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Deterministic Fully Dynamic SSSP and More

Jan van den Brand∗ Adam Karczmarz†

Abstract

We present the first non-trivial fully dynamic algorithm maintaining exact single-source
distances in unweighted graphs. This resolves an open problem stated in [San05, BN19]. Pre-
vious fully dynamic single-source distances data structures were all approximate, but so far,
non-trivial dynamic algorithms for the exact setting could only be ruled out for polynomially
weighted graphs [AW14]. The exact unweighted case remained the main case for which neither
a subquadratic dynamic algorithm nor a quadratic lower bound was known.
Our dynamic algorithm works on directed graphs and is deterministic, and can report a

single-source shortest paths tree in subquadratic time as well. Thus we also obtain the first
deterministic fully dynamic data structure for reachability (transitive closure) with subquadratic
update and query time. This answers an open problem from [BNS19].
Finally, using the same framework we obtain the first fully dynamic data structure main-

taining all-pairs (1+ ǫ)-approximate distances within non-trivial sub-nω worst-case update time
while supporting optimal-time approximate shortest path reporting at the same time. This
data structure is also deterministic and therefore implies the first known non-trivial determin-
istic worst-case bound for recomputing the transitive closure of a digraph.
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1 Introduction

The dynamic shortest path problem is a classic problem in graph algorithms that seeks to main-
tain the shortest path distances between pairs of vertices in a graph as the graph is subject to
updates such as edge insertions, deletions, or weight changes. This problem and its variants have
been extensively studied in the theoretical computer science literature, and different algorithmic
approaches have been proposed and analyzed depending on the nature of the updates (incremen-
tal [AIMN91, GWW20, HKN13, KMS22, KMG22, CZ21], decremental [BHS07, EFGW21, ES81,
BC16, BGS20, BGW20, BR11, Ber16, CS21] or fully dynamic [Kin99, DI01, Tho04, Tho05, HK95,
BFN22, BHG+21, San05, AvdB23, ACG12]) and the type of queries (st [BNS19, HKNS15, AW14],
single-source [BN19, BC17, Ber17, CK19, Chu21, HKN14, GW20a, BGS21] or all-pairs [DI04,
ACK17, GW20b, CZ23, Mao23, DI02, HKN16, Ber09, RZ12, ACT14]). Here, “incremental” refers
to the setting with only edge insertions, “decremental” to only edge deletions, and “fully dynamic”
to the general setting where a graph undergoes both insertions and deletions.
Among these different variants, single-source is one of the most well-studied. It offers a good

trade-off between generality and speed, as it maintains several distances at once while allowing
much faster update times than the all-pairs variant. It also has a simple trivial solution by recom-
puting the shortest paths tree in O(m) time (O(n2) time for dense graphs) via Dijkstra’s algorithm
after each update, which serves as a natural benchmark for all improvements. As a result, dynamic
single-source shortest paths is one of the most prolific problems in the dynamic graphs area with
major results for different variants such as incremental [GWW20, CZ21, HKN13, KMG22], decre-
mental [HKN14, GW20a, ES81, BC16, BC17, Ber17, BGS20, BGW20, BGS21, BR11, CK19], and
fully dynamic [RZ11, BN19, BFN22, BHG+21, AvdB23]. Yet, despite being one of the most studied
variants of dynamic shortest paths, the case of exact fully dynamic single source shortest paths –
even in dense graphs with Θ(n2) edges – has still remained open and withstood all attempts to con-
struct efficient data structures. Even in the weakest graph model, i.e. undirected and unweighted
graphs, no exact fully dynamic dynamic algorithm is known other than trivial recomputation of
the shortest paths after each update via Dijkstra’s algorithm. Previously, progress has only been
made for the st-case [San05, BNS19, BFN22, KS23] where an exact fully dynamic distance can
be maintained on unweighted graphs in O(n1.673) time (i.e., subquadratic in n and sublinear in
the number of edges for a sufficiently large density), but that approach does not extend to the
single-source case. It has been asked repeatedly to find a dynamic algorithm for dynamic single
source shortest paths since almost two decades ago; see, e.g., [DI04, Tho04]. One reason why an
efficient data structure has been elusive is that on weighted graphs (with sufficiently large positive
integer weights allowed), it is impossible to obtain a dynamic algorithm with subquadratic update
time unless the APSP conjecture is false [RZ11, AW14]. So a natural research direction is to find
an exact algorithm for the unweighted case (and any density) which was also explicitly stated as
an open problem in [San04, BN19].

Open Problem 1 ([DI04, Tho04, San04, BN19]). Can one maintain fully dynamic exact shortest
paths in subquadratic time (in the number of vertices n) on unweighted graphs?

It was shown by Abboud and Vassilevska Williams [AW14] that dynamic st-reachability and st-
shortest path require algebraic techniques (i.e., fast matrix multiplication) if one hopes to beat the
naive O(n2) update time algorithm of running BFS/Dijkstra after each update. So, an affirmative
answer to open problem 1 is only possible if we rely on algebraic techniques. In previous work,
the algebraic perspective requires dynamic algorithms to perform calculations involving very large
numbers, and to reduce the bit-length of the numbers involved, past work relied on the randomized
Schwartz-Zippel lemma (i.e., randomized polynomial identity testing) [San04, BNS19, BS19] or
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performing all arithmetic modulo a random prime [KS02, DI05]. As a result, the vast majority of
algebraic data structures for dynamic graph problems is randomized [San04, San05, San07, SM10,
BHG+21, BNS19, BN19, BS19, GR21].
Deterministic algorithms would be preferable because they allow for greater confidence in their

correctness and efficiency, as opposed to randomized algorithms which may only offer probabilistic
guarantees on correctness or running time that do not hold in all cases. Moreover, randomized
algorithms may restrict the “adversary” creating the sequence of updates from being adaptive. In
contrast, deterministic algorithms avoid these issues and allow for more predictable behavior.
For algebraic data structures, only in the case of shortest paths in the incremental setting

[KMS22] or on undirected graphs in the approximate setting [BFN22] has derandomization been
possible, which naturally excludes fully dynamic reachability or fully dynamic shortest paths on
directed graphs. Finding a way to derandomize fully dynamic reachability has been asked in
[BNS19].

Open Problem 2 ([BNS19]). Can fully dynamic st-reachability be solved deterministically in
subquadratic time?

In other dynamic graph settings, derandomization has received a lot of attention [CZ23, BFN22,
Lac11, BGS21, BGS20, Ber17, BC17, BC16, Chu21, ACK17, CS21, HKN16, KMS22], but for fully
dynamic reachability with subquadratic update time the question has remained open.
In this work, we answer both open problems 1 and 2. We construct a fully dynamic algorithm

that maintains exact single-source shortest paths in subquadratic update time, thus providing an
answer to open problem 1. This dynamic algorithm is deterministic and works on directed graphs,
and can thus solve fully dynamic st-reachability deterministically, solving open problem 2.
Finally, the framework that we use is powerful and flexible enough to also yield new worst-case

update bounds for fully dynamic (1 + ǫ)-approximate all-pairs shortest paths.

1.1 Our results

SSSP We present the first fully dynamic algorithm that can maintain exact single source dis-
tances, answering open problem 1.

Theorem 1.1. Let G = (V,E) be unweighted digraph. There exist the following data structures
supporting fully dynamic single-edge updates to G and answering queries about exact distances from
an arbitrary query source vertex s ∈ V to all other vertices in G.

• A deterministic data structure with O(n1.969) worst-case update and query time. (Cf. Theo-
rem 6.3)

• A Monte Carlo randomized data structure with O(n1.933) worst-case update and query time.
(Cf. Theorem 9.3)

The algorithm works on unweighted directed graphs but could also be easily generalized to
handle small (e.g., sufficiently low-polynomial) integer weights [1,W ] at the cost of a poly(W )
multiplicative time overhead.1 Recall that an exact algorithm with subquadratic update time for
graphs with integer weights in [1, nc], where c > 0 is a sufficiently large constant, is impossible
under the APSP conjecture [AW14].
Previous results could maintain single-source shortest paths (or single-source distances) only

in the approximate setting [BN19, BHG+21, BFN22], or in the partially dynamic setting [HKN14,
GWW20, GW20a, HK95, HKN13, ES81, BC16, BC17, Ber17, BGS20, BGW20, BGS21, BR11].

1Just like other algebraic data structures for exact distances [BFN22, San05, KS23]. See e.g. [KS23].
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The data structures behind Theorem 1.1 are algebraic, i.e., make use of fast matrix multiplica-
tion. Algebraic techniques are inevitable to obtain a non-trivial update time [AW14]. That being
said, using any subcubic matrix multiplication algorithm (e.g., Strassen’s) would yield subquadratic
bounds in Theorem 1.1. If ω = 2 (here nω is the number of operations required to multiply two
n×n matrices; currently it is known that ω ≤ 2.372 [DWZ22, WXXZ23]), the deterministic update
bound becomes Õ(n2−1/30) and the randomized one becomes Õ(n2−1/14).
Both variants can be extended, deterministically in a black-box way, to support SSSP tree

reporting queries within slightly larger, albeit still subquadaratic time (the latter one against an
adaptive adversary). Concretely, if ω = 2, the tree-reporting bounds are Õ(n2−1/60) and Õ(n2−1/28),
respectively, while for current bounds on ω [AW21, GU18, DWZ22] they areO(n1.985) and O(n1.967),
respectively. Note our dynamic algorithms work on directed graphs, so they can be also used to solve
fully dynamic st-reachability deterministically. This answers open problem 2, asked in [BNS19].

All-pairs problems By reusing and extending the framework used for fully dynamic single-
source data structures, we also obtain a new data structure for fully dynamic approximate all-pairs
shortest paths, captured by the following Theorem 1.2.

Theorem 1.2. Let G = (V,E) be an unweighted directed graph. Let ǫ ∈ (0, 1). There exists
a deterministic data structure explicitly maintaining all-pairs (1 + ǫ)-approximate distances in G
under vertex updates in O(n2.293/ǫ) worst-case time per update.
The data structure can be extended to:

• enable reporting a (1 + ǫ)-approximately shortest path P = s → t in G for query vertices
s, t ∈ V in optimal O(|P |) time.

• explicitly maintain reachability trees from all the sources s ∈ V within the same update bound.

As is typically the case for fully dynamic data structures maintaining all-pairs information
explicitly (e.g., [San04, DI04, Tho04, ACK17, GW20b, CZ23, Mao23]), the data structure supports
more general vertex updates that can insert/delete any number of edges incident to a single vertex.
To the best of our knowledge, ours is the first fully dynamic APSP data structure for di-

rected graphs allowing optimal path reporting whose worst-case update time breaks through the
Õ(nω/ǫ) ≈ Õ(n2.372) static (1 + ǫ)-approximate APSP bound of [Zwi02]. In fact, this is the case
regardless of whether randomization is used. Previous results breaking the Õ(nω)-barrier [BN19]
could not report the path. Optimal path reporting is supported by the purely-combinatorial data
structures [DI04, Tho04, ACK17, GW20b, CZ23, Mao23] but their worst-case update time is at least
Ω(n2.5). Better worst-case update bounds for path-reporting APSP have been obtained using alge-
braic techniques [BHG+21, AvdB23] but with superlinear (in n, let alone in the distance between
the queried vertices) query time and necessarily under less general single-edge updates.2 Thus,
prior to our work, no non-trivial worst-case bound for fully dynamic APSP (in directed graphs)
with optimal-time path reporting has been known and recompute-from-scratch [Zwi02] could be
considered the state-of-the-art solution (indeed, the static (1 + ǫ)-approximate APSP algorithm
of [Zwi02] can efficiently reconstruct paths).
The data structure of Theorem 1.2 is deterministic. Consequently, it also constitutes the first de-

terministic APSP data structure for directed graphs with sub-nω worst-case update time maintain-
ing all-pairs distance estimates explicitly. The fully dynamic APSP data structure of [DI04, Tho04]
is deterministic and has near-optimal Õ(n2) amortized update bound, but the worst-case update
bound is cubic. Using randomization, a matrix of (1+ ǫ)-approximate distances can be maintained

2This is also achieved by our SSSP data structures.
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in O(n2.045/ǫ2) worst-case time per update [BN19]. As deterministic variants of [ACK17, GW20b]
have Ω(n2.5) update bound, again, recompute-from-scratch [Zwi02] has been the state-of-the-art in
the deterministic regime.
The above remains true even for the easier problem of explicitly maintaining the transitive clo-

sure under fully dynamic updates. Whereas an optimal O(n2) randomized worst-case update bound
has been known [San04], no deterministic data structure with worst-case update time beyond the
O(nω)-time recompute-from-scratch [Mun71] has been found. Only amortized deterministic O(n2)
update bounds have been known [DI08, Kin99, Rod08]. Theorem 1.2 implies that the transitive
closure can be recomputed deterministically in O(n2.293) time (worst-case) after a vertex update.
Additionally, within that bound, all-pairs reachability trees – providing an explicit representation
of paths between all pairs of vertices – can also be constructed.
Perhaps surprisingly, for a sufficiently large improvement to ω (concretely, if ω ≤ 2.12), the

update time of the data structure of Theorem 1.2 (depending on the value of ω) may become
polynomially smaller than O(nω), i.e., slower than recomputing from scratch. It is interesting
to ask whether it is possible to reproduce any of the accomplishments of that data structure
unconditionally, that is, within sub-nω time as long as ω > 2.3 Using an entirely different approach,
we show this is indeed possible for deterministic fully dynamic transitive closure.

Theorem 1.3. Let G = (V,E). Unless ω = 2, there exists a constant ǫω, 0 < ǫω < ω−2, dependent
on ω, such that one can deterministically and explicitly maintain the transitive closure of G under
fully dynamic vertex updates in O(nω−ǫω) worst-case time per update.

The drawback of the above data structure is that it cannot report paths in optimal time (in
their length) but merely in O(n) time per query.

1.2 Further related work

All-pairs shortest paths (in directed graphs) and transitive closure have also been studied extensively
in partially dynamic settings [BHS07, Ber16, EFGW21, FMNZ01, Ita86, KL19, KL20, DFNV22].
Other variants related to distances are dynamic diameter and extreme distances [AHR+19, BN19].
There also exists work with much larger approximation ratio, e.g. [FGNS23, ACT14, FGH21]. In
addition to upper bounds, dynamic distance problems have also been studied from a (conditional)
lower bound perspective, see e.g. [AW14, HKNS15, ABF23, ABKZ22, AHR+19, BNS19, GWW20,
JX22, RZ11].

1.3 Technical ideas

Our results are obtained via a combination of (inevitable) algebraic methods and a wide range of
purely combinatorial techniques. The fully dynamic single-source shortest distances data structures
follow the high-level approach of the data structures for obtaining worst-case update bounds for
exact fully dynamic all-pairs shortest paths [ACK17, GW20b, Tho05, CZ23, Mao23]. These purely
combinatorial data structures are, however, super-quadratic in many different aspects and in fact
seem to not be able to break through the Ω(n2.5) barrier for the problem they solve.
We observe that a majority of computational bottlenecks therein can be delegated to the alge-

braic data structures based on dynamic matrix inverse [BNS19, San04] – again, with a few purely
combinatorial extensions applied on top, such as the recent path-reporting techniques [KMS22]. The
power of algebraic data structures is also exploited to a greater extent than before. Previous work

3Note that if ω = 2, then all-pairs reachability can be recomputed from scratch in O(n2) time [Mun71] which is
already the output size, so in that case no non-trivial dynamic algorithm can exist.
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relied on maintaining either the entire matrix inverse (e.g. [San04]), querying single cells or rows
([BN19, BNS19, San04]) or maintaining well-structured (e.g., square) submatrices [San05, BFN22].
On the other hand, we crucially need maintaining unstructured and dynamic subsets of cells of the
inverse of subquadratic size and adapt the algebraic tools to this scenario.
Finally, a common theme of all our deterministic algorithms is using weaker notions of hitting

sets of “long” shortest paths between pairs of vertices whose distance exceeds some threshold h. In
previous dynamic shortest paths data structures, Õ(n/h)-sized hitting sets are typically randomly
sampled (once) or deterministically recomputed (after an update) to hit paths in the current graph.
Our single-source distances data structure, on the other hand, only employs a (deterministically

computed) hitting set to sparsify an explicit static collection of Θ(n2) paths that is reinitialized
not very often. As a result, we completely avoid the bottleneck of all previous dynamic algebraic
distance data structures for directed graphs: maintaining the current exact h-bounded distances
between all pairs of vertices from the hitting set. For example, it is not clear how this component
can be derandomized while keeping the update time subquadratic.
In the data structure of Theorem 1.3, a different relaxation of hitting sets (specific to reacha-

bility, where hitting shortest paths is not required for vertices far apart) is exploited. In particular,
we describe a deterministic trade-off between the size of such a relaxed hitting set and the time
needed to compute it, which we believe may be of independent interest.

