
Towards a Formalism-Based
Toolkit for Automotive Applications

Rainer Gmehlich, Katrin Grau, Felix Loesch
Robert Bosch GmbH, Stuttgart, Germany

Alexei Iliasov, Michael Jackson, Manuel Mazzara
School of Computing Science, Newcastle University, UK

Abstract—The success of a number of projects has been shown
to be significantly improved by the use of a formalism . However,
there remains an open issue: to what extent can a development
process based on a singular formal notation and method succeed.
The majority of approaches demonstrate a low level of flexibility
by attempting to use a single notation to express all of the
different aspects encountered in software development. Often,
these approaches leave a number of scalability issues open. We
prefer a more eclectic approach. In our experience, the use
of a formalism-based toolkit with adequate notations for each
development phase is a viable solution. Following this principle,
any specific notation is used only where and when it is really
suitable and not necessarily over the entire software lifecycle.
The approach explored in this article is perhaps slowly emerging
in practice —we hope to accelerate its adoption. However, the
major challenge is still finding the best way to instantiate it
for each specific application scenario. In this work, we describe
a development process and method for automotive applications
which consists of five phases. The process recognizes the need
for having adequate (and tailored) notations (Problem Frames,
Requirements State Machine Language, and Event-B) for each
development phase as well as direct traceability between the
documents produced during each phase. This allows for a step-
wise verification/validation of the system under development. The
ideas for the formal development method have evolved over two
significant case studies carried out in the DEPLOY project.

I. INTRODUCTION

One of the lessons of the DEPLOY project [1] is that the
industrial application of formal modelling cannot fully succeed
by employing just one notation, paradigm and methodology.
The focus of academic research in DEPLOY was a method
called Event-B[2] - a general-purpose, event-based and re-
finement driven formal modelling method - and a toolkit
supporting it - the Rodin Platform [3]. A wide range of case
studies and formal developments were conducted during the
predecessor RODIN project [4] and this provided a reasonable
expectation that the method and the Platform could succeed
in large-scale industrial deployments. This paper describes the
experience of deploying Event-B in an automotive sector. In
particular, we tell the story of how a sole notation approach
based on Event-B has gradually transformed itself into a rich
assembly of diverse notations and techniques.

Formal/mathematical notations have existed for a long time
and have been used to specify and verify systems. Examples
are process algebras (a short history by Jos Baeten in [?]),
specification languages like Z (early description in [5]), B [6]
and Event-B [7]. The Vienna Development Method (VDM) is
one of the earliest attempts to establish a formal method for
the development of computer systems [8], [9], [10]. A survey

of these (and others) formalisms can be found in [11] while a
discussion on the methodological issues of a number of formal
methods is presented in [12], [13], [14].

All these approaches (and others described in the literature)
still leave an open issue, i.e., they are built around strict
formal notations which affect the development process from
the very beginning. These approaches demonstrate a low level
of flexibility. It is indeed not reasonable to expect that a single
notation can express all the different aspects encountered dur-
ing the software development cycle. Therefore, these methods
seem to work only for small problems, leaving a number of
scalability issues open.

In this paper, following the experience accumulated during
the FP7 DEPLOY project [1], we offer to consider a position
where a development toolkit and its supporting method are
based on a range of notations or formalisms that complement
each other. Each such notation may target a specific stage
of a development - early requirements elicitation, concrete
requirements, abstract design, concrete design, first prototype,
final product and so on - with some degree of overlap to give
a degree of confidence when progressing through notations.

One challenge is in making a seamless methodological
connection between diverse notations and methods: how to
ensure that results expressed in one notation are carried over
to the next stage based on a differing notation without misin-
terpretation of specification statements and mis-attribution of
validation results.

Another challenge is in the provision of a modelling envi-
ronment that can adopt all such notation and possibly integrate
validation tools behind them. Finally, and perhaps most im-
portantly, it is important to have some degree of notational
flexibility - industrial software development is already based
on long tool chains and the most likely path to succeed for a
formal development method to succeed is to morph into such
chain. That is, be prepared to work with new input and output
notations.

