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Abstract—We consider the problem of model checking
Variability-Intensive Systems (VIS) against non-functional re-
quirements. These requirements are typically expressed as an
optimization problem over quality attributes of interest, whose
value is determined by the executions of the system. Identifying
the optimal variant can be hard for two reasons. First, the
state-explosion problem inherent to model checking makes it
increasingly complex to find the optimal executions within a given
variant. Second, the number of variants can grow exponentially
with respect to the number of variation points in the VIS. In
this paper, we lay the foundations for the application of smart
sampling and statistical model checking to solve this problem
faster. We design a simple method that samples variants and exe-
cutions in a uniform manner from a featured weighted automaton
and that assesses which of the sampled variants/executions are
optimal. We implemented our approach on top of ProVeLines, a
tool suite for model-checking VIS and carried out a preliminary
evaluation on an industrial embedded system design case study.
Our results tend to show that sampling-based approaches indeed
holds the potential to improve scalability but should be supported
by better sampling heuristics to be competitive.

Index Terms—Variability, Embedded Systems, Model Check-
ing, Sampling

I. INTRODUCTION

Variability-Intensive Systems (VIS) encompass a large class
of systems that can be derived into multiple variants, such
as software product lines [1]. These systems pose a general
challenge: a linear increase in the number of variation points
can lead to an exponential increase of variants. Because of
that, the analysis of such systems is computationally expen-
sive, if not intractable. A common way to circumvent this
consists of factorizing the analyses across multiple variants
by exploiting their commonalities. For example, family-based
model-checking techniques assume that common behavior
between VIS should only be verified once (or as few times
as possible) [2], [3].

In this work, we consider the problem of checking VIS
against non-functional requirements. Such requirements are
typically expressed as a constrained optimisation problem over
some quality attributes of the targeted system. For example,
the VIS we consider in our industrial case study are dataflow-
oriented software systems embedded in automotive vehicles,
such as infotainment systems and instrument clusters. Such
systems typically consist of an image processing application

deployed on a non-programmable platform. As such, they ex-
hibit three main sources of variability: (1) the data processing
can be achieved through the execution of alternative sequences
of operations; (2) the non-programmable platforms are often
developed as product lines for the manufacturers to achieve
economies of scale; (3) how operations can be scheduled and
allocated onto processors. Overall, all these choices can impact
the feasibility of building and deploying a given system, as
well as its quality attributes, i.e. in our case: manufacturing
cost, computation time and quality of the graphics rendering.
This raises the question of how to identify the feasible variants
whose executions are optimal wrt. some trade-off between the
quality attributes.

Past research has relied on variability-aware formalism to
represent and verify the behaviour of VIS efficiently [2]–
[9]. In particular, Featured Weighted Automata (FWA) [10]
is a recent formalism able to (i) express system behaviour
as a set of execution traces (i.e. sequences of transitions
between system states), (ii) restrict the executability of a given
transition to specific VIS variants, and (iii) associate distinct
quality attributes to the execution of transitions by the variants.
Intuitively, FWA can be seen as the merging of multiple
weighted automata, each of which encodes the behaviour of
a single variant, which makes it possible to search for the
optimal executions across all variants in a single run. Thus,
analyzing an FWA comes down to analyzing the equivalent
set of single-variant weighted automata while avoiding going
multiple times through an execution that occurs in multiple
variants.

While FWA and their related algorithms succeeds in capi-
talising on common behaviour across multiple variants, their
applications to real-world problems are hindered by multiple
complexities: the state-explosion problem inherent to model
checking, the high number of variants induced by variability,
the quantitative computation of quality attributes. Our recent
endeavour [9], [11] shows that FWA algorithms are sufficiently
efficient to check isolated modules of industrial instrument
cluster applications. We believe, however, that this solution
will not scale up to systems of larger sizes [12].