1.4 Organization

We start by giving preliminaries in Section 2 and then give a more detailed technical outline of
our algorithms in Section 3. Our algorithms rely on constructing hitting sets that require low-hop
shortest paths. We describe in Section 4 how to extract these required paths from a dynamic
bounded-distances algorithm. Next, in Section 5 we describe a subcubic preprocessing step that,
using the algebraic path-reporting data structures, finds a collection of paths that is robust (in a
sense) in the decremental setting. Finally, we employ that preprocessing of Section 6 to obtain our
fully dynamic SSSP data structure (Theorem 1.1). The extension to fully-dynamic path-reporting
APSP (Theorem 1.2) is described in Section 7. The deterministic fully dynamic transitive closure
data structure beating the nω-barrier for all ω > 2 (Theorem 1.3) is given in Section 8.

2 Preliminaries

Let G = (V,E) be a directed graph. For D ⊆ V , we denote by G−D the graph G with all edges
incident to the vertices D removed.
For any s, t ∈ V and k ≥ 0, δkG(s, t) is the minimum length of an s→ t path in G with at most

k edges (hops). If no such path exists, δkG(s, t) = ∞. A shortest k-bounded s → t path in G is an
s→ t path with at most k hops and length δkG(s, t). The s, t-distance δG(s, t) is defined as δ

n
G(s, t).

3 Technical outline

This section focuses, in the first place, on giving a technical overview of the deterministic fully
dynamic SSSP data structure. We then briefly describe the changes needed for path-reporting
(1 + ǫ)-approximate APSP, and the possible improvements using randomization.
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3.1 Algebraic toolbox and previous approaches

Recall that by the conditional lower bound of [AW14], using algebraic fast matrix multiplication-
based techniques is inevitable even for fully dynamic st-reachability. In the following we review
how the state-of-the art randomized data structures for st-distances and reachability use algebraic
techniques, explain the limitations of their approaches, and introduce the algebraic data structure
that we use.
Let h ∈ [1, n] be a threshold parameter setting the boundary between “short” shortest paths

with at most h edges, and “long” shortest paths with more than h edges. Just like all previously
described algebraic data structures maintaining shortest paths, we leverage dynamic matrix inverse
data structures for maintaining the h-bounded distances between certain pairs of vertices.

Path counting The main idea behind algebraic h-bounded distances data structures is counting
(possibly implicitly) paths of given lengths 0, . . . , h for all source-target pairs. Note that the number
of length-k paths between a given pair of vertices of an unweighted graph is no more than nk, i.e.,
could take Õ(k) bits to be represented. As a result, storing the required path counts for a given
pair might require up to Õ(h2) bits. It is the most convenient to represent the counts as a degree-
h-polynomial matrix, where the coefficient of xk of the polynomial in the cell (s, t) equals the count
of s → t paths of length k. As originally observed by [San05], such a matrix equals the inverse of
the matrix I − x · A modulo xh+1, where A is the adjacency matrix of G. Since the single-edge
updates to G correspond to single-element updates to I − x · A, maintaining the required path
counts reduces to maintaining matrix inverse under single-element updates. This enables using
dynamic matrix inverse data structures [San04, BNS19, BFN22] with Õ(h2) arithmetic operation
cost incurred by working with h-degree polynomials with Õ(h)-bit coefficients.
For deciding whether a path of a given length exists, it is enough to be able to test whether a

path count is non-zero. By operating modulo a random Θ(log n)-bit prime number, whether the
individual counts are non-zero can be maintained by operating on Õ(1)-bit polynomial coefficients
instead (see, e.g., [KS02, DI05]). This saves a factor of h in the time cost, but inevitably leads to
a Monte Carlo randomized algorithm correct with high probability. The previous fully dynamic
reachability data structures in DAGs [KS02, DI05] and exact st-distances [San05, BFN22] crucially
relied on this idea. In particular, the data structures tailored to reachability [KS02, DI05] do not
keep track of path lengths and do not differentiate between short and long paths; they do apply
path counting though (with counts of order nn) and thus this trick saves a factor n there.

Previous dynamic distances data structures The fully dynamic st-distances data struc-
tures [San05, BFN22] apply path counting in combination with the well-known hitting set trick [UY91].
If one samples a subset H ⊆ V of size Θ((n/h) log n), then for all u, v ∈ V with δG(u, v) ≥ h, some
shortest u → v path contains a vertex of H w.h.p. Another view on this property is that for any
s, t ∈ V , some shortest s→ t path in G can be decomposed into subpaths of length at most h with
both endpoints in H∪{s, t}. Therefore, given δhG(u, v) for all u, v ∈ H∪{s, t}, we can find a shortest

s → t path in G using Dijkstra’s algorithm on a digraph on H ∪ {s, t} with O(|H|2) = Õ((n/h)2)
edges. Maintaining the Õ((n/h)2) pairwise h-bounded distances between the vertices H ∪ {s, t}
requires at least Õ((n/h)2 · h) = Õ(n2/h) bits when using path counting modulo a prime.
This simple approach seems hopeless if we either wanted to make it work for the more general

single-source distances maintenance, or to have a deterministic dynamic st-distance data struc-
ture. In the former case, we would need to maintain h-bounded distances between O(n2/h) pairs
(H ∪ {s})× V . But the current path counting techniques assume at least Θ(h) “arithmetic” over-
head for maintaining one value δhG(u, v) even when counting modulo a random prime. This makes
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the single-source case inherently quadratic using this approach. Similarly, deterministic main-
tenance of a single value δhG(u, v) has Θ̃(h2) “arithmetic” overhead, which makes the approach
of [San05, BFN22] inapplicable not only for maintaining st-distance deterministically, but also for
fully dynamic deterministic st-reachability which is likely an easier problem.

Our h-bounded distances data structure At the end of the day, we do not overcome the afore-
mentioned inherent arithmetic overheads of either Θ̃(h) (randomized) and Θ̃(h2) (deterministic).
Instead, we rely, in a crucial way, on the ability of the dynamic matrix inverse data structure [San04]
to maintain an arbitrary dynamic k-cell submatrix of interest of the inverse, possibly with no struc-
ture whatsoever, using a subquadratic number of field operations, unless k = n2−o(1) or significantly
more than Θ(n) cells of interest are added per element update. Specifically, we show the following:

Theorem 3.1 (Modification to [San05], proof in Appendix A). Let G = (V,E) be a fully dynamic
unweighted digraph. Let h ∈ [1, n]. Let Y ⊆ V × V be a dynamic set. For any µ, δ ∈ [0, 1], there
exists a deterministic data structure maintaining the values δhG(s, t) for all (s, t) ∈ Y and supporting:

• single-edge updates to G in Õ(h2 · (nω(1,µ,1)−µ + n1+µ + |Y |)) worst-case time,

• batches of at most nδ vertex updates to G in Õ(h2nω(1,δ,1)) worst-case time,

• single-element insertions to Y in Õ(h2nµ) time,

• removing elements from Y in O(1) time.

Crucially, for small-polynomial values of h, sets Y of size n2−O(1)/h2, and appropriately chosen µ,
say µ = 1/2, the single-edge update time bound of this data structure is subquadratic in n.
To the best of our knowledge, previous algebraic dynamic graph data structures required only

very structured submatrices Y of the inverse to operate. For example, the aforementioned st-
distance data structures [San05, BFN22] use a square submatrix with rows and columns H ∪ {s, t}.
In fact, [BFN22] show a more efficient (than Theorem 3.1) data structure for square inverse sub-
matrix maintenance: the dependence on n in the single-edge update bound of Theorem 3.1 is at
least n1.529 (n1.5 if ω = 2), whereas [BFN22] achieve the dependence of n1.406 (n1.25 if ω = 2).

3.2 Combinatorial plug-ins to the algebraic data structure

On top of the data structure Theorem 3.1, we apply two crucial black-box enhancements.

Induced subgraph operations or vertex switching First, we will need to maintain
h-bounded distances not only in the graph G, but also in an induced subgraph G[W ], where the set
W ⊆ V is also subject to updates. This functionality models temporarily switching some vertices
off, or, equivalently, removing all their incident edges.
A very simple but powerful observation is that in directed graphs, switching vertices can be

modeled using single-edge updates. This follows by applying a standard reduction of splitting a
vertex v into an in-copy v+ and an out-copy v−, connected by an edge v+v− switched on iff v ∈W .
As a result, even though switching a vertex off forbids using up to n edges, modeling it costs
no more than a single-edge update to the data structure maintaining the graph. Recall that the
single-edge update cost in Theorem 3.1 is subquadratic if the parameters are appropriately set.
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Path reporting via grouping into blocks A well-known shortcoming of path-counting
h-bounded distances data structures is that they do not allow, out-of-the-box, reporting the shortest
h-bounded paths. The data structures we develop internally require the path-reporting function-
ality (against an adaptive adversary) even for maintaining the single-source distances only.
To this end, we make use of a recent technique of [KMS22] used therein for DAGs to convert a

fully dynamic single-source reachability data structure into a fully dynamic single-source reachability
tree reporting data structure. We apply this technique in the case of h-bounded distances.
The overall idea is as follows. Having fixed a parameter b ∈ [1, n], the block size, the vertex

set V is split into ℓ ≤ ⌈n/b⌉ blocks V1, . . . , Vℓ of no more than b vertices. Via vertex-splitting,
we can construct ℓ related graphs G1, . . . , Gℓ such that a shortest h-bounded s → t path in G is
preserved in Gi iff the penultimate vertex is in the blocks V1 through Vi.
Suppose we maintain the h-bounded distances data structures (of Theorem 3.1) on the graphs

G1, . . . , Gℓ. Then, given a source s ∈ V and single-source h-bounded distances δhGi
(s, ·) for all i, we

can identify, for each t ∈ T , at most b potential predecessors p for which some shortest h-bounded
s → t path has a penultimate vertex p. Given those, the single-source shortest h-bounded paths
tree can be constructed in O(nb) time by simply running BFS on an O(nb)-sized subgraph of G.
Overall, if the dynamic h-bounded distances data structure has update time U(n, h) and can

compute single-source h-bounded distances in Q(n, h) time, then grouping into blocks yields a data
structure with update time O

(
n
b · U(n, h)

)
reporting single-source h-bounded shortest paths in

O ((n/b)Q(n, h) + nb) time. In Section 4 we also describe a refinement of this reduction that can
produce better running times; see Lemma 4.2.
Although we need path reporting even internally for the sole purpose of maintaining single-

source distances, note that grouping into blocks allows for converting – in a deterministic and
black-box way – any truly subquadratic single-source distances data structure into a SSSP-tree
reporting data structure. For example, if the single-source distances data structure (i.e., h = n)
has U(n, h), Q(n, h) ∈ O(n1.98), it is enough to set h = n and b = n0.99 to get O(n1.99)-time
SSSP tree reporting. Therefore, in the remaining part of this outline we only discuss maintaining
single-source distances deterministically.

3.3 Maintaining most h-bounded shortest paths under deletions

Overall, our fully dynamic single-source distances data structure follows the high-level idea of the
known combinatorial fully dynamic APSP data structures with subcubic worst-case update time,
first shown by [Tho05] and subsequently developed in [ACK17, CZ23, GW20b, Mao23].
The data structure operates in phases of ∆ = nδ updates, where δ ∈ (0, 1). At any moment

of time, let G denote the current graph (with all updates issued so far applied), and let G0 reflect
how G looked like when the current phase started. While the phase proceeds, let D denote the set
of ≤ 2∆ affected vertices, i.e., those constituting the endpoints of all the edges inserted or deleted
in the current phase. Note that we have G−D = G0 −D ⊆ G at any time.
Each phase starts with a relatively costly preprocessing step whose purpose is to find a certain

collection of O(n2) paths Π in G0 accomplishing the following informal goals:

(a) Π contains all-pairs h-bounded shortest paths in a large subgraph of G0 −D.

(b) removing D from G keeps most of the paths in Π intact.

More precisely, we use the following lemma inspired by the preprocessing in [GW20b].

Lemma 3.2. Let G = (V,E) be a directed graph. Let h, τ ∈ [1, n]. Assume one has constructed a
deterministic data structure storing G and a subset W ⊆ V initially equal to V , and supporting:
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(1) updates removing a vertex from W ,

(2) queries computing shortest h-bounded paths in G[W ] from a query vertex s to all v ∈ V .

Suppose one can perform updates in U(n, h) worst-case time, and queries in Q(n, h) time.
In O(n2h + (n/τ) · U(n, h) + n · Q(n, h)) time one can compute a set C ⊆ V of size O(n/τ),

and a collection of paths Π in G, containing at most one path πs,t for all s, t ∈ V , such that:

(a) For any s, t ∈ V , if δhG−C(s, t) 6=∞, then πs,t ∈ Π exists and is an s→ t path in G of length

at most δhG−C(s, t).

(b) For any u ∈ V , there exist at most O(hn · τ) paths πs,t ∈ Π with u ∈ V (πs,t).

After the algorithm completes, the assumed data structure is reverted back to the state when W = V .

We call τ and C in Lemma 3.2 the congestion threshold and the congested subset, respectively.
The preprocessing of Lemma 3.2, applied to G0 with a small-polynomial τ and h, achieves the
goal (a) since the obtained collection Π contains paths at least as short as shortest h-bounded
paths in G0 − (C ∪ D). Note that G0 − (C ∪ D) forms a large subgraph of G0 − D because the
obtained set of congested vertices C has sublinear size. It also achieves the goal (b) since the
O(hn · τ · ∆) paths in Π containing a vertex from D (let us denote them by ΠD) constitute a
relatively small portion of the entire collection Π containing typically Θ(n2) paths.
Using purely combinatorial data structures, the preprocessing of Lemma 3.2 takes Θ(n3) time

for dense graphs, which is prohibitive in our case since it is meant to be applied once per ∆ updates.
However, by plugging in the data structure T of Theorem 3.1, extended with induced subgraph
operations and path-reporting capabilities (with an appropriately chosen block size b ∈ [1, n], as
explained in Section 3.2), we can manage to compute the pair (Π, C) in subcubic time upon the
start of the phase. For large enough ∆, this incurs a subquadratic amortized update cost. However,
we remark that the heavy super-quadratic preprocessing (which constitutes the only source of
amortization here) is scheduled precisely every ∆ updates and consequently the data structure can
be deamortized using a standard technique; see, e.g., [ACK17, BNS19, Tho05].

3.4 Maintaining h-bounded distances beyond the preprocessed pairs

The preprocessing of Lemma 3.2 applied at the beginning of a phase guarantees that h-bounded
distances in G0−(C∪D) = G−(C∪D) are maintained for all (s, t) such that either δG0−C(s, t) =∞
holds, or πs,t ∈ Π \ΠD, that is, we have δ

h
G0−(C∪D)(s, t) = |πs,t|.

We delegate maintaining h-bounded distances (inG) either corresponding to paths going through
C ∪ D and/or for the affected pairs (s, t) such that πs,t ∈ ΠD to a separate data structure A of
Theorem 3.1 maintaining the current graph G. More specifically, we define the set Y ⊆ V × V
(identified with the submatrix Y of interest in A, see Theorem 3.1) to contain, at any time:

• all pairs ((C ∪D)× V ) ∪ (V × (C ∪D)),

• all pairs (s, t) such that πs,t ∈ ΠD.

Note that the size of Y is bounded by O(n2/τ + n∆ + ∆hnτ) at all times, which incurs a per-
update cost of O(h2n2/τ+∆h3nτ) for maintaining δhG(s, t) for all (s, t) ∈ Y in the data structure A.
Moreover, we crucially rely on the low-recourse property of the set Y : it grows by at most O(hnτ)
elements (worst-case) per update, as D grows by at most two elements per update. This allows to
augment the submatrix of interest in A in O(h3n1+µτ) time per update. We point out that it is
the affected pairs that cause the submatrix of interest Y to be of a rather arbitrary shape beyond
our control; the remaining part of Y is composed of some O(n/τ +∆) full rows and columns.
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3.5 Speeding up queries by hitting set-based sparsification

Let s ∈ V be some query vertex. Suppose we want to compute single-source distances from s in G.
First of all, using the data structure A we can temporarily add all pairs (s, t), t ∈ V , to the set Y
so that we can also access single-source h-bounded distances from s. This costs Õ(h3n1+µ) time.
With such an augmented set Y , one can prove (see Lemma 6.2) that for each t, there exists a

shortest path P = s→ t in G obtained by stitching paths of one of the following kinds:

(i) a shortest h-bounded path u→ v, where (u, v) ∈ Y ,

(ii) a path πu,v ∈ Π \ΠD such that |πu,v| ≥ h/2.

