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ABSTRACT

A featured transition system is a transition system in which the

transitions are annotated with feature expressions: Boolean ex-

pressions on a finite number of given features. Depending on its

feature expression, each individual transition can be enabled when

some features are present, and disabled for other sets of features.

�e behavior of a featured transition system hence depends on a

given set of features. �ere are algorithms for featured transition

systems which can check their properties for all sets of features at

once, for example for LTL or CTL properties.

Herewe introduce amodel of featuredweighted automatawhich

combines featured transition systems and (semiring-) weighted au-

tomata. We show that methods and techniques from weighted

automata extend to featured weighted automata and devise algo-

rithms to compute quantitative properties of featured weighted au-

tomata for all sets of features at once. We show applications to

minimum reachability and to energy properties.
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1 INTRODUCTION

A featured transition system [6] is a transition system in which the

transitions are annotated with feature expressions: Boolean expres-

sions involving a finite number of given features. Depending on

its feature expression, each individual transition can be enabled

when some features are present, and disabled for other sets of fea-

tures. For any set of features, a given featured transition system

projects to a transition system which contains precisely the transi-

tions which are enabled for that set of features.

Standard problems such as reachability or safety can be posed

for featured transition systems, where the interest now is to check

these properties for all sets of features at once. Hence, for example

for reachability, given a featured transition system and a set of ac-

cepting states, one wants to construct a feature expression ϕ such

that an accepting state is reachable iff the set of features satisfies

ϕ.
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For quantitative properties of transition systems, the model of

(semiring-) weighted automata has proven useful [10]. �is pro-

vides a uniform framework to treat problems such as minimum

reachability, maximumflow, energy problems [13], and others. Here

we extend techniques fromweighted automata to featuredweighted

automata, i.e., weighted automata in which the transitions are an-

notated with feature expressions. �is extension makes it possible

to check quantitative properties for all sets of features at once.

To be precise, a featured transition system induces a (projec-

tion) function from sets of features to transition systems, mapping

each set of features to the behavior under these features. Similarly,

we will define projections of featured weighted automata, map-

ping sets of features to weighted automata. Values of weighted

automata are an abstract encoding of their behavior; we will see

how to compute values of featuredweighted automata as functions

from feature expressions to behaviors.

We also develop an application of our techniques to featured en-

ergy problems. Energy problems are important in areas such as em-

bedded systems or autonomous systems. �ey are concerned with

the question whether a given system admits infinite schedules dur-

ing which (1) certain tasks can be repeatedly accomplished and (2)

the system never runs out of energy (or other specified resources).

Starting with [3], formal modeling and analysis of such problems

has a�racted some a�ention [2, 4, 5, 9, 14, 18, 22].

Featured transition systems have applications in so�ware prod-

uct lines, where they are used as abstract representations of the

behaviors of variability models [23]. �is representation allows

one to analyze all behaviors of a so�ware product line at once, as

opposed to analyzing each product on its own. Similarly, featured

weighted automata can be used as abstract representations of quan-

titative behaviors of so�ware product lines, and the present work

enables analysis of quantitative behaviors of all products in a so�-

ware product line at once.

Contributions and structure of the paper. We start in Sect. 2 by re-

visiting minimum reachability in featured transition systems with

transitions weighted by real numbers. �is has to some extent al-

ready been done in [8], but we reformulate it in order to prepare

for the generalization in the following sections.

In Sect. 3, we introduce featured weighted automata and show

some first examples. Instead of semirings, we will work with (fea-

tured) automata weighted in ∗-continuous Kleene algebras; this is

for convenience of presentation only, and all our work (except

for Sect. 5) can be extended to a more general (for example non-

idempotent) se�ing. In Sect. 4, we then show how methods and

techniques from weighted automata can be transferred to featured

weighted automata.

In the last Sect. 5, we extend our results to develop an applica-

tion to featured energy problems. �is is based on the recent result

in [13] that energy problems can be stated as Büchi problems in

automata weighted in ∗-continuous Kleene ω-algebras, which are

http://arxiv.org/abs/1702.07484v2
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certain types of semimodules over ∗-continuous Kleene algebras;

hence we need to extend our results to such semimodules.

�e paper is followed by a separate appendix which contains

some of the proofs of our results.

2 MINIMUM REACHABILITY IN

REAL-WEIGHTED FEATURED AUTOMATA

A real-weighted automaton S = (S, I , F ,T ) consists of a finite set S

of states, subsets I , F ⊆ S of initial and accepting states, and a finite

set T ⊆ S ×R≥0 × S of weighted transitions. Here R≥0 denotes

the set of non-negative real numbers.

A finite path in such a real-weighted automaton S is a finite

alternating sequence π = (s0,x0, s1,x1, . . . ,xk , sk+1) of transitions

(s0,x0, s1), . . . , (sk ,xk , sk+1) ∈ T . �eweight ofπ is the sumw(π ) =

x0 + · · · + xk ∈ R≥0. A finite path π as above is said to be accept-

ing if s0 ∈ I and sk+1 ∈ F . �e minimum reachability problem for

real-weighted automata asks, given a real-weighted automaton S

as above, to compute the value

|S| = inf{w(π ) | π accepting finite path in S} .

�at is, |S| is the minimumweight of all finite paths from an initial

to an accepting state in S. �is being a multi-source-multi-target

shortest path problem, it can for example be solved using the Floyd-

Warshall relaxation algorithm.

Let N be a set of features and px ⊆ 2N a set of products over N .

A feature guard is a Boolean expression over N , and we denote the

set of these byB(N ). We write p |= γ if p ∈ px satisfies γ ∈ B(N )

and Jγ K = {p ∈ px | p |= γ }. Note that Jγ K is a set of sets of

features.

Definition 2.1. A real-weighted featured automaton (S, I , F ,T ,γ )

consists of a finite set S of states, subsets I , F ⊆ S of initial and

accepting states, a finite setT ⊆ S×R≥0×S ofweighted transitions,

and a feature guard mapping γ : T → B(N ).

