
ar
X

iv
:2

30
7.

04
09

3v
1

 [
cs

.C
C

]
 9

 J
ul

 2
02

3

Properly learning decision trees with queries is NP-hard

Caleb Koch

Stanford

Carmen Strassle

Stanford

Li-Yang Tan

Stanford

July 11, 2023

Abstract

We prove that it is NP-hard to properly PAC learn decision trees with queries, resolving a
longstanding open problem in learning theory (Bshouty 1993; Guijarro–Lav́ın–Raghavan 1999;
Mehta–Raghavan 2002; Feldman 2016). While there has been a long line of work, dating back to
(Pitt–Valiant 1988), establishing the hardness of properly learning decision trees from random

examples, the more challenging setting of query learners necessitates different techniques and
there were no previous lower bounds. En route to our main result, we simplify and strengthen
the best known lower bounds for a different problem of Decision Tree Minimization (Zantema—
Bodlaender 2000; Sieling 2003).

On a technical level, we introduce the notion of hardness distillation, which we study for
decision tree complexity but can be considered for any complexity measure: for a function that
requires large decision trees, we give a general method for identifying a small set of inputs that
is responsible for its complexity. Our technique even rules out query learners that are allowed
constant error. This contrasts with existing lower bounds for the setting of random examples
which only hold for inverse-polynomial error.

Our result, taken together with a recent almost-polynomial time query algorithm for properly
learning decision trees under the uniform distribution (Blanc–Lange–Qiao–Tan 2022), demon-
strates the dramatic impact of distributional assumptions on the problem.

http://arxiv.org/abs/2307.04093v1

Contents

1 Introduction 1

1.1 Background and Context . 2
1.2 Other related work . 2
1.3 Technical remarks about Theorem 1 . 3

2 Technical Overview 4

2.1 Why the query setting necessitates new techniques 4
2.2 Overview of our proof and techniques . 5

2.2.1 The core reduction . 5
2.2.2 Hardness distillation . 6
2.2.3 Hardness for constant error . 7

3 Discussion and future work 8

4 Preliminaries 9

4.1 Hardness of Vertex Cover . 11

5 A reduction from VertexCover to Decision Tree Minimization 11

5.1 Intuition and warmup: the IsEdgeG function . 11
5.1.1 Useful notions and notation: edge partitions and divergent path prefixes . . . 12
5.1.2 Proof of Claim 2.1 . 13

5.2 ℓ-IsEdge: an amplified version of IsEdge . 15
5.2.1 Proof of Theorem 2 . 17

5.3 Hardness of decision tree minimization . 19

6 Hardness distillation and learning consequence for small error 20

6.1 A general method for hardness distillation . 20
6.2 Warmup: hardness distillation for IsEdge . 23
6.3 Hardness distillation for ℓ-IsEdge . 25
6.4 Learning consequence for inverse polynomial error 28

7 Hardness for constant error 30

7.1 Hardness of partial vertex cover . 30
7.2 Definition of the hard distribution . 31
7.3 Learning consequence for constant-error: Proof of Theorem 1 34

1 Introduction

Decision trees are among the most basic and popular hypothesis classes in machine learning. They
have long served as the gold standard of interpretability: a classic, influential survey of statistical
models states that “On interpretability, decision trees rate an A+” [Bre01], and two decades later, a
survey of intepretable machine learning [RCC+22] lists the optimization of decision tree hypotheses
as the very first of the field’s “10 grand challenges”. Besides interpretability, decision tree hypothe-
ses are extremely fast to evaluate, with evaluation time scaling with their depth, a quantity that is
often exponentially smaller than their overall size. Decision trees are also at the heart of powerful
ensemble methods such as random forests and XGBoost which achieve state-of-the-art performance
across a variety of domains.

We consider the task of constructing optimal decision tree representations of data. A standard
formalization of this task is the problem of properly PAC learning decision trees: given access
to a target function f and a distribution D, construct the optimal decision tree hypothesis for f
under D. Valiant’s original definition of the PAC model [Val84] considered learners with both
passive access to the target function in the form of random labeled examples as well as active
access in the form of queries. This setting as well as that of learning from random examples
only have since been intensively studied. Valiant’s motivation for the more powerful query setting
came from modeling interactions with an expert (“[an] important aspect of the formulation is that
the notion of oracles makes it possible to discuss a whole range of teacher-learner interactions
beyond the mere identification of examples”). The query setting also models the task of converting
an existing accurate but inscrutable hypothesis, for which one has query access to, into a more
intelligible representation—once again, decision trees are a canonical sought-for representation for
this task [CS95, BS96, VAB07, ZH16, BKB17, VLJ+17, FH17, VS20].

This work. The NP-hardness of properly learning decision trees from random examples is a
foundational result known since the early days of PAC learning [Ang, PV88]. The question of
whether there exists an efficient query learner, on the other hand, has been raised repeatedly over
the years, in research papers [Bsh93, GLR99, MR02] and surveys [Fel16]. We resolve this question
by showing that properly learning decision trees is NP-hard even for query learners:

Theorem 1. There is an absolute constant ε > 0 such that the following holds. Suppose
there is an algorithm that, given queries to an n-variable function f computable by a decision
tree of size s = O(n) and random examples (x, f(x)) drawn according to a distribution D,
runs in time t(n) and w.h.p. outputs a size-s decision tree h that is ε-close to f under D.
Then SAT ∈ RTIME(poly(t(n2 polylog n))).

Theorem 1 addresses a stark gap in our understanding of the problem. The fastest known al-
gorithm runs in exponential time, 2O(n) for all values of s. There were no previous lower bounds,
leaving open the possibility of a poly(n, s)-time algorithm. Indeed, existing query learners for var-
ious relaxations of the problem had suggested that such an algorithm was within striking distance.
Theorem 1 provides for the first time strong evidence that there are no polynomial-time, or indeed
even subexponential-time, algorithms for the problem.

1

1.1 Background and Context

Hardness of properly learning decision trees from random examples. NP-hardness in
the setting of random examples has been known since the seminal work of Pitt and Valiant [PV88].
Their paper, which initiated the study of the hardness of proper learning, attributed the result to an
unpublished manuscript of Angluin [Ang]. Subsequently, Hancock, Jiang, Li, and Tromp [HJLT96]
obtained hardness even of weakly-proper learning, where the algorithm is allowed to return a
decision tree of size larger than that of the target. There have since been several works [ABF+09,
KST23, Bsh23] further improving [HJLT96]’s result.

These works build crucially on a simple reduction from SetCover, a reduction variously at-
tributed to Levin [Lev73], Angluin [Ang], and Haussler [Hau88]. We describe this technique and
discuss why it is limited to the setting of random examples in Section 2.1.

Algorithms for properly learning decision trees. There is a simple Occam algorithm for
properly learning decision trees from random examples: for a size-s decision tree target, draw
O(s log(n)) many labeled examples and use dynamic programming to find a size-s decision tree
hypothesis that fits the dataset perfectly (see e.g. [GLR99, MR02]). Standard generalization
bounds [BEHW89] show that this algorithm satisfies the PAC guarantee. Its runtime is 2O(n),
with the dynamic program being the bottleneck.

Ehrenfeucht and Haussler [EH89] gave a faster algorithm that runs in time nO(log s), but their
algorithm is only weakly proper: for a size-s target, its hypothesis can be as large as nΩ(log s).
This large gap is a significant drawback—decision tree hypotheses are interpretable and fast to
evaluate insofar as they are small—and [EH89] stated as the first open problem of their paper
that of designing algorithms that produce smaller hypotheses. There has been no progress on this
problem in the setting of random examples since 1989.

The power of queries. In contrast, granting the learner queries enables the design of sev-
eral polynomial-time algorithms that almost solve the problem of properly learning decision trees.
Already in his original paper [Val84] (see also [Ang88]), Valiant gave a polynomial-time query
algorithm for properly learning monotone DNFs; consequently, for size-s monotone decision tree
targets Valiant’s algorithm returns a size-s monotone DNF as its hypothesis. Other such results
include polynomial-time query learners for general decision tree targets that output depth-3 formu-
las [Bsh93] and polynomials [KM93, SS93] as hypotheses. As further demonstration of the power of
queries, a recent work of Blanc, Lange, Qiao, and Tan [BLQT22] gives an almost-polynomial-time
(poly(n) · sO(log log s) time) query algorithm that properly learns decision trees under the uniform

distribution. Finally, the query model opens the possibility of circumventing long-known SQ lower
bounds for the problem [BFJ+94], which show that in the setting of random examples all SQ
algorithms must take time nΩ(log s).

Taken together, this was all evidence in favor of a polynomial-time, or at least a mildly-super-
polynomial time algorithm for properly learning decision trees with queries. In light of Theorem 1,
even a subexponential-time algorithm is now unlikely.

1.2 Other related work

Scarcity of hardness results for PAC learning with queries. Theorem 1 adds to a dearth
of NP-hardness results for the model of PAC learning with queries. Indeed, we are aware of only

2

one other such result: in [Fel06] Feldman proved that DNFs are NP-hard to properly learn with
queries, resolving a longstanding problem of Valiant [Val84, Val85]. As Feldman remarked in his
paper, this was the first NP-hardness result, for any learning task, for the model of PAC learning
with queries. (Our techniques are entirely different from [Fel06]’s.)

Related to the scarcity of hardness results, there are numerous query algorithms, for a variety
of learning tasks, whose runtimes remain unmatched in the setting of random examples. It is also
well known that under standard cryptographic assumptions, PAC learning with queries is strictly
more powerful than from random examples only.

Hardness of properly learning decision trees in other models. While the focus of our
work is on the PAC model, interest in the hardness of properly learning decision trees predates
and extends beyond the PAC model. An early paper by Hyafil and Rivest [HR76] proved the
NP-hardness of constructing generalized decision trees (ones with more expressive splits than the
values of single variables) that perfectly fit a given dataset; quoting the authors, “The importance
of this result can be measured in terms of the large amount of effort that has been put into finding
efficient algorithms for constructing optimal binary decision trees”. Other results on the hardness
of properly learning decision trees in other models include [GJ79, KPB99, GLR99, ZB00, BB03,
LN04, CPR+07, RRV07, Sie08, AH12, Rav13, BLQT21].

1.3 Technical remarks about Theorem 1

Hardness for constant error. A notable aspect of Theorem 1 is that it rules out learners that
are allowed constant error. This was not known even in the setting of random examples, where
existing hardness results only hold for inverse-polynomial error: prior to our work, there were no
lower bounds ruling out algorithms for properly learning size-s DTs, from random examples only, in
time say (ns)O(1/ε), which is polynomial for constant ε. (Feldman’s NP-hardness result for properly
learning DNFs with queries also only holds for inverse-polynomial error.)

Implications for decision tree minimization. The actual result that we prove is stronger
than as stated in Theorem 1: it holds even if the learner is given explicit descriptions of the target
function f and the distribution D as inputs. Furthermore, the target function can even be given to
the learner in the form of a decision tree. For this reason, our result also has implications for the
problem of decision tree minimization: given a decision tree, find an equivalent one of minimum
size. We recover the best known hardness of approximation result for this problem [ZB00, Sie08]
via what is, in our opinion, a much simpler proof. Our proof also yields a stronger result: we show
that the problem remains hard even if the resulting tree only has to agree with the original tree on
a small given set of inputs.

Implications for testing decision trees. Another aspect in which the actual result we prove is
stronger than as stated in Theorem 1 is that it even rules out distribution-free testers for decision
trees. (The fact that lower bounds against testers for a class yield lower bounds against proper
learners for the same class is well known and easy to show [GGR98].) While there’s a large body of
work giving lower bounds for testing various classes of functions, the vast majority of these results
are information-theoretic in nature, focusing on query complexity, with far fewer computational
lower bounds. Our result does not rule out decision tree testers with low query complexity, but it

3

shows that even if such a tester exists, it must nevertheless run in exponential time (unless SAT
admits a subexponential time algorithm).

2 Technical Overview

2.1 Why the query setting necessitates new techniques

Before delving into our techniques, we describe the key construction [Lev73, Ang, Hau88] at the
heart of all previous results on the hardness of properly learning decision trees from random ex-
amples [Ang, HJLT96, ABF+09, KST23, Bsh23] and discuss why it is limited this setting. (This
section can be freely skipped; its point is to explain why we had to depart from previous approaches
in order to prove Theorem 1.)

Consider the following reduction from SetCover to the problem of properly learning dis-
junctions. Let S = {S1, . . . , Sn} be a SetCover instance over the universe [m] and define
u(1), . . . , u(m) ∈ {0, 1}n where

(u(j))i =

{

1 if j ∈ Si

0 otherwise.

Let C ⊆ [n] be the indices of an optimal set cover for S and consider the target disjunction
f : {0, 1}n → {0, 1},

f =
∨

i∈C

xi.

Let D be the uniform distribution over {u(1), . . . , u(m), 0n}. Note that given any disjunction hy-
pothesis h for f that achieves error < 1/(m+ 1) under D, the variables in h must constitute a set
cover for S.