Consequently, we could build a graph X with edges (u, v) ∈ Y of weight δhG(u, v) (maintained
by A) and edges (u, v) for all non-affected pairs with πu,v ∈ Π \ ΠD, and run Dijkstra’s algorithm
on X to obtain single-source distances from s in G. The number of edges of the former kind is
O(n2/τ + hn∆τ), i.e., subquadratic. However, the number of edges of the latter kind can be still
Θ(n2). Fortunately, these edges represent relatively long Θ(h)-hop paths, and this can be exploited
as follows. During the preprocessing at the beginning of a phase, after computing the collection Π,
we compute an Õ(n/h)-sized hitting set H of the paths in Π composed of at least h/2 edges. This
can be done deterministically in Õ(n2h) time using a folklore greedy algorithm. For each of these
paths πu,v, we pick one zu,v ∈ H ∩ V (πu,v) as a representative of the hitting set for that path.
To be able to efficiently compute single-source distances upon query, we sparsify the lengths of

the O(n2) paths of type (ii) using only Õ(n2/h) edges. For each (z, v) ∈ H × V , we use an edge
zv of weight equal to the minimum length of the z → v suffix of a path πu,v ∈ Π \ ΠD such that
zu,v = z. Similarly, for each (u, z) ∈ V × H, we use an edge uz of weight equal to the minimum
length of the u → z prefix of a path πu,v ∈ Π \ ΠD with zu,v = z. These auxiliary edges can be
efficiently maintained subject to insertions to D (equivalently, deletions from Π \ ΠD). Using the
auxiliary edges in place of explicit edges for all the non-affected paths decreases the size of the
graph X to O(n2/τ + hn∆τ + n2/h) which is subquadratic for a proper choice of parameters.
We remark that our usage of hitting sets is conceptually different compared to previous dynamic

shortest paths algorithms. There, hitting sets are typically used to hit long-hop paths in the current
graph, most commonly by using randomization to ensure a once-sampled hitting set is valid for
poly(n) (future) versions of the graph (e.g., in [ACK17, San05, BFN22]). In our case, we use it
merely for the sake of sparsification of some statically precomputed set of paths and do not require
maintaining the current all-pairs h-bounded distances between the vertices of the hitting set.

3.6 Fully dynamic (1+ǫ)-approximate APSP with non-trivial worst-case update
bound and optimal path-reporting

In order to obtain the deterministic all-pairs data structures supporting optimal-time path report-
ing, we build upon the framework that we have used for single-source distances. First of all, to be
competitive with the known all-pairs reachability and APSP data structures, we need to support
more complex vertex updates. Fortunately, the SSSP framework can be seen to allow decremental
vertex updates within a phase, and only relies on the single-edge updates assumption (i.e., that ev-
ery updated edge has both endpoints in D) in the query procedure. Moreover, the data structure of
Theorem 3.1 supports batch-vertex updates, which we leverage when advancing to the next phase.
In our all-pairs data structures, the single-source query procedure is replaced by explicitly re-

building a collection Π′ (containing, in particular, the unaffected paths Π\ΠD) of h-bounded paths
π′
u,v for the O(hn∆τ) affected pairs (u, v) (with πu,v ∈ ΠD) satisfying similar guarantees wrt. the

h-bounded distances in G− (C ∪D). This is achieved via another application of the data structure
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of Theorem 3.1, enhanced as described in Section 3.2. Importantly, this allows for optimal-time
reporting of h-bounded paths in G that are at least as short as those appearing in G− (C ∪D).
With the shortest h-bounded paths Π′ improving upon those inG−(C∪D) rebuilt, we determin-

istically compute an Õ(n/h)-sized hitting set H of the Θ(h)-hop paths in Π′. One can show that for
every pair (s, t), either π′

s,t ∈ Π′ is a shortest s→ t path in G, or there is a shortest path P = s→ t
in G with a vertex in C ∪D ∪H appearing on each h-hop segment of P . If |C ∪D ∪H| ≤ nα, for
some α < 1, then this allows computing all-pairs shortest paths of the latter kind using O(log n)
min-plus products of matrices whose at least one dimension is bounded by O(nα). Such products
can be computed polynomially faster than products of full n× n matrices, even without resorting
to non-trivial rectangular matrix multiplication algorithms [GU18, HP98]. Sadly, in our case, using
exact min-plus product for this task does not yield an improved worst-case update bound over the
known exact APSP data structures [ACK17, GW20b] with subcubic worst-case update bounds.
However, if we use the (1 + ǫ)-approximate min-plus product [Zwi02] (where ǫ ∈ (0, 1]) we can

perform this computation approximately in sub-nω time Õ(nω(1,α,1)/ǫ). The approximate min-plus
product can also produce matrix multiplication witnesses within the same bound deterministically.
Those, in turn, can be used to recover, for any query pair (s, t), some s→ t path of length at most
(1 + ǫ) · δG(s, t) in optimal O(δG(s, t)) time.
For the special case of all-pairs reachability (i.e., any finite approximation of shortest paths),

another application of matrix multiplication witnesses can yield a stronger path-reporting interface.
Namely, within O(nω(1,α,1)) time we can also explicitly recompute all-pairs reachability trees.
Finally, we remark that, at the end of the day, due to the overheads of the preprocessing and

rebuilding short-hop paths, the worst-case update time of this data structure is faster than the
recompute-from-scratch bound Õ(nω/ǫ) only conditionally, if ω ≥ 2.12.

3.7 Deterministic fully-dynamic transitive closure with an unconditional sub-nω

update bound

For the fully dynamic transitive closure problem, we show that the deterministic sub-nω worst-case
update time can be attained unless ω = 2. We achieve that using a different and simpler approach.
Recall that a randomly sampled hitting set of size Õ(n/h) hits some polynomial number of

fixed ≥ h-hop shortest paths with high probability. Roughly speaking, given any such hitting set
H of size at most nα, α < 1, we can separately compute reachability through H using rectangular
matrix multiplication in O(nω(1,α,1)) time, and delegate maintaining all-pairs h-bounded distances
to the deterministic data structure of Theorem 3.1 with Õ(h2n2) worst-case update time per vertex
update. However, whereas such a hitting set H is trivial to obtain using randomization, it is not
clear whether it can be computed deterministically even in O(nω) time.
Our main idea is to use a weaker – both qualitatively and quantitatively – notion of a hitting

set of ≥ h-hop paths. First of all, for the purposes of reachability, it is enough that for any s, t ∈ V
with δG(s, t) ≥ h, the hitting set H hits an h-edge prefix of some (not necessarily shortest) s → t
path. Such a qualitatively weaker hitting set of size Õ(n/h) can be computed based on all-pairs
reachability trees, computable in Õ(nω) deterministic time [AGMN92].
Second, a larger (but still sublinear) hitting set with the same guarantee can be computed more

efficiently. Specifically, we show that if we are willing to accept a hitting set of size Õ((n/d) ·(n/h)),
for a parameter d ∈ [1, n], where d · h = Ω(n), then it can be constructed deterministically in
Õ(n2 + ndω−1) time. We show that for any value of ω > 2, the parameters h and d can be set so
that the worst-case update time of the data structure is polynomially smaller than nω.
A drawback of this data structure is that it cannot report s → t paths in time linear in the

length of the reported path, let alone in optimal O(δG(s, t)) time. That being said, paths can still
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be reported in O(n) time using a path reporting procedure of [KMS22].

3.8 Randomized improvements

Using randomization, we can slightly improve the update bounds of both the SSSP data structure
and the (1 + ǫ)-approximate APSP data structure. First of all, in both cases, using path counting
modulo a prime shaves an h-factor from most of the terms in the update bounds. Then, the
obtained data structures become Monte Carlo randomized (correct with high probability) but can
still work against an adaptive adversary since the path counts are never revealed.
With randomization, the update/query bound of the fully dynamic SSSP data structure can

be improved even further. Using standard Õ(n/h)-sized randomly sampled hitting sets, one can
replace the O(n2)-sized path collection of Lemma 3.2 with a different O(n2/h)-sized collection
as used in the fully dynamic APSP data structure of [ACK17] (see Lemma 9.1). Overall, the
powerful sampled hitting set makes it possible to avoid two components crucial in the deterministic
data structure: (a) the explicit sublinear congested subset, and (b) sparsifying the surviving paths
from the collection (since the collection has subquadratic size). It is worth noting that since the
distances output by the data structure are exact (and thus uniquely determined by the graph), the
data structure still works against an adaptive adversary. See Section 9 for details.

4 Reporting paths via grouping into blocks

In this section we state a reduction, based on a technique of [KMS22] (with some adjustments
and refinements of ours), for converting data structures maintaining distances into path-reporting
algorithms. The reduction is based on grouping vertices into blocks of size b, where b is a param-
eter in [1, n]. [KMS22] used this technique for converting a subquadratic dynamic single-source
reachability data structure [San04] into a subquadratic (albeit polynomially slower) fully-dynamic
single-source reachability tree reporting data structure against an adaptive adversary. We apply
the technique to h-bounded shortest paths instead. Moreover, by using vertex blocks in a slightly
different way, we obtain a generalization (Lemma 4.2) that is tailored to our use cases. The proofs
from this section can be found in Appendix B.
Let G = (V,E) be a directed graph. Let h ∈ [1, n]. Suppose in Isource(n, h) time one can

construct a data structureD(G) maintaining a graphG under some type of updates (say, single-edge
or vertex updates) and supporting single-source queries computing δhG(s, t) for a given query source s
and all t ∈ V . Suppose D(G) has Usource(n, h) worst-case update time and Qsource(n, h) = Ω(n)
query time, for some non-decreasing functions Isource, Usource, Qsource ∈ O(poly(n, h)).
Our goal is to have a data structure capable of handling the following submatrix predecessor

queries. Given query sets S ⊆ V and Y ⊆ S × V , compute for each (s, t) ∈ Y the predecessor
vertex on some shortest h-bounded s→ t path (if one exists).
Observe that an immediate application of a submatrix predecessor query (S, S×V ) is computing

single-source h-bounded shortest paths from s to v for all s ∈ S and v ∈ V such that δG(s, v) ≤ h.

Lemma 4.1. For any b ∈ [1, n], there exists a dynamic data structure maintaining G and supporting
submatrix predecessor queries (S, Y ) in

O
(n
b
· |S| ·Qsource(n, h) + |Y | · b

)

time. The update and initialization times are O
(
n
b · Usource(n, h)

)
and O

(
n
b · Isource(n, h)

)
resp.
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Now suppose that in addition to D(G), there is a data structure D′(G) supporting queries
about δhG(s, t) for arbitrary pairs s, t ∈ V in Qpair(n, h) time and maintaining a graph G subject to
the same type of updates as D(G) with worst-case update time Upair(n, h) and initialization time
Ipair(n, h). We can then improve the bound of Lemma 4.1.

Lemma 4.2. For any b ∈ [1, n], there exists a dynamic data structure maintaining G and supporting
submatrix predecessor queries (S, Y ) in

O (|S| ·Qsource(n, h) + |Y | ·Qpair(n, h) · log n+ |Y | · b)

time. The update and initialization times are O
(
Usource(n, h) +

n
b · Upair(n, h)

)
and

O
(
Isource(n, h) +

n
b · Ipair(n, h)

)
respectively.

Remark 4.3. The data structures of Lemmas 4.1 and 4.2 are deterministic if the assumed data
structures D(G) and D′(G) are deterministic. More generally, if the data structures D(G) and
D′(G) produce correct answers within the assumed bounds against an adaptive adversary, so do the
obtained submatrix predecessor data structures.

Supporting induced subgraph queries. Later on we will also require reporting shortest
h-bounded paths in an induced subgraph G[W ] of a fully dynamic G, where W ⊆ V is also
dynamic. This can be achieved via a simple yet powerful reduction described in the following.

Lemma 4.4. Let h ∈ [1, n]. Let D(G) be a data structure maintaining a fully dynamic unweighted
digraph G = (V,E) subject to single-edge updates in U(n, h) time per update, and possibly also
vertex updates, and supporting submatrix predecessor queries (S, Y ) in Q(|S|, |Y |) time.
Let W ⊆ V be a dynamic subset. Then there exists a data structure D′ supporting the same

set of updates to G and supporting submatrix predecessor queries (S, Y ) in the induced subgraph
G[W ] in O(Q(|S|, |Y |)) time. D′(G) processes updates to G within asymptotically the same time
that D(G) needs for processing the respective updates to G. Moreover, a single-element update to W
can be performed in O(U(n, h)) time.

The details of the reduction can be found in Appendix B.

5 Maintaining most h-bounded shortest paths under deletions

In this section we show that with the help of algebraic fully dynamic distance data structures
storing G, one can preprocess G in subcubic time so that most of the h-bounded shortest paths in
a very large subgraph of G are intact by any sufficiently small adversarially chosen set of deleted
vertices.
We start with the following lemma inspired by the construction of the fully dynamic APSP

algorithms of [GW20b].

Lemma 3.2. Let G = (V,E) be a directed graph. Let h, τ ∈ [1, n]. Assume one has constructed a
deterministic data structure storing G and a subset W ⊆ V initially equal to V , and supporting:

(1) updates removing a vertex from W ,

(2) queries computing shortest h-bounded paths in G[W ] from a query vertex s to all v ∈ V .

Suppose one can perform updates in U(n, h) worst-case time, and queries in Q(n, h) time.
In O(n2h + (n/τ) · U(n, h) + n · Q(n, h)) time one can compute a set C ⊆ V of size O(n/τ),

and a collection of paths Π in G, containing at most one path πs,t for all s, t ∈ V , such that:
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(a) For any s, t ∈ V , if δhG−C(s, t) 6=∞, then πs,t ∈ Π exists and is an s→ t path in G of length

at most δhG−C(s, t).

(b) For any u ∈ V , there exist at most O(hn · τ) paths πs,t ∈ Π with u ∈ V (πs,t).

After the algorithm completes, the assumed data structure is reverted back to the state when W = V .

Proof. Initially we put C = ∅ and Π = ∅. We will gradually extend C and Π to make the condition
(a) satisfied for more and more pairs (s, t). We maintain the invariant that the setW in the assumed
data structure equals V \ C. That is, whenever a new element is added to C, this is reflected in
the data structure by a deletion to W .
Moreover, let α(v) := |{π ∈ Π : v ∈ V (π)}|. Initially all values α(·) are zero. We maintain an

invariant that α(v) ≤ 2nhτ for all v ∈ V . By this invariant, (b) will follow when we are done.
We process the sources s ∈ V one by one. For a fixed source s, we start by moving to C all the

vertices v ∈ V not yet in C such that α(v) > nhτ . Next, we compute shortest h-bounded paths
from s to all v ∈ V in G[V \ C] in Q(n, h) time and add them as the respective paths πs,t (if they
exist) to Π. We also update the counters α(·). Every α(v), for v ∈ V \C, grows by at most n when
processing the source s, and thus afterwards we have α(v) ≤ nhτ + n ≤ 2nhτ , so the invariant is
satisfied. Since the set C may only grow in the process, and thus the values δhG−C(·, ·) may only
increase, the paths already in Π satisfy (a). Moreover, after processing the source s, we ensure that
the condition (a) is satisfied also for all pairs (s, t), t ∈ V .
Finally, to see that |C| = O(n/τ), observe that for every source

∑
v∈V α(v) grows by at most

n(h+1), as each path added to Π has at most h+1 vertices. As a result, at the end
∑

v∈V α(v) ≤
n2(h+ 1) ≤ 2n2h. Since each c ∈ C satisfies α(c) > nhτ , we obtain |C| ≤ 2n/τ .
Once we have completed computing (C,Π), we revert all the changes to the assumed data

structure, so that W is again equal to V . This can be done within the same bound as the the
described computation since the assumed update/query bounds are worst-case.

We will repeatedly use the following deterministic algebraic data structure maintaining
h-bounded distances of a fully dynamic graph G subject to single-edge updates and/or vertex
updates. This data structure encapsulates and extends various earlier developments of [San04,
San05, BFN22]. The full proof is given in Appendix A.

Theorem 3.1 (Modification to [San05], proof in Appendix A). Let G = (V,E) be a fully dynamic
unweighted digraph. Let h ∈ [1, n]. Let Y ⊆ V × V be a dynamic set. For any µ, δ ∈ [0, 1], there
exists a deterministic data structure maintaining the values δhG(s, t) for all (s, t) ∈ Y and supporting:

• single-edge updates to G in Õ(h2 · (nω(1,µ,1)−µ + n1+µ + |Y |)) worst-case time,

• batches of at most nδ vertex updates to G in Õ(h2nω(1,δ,1)) worst-case time,

• single-element insertions to Y in Õ(h2nµ) time,

• removing elements from Y in O(1) time.