II. BACKGROUND

This section gives a short introduction to the different
methods on which the approach proposed is based. It is not
intended to be exhaustive, but it provides the reader with
relevant pointers for further investigation.

A. Problem Frames

PFA [15] focuses on systems in which the computer inter-
acts with the physical world to achieve a required behaviour

ar
X

iv
:1

31
1.

61
45

v1
 [

cs
.S

E
]

 2
4

N
ov

 2
01

3

TABLE I
EXAMPLE OF AN AND/OR TABLE

X > Y T F •
A < B T F •
S = PRESSED • T T
Y = ON • • T

there. Stakeholders in the system –users, sponsors, operators,
regulators and others– want this behaviour to satisfy certain
properties. These desired properties may be expressed in
various forms and with various degrees of exactness: for an
industrial press a vital desire is the operator’s safety; for an
electronic purse system it is conservation of money in any
transaction between two purses even if the transaction fails or
is aborted. The requirements engineer must understand these
desires and design a feasible joint behaviour of the computer
and the world that will satisfy them.

In PFA this task is understood in terms of three principal
parts. First, the machine: this is the computer executing
the software that will eventually be developed. Second, the
problem world, seen as an assemblage of distinct domains
interacting with each other and with the computer. Third,
the system requirement, initially seen as the set of desired
properties of the system behaviour. The system is represented
in a problem diagram. The diagram shows the computer,
the problem domains, and the interfaces of shared phenomea
at which they interact; the requirement is represented by a
distinguished block linked to the problem domains to whose
phenomena it refers. The requirements engineering task is to
specify the given properties W of the problem world domains,
the behaviour M of the computer, and the required joint
behaviour R resulting from their interactions. The entailment
M,W � R must hold, and the behaviour R must exhibit the
properties desired by the stakeholders.

For a realistic system M,W,R and the desired properties
will be complex. The problem is therefore decomposed into
subproblems, each represented by a problem diagram. A
subproblem is a closed independent projection of the original
problem, ignoring all interactions with other subproblems.
Recombination is deferred until each subproblem is well
enough understood in isolation. A further task is then to design
the temporal composition of the subproblem behaviours and to
resolve any interference and conflict arising in their resulting
interactions.

This specification of system behaviour does not map directly
either to an Event-B specification or to a software architecture:
refactoring is a further step in the path to implementation. It
is a fundamental claim of PFA that the cost of this refactoring
is amply compensated by the clarity that can be achieved in
the requirements engineering task itself and the consequent
improvement in system quality and dependability.

B. Requirements State Machine Language (RSML)

The Requirements State Machine Language (RSML) [16] is
a formal black-box specification language invented by Nancy
Leveson and has been widely applied in the avionic industry

MACHINE M
SEES Context
VARIABLES v
INVARIANT I(c, s, v)
INITIALISATION R(c, s, v′)
EVENTS

E1 = any vl where
g(c, s, vl, v)

then
S(c, s, vl, v, v′)

end
. . .

END

Fig. 1. Event-B machine structure.

for the specification of complex state-based embedded systems
like the transition collision avoidance system (TCAS II).
RSML was developed in order to have precise description
of the functional behaviour of state-based systems which is
formal enough to reason about general aspects like complete-
ness and consistency of state machines [17] but still easy
enough to be understandable by engineers. The language itself
consists of concepts for structuring a large specification, i.e.,
the language supports modules with defined interfaces as well
as formal concepts for describing state machines based on
statecharts [18] extending state diagrams with state hierarchies
and broadcast communications.

An important concept introduced by RSML is the concept
of AND/OR tables which are used to describe conditions for
state transitions and conditions for the assignment of variables.
Table I shows an example for an AND/OR table. The far-left
column of the AND/OR table lists the logical phrases. Each
of the other columns is a conjunction (logical AND) of those
phases and contains the logical values of the expressions. If
one of the columns is true, then the table evaluates to true.
A column evaluates to true if all of its elements match the
truth values of the associated predicates. A dot denotes ”don’t
care”.

C. Event-B

The Event-B Modelling Language [7] was developed by J.-
R. Abrial and his team at ETHZ as a specialization of the
B-Method [6] and it is used to describe formally systems and
reason mathematically about their properties.

