
and T > 0, there does not exists a probabilistic reduction without false negative from k-SAT on
n-variables to CVP2 on nc1 rank lattice, in time T and reduction makes at most nc calls to CVP2

oracle, unless coNP ⊆ NTIME(T ·poly)
Poly .

Proof follows directly from Theorem 2.13 and Theorem 6.2; it follows the same arguments as
Theorem 7.1.

By Theorem 6.3, we also get following result for ℓp norms for all positive even integer p.

Theorem 7.5. For any constants c, c1, c2 > 0 and p ∈ 2Z+, there exists a constant k0 such that for
any k > k0 and T > 0, there does not exists a probabilistic reduction with no false negatives from

k-SAT on n-variables to CVPϕ
p on nc2 rank lattice where ϕ = 2n

c1 · λ(p)
1 , in time T and reduction

makes at most nc calls to CVPϕ
p oracle, unless coNP ⊆ NTIME(T ·poly)

Poly .

27

We also give a barrier for randomized polynomial time reduction with both side error from
k-SAT to CVP in even norm. We are only able to show this barrier for non-adaptive reductions.
We require the following result from [Dru15].

Theorem 7.6. [Dru15][Theorem 7.1] Let L be any language and t1 = t1(n), t2 = t − 2(n) > 0.
Suppose that there exists a probabilistic polynomial time instance compression of OR(L) such that it
reduces problem of OR of t1 instances of L of length n to instance of some language L′ of bitlength
t2 with error bound ε(n) < 1/2. Let

δ = min

{√
ln 2

2
· t2 + 1

t1
, 1− 2

− t2
t1

−3

}
If for some constant c > 0, we have

(1− 2ε(n))2 − δ ≥ 1

nc

then there is a Karp reduction from L to a problem in SZK. The reduction is computable in non-
uniform polynomial time; in particular this implies L ∈ NP/Poly ∩ coNP/Poly

Theorem 7.7. For any constants c, c1 > 0, there exists a constant k0 such that for any k > k0 there
does not exists a (non-adaptive) randomized polynomial time reduction from k-SAT on n-variables
to CVP2 on nc1 rank lattice with constant error bound and reduction make at most nc calls to CVP2

oracle, unless there are non-uniform, statistical zero-knowledge proofs for all languages in NP.

Proof. Let c2 := 8c1 and k0 = c + c2. Let’s assume that there exists a non-adaptive randomized
polynomial time reduction from k-SAT on n-variables to CVP2 on nc1 rank lattice with constant
error bound and the reduction make at most nc calls to CVP2 oracle. Using Theorem 6.2, for CVP2

on nc1 rank lattice, we get instance compression of size Õ(nc2). As the reduction from k-SAT to
CVP2 is non-adaptive, in polynomial time we can identify the CVP2 instances to which reduction
will make oracle calls. Therefore, by storing corresponding compressed CVP2 instances, we get
probabilistic instance compression of k-SAT of size Õ(nc+c2) = O(nk0).

Now, from Lemma 2.16, we get an instance compression for k-Vertex cover of O(nk0) size.
Notice that, by a trivial reduction between k-Vertex cover and k-Clique, we also get O(nk0) bit-size
instance compression for k-Clique. Therefore, by Lemma 2.15, there is an instance compression

for OR(3-SAT) of bitlength O
((

n ·max{n, t1/k+o(1)}
)k0)

. As k0 is a constant less than k, if we

take t as sufficiently large polynomial in n we get a O(t log t) bitlength instance compression of
OR(3-SAT) with constant error bound. Notice that this sequence of reductions are deterministic
and preserves the error bound. Therefore, by Theorem 7.6, we get a non-uniform polynomial time
Karp reduction from 3-SAT to a problem in SZK. Hence, it implies that there are non-uniform,
statistical zero-knowledge proofs for all languages in NP. It completes the proof.

By Theorem 6.3 and following same arguments as above we get the following result for CVPp

for all even positive integers p.

Theorem 7.8. For any constants c, c1, c2 > 0, there exists a constant k0 such that for any k > k0
there does not exists a (non-adaptive) randomized polynomial time reduction from k-SAT on n-

variables to CVPϕ
p on nc2 rank lattice with constant error bound where ϕ = 2n

c1λ
(p)
1 ,and reduction

28

make at most nc calls to CVPϕ
p oracle, unless there are non-uniform, statistical zero-knowledge

proofs for all languages in NP.