The path-reporting data structure T . Let us apply the construction of Lemma 4.2 on top of
the the data structure of Theorem 3.1, and subsequently augment it with induced subgraph opera-
tions as described in Lemma 4.4. This way, we obtain a data structure T required by Theorem 3.2.
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More specifically, in terms of Lemma 4.2, the data structure of Theorem 3.1 satisfies

Qsource(n, h) = Õ(h2n1+µ),

Qpair(n, h) = Õ(h2nµ),

Usource(n, h) = Upair(n, h) = Õ(h2(n1+ω(1,µ,1)−µ + n1+µ)).

Consequently, for any chosen b ∈ [1, n], the data structure T supports single-edge updates to G
and switching off a vertex (via its removal from W ⊆ V ) in worst-case time

U(n, h) = O

(
h2n1+ω(1,µ,1)−µ

b
+

h2n2+µ

b

)
.

It also supports reporting h-bounded shortest path from any single source s ∈ V in

Q(n, h) = O
(
h2n1+µ log n+ nb

)

time, by issuing a submatrix predecessor query ({s}, {(s, v) : v ∈ V }). By plugging these bounds
in Lemma 3.2 and noting that n ·Q(n, h) = Ω(n2h), we conclude with the following theorem which
formally captures what we mean by preserving most h-bounded shortest paths in a large subgraph
of G under a bounded number of deletions.

Theorem 5.1. Let h, τ, b ∈ [1, n] and µ ∈ [0, 1]. Assume G is maintained in a data structure T of
Theorem 3.1 extended as described in Lemmas 4.2 and 4.4 (for the given b). Then, in time

Õ

(
h2n2+ω(1,µ,1)−µ

bτ
+

h2n3+µ

bτ
+ n2b

)
,

one can deterministically compute a pair (C,Π), where C ⊆ V is of size O(n/τ), and Π is a
collection of paths in G, containing at most one path πs,t for all s, t ∈ V , such that:

(a) For any i = 1, . . . , k and s, t ∈ V , if δhG−C(s, t) 6= ∞, then πs,t ∈ Π exists and is an s → t

path in G of length at most δhG−C(s, t).

(b) For any u ∈ V , there exist at most O(hn · τ) paths πs,t ∈ Π with u ∈ V (πs,t).

In our concrete applications, we will set b to be slightly sublinear and both h and τ to be small-
polynomial so that n− o(n) vertices of G remain after removing the set C, and a small-polynomial
∆ adversarial vertex deletions can destroy at most O(∆hτn) = o(n2) paths in Π.

6 Fully dynamic single-source shortest paths

In this section we describe our deterministic fully dynamic SSSP data structure for unweighted
graphs with truly subquadratic update and query time.

Phases and global data structures. Let h, τ,∆, b ∈ [1, n] and µ, ν ∈ [0, 1] be parameters to
be set later. The data structure operates in phases of ∆ single-edge updates. It also maintains two
global dynamic data structures shared between the phases:
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• A data structure A of Theorem 3.1 with µ := ν always storing the current graph G. Every
edge update issued to G is immediately passed to A. The dynamic set Y ⊆ V × V of vertex
pairs of interest in A, to be defined later, is initialized at the beginning of a phase. Moreover,
the set Y grows by at most O(τhn) pairs per update in the worst-case. However, we will
guarantee that the size of Y is bounded by O(n2/τ +∆τhn) at all times. By Theorem 3.1,
the worst-case update time of A is:

Õ(h2 ·(nω(1,ν,1)−ν+n1+ν+ |Y |)+h2 ·τhn1+ν) = Õ

(
h2nω(1,ν,1)−ν +

h2n2

τ
+ h3τn · (∆ + nν)

)
.

• A data structure T , as required by Theorem 5.1 and described in Section 5, with parameters
h, b, µ. Every edge update issued to G is immediately passed to T . Recall that the cost of
updating T incurred by a single update to G is:

U(n, h) = O

(
h2n1+ω(1,µ,1)−µ

b
+

h2n2+µ

b

)
.

While the phase proceeds, the setW in the data structure T (describing the induced subgraph
of interest) equals V and it is only manipulated when a phase initializes. Similarly, queries
to T will only be issued at the beginning of a phase.

Initializing a phase. For a fixed current phase, let G0 denote the graph G at the beginning
of that phase. We always use G to refer to the current graph, i.e., with all updates issued so far
applied. Moreover, when a phase proceeds, let D ⊆ V be the set of endpoints of the edges affected
in the current phase, that is, the edges that have been inserted or deleted during the current phase.
Note that by the definition of D, we have |D| ≤ ∆ and G0 −D = G−D ⊆ G at all times.
At the beginning of a phase, we apply Theorem 5.1 to obtain a pair (C,Π), where C ⊆ V is

a “congested subset” of size O(n/τ), and Π is a collection of paths in G0. By Theorem 5.1, the
amortized cost of such a preprocessing step, happening once per ∆ updates, is:

Õ

(
n2h

∆
+

h2n2+ω(1,µ,1)−µ

bτ∆
+

h2n3+µ

bτ∆
+

n2b

∆

)
. (1)

We next deterministically compute an Õ(n/h)-sized hitting set H of those paths πs,t ∈ Π that
have at least ⌊h/2⌋ edges. For this, we use the following folklore result (see, e.g., [Zwi02]).

Lemma 6.1. Let X be a ground set of size n and let Z be a family of subsets of X, each with
at least k elements. Then, in O

(∑
Z∈Z |Z|

)
time one can deterministically compute a hitting set

R ⊆ X of size O((n/k) · log n) such that R ∩ Z 6= ∅ for all Z ∈ Z.

The total size of Π is O(n2h) and each path in Π is a simple path; therefore, a desired set H
can be computed in O(n2h) time. Again, this incurs an amortized cost of O(n2h/∆) per update.
which is asymptotically the same as the first term in (1).
With the hitting set H in hand, for each πs,t with |πs,t| ≥ ⌊h/2⌋, we arbitrarily pick a single

representative vertex β(πs,t) ∈ H ∩ V (πs,t). If |πs,t| < ⌊h/2⌋, we put β(πs,t) :=⊥.
Let ΠD denote the subset of paths πs,t ∈ Π such that V (πs,t) ∩ D 6= ∅. Recall that at the

beginning of the phase D = ∅, so ΠD equals ∅ initially. The set ΠD (seen as pointers to the paths
in Π) can be easily extended upon insertions to D (caused by updates to G) in optimal time if
additional O(n2h) vertex-path pointers are stored for the preprocessed collection Π.
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For a simple path p and a, b ∈ V (p) let p[a, b] denote the a → b subpath of p. Throughout a
phase, for each z ∈ H and v ∈ V , we maintain two multisets:

Ψto
z (v) = {|πs,v[z, v]| : s ∈ V such that πs,v ∈ Π \ΠD and β(πs,v) = z},

Ψfrom
z (v) = {|πv,t[v, z]| : t ∈ V such that πv,t ∈ Π \ΠD and β(πv,t) = z}.

There are O(|H|n) = Õ(n2/h)multisets Ψto
z (v),Ψfrom

z (v) and their total size is bounded by 2|Π|, i.e.,
O(n2). At the beginning of the phase, these multisets can be initialized in O(n2) time, which, again,
is negligible (amortized) to the cost (1). We store them in data structures allowing polylogarithmic
deletions and minimum maintenance, for example balanced binary search trees.
Finally, we are ready to define the set Y of pair (s, t) for which we maintain values δhG(s, t) in

the data structure A. After the initialization step of a phase completes, at all times Y contains:

• all pairs (u, v) ∈ (D × V ) ∪ (V ×D),

• all pairs (u, v) ∈ (C × V ) ∪ (V × C),

• all pairs (s, t) ∈ V × V such that πs,t ∈ ΠD.

Since D = ∅ and ΠD = ∅ at the beginning of the phase, a phase’s initialization only potentially
empties Y inA and subsequently inserts all O(n2/τ) pairs (C×V )∪(V ×C) into Y . By Theorem 3.1,
this incurs an additional amortized update cost of

Õ

(
h2n2+ν

τ∆

)
.

Performing updates. While the phase proceeds, the sets D and ΠD, and thus also Y , grow.
However, recall from Theorem 5.1 that |D| ≤ ∆ implies that at all times we have:

|ΠD| = O(∆ · hτn),

which also yields the promised O(n∆ + ∆hτn + n2/τ) = O(n2/τ + ∆hτn) bound on the size of
the set Y . Also, more specifically, at most O(hτn) new paths may be inserted to ΠD per update,
which is also why Y may grow by at most O(hτn) pairs per update in the worst-case. The changes
to the set Y are immediately passed to the data structure A.
When a new path πs,t is added to ΠD, and β(πs,t) = z, the two multisets Ψto

z (t) and Ψfrom
z (s)

have to be updated by issuing a single-element deletion. Therefore, maintaining the multisets costs
Õ(hnτ) worst-case time per update, which is dominated by the update cost of the data structure A.
We are now ready to state the summarized amortized update cost of the data structure:

Õ

(
n2h

∆
+

h2n(nω(1,µ,1)−µ + n1+µ)

b
·
(
1 +

n

τ∆

)
+

n2b

∆
+ h2nω(1,ν,1)−ν +

h2n2

τ

+h3τn · (∆ + nν) +
h2n2+ν

τ∆

)
.

Answering queries. Suppose a query for distances from a source vertex s ∈ V is issued. We
first temporarily add all pairs (s, t), where t ∈ V , to the set Y so that this change is reflected in
the data structure A. Let Ys be the set Y augmented this way. Recall that the augmentation of Y
takes Õ(h2n1+ν) time, and the change can be reverted within the same bound.
Next, we build an auxiliary graph X = (V, F ) with the following edges:
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• an edge uv of weight δhG(u, v) for all (u, v) ∈ Ys,

• an edge zt of weight min(Ψto
z (t)) for all (z, t) ∈ H × V ,

• an edge sz of weight min(Ψfrom
z (s)) for all (s, z) ∈ V ×H.

Recall that the weights of edges of the former type are maintained in the data structure A. The
graph X has O(|H|n+ |Y |) = Õ(n2/h+∆hτn+n2/τ) edges. The query procedure is to simply run
near-linear time Dijkstra’s algorithm on the graph X. The following lemma establishes correctness.

Lemma 6.2. For all t ∈ V , δG(s, t) = δX(s, t).

Proof. First of all, note that for all uv ∈ E(X), the weight of an edge uv in X equals the weight of
some u→ v path in G. As a result, δG(u, v) ≤ wX(uv), which establishes δG(s, t) ≤ δX(s, t) easily.
Let us now prove that δX(s, t) ≤ δG(s, t). Consider any shortest s → t path P in G. First,

split P into maximal segments P1 · . . . · Pk not passing through any of the vertices C ∪ D as
intermediate vertices. In other words, for each Pi = ui → vi, we have V (Pi) ∩ (C ∪D) ⊆ {ui, vi}
and ui ∈ C ∪D∪{s}. We will prove that δX(ui, vi) ≤ δG(ui, vi). By summing through i, δX(s, t) ≤
δG(s, t) will follow easily.
Consider some Pi. We have |Pi| = δG(ui, vi). If |Pi| ≤ h, then δG(ui, vi) = δhG(ui, vi) and by

ui ∈ C ∪D ∪ {s}, (ui, vi) ∈ Ys. As a result, there is an edge uivi of weight δG(ui, vi) in X.
Suppose |Pi| > h. Split Pi arbitrarily into subpaths Q1, . . . , Ql such that ⌊h/2⌋ ≤ |Qj| ≤ h for

all j = 1, . . . , l. Consider some j and let Qj be an xj → yj path. We will prove that δX(xj, yj) ≤
|Qj | = δhG(xj, yj). It will follow that

δX(ui, vi) ≤
∑

j

δX(xi, yj) ≤
∑

j

δhG(xj , yj) =
∑

j

δG(xj , yj) = δG(ui, vi),

as desired.
If (xj , yj) ∈ Ys, then there is an edge xjyj of weight δ

h
G(xj , yj) = δG(xj, yj) in X which imme-

diately implies δX(xj , yj) ≤ δhG(xj, yj). Otherwise, we have (xj , yj) /∈ Ys. Then by the definition of
Pi and Ys, we obtain that V (Qj) ∩ (C ∪ D) = ∅. This means that Qj ⊆ G − (C ∪D) ⊆ G0 − C
and thus δhG0−C(xj , yj) ≤ δG(xj, yj) as Qj is a shortest path in G. Moreover, since (xj , yj) /∈ Ys

and δhG0−C(xj, yj) < ∞, πxj ,yj ∈ Π \ ΠD, i.e., πxj ,yj exists and does not contain a vertex from D.

As a result, πxj ,yj ⊆ G, i.e., δG(xj, yj) ≤ |πxj ,yj |. But we also have |πxj ,yj | ≤ δhG0−C(xj , yj) by
Theorem 3.2, so we obtain:

δG(xj , yj) ≤ |πxj ,yj | ≤ δhG0−C(xj, yj) ≤ δG(xj , yj).

All the inequalities above have to be in fact equalities. This proves that πxj ,yj is a shortest xj →
yj path in G. Finally, recall that |πxj ,yj | = δG(xj , yj) ≥ ⌊h/2⌋. Consequently, there exists a
vertex z = β(πxj ,yj) ∈ H on the path πxj ,yj ∈ Π \ ΠD. We conclude δG(xj , yj) = |πxj ,yj [xj , z]| +
|πxj ,yj [z, yj ]|. By the definition of the multisets Ψ

from
z (xj) and Ψto

z (yj), |πxj ,yj [xj , z]| ∈ Ψfrom
z (xj)

and |πxj ,yj [z, yj ]| ∈ Ψto
z (yj). Consequently, wX(xj , z) ≤ |πxj ,yj [xj , z]| and wX(z, yj) ≤ |πxj ,yj [z, yj ]|,

and thus there is a path xj → yj of weight wX(xj , z) + wX(z, yj) ≤ δG(xj , yj) in X.

Setting the parameters. Let us now try to set the parameters so that the maximum of the
update and query time is minimized. The only term incurred by the query procedure that is not
dominated by the terms of the previously obtained update bound is Õ(n2/h). Moreover, it can
be easily verified that it is best to set µ := ρ, where ρ ≈ 0.529 is the unique value such that
ω(1, ρ, 1) = 1 + ρ.
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This way, we obtain the following combined updated/query bound:

O

(
n2h

∆
+

h2n2+ρ

b
·
(
1 +

n

τ∆

)
+

n2b

∆
+ h2nω(1,ν,1)−ν +

h2n2

τ
+ h3τn · (∆ + nν) +

h2n2+ν

τ∆
+

n2

h

)
.

By setting the parameters h = n0.031, ∆ = n0.78, t = n0.093, b = n0.749, ν = ρ obtained using the
online balancing tool [Bra], we get an O(n1.969) worst-case update and query bounds.
It is also interesting to see what is the exact dependence on ω we can get. One can prove that

for large enough ∆ it is optimal to set ν := ρ so that nν < ∆, and also b := ∆/h, and τ := h3.
Then, we get the bound

Õ

(
hn2+ρ

∆
+

n3+ρ

∆2
+∆h6n+

n2

h

)

By balancing the two last terms, we get∆ = n/h7. Then the first term (h8n1+ρ) becomes dominated
by the second (h14n1+ρ). By further balancing the latter with n2/h we get h = n(1−ρ)/15. The final
bound becomes (by ρ ≤ 1

4−ω ):

Õ
(
n2− 1−ρ

15

)
⊆ Õ

(
n2− 3−ω

60−15ω

)
.

This bound is subquadratic assuming any truly subcubic matrix multiplication algorithm is used
and equals Õ(n2−1/30) if ω = 2 (then, ρ = 0.5).

Deamortization. The heavy super-quadratic preprocessing invoking Theorem 5.1, initializing
the set Y , and constructing the hitting set (which are the only source of amortization here) happens
in a coordinated way, once every ∆ updates. Consequently, the data structure can be deamortized
using a standard technique of running two copies of the data structure in parallel and spreading out
the reset computation over several updates. While one copy of the algorithm is performing the reset,
the other copy is used to answer the queries. For details, we refer to e.g., [ACK17, BNS19, Tho05].
We have thus proved:

Theorem 6.3. Let G = (V,E) be unweighted digraph. There exists a deterministic data structure
supporting fully dynamic single-edge updates to G and computing exact distances from an arbitrary
query source s ∈ V to all other vertices in G in O(n1.969) worst-case time.
If ω = 2, the bound becomes Õ(n2−1/30).