To see why this reduction, and reductions like it, do not extend to the setting of queries, we first
observe that this specific target function can be easily learned with queries, simply by querying
f on all strings of Hamming weight 1. More generally and crucially, we note that the target
function is defined by the optimal solution to the SetCover instance. While this is a very natural
strategy (and indeed many other hardness results for learning employ such a strategy), for any
such reduction it seems challenging to provide query access to the target function without having
to solve the SetCover instance, which would of course render the reduction inefficient. (Beyond
the issue of queries, this reduction is also limited to the inverse-polynomial error regime and does
not rule out learners that are allowed larger error.) While this reduction is for the hardness of
properly learning disjunctions, all aforementioned hardness results for decision trees use it as their
starting point and suffer from the same limitations.

How our approach differs. Departing from these works, we design a reduction where the
definition of our target function does not depend on the solution to a computationally hard prob-
lem—which allows us to efficiently provide the learner query access to it—and only its decision tree

complexity scales with the quality of the solution; see Remark 2. Our resulting reduction is quite
a bit more elaborate than those for the setting of random examples.

4

2.2 Overview of our proof and techniques

We prove Theorem 1 by reducing from VertexCover: we design an efficient mapping from graphs
G to functions f where the decision tree complexity of f reflects the vertex cover complexity of G.
The properties of this mapping that we require our application to learning are somewhat subtle to
state, so we describe and motivate them incrementally.

2.2.1 The core reduction

Our starting point is a reduction with the following basic properties:

The core reduction

◦ Yes case: If G has a small vertex cover, then f has small decision tree complexity.

◦ No case: If G requires a large vertex cover, then f has large decision tree complexity.

We sketch the main ideas behind this core reduction. For an n-vertex graph G, we consider its
edge indicator function IsEdgeG : {0, 1}n → {0, 1}. An input v = (v1, . . . , vn) ∈ {0, 1}

n to IsEdgeG
is viewed as specifying the presence or absence of each vertex v1, . . . , vn ∈ V , and IsEdgeG(v) = 1
iff v specifies the presence of exactly the two endpoints of some edge of G. More formally:

Definition 1 (IsEdgeG). Let G = (V,E) be an n-vertex graph. For an edge e = {vi, vj} ∈ E, we
write Ind[e] ∈ {0, 1}n to denote its indicator string:

Ind[e]k =

{

1 if k ∈ {i, j}

0 otherwise.

The edge indicator function of G is the function IsEdgeG : {0, 1}n → {0, 1},

IsEdgeG(v1, . . . , vn) =

{

1 (v1, . . . , vn) = Ind[e] for some e ∈ E

0 otherwise.

When G is clear from context, we drop the subscript and simply write IsEdge.

Warmup. We first prove:

Claim 2.1 (Decision tree complexity of IsEdge). Let G be an n-vertex m-edge graph.

◦ Yes case: If G has a vertex cover of size ≤ k, then there is a decision tree T for IsEdgeG of
size

|T | ≤ k +m+mn.

◦ No case: If G requires a vertex cover of size ≥ k′, then any decision tree T for IsEdgeG must
have size

|T | ≥ k′ +m.

5

As stated, Claim 2.1 is not useful since the upper bound of the Yes case is much larger than
the lower bound of the No case, owing to the additional additive factor of mn. More precisely, we
need these bounds to satisfy:

If k′ = (1 + δ)k then (Upper bound of Yes case) < (Lower bound of No case) (⋆)

in order to invoke the NP-hardness of (1 + δ)-approximating VertexCover.

Amplification. We therefore consider an “amplified” version of IsEdgeG,

ℓ-IsEdgeG : {0, 1}n × ({0, 1}n)ℓ → {0, 1},

and prove:

Theorem 2 (Decision tree complexity of ℓ-IsEdge). Let G be an n-vertex m-edge graph and ℓ ∈ N.

◦ Yes case: If G has a vertex cover of size ≤ k, then there is a decision tree T for ℓ-IsEdgeG
of size

|T | ≤ (ℓ+ 1) · (k +m) +mn.

◦ No case: If G requires a vertex cover of size ≥ k′, then any decision tree T for ℓ-IsEdgeG
must have size

|T | ≥ (ℓ+ 1) · (k′ +m).

We point out two properties of Theorem 2 that will be important for us:

Remark 1 (Asymmetric amplification in the Yes case). Comparing Claim 2.1 and Theorem 2, we
see that in No case, the entire lower bound of k′ +m is amplified by a factor of ℓ+1. On the other
hand, in the Yes case only the k +m factor—and crucially, not the mn factor—is amplified by a
factor of ℓ+1. This is important as it allows us to choose ℓ to be sufficiently large to make the mn
factor negligible, thereby having our bounds satisfy the sought-for property (⋆).

Remark 2 (Efficiently providing query access to ℓ-IsEdgeG). We defer the definition of ℓ-IsEdgeG
to Section 5.2 but mention here that (i) it will be the hard target function in our proof of Theorem 1;
and (ii) just like the unamplified IsEdgeG function—and unlike the SetCover-based target func-
tion described in Section 2.1— its definition will depend only on the edges in G and not its optimal
vertex cover. This is crucial as it allows us to efficiently provide the learner query access to its
values in our reduction without having to solve VertexCover. Circling back to our discussion
in Section 2.1, this is a key qualitative difference between our reduction and previous reductions
for the setting of random examples.

2.2.2 Hardness distillation

Theorem 2 already allows us to recover, with a markedly simpler proof, the best known hardness
of approximation result [ZB00, Sie08] for decision tree minimization. However, it does not yet have
any implications for learning since the No case only states that any decision tree that computes f
exactly must have large size, and does not rule out the possibility that f can be well-approximated
by a small decision tree.

6

We therefore strengthen the No case via a process that we call hardness distillation: we identify
a small set of inputs D ⊆ {0, 1}n, which we call a coreset, that is responsible for f ’s large decision
tree complexity.

The core reduction with hardness distillation

◦ Yes case: If G has a small vertex cover, then f has small decision tree complexity.

◦ No case: If G requires a large vertex cover, then there is a small set D ⊆ {0, 1}n such that
any decision tree that agrees with f on D must be large.

Such a reduction yields the NP-hardness of learning decision trees to error < 1/|D|, which
motivates the problem of constructing coresets that are as small as possible. Our coreset will have
size poly(n), and therefore we get the hardness of learning to inverse-polynomial error. (In the
next subsection we describe a further extension of this technique that establishes constant-error
hardness.)

Hardness distillation via certificate complexity and relevant variables. We give a gen-
eral method for identifying a small coreset that witnesses the large decision tree complexity of a
function f . At a high level, there are two main components to this coreset:

1. A set of inputs D1 that ensures that any decision tree T that agrees with f on D1 must have
a long path π, one of length at least s1.

2. Another set of inputs D2 that ensures that the at-least-s1 many disjoint subtrees that branch
off of π must have sizes that sum up to at least s2.

See Figure 6 for an illustration. Together, D1 and D2 form a coreset witnessing the fact that f
has decision tree complexity at least s1 + s2. To formalize this approach we rely on generalizations
of two notions of boolean function complexity, namely certificate complexity and the relevance of
variables, from the setting of total functions to partial functions. More formally, the two components
of our method are as follows:

1. If there is an input x⋆ ∈ D1 such that the certificate complexity of f on x⋆ relative to D1 is
at least s1, then any decision tree T that agrees with f on D1 must have a long path π of
length at least s1.

2. This path π induces at least s1 many subfunctions of f , corresponding to f restricted by
paths that diverge from π at each of π’s at-least-s1 many nodes. If the number of variables
of these subfunctions that are relevant relative to D2 is at least s2, then the at-least-s1 many
disjoint subtrees that branch off π must have sizes that sum up to at least s2.

2.2.3 Hardness for constant error

To obtain hardness even against algorithms that are allowed constant error, we further improve the
No case as follows:

7

The reduction for constant-error hardness

◦ Yes case: If G has a small vertex cover, then f has small decision tree complexity.

◦ No case: If G requires a large vertex cover, then there is a set D ⊆ {0, 1}n, a distributuon
D over D, and a constant ε > 0 such that any decision tree that agrees with f with
probability ≥ 1− ε over x ∼ D must be large.

The key new ingredient in this final reduction is the hardness of α-PartialVertexCover, a
relaxed version of VertexCover where the goal is to find a set of vertices that cover a 1−α fraction
of vertices. We show that α-PartialVertexCover inherits its hardness of approximation from
VertexCover itself:

Claim 2.2 (Hardness of α-PartialVertexCover). There are constants α ∈ (0, 1) and δ > 0
such that if α-PartialVertexCover on constant-degree, n-vertex graphs can be approximated to
within a factor of 1 + δ in time t(n), then SAT can be solved in time t(n · polylog(n)).

This is thanks to the fact that VertexCover is hard the approximate even for constant-degree
graphs, which in turn follows from the PCP Theorem.

With Claim 2.2 in hand, Theorem 1 then follows by appropriately robustifying the other ma-
chinery described in this section.

3 Discussion and future work

Assuming SAT requires exponential time, Theorem 1 shows that the inherent time complexity of
properly learning decision trees with queries is also exponential: the simple dynamic-programming-
based Occam algorithm is essentially optimal, despite evidence to the contrary in the form of fast
algorithms for various relaxations of the problem.

A concrete problem left open by our work is that of optimizing the efficiency of our reduction,
which takes an instance of SAT over n variables and produces an instance of properly learning
decision trees over Õ(n2) variables. Can this be improved to linear or quasilinear in n?

More broadly, a natural next step is to understand the complexity of weakly-proper learning.
As mentioned in the introduction, the landscape changes dramatically for this easier setting, and
we have known since the 1980s of an algorithm that runs in quasipolynomial time [EH89]. This
algorithm of Ehrenfeucht and Haussler has resisted improvement for over three decades and it is
reasonable to conjecture that it is in fact optimal, even for query learners:

Conjecture 1. There is no algorithm that, given queries to a size-s decision tree target and access
to random labeled examples, runs in time no(log s) and returns an accurate decision tree hypothesis—
one of any size, not necessarily s.

Table 1 places Theorem 1 and Conjecture 1 within the context of prior work:

8

Random Examples Queries

Proper

Learning

[Ang, PV88]: Exponential lower bound.

Assumption: SAT requires exponential time

Theorem 1: Exponential lower bound.

Assumption: SAT requires exponential time

Weakly-proper

Learning

[ABF+09, KST23]: Quasipoly lower bound.

Assumption: Inapproximability of

parameterized SetCover

Conjecture 1: Quasipolynomial lower bound.

Table 1: Lower bounds for proper and weakly-proper learning of decision trees. In terms of
upper bounds, the fastest known proper algorithm (dynamic-programming-based Occam
algorithm) runs in exponential time, and the fastest known weakly-proper (Ehreunfeucht–
Haussler) runs in quasipolynomial time.

Weakly-proper learning algorithms are akin to approximation algorithms, and the hardness of
weakly-proper learning is akin to the hardness of approximation. An immediate, but not necessarily
insurmountable obstacle in extending our techniques to the setting of weakly-proper learning is the
fact that VertexCover, whose hardness of approximation we rely on in our proof, is not that

hard to approximate: a simple greedy algorithm achieves a 2-approximation.
There is also more to be understood for (strongly-)proper learning of decision trees. Our

work taken together with the recent query learner of [BLQT22] highlights, quite dramatically, the
effect of distributional assumptions on the problem: our work gives an exponential lower bound in
the distribution-free setting, whereas [BLQT22] gives an almost-polynomial time query algorithm
for the uniform distribution. In the spirit of beyond worst-case analysis, an ambitious direction
for future work is to understand the tractability of the problem vis-à-vis the complexity of the
underlying distribution. An ultimate goal is to design efficient algorithms that circumvent the lower
bounds established in this work, but nonetheless enjoy performance guarantees for the broadest
possible class of distributions.

Finally, we believe that the notions of hardness distillation and coresets introduced in this work
merit further study and could lead to more connections between the hardness of minimization
problems and the hardness of learning.

4 Preliminaries

Notation and naming conventions. We write [n] to denote the set {1, 2, . . . , n}. We use lower
case letters to denote bitstrings e.g. x, y ∈ {0, 1}n and subscripts to denote bit indices: xi for
i ∈ [n] is the ith index of x. The string x⊕i is x with its ith bit flipped. We use superscripts to
denote multiple bitstrings of the same dimension, e.g. x(1), x(2), ..., x(j) ∈ {0, 1}n. For a finite set
S, Perm(S) denotes the set of permutations of S. If S = {s1, . . . , s|S|}, we identify π ∈ Perm(S)
with the tuple (si1 , . . . , si|S|

) where π(sj) = sij . In this setting, we simply write π(j) to denote the
jth element of the tuple, π(j) = sij .

Distributions. We use boldface letters e.g. x,y to denote random variables. For a distribution

9

D, we write distD(f, g) = Prx∼D[f(x) 6= g(x)]. A function f is ε-close to g if distD(f, g) ≤ ε.
Similarly, f is ε-far from g if distD(f, g) > ε. The support of the distribution is the set of elements
with nonzero mass and is denoted supp(D).