Statistical Model Checking (SMC) techniques [13], can
be seen as a trade-off between software testing and formal
verification. The core idea of the approach is to conduct some



simulations of the system and verify whether they satisfy
a given property. The results are then used together with
algorithms from the statistical area in order to decide whether
the system satisfies the property with some probability. SMC
can also be used to drive the search towards rare (quantita-
tive or not) bugs. Of course, in contrast with an exhaustive
approach, a simulation-based solution does not guarantee a
result with 100% confidence. However, it is possible to bound
the probability of making an error. Simulation-based methods
are known to be far less memory- and time-intensive than
exhaustive ones, and are sometimes the only viable option.
Over the past years, SMC has been used to (1) assess the
absence of errors in various areas from aeronautic to systems
biology, (2) measure cost average and energy consumption for
complex applications such as nanosatellites and (3) detect rare
bugs in concurrent systems. SMC is not only able to estimate
a probability distribution, but can also be used to optimize
costs as shown in [14]. In some recent work [15], we have
showed how to use smart sampling to extend SMC to non-
deterministic stochastic systems. There, the main challenge is
to sample among the set of schedulers introduced by the non-
determinism, and then apply SMC on the resulting system.

We see an analogy between the choice of schedulers and the
selection of variants. Indeed, each variant can be encoded with
a weighted automaton on which SMC can be applied directly.
Thus, in this paper, we propose to use a similar strategy in
FWA. More precisely, we present our preliminary attempt to
apply variant sampling and simulation-based methods in order
to speed up the identification of optimal VIS variants. Our
method iteratively samples variants and their executions from
an FWA and assesses which of the sampled executions are
optimal. We implemented our approach on top of ProVeLines,
a tool suite for model-checking VIS and carried out a first
evaluation on the instrument cluster design engineering case
study of previous orks [9], [11]. Our results tend to show
that sampling-based approaches indeed hold the potential to
improve scalability, but should be supported by better sampling
heuristics to be competitive.

The paper is structured as follows. In Section II, we give
some background on FWA. We present our sampling-based
method in Section III and report our evaluation results in
Section IV. Section V concludes and draws the roadmap of
our upcoming research on this topic.

II. FEATURED WEIGHTED AUTOMATA

FWA are an extension of transition systems that capture the
variation points in the behaviour of a given VIS, as well as the
relationship between this behaviour and the quality attributes
of the system. The starting point of this formalism is to model
the variability of the considered VIS as features. That is, each
feature represents a unit of variability that, if enabled, can
affect the structure and the behaviour of the VIS. A variant of
the VIS is then defined as the set of its enabled features.

In our case study, a feature can represent, e.g., a design
choice between alternative processing operations, an optional
hardware resource, a level of image quality, or an allocation of

an operation (resp. an image) onto a processor (resp. a memory
storage). Obviously, these features will have an impact on
the quality attributes of the system. For example, the selected
platform resources affect cost and performance, whereas the
performed operations and the quality of the processed images
determine the quality of the graphic rendering. These impacts
are static, in that they depend only on the selected features
and not on the behaviour actually executed by the variant. In
a recent work [11], we show that this variability and its impact
on quality attributes can be model in a Priced Feature Model
(PFM).

Quality attributes can also be influenced by the behaviour of
the system, e.g. how it will schedule the processing operations
and the image store onto the available hardware resources.
PFMs alone are not sufficient to represent these dynamic
impacts. Instead, those are modelled as additional labels on the
transitions of the FWA. These labels describe which variants
can execute the transition and, for each such variant, whether
and how it modifies the value of each quality attribute when
executing the transition. This information can be symbolically
encoded in the form of a weighted feature expression [11].

Definition II.1. Let t be a transition, F be a set of features and
{τ1 . . . τn} a set of quality attributes. Then a weighted feature
expression over t is a (possibly partial) function γ : 2F → Rn≥0
that associates a variant F ′ ⊆ F with a vector w such that (i)
the domain of γ represents the variants able to execute t and
(ii) wi is the value that F ′ adds to τi when it executes t.

Definition II.2. Let T = {τ1 . . . τn} be an ordered set of real-
valued, quality attributes and pfm be a PFM defining a set
of features F . A FWA over T and pfm is a tuple fwa =
(S, s0, sf ,→, γ→) where S is a set of states, s0 is the initial
state, sf is the final state, T ⊆ S×S is the transition relation,
and γ→ : T → 2F → Rn≥0 associates each transition with a
weighted feature expression.

III. SAMPLING VARIANTS AND EXECUTION PATHS

A valid path in an FWA is a sequence of transitions
starting from the initial state and ending in the final state.
Let π = s0 → s1 → · · · → sk−1 → sf be a valid path
of length k. Any valid path can be executed by one or more
variants, which are given by F ′ ∈

⋂k
i=1 dom(γ→(si−1, sk)).