Remark 1. Note that, in this paper, all the barriers for reduction from k-SAT to CVPϕ
p also holds

for reduction from k-SAT to SVPp because of an efficient reduction from SVPp to CVPϕ
p [GMSS99].

8 Barrier for SETH-hardness of Subset-Sum

Subset-Sum is one of the most extensively studied problem in computer science. Showing a fine-
grained hardness of Subset-Sum based on SETH is an important open problem. Harnik and
Naor [HN10], gave an algorithm for instance compression of arbitrary Subset-Sum instance. In
this section, we will describe the consequences of this compression to get a reduction from k-SAT
to Subset-Sum.

Lemma 8.1. [HN10][Claim 2.7] For any positive integers n,m, there exists a randomized polyno-
mial time algorithm that compresses any arbitrary Subset-Sum instance (a1, . . . , an, t) on n numbers
with

η :=
⌈
max

{
log2|a1|, . . . , log2|an|, log2|t|

}⌉
,

to O(n2 + n log η) bits. Furthermore, the reduction does not give false negative.

Theorem 8.2. For any constants c, c′ > 0,there exists a constant k0 such that for any k > k0 there
does not exists a polynomial time probabilistic reduction with no false negatives from k-SAT on
n-variable to Subset-SUM on nc′ numbers which makes at most O(nc) calls to Subset-Sum oracle,
unless coNP ⊆ NP/Poly.

Proof. Given a Subset-Sum instance of nc′ numbers, by Lemma 8.1, we can get a compressed
instance of size O(n2c′). Let k0 = c+ 2c′. Let’s assume there exist a polynomial time probabilistic
reduction without false negative from k-SAT on n-variables to Subset-Sum instance on nc′ numbers
and the reduction only makes O(nc) calls to Subset-Sum oracle. Notice that, the reduction can
also be seen as an oracle communication protocol where for each call to Subset-Sum instance, first
player send the compressed instance to second play (which is computationally unbounded). From
definition of oracle communication protocol, the cost of this protocol is at most nc·O(n2c′) = O(nk0).
Therefore, by Theorem 2.12, we get coNP ⊂ NP/Poly as k > c+ c′.

Notice that, the above arguments holds for adaptive reductions from k-SAT to Subset-Sum. This
completes the proof.

Remark 2. Note that, similar to Theorems 7.4 and 7.7, we can also get the same barriers for
reductions from k-SAT to Subset-Sum.

Acknowledgments

The authors thank Huck Bennett, Zvika Brakerski, Alexander Golovnev, Zeyong Li, Noah Stephens-
Davidowitz, and Prashant Nalini Vasudevan for helpful discussions. In particular, we thank
Alexander Golovnev for many helpful comments on an earlier draft of this work. We also thank

29

FOCS reviewers for pointing out the instance compression algorithm for exact-CVP. Divesh Ag-
garwal was supported by the bridging grant at Centre for Quantum Technologies titled “Quan-
tum algorithms, complexity, and communication”. Rajendra Kumar was supported by the Eu-
ropean Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant
756482).

References

[ABB+23] Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra
Kumar, Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, and Vinod Vaikun-
tanathan. Lattice problems beyond polynomial time. In STOC, 2023. 8

[ABGS21] Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz.
Fine-grained hardness of CVP(P)- Everything that we can prove (and nothing else). In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1816–1835. SIAM, 2021. 1, 2, 4, 5, 8

[ABHS22] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower
bounds for subset sum and bicriteria path. ACM Transactions on Algorithms (TALG),
18(1):1–22, 2022. 3

[AC21] Divesh Aggarwal and Eldon Chung. A note on the concrete hardness of the shortest
independent vector in lattices. Information Processing Letters, 167:106065, 2021. 2

[ACK+21] Divesh Aggarwal, Yanlin Chen, Rajendra Kumar, Zeyong Li, and Noah Stephens-
Davidowitz. Dimension-preserving reductions between svp and cvp in different p-norms.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2444–2462. SIAM, 2021. 2