�e projection of a real-weighted featured automaton F =

(S, I , F ,T ,γ ) to a product p ∈ px is the real-weighted automaton

projp (F ) = (S, I , F ,T
′) with T ′ = {t ∈ T | p |= γ (t)}.

For each product p ∈ px, we could solve the shortest path prob-

lem in projp (F ) by computing |projp (F )|. Instead, we develop an

algorithm which computes all these values at the same time. Its

output will, thus, be a function |F | : px → R≥0, with the prop-

erty that for every p ∈ px, |F |(p) = |projp (F )|.

As a symbolic representation of functions px→ R≥0, we use in-

jective functions from guard partitions toR≥0. Intuitively, a guard

partition is a set of feature guards which partitions px into classes

such that within each class, f has the same value for all products,

and between different classes, f has different values.

Definition 2.2. A guard partition of px is a set P ⊆ B(N ) such

that J
∨

PK = px, Jγ K , ∅ for all γ ∈ P , and Jγ1K ∩ Jγ2K = ∅ for
all γ1,γ2 ∈ P with γ1 , γ2. �e set of all guard partitions of px is

denoted GP ⊆ 2B(N ).

A guard partition is a logical analogue to a partition of the set of

products px: any guard partition induces a partition of px, and any

partition of px can be obtained by a guard partition. In particular,

for any guard partition P and any product px, there is precisely one

γ ∈ P for which px |= γ .

Let GP[R≥0] = { f : P → R≥0 | P ∈ GP, ∀γ1,γ2 ∈ P : γ1 ,

γ2 ⇒ f (γ1) , f (γ2)} denote the set of injective functions from

guard partitions toR≥0.

We use injective functions P → R≥0 as symbolic representa-

tions of functions px → R≥0, because they provide the most con-

cise such representation. Indeed, if a function f : P → R≥0 is

not injective, then there are feature guards γ1,γ2 ∈ P for which

f (γ1) = f (γ2), so we can obtain a more concise representation of

f by le�ing P ′ = P \ {γ1,γ2} ∪ {γ1 ∨ γ2} and f ′ : P ′ → R≥0 be

defined by f ′(δ ) = f (δ ) for δ , γ1 ∨ γ2 and f ′(γ1 ∨ γ2) = f (γ1).

We show in Fig. 1 an algorithm to compute a symbolic represen-

tation of |F |. �e algorithm performs, in lines 13 to 16, a symbolic

Floyd-Warshall relaxation to compute a matrix D which as entries

D(i, j) has functions in GP[R≥0] that for each product return the

shortest path from state si to state sj .

�e relaxation procedure Relax(i, j,k) is performed by compar-

ingD(i, j) to the sumD(i,k)+D(k, j) and updatingD(i, j) if the sum

is smaller. �e result of the comparison depends on the products

for which the different paths are enabled, hence the comparison

and update are done for each feature expression γ1 in the partition

for D(i, j) and all feature expressions γ2, γ3 in the partitions for

D(i,k) and D(k, j), respectively. �e comparison has to be done

only if these partitions overlap (line 30), and in case the sum is

smaller, D(i, j) is updated in a call to a split-and-combine proce-

dure.

Using the procedure Split, in lines 32 to 41, D(i, j) is updated

at the γ1 ∧ (γ2 ∧ γ3) part of its partition. If Jγ1 ∧ (γ2 ∧ γ3)K is not

smaller than Jγ1K (line 33), then D(i, j)(γ1) is set to its new value.

A�erwards, we need to call a Combine procedure to see whether

D(i, j) has the same value at any other partδ of its partition (line 44)

and, in the affirmative case, to update the partition of D(i, j) by

joining the two parts (line 46f).

If the feature expression γ1∧(γ2∧γ3) on which to updateD(i, j)

is a strict subset of γ1 (line 36), then the γ1 part of the partition of

D(i, j) needs to be split into two parts: γ1∧(γ2∧γ3), on whichD(i, j)

is to be updated, and γ1 ∧ ¬(γ2 ∧ γ3), on which its value stays the

same. Again, we need to call the Combine procedure a�erwards to

potentially combine feature expressions in the partition of D(i, j).

Once relaxation has finished in line 17, we need to find f :=

min{D(i, j) | si ∈ I , sj ∈ F }. As this again depends on which

features are present, we need to compute this minimum in a way

similar to what we did in the Relax procedure: for each feature

expression in the partition P of f and each overlapping feature

expression in the partition of D(i, j), we compare the two values

and use the Split procedure to update f if D(i, j) is smaller.

A variant of the algorithm in Fig. 1 has been implemented in [21],

as part of an effort to compute minimum limit-average cost in real-

weighted featured automata. Several experiments in [21] show

that our algorithm is significantly faster than an approach which

separately solves theminimum reachability problem for each prod-

uct.

3 FEATURED WEIGHTED AUTOMATA

We proceed to introduce a generalization of the se�ing in the pre-

vious section. Here R≥0 is replaced by an abstract ∗-continuous

Kleene algebra. �is allows us to develop an abstract se�ing for
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1: Input: real-weighted featured automaton F = (S, I , F ,T ,γ )

with S = {s1, . . . , sn }

2: Output: function |F | ∈ GP[R≥0]

3: var D : {1, . . . ,n} × {1, . . . ,n} → GP[R≥0]

4: var P , f

5: for i ← 1 to n do

6: for j ← 1 to n do

7: dom(D(i, j)) ← {tt}

8: D(i, j)(tt) ← ∞

9: for all (si ,x, sj ) ∈ T do

10: for all γ ∈ dom(D(i, j)) do

11: if Jγ ∧ γ (si , x, sj )K , ∅ and D(i, j)(γ ) > x then

12: Split(D(i, j),γ ,γ (si , x, sj ), x)

13: for i ← 1 to n do

14: for j ← 1 to n do

15: for k ← 1 to n do

16: Relax(i, j,k)