Decision trees. The size of a decision tree T is its number of internal nodes and is denoted |T |.
Two subtrees of T are disjoint if they do not share any internal nodes. In an abuse of notation,
we also write T for the function computed by the decision tree T . We say T computes a function
f : {0, 1}n → {0, 1} if T (x) = f(x) for all x ∈ {0, 1}n. The decision tree complexity of a function f
is the size of the smallest decision tree computing f and is denoted DT(T).

Restrictions and decision tree paths. A restriction ρ is a set ρ ⊆ {x1, x1, . . . , xn, xn} of
literals, and fρ is the subfunction obtained by restricting f according to ρ: fρ(x

⋆) = f(x⋆|ρ) where
x⋆|ρ is the string obtained from x⋆ by setting its ith coordinate to 1 if xi ∈ ρ, 0 if xi ∈ ρ, and
otherwise setting it to x⋆i . We say an input x⋆ is consistent with ρ if xi ∈ ρ implies x⋆i = 1 and
xi ∈ ρ implies x⋆i = 0.

We identify a depth-d, non-terminal path π in a decision tree with a tuple of d literals: π =
(ℓ1, ℓ2, . . . , ℓd) where each ℓi corresponds to a query of an input variable and is unnegated if π
follows the right branch and negated if π follows the left branch. Paths naturally correspond to
restrictions by forgetting their ordering. Therefore, we also write fπ to denote the restriction of f
by {ℓ1, ℓ2, . . . , ℓd}.

Graphs. An undirected graph G = (V,E) has n vertices V ⊆ [n] and m = |E| edges E ⊆ V × V .
The degree of a vertex v ∈ V is the number of edges containing it: |{e ∈ E : v ∈ e}|. The graph
G is degree-d if every vertex v ∈ V has degree at most d. We often use letters v, u,w to denote
vertices of a graph G.

Learning. In the PAC learning model, there is an unknown distribution D and some unknown
target function f ∈ C from a fixed concept class C of functions over a fixed domain. An algorithm
for learning C over D takes as input an error parameter ε ∈ (0, 1) and has oracle access to an
example oracle EX(f,D). The algorithm can query the example oracle to receive a pair (x, f(x))
where x ∼ D is drawn independently at random. The goal is to output a hypothesis h such that
distD(f, h) ≤ ε. Since the example oracle is inherently randomized, any learning algorithm is
necessarily randomized. So we require the learner to succeed with some fixed probability e.g. 2/3.
A learning algorithm is proper if it always outputs a hypothesis h ∈ C. A learning algorithm with
queries is given oracle access to the target function f along with the example oracle EX(f,D).

In this work we focus on the task of properly learning the concept class Ts = {T : {0, 1}n →
{0, 1} | T is a size-s decision tree}.

Definition 2 (Properly PAC learning decision trees with queries). An algorithm L properly learns
Ts in time t(n, s, ε) if for all distributions D and for all T ∈ Ts and ε ∈ (0, 1), L with oracle access
to EX(T,D) and queries to T runs in time t(n, s, ε) and, with probability 2/3, outputs h ∈ Ts such
that distD(T, h) ≤ ε.

PCPs and Max-3Sat. For this work, we are interested in reductions from SAT. Our tech-
niques will rely on the hardness of approximation and we therefore need a reduction from SAT to
approximating Max-3Sat. The most efficient reduction exploits quasilinear PCPs:

10

Theorem 3 (Hardness of approximating Max-3Sat via quasilinear PCPs [Din07, BSS08]). There
is a constant c ∈ (0, 1) and a polynomial-time reduction that takes a 3CNF formula ϕ with m
clauses and produces a 3CNF formula ϕ⋆ with O(m · polylog(m)) clauses satisfying

• if ϕ is satisfiable then ϕ⋆ is satisfiable;

• if ϕ is unsatisfiable then no assignment satisfies a c-fraction of clauses of ϕ⋆.

4.1 Hardness of Vertex Cover

Vertex cover. A vertex cover for an undirected graph G = (V,E) is a subset of the vertices
C ⊆ V such that every edge has at least one endpoint in C. We write VC(G) ∈ N to denote the
size of the smallest vertex cover. See Figure 1 for an example of a vertex cover. The VertexCover

problem is to decide whether a graph contains a vertex cover of size-k, i.e. to decide if VC(G) ≤ k.
We consider the more general gapped vertex problem where the problem is to decide whether a graph
has a small vertex cover or requires large vertex cover. Specifically we write (k, k′)-VertexCover

for the problem of deciding whether a graph contains a vertex cover of size-k or every vertex cover
has size at least k′. This gapped problem is equivalent to the problem of approximating vertex
cover. There is a polynomial-time greedy algorithm for vertex cover that approximates it within a
factor of 2, i.e. solves (k, 2k)-VertexCover in polynomial-time.

Constant factor hardness of VertexCover is known, even for bounded degree graphs (graphs
whose degree is bounded by some universal constant). Papadimitriou and Yannakakis in [PY91]
give an approximation preserving reduction from Max-3Sat to VertexCover on constant-degree
graphs. The PCP theorem [AS98, ALM+98] implies NP-hardness of approximating Max-3Sat

and therefore, combined with the reduction in [PY91], implies hardness of approximating Vertex-

Cover on constant-degree graphs. (For a further discussion and history of these results, see the
survey by Trevisan [Tre14].)

Theorem 4 (Hardness of approximating VertexCover). There are constants δ > 0 and d ∈ N
such that if (k, (1 + δ) · k)-VertexCover on n-vertex degree-d graphs can be solved in time t(n),
then SAT can be solved in time t(n · polylog(n)).

This hardness follows from Theorem 3 and the reduction in [PY91]. The n · polylog(n) factor
originates from Theorem 3.

The fact that Theorem 4 holds for constant degree graphs will be essential for our lower bound
because it allows us to assume that k is large: VC(G) = Θ(m).

Fact 4.1 (Constant degree graphs require large vertex covers). If G is an m-edge degree-d graph,
then VC(G) ≥ m/d.

This fact follows from the observation that in a degree-d graph each vertex can cover at most
d edges.

5 A reduction from VertexCover to Decision Tree Minimization

5.1 Intuition and warmup: the IsEdgeG function

In this section we prove Claim 2.1, which serves as a warmup for our core reduction, Theorem 2.
We first introduce a few notions (and notation) that will be useful throughout the rest of the paper.

11

Figure 1: A graph G = (V,E) with 10 edges having VC(G) = 3. The unique vertex cover
of size 3 is highlighted in teal.

5.1.1 Useful notions and notation: edge partitions and divergent path prefixes

Edge partitions induced by decision trees for IsEdge. We will make use of the notion of a
restricted edge neighborhood and a restricted vertex neighborhood. Specifically, we will be interested
in the edges incident to a particular vertex which do not contain certain vertices.

Definition 3 (Restricted edge and vertex neighborhood). For a graph G = (V,E), the edge neigh-
borhood of viκ ∈ V restricted by vi1 , . . . , viκ−1 , denoted E(viκ ; vi1 , . . . , viκ−1), is the set of edges
containing viκ but not any of vi1 , . . . , viκ−1 :

E(viκ ; vi1 , . . . , viκ−1) := {e ∈ E | viκ ∈ e and vi1 , . . . , viκ−1 6∈ e}.

The vertex neighborhood of viκ restricted by vi1 , . . . , viκ−1 , denoted V (viκ ; vi1 , . . . , viκ−1), is the
set of neighbors of viκ excluding the vertices vi1 , . . . , viκ−1 :

V (viκ ; vi1 , . . . , viκ−1) :=
{

v ∈ V | {viκ , v} ∈ E and v 6= vi1 , . . . , viκ−1

}

.

Often when a tuple of vertices (vi1 , . . . , vik) is understood from context, we will use the shorthand
notation Eκ = E(viκ ; vi1 , . . . , viκ−1) for κ = 1, . . . , k and likewise for Vκ. Restricted edge and vertex
neighborhoods are closely related to each other, and each can be defined in terms of the other:

Eκ = {{viκ , v} | v ∈ Vκ} and Vκ = {v | {viκ , v} ∈ Eκ}.

Given a vertex cover {vi1 , . . . , vik}, the sets {Eκ}κ∈[k] form a partition of the edge set E. Indeed,

⋃

κ∈[k]

Eκ = E

since every edge in G is incident to some vertex viκ . Also, the sets Eκ are disjoint since each Eκ

excludes the edges already covered by the previous E1, . . . , Eκ−1 sets. In fact, the converse also
holds. If C = {vi1 , . . . , vik} are vertices such that Eκ partition the edge set then C must form a
vertex cover: every edge e ∈ E is in some partition Eκ and so viκ covers e.

Fact 5.1. Let C = {vi1 , . . . , vik} be a subset of vertices of a graph G and Eκ := E(viκ ; vi1 , . . . , viκ−1)
for κ ∈ [k]. Then C forms a vertex cover of G if and only if {Eκ}κ∈[k] form a partition of E.

A key property of the IsEdgeG function is that every decision tree for it induces such an edge
partition in the following way. Every decision tree for IsEdgeG has a path π in it whose path
variables form a vertex cover. This vertex cover induces a partition of the edges of G. Each part
of the partition corresponds to a unique variable in this decision tree path. This correspondence
will be important for lower bounding the size of the decision tree in the case when G requires large
vertex covers. To describe this correspondence, it will be useful for us to have the following notation
for a path that diverges from from π at a particular point and then stops.

12

Definition 4 (Divergent path prefix; see Figure 2). For a path π, the path π|⊕κ denotes the path
which follows π for the first κ− 1 queries, flips the κth query, then terminates:

π|⊕κ :=
(

π(1), . . . , π(κ− 1), π(κ)
)

.

π

π|⊕κ
depth κ

Figure 2: Illustration of a divergent path prefix. The root-to-leaf path π is illustrated in
purple. At depth κ the path π|κ diverges and terminates.

If π is the path corresponding to a vertex cover, then π|⊕κ corresponds to the path followed by
edges in Eκ (here we are conflating edges and edge indicator strings).

5.1.2 Proof of Claim 2.1

Proof of the Yes case. Let C = {vi1 , . . . , vik} be a vertex cover for G. The leftmost branch π of our
decision tree queries these vertices successively and terminates with a 0-leaf. These are the vertices
colored blue in Figure 3.

We move on to describing each of the subtrees branching off of π. More formally, for each
κ ∈ [k], we describe the subtree rooted at the end of π|⊕κ (i.e. the subtree that is the 1-successor
of vik). At this point T “knows” that vik is set to 1. For IsEdge to output 1, exactly one of viκ ’s
neighbors must also be set to 1, and all n−2 other vertices must be set to 0 (i.e. these are precisely
the inputs Ind[e] for e ∈ Eκ). Therefore T queries all v ∈ Vκ (i.e. the neighbors of viκ that have
not already been queried along π), testing to see whether any of them are 1, and terminates with
a 0-leaf if they are all set to 0. These are the vertices colored teal in Figure 3.

Finally, we describe the subtree that is the 1-successor of each v ∈ Vκ. At this point T knows
that viκ and this neighbor v are both set to 1, and it remains only to check that all other vertices
are set to 0 before outputting 1: it queries all n− 2 vertices in V that are not v or viκ and outputs
1 iff all of them are set to 0. These are the vertices colored orange in Figure 3.

We complete the proof by bounding the size of T . Its leftmost branch has size k (the blue
vertices). By Fact 5.1, querying all v ∈ Vκ for κ ∈ [k] results in an additional

∑

κ |Vκ| =
∑

κ |Eκ| =
m internal nodes (the teal vertices). After each of these m internal nodes, we query n − 2 more
vertices, resulting in an additional m(n− 2) < mn internal nodes (the orange vertices). Thus, the
total size of T is at most k +m+mn.

13

vi1 (root)
...

viκ

viκ+1

viκ+2

...
vik

0

. . .

. . .
. . .

. . .

v3

v11

...
v25

. . .

0

v1

v2

...
vn

1

0

0

0

Path
π|⊕

κ

Pa
th
π
co
rr
es
po
nd
in
g
to
a
ve
rt
ex
co
ve
r
of
G

Ve
rt
ic
es
in
Vκ

Ve
rt
ic
es
in
V
\
{v

iκ
, v

3
}

Figure 3: An illustration of the proof of the Yes case of Claim 2.1. Given a vertex cover
C = {vi1 , . . . , vik} of G, our decision tree for IsEdge queries C among the leftmost branch
(colored blue in the figure). If some vertex viκ ∈ C is set to 1 then the decision tree
queries all vertices in Vκ (colored teal). Once some v ∈ Vκ is set to 1, the decision tree
queries the remaining unqueried vertices to ensure that they are set to 0 (colored orange)
before outputting 1.

We proceed to a proof of the lower bound.

Proof of the No case. Our proof consists of two parts: (1) proving that the leftmost branch of T
must be a vertex cover and therefore has size at least k′ and (2) showing that the rest of the tree
has size at least m. See Figure 4 for an illustration.

1. Leftmost branch must be a vertex cover. Let π be the leftmost branch of T and suppose for
contradiction that the vertices queried along π do not form a vertex cover for G. This means
that there is some edge e ∈ E that is not queried along π, and hence both Ind[e] and 0n

will follow π and reach the same leaf. Since IsEdge(0n) = 0 6= 1 = IsEdge(Ind[e]), this is a
contradiction.