SSSP tree reporting. We now explain how the data structure of Theorem 6.3 can be extended
to also output a single-source shortest paths tree in subquadratic time, albeit at the cost of an
additional polynomial overhead.
We apply Lemma 4.1 with h := n on top of the obtained data structure maintaining single-

source distances. In terms of Lemma 4.1, we have Qsource(n, n) = O(n1.969) by Theorem 6.3, and
we want to support queries of the form S = {s}, Y = {s} × V , for a query source s ∈ V . As
a result, for any b ∈ [1, n], there exists a data structure supporting single-edge updates to G in
O(n2.969/b) time and reporting predecessors of shortest n-bounded paths from any source vertex s
in O(n2.969/b+nb) time. Clearly, the predecessors yield an SSSP tree from s. By setting b = 0.985,
we obtain a deterministic tree-reporting SSSP data structure with O(n1.985) worst-case update and
query time.
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7 Fully dynamic path-reporting transitive closure and approxi-

mate APSP

In this section, we consider the fully dynamic transitive closure and (1 + ǫ)-approximate APSP
problems (in unweighted digraphs) under vertex updates to G. Under the assumption that ω ≥ 2.12,
we describe a deterministic data structure with O(nω−γ) worst-case update time, for some γ > 0
dependent on ω, that explicitly maintains the transitive closure of a matrix of distance estimates.
In the case of approximate distances, the data structure also supports reporting any s → t path
of length at most (1 + ǫ) · δG(s, t) in optimal O(δG(s, t)) time. For reachability, an even stronger
reporting interface is achieved: reachability trees in G from all possible sources s ∈ V are explicitly
stored after each update. Clearly, this also allows for reporting paths in G between arbitrary pairs
of vertices in optimal time.
The overall approach is similar as in the fully dynamic SSSP data structure from Section 6.

Namely, we will operate in phases of length ∆ and use analogous global data structures shared
among the phases. Every phase starts by computing a pair (C,Π) as given by Theorem 5.1.

The data structure T . Recall that the global data structures A and T in Section 6, both
implemented as data structures of Theorem 3.1 (with possibly some extensions of Section 4), rely
only on single-edge updates (so that they reflect G at all times) and vertex switch-offs. Here, we
will use the data structure T from Section 6, required by Theorem 5.1, in a slightly different way.
Instead of passing the updates to G to T immediately, we will only do so at the end of a phase,

that is, in a batch of at most ∆ updates. This is done with the vertex batch-update operation of
Theorem 3.1. To see that this is sufficient, recall that the only purpose of T was to construct the
set C and a collection of paths Π. For this task, T only required supporting switching vertices
off interleaved with h-bounded-shortest paths queries from a single source. We thus require T to
reflect the current graph G only once per ∆ updates. Since a batch update is performed on T only
once per ∆ = nδ updates, this incurs an Õ

(
h2nω(1,δ,1)+1/(∆b)

)
worst-case cost per update. As a

result, the total per-update cost of initializing a phase is now:

O

(
h2nω(1,δ,1)+1

∆b
+

h2n2+ρ

b
·
(
1 +

n

∆τ

)
+

n2b

∆

)
.

The set Y . We also redefine the set Y ⊆ V ×V , for a fixed phase, to only contain the pairs (s, t)
such that πs,t ∈ ΠD. As a result, by Theorem 5.1, we have |Y | = O(∆hτn) at all times.

The predecessor reporting data structure B. Let S and P be two data structures of The-
orem 3.1, for the parameter µ to be set later, responsible for maintaining h-bounded distances in
G. While the phase proceeds, these data structures will not accept edge/vertex updates. Only at
the end of the phase they are updated with a batch of ∆ vertex updates from the current phase.
The data structures S and P have different purposes. S is initialized so that it can maintain

δhG(s, t) explicitly for all n
2 pairs s, t ∈ V (i.e., Y := V × V in terms of Theorem 3.1), whereas P

is capable of answering arbitrary δhG(s, t) queries in Õ(h2nµ) time. This way, S allows very fast

queries at the cost of Õ(h2n2) worst-case update time, whereas P answers queries slower, but can
handle updates more efficiently, in Õ(h2(nω(1,µ,1)−µ + nµ)) worst-case time.
We use data structures S and P to construct a predecessor reporting data structure B of

Lemma 4.2 storing the graph G − D, for b := β, where β ∈ [1, n] is a parameter to be set later.
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Specifically, we first apply Lemma 4.2, and then also Lemma 4.4 on top of that to enable cheap
insertions to D (we model G −D as the induced subgraph G[W ] with W := V \D). The general
purpose of B is to reconstruct h-bounded shortest paths in G − D. Note that in terms of the
quantities used in Lemma 4.2, we have Qsource(n, h) = O(n), Usource(n, h) = Õ(h2n2), Qpair(n, h) =

Õ(h2nµ) and Upair(n, h) = Õ(h2(nω(1,µ,1)−µ + n1+µ)). Therefore, by issuing a query with S = V
(which trivially guarantees Y ⊆ S × V ), B can compute a predecessor vertex qs,t on some shortest
h-bounded s→ t paths for all (s, t) ∈ Y such that δhG−D(s, t) <∞ in time

Õ(n2 + (h2nµ + β) · |Y |).

Adding new vertices to D corresponds to removal of a vertex from the subset W issued to the data
structure B, and thus costs

Õ(h2n2 + (n/β) · h2(nω(1,µ,1)−µ + n1+µ))

time. Similarly, the batch-vertex update to B at the end of a phase costs Õ
(
h2nω(1,δ,1)+1

β∆

)
amortized

time per update.

Computing all-pairs distance estimates upon update. After an update, we compute the
respective predecessors qs,t for all (s, t) ∈ Y using B. We now introduce a certain collection of paths
Π′ = (π′)s,t∈V derived from Π, D, and the computed predecessors. For each s, t ∈ V , π′

s,t is either
a path in G−D, or is left undefined (set to ⊥). Specifically, we set:

π′
s,t =





πs,t if πs,t ∈ Π \ΠD,

π′
s,qs,t · qs,tt if πs,t ∈ ΠD and δ

h
G−D(s, t) 6=∞ and π

′
s,qs,t 6=⊥,

⊥ otherwise.

The definition is valid since πs,t ∈ ΠD and δhG−D(s, t) 6= ∞ implies that (s, t) ∈ Y and thus

δhG−D(s, qs,t) = δhG−D(s, t) − 1. Note that the collection Π′ can be explicitly constructed from the
definition in O(n2h) time once the predecessors qs,t are computed. For simplicity, define | ⊥ | =∞.

Lemma 7.1. For any s, t ∈ V such that no shortest h-bounded s→ t path in G goes through C∪D,
we have |π′

s,t| = δhG(s, t).

Proof. Recall that we denote by G0 the graph at the beginning of the current phase.
First consider the case δhG(s, t) =∞. Then either πs,t /∈ Π which implies π′

s,t =⊥, or δ
h
G0−C(s, t) <

∞ and thus πs,t ∈ ΠD by δ
h
G−D(s, t) =∞. However, in such a case we set π

′
s,t :=⊥ as well.

Now let us assume that δhG(s, t) is finite. We prove the claim by induction on δhG(s, t). Since
no shortest s → t path goes through C ∪D, δhG(s, t) = δhG−D(s, t) = δhG−(C∪D)(s, t) ≥ δhG0−C(s, t).

Hence, we obtain that πs,t ∈ Π exists and has length at most δhG0−C(s, t) ≤ δhG(s, t). If πs,t ∈ Π\ΠD ,

then π′
s,t = πs,t ⊆ G − D ⊆ G, so indeed we have |π′

s,t| = δhG(s, t). Otherwise, πs,t ∈ ΠD. By

δhG−D(s, t) < ∞, qs,t exists and δhG(s, qs,t) = δhG(s, t) − 1. Since no shortest h-bounded s → t path
in G goes through C∪D, neither does any shortest h-bounded s→ qs,t path in G. By the inductive
assumption we have that |π′

s,qs,t| = δhG(s, qs,t). As a result, the path π′
s,t = π′

s,qs,t · qs,tt indeed has

length δhG(s, t).

With the collection Π′ in hand, in O(n2h) time we can deterministically compute an Õ(n/h)-
sized hitting set H ⊆ V of all π′

s,t satisfying |π
′
s,t| = h using Lemma 6.1.
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Lemma 7.2. Let s ∈ V \ (C ∪D ∪H) and t ∈ V be such that δG(s, t) <∞. Some shortest s→ t
path in G either:

(a) is equal to π′
s,t, or

(b) has a prefix π′
s,q · qr for some r ∈ C ∪D ∪H, where q = r or qr ∈ E(G) and |π′

s,q · qr| ≥ 1.

Proof. First suppose that δG(s, t) ≤ h, i.e., δhG(s, t) 6=∞.
If no shortest s→ t path in G goes through C ∪D, then by Lemma 7.1, π′

s,t is a shortest path,
i.e., item (a) is satisfied.
Let us thus assume that some shortest s→ t path goes through C∪D. There exists an r ∈ C∪D

such that δG(s, t) = δG(s, r) + δG(r, t); if there are many such r, pick one with minimal δG(s, r).
By s /∈ C ∪D, δG(s, r) ≥ 1. If δG(s, r) = 1, then some shortest s → t path starts with the edge
sr, i.e., item (b) is satisfied with q = s. Otherwise, if δG(s, r) ≥ 2, then by the choice of r, any
s → r path has no vertices in C ∪D except r. As a result, if q ∈ V \ (C ∪D) is the penultimate
vertex on one such s→ r path, we obtain that no s→ q path in G contains a vertex from C ∪D.
By applying Lemma 7.1 to (s, q), we obtain that π′

s,q is a shortest s→ q path in G. Therefore, we
conclude that some shortest s→ t path in G has a prefix π′

s,q · qr, where r ∈ C ∪D, as desired.
Now consider the case δG(s, t) > h. Let x ∈ V be such that δG(s, t) = δG(s, x) + δG(x, t) and

δG(s, x) = h. We have already proved the lemma for the pair (s, x). If there is a shortest s → x
path satisfying (b), there is also clearly a shortest s → t path satisfying (b). It may also happen
that π′

s,x is a shortest s→ x path in G. But then, there exists a vertex u ∈ H, u 6= s, on π′
s,x. By

applying the lemma once again to the pair (s, u) satisfying δG(s, u) ≤ h, we obtain that either (b)
holds for (s, u) and thus also for (s, t), or (a) holds for (s, u), which together with s /∈ H implies
that |π′

s,u| ≥ 1 and thus (b) holds for (s, t) with q = r = u ∈ H.

By proceeding symmetrically, one can prove a “suffix” version of Lemma 7.2:

Lemma 7.3. Let s ∈ V and t ∈ V \ (C ∪D ∪H) be such that δG(s, t) <∞. Some shortest s→ t
path in G either:

(a) is equal to π′
s,t, or

(b) has a suffix rq · π′
q,t for some r ∈ C ∪D ∪H, where q = r or rq ∈ E(G) and |rq · π′

q,t| ≥ 1.

Let us now recall the definition of the min-plus product ⋆. If A is an a× b matrix and B is an
b× c matrix, then A ⋆ B is a a× c matrix such that (A ⋆ B)i,j = minbk=1{Ai,k +Bk,j}.
Define a matrix A ∈ {0, . . . , h,∞}n×n as follows:

Au,v =





0 if u = v

1 if u 6= v and uv ∈ E(G),

|π′
u,v| if u 6= v and uv /∈ E(G) and π′

u,v 6=⊥,

∞ otherwise.

Let A[S, T ] denote the submatrix of A with rows S and columns T , where S, T ⊆ V . Let
X := C ∪D ∪H. Define the matrix A∗ as:

A∗ = min (A, (A ⋆ A[V,X]) ⋆ (A[X,V ] ⋆ A ⋆ A[V,X])n ⋆ (A[X,V ] ⋆ A)) , (2)

where the matrix powering is using the min-plus matrix product ⋆, and the minimum is element-
wise.
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Lemma 7.4. For any s, t ∈ V , A∗
s,t = δG(s, t).

Proof. Note that Au,v ≥ δG(u, v) for all u, v ∈ V . Moreover, the min-plus product of any two
matrices with rows and columns in V satisfying this condition also satisfies this condition. This
proves that A∗

u,v ≥ δG(u, v).
Let us now prove that A∗

s,t ≤ δG(s, t). We first consider the case s, t ∈ X. We proceed by

induction on d := δG(s, t) and prove that if B := A[X,V ] ⋆ A ⋆ A[V,X], then (Bd)s,t ≤ δG(s, t)
(where the powering is using the min-plus product ⋆). Let us first note that since A has zeros on
the diagonal, (Bi+1)s,t ≤ (Bi)s,t for any i ≥ 0 and Bs,t ≤ As,t.
The identity matrix I for the min-plus product has zeros on the diagonal and ∞ everywhere

else. If d = 0, then s = t and B0 = I, so indeed (Bd)s,t = Is,s = 0.
Suppose d ≥ 1. Let u ∈ V be any vertex such that su ∈ E(G) and δG(u, t) = d − 1. We have

As,u = 1 and thus also Bs,u ≤ 1. If u ∈ X, then both Bs,u ≤ 1 and (Bd−1)u,t ≤ d− 1 hold by the
inductive assumption, and thus indeed (Bd)s,t ≤ d.
Now assume u /∈ X. By Lemma 7.2 applied to (u, t), we have two cases. If case (a) applies,

π′
u,t 6=⊥, so Bu,t ≤ Au,t ≤ |π

′
u,t| = δG(u, t) ≤ d − 1 and thus again we obtain (Bd−1)u,t ≤ d − 1

and consequently (Bd)s,t ≤ d. If case (b) applies, then for some q, r, where q ∈ V , r ∈ X
and δG(r, t) ≤ d − 1, we have δG(s, r) = |su · π′

u,q · qr|, where possibly q = r or s = q. But
this implies Bs,r ≤ (A[X,V ])s,u + Au,q + (A[V,X])q,r) ≤ δG(s, r). By the inductive assumption,
(Bd−1)r,t ≤ δG(r, t), so (B

d)s,t ≤ δG(s, r) + δG(r, t) = δG(s, t) as well.
We have therefore proved that for any s, t ∈ X, δG(s, t) < ∞ implies that (Bn)s,t ≤ δG(s, t).

This in turn implies A∗
s,t ≤ δG(s, t) for such pairs (s, t).

If s /∈ X and t ∈ X, then by Lemma 7.2, either (a) π′
s,t is a shortest s→ t path, which implies

As,t ≤ δG(s, t), or (b) for some q ∈ V and r ∈ X with δG(r, t) < δG(s, t), there is a shortest s → t
path starting with π′

s,q · qr, which implies δG(s, t) = δG(s, r) + δG(r, t) and As,q + Aq,r ≤ δG(s, r).
In both cases we conclude ((A ⋆ A[V,X]) ⋆ Bn)s,t ≤ δG(s, t). By Lemma 7.3 we can symmetrically
prove that if s ∈ X and t /∈ X, then (Bn ⋆ (A[X,V ] ⋆ A))s,t ≤ δG(s, t).
Finally, if s /∈ X and t /∈ Y , then we analogously argue that either As,t ≤ δG(s, t) or for some

r ∈ X we have δG(s, t) = δG(s, r)+ δG(r, t), (A⋆A[V,X])s,r ≤ δG(s, r) and (B
n ⋆ (A[X,V ]⋆A))r,t ≤

δG(r, t), which implies that ((A ⋆ A[V,X]) ⋆ Bn ⋆ (A[X,V ] ⋆ A))s,t ≤ δG(s, t). Therefore, we con-
clude that for the general case s, t ∈ V , we have either As,t ≤ δG(s, t) or
((A ⋆ A[V,X]) ⋆ Bn ⋆ (A[X,V ] ⋆ A))s,t ≤ δG(s, t), as desired.

Lemma 7.4 yields a way of computing exact all-pairs distances in G based on the collection Π′

provided that an efficient algorithm computing rectangular min-plus products is available. However,
the known min-plus matrix product algorithms are not efficient enough to give an improved fully
dynamic exact APSP algorithm this way. Nevertheless, we will argue that Lemma 7.4 is enough for
deterministically computing the matrix of (1 + ǫ)-approximate distances in G polynomially faster
than in O(nω) time, for any ω > 2. To this end, we will need the following (1 + ǫ)-approximate
min-plus matrix product ⋆ǫ of Zwick [Zwi02, Section 8]:

Theorem 7.5. [Zwi02] Let A,B be two n × n matrices with elements from {0,∞} ∪ [1, N ]. Let
ǫ > 0. Then, in Õ(nω log(N)/ǫ) deterministic time one can compute a matrix A⋆ǫ B such that for
all i, j ∈ [n]:

(A ⋆ B)i,j ≤ (A ⋆ǫ B)i,j ≤ (1 + ǫ) · (A ⋆ B)i,j.