17: P ← {tt}; f (tt) ← ∞

18: for all si ∈ I do

19: for all sj ∈ F do

20: for all γ1 ∈ P do

21: for all γ2 ∈ dom(D(i, j)) do

22: if Jγ1 ∧ γ2K , ∅ and f (γ1) > D(i, j)(γ2) then

23: Split(f ,γ1,γ2,D(i, j)(γ2))

24: return f

25: procedure Relax(i, j,k)

26: for all γ1 ∈ dom(D(i, j)) do

27: for all γ2 ∈ dom(D(i,k)) do

28: for all γ3 ∈ dom(D(k, j)) do

29: if Jγ1 ∧ γ2 ∧ γ3K , ∅ then
30: if D(i, j)(γ1) > D(i,k)(γ2) + D(k, j)(γ3) then

31: Split(D(i, j),γ1,γ2 ∧γ3,D(i,k)(γ2)+D(k, j)(γ3))

32: procedure Split(f : P → R≥0,γ1,γ2 ∈ B(N ),x ∈ R≥0)

33: if Jγ1K = Jγ1 ∧ γ2K then

34: f (γ1) ← x

35: Combine(f ,γ1)

36: else

37: y ← f (γ1)

38: P ← P \ {γ1} ∪ {γ1 ∧ γ2,γ1 ∧ ¬γ2}

39: f (γ1 ∧ ¬γ2) ← y

40: f (γ1 ∧ γ2) ← x

41: Combine(f ,γ1 ∧ γ2)

42: procedure Combine(f : P → R≥0,γ ∈ B(N ))

43: x ← f (γ )

44: for all δ ∈ P \ {γ } do

45: if f (δ ) = f (γ ) then

46: P ← P \ {δ ,γ } ∪ {δ ∨ γ }

47: f (δ ∨ γ ) ← x

48: break

Figure 1: Algorithm to compute |F | for a real-weighted fea-

tured automaton F .

analysis of featured weighted automata, and to re-use our tech-

niques developed in the previous section to solve quantitative prob-

lems in other concrete se�ings.

3.1 Weighted Automata

Recall that a semiring [10] K = (K ,�,�, 0, 1) consists of a com-

mutative monoid (K ,�, 0) and a monoid (K ,�, 1) such that the

distributive and zero laws

x(y � z) = xy � xz (y � z)x = yx � zx 0� x = 0 = x � 0

hold for all x,y,z ∈ K (here we have omi�ed the multiplication

sign � in some expressions, and we shall also do so in the future).

It follows that the product distributes over all finite sums.

A (finite) weighted automaton [10] over a semiring K (or a K-

weighted automaton for short) is a tuple S = (S, I , F ,T ) consisting

of a finite set S of states, a subset I ⊆ S of initial states, a subset

F ⊆ S of accepting states, and a finite setT ⊆ S×K×S of transitions.

A finite path in such a K-weighted automaton S = (S, I , F ,T ) is

a finite alternating sequence π = (s0,x0, s1, . . . , xk , sk+1) of tran-

sitions (s0,x0, s1), . . . , (sk , xk , sk+1) ∈ T . �e weight of π is the

productw(π ) = x0 · · · xk ∈ K . A finite path π as above is said to

be accepting if s0 ∈ I and sk+1 ∈ F . �e reachability value |S| of

S is defined to be the sum of the weights of all its accepting finite

paths:

|S| =
⊕

{w(π ) | π accepting finite path in S}

As the set of accepting finite paths generally will be infinite, one

has to assume that such sums exist in K for this definition to make

sense. �is is the subject of Sect. 3.4 below.

3.2 Examples

�e Boolean semiring isB = ({ff, tt},∨,∧,ff, tt), with disjunction

as � and conjunction as �. A B-weighted automaton S hence

has its transitions annotated with ff or tt. For a finite path π =

(s0,x0, s1, . . . ,xk , sk+1), we have w(π ) = tt iff all x0 = · · · = xk =

tt. Hence |S| = tt iff there exists an accepting finite path in S

which involves only tt-labeled transitions. �at is, B-weighted

automata are equivalent to ordinary (unlabeled) automata, where

the equivalence consists in removing all ff-labeled transitions.

�e tropical semiring is T = (R≥0 ∪ {∞},∧,+,∞, 0), where

R≥0 ∪ {∞} denotes the set of extended real numbers, with mini-

mum as � and addition as �. �e weight of a finite path is now

the sum of its transition weights, and the reachability value of a

T-weighted automaton is the minimum of all its accepting finite

paths’ weights. HenceT-weighted automata are precisely the real-

weighted automata of Sect. 2, and to compute their reachability

values is to solve the minimum reachability problem.

�e fuzzy semiring is F = (R≥0 ∪ {∞},∨,∧, 0,∞), with maxi-

mum as � and minimum as �. Here, the weight of a finite path is

the minimum of its transition weights, and the reachability value

of an F-weighted automaton is the maximum of all its accepting

finite paths’ weights. �is value is hence the maximum flow in a

weighted automaton: the maximum available capacity along any

finite path from an initial to a accepting state.



FormaliSE, May 2017, Buenos Aires, Argentina Uli Fahrenberg and Axel Legay

3.3 Featured Weighted Automata

We now extend weighted automata with features, for modeling

quantitative behavior of so�ware product lines. Let K be a semir-

ing and denote by GP[K] = { f : P → K | P ∈ GP, ∀γ1,γ2 ∈ P :

γ1 , γ2 ⇒ f (γ1) , f (γ2)} the set of injective functions from guard

partitions to K .

Definition 3.1. A featured weighted automaton overK and px is a

tuple (S, I , F ,T ) consisting of a finite set S of states, subsets I , F ⊆ S

of initial and accepting states, and a finite setT ⊆ S ×GP[K] × S of

transitions.

Similarly to what we did in Sect. 2, the transition labels inGP[K]

are to be seen as syntactic representations of functions from prod-

ucts to K ; we will say more about this below.