Then, the semantics of an FWA can be defined as a function
that associates each valid variant of the induced pfm to the set
of paths that this variant can execute. A weighted automaton
modelling the behaviour of a given variant F ′ can be obtained
by computing the projection of the FWA onto F ′. Intuitively,
the projection changes the weighted feature expression in order
to impede the other variants to execute any transition.

Definition III.1. Let fwa = (S, s0, sf ,→, γ→) be an FWA
over a pfm PFM and let F ′ ∈ dom(pfm). Then the projec-
tion of fwa onto F ′ is the FWA fwa|F ′ = (S, s0, sf ,→, γ′→)
such that for all t = (s, s′) ∈→, we have dom(γ′→)(t) = {F ′}
and γ′→(F ′) = γ→(F ′).



Let π be some valid path in an FWA. Let F ′ be a product
able to execute π. Then the weight vector induced by π and
associated to F ′, noted wπ,F ′ , is obtained by summing the
weight vector associated to all transitions of π, that is, wπ,F ′ =∑k
i=1 γ→(si−1, si)(F

′). Let ζ : Rn → R : {τ1 . . . τn} →
θ1× τ1 + · · ·+ θn× τn be some cost function that defines the
trade-off between all quality attributes by multipliying each of
them with a coefficient θi. Then the benefits of executing a
path π is given by ζ(wπ,F ′).

A complete model-checking procedure for FWA can find the
path yielding an optimal cost, either for each product or across
all products [10], [11]. However, in large VIS the number of
paths (due to the state-explosion problem inherent to model
checking) and the number of products (due to variability) can
reach tremendous numbers. Therefore, it may not always be
realistic or efficient to apply such procedures.

Facing this issue, we designed a sampling-based procedure
to search for optimal paths in an FWA efficiently. This
procedure is described in Algorithm 1. The key principles are
to allocate a budget of variants NF and a budget of executions
Nπ for each variant, and then to sample variants and execu-
tions until those budgets are fully consumed. First, NF distinct
variants are iteratively sampled (Line 6). There exist several
methods to sample variants from feature models (see [16]–
[18] for more details). In our preliminary experiments, we
adopt the simplest approach that consists in setting the value of
each feature randomly, following a Bernoulli distribution with
parameter p = 0.5, and repeating this process until we obtain
a valid variant according to the PFM. Once a valid variant is
obtained, we compute the projection of fwa onto this variant
and sample Nπ paths from the projection using random walk
(Line 11). By the definition of projection, we are guaranteed
than all those paths are executable by the considered variant.
Then, we compute the cost function of all sampled paths across
all variants and return the best path with its associated variant.

IV. EXPERIMENTS

In the context of embedded system design, our recent
study [11] shows that FWA can be used as an effective
model of computation to identify the optimal design variants.
It considers industrial automotive instrument clusters, which
consist of an image processing application and a configurable
hardware platform. As mentioned in the introduction, such
systems can be designed in thousands of ways due to a three-
source variability [9]. Finding the optimal design variants is
thus inherently hard. To address this problem, we proposed a
framework able to transform model instrument clusters spec-
ifications into FWA formalism in order to search efficiently
and exhaustively for the optimal variant [11] in the resulting
model. We implemented our model-checking algorithms in
ProVeLines [19] and conducted experiments on both industrial
and generated models. Our results showed that this approach
exploits behavioral commonalities between system designs to
speed-up remarkably the verification process.

In spite of these positive results, we are convinced that
exhaustive methods are inapplicable to large-scale industrial

Input: fwa = (S, s0, sf ,→, γ→);
pfm = (F,Q,Ψρ, η,Ψτ ); ζ : ζ(τ1, . . . , τn) ∈ R+;
NF , the budget of variants;
Nπ , the budget of executions per variant;
Output: F∗, the best sampled variants that reach sf
ζ∗, its associated minimal cost in the sample

1 ζ∗ ← +∞;
2 iF ← 0;
3 Excluded← ∅;
4 while iF < NF do
5 iF ← iF + 1;
6 F ′ ← Sample(pfm,Excluded);
7 Excluded← Excluded ∪ {F ′};
8 iπ ← 0;
9 while iπ < Nπ do

10 iπ ← iπ + 1;
11 π ← RandomWalk(fwa|F ′);
12 if wπ,F ′ < ζ∗ then
13 ζ∗ ← wπ;
14 F∗ ← F ′;
15 end
16 end
17 end
18 return (F∗, ζ∗)

Algorithm 1: Sampling-based Model Checking for FWA

systems. In order to evaluate our sampling-based approach
against the exhaustive algorithm of our recent work [11],
we implemented Algorithm 1 within ProVeLines and exper-
imented it on 10 models reported in [11] as a comparison
baseline, numbered from 0 to 9. Model #0 has been reverse-
engineered from a real industrial system, while the other
models were generated in a realistic way, based on real-world
system topology and statistics.