2. Rest of the tree has at least m nodes. Let us order the vertices of π from root downwards
as vi1 , . . . , vi|π|

. For each κ ∈ [|π|], we consider the subtree Tκ that is the 1-successor of
vκ. Consider e ∈ Eκ and suppose e = (viκ , v). By the definition of Eκ, the endpoint v
has not yet been queried when Ind[e] enters Tκ. Thus, Tκ must query v, since otherwise

14

T cannot distinguish between Ind[e] and Ind[e]⊕v (note that IsEdge(Ind[e]) = 1 6= 0 =
IsEdge(Ind[e]⊕v)). Further, all e ∈ Eκ will have distinct second endpoints that Tκ must
query (since if not, then they would share both their endpoints and be the exact same edge).
In other words, we have argued that Tκ must query all the vertices in Vκ.

Since the sets Eκ for κ ∈ [|π|] partition the edges (Fact 5.1), we have that all these disjoint
subtrees T1, . . . , T|π| taken together must query at least

∑

κ |Vκ| = |Eκ| = |E| = m additional
vertices.

Combining the two claims above we show shown that |T | ≥ k′ +m and the proof is complete.

vi1

vi2

vi3

...

IsEdgeπ|⊕1

IsEdgeπ|⊕2

IsEdgeπ|⊕3

Ve
rt
ex
co
ve
r o
f G

inputs Ind[e] for e ∈ E1

fall into this subtree

inputs Ind[e] for e ∈ E1

fall into this subtree

inputs Ind[e] for e ∈ E1

fall into this subtree

Figure 4: An illustration of the No case of Claim 2.1. Given any decision tree T computing
IsEdge, the leftmost branch π must form a vertex cover of G. Furthermore, for each vertex
viκ queried along π, the subtree Tκ branching off of π at viκ must query all the vertices
in Vκ. The size of T is therefore at least k′ +

∑

κ |Vκ| = k′ +m.

5.2 ℓ-IsEdge: an amplified version of IsEdge

Definition 5 (The ℓ-amplified IsEdge function). Let G = (V,E) be an n-vertex graph and ℓ ∈ N.
The ℓ-amplified edge indicator function of G is the function

ℓ-IsEdgeG : {0, 1}n × ({0, 1}n)ℓ → {0, 1}

defined as follows: ℓ-IsEdgeG(v
(0), v(1), . . . , v(ℓ)) = 1 iff

1. IsEdgeG(v
(0)) = 1 (i.e. v(0) = Ind[e] for some e ∈ E), and

2. v
(1)
i = · · · = v

(ℓ)
i = 1 for all i ∈ [n] such that v

(0)
i = 1.

15

Notation and terminology. When G is clear from context, we drop the subscript and just write
ℓ-IsEdge. We also use N := n + nℓ to denote the number of inputs to ℓ-IsEdge. We refer to

v
(0)
1 , . . . , v

(0)
n as the original variables. As in the nonamplified IsEdge function, there is a natural

correspondence between these original variables and the vertices V = {v1, . . . , vn} of G. For each

original variable v
(0)
i , we refer to v

(1)
i , . . . , v

(ℓ)
i as its duplicated variables and write

Dup(vi) :=
{

v
(1)
i , . . . , v

(ℓ)
i

}

.

We write ℓ-Ind[e] ∈ ({0, 1}n)ℓ+1 to denote the string (Ind[e], . . . , Ind[e]). Note that ℓ-IsEdge(ℓ-Ind[e]) =
1 and these are the 1-inputs of minimum Hamming weight.

Asymmetries in the definition of ℓ-IsEdge. We note two sources of asymmetry in the definition
of ℓ-IsEdge, both of which are crucial for Theorem 2 (specifically, Remark 1) to hold. First, the
original variables play a distinct role from the duplicated ones: for ℓ-IsEdge to output 1, the original
variables have to agree with an edge indicator but the duplicated variables do not. Second, there is
also an asymmetry between 1- and 0-coordinates: for ℓ-IsEdge to output 1, the duplicated variables
have to be set to 1 whenever the original variables are set to 1, but the same is not true for the
0-coordinates.

16

5.2.1 Proof of Theorem 2

v
(0)
i1

(root)

...
v
(0)
iκ

v
(0)
iκ+1

v
(0)
iκ+2

...
v
(0)
ik

0

. . .

. . .

. . .

v(1)
κ

. . .
v(ℓ)
κ

0

0

v
(0)
3

v
(0)
11

...

v
(0)
25

0

. . .

. . .

v
(0)
1

v
(0)
2

v
(0)
n

0

0

0v
(1)
3

. . .
v
(ℓ)
30

0 1

Path
π|⊕

κ

Pa
th
π
co
rr
es
po
nd
in
g
to
a
ve
rt
ex
co
ve
r
of
G

D
u
p(v (0)i

κ)

Ve
rt
ic
es
fr
om

Vκ

O
rig
in
al
va
ria
bl
es

D
u
p(v (0)3

)

Figure 5: An illustration of the proof of the Yes case of Theorem 2. Given a vertex
cover C = {vi1 , . . . , vik} of G, our decision tree for ℓ-IsEdge queries the original variables
corresponding to C among the leftmost branch (colored blue in the figure). If some vertex

v
(0)
iκ
∈ C is set to 1 then the decision tree queries all vertices in Dup(v

(0)
iκ

) (colored in teal).
If all of these are 1, then it proceeds to compute the appropriate IsEdge subfunction on
the remaining vertices.

Proof of the Yes case. The construction is a slight extension of our tree for IsEdge that we con-
structed for the Yes case of Claim 2.1. See Figure 5 for an illustration of this construction. Let
C = {vi1 , . . . , vik} be a vertex cover of G. Similar to before, the leftmost branch π of our tree T

queries the original variables v
(0)
i1

, . . . , v
(0)
ik

corresponding to these vertices and terminates with a
0-leaf.

17

We now describe the subtree Tκ that is the 1-successor of v
(0)
iκ

for κ ∈ [k]. It first checks if the
duplicated variables of viκ are all set to 1, since that is a necessary criterion for ℓ-IsEdge to output
1: it queries all ℓ variables in Dup(viκ) and outputs 0 once any of them are set to 0. If all of them
are indeed set to 1, then for Tκ to output 1 it must check that (i) there is a neighbor v of vik whose
original variable is set to 1, (ii) all the other original variables are set to 0, and (iii) the duplicated
variables of v are set to 1.

For (i) and (ii), Tκ queries the remaining original variables in a manner identical to the tree
for IsEdge. Briefly restating that construction, it verifies Condition (i) by querying the original
variables of v ∈ Vκ, testing to see of any of them are set to 1. If none of them are set to 1, it
outputs 0. Otherwise, once the original variable of some v ∈ Vκ is set to 1, the tree Tκ moves on
to verifying Condition (ii): it queries the original variables of all n − 2 vertices in V \ {viκ , v} and
outputs 0 once any of them are set to 1. If all of them are indeed set to 0, it moves on to verifying
Condition (iii). It queries all ℓ variables in Dup(v) and outputs 1 iff all of them are set to 1.

We now bound the size of this tree. The portion of it that is identical to the tree for IsEdge
will have size at most k + m + mn, as proved in Claim 2.1. We incur an additional kℓ nodes to
query the duplicate variables for the vertex cover: ℓ duplicate variables for each vertex in the size-k
vertex cover. Finally, since we additionally query the ℓ many duplicate variables for each v ∈ Vκ in
the subtree Tκ, we incur another additional ℓ

∑

κ |Vκ| = ℓ
∑

κ |Eκ| = ℓm many nodes. In total, this
results in a tree of size

|T | ≤ k +m+mn+ kℓ+ ℓm = (ℓ+ 1)(k +m) +mn.

We now prove the lower bound.

Proof of No case. Just as in the proof of Claim 2.1, we divide our proof into two parts. We show
that (1) the leftmost branch of any decision tree for ℓ-IsEdge must correpond to a vertex cover
and hence has size at least k′, and (2) the rest of the tree must have size at least ℓk′ + (ℓ+ 1)m.

1. Leftmost branch must be a vertex cover. Let π be the leftmost branch of T and v
(j1)
i1

, . . . , v
(j|π|)

i|π|

be the variables queried along π. We claim that the corresponding vertices vi1 , . . . , vi|π|
∈ V

must form a vertex cover for G. Suppose for contradiction that they do not. This means
that there is some edge e ∈ E such that neither the original nor duplicated variables of e’s
endpoints are queried along π. Therefore both ℓ-Ind[e] and 0N will follow π and reach the
same leaf. Since IsEdge(0N) = 0 6= 1 = ℓ-IsEdge(ℓ-Ind[e]), this is a contradiction.

2. Rest of the tree has at least ℓk′+(ℓ+1)m nodes. Order the vertices of π from root downwards
as vi1 , . . . , vi|π|

. We will consider only the indices κ ∈ [|π|] such that Eκ is nonempty, noting
that the vertices corresponding to these indices still form a vertex cover, and hence there are
at least k′ such indices. Fix such a κ and consider the subtree Tκ that is the 1-successor of
v
(jκ)
iκ

. Let e = (viκ , v) ∈ Eκ. We argue that viκ is responsible for ℓ additional queries within
Tκ, and v for ℓ + 1 additional ones. For the former claim, let j ∈ {0, . . . , ℓ} \ {jκ}. By the

definition of Eκ, the variable v
(j)
iκ

has not yet been queried when ℓ-Ind[e] enters Tκ. Since

ℓ-IsEdge(ℓ-Ind[e]) = 1 6= 0 = ℓ-IsEdge(ℓ-Ind[e]⊕v
(j)
iκ),

it follows that v
(j)
iκ

must be queried within Tκ. Similarly, the latter claim follows from the fact
that Tκ must query the original and all the duplicated variables of v, a total of ℓ + 1 many

18

variables. This latter claim holds for all endpoints of edges e ∈ Eκ (i.e. the vertices v ∈ Vκ),
so in total Tκ must contain at least ℓ+(ℓ+1)|Vκ| nodes. Summing over all κ ∈ [|π|] such that
Eκ is nonempty and applying Fact 5.1, we get that the disjoint subtrees T1, . . . , T|π| must
query at least

∑

κ : Eκ 6=∅

ℓ+ (ℓ+ 1)|Eκ| = ℓk′ + (ℓ+ 1)m

many variables.

Combining the two claims above we have shown that

|T | ≥ k′ + ℓk′ + (ℓ+ 1)m = (ℓ+ 1)(k′ +m)

and the proof is complete.

5.3 Hardness of decision tree minimization

DT-Min: Given a decision tree T ⋆ : {0, 1}n → {0, 1}, construct a minimum-size decision
tree T such that T ≡ T ⋆ (i.e. T (x) = T ⋆(x) for all x ∈ {0, 1}n).

This problem of decision tree minimization was first shown to be NP-hard by Zantema and
Bodlaender [ZB00]. That result was subsequently improved by Sieling [Sie08] who showed that the
problem is even NP-hard to approximate. Using Theorem 2 we recover this hardness of approxima-
tion. We begin by observing that our proofs of the Yes and No cases of Theorem 2 are algorithmic
in the following sense:

◦ In the Yes case, we showed that given a graph G and a size-k vertex cover, the tree T for
ℓ-IsEdge of size (ℓ+ 1) · (k +m) +mn can be constructed in poly(ℓ, n) time.

◦ In the No case, we showed that given a size-s′ tree T for ℓ-IsEdge, a size-k′ vertex cover for
G satisfying (ℓ+ 1) · (k′ +m) ≤ s′ can be constructed in poly(ℓ, n) time.

With these observations in hand, we are now ready to recover [Sie08]’s result.

Lemma 5.2 (A reduction from VertexCover to DT-Min). There is a polynomial-time reduction
that takes a degree-d, n-vertex, m-edge graph G and produces a decision tree T ⋆ such that the
following holds. Given any tree T such that T ≡ T ⋆ and whose size is within a (1 + δ) factor
of the optimal for T ⋆, one can construct in polynomial time a size-k′ vertex cover of G satisfying
k′ ≤ (1 + δ′) · VC(G) where δ′ = O(dδ).

Proof. Let ℓ := 2mn. We begin by applying the Yes case of Theorem 2 to G with the trivial vertex
cover of all n vertices to obtain a decision tree T ⋆ for ℓ-IsEdge of size

(ℓ+ 1) · (n+m) +mn = (2mn+ 1) · (n+m) +mn.

As observed above, our proof of Theorem 2 shows that T ⋆ can be constructed from G in poly(n)
time. This tree T ⋆ will be the input to DT-Min in our reduction.

19

By the Yes case of Theorem 2 again, if VC(G) =: k then

DT(ℓ-IsEdge) ≤ (ℓ+ 1)(k +m) +mn =: s.

Suppose an algorithm for DT-Min returns a tree T for ℓ-IsEdge of size s′ where s′ ≤ (1 + δ) · s.
We claim that we can then efficiently construct a vertex cover for G of size k′ where k′ ≤ (1+ δ′) ·k
and δ′ = O(dδ), thereby completing the reduction. Our proof of Theorem 2 shows that we can
efficiently construct from T , in poly(n) time, a size-k′ vertex cover satisfying:

(ℓ+ 1)(k′ +m) ≤ s′.