Remark 7.6. [Zwi02] Theorem 7.5 can be easily generalized to the rectangular case, i.e., if A
and B are na × nb and nb × nc matrices, then the approximate min-plus product can be computed
in Õ(nω(a,b,c) log(N)/ǫ) time. Moreover, the approximate min-plus product can be extended to de-
terministically produce witnesses within a time bound that is a polylog(n) factor away.
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Let ǫ′ > 0. Suppose we evaluate the formula (2) by replacing the min-plus product ⋆ with
(1 + ǫ′)-approximate min-plus product ⋆ǫ′ of Theorem 7.5 (and Remark 7.6) and using the folklore
repeated-squaring algorithm for matrix powering. Then, only O(log n) matrix products will be
performed and each of the products involved will take Õ(nω(1,α,1) log(N)/ǫ′) time, where α ∈ [0, 1]
is such that |C ∪ D ∪ H| ≤ nα, and N is a bound on the largest finite number arising in this
computation. Indeed, in all the matrix products involved, one of the matrix dimensions dimensions
is bounded by nα (we will later set τ, h,∆ so that α < 1). Moreover, since there are O(log n) matrix
products, the approximation error at the end is bounded by (1 + ǫ′)O(log n). This also implies the
bound N ≤ n · (1 + ǫ′)O(logn). By using a sufficiently small ǫ′ = Θ(ǫ/ log n), we can guarantee that
the entire computation is (1 + ǫ)-approximate and N = Õ(n). We conclude that the matrix of
(1 + ǫ)-approximate distance estimates can be computed based on Π′ in Õ(nω(1,α,1)/ǫ) time.
It is worth noting that if we wanted to compute the transitive closure of G (which can be seen

as any finite approximation of APSP) instead, we could use the standard boolean matrix product ·
instead of the approximate min-plus product ⋆ǫ′ here.

Approximate shortest path reporting. We now turn to explaining how the data structure
can be extended to enable efficient reporting of approximately shortest s, t-paths while computing
the matrix A∗ approximately. Recall that, by Remark 7.6, the approximate min-plus product of
Theorem 7.5 can also produce witnesses, i.e., such indices wi,j that

Ai,wi,j
+Bwi,j ,j ≤ (1 + ǫ′) · (A ⋆ B)i,j.

Suppose we record the witnesses for all the ℓ = O(log n) approximate products involved when
computing A∗ approximately using Equation 2. More concretely, let the subsequent matrices
obtained be L1, . . . , Lℓ, where min(A,Lℓ) is a (1+ ǫ)-approximation of A∗. By Lemma 7.4, we have

min(As,t, (Lℓ)s,t) ≤ (1 + ǫ)δG(s, t).

Put L0 := A and a define paths P0,s,t corresponding to the entries of A:

P0,s,t =





∅ if s = t,

st if st ∈ E(G),

π′
st if s 6= t, st /∈ E(G), and As,t 6=∞,

⊥ otherwise.

Put | ⊥ | =∞. When computing the matrix Lk as a product of a submatrix of Li and a submatrix
of Lj (along with witnesses w·,·), where i, j < k, for all s, t such that (Lk)s,t is defined, we define
the path Pk,s,t as follows:

Pk,s,t =





Pi,s,ws,t · Pj,ws,t,t if ws,t /∈ {s, t},

Pi,s,t if ws,t = t,

Pj,s,t if ws,t = s.

In the implementation, we do not explicitly copy or concatenate the paths define above, but rather
store the pointers to the previously represented paths. This costs only Õ(n2) additional time.
It is easy to prove inductively that for all k, s, t such that (Lk)s,t 6= ∞, Pk,s,t is an s → t

path in G of length at most (Lk)s,t. Consequently, for all s, t such that δG(s, t) 6= ∞, we have
min(|P0,s,t|, |Pℓ,s,t|) ≤ (1 + ǫ)δG(s, t). As a result, using the stored pointers we can report an
(1 + ǫ)-approximately shortest s→ t path for any (s, t) ∈ V in optimal O(δG(s, t)) time.
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Single-source reachability trees from all sources. While in the case of approximately short-
est paths and a fixed source s ∈ V , we can report an s → t path of length (1 + ǫ)δG(s, t) for any
t ∈ V efficiently, it is not clear how to organize such paths into a tree of approximately shortest
paths rooted at s. However, as we show next, this is possible in the case of transitive closure.
Specifically, we now show that one can compute reachability trees from all possible sources s ∈ V
in G using the approximate matrix A∗, if any constant ǫ ∈ (0, 1) is used.
We first compute in O(n2) time the strongly connected components (SCCs) of G, using any

classical linear-time algorithm, e.g., that of [Tar72].

Lemma 7.7. A subgraph GSCC ⊆ G with O(n) edges such that GSCC preserves the strongly con-
nected components of G can be computed in O(n2) time.

Proof. For any strongly connected component S ⊆ V of G, include in GSCC a pair of trees in G[S]:
a reachability tree from and to any s ∈ S in the subgraph G[S]. These trees can be computed via
graph search in time linear in the number of edges of G[S]. Since the subgraphs G[S] are clearly
disjoint for distinct S, computing GSCC takes O(n2) time.

Now let us define a matrix A′ such that A′
s,t = 0 if the vertices s and t are not strongly connected

in G and either As,t 6=∞ or (A[V,X] ⋆ǫ A[X,V ])s,t 6=∞ holds, and A
′
s,t =∞ otherwise.

Let us compute the matrix product FV := A∗[V,X] ⋆ǫ A
′[X,V ] along with the matrix WV of

witnesses, that is, for every u, v such that (FV )u,v 6= ∞, (WV )u,v is equal to some z ∈ X such
that A∗

u,z 6= ∞ and A′
z,v 6= ∞. Similarly, we compute the matrix WX of witnesses of the product

FX := A∗[V, V ] ⋆ǫ A
′[V,X]. Finally, let us compute the matrix L of the witnesses of the product

A[V,X] ⋆ǫ A[X,V ]. Again, in all the additional matrix products here, one of the dimension is
bounded by |X| ≤ nα, so computing the required information takes Õ(nω(1,α,1)/ǫ) time.

Lemma 7.8. For any a, b ∈ V , define π∗
a,b to be either the edge ab if ab ∈ E(G) or the path π′

a,b if
π′
a,b 6=⊥ (if both exist, pick an arbitrary one). If none of these exist, set π

∗
a,b :=⊥.

Let s ∈ V . Let Gs ⊆ G be a subgraph containing:

• the path π∗
s,t for all t ∈ V such that π∗

s,t 6=⊥,

• for each t ∈ V such that (FV )s,t = 1, the paths π∗
x,w and π

∗
w,t, where where x = (WV )s,t and

w = Lx,t.

• for each x ∈ X such that (FX)s,x = 1, the path π∗
w,x, where w = Ws,x.

• the subgraph GSCC.

Then a vertex is reachable from s in G if and only if it is reachable from s in Gs.

Proof. The “⇐= ” direction is trivial since Gs is a subgraph of G.
We will prove the “ =⇒ ” part by showing that each SCC S of G that s can reach is also

reachable from s in Gs. Since the SCCs of G are preserved in G by the inclusion of GSCC, this
is clearly true for the SCC Ss containing the vertex s. Since the graph obtained from Gs by
contracting the SCCs is a DAG, it is enough to argue that every other SCC S′ 6= Ss has in Gs an
edge coming from another SCC S′′ 6= S′ reachable from s.
Let S 6= Ss be an SCC of G such that d = minv∈S δG(s, v) ≥ 1. Let t ∈ S be such that

δG(s, t) = d. Since every vertex z strongly connected with t has δG(s, z) ≥ δG(s, t) = d, every
vertex y 6= t satisfying δG(s, t) = δG(s, y) + δG(y, t) is not strongly connected with t, i.e., y /∈ S.
If t ∈ X, then let jt be an arbitrary edge lying on some shortest s → t path in G. We

have δG(s, j) = δG(s, t) − 1, A∗[s, j] < ∞ by Lemma 7.4, and A′[j, t] < ∞ since j /∈ S. As a
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result, (FX)s,t ≤ A∗[s, j] + A′[j, t] < ∞. We conclude that there exists g = (WX)s,t such that
A∗[s, g], A′[g, t] < ∞. It follows that g is not strongly connected with t and g is reachable from s.
By the definition of Gs, the g → t path π∗

g,t (which exists by A
′[g, t] <∞) is included in Gs. This

certifies that the SCC S has an incoming edge from another SCC reachable from s.
Finally, suppose t ∈ V \ X. If st ∈ E(G) or π′

s,t 6=⊥, then the corresponding edge or path
π∗
s,t is included in Gs. Since that edge/path originates in Ss and ends in a different SCC S, it
has to include at least one edge coming to S from another SCC reachable from s. So suppose
π∗
s,t =⊥. By Lemma 7.3, we obtain that some shortest s → t path has a suffix rq · π′

q,t, where
r ∈ X and δG(s, r) < d. By the definition of t, r is in a different SCC than t. Hence, we have
A′[r, t] ≤ A[r, q] + A[q, t] < ∞. As a result, since r is reachable from s, we have (FV )s,t ≤
A∗[s, r]+A′[r, t] <∞. Thus, there exists x = (WV )s,t ∈ X such that A∗[s, x] <∞ and A′[x, t] <∞
which in turn implies that x and t are not strongly connected and x is reachable from s. Moreover,
w = Lx,t exists such that A[x,w] < ∞ and A[w, t] < ∞. Hence, there exist paths π∗

x,w and π∗
w,t

in G. Their concatenation π∗
x,w · π

∗
w,t, included in Gs, certifies that S has an incoming edge from

another SCC reachable from s.

Corollary 7.9. Given the matrices FX ,WX , FV ,WV , L and the graph GSCC, one can compute
reachability trees from all sources s ∈ V in O(n2h) additional time.

Proof. Note that for any s ∈ V , the subgraph Gs ⊆ G preserving reachability from s has O(nh)
edges since it consists of the O(n)-sized subgraph GSCC and O(n) ≤ h-hop paths π∗

a,b. Thus, some
reachability tree in Gs (and thus in G) can be computed in O(nh) time.

Update time analysis. Let us now summarize the update time of the data structure. Recall that
we set α ∈ [0, 1] to be the smallest number such that max(|C|, |H|, |D|) = O(max(n/τ, n/h,∆)) ≤
O(nα), and ∆ = nδ. The amortized update time can be bounded by:

Õ

(
h2nω(1,δ,1)+1

∆b
+

h2n2+ρ

b
·
(
1 +

n

∆τ

)
+

n2b

∆
+∆hτn(h2nµ + β) + h2n2

+
h2n(nω(1,µ,1)−µ + n1+µ)

β
+

h2nω(1,δ,1)+1

β∆
+ nω(1,α,1)/ǫ

)
.

Using the online balancing tool [Bra]4, we find that by setting µ = 0.355, β = n0.562, b = n0.816,
∆ = n0.523, h = n0.1035 and t = n0.104, the obtained bound is O(n2.293/ǫ).
It is also interesting to investigate for what values ω the obtained bound is better than nω. For

this, let us again use the bound ω(1, a, 1) ≤ 2 + a · (ω − 2) (which yields ρ ≤ 1/(4 − ω)) to remove
the dependency on rectangular matrix multiplication.
Since the only term that is non-increasing in h is nω(1,α,1) ≤ n2+α(ω−2), having arbitrary h =

polyn makes this term sub-nω. If all other terms with the h-terms skipped are also polynomially
smaller nω, then sufficiently small polynomial h makes all terms smaller than nω.
Via experiments one can obtain that τ = h and β = h2nµ is a good choice, and that the terms

involving ω(1, δ, 1) are not bottlenecks if the parameters are chosen optimally. As a result, to find
the threshold for ω, we need to pick µ,∆, b such that the terms:

n2b

∆
,
n3+ 1

4−ω

b∆
,∆n1+µ, n3+µ(ω−4)

4https://jvdbrand.com/complexity/?terms=2h%2Bomega(1%2Cdelta%2C1)%2B1-delta-b%0A2h%2B2%2B0.529-b%0A2h%2B2%2B0.529-
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are all polynomially smaller than nω. Observe that it is beneficial to balance the first two terms,

which leads to b = n
5−ω
8−2ω . Then, balancing with the third term yields ∆ = n

13−3ω
16−4ω

−µ/2. Finally,
balancing that with the fourth term yields µ = 38−10ω

(16−4ω)(9−2ω) . The final running time for ω > 2

after simplifications and taking into account small-polynomial h, τ = nO(γ) becomes:

O
(
n2+ ω−1

18−4ω
+γ + nω−γ/ǫ

)
,

for any sufficiently small γ > 0. This bound is polynomially better than nω if ω > 2+ 9−
√
65

8 ≈ 2.12.
Amortization can be removed in a standard way, as was done in Section 6. The following

theorem summarizes the data structure developed in this section.

Theorem 1.2. Let G = (V,E) be an unweighted directed graph. Let ǫ ∈ (0, 1). There exists
a deterministic data structure explicitly maintaining all-pairs (1 + ǫ)-approximate distances in G
under vertex updates in O(n2.293/ǫ) worst-case time per update.
The data structure can be extended to:

• enable reporting a (1 + ǫ)-approximately shortest path P = s → t in G for query vertices
s, t ∈ V in optimal O(|P |) time.

• explicitly maintain reachability trees from all the sources s ∈ V within the same update bound.

8 Deterministic fully dynamic transitive closure faster than O(nω)

for all ω > 2

In this section we show a simple deterministic data structure maintaining the transitive closure of
a digraph under vertex updates polynomially faster than within nω worst-case update time, unless
ω = 2. Compared to the data structure of Theorem 1.2, we do not support optimal-time path
reporting here. However, as opposed to the path-reporting data structure, we obtain a non-trivial
worst-case update time for the entire range of possible values of ω > 2.
The bottleneck in the data structure of Theorem 1.2 lies in recomputing most of the pairwise

h-bounded shortest paths. These paths have also been used to compute the hitting set H determin-
istically. The set H hit all the h-bounded shortest paths in the graph G− (C ∪D). For transitive
closure, we do not need to hit the shortest paths; hitting a h-hop prefix of any path would also be
enough. Computing an Õ(n/h)-sized hitting set achieving that deterministically is still challenging
in sub-nω time, though. To deal with this problem, we will use slightly larger (but still sublinear)
hitting sets that are, at the same time, slightly less costly to recompute. Using weaker (in terms of
quality and size) hitting sets is the main idea behind the data structure developed in this section.
Let h, d ∈ [1, n] be parameters such that d ·h ≥ 6n, to be chosen later. First of all, we set up the

data structure of Theorem 3.1 that explicitly maintains the values δhG(s, t) for all pairs (s, t) ∈ V

under vertex updates to G in Õ(h2n2) worst-case time per update.
The below lemma gives an algorithm to compute hitting sets of non-necessarily shortest paths.

Lemma 8.1. Let G = (V,E) be any digraph. Then, for any ℓ ∈ [1, n], in Õ(nω) time one can
deterministically compute a hitting set H ⊆ V of size Õ(n/ℓ) satisfying the following. For any
s, t ∈ V with δG(s, t) <∞, either δG(s, t) < ℓ or there is such a vertex v ∈ H that δG(s, v) ≤ ℓ and
δG(v, t) <∞. If G is strongly connected, then the running time can be improved to Õ(n2).

27



Proof. Suppose for any s ∈ V we have computed a reachability tree Ts from s in G. Let Ts,h be
the tree Ts pruned of all the vertices at depth more than h. Note that for all t ∈ V (Ts,h) at depth
less than h, we necessarily have δG(s, t) < h.
For all other t ∈ V either δG(s, t) =∞, or there exists a leaf lt at depth h in Ts,h such that one

can reach t from s through lt. As a result, if H ⊆ V hits all the h-hop root-leaf paths in Ts,h, then
there exists v ∈ H such that δG(s, v) ≤ h and there exists a path s → v → lt → t. Therefore, it
is enough to compute an Õ(n/h)-sized hitting set H of all the h-hop root-leaf paths in all of the
trees Ts,h, s ∈ V . King [Kin99, Lemma 5.2] gave a variant of the deterministic algorithm behind

Lemma 6.1 that accomplishes precisely this task in Õ(n2) time.
Finally, the reachability trees from all the sources in a general graph can be computed deter-

ministically in Õ(nω) time [AGMN92]. If G is strongly connected, then the same can be achieved
in O(n2) time by running a graph search from every s ∈ V in the sparse subgraph GSCC ⊆ G from
Lemma 7.7.