An Event-B development starts with the creation of a
relatively abstract specification. A cornerstone of the Event-B
method is the stepwise development that facilitates a gradual
design of a system implementation through a number of
correctness-preserving refinement steps. The general form of
an Event-B model (or machine) is shown in Figure 1. Such
a model encapsulates a local state (program variables) and
provides operations on the state. The actions (called events)
are characterised by a list of local variables (parameters) vl, a
state predicate g called event guard, and a next-state relation
S called substitution or event action.

Event guard g defines the condition when an event is
enabled. Relation S is given as a generalised substitution
statement [19] and is either deterministic (x := 2) or non-

2

deterministic update of model variables. The latter kind comes
in two notations: selection of a value from a set, written as
x :∈ {2, 3}; and a relational constraint on the next state v′,
e.g., x :| x′ ∈ {2, 3}.

The INVARIANT clause contains the properties of the system,
expressed as state predicates, that must be preserved during
system execution. These define the safe states of a system.
In order for a model to be consistent, invariant preservation
is formally demonstrated. Data types, constants and relevant
axioms are defined in a separate component called context.

Model correctness is demonstrated by generating and dis-
charging proof obligations - theorems in the first order logic.
There are proof obligations for model consistency and for the
refinement link - the forward simulation relation - between
the pair of abstract and concrete models. One can say that an
abstract model serves as a contract when realising the concrete
model.

III. OUR APPROACH

Our approach to formal development process for automotive
applications 1 evolved after having experimented over two
significant case studies in the DEPLOY project [1]. During
these case studies we found that the semantic gap between
informal descriptions (i.e., requirements in natural language
and formal descriptions of the system in Event-B) is sig-
nificant. Checking that the formal descriptions are consistent
with the informal descriptions turned out to be a difficult task
because of the inevitable vagueness of informal descriptions
and missing traceability links between the informal and formal
descriptions.

In order to bridge this gap and to progress incrementally
from an informal to a formal description of the system, our
approach consists of five phases (requirements, specification,
formal modelling, formal verification, and code generation) in
each of which a carefully selected notation and methods are
used. A specific formalism is used only where and when it is
really suitable and not over the complete development cycle.

The outcome of each phase during the development process
is an adequate document which describes the results of each
phase and which can be used to communicate with other stake-
holders like managers, customers, and other developers during
the development process. To ensure traceability between the
documents produced in different phases we establishment and
maintain links between requirements and modelling artefacts
implementing them. Hence, for instance, an RSML and Event-
B models may be related by comparing model elements
related to same requirements. Since each notation is tailored
to its phase it becomes much easier to do informal model
validation - ensuring that the model adequately addresses
informal requirements. This process is crucial at the stage
when concrete requirements are elaborated.

Figure 2 graphically depicts our development process.

1Automotive applications contain discrete and continuous parts (closed loop
controllers). In the case studies we concentrated on the discrete part of the
system. We decided not to model the continuous part and only used an abstract
notion of time.

�������	

�����

������	
��������

�������

����

�������	
������������

�������������	
 �������

�����	��!��

�������	
�����	
"���#���

$�!�

�����	
%�����������

�������	
�����
��!��

��������

������

������������
 �������

������&�!	
������������

'
'

(

(

)

)

*

+

*

Fig. 2. Formal development process

The starting point for our process is an abstract idea of the
system and/or some vague initial requirements (see step 1 in
Figure 2). In order to produce a requirements document for
further development these vague initial requirements have to
be analyzed and concrete requirements have to be developed.
For this analysis and development PFA [15] is applied. The
main outcome of this phase is a requirements document in
natural language which also contains assumptions on the
system to be developed. We deliberately chose to describe
requirements in natural language in order to make it as easy as
possible to discuss the requirements with different stakeholders
in the development process (e.g., customers and managers).
Section IV-A describes this phase.

The next phase in the process is the specification phase
in which the desired functional behaviour of the system and
the architecture is described in a precise way using RSML
[16] (see step 2 in Figure 2). Inputs to this phase are the
requirements document as well as the Problem Frames model.
The outcome of the specification phase is a specification
document which contains a description of the architecture of
the solution as well as a detailed description of the functional
behaviour of each component. A detailed description of this
phase is presented in Section IV-B.