Example 3.2. For K = B the Boolean semiring, featured B-

weighted automata are standard (unlabeled) featured automata: for

any feature guard γ ∈ B(N ), {γ ,¬γ } is a guard partition of px,

moreover, for K = B, any mapping in GP[K] is equivalent to one

from such a guard partition. Hence transitions labeledwith feature

guards (as in standard featured automata) are the same as transi-

tions labeled with functions from guard partitions to {ff, tt}.

Definition 3.3. For f : P → K ∈ GP[K] and p ∈ px, let γ ∈ P

be the unique feature guard for which p |= γ and define Jf K(p) =
f (γ ). �is defines the semantic representation of f as the function

Jf K : px→ K .

Definition 3.4. Let F = (S, I , F ,T ) be a featured K-weighted au-

tomaton and p ∈ px. �e projection of F to p is the K-weighted

automaton projp (F ) = (S, I , F ,T
′), where T ′ = {(s, Jf K(p), s ′) |

(s, f , s ′) ∈ T }.

�e behavior of a featuredK-weighted automaton is hence given

relative to products: given a featured K-weighted automaton F

and a product p, |projp (F )|, provided that it exists, will be the be-

havior of F when restricted to the particular product p. �e pur-

pose of this paper is to show how the values |projp (F )| can be

computed for all p ∈ px at once.

3.4 ∗-Continuous Kleene Algebras

Wefinish this section by introducing extra structure and properties

into our semiring K which will ensure that the infinite sums |S|

always exist. �is is for convenience only, and all our work can be

extended to a more general (for example non-idempotent) se�ing.

Recall that a semiring K = (K ,�,�, 0, 1) is idempotent [10] if x �
x = x for every x ∈ K .

A ∗-continuous Kleene algebra [20] is an idempotent semiring

K = (K ,�,�, 0, 1) in which all infinite sums of the form
⊕

n≥0 x
n ,

x ∈ K , exist, and such that

x
(

⊕

n≥0

yn
)

z =
⊕

n≥0

xynz (1)

for allx,y,z ∈ K . Intuitively, automataweighted over a ∗-continuous

Kleene algebra allow for loop abstraction, in that the global effects

of a loop (right-hand side of (1)) can be computed locally (le�-hand

side of (1)). In any ∗-continuous Kleene algebra K one can define

a unary star operation ∗ : K → K by x∗ =
⊕

n≥0 x
n .

For any semiring K and n ≥ 1, we can form the matrix semiring

Kn×n whose elements are n-by-n matrices of elements of K and

whose sum and product are given as the usual matrix sum and

product. It is known [19] that when K is a ∗-continuous Kleene

algebra, then Kn×n is also a ∗-continuous Kleene algebra, with the
∗-operation defined by M∗i, j =

⊕

m≥0

⊕

{Mk1,k2 · · ·Mkm−1,km |

1 ≤ k1, . . . ,km ≤ n,k1 = i,km = j} for all M ∈ Kn×n and 1 ≤

i, j ≤ n. Also, if n ≥ 2 and M =
[

a b
c d

]

, where a and d are square

matrices of dimension less than n, then

M∗ =

[

(a � bd∗c)∗ (a � bd∗c)∗bd∗

(d � ca∗b)∗ca∗ (d � ca∗b)∗

]

. (2)

�e matrix representation [10] of a K-weighted automaton S =

(S, I , F ,T ), with n = #S the number of states, is given by the triple

(α ,M,k), where α ∈ {0, 1}n is the initial vector, M ∈ Kn×n is the

transition matrix, and 0 ≤ k ≤ n. �ese are given as follows: order

S = {1, . . . ,n} such that i ∈ F iff i ≤ k , i.e., such that the first k

states are accepting, and define α and M by αi = 1 iff i ∈ I and

Mi, j =
⊕

{x | (i,x, j) ∈ T }.

It can be shown [17] that if S is a weighted automaton over a
∗-continuous Kleene algebra, then the reachability value of S is

defined and |S| = αM∗κ , where κ ∈ {0, 1}n is the vector given by

κi = 1 for i ≤ k and κi = 0 for i > k .

Example 3.5. Our example semiringsB,T andF share the prop-

erty of being bounded. In general terms, a semiring K is said to be

bounded [10] if x � 1 = 1 for all x ∈ K . Note that this implies

idempotency: for all x ∈ K , x � x = x(1 � 1) = x � 1 = x . If

K is bounded, then x∗ = 1 � · · · = 1 for all x ∈ K , and K is a
∗-continuous Kleene algebra [15].

In B, x � 1 = x ∨ tt = tt; in T, x � 1 = x ∧ 0 = 0; and in F,

x � 1 = x ∨ ∞ = ∞; so these three semirings are indeed bounded.

Operationally, the fact that x∗ = 1 means that loops can be disre-

garded: for all x,y,z ∈ K ,
⊕

n≥0 xy
nz = xy∗z = xz. In lieu of

the examples in Sect. 3.2, it is clear that this property holds forB-,

T- andF-weighted automata: for reachability, loops are unimpor-

tant; for minimum reachability, likewise; and for maximum flow,

taking a loop can only decrease the flow, hence would be disadvan-

tageous.

4 ANALYSIS OF FEATURED WEIGHTED

AUTOMATA

Let K be a ∗-continuous Kleene algebra. In this section we take a

closer look at the functions in GP[K] and define semiring opera-

tions on them. We show that with these operations, GP[K] itself

is a ∗-continuous Kleene algebra. �is means that we can treat

featured K-weighted automata as GP[K]-weighted automata.