The claim that s′ ≤ (1 + δ) · s is therefore equivalent to

(ℓ+ 1) · (k′ +m) ≤ (1 + δ) ·
[

(ℓ+ 1)(k +m) +mn
]

.

Rearranging the above, we get that

k′ ≤ (1 + δ) · k + δm+
(1 + δ) ·mn

ℓ+ 1

≤ (1 + δ) · k + δkd +
(1 + δ) ·mn

ℓ+ 1
(m ≤ kd by Fact 4.1)

< (1 + δ) · k + δkd + 1 (Our choice of ℓ)

<
[

1 + δ(d+ 2)
]

· k

and the proof is complete.

[Sie08]’s result now follows as an immediate consequence of Lemma 5.2 and the fact that Ver-

texCover is hard to approximate even for constant-degree graphs (Theorem 4):

Theorem 5 (Hardness of approximation for DT-Min [Sie08]). There is a constant δ ∈ (0, 1) such
that if DT-Min can be approximated to within a factor of 1+ δ in polynomial-time, then P = NP.

([Sie08] then amplifies this constant-factor inapproximability to a superconstant factor using an
XOR lemma from [HJLT96]. We refer the interested reader to [Sie08] for the details of this step.)

In the next section, we strengthen [Sie08]’s result by showing that the same hardness holds even
if the algorithm need only minimize T over a small set of input points rather than all of {0, 1}n.

6 Hardness distillation and learning consequence for small error

6.1 A general method for hardness distillation

For a function f : {0, 1}n → {0, 1}, the quantity DT(f) captures the complexity of computing f
on all of its inputs. If DT(f) is large, then any small decision tree that tries to compute f must
err on at least one point in {0, 1}n. For some f , it may be the case that, more specifically, there is
a fixed set D ⊆ {0, 1}n such that all small decision trees err on some point in D. The set D then
captures or “distills” the hardness of f since any function g which agrees with f over the set D
must also have large decision tree complexity. We call this set D a coreset.1 Ultimately, our goal

1This naming convention is inspired by, though not formally related to, the notion of a coreset from the clustering
literature.

20

will be to identify explicitly coresets D which distill the hardness of the target function f . This
way, any learner that learns f over the distribution Uniform(D) to error < 1

|D| has to output a

decision tree whose size captures DT(f). Since the error scales with 1
|D| , we have a vested interest

in making D has small as possible so that we can tolerate large learning errors. In this section, we
identify a general method for distilling the hardness of a function f into a coreset D. We start by
generalizing certificate complexity and relevant variables with respect to fixed subsets D.

Certificate complexity with respect to a set of inputs. A certificate for f : {0, 1}n → {0, 1}
over a set of inputs D ⊆ {0, 1}n on x ∈ {0, 1}n is a restriction ρ consistent with x such that
fρ(y) = fρ(x) for all y ∈ D. The certificate complexity of x on f over D is the size of the smallest
certificate of x on f over D.

One useful fact is that a decision tree path forms a certificates for the inputs that follow it.

Fact 6.1 (Decision tree paths are certificates). If a decision tree T computes f : {0, 1}n → {0, 1}
over D ⊆ {0, 1}n, then the path that an input x ∈ D follows in T forms a certificate for f over D
on x.

Indeed, in the above, any root-to-leaf path π terminates in a leaf which implies fπ is a constant
function over D. Any input x ∈ D that follows π is consistent with it and so f(x) = fπ(x) = fπ(y)
for all y ∈ D.

Relevant variables with respect to a set of inputs. A variable i ∈ [n] is said to be relevant
for f : {0, 1}n → {0, 1} over a set of inputs D ⊆ {0, 1}n if there is some x ∈ D such that x⊕i ∈ D
and f(x) 6= f(x⊕i). We write Rel(f ;D) ∈ [n] for the number of relevant variables of f with respect
to D. When referring to the number of relevant variables over the entire domain D = {0, 1}n,
we drop D and simply write Rel(f). If D ⊆ D′, then every relevant variable for f over D is also
relevant for f over D′. Therefore, Rel(f,D) ≤ Rel(f,D′) and in particular Rel(f,D) ≤ Rel(f) for
all D.

Decision tree complexity with respect to a set of inputs. The decision tree complexity of
f : {0, 1}n → {0, 1} over D ⊆ {0, 1}n is the size of the smallest decision tree that computes f over
D and is denoted DT(f,D). Any decision tree that computes f also computes f over D and so
DT(f,D) ≤ DT(f).

We now state and prove the main result for this section.

Theorem 6 (Hardness distillation). Let f : {0, 1}n → {0, 1} and D ⊆ {0, 1}n be a set of inputs.
Let s1 ∈ N lower bound the certificate complexity of x on f over D. Let s2 ∈ N satisfy

|ρ|
∑

i=1

Rel(fπ|⊕i
;D) ≥ s2

for every certificate ρ for x on f over D and π ∈ Perm(ρ), a permutation of ρ. Then,

DT(f,D) ≥ s1 + s2.

21

...

π(1)

π(2)

π(3)

fπ|⊕1

fπ|⊕2

fπ|⊕3

π(1)

π(2)

π(3)

Figure 6: An illustration of hardness distillation for a function f . A path π through
the decision tree is highlighted in purple. This path corresponds to an ordering of a
certificate for some input x that follows this path. The subtrees hanging off the main
path π compute the subfunctions fπ|⊕i

where π|⊕i corresponds to the path leading to the
root of the subtree. The sum of the number of relevant variables of these subfunctions
plus the length of the path π lower bounds the overall size of the decision tree.

If one can show for some D that the quantity s1 + s2 captures the decision tree complexity of
f , then D is a good candidate for hardness distillation. Figure 6 illustrates some intuition for the

quantity
∑|ρ|

i=1Rel(fπ|⊕i
;D) in Theorem 6. If x ∈ D, then any decision tree for f over D contains a

certificate, ρ, for f on x. The depth-|ρ| path followed by x induces an ordering over ρ and naturally
yields |ρ| disjoint subtrees, each of which hangs off the main path. The size of the main decision tree
is lower bounded by the sizes of these subtrees plus the length of the path followed by x. The sizes
of these subtrees can be lower bounded by the number of relevant variables of the corresponding
subfunctions which then yields the desired lower bound.

Before proving Theorem 6, we establish a lemma stating that the number of relevant variables
of disjoint subtrees of a decision tree lower bounds its size.

Lemma 6.2 (Relevant variables of disjoint subtrees lower bound decision tree size). Let T be a
decision tree, and let T1, . . . , Td be disjoint subtrees of T . Then,

|T | ≥

d
∑

i=1

Rel(Ti).

Proof. If a variable xj is not queried in the subtree Ti, then xj cannot be relevant for the function
Ti. Indeed, in this case, the leaf in Ti that any input x reaches is the same as the leaf that x⊕j

reaches. Therefore, every relevant variable of Ti is queried in the subtree. Since the subtrees
T1, . . . , Td are disjoint, each relevant variable of Ti can be mapped to a unique internal node of T .

22

It follows that

|T | ≥
d

∑

i=1

|Ti| ≥
d

∑

i=1

Rel(Ti).

With this lemma in hand, we are able to prove Theorem 6.

Proof of Theorem 6. Let T be any decision tree computing f over D. We will show that |T | ≥
s1 + s2. Let π be the path followed by x ∈ D in T . By Fact 6.1, π is a certificate for f over D on

x. Therefore |π| ≥ s1. Recall from Definition 4 that π|⊕i =
{

π(1), . . . , π(i− 1), π(i)
}

corresponds

to the depth i path in T that follows x to depth i− 1 and then diverges from x on the ith variable
queried. Let Tπ|⊕i

denote the subfunction of T computed by the subtree rooted at the last variable
queried in π|⊕i. Each Tπ|⊕i

contributes Rel(Tπ|⊕i
) many variables to the size of T by Lemma 6.2

and the path ρ itself contributes at least s1 many variables since π is also disjoint from the subtrees.
It follows that

|T | ≥ |π|+

|π|
∑

i=1

Rel(Tπ|⊕i
) (Lemma 6.2)

≥ s1 +

|π|
∑

i=1

Rel(Tπ|⊕i
;D) (Definition of Rel)

= s1 +

|π|
∑

i=1

Rel(fπ|⊕i
;D) (T computes f over D)

≥ s1 + s2. (Assumption from theorem statement)

6.2 Warmup: hardness distillation for IsEdge

We start by applying the framework from Section 6.1 to the function IsEdge. The first step is to
identify a small coreset D which captures decision tree size.

Definition 6 (Decision tree coreset of the IsEdge function). For an n-vertex graph G, the set
DG ⊆ {0, 1}

n consists of the points

• all edge indicators: Ind[e] ∈ {0, 1}n such that e ∈ E;

• all 1-coordinate perturbations of edge indicators: Ind[e]⊕i and Ind[e]⊕j for all e = {vi, vj} ∈ E;

• the all 0s inputs: 0n.

Example. See Figure 7 for an example of a graph G and the associated set of inputs DG.

23

v1 v2 v3 v4
1 1 0 0
1 0 0 1
0 1 0 1
0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 0

ed
g
e
in
d
ic
a
to
rs

ed
g
e
n
ei
g
h
b
o
rs

v1 v2

v3 v4

Figure 7: Example of a graph G on four vertices and the associated set of inputs DG ⊆
{0, 1}4. Each row in the table corresponds to a data point in DG. The first 4 rows
correspond to the edges in G and are color coded to highlight which row corresponds
to which edge. The next 4 rows correspond to 1-coordinate perturbations of the edge
indicators, all of which are Hamming neighbors of edge indicators.

Recall from Claim 2.1 that DT(IsEdgeG) ≥ k′ + m where k′ is the size of a vertex cover for
G. The main claim of this section is that DG “distills” this hardness factor of IsEdgeG. The
upper bound from Claim 2.1 immediately applies to DG. That is, k +m+mn ≥ DT(IsEdgeG) ≥
DT(IsEdgeG,DG). Therefore, the lower bound is all that remains for showing DG is a good coreset.

Claim 6.3 (DG is a decision tree coreset for IsEdge). Let G be an m-vertex graph. Then

DT(IsEdge,DG) ≥ k′ +m

where k′ is the size of a vertex cover for G.

Ultimately, we would like to prove Claim 6.3 by applying Theorem 6 where f is the function
IsEdge, D is the set of inputs DG, and x is the input 0n. To this end, we first show that k′ is a lower
bound on the certificate complexity of 0n on IsEdge over DG. Then we prove a lemma showing
that the number of edges in G lower bounds the number of relevant variables of subfunctions of
IsEdge induced by certificates of 0n.

Proposition 6.4 (Any certificate of 0n contains a vertex cover). Let G be an n-vertex graph and
let ρ be a certificate for IsEdge over DG on 0n. Then the variables in ρ form a vertex cover of G.

Proof. If the variables in ρ do not cover some edge e ∈ E, then Ind[e] ∈ {0, 1}n is consistent with ρ
and IsEdgeG(0

n) = 0 6= 1 = IsEdgeG(Ind[e]) implies ρ is not a certificate. Therefore, any certificate
ρ must contain a vertex cover.

Lemma 6.5 (Lower bounding the number of relevant variables of IsEdge subfunctions). Let G be
an n-vertex graph, ρ a certificate for IsEdge : {0, 1}n → {0, 1} over DG, and π = (vi1 , . . . , vik) ∈
Perm(ρ) a permutation of ρ. Then

Rel(IsEdgeπ|⊕κ
;DG) ≥ |E(viκ ; vi1 , . . . , viκ−1)|

for all κ ∈ [k].

24

Proof. Let π|⊕κ be as in the lemma statement and let v ∈ Vκ = V (viκ ; vi1 , . . . , viκ−1) be arbi-
trary (recall the definition of these quantities from Definitions 3 and 4). Let e = (viκ , v) ∈ Eκ =
E(viκ ; vi1 , . . . , viκ−1) be the edge containing v. The input Ind[e] ∈ DG has a 1 for the coordinates cor-
responding to v and viκ and 0s elsewhere. Therefore, it is consistent with π|⊕κ = {vi1 , . . . , viκ−1 , viκ}
(since v 6∈ {vi1 , . . . , viκ−1} by the definition of Vκ). The input Ind[e]⊕v ∈ DG is similarly consistent
with π|⊕κ. Therefore, each v ∈ Vκ is a distinct relevant variable for IsEdgeπ|⊕κ

over DG:

IsEdgeπ|⊕κ
(Ind[e]) = 1 and IsEdgeπ|⊕κ

(

Ind[e]⊕v
)

= 0.

It follows that Rel(IsEdgeπ|⊕κ
;DG) ≥ |Vκ| = |Eκ| as desired.