After the specification phase the formal modelling phase
follows (see step 3 in Figure 2). During this phase the
specification is translated into a formal model written in a
formal language (e.g., Event-B). The main activities in this
phase are the formalization of the functional behaviour, i.e.,
how the system is achieving it, as well as the formalization
of requirements, i.e., what the system should do. Section IV-C
contains a detailed description of the formal modelling phase.

The next phase in our approach is the formal verification
phase (see step 4 in Figure 2). In this phase the refinements
of the formal model as well as the formalized requirements
are verified on the model using formal verification techniques
such as theorem proving and model checking. The outcome of
the verification phase is a verified formal model with regard
to the formalized requirements.

3

IV. FORMAL DEVELOPMENT METHOD

This section presents a detailed description of the five
phases of our approach. For each phase of our approach
the specific requirements and constraints for choosing an
adequate (formal) notation are discussed before we present the
arguments for how the chosen notation fulfils the requirements
of each phase. The description of each phase is illustrated
using an example from our second case study in the DEPLOY
project [1].

The system we analyzed in our second case study was a
Start/Stop System which automatically stops the engine, e.g.,
at traffic lights, to save fuel (see also [20]). The engine will be
automatically restarted when the driver wants to move the car
again. The system is an embedded real time system. However,
contrary to other software functions in the automotive domain,
the Start/Stop System only consists of discrete functionality
containing a complicated state machine for determining when
to stop and when to start the engine.

A. Requirements Development

Constraints The starting point for a new product or a new
feature for a product is usually an abstract idea, some vague
initial requirements. To produce a requirements document
which can be used for further development these initial
requirements have to be refined. We used Problem Frames
[15] for the problem analysis and the central idea of this
first part of the development process is to concentrate on
the problem that has to be solved, not on possible solutions.
During this analysis, having some structure helps to find a
systematic way to analyse the problem. On the other hand, a
completely formal notation would restrict the freedom needed
during this early phase.

Description of method In PFA we start with an abstract
diagram, an overview of the world of which the system to be
built is a part. An abstract requirement describes the effect the
system has on the world. Note that the requirement does not
refer to the system itself (which would be a restriction of the
solution). After this abstract examination more concrete sub-
problems are considered. In these sub-problems one aspect of
the overall problem is developed in detail with requirements
that refer only to this specific aspect. The problem of how to
recombine these different aspects is postponed and addressed
after the development of all sub-problems. In every sub-
problem there is at least one requirement. This requirement
refers only to the sub-problem. After the development of every
sub-problem in isolation the recombination must address the
prioritization of the single sub-problems.

Example: The Start/Stop System is not allowed to prevent
the driver from moving the car whenever he or she wishes
to do so. This aspect of the Start/Stop System is treated in
the Problem Frames sub-problem shown in Figure 3. The
machine, i.e., the box with the double vertical stripe, is
called SSE Driver Needs HMI, referring to the fact that this
subproblem concentrates of the needs of the driver, which
are deduced by the HMI (Human-Machine Interface). To be

able to solve the recombination problem the engine is not
part of the subproblem. Instead a designed domain called
SSE Driver Needs HMI Model is used and therefore the
requirement does not refer to the engine (as in the requirements
document) but to this designed domain, i.e., the box with the
single vertical stripe. The designed domain has a phenomenon
named HMI Stop Ena (there is another phenomenon called
HMI Strt Req, which is not relevant for this example but
will be used in Example 4). The phenomenon stores the
information of this subproblem related to the stopping of the
engine, i.e., of whether this sub-problem enables the Start/Stop
System to stop the car or not. For more details please see [20].
In the domain Driver a model of the driver is defined, which
states the connection mentioned in example 1 in 1.) and 2.)
between the wishes of the driver and the steering wheel, the
clutch and the gearbox. The steering wheel can be used or not
used, the clutch pedal can be pressed or released, the gearbox
can be in neutral or not in neutral.