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving
the Shortest Vector Problem in 2n time via discrete Gaussian sampling. In STOC, 2015.
http://arxiv.org/abs/1412.7994. 8

[ADS15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the closest
vector problem in 2ˆ n time–the discrete gaussian strikes again! In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 563–582. IEEE, 2015.
1, 8

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996. 1

[AM18] Divesh Aggarwal and Priyanka Mukhopadhyay. Improved algorithms for the shortest
vector problem and the closest vector problem in the infinity norm. In 29th International
Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018. 1

[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In
STOC, 2018. 2

30

http://arxiv.org/abs/1412.7994

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Com-
binatorica, 6(1):1–13, 1986. 15

[Bel66] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966. 3

[BGK+23] Tatiana Belova, Alexander Golovnev, Alexander S Kulikov, Ivan Mihajlin, and Denil
Sharipov. Polynomial formulations as a barrier for reduction-based hardness proofs.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3245–3281. SIAM, 2023. 8

[BGS17] Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantita-
tive hardness of CVP. In FOCS, 2017. http://arxiv.org/abs/1704.03928. 1, 2, 4,
5

[BLT15] Harry Buhrman, Bruno Loff, and Leen Torenvliet. Hardness of approximation for knap-
sack problems. Theory of Computing Systems, 56(2):372–393, 2015. 3

[BN09] Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest
vectors and successive minima. Theoretical Computer Science, 410(18):1648–1665, 2009.
1

[BP20] Huck Bennett and Chris Peikert. Hardness of Bounded Distance Decoding on Lattices
in ℓp Norms. CoRR, abs/2003.07903, 2020. 2

[BPT21] Huck Bennett, Chris Peikert, and Yi Tang. Improved hardness of bdd and svp under
gap-(s) eth. arXiv preprint arXiv:2109.04025, 2021. 2

[Bri84] Ernest F. Brickell. Breaking iterated knapsacks. In CRYPTO, 1984. 1

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
ITCS, 2014. 1

[CDL+16] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems
as hard as cnf-sat. ACM Transactions on Algorithms (TALG), 12(3):1–24, 2016. 3

[CGI+16] Marco L Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the strong exponential time
hypothesis and consequences for non-reducibility. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pages 261–270, 2016. 8

[Dad11] Daniel Dadush. A (1/ε2)n-time sieving algorithm for approximate integer programming.
LATIN 2012: Theoretical Informatics, page 207, 2011. 1

[DF12] Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer
Science & Business Media, 2012. 6

[Din02] Irit Dinur. Approximating SVP∞ to within almost-polynomial factors is NP-hard.
Theor. Comput. Sci., 285(1), 2002. 2

31

http://arxiv.org/abs/1704.03928

[DKRS03] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2), 2003. 2

[Dru15] Andrew Drucker. New limits to classical and quantum instance compression. SIAM
Journal on Computing, 44(5):1443–1479, 2015. https://people.csail.mit.edu/rrw/
presentations/drucker.pdf. 4, 6, 28

[DvM14] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. Journal of the ACM (JACM), 61(4):1–
27, 2014. 1, 3, 6, 12, 13

[EV20] Friedrich Eisenbrand and Moritz Venzin. Approximate CVPp in time 20.802n. In ESA,
2020. https://arxiv.org/abs/2005.04957. 2

[EV22] Friedrich Eisenbrand and Moritz Venzin. Approximate cvpp in time 20.802 n. Journal
of Computer and System Sciences, 124:129–139, 2022. 2

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
pcps for np. Journal of Computer and System Sciences, 77(1):91–106, 2011. 3

[FT87] András Frank and Éva Tardos. An application of simultaneous Diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987. 1, 7, 9, 17, 21,
24, 25, 26

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009. 1

[GMSS99] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approxi-
mating shortest lattice vectors is not harder than approximating closest lattice vectors.
Inf. Process. Lett., 71(2):55–61, 1999. 1, 23, 29

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
ACM SIGACT News, 38(1):31–45, 2007. 6

[HN10] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-
graphic applications. SIAM Journal on Computing, 39(5):1667–1713, 2010. https:

//www.wisdom.weizmann.ac.il/~naor/PAPERS/compressibility.pdf. 3, 6, 29

[HS74] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM (JACM), 21(2):277–292, 1974. 3