Proof of Claim 6.3. Let ρ be a certificate for IsEdge over DG on 0n. By Proposition 6.4, the
variables of ρ form a vertex cover and so |ρ| ≥ k′ where k′ is the size of a vertex cover of G. Let
π = (vi1 , . . . , vi′k) ∈ Perm(ρ) be an arbitrary permutation of ρ. Then:

|π|
∑

κ=1

Rel(IsEdgeπ|⊕j
;DG) ≥

|π|
∑

κ=1

|E(viκ ; vi1 , . . . , viκ−1)| (Lemma 6.5)

= m. (Fact 5.1)

It follows from Theorem 6 that DT(IsEdge,DG) ≥ k′ +m.

6.3 Hardness distillation for ℓ-IsEdge

Following the ideas from Section 6.2, we show that the following set of inputs forms a coreset of
ℓ-IsEdge.

Definition 7 (Coreset for ℓ-IsEdge). For an n-vertex, m-edge graph G and ℓ ∈ N, the set ℓ-DG ⊆
{0, 1}n × ({0, 1}ℓ)n consists of the m+m(2ℓ+ 2) + 1 many points

• all generalized edge indicators: ℓ-Ind[e] ∈ ({0, 1}n)ℓ+1 for each edge e ∈ E where ℓ-Ind[e] :=
(Ind[e])ℓ+1;

• 1-coordinate perturbations of edge indicators: 2ℓ+ 2 many points for each e ∈ E obtained by
flipping one of the 1-coordinates in ℓ-Ind[e]; and

• the all 0s input: 0nℓ+n.

Example. See Figure 8 for an example of a graph G and the associated set of inputs ℓ-DG.

25

v(0) v(1) v(2)

1100 1100 1100
1001 1001 1001
0101 0101 0101
0011 0011 0011
0100 1100 1100
1000 1100 1100
1100 0100 1100

...
0000 0000 0000

ed
g
e
in
d
ic
a
to
rs

{
v
1
,
v
2
}
p
er
tu
rb
a
ti
o
n
sv1 v2

v3 v4

Figure 8: Example of a graph G on four vertices and the associated set of inputs ℓ-DG

with ℓ = 2. The colored collection of points correspond to edge indicators. The next
collection of points correspond to 1-coordinate perturbations of the duplicated variables
of the edge indicator for the edge e = {v1, v2}. The perturbed coordinates are bold.

Recall from Theorem 2 that DT(ℓ-IsEdge) ≥ (ℓ + 1) · (k′ +m) where k′ is the size of a vertex
cover for G. The main claim of this section is that ℓ-DG distills this hardness factor of ℓ-IsEdge.

Claim 6.6 (ℓ-DG is a coreset for ℓ-IsEdge). Let G be an m-vertex graph and ℓ ∈ N be arbitrary.
Then,

DT(ℓ-IsEdge, ℓ-DG) ≥ (ℓ+ 1)(k′ +m)

where k′ is the size of a vertex cover for G.

This claim is analgous to Claim 6.3 and the proof similarly proceeds in two steps. Ultimately,
we will apply Theorem 6 where f is ℓ-IsEdge : {0, 1}N → {0, 1}, D is ℓ-DG, and x is 0N . As such,
the first step extends Proposition 6.4 to ℓ-IsEdge and shows that certificates for 0N contain vertex
covers. The second step extends Lemma 6.5 and lower bounds the number of relevant variables of
subfunctions of ℓ-IsEdge induced by certificates of 0N .

Proposition 6.7 (Any certificate of 0N contains a vertex cover). Let G be a graph and let

{v
(j1)
i1

, . . . , v
(jk)
ik
} be a certificate for ℓ-IsEdge over ℓ-DG on 0N . Then, the vertices {vi1 , . . . , vik}

form a vertex cover of G.

Proof. If an edge e is not covered by the vertices {vi1 , . . . , vik}, then the 1-input ℓ-Ind[e] is consistent

with any restriction of the form ρ = {v
(j1)
i1

, . . . , v
(jk)
ik
}. Therefore, any such ρ cannot be a certificate.

Lemma 6.8 (Lower bounding the number of relevant variables of ℓ-IsEdge subfunctions). Let ρ be

a certificate for ℓ-IsEdge over ℓ-DG on 0N and π = (v
(j1)
i1

, . . . , v
(jk)
ik

) ∈ Perm(ρ), a permutation of
ρ. Then

Rel(ℓ-IsEdgeπ|⊕κ
, ℓ-DG) ≥ ℓ+ (ℓ+ 1) · |E(viκ ; vi1 , . . . , viκ−1)|

for all κ ∈ [k] such that E(viκ ; vi1 , . . . , viκ−1) 6= ∅.

Proof. Let π|⊕κ be as in the lemma statement and let Eκ and Vκ denote E(viκ ; vi1 , . . . , viκ−1) and
V (viκ ; vi1 , . . . , viκ−1), respectively (recall these quantities from Definitions 3 and 4). If Eκ 6= ∅,
then we will show that viκ contributes ℓ relevant variables to Rel(ℓ-IsEdgeπ|⊕κ

, ℓ-DG) and that each
v ∈ Vκ contributes ℓ+ 1.

26

The vertex viκ contributes ℓ relevant variables. By assumption, Eκ is nonempty so there
is some edge e = (viκ , v) ∈ Eκ. The restriction π|⊕κ sets one coordinate, vjκiκ , to 1 and the other

coordinates: {vi1 , . . . , viκ−1} are set to 0. Since v 6∈ {vi1 , . . . , viκ−1}, the input ℓ-Ind[e] ∈ {0, 1}N is

consistent with π|⊕κ. All of the coordinates in Dup(viκ) ∪ {v
(0)
iκ
} are set to 1 in the input ℓ-Ind[e].

Hence, for any v′ ∈ Dup(viκ) ∪ {v
(0)
ik
} \ {v

(jκ)
iκ
}, the input ℓ-Ind[e]⊕v′ is consistent with π|⊕κ since

v′ 6= v
(jκ)
iκ

. Therefore,

ℓ-IsEdgeπ|⊕κ
(ℓ-Ind[e]) = 1 and ℓ-IsEdgeπ|⊕κ

(ℓ-Ind[e]⊕v′) = 0

and ℓ-Ind[e], ℓ-Ind[e]⊕v′ ∈ ℓ-DG. Since v′ was arbitrary this shows that each of the ℓ variables in

Dup(viκ) ∪ {v
(0)
iκ
} \ {v

(jκ)
iκ
} is relevant for ℓ-IsEdgeπ|⊕κ

over ℓ-DG.

Each vertex v ∈ Vκ contributes ℓ+ 1 relevant variables. Let v ∈ Vκ be an arbitrary vertex
and let e = (viκ , v) ∈ Eκ be the edge incident to viκ that contains v. Let v′ ∈ Dup(v)∪ {v(0)} be a
coordinate of ℓ-IsEdge. As above, the inputs ℓ-Ind[e] and ℓ-Ind[e]⊕v′ are both consistent with the
restriction π|⊕κ. Moreover,

ℓ-IsEdgeπ|⊕κ
(ℓ-Ind[e]) = 1 and ℓ-IsEdgeπ|⊕κ

(ℓ-Ind[e]⊕v′) = 0

and ℓ-Ind[e], ℓ-Ind[e]⊕v′ ∈ ℓ-DG. This shows that all ℓ+1 variables in Dup(v)∪{v(0)} for v ∈ Vκ is
relevant. All of these relevant variables are unique and so the total number of relevant variables
of ℓ-IsEdgeπ|⊕κ

is at least ℓ+ (ℓ+ 1)|Vκ| = ℓ+ (ℓ+ 1)|Eκ| as desired.

Proof of Claim 6.6. Let ρ be a certificate for ℓ-IsEdge over ℓ-DG on 0N . By Proposition 6.7,
the variables in ρ form a vertex cover and so |ρ| ≥ the size of a vertex cover of G. Let π =

(v
(j1)
i1

, . . . , v
(jk)
ik

) ∈ Perm(ρ) be a permutation of ρ. In order to apply hardness distillation (Theorem 6),
we need to lower bound the number of relevant variables of ℓ-IsEdgeπ|⊕κ

for κ = 1, 2, . . . , |π|. How-
ever, the lower bound from Lemma 6.8 only applies if the corresponding restricted edge neighbor-

hood Eκ = E(viκ ; vi1 , . . . , viκ−1) is nonempty. To this end, we consider the restriction ρ′ = {v
(jκ)
iκ
|

Eκ 6= ∅} ⊆ ρ. This restriction is still a certificate for ℓ-IsEdge over ℓ-DG on 0N and therefore must
still contain a vertex cover by Proposition 6.7. Therefore, |ρ′| ≥ k′ where k′ is the size of a vertex
cover of G. We can now write

|π|
∑

κ=1

Rel(ℓ-IsEdge; ℓ-DG) ≥
∑

κ∈[|π|]
Eκ 6=∅

Rel(ℓ-IsEdgeπ|⊕κ
; ℓ-DG)

≥
∑

κ∈[|π|]
Eκ 6=∅

ℓ+ (ℓ+ 1)|Eκ| (Lemma 6.8)

= |ρ′|ℓ+ (ℓ+ 1)m (Fact 5.1: {Eκ} partition E)

≥ ℓk′ + (ℓ+ 1)m. (ρ′ contains a vertex cover)

We have satisfied the conditions of Theorem 6 with f being ℓ-IsEdge, D being ℓ-DG, and x being
0N . We conclude

DT(ℓ-IsEdge, ℓ-DG) ≥ k′ + k′ℓ+ (ℓ+ 1)m = (ℓ+ 1)(k′ +m).

27

6.4 Learning consequence for inverse polynomial error

In this section, we use Claim 6.6 to obtain hardness of learning decision trees with membership
queries. We recall, formally, the learning problem we are interested in.

DT-Learn(n, s, s′, ε): Given random examples from an unknown distribution D and mem-
bership queries to a size-s target decision tree, output a size-s′ decision tree which ε-
approximates the target over D.

Theorem 7 (Hardness learning DTs with inverse polynomial error). For all constants δ′ >
0, d ∈ N, there is a sufficiently small constant δ > 0 such that the following holds. If DT-

Learn(n, s, (1 + δ) · s, ε) with s = O(n), ε = O(1/n) can be solved in randomized time t(n),
then VertexCover(k, (1 + δ′) · k) on degree-d, n-vertex graphs can be solved in randomized time
O(n2 · t(n2)).

Proof. Given δ′ > 1 and d ∈ N, let λ < 1 be any large enough constant so that λ(1 + δ′) > 1 and
let δ > 0 be any constant satisfying 1 < (1 + δ) < min{λ(1 + δ′), 1 + 1−λ

d }. Then we will use a
learner for DT-Learn(n, s, (1 + δ) · s, ε) to solve VertexCover(k, (1 + δ′)k).

The reduction. Fix ℓ = Θ(n) large enough so that 1+ 1−λ
d > (1+ δ) + 2(1+δ)n

ℓ . Such an ℓ exists

since 1 + 1−λ
d > 1 + δ by assumption. Consider the function ℓ-IsEdge : {0, 1}N → {0, 1} and the

set of inputs ℓ-DG for N = n + ℓn = Θ(n2). Let D be the distribution which is uniform over the
set ℓ-DG and fix ε < 1/|supp(ℓ-DG)| = O(1/m2) (which is O(1/N) since n = Θ(m) for constant
degree graphs) and s = ℓ(k +m) + 2mn = O(N). Run the procedure in Figure 9.

VertexCover(k, (1 + δ′) · k):

Given: G, an m-edge degree-d graph over n vertices and k ∈ N

Run: DT-Learn(N, s, (1 + δ) · s, ε) for t(N) time steps providing the learner with

– queries: return ℓ-IsEdge(v(0), . . . , v(ℓ)) for a query (v(0), . . . , v(ℓ)) ∈ {0, 1}N ; and

– random samples: return (v(0), . . . ,v(ℓ)) ∼ D for a random sample.

Thyp ← decision tree output of the learner

εhyp ← distD(Thyp, ℓ-IsEdge)

Output: Yes if and only if |Thyp| ≤ (1 + δ) · [ℓ(k +m) + 2mn] and εhyp ≤ ε

Figure 9: Using an algorithm for DT-Learn to solve VertexCover.

28

Runtime. Any query (v(0), . . . , v(ℓ)) ∈ {0, 1}N to ℓ-IsEdge can be answered in O(N) time by
looking at G and computing IsEdge(v(0)) in time O(m) then checking that the appropriate vertices
are set to 1. Similarly, a random sample from D can be obtained in time O(N) by picking a uniform
random element of ℓ-DG. This algorithm for VertexCover requires O(N · t(N)) time to run the
learner plus time O(N2) to compute distD(Thyp, ℓ-IsEdge). Since t(N) ≥ N , this implies an overall
runtime of O(N · t(N)) which is O(n2 · t(n2)).

Correctness. For correctness, we analyze the yes and no cases separately.

Yes case: VC(G) ≤ k. In this case, Theorem 2 ensures that

DT(ℓ-IsEdge) ≤ (ℓ+ 1)(k +m) +mn ≤ ℓ(k +m) + 2mn.

Therefore after t(N) time steps, with high probability, the learner outputs a decision tree Thyp

satisfying
distD(Thyp, ℓ-IsEdge) ≤ ε

and

|Thyp| ≤ (1 + δ) · DT(ℓ-IsEdge) (learner assumption)

≤ (1 + δ) · [ℓ(k +m) + 2mn] (Theorem 2)

which ensures that our algorithm correctly outputs Yes.