Fig. 3. Problem Frames sub-problem

Summary The use of Problem Frames helps to concentrate
on the problem to solve and develop a better understanding of
how the system to build is supposed to affect the surround-
ing world. The additional requirements document in natural
language is the basis for discussions with all stakeholders.

B. Specification
Constraints After having produced a requirements doc-

ument containing the requirements and assumptions on the
system, the next step is to develop a detailed specification
which should include a precise description of the functional
behaviour of the system as well as a formalisation of the
overall architecture.

A specification method must be understandable by engineers
who are not familiar with formal notations like Event-B.
RSML [16] is ideally suited for our task of specifying the func-
tional behaviour of state-based automotive systems because it
is easy enough to be understandable for engineers but still
formal enough to reason about general aspects of state-based
systems and fulfils the other constraints described above. The
outcome of the specification phase is a specification document
written in RSML which is then used as input for the formal
modelling phase.

Description of method For the specification of the system
we start with the requirements document and the Problem

4

Frames model produced during the requirements development
phase. These documents contain requirements and assumptions
about the system to be developed but do not contain a precise
description of the desired functional behaviour of the system.
Thus, the task for the specification phase is to specify the
desired functional behaviour such that it fulfils the set of
requirements described in the requirements document. In order
to structure the solution, the first step during specification is
to think about the general architecture of the system. As with
the decomposition of the problem in the requirements devel-
opment phase, the solution is decomposed into components
that describe specific aspects. For each component its interface
is precisely defined using typed input and output variables.
Components communicate with other components via shared
variables, e.g., the output variables of component A serve as
input variables to component B and vice versa. If necessary, a
component may also contain internal variables to store values
derived from input variables.

Figure 4 shows an exemplary static structure of an embed-
ded controller consisting of two components A and B and
their interfaces.

Fig. 4. RSML - Static structure with components and interfaces

The desired functional behaviour of a component is spec-
ified using two concepts. The first concept –called assign-
ment specification– is to relate output variables directly with
conditions on input variables using AND/OR tables. The
following example taken from the Start/Stop System case
study illustrates this concept.

Example 3: The value of the boolean output variable
HMI Stop Ena is dependent on specific conditions on the
input variables Clutch Pedal,Steering Wheel and Gearbox.
These conditions are specified by the assignment specification
shown in Figure 5.

The second concept is to define a state machine whose
transitions are guarded with conditions on the input variables.
The state machine serves as an abstraction on complicated
conditions on input variables and is described using graphical
state diagrams showing the states and transitions but not the
conditions on the transitions. AND/OR tables are used again
to specify the transition conditions.

Summary Applying RSML for the specification of auto-
motive applications showed very promising results. We were
able to express the complete functional behaviour of the

Assignment: HMI Stop Ena

Condition: d

Clutch Pedal = PRESSED T • •
Steering Wheel = USED • T •
Gearbox 6= NEUTRAL • • T

Action(s): HMI Stop Ena := FALSE

Condition: ¬d

Action(s): HMI Stop Ena := TRUE

Fig. 5. RSML - Assignment specification for HMI Stop Ena

Start/Stop System in RSML. The language was formal enough
to describe precisely the functional behaviour yet still readable
by engineers which was very important in order to permit
domain engineers to validate the specification against the
requirements document without needing special training in
formal methods. However, we did not have tool support for
RSML which was both an advantage and a disadvantage.
The advantage of not having a tool was that it allowed us
to have more freedom in the structure of the specification.
The disadvantage was that we did not have the possibility of
automatically checking the specification for consistency.

C. Formal Modelling

Constraints There are two purposes of the formal mod-
elling phase: One is to translate the specification into a
formal model, i.e., a mathematically precise description of the
functional behaviour of the system. The second purpose is to
formalize the requirements in order to make them amenable
for formal verification.
Such a formal model should provide the basis for formal veri-
fication. Thus, the formal language used for formal modelling
must be formal enough to describe precisely the functional
behaviour specified in the specification and to formalize the
requirements we would like to prove on the formal model.
In order to make these informal descriptions accessible to
formal verification they have to be stated formally as well.
Furthermore, the formal language must suit the application
area (i.e., description of state-based systems) and provide
means for structuring the formal model. In addition to that,
the formal language must be concrete enough to generate code
from the formal model.
Event-B [7] fulfills most of the constraints mentioned above.
It is suited for the description of state-based systems since it
is based on action transition systems and it is formal enough
to describe precisely the functional behaviour as well as a
large number of the properties we would like to prove about
the system as invariants. Furthermore, it provides a refinement
mechanism which allows us to start with an abstract formal

5

model which can later be refined to a concrete model which
provides the basis for code generation.