We first need to define an operation on partitions which turns

functions f : P → K from a partition P ∈ GP into injective func-

tions, providing themost concise representation, by changing their

domain. Intuitively, this canonicalization of f changes the parti-

tion P into a coarser one by forming disjunctions of feature guards

on which f has the same value:

Definition 4.1. Let P ∈ GP and f : P → K . Introduce an equiv-

alence relation ∼ ⊆ P × P by γ1 ∼ γ2 iff f (γ1) = f (γ2) and let

P ′ = P/∼ be the quotient. Let P̃ = {
∨

Γ | Γ ∈ P ′}, then P̃ ∈ GP. For

every γ̃ ∈ P̃ there is an equivalence class Γ ∈ P ′ for which γ̃ =
∨

Γ,
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1: function KCombine(f : P → K ): GP[K]

2: var f̃ , P̃

3: P̃ ← ∅

4: while P , ∅ do

5: Pick and remove γ from P

6: x ← f (γ )

7: for all δ ∈ P do

8: if f (δ ) = x then

9: γ ← γ ∨ δ

10: P ← P \ {δ }

11: P̃ ← P̃ ∪ {γ }

12: f̃ (γ ) ← x

13: return f̃ : P̃ → K

Figure 2: Function which computes canonicalization.

and f passes to these equivalence classes by definition, so we can

define f̃ : P̃ → K , the canonicalization of f , by f̃ (γ̃ ) = f (Γ).

We show an algorithm which implements canonicalization in

Fig. 2. �e functionKCombine takes as input a function f : P → K

and builds its canonicalization f̃ : P̃ → K by taking disjunctions of

feature expressions in the partition P . Note the similarity of its in-

ner loop to theCombine procedure of Fig. 1: the procedure in Fig. 1

only updates the partition of f in one place, whereas KCombine

needs to check the whole partition.

Lemma 4.2. Let P ∈ GP, f : P → K , and f̃ : P̃ → K the

canonicalization of f . �en f̃ is injective, hence f̃ ∈ GP[K]. Also,

for any γ ∈ P there is a unique element γ̃ ∈ P̃ such that Jγ K ⊆ Jγ̃ K.

Definition 4.3. Let P1, P2 ∈ GP. �e intersection of P1 and P2 is

the partition P = P1 ∧P2 ∈ GP given as P = {γ1∧γ2 | γ1 ∈ P1,γ2 ∈

P2, Jγ1 ∧ γ2K , ∅}.

Lemma 4.4. Let P1, P2 ∈ GP and γ ∈ P1 ∧ P2. �ere are unique

elements γ1 ∈ P1, γ2 ∈ P2 such that γ = γ1 ∧ γ2.

We can hence write the elements of P1∧P2 asγ1∧γ2 without am-

biguity. We are ready to define operations�,� and ∗ on functions

in GP[K].

Definition 4.5. Let f1 : P1 → K , f2 : P2 → K ∈ GP[K]. Define

functions s ′,p ′ : P1 ∧ P2 → K and t ′ : P1 → K by s ′(γ1 ∧ γ2) =

f1(γ1)� f2(γ2),p
′(γ1∧γ2) = f1(γ1)� f2(γ2), and t

′(γ1) = f1(γ1)
∗. Let

s,p, t ∈ GP[K] be the canonicalizations of s ′, p ′ and t ′, respectively,

then we define f1 � f2 = s , f1 � f2 = p, and f ∗1 = t .

Figure 3 shows algorithms to compute these operations inGP[K].

Note how these are similar to the Split procedure in Fig. 1.

Let 0,1 : {tt} → K be the functions given by 0(tt) = 0 and

1(tt) = 1. �en 0,1 ∈ GP[K].

Lemma 4.6. Let f1, f2 ∈ GP[K] and p ∈ px. �en Jf1 � f2K(p) =
Jf1K(p)� Jf2K(p), Jf1 � f2K(p) = Jf1K(p)� Jf2K(p), and Jf ∗1 K(p) =
Jf K1(p)

∗.

Lemma 4.7. Let f1, f2 ∈ GP[K]. �en f1 = f2 iff Jf1K = Jf2K.

Proposition 4.8. �e structure (GP[K],�,�,0,1) forms a
∗-continuous Kleene algebra.

1: function KSum(f1 : P1 → K , f2 : P2 → K ): GP[K]

2: var f ′, P ′

3: P ′ ← ∅

4: for all γ1 ∈ P1 do

5: for all γ2 ∈ P2 do

6: if Jγ1 ∧ γ2K , ∅ then
7: P ′ ← P ′ ∪ {γ1 ∧ γ2}

8: f ′(γ1 ∧ γ2) ← f1(γ1)� f2(γ2)

9: return KCombine(f ′)

10: function KProd(f1 : P1 → K , f2 : P2 → K ): GP[K]

11: var f ′, P ′

12: P ′ ← ∅

13: for all γ1 ∈ P1 do

14: for all γ2 ∈ P2 do

15: if Jγ1 ∧ γ2K , ∅ then
16: P ′ ← P ′ ∪ {γ1 ∧ γ2}

17: f ′(γ1 ∧ γ2) ← f1(γ1)� f2(γ2)

18: return KCombine(f ′)

19: function KStar(f : P → K ): GP[K]

20: var f ′

21: for all γ ∈ P do

22: f ′(γ ) ← f (γ )∗

23: return KCombine(f ′)

Figure 3: Functions which compute �, � and ∗ in GP[K].

Lemma 4.9. For n ≥ 1, M ∈ GP[K]n×n , and p ∈ px, JM∗K(p) =
JMK(p)∗.

We are ready to give the central result of this paper, stating that

for a given featured weighted automaton F , computing |F | suf-

fices to obtain all projected values.

Theorem 4.10. Let F be a featured weighted automaton over K

and p ∈ px. �en |projp (F )| = J|F |K(p).

Proof. Wehave J|F |K(p) = JαM∗κK(p) = JαK(p)JMK(p)∗JκK(p)
by Lemmas 4.6 and 4.9. Noting that the matrix representation of

projp (F ) is (JαK(p), JMK(p),k), the proof is finished. �

5 FEATURED ENERGY PROBLEMS

In this final section we apply the theoretical results of this paper

to featured energy problems.