No case: VC(G) > (1 + δ′) · k. Assume that distD(Thyp, ℓ-IsEdge) ≤ ε < 1/|supp(ℓ-DG)|
(otherwise the algorithm correctly outputs No). In particular, distD(Thyp, ℓ-IsEdge) = 0. We
would like to show that, under our assumption on VC(G), |Thyp| > (1 + δ) · [ℓ(k +m) + 2mn]. We
start by bounding the vertex cover size of G:

VC(G) = λVC(G) +
1− λ

d
dVC(G)

≥ λVC(G) +
1− λ

d
m (Fact 4.1)

≥ λVC(G) +

(

δ +
2(1 + δ)n

ℓ

)

m (1−λ
d > δ + 2(1+δ)n

ℓ)

> (1 + δ)k +

(

δ +
2(1 + δ)n

ℓ

)

m. (λVC(G) > λ(1 + δ′)k > (1 + δ)k)

This implies that
ℓVC(G) > (1 + δ)ℓk + δℓm+ 2(1 + δ)mn. (1)

We can now write

|Thyp| ≥ DT(ℓ-IsEdge, ℓ-DG) (Thyp computes ℓ-IsEdge over ℓ-DG)

> ℓ(VC(G) +m) (Claim 6.6)

> (1 + δ)ℓk + (1 + δ)ℓm+ 2(1 + δ)mn (Equation (1))

= (1 + δ) · [ℓ(k +m) + 2mn]

which ensures that our algorithm correctly outputs No.

29

7 Hardness for constant error

7.1 Hardness of partial vertex cover

Partial vertex cover. For a graph G = (V,E) and α ∈ [0, 1), an α-partial vertex cover is subset
of the vertices C ⊆ V such that C covers at least a (1 − α)-fraction of the edges. The problem
0-partial vertex cover is the ordinary vertex cover problem. We write VCα(G) ∈ N to denote the
size of the smallest α-partial vertex cover of G. See Figure 10 for an example of a partial vertex
cover. The problem α-partial (k, k′)-VertexCover is to distinguish whether there exists an α-
partial vertex cover of size ≤ k or every α-partial vertex cover requires size > k′. As with ordinary
vertex cover, solving this gapped problem is equivalent to approximating α-partial vertex cover.
Theorem 4 implies hardness of approximating α-partial vertex cover. It is possible to upgrade an
α-partial vertex cover to an ordinary vertex cover by augmenting it with the vertices of uncovered
edges.

Fact 7.1 (Upgrading α-partial vertex covers). Any α-partial vertex cover C for a graph G with
m-edges can be transformed into a vertex cover C ′ for G satisfying |C ′| ≤ |C|+ 2αm.

(a) A vertex cover and its covered edges high-
lighted in teal

(b) A 1
5 -partial vertex cover and its covered edges

highlighted in purple

Figure 10: A graph G = (V,E)) with 10 edges having VC(G) = 3 and VC1/5(G) = 2.

By definition, if C is an α-partial vertex cover, then C leaves at most αm edges uncovered.
Augmenting C with the ≤ 2αm vertices of these uncovered edges yields a vertex cover of G. The
size of the resulting vertex cover is Θ(m) which would be problematic if G has small vertex covers.
Fortunately, for constant degree graphs, VC(G) = Θ(m) (Fact 4.1), so α-partial vertex covers for
these graphs are close to optimal vertex covers. This enables us to show that α-partial vertex cover
on constant degree graphs is just as hard to approximate as vertex cover. Claim 2.2 follows by
combining Claim 7.2 with Theorem 4.

Claim 7.2 (Hardness of approximating α-partial vertex cover). For every constant c′ > 1 and
d ∈ N, there are constants α ∈ (0, 1) and c > 1 such that if there is an algorithm solving α-partial
(k, c · k)-VertexCover on n-vertex, degree-d graphs in time t(n), then there is an algorithm for
solving (k, c′ · k)-VertexCover on n-vertex degree-d graphs in time t(n). One can assume that
α < 1

d+1 .

Proof. Given c′ > 1, let α ∈ (0, 1) be small enough so that 1 < (1 − 2αd)c′ (and also small
enough so that α < 1

d+1 for the second part of the claim) and let c be any constant satisfying
1 < c < (1 − 2αd)c′. We will solve (k, c′ · k)-VertexCover using an algorithm for α-partial
(k, c · k)-VertexCover.

30

Given a graph G and a parameter k, run the algorithm for α-partial (k, c · k)-VertexCover

on G and k. Output Yes if and only if the algorithm returns Yes. We claim that this procedure
solves (k, c′ · k)-VertexCover on degree-d graphs. For correctness, we analyze the yes and no
cases separately.

Yes case: VC(G) ≤ k. In this case, we have

VCα(G) ≤ VC(G) ≤ k

and so the algorithm correctly outputs Yes.

No case: VC(G) > c′k. Let m denote the number of edges of G and let C be the smallest α-
partial vertex cover of G. Fact 7.1 implies that |C ′|−2αm ≤ |C| = VCα(G) where C ′ is a (possibly
suboptimal) vertex cover for G. Therefore,

VCα(G) ≥ VC(G)− 2αm (Fact 7.1)

≥ VC(G)− 2αd · VC(G) (Fact 4.1)

> (1− 2αd)c′k (VC(G) > ck by assumption)

> ck (c < (1− 2αd)c′)

which means the algorithm correctly outputs No.

7.2 Definition of the hard distribution

For Theorem 7, we used the distribution which was uniform over the set ℓ-DG. This distribution
has the property that the target function ℓ-IsEdge can be approximated with subconstant error by a
small decision tree. In fact, the constant function f(x) = 0 obtains error ≤ Pr[ℓ-IsEdge = 1] ≤ 1/m
in approximating ℓ-IsEdge. Therefore, to obtain hardness in the constant-error regime, we need to
define a new distribution, one over which the target function ℓ-IsEdge is close to balanced. To this
end, we define the following distribution.

Definition 8 (Constant-error hard distribution). For a graph G and ℓ ∈ N, the distribution ℓ-DG

over {0, 1}n × ({0, 1}ℓ)n is obtained via the following experiment

• with probability 1/2 sample the all 0s input;

• with probability 1/4 sample a generalized edge indicator, ℓ-Ind[e] for e ∈ E uniformly at
random;

• with probability 1/4 sample a 1-coordinate perturbation of an edge indicator uniformly at
random.

We prove the following analogue of Claim 6.6 which shows that constant error decision trees
must have large size.

Claim 7.3. Let G be an m-edge graph, ℓ ∈ N, and α ∈ (0, 1). If T is a decision tree satisfying

distℓ-DG
(T, ℓ-IsEdge) ≤

1

16
· α

then
|T | ≥ (ℓ+ 1) · [VCα(G) + (1− α)m] .

31

We first need the following lemma showing how to extract an α-partial vertex cover from a
decision tree for ℓ-IsEdge.

Lemma 7.4 (Obtaining an α-partial vertex cover from a constant-error decision tree for ℓ-IsEdge).
Let T be a decision tree satisfying

distℓ-DG
(T, ℓ-IsEdge) <

1

4
α

for any constant α ∈ (0, 1). Then:

1. the set E′ = {e ∈ E | T (ℓ-Ind[e]) = 1} satisfies |E′| ≥ (1− a)m; and

2. if π = (v
(j1)
i1

, . . . , v
(jk)
ik

) is the path followed by 0N in T , then for Eκ = E(viκ ; vi1 , . . . , viκ−1),
the set of vertices

C = {viκ | E
′ ∩ Eκ 6= ∅}

covers all edges in E′. In particular, C is an α-partial vertex cover.

Proof. We prove the two points separately.

First point: |E′| ≥ (1 − α)m. The set of edges E \ E′ correspond to inputs ℓ-Ind[e] such that
T (ℓ-Ind[e]) = 0 but ℓ-IsEdge(ℓ-Ind[e]) = 1. Since each input ℓ-Ind[e] has mass 1

4m over ℓ-DG, we
have

1

4
α > distℓ-DG

(T, ℓ-IsEdge) (Assumption)

≥ |E \ E′| ·
1

4m
(Definition of E′)

= (m− |E′|) ·
1

4m
.

Second point: C is an α-partial vertex cover. Since dist(T, ℓ-IsEdge) < 1/2, we know that
T (0N) = 0 and therefore the path π terminates in a 0-leaf. For every edge e ∈ E′, the input ℓ-Ind[e]
must diverge from π at some point vjκiκ . This κ then satisfies e ∈ Eκ so that e ∈ E′ ∩ Eκ 6= ∅. It
follows that C covers the edge e. Since E′ constitutes at least a (1− α)-fraction of the edges, C is
an α-partial vertex cover.

Proof of Claim 7.3. Let T be any decision tree such that

distℓ-DG
(T, ℓ-IsEdge) ≤

1

16
α.

In particular, T satisfies the conditions of Lemma 7.4. Let E′, π,Eκ, and C be as in the statement
of Lemma 7.4. For each viκ ∈ C, we define

R(viκ) := Dup(viκ) ∪
{

v
(0)
iκ

}

\
{

v
(jκ)
iκ

}

∪
⋃

{viκ ,v}∈E
′∩Eκ

Dup(v) ∪
{

v(0)
}

.

Furthermore, let Tκ be the subtree which is the right child of π(κ). That is Tκ is the subtree of
T which catches all of the inputs ℓ-Ind[e] for e ∈ E′ ∩ Eκ. Recall from the proof of Lemma 6.8

32

that the variables in R(viκ) are all relevant for the subfunction ℓ-IsEdgeπ|⊕κ
. Each such relevant

variable which is not queried in the subtree Tκ results in an error. For example, if Tκ does not

query a variable v′ ∈ Dup(viκ) ∪
{

v
(0)
iκ

}

\
{

v
(jκ)
iκ

}

, then the string ℓ-Ind[e]⊕v′ where e ∈ E′ ∩ Eκ is

classified as 1 by T :

T (ℓ-Ind[e]⊕v′) = Tκ(ℓ-Ind[e]
⊕v′) = Tκ(ℓ-Ind[e]) = 1

whereas ℓ-IsEdge(ℓ-Ind[e]⊕v′) = 0. Thus, each relevant variable which is not queried in the
subtree Tκ results in a 0-input being misclassified as 1. Each such misclassification contributes
Prℓ-DG

[ℓ-Ind[e]⊕v′] ≥ 1
4 ·

1
m(2ℓ+2) to distℓ-DG

(T, ℓ-IsEdge). Therefore, we can write

1

16
α ≥ distℓ-DG

(T, ℓ-IsEdge)

≥

∑

viκ∈C

|R(viκ)| − |Tκ|

 ·
1

8(mℓ+m)
+

(

m− |E′|
)

·
1

4m

≥

∑

viκ∈C

|R(viκ)| − |Tκ|

 ·
1

16ℓm
+

(

m− |E′|
)

·
1

4m
(m ≤ ℓm)

where the quantity
∑

viκ∈C
|R(viκ)| − |Tκ| counts how many 0-inputs are misclassified as 1 by T

and m − |E′| counts how many 1-inputs are misclassified as 0. These quantities are weighted by
the respective masses of each type of input over ℓ-DG. Rearranging gives the lower bound:

∑

viκ∈C

|Tκ| ≥ 4ℓ(m− |E′|)− αℓm+
∑

viκ∈C

|R(viκ)|

≥ 4ℓ(m− |E′|)− αℓm+ ℓ|C|+
∑

viκ∈C

(ℓ+ 1)|E′ ∩ Eκ| (|Dup(v) = ℓ|)

= 4ℓ(m− |E′|)− αℓm+ ℓ|C|+ (ℓ+ 1)|E′| ({E′ ∩Eκ} partitions E
′)

≥ 4ℓ(m− |E′|)− αℓm+VCα(G)ℓ+ (ℓ+ 1)|E′| (C is an α-partial vertex cover)

≥ ℓVCα(G) + (1− α)(ℓ+ 1)m. (|E′| ≤ m)

Therefore, since the Tκ and π are all disjoint parts of T :

|T | ≥ |π|+
∑

viκ∈C

|Tκ|

≥ |C|+
∑

viκ∈C

|Tκ| (Definition of C)

≥ VCα(G) +
∑

viκ∈C

|Tκ| (C is an α-partial vertex cover)

≥ (ℓ+ 1) [VCα(G) + (1− α)m]

which completes the proof.

33

7.3 Learning consequence for constant-error: Proof of Theorem 1

Theorem 8 (Hardness of learning DTs with constant error). For all constants δ′ > 0, d ∈ N,
and α < 1

d+1 , there is a sufficiently small constant δ > 0 such that the following holds. If DT-

Learn(n, s, (1 + δ) · s, ε) with s = O(n) and ε = Θ(1) can be solved in randomized time t(n), then
α-PartialVertexCover(k, (1 + δ′)k) on degree-d graphs can be solved in time O(n2t(n2)).