Description of method Formal modelling in the language
Event-B typically starts with a very abstract model which
is refined step-by-step until the system and the environment
has been completely modelled. For the Start/Stop System the
formal modelling starts with a very abstract model containing
only the output of the Start/Stop System. This model is then
refined step-by-step. In each refinement step additional compo-
nents described in the specification document are added to the
formal model. Typed input and output variables of components
described in the specification are modelled as variables in
the Event-B model. The types of these variables are specified
using type invariants. Each assignment specification and each
transition of a state machine described in the specification is
modelled by events in Event-B, i.e., the conditions for the
assignment are described as guards of the event whereas the
assignment itself is described using an action of the event. It is
important to note that the Event-B model also contains events
for the system environment which models changes of system
inputs. For example, the Event-B model for the Start/Stop
System contains unguarded events modelling changes of input
variables such as Clutch Pedal, Gearbox, and Steering Wheel.

Example: Figure 6 shows how the assignment specification
for the output variable HMI Stop Ena in RSML (shown in
Example 4) is translated into Event-B syntax.

variables
HMI Stop Ena Clutch Pedal
Gearbox Steering Wheel

invariants
@inv1 HMI Stop Ena ∈ BOOL
@inv2 Clutch Pedal ∈ T Clutch Pedal
@inv3 Steering Wheel ∈ T Steering Wheel
@inv4 Gearbox ∈ T Gearbox

events
event Set HMI Stop Ena FALSE
when
@grd1 Clutch Pedal = PRESSED ∨

Steering Wheel = USED ∨
Gearbox 6= NEUTRAL

then
@act1 HMI Stop Ena := FALSE

event Set HMI Stop Ena TRUE
when
@grd1 Clutch Pedal 6= PRESSED
@grd2 Steering Wheel 6= USED
@grd3 Gearbox = NEUTRAL

then
@act1 HMI Stop Ena := TRUE

end
end

Fig. 6. Event-B model for HMI Stop Ena

As you can see in Figure 6 the output and input variables
are modelled as Event-B variables. Their types are specified
by Event-B invariants. The assignment specification for the
output variable HMI Stop Ena is modelled as two Event-B
events depending whether HMI Stop Ena is set to TRUE or
FALSE.

The main feature of Event-B with which to state properties
for a model is the concept of invariants. These invariants
describe predicates that are proven to always hold. Certain
safety properties can be easily described as invariants (e.g.,
if a defined output of the system is generally forbidden). An
example from the Start/Stop System is that there should never
be the request to start and the request to stop the engine at
the same time. This kind of property is naturally suitable for
formalization as invariants.

Summary With Event-B and Rodin we were able to model
the discrete part of our systems. Rodin has the great advantage
of integrating the formal modelling phase and the formal
verification phase so they can be treated in parallel — this
is important in helping to eliminate errors as soon as possible.
Processes like configuration management, variant manage-
ment, team development, version management etc. have to
be better supported. Scalability for industrial applications and
more flexibility for decomposition and architecture have to be
addressed in the future. For the formalization of requirements
the concept of invariants in Event-B shows limitations.

We had over 4000 generated proof obligations in the
Start/Stop System, around 90% of proof obligations were
proven automatically by the provers integrated in Rodin. A
large majority of the remaining manual proofs were very
simple and might be proven automatically in the future with
better adjustment and further development of the provers.

V. RELATED WORK

Costs and benefits of model-based development of embed-
ded systems in the automotive industry have been examined in
[21]. The book chapter describes the results of a global study
by Altran Technologies, the chair of software and systems
engineering and the chair of Information Management of the
Technical University of Munich. This work intends to cover
a gap in research analyzing the status quo of model-based
development and its effects on the economics. One of the
authors of this work, Manfred Broy, has a vast literature on
software engineering methods applied to the automotive sector,
for example [22]. In [23] he presents a perspective which is
very close to the one supported by our work. In his paper, Broy,
discusses the need for a portfolio of models and methods and
he emphasizes the importance of tool support.