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. 11

[JLL16] Klaus Jansen, Felix Land, and Kati Land. Bounding the running time of algorithms for
scheduling and packing problems. SIAM Journal on Discrete Mathematics, 30(1):343–
366, 2016. 3

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987. 1

32

https://people.csail.mit.edu/rrw/presentations/drucker.pdf
https://people.csail.mit.edu/rrw/presentations/drucker.pdf
https://arxiv.org/abs/2005.04957
https://www.wisdom.weizmann.ac.il/~naor/PAPERS/compressibility.pdf
https://www.wisdom.weizmann.ac.il/~naor/PAPERS/compressibility.pdf

[Lem] Franz Lemmermeyer. The Prime Number Theorem. http://www.fen.bilkent.edu.

tr/~franz/nt/cheb.pdf. 18, 22

[LLL82] A.K. Lenstra, H.W. Lenstra, and Lászlo Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982. 1, 7, 11

[LO85] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. J.
ACM, 32(1):229–246, 1985. 1

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. In FOCS, 2004. 1

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography, 2008. 1

[MV13] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on Voronoi cell computations. SIAM J.
Comput., 42(3):1364–1391, 2013. 8

[Reg04] Oded Regev. Lattices in computer science, lecture 2, Fall 2004. https://cims.nyu.

edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf. 15, 20

[Reg06] Oded Regev. Lattice-based cryptography. In Advances in Cryptology - CRYPTO 2006,
26th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2006, Proceedings, pages 131–141, 2006. 1

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, September 2009. 1

[RR06] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In STOC, 2006.
8

[Sha84] Adi Shamir. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryp-
tosystem. IEEE Trans. Information Theory, 30(5):699–704, 1984. 1

[vEB81] Peter van Emde Boas. Another np-complete problem and the complexity of computing
short vectors in a lattice. Tecnical Report, Department of Mathmatics, University of
Amsterdam, 1981. 2

[Woe08] Gerhard J Woeginger. Open problems around exact algorithms. Discrete Applied Math-
ematics, 156(3):397–405, 2008. 3

[Yap83] Chee K Yap. Some consequences of non-uniform conditions on uniform classes. Theo-
retical computer science, 26(3):287–300, 1983. 12

A Proof of Theorem 2.13

Lemma A.1. Let L be a language and t : N → N \{0} be polynomially bounded in n such that
the problem of deciding whether at least one of t inputs of length at most n belongs to L has an
oracle communication protocol, of cost O(t log t), where the first player runs in time T . Then
L ∈ NTIME(poly(n) · T)/poly.

33

http://www.fen.bilkent.edu.tr/~franz/nt/cheb.pdf
http://www.fen.bilkent.edu.tr/~franz/nt/cheb.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/lll.pdf

Proof. Let P be the oracle communication protocol for language L that runs in time poly(n) · T
such that the output is a deterministic function of the communication transcript. For input x,
protocol P makes queries to the second party (which we sometimes call the oracle); and receives
some outputs from the second party. We use C to denote the communication transcript between
the two parties. The cost of the protocol is the number of bits of communication from the first
player to the second player. First player is allowed to use randomness and protocol always output
accept (outputs YES) if instance belongs to the language L.

We will use the following equivalence: an input x is in L if and only if there exist a sequence
(x2, . . . , xt) and randomness r such that P (x, x2, . . . , xt; r) rejects (outputs NO). It follows from the
fact that protocol does not give false negative. Let s = poly(n, t) be the number of random bits
required to execute the oracle communication protocol. We will show existence of a polynomial
size advice string An which contains a subset of the transcripts of the protocol P such that for
every x ∈ L there exists x2, . . . , xt and randomness r such that the communication transcript C
of protocol P on input (x, x2, . . . , xt; r) is in An and P (x, x2, . . . , xt; r) rejects. Before showing the
existence of the advice string, we show why this is sufficient. By using such an advice string An,
we get the following algorithm for input x:

1. Guess a sequence (r, x2, . . . , xt), where each xi is of length n and randomness r is of length s.

2. Check whether the communication transcript C of protocol P on input (x, x2, . . . , xt; r) is
consistent with a transcript in An and P (x, x2, . . . , xt; r) rejects. If so then accept, otherwise
reject.