Lemma 8.1 alone is not enough to deterministically break through the O(nω) worst-case update
bound. To achieve that, proceed as follows upon each update. First, compute in O(n2) the strongly
connected components ofG, and their topological order using any classical algorithm. Let S1, . . . , Sk

be the SCCs of G in the topological order, that is, any edge uv such that u ∈ Si and v ∈ Sj , satisfies
i ≤ j. Next, partition the sequence S1, . . . , Sk into at most 2n/d blocks B of consecutive SCCs such
that each block B ∈ B spanning Sa ∪ . . . ∪ Sb satisfies either a = b or |Sa| + . . . + |Sb| ≤ d. Such
a partition into blocks can be computed by repeatedly locating the longest prefix Si, . . . , Sj of the
remaining sequence Si, . . . , Sk such that |Si|+ . . .+ |Sj| ≤ d (if it exists), and forming either a block
Si∪ . . .∪Sj if |Si| ≤ d, or a single-SCC block Si if |Si| > d. Note that every two consecutive blocks
formed span more than d vertices and this is why the total number of blocks is at most 2n/d.
We say that a block Sa ∪ . . . ∪ Sb = B ∈ B is small if |Sa|+ . . . + |Sb| ≤ d. Otherwise, we call

the block large. Recall that a large block necessarily consists of a single SCC of G.
Next, for each block B ∈ B we compute the hitting setHB of Lemma 8.1 applied to the subgraph

G[B] for ℓ := ⌊dh6n⌋. Note that we have |HB| = Õ
(
|B|n
dh

)
. Set H∗ :=

⋃
B∈B HB . We obtain that

|H∗| = Õ
(∑

B∈B
|B|n
dh

)
= Õ

(
n
dh ·

∑
B∈B |B|

)
= Õ

(
n2

dh

)
.

Observe that the total time spent on computing hitting sets in small blocks can be bounded by
Õ((n/d) · dω) = Õ(ndω−1) since |B| = O(n/d). Every large block is strongly connected and thus
the hitting sets of large blocks can be computed in Õ

(∑
B∈B |B|

2
)
= Õ(n2) time.

Lemma 8.2. Let s, t ∈ V be such that δG(s, t) < ∞. Then either δG(s, t) ≤ h or there exists
v ∈ H∗ such that δG(s, v) ≤ h and δG(v, t) <∞.

Proof. Suppose δG(s, t) > h. Let p ∈ V be any vertex such that δG(s, p) = h and δG(s, t) =
δG(s, p)+δG(p, t). Note that any shortest s→ p path P in G can be expressed as P0 ·e1 ·P1 ·. . .·eq ·Pq,
where each Pi is a (possibly 0-hop) maximal subpath containing vertices of a single block B(Pi) ∈ B,
and ei is an edge between distinct blocks B(Pi−1) and B(Pi). Recall that the partition of SCCs
into blocks respects the topological ordering so each B(Pi−1) is strictly earlier than B(Pi) in the
ordering. It follows that all the blocks B(Pi) are distinct and thus q ≤ |B| ≤ 2n/d. As a result, we
obtain that some path Pj has at least

∑q
i=0 |Pi|

q + 1
=
|P | − q

q + 1
=

h− q

q + 1
≥

h

q + 1
− 1 ≥

h

2n/d+ 1
− 1 ≥

dh

3n
− 1 ≥

dh

3n
−

dh

6n
=

dh

6n
≥ ℓ

edges. Let x, y be the endpoints of Pj , i.e., Pj is an x→ y path.
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Note that |Pj | = δG[B(Pj)](x, y) = δG(x, y) ≥ ℓ since P is a shortest path in G. As a result, by
Lemma 8.1 we obtain that there exists some vertex v ∈ HB(Pj) ⊆ H∗ such that δG[B(Pj)](x, v) ≤ ℓ
and δG[B(Pj)](v, y) <∞. By that, we have:

δG(s, v) ≤ δG(s, x) + δG(x, v)

= δG(s, x) + δG[B(Pj)](x, v)

≤ δG(s, x) + ℓ

≤ |P0 · e1 · P1 · . . . ej−1 · Pj−1 · ej |+ |Pj |

≤ |P | = h.

Above we have also used a fact that for two vertices inside a single block, every path between them
needs to be fully contained in the block. We also have:

δG(v, t) ≤ δG(v, y) + δG(y, p) + δG(p, t)

≤ δG[B(Pj )](v, y) + δG(y, p) + δG(p, t)

<∞.

We conclude that indeed δG(s, t) > h implies that δG(s, v) ≤ h and δG(v, t) <∞.

With the hitting set H∗ computed, we find the transitive closure of G as follows. Let A be
a V × V boolean matrix such that Au,v = 1 iff δhG(u, v) ≤ h. Recall that the values δhG(u, v) are
maintained explicitly under vertex updates by the data structure of Theorem 3.1. We define an
analogous matrix A∗ as in Section 7:

A∗ = A ∨ (A[V,H∗] · (A[H∗,H∗])n · A[H∗, V ]) ,

where · denotes the boolean matrix product.

Lemma 8.3. For any s, t ∈ V , there exists an s→ t path in G iff A∗
s,t = 1.

Having proved Lemma 8.2, the proof of the above lemma proceeds completely analogously to
that of Lemma 7.4 so we skip it. To compute the transitive closure of G, we simply compute the
matrix A∗ from the definition (similarly as in Section 7) via rectangular matrix multiplication.
Let us now analyze the update time. If α < 1 is such that |H∗| = Õ(n2/(dh)) = Õ(nα), then

the worst-case update time of the data structure can be bounded by:

Õ
(
h2n2 + ndω−1 + nω(1,α,1)

)
⊆ Õ

(
h2n2 + ndω−1 +

n2ω−2

(dh)ω−2

)
.

Note that for d = n1−ǫ, h = n2ǫ, the update bound is Õ(n2+4ǫ + nω−ǫ(ω−1) + nω−ǫ(ω−2)). For any
0 < ǫ < ω−2

4 this bound is polynomially smaller than n
ω. Such an ǫ exists iff ω > 2.

Theorem 1.3. Let G = (V,E). Unless ω = 2, there exists a constant ǫω, 0 < ǫω < ω−2, dependent
on ω, such that one can deterministically and explicitly maintain the transitive closure of G under
fully dynamic vertex updates in O(nω−ǫω) worst-case time per update.

Interestingly, with the currently known upper bounds on the exponents of (rectangular) matrix
multiplication, it is best to set h = 0.15, d = 0.945 [Bra]. This yields an O(n2.3) worst-case update
bound that is slightly worse then the bound obtained in Theorem 1.2.
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Path reporting. Finally, we remark that given an explicitly recomputed transitive closure ma-
trix, and by spending additionalO(n2)-time preprocessing time per update, reporting paths between
arbitrary (reachable) pairs of vertices can be supported in O(n) time. We now sketch how this is
achieved. [KMS22, Section 3.2] showed that given a topological order of an acyclic digraph G′, for
any vertices s, t such that s can reach t in G′, some s→ t path can be constructed by issuing O(n)
reachability queries in G′. That is, if the transitive closure matrix of G′ is explicitly stored, a path
can be constructed in O(n) time. Since in our data structure we spend Ω(n2) time per update
anyway, after each update in O(n2) time we can construct a condensation G′ of G by contracting
the SCCs of G into single vertices. The condensation G′ is a DAG; hence, its topological order
can be computed in O(n2) time. Moreover, the transitive closure of G′ can be easily read from the
transitive closure of G by taking a submatrix on arbitrary representatives of the individual SCCs
of G. Finally, observe that an s→ t path in G can be found by (1) finding some path P ′ from the
SCC of s (in G) to the SCC of t in the condensation G′ in O(n) time, (2) subsequently finding any
s→ t path in the O(n)-sized subgraph P ′ ∪GSCC via graph search.

9 Randomized improvements

In this section we show sketch how one can obtain sharper worst-case update bounds for SSSP and
transitive closure if randomization is used.
First of all, in all the components that use path counting, each h2 term in the update/query

bounds can be replaced with a h term in a standard way (see, e.g., [San05]). This is because the
used components only require testing whether the maintained path counts are zero or non-zero.
Hence, instead of using Θ̃(h)-bit numbers for path counts, one can perform counting modulo a
random Θ(log n)-bit prime number which is enough to differentiate between zero and non-zero
counts with high probability. Arithmetic operations on numbers from such a range cost Õ(1) time
as opposed to Õ(h) time required in the deterministic path counting data structures.

9.1 Path-reporting transitive closure

In the case of path-reporting data structure of Section 7, it is not clear how to exploit randomization
further (beyond reducing the cost of path counting) while still maintaining all-pairs single-source
reachability trees against an adaptive adversary. Hence, the obtained randomized worst-case update
bound becomes:

Õ

(
hnω(1,δ,1)+1

∆b
+

hn2+ρ

b
·
(
1 +

n

∆τ

)
+

n2b

∆
+∆hτn(hnµ + β) + hn2

+
hn(nω(1,µ,1)−µ + n1+µ)

β
+

hnω(1,δ,1)+1

β∆
+ nω(1,α,1)

)
.

Using the online balancing tool [Bra], we find that by setting µ = 0.368, β = n0.503, b = n0.764,
d = n0.495, h = n0.135 and t = n0.136, the obtained bound is O(n2.27). That being said, the used
improvement has no effect on the theoretical barrier of the approach: for ω < 2.12, Õ(nω)-time
trivial recompute-from-scratch approach is polynomially faster than the above.

9.2 SSSP

In the case of single-source shortest paths, we can exploit the standard randomized hitting set
argument [UY91], that a randomly sampled subset H ⊆ V of size Θ((n/h) log n) hits some shortest
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s → t path in G for all pairs s, t with δG(s, t) ≥ h. Crucially, in the dynamic setting, a sampled
hitting set remains (w.h.p.) valid through poly(n) versions of the evolving graph provided that it is
not revealed to the adversary. In the case of maintaining exact single-source distances in dynamic
unweighted digraphs, this assumption is indeed satisfied, as the answers sought are unique.
The overall framework is the same as in Section 6: we operate in phases of ∆ edge updates,

and maintain global data structures T and A, defined exactly as in Section 6, albeit now using the
aforementioned randomized path counting.
The main modification we make to the data structure of Section 6 is replacing the preprocessing

of Theorem 5.1 with the following variation due to [ACK17].

Lemma 9.1. [ACK17] Let G = (V,E) be a directed graph. Let h ∈ [1, n].
Assume one has constructed a data structure storing G and a subset W ⊆ V initially equal

to V , and supporting:

(1) updates removing a vertex v ∈ V from W ,

(2) queries computing shortest h-bounded paths in G[W ] from a query vertex s to all v ∈ V .

Suppose one can perform updates in U(n, h) worst-case time, and queries in Q(n, h) worst-case
time. These bounds have to hold w.h.p. against an adaptive adversary.
Let C0 ⊆ V . Then, in O(|C0|·(nh+U(n, h)+Q(n, h))) time one can compute a set C = {c1, . . . , ck},

where C0 ⊆ C ⊆ V and k = O(|C0|), and a collection of paths Π in G, containing at most one path
πs,t for all (s, t) ∈ C × V , such that, with high probability:

(a) For any i = 1, . . . , k and t ∈ V , πci,t ∈ Π exists iff δhGi
(ci, t) 6= ∞ and then πci,t is a shortest

h-bounded ci → t path in the graph Gi := G− {c1, . . . , ci−1}.

(b) For any u ∈ V , there exist at most O(hn log n) paths πs,t ∈ Π with u ∈ V (πs,t).

Proof sketch. The preprocessing differs from that in Lemma 3.2 in the way how the subsequent
sources are picked. Whereas in Lemma 3.2 sources (from all of V ) are picked in arbitrary order, in
the construction of [ACK17, Section 3.1], one alternates between picking an arbitrary unprocessed
element of C0, and the most-congested vertex (that is, lying on the maximum number of paths
picked so far) from V \ C. This way, only O(|C0|) vertices are added to W and O(|C0|) queries
are issued. The O(hn log n) bound in item (b) follows via an analysis of a greedy load balancing
technique [LO88]. This argument has been originally used in this context by [Tho05]. See [ACK17]
for details.

More specifically, the congested set/paths collection pair (C,Π) of Theorem 5.1 is replaced with
the corresponding pair (C,Π) produced by Lemma 9.1 with C0 := H, whereH is the aforementioned
randomly sampled hitting set. Importantly, the obtained set C has size Õ(n/h) this way, and the
collection Π has Õ(n2/h) paths (as opposed to Θ(n2) in Theorem 5.1).
For computing the pair (C,Π), we use the data structure T . Consequently, the worst-case time

cost (per update) incurred by the construction of (C,Π) is now:

Õ

(
1

∆
·
n

h
·

(
hn1+ω(1,µ,1)−µ

b
+

hn2+µ

b
+ nb

))
.

For µ = ρ, this becomes:

Õ

(
n3+ρ

b∆
+

n2b

h∆

)
.
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Recall that besides that, the cost of maintaining T under single-edge updates to G is Õ(hn2+ρ/b)
per update.
We also redefine the contents of the maintained set Y throughout the phase. Recall that the

values δhG(s, t) are maintained for all (s, t) ∈ Y by the data structure A with ν set to ρ ≈ 0.529. At
all times, the set Y contains:

• all pairs (s, t) ∈ C × V such that πs,t ∈ ΠD,

• all pairs (u, v) ∈ (D × V ) ∪ (V ×D).

Observe that by Lemma 9.1, the set Y grows by Õ(hn) new pairs per update in the worst case,
and thus can be appropriately extended in Õ(hn1+ρ) time per update. Moreover, |Y | = Õ(∆hn) at
all times and thus A requires Õ(∆h2n) additional time per update to recompute the values δhG(s, t)
for all (s, t) ∈ Y .
The summarized worst-case update time of all the components of the data structure is:

Õ

(
hn2+ρ

b
+∆h2n+

n3+ρ

b∆
+

n2b

h∆
+ h2n1+ρ

)
.

For answering single-source distance queries, we use a slightly simpler auxiliary graphX, defined
similarly as in Section 6. Suppose a query for distances from a source vertex s ∈ V is issued. Let
Ys be the set Y augmented with temporary pairs (s, t) for all t ∈ V . The graph X contains:

• an edge uv of weight |πu,v| for all πu,v ∈ Π \ΠD,

• an edge uv of weight δhG(u, v) for all (u, v) ∈ Ys.

Again, the graphX has O(n2/h+|Y |) = Õ(n2/h+∆hn) edges. The query procedure runs Dijkstra’s
algorithm from s on the graph X. This is correct by the following lemma.

Lemma 9.2. With high probability, for any t ∈ V , δG(s, t) = δX(s, t).

Proof. Note that for all uv ∈ E(X), wX(uv) ≥ δG(uv), which establishes δG(s, t) ≤ δX(s, t) easily.
Let us now prove that δX(s, t) ≤ δG(s, t). First of all, let G0 be the graph at the beginning of

the phase. Note that by the definition of D, we have G0 −D = G−D ⊆ G.
Consider the shortest s → t path P in G; if there are many, pick the unique one that is

lexicographically smallest. Split P into maximal segments P1 · . . . · Pk not passing through any of
the vertices C ∪D. In other words, for each Pi = ui → vi, we have V (Pi) ∩ (C ∪D) ⊆ {ui, vi} and
ui ∈ C ∪D ∪ {s}.
Consider some Pi. Pi is a lexicographically shortest path in G. We have |Pi| ≤ h with high

probability, since H ⊆ C hits each of the O(n2) lexicographically shortest paths that have more
than h hops in every of O(poly n) versions of G independent of H. As a result, we have

δG(ui, vi) = |Pi| = δhG(ui, vi).

We now prove that wX(uivi) = |Pi|. This will imply that there exists an s→ t path in X of weight∑
iwX(uivi) ≤

∑
i |Pi| = δG(s, t). If (ui, vi) ∈ Ys, then wX(uivi) = δhG(ui, vi) by construction.

Suppose that (ui, vi) /∈ Ys. Then we simultaneously have ui ∈ C \ D, vi ∈ V \ D, and either
πui,vi does not exist in Π or πui,vi ∈ Π \ ΠD, i.e., πui,vi does not pass through a vertex of D. Let
ui = cj ∈ C, where cj and Gj ⊆ G0 are defined as in Theorem 5.1. Since Pi is internally disjoint
with C ∪ D, and vi /∈ D, Pi contains no edges inserted in the current phase. Hence, Pi ⊆ Gj .
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As a result, δhGj
(ui, vi) ≤ |Pi| <∞. This proves that πui,vi = πcj ,vi exists in Π. But we also have

πui,vi ⊆ Gj −D ⊆ G0 −D ⊆ G−D, so δG(ui, vi) ≤ |πui,vi |. Finally, by Theorem 5.1, we obtain:

δG(ui, vi) ≤ |πui,vi | = δhGj
(ui, vi) ≤ |Pi| = δG(ui, vi).

This proves that wG(ui, vi) = δG(ui, vi) = |Pi| also when (ui, vi) /∈ Ys.

We obtain the following combined worst-case update/query bound:

Õ

(
hn2+ρ

b
+∆h2n+

n3+ρ

b∆
+

n2b

h∆
+ h2n1+ρ +

n2

h

)
.