VI. CONCLUSIONS

Formal methods are considered attractive by many re-
searchers because concepts such as theorems, proof obliga-
tions, equations and others can be applied. However, academic
attractiveness by itself does not justify industrial deployment.
The work presented in this article shows how elaborating
a methodology based on a portfolio of different formalism,
each tuned to a specific phase of development, allowed for
a better set of requirements and, eventually, better code.
Another criticism to FM is often based on the idea that
specifications fulfilling the requirement of being interpreted
formally are hard to write when compared with learning a

6

new programming language. DEPLOY, and in particular the
work presented here, actually demonstrated the opposite. On
the other hand, the criticism that it is not possible to prove that
formal methods can offer the same quality for less is still open,
i.e., we have not empirically (numerically) shown that formal
methods are cheaper. There is high confidence that the quality
is better, but the added value is limited when the quality is
already very good.

This article discussed several software engineering issues,
some of which are still open at present. The lack of a
rigorous and repeatable approach of many ”formal methods”
significantly restricts the choice when it comes to identify
a suitable formalism for a specific problem. In [12] this
issue is historically investigated and the requirements of a
”formal method” are identified to discover that many so-
called “methods” are actually no more than notations, i.e.,
just formalisms without an attached rigorously defined and
repeatable, systematic approach. Event-B is not one of those.
Its refinement strategy has been demonstrated to be useful
when applied to several case studies in a number of projects
like RODIN [24] and DEPLOY itself [1]. However, not even
Event-B is a panacea applicable to every phase of software
development. In this article, we presented a strategy based on
a formalism-based toolkit, i.e., a portfolio of formalisms where
every specific phase of development has been attacked by a
different and suitable notation. The overall strategy proved to
be a successful one and, given the thorough documentation
generated by the project ([25], [26], [20]), it promises to be
repeatable by engineers with an initially limited knowledge of
formal methods. The importance of training here cannot be
underestimated.

The idea of this paper can be generalized in a way which
sees software development as a sequence of stages with as-
sociated notations and techniques. Each phase should have an
artifact or document as an input and will generate an adequate
output. Given this broader framework, what presented in this
paper should be considered just a specific instance for an ap-
plication scenario (automotive). It is a matter of investigation
(for which we do not have a full understanding at the moment)
how the single (or multiple) notation(s) for each step should
be chosen. We also need to understand what criteria inputs
and outputs should individually follow and how they should
be related to each other (for example in terms of pre and post
conditions?). Even if our investigation necessarily leaves all
this unsolved, we still believe it has clarified several aspects
of industrial deployment of formal methods in automotive
applications.

ACKNOWLEDGMENT

This work has been funded by the EU FP7 DEPLOY
Project (Industrial deployment of system engineering methods
providing high dependability and productivity). We would
like to thank Cliff Jones, Alexander Romanovsky and John
Fitzgerald for their valuable support.

REFERENCES

[1] “DEPLOY: Industrial deployment of system engineering methods
providing high dependability and productivity.” [Online]. Available:
http://www.deploy-project.eu/

[2] J.-R. Abrial, Modelling in Event-B. Cambridge University Press, 2010.
[3] The RODIN platform, online at http://rodin-b-sharp.sourceforge.net/.
[4] “Event-B and the Rodin Platform.” [Online]. Available: http://www.

event-b.org/
[5] J.-R. Abrial, S. A. Schuman, and B. Meyer, A Specification Language.