To check the consistency of protocol P on input (x, x2, . . . , xt; r) with any transcript τ , we
check the input of the first player to the second player is consistent with transcript τ and whenever
the first player expects an output from the second player we give the desired output by using the
transcript τ . The correctness of the protocol follows from the equivalence as mentioned earlier.

In the rest of the proof, we will show that there exists a polynomial-size advice string An.
We find the set An in the greedy way. Notice that any transcript τ of the protocol P on input

(x, x2, · · · , xt; r) is a deterministic function of the bits sent by the first player to second player. Let
us assume that the cost of oracle communication protocol is c = O(t log t). It implies that there
are at most 2c many distinct rejecting transcripts.

For any rejecting transcript τ , and any x ∈ L, we say that τ covers x if there exists x2 . . . , xt
and r where xi ∈ L and ri ∈ {0, 1}s such that τ is a transcript for P (x, x2, . . . , xt; r). We will
iteratively add rejecting transcripts to An such that they eventually cover all x ∈ L.

Let F be the set of all x ∈ L that have so far not been covered. We known that for every
t-tuple of instances in F t for some randomness r, there exists a rejecting transcript (in fact, there
exist many rejecting transcripts). So, since there are at most 2c transcripts in total, there exists
a transcript τ that is a rejecting transcript for at least |F |t/2c tuples of instances. Let G be the
subset of F that is covered by τ . Thus, any tuple in F t for which τ is a rejecting transcript must
be in Gt. This implies that

|G|t≥ |F |t·2−c =⇒ |G|≥ |F |·2−c/t.

Include the transcript τ in An and repeat this step by taking F = F \ G until there is no more
x ∈ L that is not covered by some τ in An.

There are at most 2n instance of x of bitlength n. It is easy to see that by repeating the above
procedure ℓ times, the set An covers at least (1 − (1 − 2−c/t)ℓ) · 2n ≥ (1 − e−ℓ·2−c/t

) · 2n inputs.

34

It implies that all instances will be covered after O
(

n
2−c/t

)
repetitions of the above step. As

c = O(t log t) where t is some polynomial in n, we get that the size of the set An is poly(n). Notice
that each transcript is also polyonomially bounded in n and the running time is also bounded in
poly(n) · T . The resulting algorithm for L runs in NTIME(poly(n).T)/poly.

Theorem 2.13. Let k ≥ 3 and ε > 0 a positive real. For any T = T (n) > 0, there is no
oracle communication protocol for k-SAT, of cost O(nk−ε) that runs in time T , unless coNP ⊆
NTIME(poly(n) · T)/poly.

Proof. Let’s assume that there is a randomized oracle communication protocol of k-SAT of cost
O(nc) for some constant c < k and runs in time T . From Lemma 2.16, it gives an oracle communi-
cation protocol for k-Vertex cover of cost O(nc). Notice that, by a trivial reduction from k-Clique
to k-Vertex cover, it gives a O(nc) cost protocol for k-Clique. Therefore, by Lemma 2.15, there is an

oracle communication protocol for OR(3-SAT) of cost O
((

n ·max{n, t1/k+o(1)}
)c)

. As c is a con-

stant less than k, if we take t as sufficiently large polynomial in n it gives aO(t log t) cost randomized
oracle communication protocol for OR(3-SAT). Hence, if coNP ̸⊆ NTIME(poly(n) · T)/Poly, then
we get a contradiction from Lemma A.1. It completes the proof.

35

	Introduction
	Lattice Problems
	Subset Sum Problem
	Instance Compression
	Our Results
	Our Techniques
	Comparison to previous works
	Other Conclusion and Open Questions.

	Preliminaries
	Lattice Problems
	LLL Algorithm
	k-SAT and Subset Sum
	Instance Compression

	CVP inner product, CVP multi vector product: variants of CVP
	Instance compression for almost exact-CVP
	Instance compression for all even norms
	Instance compression for SVP

	Compression for exact-CVP in Even norms
	Implication to SETH hardness of CVP
	Barrier for SETH-hardness of Subset-Sum
	Proof of Theorem 2.13