Note that there is no point in setting b < ∆, as increasing b to ∆ would not make harm because
of the n2/h term. So b ≥ ∆. If we aim at equal update and query time, there is no point in putting

b > ∆ either. For b = ∆ we need to balance ∆h2n, n3+ρ

∆2 and n2/h. We get ∆ = n/h3 and finally

we balance n1+ρh6 and n2/h. For h = n(1−ρ)/7, the update/query time is O(n(13+ρ)/7) = O(n1.933).
We have thus proved.

Theorem 9.3. Let G = (V,E) be unweighted digraph. There exists a Monte Carlo randomized
data structure supporting fully dynamic single-edge updates to G and computing exact distances
from an arbitrary query source s ∈ V to all other vertices in G in O(n1.933) worst-case time.
If ω = 2, the bound becomes Õ(n2−1/14).
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A Algebraic data structure (Theorem 3.1)

In this section we show the algebraic subroutine used by our dynamic graph algorithms. The
dynamic algorithm is based on the reduction from dynamic distance to dynamic matrix inverse from
[San05] and it’s deterministic equivalent from [BFN22]. The dynamic matrix inverse algorithm will
imply the following dynamic distance result.

Theorem 3.1 (Modification to [San05], proof in Appendix A). Let G = (V,E) be a fully dynamic
unweighted digraph. Let h ∈ [1, n]. Let Y ⊆ V × V be a dynamic set. For any µ, δ ∈ [0, 1], there
exists a deterministic data structure maintaining the values δhG(s, t) for all (s, t) ∈ Y and supporting:

• single-edge updates to G in Õ(h2 · (nω(1,µ,1)−µ + n1+µ + |Y |)) worst-case time,

• batches of at most nδ vertex updates to G in Õ(h2nω(1,δ,1)) worst-case time,

• single-element insertions to Y in Õ(h2nµ) time,

• removing elements from Y in O(1) time.

Theorem 3.1 is obtained from the following dynamic matrix inverse data structure. Note that
unlike Theorem 3.1, Lemma A.1 measures the complexity in the number of arithmetic operations.
This is because depending on what field or ring the matrixM is from, one iteration may take more
than O(1) time. In particular when we later reduce dynamic distance to dynamic matrix inverse
in order to prove Theorem 3.1, one arithmetic operation will take Õ(h2) time.

Lemma A.1. Let M be a dynamic n × n matrix receiving entry updates that is promised to stay
non-singular throughout all updates. Let Y ⊆ [n] × [n] be a dynamic set. For any µ ∈ [0, 1],
there exists a deterministic data structure maintaining the values (M−1)s,t for all (s, t) ∈ Y and
supporting:

• single-entry updates to M in O(nω(1,µ,1)−µ + n1+µ + |Y |) operations in worst-case,

• rank nδ updates to M for any δ ∈ [0, 1] in O(nω(1,δ,1)) operations in worst-case,

• single-element insertions to Y in O(nµ) operations,

• removing elements from Y in O(1) time.

Proof. The data structure internally maintains n × n matrices N and n × k matrices L,R (with
k ≤ nµ) such that

M
−1 = N− LR

⊤. (3)

Further, the data structure explicitly maintains the values M−1
s,t for all s, t ∈ Y .
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Initialization. During initialization, the data structure computesM−1 in O(nω) operations and
stores this inverse as N. The matrices L,R are initialized as all-0 matrices. In particular, since we
compute M−1 explicitly, we know M

−1
s,t for all s, t ∈ Y .

Update to set Y . When an index pair (s, t) is added to set Y , we must compute M−1
s,t . By

representation (3) and matrices L,R consisting of at most nµ columns, this takes O(nµ) operations.
When deleting an index pair from Y , we do not need to compute anything so such an update takes
O(1) time.

Entry update to M. When matrix M changes, we must update the representation (3). By the
Sherman-Morrison identity we have for any two vectors u, v that

(M+ uv⊤)−1 = M
−1 −

M
−1u v⊤M−1

1 + v⊤M−1u
. (4)

WhenM changes in a single entry, then vectors u, v have only one non-zero entry so the products
M

−1u and v⊤M−1 consist of reading one row and column of M−1. By the representation (3) and
R,L having at most nµ columns, this takes O(n1+µ) operations.
Let u′ := M

−1u/(1 + v⊤M−1u) and v′ = (v⊤M−1)⊤, then we can set L ← [L|u′], R ← [R|v′]
(i.e. append these vectors to matrices L,R) and thus have

(M+ uv⊤)−1 = M
−1 −

M
−1u v⊤M−1

1 + v⊤M−1u

= M
−1 − u′v′⊤

= N− LR
⊤ − u′v′⊤

= N− [L|u′][R|v′]⊤

so we again satisfy (3).
Note that every nµ updates, the matrices L,R have nµ columns. To guarantee these matrices

never have more columns than that, we set N← N+ LR
⊤ using O(nω(1,1,µ)) operations every nµ

updates, which is O(nω(1,1,µ)−µ) amortized time per update.
At last, note that we must maintain M−1

s,t for all s, t ∈ Y . This can be done via

(M+ uv⊤)−1
s,t = M

−1
s,t − u′sv

′
t.

Which takes O(|Y |) time per update.

Low rank update to M. Consider a rank nδ update toM, i.e., we are given two matrices U,V
of size n× nδ and want to updateM←M+UV

⊤. For these updates we update matrix N in (3)
but not L or R. The Woodbury identity states that

(M+UV
⊤)−1 = M

−1 −M
−1

U(I +V
⊤
M

−1
U)−1

V
⊤
M

−1. (5)

Here we can compute M
−1

U = (N − LR
⊤)U and V

⊤
M

−1 = V
⊤(N − LR

⊤) in O(nω(1,1,δ))
operations. In total, computing M

−1
U(I + V

⊤
M

−1
U)−1

V
⊤
M

−1 takes O(nω(1,1,δ) + nω(1,δ,δ) +
nδω) = O(nω(1,1,δ)) operations. We subtract the result from N in O(n2) operations, which is
subsumed by the previous complexity terms. After this update, we still satisfy (3) because

(M+UV
⊤)−1 = M

−1 −M
−1

U(I +V
⊤
M

−1
U)−1

V
⊤
M

−1

= N−M
−1

U(I +V
⊤
M

−1
U)−1

V
⊤
M

−1

︸ ︷︷ ︸
new N

−LR⊤.
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Worst-case update time Note that the rank nδ update does not affect the size of L or R, so the
reset happens after exactly every nµ element updates. So the amortized O(nω(1,1,µ)−µ+n1+µ+ |Y |)
update time can be made worst-case via standard technique, see e.g. [BNS19, Appendix B].

Lemma A.1 can be extended to dynamic matrix inverse for polynomial matrices. Note that for
a polynomial matrix, the inverse might not exist since it’s a matrix over a ring instead of a field.
The following Corollary A.2 verifies that all the required inverses are well-defined.

Corollary A.2. Let A be a dynamic n × n matrix receiving entry updates, h ∈ [1, n], and M :=
(I−XA) ∈ (F[X]/〈Xh+1〉)n×n. Let Y ⊆ [n]× [n] be a dynamic set. For any µ ∈ [0, 1], there exists
a deterministic data structure maintaining the values (M−1)s,t for all (s, t) ∈ Y and supporting:

• single-entry updates to A in Õ(h · (nω(1,µ,1)−µ + n1+µ + |Y |)) operations in worst-case,

• rank nδ updates to A for any δ ∈ [0, 1] in Õ(h · nω(1,δ,1)) operations in worst-case,

• single-element insertions to Y in Õ(h · nµ) operations,

• removing elements from Y in O(1) time.

Proof. The proof follows the common technique of extending dynamic matrix inverse to polynomial
matrices [San04, BNS19, BFN22]. First, note that the inverse of M exists and is given by

(I −XA)−1 =
h∑

k=0

Xk
A

k.

This is because

(I−XA)

(
h∑

k=0

Xk
A

k

)
=

h∑

k=0

Xk
A

k −
h+1∑

k=1

Xk
A

k = I−Xh+1
A

h+1 = I,

where the last step uses that the entries of the matrix come from F[X]/〈Xh+1〉, i.e. all arithmetic
of the matrix entries is performed modulo Xh+1, so Xh+1

A
h+1 is an all-zero matrix.

We obtain Corollary A.2 by running Lemma A.1 on the matrixM := (I−XA). Note that the
complexity increases by a factor of Õ(h) because the arithmetic operations are now performed on
polynomials of degree at most h.
The algorithm from Lemma A.1 works on polynomial matrices, because the division in (4) and

inversion of (5) are well defined. To see this, note that an update to M = (I − XA) is given
by an update to A. So we can assume that vector u in (4) (and likewise matrix U in (5)) is a
multiple of X. Thus, the denominator in (4) is a polynomial of form (1 +X · P (x)) (and the to be
inverted matrix in (5) is of form I +XB, where B is a polynomial matrix) whose inverse is given
by
∑h

k=0X
k(−P (X))k (and

∑h
k=0X

k(−B)k).

We can now prove Theorem 3.1 via the reduction from dynamic distance to dynamic matrix
inverse by [San05].

Proof of Theorem 3.1. We maintain the distances in a dynamic graph via a reduction by Sankowski
[San05] (and its deterministic variant from [BFN22]). Note that

(I−XA)−1 =
h∑

k=0

Xk
A

k ∈ (F[X]/〈Xh+1〉)n×n
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and when A is an adjacency matrix, we have that (Ak)s,t is the number of (not necessarily simple)
paths from s to t of length k. In particular, the smallest k such that Ak

s,t 6= 0 is the st-distance.
So by maintaining the inverse of (I−XA) for adjacency matrix A via data structure Lemma A.1
we can maintain h-bounded distances by just checking the entries of (I−XA)−1.
The maximum number of paths is bounded by nh, so we can pick as field F = Zp for some prime

of size nh ≤ p ≤ 2nh. Here every arithmetic operation in Zp takes O(h) time in the Word-RAM
model with word size O(log n). Thus the time complexity increases by a factor O(h) compared to
Corollary A.2.

B Omitted proofs

Lemma 4.1. For any b ∈ [1, n], there exists a dynamic data structure maintaining G and supporting
submatrix predecessor queries (S, Y ) in

O
(n
b
· |S| ·Qsource(n, h) + |Y | · b

)

time. The update and initialization times are O
(
n
b · Usource(n, h)

)
and O

(
n
b · Isource(n, h)

)
resp.

Proof. Suppose we identify V with {1, . . . , n}. Let us partition V into q = O(n/b) blocks V1, . . . , Vq

of ≤ b consecutive integers. Moreover, let V ′ be a copy of V , V ∩ V ′ = ∅, such that each v ∈ V has
a unique corresponding vertex v′ ∈ V ′. Set V≤i :=

⋃i
j=1 Vj for i ≥ 0. For each i = 1, . . . , q, define:

Gi :=
(
V ∪ V ′, E(G) ∪

{
uv′ : uv ∈ E(G) and u ∈ V≤i

})
.

Note that with graphs Gi defined as above, a single-edge update to G leads to at most two single-
edge updates in each Gi. Similarly, if vertex updates are supported, then a vertex update to G can
be reflected in each Gi using O(1) vertex updates therein. Moreover, we have Gq = G.
Observe that for any u, v ∈ V , u 6= v, there is a 1-1 correspondence between u → v paths

P = P ′ · xv in G with x ∈ V≤i and paths u → v′ = P ′ · xv′ in Gi. As a result, we have
δhG(u, v) = δhGi

(u, v′) iff some shortest h-bounded path in G has the penultimate vertex in V≤i.

Moreover, every path in G is preserved in Gi[V ], so δhG(u, v) = δhGi
(u, v) for all i.

We construct and maintain data structures D(G1), . . . ,D(Gq). Since the q = O(n/b) graphs Gi

are at most twice as large as G, the initialization time is O
(
n
b · Isource(n, h)

)
and the update time

is O
(
n
b · Usource(n, h)

)
.

Upon query (S, Y ), for each s ∈ S we issue a single-source query to each D(Gi), so that the
values δhGi

(s, t) for all (s, t) ∈ S × V and i are computed. This takes O((n/b) · |S| · Qsource(n, h))
time. Within the same bound, for each (s, t) ∈ S × V , we (naively) locate the smallest index is,t
such that δhGis,t

(s, t′) = δhGq
(s, t′).

For each (s, t) ∈ Y , we find the predecessor on some shortest h-bounded s → t path in G as
follows. Find the first vertex ps,t ∈ Vis,t such that ps,tt ∈ E(G) and δhGq

(s, t′) = δhGq
(s, ps,t)+ 1, and

report ps,t as the sought predecessor. Since |Vis,t | ≤ b, through all (s, t) this takes O(|Y |b) time.
We now argue that the above is correct. By the definition of is,t, we have either is,t = 1 or

δhGis,t−1
(s, t) > δhGq

(s, t). As a result, (1) no shortest h-bounded s → t path in G = Gq has the

penultimate vertex in V≤(is,t−1), (2) at least one such path has the penultimate vertex in V≤is,t .
But V≤is,t \ V≤(is,t−1) = Vis,t and thus the penultimate vertex z on each such path has to satisfy

z ∈ Vis,t , zt ∈ E(G) and δhG(s, z) + 1 = δhG(s, t). On the other hand, any z satisfying this condition
is a valid predecessor vertex. By δhGq

(s, t′) = δhG(s, t) and δhGq
(s, z) = δhG(s, z) we obtain that the

found vertex ps,t is a valid predecessor.
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Lemma 4.2. For any b ∈ [1, n], there exists a dynamic data structure maintaining G and supporting
submatrix predecessor queries (S, Y ) in

O (|S| ·Qsource(n, h) + |Y | ·Qpair(n, h) · log n+ |Y | · b)

time. The update and initialization times are O
(
Usource(n, h) +

n
b · Upair(n, h)

)
and

O
(
Isource(n, h) +

n
b · Ipair(n, h)

)
respectively.

Proof. We will only describe the changes needed to make to the construction of Lemma 4.1. We
use only one data structure D(G); for the q = O(n/b) auxiliary graphs Gi, we use data structures
D′(G1), . . . ,D

′(Gq). The update and initialization bounds follow easily.
Recall that in the proof of Lemma 4.1, once we have computed, for each (s, t) ∈ Y , the smallest

index is,t such that δ
h
Gis,t

(s, t′) = δhGq
(s, t′) = δhG(s, t), locating the desired predecessors required

O(|Y |b) additional time. The values δhG(s, t) for all (s, t) ∈ Y can be clearly computed by issuing
|S| single-source queries to D(G), i.e., in O(|S| · Qsource(n, h)) time. By G1 ⊆ G2 ⊆ . . . ⊆ Gq, we
have δhG1

(s, t′) ≥ δhG2
(s, t′) ≥ . . . ≥ δhGq

(s, t′) = δhG(s, t). As a result, the desired smallest is,t such

that δhGis,t
(s, t′) = δhG(s, t) can be located via binary search using O(log n) queries about δhGi

(s, t′)

issued to D′(Gi). Each of these queries costs Qpair(n, h) time.

Lemma 4.4. Let h ∈ [1, n]. Let D(G) be a data structure maintaining a fully dynamic unweighted
digraph G = (V,E) subject to single-edge updates in U(n, h) time per update, and possibly also
vertex updates, and supporting submatrix predecessor queries (S, Y ) in Q(|S|, |Y |) time.
Let W ⊆ V be a dynamic subset. Then there exists a data structure D′ supporting the same

set of updates to G and supporting submatrix predecessor queries (S, Y ) in the induced subgraph
G[W ] in O(Q(|S|, |Y |)) time. D′(G) processes updates to G within asymptotically the same time
that D(G) needs for processing the respective updates to G. Moreover, a single-element update to W
can be performed in O(U(n, h)) time.

Proof. Let a graph GW = (V ′, E′) be obtained as follows. For each v ∈ V , there are two copies v+

and v− of v in V ′, and an auxiliary edge ev = v+v− ∈ E′ iff v ∈ W . Moreover, each edge uv ∈ E
gives rise to the edge u−v+ in E′. This way, |V ′| = 2|V | and |E′| = |E| + |W |.
Clearly, an edge update to G can be simulated using a single edge update to GW . Similarly, a

vertex update to G can be simulated using O(1) vertex updates to GW . Finally, an element update
to W translates to a single auxiliary edge update to GW . We set D

′(G) := D(GW ).
Observe a 1-1 correspondence of k-edge paths P = s→ t in G[W ] and 2k-edge paths s+ → t+

in GW . Moreover, no odd-length s+ → t+ path exists in GW . As a result, we have δ
h
G(s, t) =

1
2 · δ

2h
G (s+, t+). The submatrix predecessor query (S, Y ) in G[W ] is translated to the query

({s+ : s ∈ S}, {(s+, t+) : (s, t) ∈ Y }) issued to GW . By the path correspondence and the fact that
all incoming edges of t+ in GW correspond to original incoming edges of t in G, we can indeed
answer a submatrix predecessor query on G[W ] in O(Q(|S|, |Y |)) time.
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