5.1 Energy Problems

�e energy semiring [14] is the structureE = (E,∨, ◦,⊥,⊤). Here

E is the set of energy functions, which are partial functions f :

R≥0∪{⊥,∞} → R≥0∪{⊥,∞} on extended real numbers (f (x) =

⊥ meaning that f is undefined at x) with the property that

for all x ≤ y : f (y) − f (x) ≥ y − x . (3)

�ese have been introduced in [14] as a general framework to han-

dle formal energy problems as below. �e operations in the semir-

ing are (pointwise) maximum as � and function composition as �,



FormaliSE, May 2017, Buenos Aires, Argentina Uli Fahrenberg and Axel Legay

and the neutral elements are the functions⊥, id given by⊥(x) = ⊥

and id(x) = x for all x ∈ R≥0 ∪ {⊥,∞}.

Definition 5.1. An energy automaton is a tuple (S, I , F ,T ) consist-

ing of a finite set S of states, subsets I , F ⊆ S of initial and accepting

states, and a finite set T ⊆ S × E × S of transitions.

Hence the transition labels in energy automata are functions

which proscribe how a real-valued variable evolves along a transi-

tion. An energy problem asks, then, whether some state is reach-

able when given a certain initial energy, or whether the automaton

admits infinite accepting runs from some initial energy:

A global state of an energy automaton is a pair q = (s,x) with

s ∈ S and x ∈ R≥0. A transition between global states is of the

form ((s,x), f , (s ′, x ′)) such that (s, f , s ′) ∈ T and x ′ = f (x). A

(finite or infinite) run of the automaton is a (finite or infinite) path

in the graph of global states and transitions.

As the input to a decision problemmust be in some way finitely

representable, we will state them for subclasses E′ ⊆ E of com-

putable energy functions (but note that we give no technical mean-

ing to the term “computable” other that “finitely representable”);

an E′-automaton is an energy automaton (S, I , F ,T ) with T ⊆ S ×

E′ × S .

Problem 1 (Reachability). Given a subset E′ ⊆ E of computable

functions, an E′-automaton S = (S, I , F ,T ) and a computable ini-

tial energy x0 ∈ R≥0: do there exist s0 ∈ I and a finite run of S

from (s0, x0) which ends in a state in F?

Problem 2 (Büchi acceptance). Given a subset E′ ⊆ E of com-

putable functions, an E′-automaton S = (S, I , F ,T ) and a com-

putable initial energy x0 ∈ R≥0: do there exist s0 ∈ I and an

infinite run of S from (s0, x0) which visits F infinitely o�en?

As customary, a run such as in the statements above is said to

be accepting.

5.2 ∗-Continuous Kleene ω-Algebras

Weneed a few algebraic notions connected to infinite runs in weighted

automata beforewe can continue. An idempotent semiring-semimodule

pair [1,16] (K ,V ) consists of an idempotent semiringK = (K ,�,�, 0, 1)
and a commutative idempotent monoid V = (V ,�, 0) which is

equipped with a le� K-action K × V → V , (x,v) 7→ xv , satisfy-

ing the following axioms for all x,y ∈ K and u,v ∈ V :

(x � y)v = xv � yv x(u �v) = xu � xv

(xy)v = x(yv) 0 � x = 0

x � 0 = 0 1 �v = v

Also non-idempotent versions of these are in use, but we will only

need the idempotent one here.

A generalized ∗-continuous Kleene algebra [12] is an idempotent

semiring-semimodule pair (K ,V )whereK is a ∗-continuous Kleene

algebra such that for all x,y ∈ K and for all v ∈ V ,

xy∗v =
⊕

n≥0

xynv .

A ∗-continuous Kleeneω-algebra [12] consists of a generalized ∗-

continuous Kleene algebra (K ,V ) together with an infinite product

operation Kω → V which maps every infinite sequence x0,x1, . . .

in K to an element
∏

n xn of V . �e infinite product is subject to

the following conditions:

• For all x0, x1, . . . ∈ K ,
∏

n xn = x0
∏

n xn+1.

• Let x0,x1, . . . ∈ K and 0 = n0 ≤ n1 ≤ · · · a sequence

which increases without a bound. Letyk = xnk · · · xnk+1−1
for all k ≥ 0. �en

∏

n xn =
∏

k yk .

• For all x0,x1, . . . ,y,z ∈ K , we have
∏

n(xn (y � z)) =
⊕

x ′0,x
′
1, ...∈{y,z }

∏

n xnx
′
n .

• For allx,y0,y1, . . . ∈ K ,
∏

n x
∗yn =

⊕

k0,k1, ...≥0

∏

n x
knyn .

For any idempotent semiring-semimodule pair (K ,V ) and n ≥

1, we can form the matrix semiring-semimodule pair (Kn×n
,Vn )

whose elements aren×n-matrices of elements ofK andn-dimensional

(column) vectors of elements of V , with the action of Kn×n on Vn

given by the usual matrix-vector product.

When (K ,V ) is a ∗-continuous Kleeneω-algebra, then (Kn×n
,V n)

is a generalized ∗-continuous Kleene algebra [12]. By [12, Lemma 17],

there is an ω-operation on Kn×n defined by

Mω
i =

⊕

1≤k1,k2, ...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Kn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
[

a b
c d

]

,

where a and d are square matrices of dimension less than n, then

Mω
=

[

(a � bd∗c)ω � (a � bd∗c)∗bdω

(d � ca∗b)ω � (d � ca∗b)∗caω

]

.

We also need another matrix-ω-power below. Let n ≥ 2, k < n

andM ∈ Kn×n , and writeM =
[

a b
c d

]

as above, with a ∈ Kk×k top

le� k-by-k part ofM . We define

Mωk
=

[

(a � bd∗c)ω

d∗c(a � bd∗c)ω

]

.

Let (K ,V ) be a ∗-continuousKleeneω-algebra andS = (S, I , F ,T )

a K-weighted automaton. An infinite path in S is an infinite alter-

nating sequence π = (s0,x0, s1, x1, s2, . . . ) of transitions (s0,x0, s1),

(s1,x1, s2), . . . ∈ T . �e weight of π is the infinite productw(π ) =
∏

n xn ∈ V .