New York, NY, USA: Cambridge University Press, 1980.
[6] J.-R. Abrial, The B-Book: Assigning programs to meanings. New York,

NY, USA: Cambridge University Press, 1996.
[7] ——, The Event-B Book. Cambridge, UK: Cambridge University Press,

2010.
[8] D. Bjørner and C. B. Jones, Eds., The Vienna Development

Method: The Meta-Language, ser. Lecture Notes in Computer
Science. Springer-Verlag, 1978, vol. 61. [Online]. Available: https:
//www.springerlink.com/content/ql766633l472/

[9] C. B. Jones, Software Development: A Rigorous Approach. Englewood
Cliffs, N.J., USA: Prentice Hall International, 1980. [Online]. Available:
http://portal.acm.org/citation.cfm?id=539771

[10] ——, Systematic Software Development using VDM, 2nd ed. Prentice
Hall International, 1990. [Online]. Available: http://homepages.cs.ncl.
ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf

[11] M. Mazzara and A. Bhattacharyya, “On modelling and analysis of
dynamic reconfiguration of dependable real-time systems,” in DEPEND,
International Conference on Dependability, 2010.

[12] M. Mazzara, “Deriving specifications of dependable systems: toward a
method,” in Proceedings of the 12th European Workshop on Dependable
Computing (EWDC), 2009.

[13] ——, “On methods for the formal specification of fault tolerant sys-
tems,” in DEPEND, International Conference on Dependability, 2011.

[14] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
Methods: Practice and Experience,” ACM Computing Surveys, vol. 41,
no. 4, Oct 2009.

[15] M. Jackson, Problem Frames: Analyzing and structuring software de-
velopment problems. Addison-Wesley, 2000.

[16] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese,
“Requirements Specification for Process-Control Systems,” IEEE Trans.
Softw. Eng., vol. 20, pp. 684–707, September 1994. [Online]. Available:
http://portal.acm.org/citation.cfm?id=188229.188234

[17] M. Heimdahl and N. Leveson, “Completeness and consistency in hier-
archical state-based requirements,” Software Engineering, IEEE Trans-
actions on, vol. 22, no. 6, pp. 363 –377, jun 1996.

[18] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, pp. 231–274, June 1987. [Online]. Available:
http://dl.acm.org/citation.cfm?id=34884.34886

[19] J.-R. Abrial, The B-Book. Cambridge University Press, 1996.
[20] K. Grau, R. Gmehlich, F. Loesch, J.-C. Deprez, R. D. Landtsheer,

and C. Ponsard, “DEPLOY Deliverable D38: Report on Enhanced
Deployment in the Automotive Sector,” DEPLOY Project, Tech. Rep.
D38, 2011.

[21] M. Broy, S. Kirstan, H. Krcmar, B. Schaetz, and J. Zimmermann, “What
is the benefit of a model-based design of embedded software systems
in the car industry?” in Emerging Technologies for the Evolution and
Maintenance of Software Models. IGI Global, 2011, pp. 410–443.

[22] M. Broy, “Challenges in automotive software engineering.” in ICSE’06,
2006, pp. 33–42.

[23] ——, “Seamless method- and model-based software and systems engi-
neering,” in The Future of Software Engineering. Springer, 2010, pp.
33–47.

[24] “RODIN: Rigorous Open Development Environment for Complex
Systems.” [Online]. Available: http://rodin.cs.ncl.ac.uk/

[25] C. Jones, “DEPLOY Deliverable D15: Advances in Methodological
WPs,” http://www.deploy-project.eu/pdf/D15final.pdf, Tech. Rep. D15,
2009.

[26] F. Loesch, R. Gmehlich, K. Grau, M. Mazzara, and C. Jones, “DEPLOY
Deliverable D19: Pilot Deployment in the Automotive Sector,” DEPLOY
Project, Tech. Rep. D19, 2010.

7

http://www.deploy-project.eu/
http://www.event-b.org/
http://www.event-b.org/
https://www.springerlink.com/content/ql766633l472/
https://www.springerlink.com/content/ql766633l472/
http://portal.acm.org/citation.cfm?id=539771
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
http://portal.acm.org/citation.cfm?id=188229.188234
http://dl.acm.org/citation.cfm?id=34884.34886
http://rodin.cs.ncl.ac.uk/

	I Introduction
	II Background
	II-A Problem Frames
	II-B Requirements State Machine Language (RSML)
	II-C Event-B

	III Our Approach
	IV Formal Development Method
	IV-A Requirements Development
	IV-B Specification
	IV-C Formal Modelling

	V Related Work
	VI Conclusions
	References