The proof of this theorem is similar to that of Theorem 7. The main difference is that our lower
bound on the decision tree size of ℓ-IsEdge in the constant-error regime is quantitatively weaker
than that of Claim 6.6. We will need to make the appropriate adjustments to the approximation
factor of the DT-Learner in order to tolerate the weaker lower bound.

Proof. Let δ′ > 0, d ∈ N, and α < 1
d+1 be given. The assumption that α < 1

d+1 implies α < 1−α
d .

Therefore, we can fix some λ < 1 large enough so that λ(1 + δ′) > 1 and α < (1−λ)(1−α)
d . Let

δ > 0 be any constant satisfying (1−λ)(1−α)
d > δ + α and (1 + δ) < λ(1 + δ′). We will solve

α-PartialVertexCover(k, (1 + δ′)k) using an algorithm for DT-Learn(n, s, (1 + δ) · s, ε).

The reduction. Fix ℓ = Θ(n) large enough so that

(1− λ)(1− α)

d
> δ + α+

2(1 + δ)n

ℓ
. (2)

Such an ℓ exists by our assumption that 1−λ
d > δ + α. As in Theorem 7 our target function will

be ℓ-IsEdge : {0, 1}N → {0, 1} for N = n+ ℓn = Θ(n2). Our distribution will be ℓ-DG and we fix
ε < 1

16α = Θ(1) and s = ℓ(k +m) + 2mn = O(N). Run the same procedure as in Figure 9 where
the distribution D is ℓ-DG.

Runtime. As in the proof of Theorem 7, queries and random samples for ℓ-IsEdge can be han-
dled in O(N) time. Thus running the learner requires O(N · t(N)) time. Computing the error
distℓ-DG

(Thyp, ℓ-IsEdge) takes O(N2) time. The overall runtime is therefore O(N · t(N)) which is
O(n2 · t(n2)).

Correctness. We analyze the Yes case and No case separately.

Yes case: VCα(G) ≤ k. This case is identical to the Yes case in Theorem 7. So our algorithm
correctly outputs Yes.

No case: VCα(G) > (1 + δ′)k. Assume that distℓ-DG
(Thyp, ℓ-IsEdge) ≤ ε < 1

16α (otherwise
our algorithm correctly outptus No). We would like to show that |Thyp| > (1+δ)·[ℓ(k +m) + 2mn].

34

We start by bounding α-partial vertex cover size of G:

VCα(G) = λVCα(G) +
1− λ

d
dVCα(G)

≥ λVCα(G) +
(1− λ)(1− α)

d
m (dVCα(G) ≥ (1− α)m for degree d graphs)

≥ λVCα(G) +

(

δ + α+
2(1 + δ)n

ℓ

)

m (Equation (2))

≥ (1 + δ)k +

(

δ + α+
2(1 + δ)n

ℓ

)

m. (λVCα(G) > λ(1 + δ′)k > (1 + δ)k)

Rearranging gives
ℓVCα(G) ≥ (1 + δ)kℓ + (δ + α)mℓ+ 2(1 + δ)mn. (3)

Therefore,

|Thyp| > ℓ(VCα(G) + (1 − α)m) (Claim 7.3)

> (1 + δ)kℓ + (δ + α)mℓ+ 2(1 + δ)mn + (1− α)mℓ (Equation (3))

= (1 + δ) · [ℓ(k +m) + 2mn]

which ensures that our algorithm correctly outputs No.

Remark 3 (Implications for testing decision trees). The above proof of Theorem 8 and the proof of
Theorem 7 actually prove hardness of testing decision tree size. Specifically, the proof of Theorem 8
shows that any tester which can distinguish whether a target function f is a size-s decision tree
or is Ω(1)-far from every size-s decision tree over a distribution D can also approximate Par-

tialVertexCover. Therefore, the problem of distribution-free testing decision tree size is also
NP-hard.

Proof of Theorem 1. If there were an algorithm for learning decision trees which satisfies the con-
straints of Theorem 1, then Theorem 8 shows that α-PartialVertexCover can be solved in
RTIME(n2t(n2)). Theorem 4 and Claim 7.2 then imply that SAT can be solved in randomized
time O(n2 polylog n · t(n2 polylog n)).

Acknowledgments

We thank Pasin Manurangsi for a helpful conversation and the FOCS reviewers for their comments
and feedback.

The authors are supported by NSF awards 1942123, 2211237, 2224246 and a Google Research
Scholar award. Caleb is also supported by an NDSEG fellowship, and Carmen by a Stanford
Computer Science Distinguished Fellowship.

References

[ABF+09] Misha Alekhnovich, Mark Braverman, Vitaly Feldman, Adam Klivans, and Toniann
Pitassi. The complexity of properly learning simple concept classes. Journal of Com-
puter & System Sciences, 74(1):16–34, 2009. Preliminary version in FOCS 2004. 1.1,
2.1

35

[AH12] Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. Algo-
rithmica, 62(3-4):1112–1121, 2012. 1.2

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–555,
may 1998. 4.1

[Ang] Dana Angluin. Remarks on the difficulty of finding a minimal disjunctive normal form
for boolean functions. Unpublished Manuscript. 1, 1.1, 2.1

[Ang88] Dana Angluin. Queries and concept learning. Machine learning, 2:319–342, 1988. 1.1

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, jan 1998. 4.1

[BB03] Nader H Bshouty and Lynn Burroughs. On the proper learning of axis-parallel concepts.
The Journal of Machine Learning Research, 4:157–176, 2003. 1.2

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),
36(4):929–965, 1989. 1.1

[BFJ+94] Avirm Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In Proceedings of the 26th Annual ACM Symposium on Theory
of Computing (STOC), pages 253–262, 1994. 1.1

[BKB17] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpretability via model extrac-
tion. In Proceedings of the 4th Workshop on Fairness, Accountability, and Transparency
in Machine Learning (FAT/ML), 2017. 1

[BLQT21] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Decision tree heuristics can
fail, even in the smoothed setting. In Proceedings of the 25th International Conference
on Randomization and Computation (RANDOM), volume 207, pages 45:1–45:16, 2021.
1.2

[BLQT22] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision
trees in almost polynomial time. Journal of the ACM (JACM), 69(6):39:1–39:19, 2022.
1.1, 3

[Bre01] Leo Breiman. Statistical modeling: The two cultures (with comments and a rejoinder
by the author). Statistical science, 16(3):199–231, 2001. 1

[BS96] Leo Breiman and Nong Shang. Born again trees. Technical report, University of
California, Berkeley, 1996. 1

[Bsh93] Nader Bshouty. Exact learning via the monotone theory. In Proceedings of 34th Annual
Symposium on Foundations of Computer Science (FOCS), pages 302–311, 1993. 1, 1.1

[Bsh23] Nader H. Bshouty. Superpolynomial lower bounds for learning monotone classes. Elec-
tron. Colloquium Comput. Complex., TR23-006, 2023. 1.1, 2.1

36

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, 2008. 3

[CPR+07] Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh Mohania. Decision trees for entity identification: Approximation algorithms
and hardness results. In Proceedings of the 26th ACM Symposium on Principles of
Database Systems (PODS), pages 53–62, 2007. 1.2

[CS95] Mark Craven and Jude Shavlik. Extracting tree-structured representations of trained
networks. Proceedings of the 8th Conference on Advances in Neural Information Pro-
cessing Systems (NeurIPS), 8:24–30, 1995. 1

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12–es, jun 2007. 3

[EH89] Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random exam-
ples. Information and Computation, 82(3):231–246, 1989. 1.1, 3

[Fel06] Vitaly Feldman. Hardness of approximate two-level logic minimization and pac learning
with membership queries. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pages 363–372, 2006. 1.2

[Fel16] Vitaly Feldman. Hardness of proper learning. In Encyclopedia of Algorithms, pages
897–900. 2016. 1

[FH17] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision
tree. arXiv preprint arXiv:1711.09784, 2017. 1

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. Journal of the ACM, 45:653–750, 1998. 1.3

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979. 1.2

[GLR99] David Guijarro, Vıctor Lavın, and Vijay Raghavan. Exact learning when irrelevant
variables abound. Information Processing Letters, 70(5):233–239, 1999. 1, 1.1, 1.2

[Hau88] David Haussler. Quantifying inductive bias: AI learning algorithms and valiant’s learn-
ing framework. Artificial Intelligence, 36(2):177–221, 1988. 1.1, 2.1

[HJLT96] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996. 1.1, 2.1,
5.3

[HR76] Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is
NP-complete. Information processing letters, 5(1):15–17, 1976. 1.2

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spec-
trum. SIAM Journal on Computing, 22(6):1331–1348, December 1993. 1.1

[KPB99] S Rao Kosaraju, Teresa M Przytycka, and Ryan Borgstrom. On an optimal split tree
problem. In Workshop on Algorithms and Data Structures, pages 157–168. Springer,
1999. 1.2

37

[KST23] Caleb Koch, Carmen Strassle, and Li-Yang Tan. Superpolynomial lower bounds for
decision tree learning and testing. In Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1962–1994, 2023. 1.1, 2.1

[Lev73] Leonid A Levin. Universal sorting problem. Problemy Predaci Informacii, 9:265–266,
1973. 1.1, 2.1

[LN04] Eduardo S Laber and Loana Tito Nogueira. On the hardness of the minimum height
decision tree problem. Discrete Applied Mathematics, 144(1-2):209–212, 2004. 1.2

[MR02] Dinesh Mehta and Vijay Raghavan. Decision tree approximations of boolean functions.
Theoretical Computer Science, 270(1-2):609–623, 2002. 1, 1.1

[PV88] Leonard Pitt and Leslie G Valiant. Computational limitations on learning from exam-
ples. Journal of the ACM (JACM), 35(4):965–984, 1988. 1, 1.1

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440, 1991.
4.1, 4.1

[Rav13] Netanel Raviv. Truth table minimization of computational models. CoRR,
abs/1306.3766, 2013. 1.2

[RCC+22] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi
Zhong. Interpretable machine learning: Fundamental principles and 10 grand chal-
lenges. Statistics Surveys, 16:1 – 85, 2022. 1

[RRV07] Dana Ron, Amir Rosenfeld, and Salil Vadhan. The hardness of the expected decision
depth problem. Information processing letters, 101(3):112–118, 2007. 1.2

[Sie08] Detlef Sieling. Minimization of decision trees is hard to approximate. Journal of
Computer and System Sciences, 74(3):394–403, 2008. 1.2, 1.3, 2.2.2, 5.3, 5.3, 5, 5.3

[SS93] Robert Schapire and Linda Sellie. Learning sparse multivariate polynomials over a
field with queries and counterexamples. In Proceedings of the 6th Annual Conference
on Computational Learning Theory (COLT), pages 17–26, 1993. 1.1

[Tre14] Luca Trevisan. Inapproximability of Combinatorial Optimization Problems, chapter 13,
pages 381–434. John Wiley & Sons, Ltd, 2014. 4.1

[VAB07] Anneleen Van Assche and Hendrik Blockeel. Seeing the forest through the trees: Learn-
ing a comprehensible model from an ensemble. In European Conference on Machine
Learning (ECML), pages 418–429, 2007. 1

[Val84] Leslie Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. 1, 1.1, 1.2

[Val85] Leslie G Valiant. Learning disjunction of conjunctions. In Proceedings of the 9th
International Joint Conference on Artificial Intelligence (IJCAI), pages 560–566, 1985.
1.2

38

[VLJ+17] Gilles Vandewiele, Kiani Lannoye, Olivier Janssens, Femke Ongenae, Filip De Turck,
and Sofie Van Hoecke. A genetic algorithm for interpretable model extraction from
decision tree ensembles. In Trends and Applications in Knowledge Discovery and Data
Mining, pages 104–115, 2017. 1

[VS20] Thibaut Vidal and Maximilian Schiffer. Born-again tree ensembles. In Proceedings
of the 37th International Conference on Machine Learning (ICML), pages 9743–9753,
2020. 1

[ZB00] Hans Zantema and Hans Bodlaender. Finding small equivalent decision trees is hard.
International Journal of Foundations of Computer Science, 11(2):343–354, 2000. 1.2,
1.3, 2.2.2, 5.3

[ZH16] Yichen Zhou and Giles Hooker. Interpreting models via single tree approximation,
2016. 1

39

	Introduction
	Background and Context
	Other related work
	Technical remarks about thm:main-intro

	Technical Overview
	Why the query setting necessitates new techniques
	Overview of our proof and techniques
	The core reduction
	Hardness distillation
	Hardness for constant error

	Discussion and future work
	Preliminaries
	Hardness of Vertex Cover

	A reduction from VertexCover to Decision Tree Minimization
	Intuition and warmup: the IsEdgeG function
	Useful notions and notation: edge partitions and divergent path prefixes
	Proof of claim:isedge-intro

	-IsEdge: an amplified version of IsEdge
	Proof of thm:ell-isedge-intro

	Hardness of decision tree minimization

	Hardness distillation and learning consequence for small error
	A general method for hardness distillation
	Warmup: hardness distillation for IsEdge
	Hardness distillation for -IsEdge
	Learning consequence for inverse polynomial error

	Hardness for constant error
	Hardness of partial vertex cover
	Definition of the hard distribution
	Learning consequence for constant-error: Proof of thm:main-intro