An infinite path π = (s0,x0, s1,x1, . . . ) in S is said to be Büchi

accepting if s0 ∈ I and the set {n ∈ N | sn ∈ F } is infinite. �e

Büchi value ‖S‖ of S is defined to be the sum of the weights of all

its Büchi accepting infinite paths:

‖S‖ =
⊕

{w(π ) | π Büchi accepting infinite path in S}

Let (α ,M,k) be thematrix representation ofS. It can be shown [12]

that

‖S‖ = αMωk .

5.3 Featured Energy Problems

Recall that E denotes the set of energy functions: functions f :

R≥0 ∪ {⊥,∞} → R≥0 ∪ {⊥,∞} with the property (3) that when-

ever x ≤ y, then f (y) − f (x) ≥ y − x ; and that E = (E,∨, ◦,⊥,⊤)

is the semiring of energy functions.

Lemma 5.2 ( [13]). E is a ∗-continuous Kleene algebra.

Let B = {ff, tt} be the Boolean la�ice. We say that a function

f : R≥0 ∪ {⊥,∞} → B is ∞-continuous if f = ⊥ or for all X ⊆

R≥0 ∪ {⊥,∞} with
∨

X = ∞,
∨

f (X ) = tt.
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LetV be the set of∞-continuous functions f : R≥0∪{⊥,∞} →

B. With operation∨ defined by (f ∨д)(x) = f (x)∨д(x) and unit⊥

given by ⊥(x) = ff for all x ∈ R≥0 ∪ {⊥,∞},V = (V,∨,⊥) forms

a commutative idempotent monoid. �en (E,V) is an idempotent

semiring-semimodule pair.

Define an infinite product E → V as follows: Let f0, f1, . . . ∈ E

be an infinite sequence and x ∈ R≥0 ∪ {⊥,∞}. Let x0 = f0(x) and,

for each k ≥ 1, xk = fk (xk−1). �us x0,x1, . . . is the infinite

sequence of values obtained by application of finite prefixes of the

function sequence f0, f1, . . . . �en (
∏

n fn)(x) = ff if there is an

index k for which xk = ⊥ and (
∏

n fn)(x) = tt otherwise.

It can be shown [13] that
∏

n fn is ∞-continuous for any infi-

nite sequence f0, f1, . . . ∈ E, hence this defines indeed a mapping

Eω →V .

Lemma 5.3 ( [13]). (E,V) is a ∗-continuous Kleene ω-algebra.

Hence the energy problems stated at the end of Sect. 5.1 can

be solved by computing reachability and Büchi values of energy

automata:

Proposition 5.4 ( [13]). Let S = (S, I , F ,T ) be an energy au-

tomaton and x0 ∈ R≥0.

• �ere exist s0 ∈ I and a finite run of S from (s0,x0) which

ends in a state in F iff |S|(x0) , ⊥.

• �ere exist s0 ∈ I and an infinite run ofS from (s0,x0)which

visits F infinitely o�en iff ‖S‖(x0) = tt.

We now define energy problems for featured automata. Recall

that N denotes a set of features and px ⊆ 2N a set of products over

N .

Definition 5.5. A featured energy automaton over px is a tuple

(S, I , F ,T ) consisting of a finite set S of states, subsets I , F ⊆ S of

initial and accepting states, and a finite set T ⊆ S × GP[E] × S of

transitions.

Hence transitions in featured energy automata are labeled with

(injective) functions from guard partitions to energy functions.

Lemma 5.6. For f ∈ E, f ω ∈ V is given by

f ω (x) =

{

ff if x = ⊥ or f (x) < x ,

tt otherwise .

Definition 5.7. Let f : P → E ∈ GP[E] and define w ′ : P → V

by w ′(γ ) = f (γ )ω . Let w ∈ GP[V] be the canonicalization of w ′,

then we define f ω = w .

Lemma 5.8. For n ≥ 1, k < n, M ∈ GP[E]n×n , and p ∈ px,

JMω K(p) = JMK(p)ω and JMωk K(p) = JMK(p)ωk .

Theorem 5.9. Let F be a featured energy automaton and p ∈ px.

�en ‖projp (F )‖ = J‖F ‖K(p).

Proof. We have J‖F ‖K(p) = JαMωk K(p) = JαK(p)JMK(p)ωk

by Lemmas 4.6 and 5.8. As the matrix representation of projp (F )

is (JαK(p), JMK(p),k), the result follows. �

6 CONCLUSION

We have introduced featured (semiring-) weighted automata and

shown that, essentially, verification of their properties can be re-

duced to checking properties of weighted automata. �is is be-

cause, from a mathematical point of view, a featured weighted au-

tomaton over a semiring K is the same as a weighted automaton

over the semiring of functions from products (sets of features) to

K .

Representing functions from products to K as injective func-

tions from partitions of the set of products to K , we have exposed

algorithms which will compute featured weighted reachability in

case K is a ∗-continuous Kleene algebra. It is easy to see that these

extend to the non-idempotent case of K being a Conway semiring.

�e essence in our approach does not lie in these technical details,

but in the fact that we pass from K to a semiring of functions into

K ; this typically preserves properties one is interested in.

We have also seen that energy properties are preserved when

passing from the weighted to the featured weighted se�ing; gener-

ally, if (K ,V ) is a ∗-continuousKleeneω-algebra, then the semiring-

semimodule pair of functions from products to K and V , respec-

tively, will also be such.

We are interested in extending the se�ing of this paper to other

weighted structures beyond semirings, for example the valuation

monoids of [11]. �is will enable feature-based treatment of prop-

erties such as limit-average cost and will be useful for an extension

to the timed se�ing of [7]. From a practical point of view, we have

shown in [21] that efficient algorithms are available for the limit-

average se�ing.
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[14] Z. Ésik, U. Fahrenberg, A. Legay, and K.�aas.Kleene algebras and semimodules
for energy problems. In ATVA, vol. 8172 of LNCS. Springer, 2013.
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APPENDIX: PROOFS

Proof of Lemma 4.2. To see that f̃ is injective, let γ̃1, γ̃2 ∈ P̃

and assume f̃ (γ̃1) = f̃ (γ̃2). Let Γ1, Γ2 ∈ P
′ such that γ̃1 =

∨

Γ1 and

γ̃2 =
∨

Γ2, then f (Γ1) = f (Γ2) and hence Γ1 = Γ2, i.e., γ̃1 = γ̃2.