Results are given in Table I. The different models are
characterized by their state density (i.e. the average number of
reachable states per valid variant) and their number of valid
variants. We checked each model using both the exhaustive
algorithm [11] and Algorithm 1 parameterized with Nπ = 1
and NF = 50 (except for models #1 and #2 for which we
sampled 12,5% of the variants). For each model, we compute
the execution time of both algorithms, the total number of
states they explored, and the cost of the optimal executions
they found across all products.

Unsurprisingly, the results show that sampling can reduce
verification time by multiple orders of magnitude compared
to the exhaustive algorithm. The downside lies in the fact that
the real optimum was never sampled for any of the models. In
case #0 – the real-world model – a nearly-optimum was found,
yielding an increase in cost function value of a mere 12%.
In the other cases, however, the increase is more significant,
ranging from 61% to 135%. This calls for two improvements
of our procedure: (i) more variants should be sampled and (ii)
the sampling method should be smarter than simply selecting



TABLE I
EVALUATION RESULTS WHEN SAMPLING 50 VARIANTS OR 12,5% OF THEM (TIMES ARE IN SECONDS).

ProVeLines (Exhaustive) ProVeLines (Sampling 50) ProVeLines (Sampling 12,5%)
case density variants time explored ζ∗ time explored ζ∗ (incr. %) time explored ζ∗ (incr. %)

Ins. Cl. (#0) 369 1,878 2.42 224,209 556 0.98 29905 620 (+12%) 2.84 86902 620 (+12%)
Gen. #1 1,561 32 0.38 36,488 2620 0.12 6,264 5192 (+98%) — idem —
Gen. #2 2,250 64 1.27 71,063 4462 0.37 18,064 7542 (+69%) — idem —
Gen. #3 3,061 243 75.79 414,604 5,098 3.95 153,050 11,010 (+116%) 2.42 91,830 11,010 (+116%)
Gen. #4 1,656 516 8.23 564,360 3,894 1.51 82,968 6,714 (+72%) 1.94 106,259 6,300 (+61%)
Gen. #5 2,256 1,152 29.77 1,637,492 4,712 2.06 114,247 7,936 (+68%) 6.68 328,772 7,412 (+57%)
Gen. #6 1,496 1,280 8.65 642,277 4,196 1.58 74,607 6,896 (+61%) 4.80 239,342 5,608 (+34%)
Gen. #7 2,416 2,187 89.56 3,380,866 7,172 2.81 120,800 16,824 (+135%) 15.26 659,568 16,824 (+135%)
Gen. #8 1,607 12,288 75.97 2,214,258 2,564 1.89 79,607 4,500 (+76%) 47.21 2,470,220 3,976 (+55%)
Gen. #9 1,732 34,560 72.17 1,965,447 2,412 1.97 85,589 5,066 (+110%) 155.57 7,493,328 3,940 (+63%)

features individually and independently). To assess the impact
of the former improvement, we repeated the experiments with
a variable sample size equal to 12,5% of the total number of
valid variants (see right side of Table I. In some cases (#4–
6,8–9), we obtained positive effects; in others (#1,3,7), this
had no impact.

Nevertheless, sampling size can be a significant factor for
the performance of our sampling-based method. The fixed size
(50) and the variable size (12,5%) we used have been set
arbitrarily in order to carry out our preliminary study. Our
future work includes the definition of heuristics to define an
appropriate sample size given the considered case.

V. CONCLUSION

Although the results remain encouraging, our experiments
raise the need for smarter sampling of variants and executions.
A first source of inspiration lies in the methods that statically
analyze feature models in an attempt to maximize diversity
across the sampled variants. Still, we believe that the solution
lies in combining those methods with information on the
previously sampled executions. For instance, we might cover
a wide diversity of states and transitions. We might favour the
features that contributed to the best found executions but, at
the same time, we might look for rare feature combinations
that may have been ignored in the past samplings. All these
heuristics could be build up in an evolutionary approach
that would create a population of increasingly better variants.
Nevertheless, there are plethora of potential heuristics, and
assessing them constitutes our upcoming future work.
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