For the second claim, let γ ∈ P , then γ ∈ Γ for some Γ ∈ P ′,

hence Jγ K ⊆ J
∨

ΓK. To see uniqueness, let γ̃1, γ̃2 ∈ P̃ and assume

Jγ K ⊆ Jγ̃1K and Jγ K ⊆ Jγ̃2K. As Jγ K , ∅, this implies that Jγ̃1K ∩
Jγ̃2K , ∅, hence γ̃1 = γ̃2. �

Proof of Lemma 4.4. Existence of γ1 and γ2 is obvious by defi-

nition of P1∧P2. For uniqueness, assume that there is γ ′1 ∈ P1 with

γ ′1 , γ1 andγ = γ
′
1∧γ2. �en γ = γ1∧γ

′
1∧γ , but as P1 is a partition,

Jγ1 ∧ γ
′
1K = Jγ1K ∩ Jγ ′1K = ∅, hence Jγ K = ∅, a contradiction. �

Proof of Lemma 4.6. Let f1 : P1 → K and f2 : P2 → K . Let

γ1 ∈ P1, γ2 ∈ P2 be the unique feature guards for which p |= γ1 and

p |= γ2, then Jf1K(p) = f1(γ1) and Jf2K(p) = f2(γ2).

We have p ∈ Jγ1 ∧ γ2K, hence Jγ1 ∧ γ2K , ∅, so that γ1 ∧ γ2 ∈

P1 ∧ P2. Using the notation of Def. 4.5, s ′(γ1 ∧ γ2) = f1(γ1) �
f2(γ2) = Jf1K(p) � Jf2K(p). Write s : P → K and let γ̃ ∈ P be

such that Jγ1 ∧ γ2K ⊆ Jγ̃ K, cf. Lemma 4.2. �en p |= γ̃ , hence

Jf1 � f2K(p) = (f1 � f2)(γ̃ ) = s ′(γ1 ∧ γ2). �e proofs for � and ∗

are similar. �

Proof of Lemma 4.7. It is clear that f1 = f2 implies Jf2K =
Jf2K. For the other direction, write f1 : P1 → K and f2 : P2 → K .

For each p ∈ px, let γp =
∧

f ∈p f ∧
∧

f <p ¬f ∈ B(N ) denote its

characteristic feature guard; note that JγpK = {p}.
Let P ∈ GP be the guard partition P = {γp | p ∈ px}, and

define functions f ′1 , f
′
2 : P → K by f ′1 (γp ) = Jf1K(p) and f ′2 (γp ) =

Jf2K(p). By definition, f1 is the canonicalization of f ′1 and f2 the

canonicalization of f ′2 . By construction, Jf1K = Jf2K implies f ′1 =

f ′2 , hence f1 = f2. �

Proof of Prop. 4.8. We show that the setKpx of functions from

px to K forms a ∗-continuous Kleene algebra; the theorem is then

clear from Lemmas 4.6 and 4.7. For functions ϕ1,ϕ2 : px → K ,

define ϕ1 � ϕ2, ϕ1 � ϕ2 and ϕ∗1 by (ϕ1 � ϕ2)(p) = ϕ1(p) � ϕ2(p),

(ϕ1 �ϕ2)(p) = ϕ1(p)�ϕ2(p), and ϕ
∗
1(p) = ϕ1(p)

∗. Let 0, 1 : px→ K

be the functions 0(p) = 0, 1(p) = 1. �en (Kpx
,�,�, 0, 1) forms an

idempotent semiring.

We miss to show ∗-continuity. Let p ∈ px and ϕ1,ϕ2,ϕ3 : px→

K , then

(

ϕ1ϕ
∗
2ϕ3

)

(p) = ϕ1(p)ϕ
∗
2(p)ϕ3(p)

= ϕ1(p)ϕ2(p)
∗ϕ3(p)

= ϕ1(p)
(

⊕

n≥0

ϕ2(p)
n )ϕ3(p)

=

⊕

n≥0

ϕ1(p)ϕ2(p)
nϕ3(p)

=

⊕

n≥0

ϕ1(p)ϕ
n
2 (p)ϕ3(p)

=

(

⊕

n≥0

ϕ1ϕ
n
2 ϕ3

)

(p)

�
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Proof of Lemma 4.9. As the formula for computingM∗ involves

only additions, multiplications and stars, this is clear by Lemma 4.6.

�

Proof of Lemma 5.6. �e claim is clear for x = ⊥, so let x , ⊥.

If f (x) ≥ x , then also f n (x) ≥ x for all n ≥ 0, hence f ω (x) = tt by

definition.

If f (x) < x , then f (x) ≤ x −M , with M = x − f (x) > 0. By (3),

f n(x) ≤ x −nM for all n ≥ 0, hence there must be k ≥ 0 for which

f k (x) = ⊥, whence f ω (x) = ff. �

Proof of Lemma 5.8. �e formulas for Mω and Mωk involve

only additions, multiplications, stars, andωs. Invoking Lemmas 4.6

and 4.9, we see that the proof will be finished once we show that

for f ∈ GP[E], Jf ωK(p) = Jf K(p)ω .
Write f : P → E and let γ ∈ P be the unique feature guard for

which p |= γ . �en Jf K(p) = f (γ ). Using the notation of Def. 5.7,

w ′(γ ) = Jf K(p)ω . Write w : P ′ → V and let γ̃ ∈ P ′ be such that

Jγ K ⊆ Jγ̃ K, cf. Lemma 4.2. �en p |= γ̃ , hence Jf ω K(p) = f ω (γ̃ ) =

w ′(γ ). �
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