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Abstract—Importance measures provide a systematic ap-
proach to scrutinize critical system components, which are
extremely beneficial in making important decisions, such as pri-
oritizing reliability improvement activities, identifying weak-links
and effective usage of given resources. The importance measures
are then in turn used to obtain a criticality value for each system
component and to rank the components in descending manner.
Simulations tools are generally used to perform importance
measure based analysis, but they require expensive computations
and thus they are not suitable for large systems. A more scalable
approach is to utilize the importance measures to obtain all the
necessary conditions by proving a generic relationship describing
the relative importance between any pair of components in a
system. In this paper, we propose to use higher-order-logic (HOL)
theorem proving to verify such relationships and thus making
sure that all the essential conditions are accompanied by the
proven property. In particular, we formalize the commonly used
importance measures, such as Birnbaum and Fussell-Vesely, and
conduct a formal importance measure analysis of a railway
signaling system at a Moroccan level crossing as an application
for illustration purpose.

Keywords—Importance Measures, Higher-order Logic, Fault
Tree, Theorem Proving.

I. INTRODUCTION

Importance measures [1] provide an effective way to eval-
uate the relative criticality of components in a system. Partic-
ularly, they are employed to identify a subset of components
that are more important to a system so that given resources
can be effectively utilized. The underline concept is to focus
on the most problematic areas in a system aiming to achieve
the most significant gains. A study at Microsoft Corp. has
revealed that about 20% of the entire pool of detected bugs lead
to about 80% of the errors and crashes in Microsoft Windows
and Office software [2]. In reliability engineering, determining
the importance of components significantly helps to solve
several reliability problems, such as component assignment,
redundancy allocation, system upgrading, and fault diagnosis
and maintenance.

In 1968, Birnbaum was the first to propose the concept
of importance measure for binary systems of two states,
either functioning or failed [3]. This led to the development
of more sophisticated importance measures, such as Fussell-
Vesely [1], to analyze more complicated systems, like nuclear
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power plants. These importance measures are primarily defined
for coherent systems [1], which are systems satisfying the
following conditions: (1) their structure function or system
failure model exhibits non-decreasing behavior, i.e., the prob-
ability of the given failure model increases with the increase
in the number of failures; and (2) each of their components is
relevant, i.e., every component is actively contributing to the
system failure.

A typical method in importance measure analysis involves
calculating a criticality value for each component in a system
and then tabulating the obtained data in descending manner [4].
In other words, a component with higher value is regarded as
highly critical and placed above in the ranking than a compo-
nent with a lower value. Simulation based reliability analysis
tools, such as ReliaSoft [5], determine the component’s im-
portance by computing the percentage of times that a system
failure event is caused by a failure of a particular component
over the simulation time 0 to t. However, for analyzing the
relative importance between all pairs of components, these
methods have very high computational requirements especially
when dealing with systems with many components.

The scalability limitations of simulation based importance
measure analysis can be resolved by using mathematically
verified reduction methods in this context. For instance, Boland
et al. [6] developed a relationship stating that the component
i is structurally more critical than the component j if its
structure function is larger when i is down and j is up as
compared to the opposite case. This work is further extended
by Meng [7] to obtain the necessary conditions, based on
Birnbaum and Fussell-Vesely importance measures, that are
essential for proving the analytical relationships describing the
relative importance of any pair of system components. These
analytical relationships can be extremely helpful in practical
scenarios since calculating the exact values of a component
importance measures can be tedious for large and complex
systems. However, these analytical relationships have been
manually verified using paper-and-pencil based proof methods
and thus there is no guaranty that all necessary conditions
are explicitly identified. This is a grave concern considering
the safety-critical nature of some importance measure analy-
sis. Thus, there is a dire need of developing more rigorous
analysis of these foundational relationships to guarantee their
correctness and their appropriate usage.

In this paper, we propose to utilize higher-order-logic
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(HOL) theorem proving to assure the formal guarantees about
the relationships, obtained by Boland and Meng, governing the
relative importance of any pair of system components. The
HOL theorem prover is a system of deduction with precise
semantics and provides a sound reasoning support for verifying
the given properties, stated as a theorem, rigorously [8]. We
first formalize the properties of coherent systems by describing
their structure function as a fault tree (FT) [9] model, which
is a graphical model for analyzing the conditions and factors
causing the system failure. Secondly, we formalize commonly
used importance measures, such as Birnbaum, Fussell-Vesely,
Reduction Worth and Achievement Worth [1]. We then use
the formalization of Birnbaum importance measure to formally
verify the relative importance properties of any pair of system
components as described by Boland and Meng using HOL
theorem proving. For illustration purposes, we conduct the
formal importance measure analysis of a railway signaling
system at a Moroccan level crossing (LC) [10] consisting
of several critical components, such as lights, programmable
logic controllers, alarms and also human factor, using the HOL
theorem prover [11].

The rest of the paper is organized as follows: An overview
of the related work is presented in Section II. In Section III,
we provide a brief summary of the HOL theorem prover
and the fundamentals of the HOL probability theory. A brief
introduction to the recent formalization of FT analysis is
also described to facilitate the understanding of the paper.
Section IV presents the HOL formalization of the concept
of importance measure and its related properties. Section V
applies our proposed approach by describing the formal impor-
tance measure analysis of the signaling system at a Moroccan
level crossing. Finally, Section VI concludes the paper.

II. RELATED WORK

Importance measure is a useful concept in reliability en-
gineering and has been analyzed analytically [1] as well as
using simulation tools [5]. The latter approach is practically
adopted by industrial engineers due to their powerful features.
These tools follow the typical approach of ranking the system
components according to their criticality value. However, this
approach requires high computations to obtain the criticality
value for all system components and then perform the suc-
cessive analysis, which may not be possible for large and
complex systems. An alternate approach is to verify a relative
measure relationship for any pair of components and obtain
the necessary conditions, as described by Meng [7].

Recently, a formal dependability analysis framework [12],
based on Reliability Block Diagram [13], [14] and FT mod-
eling techniques, has been developed using HOL theorem
proving. This framework has been successfully utilized to
carry out the reliability analysis of a railway traction drive
system [15], failure analysis of satellite solar arrays [16] and
an air traffic management system [17]. In the current work, we
formalize the notion of coherent system and the importance
measure by representing the system structure function based
on existing FT models. To the best of our knowledge, this
is the first formal work describing the formalization of the
importance measures using HOL theorem proving.

III. PRELIMINARIES

In this section, we first give a brief introduction to the
HOL theorem prover, formalization of probability theory and
an approach for the formal FT analysis to facilitate the
understanding of the rest of the paper.

A. HOL Theorem Prover

HOL [18] is an interactive theorem prover, developed at the
University of Cambridge, UK, for conducting proofs in higher-
order logic. It utilizes the simple type theory of Church [19]
along with Hindley-Milner polymorphism [20] to implement
higher-order logic. HOL has been successfully used as a
verification framework for both software and hardware as well
as a platform for the formalization of pure mathematics.

The HOL core consists of only 4 basic axioms and 8
primitive inference rules, which are implemented as ML
functions. The ML’s type system ensures that only valid
theorems can be constructed. Soundness is assured as every
new theorem must be verified by applying these basic axioms
and primitive inference rules or any other previously verified
theorems/inference rules.

In this paper, we utilize the HOL theories (libraries) of
Booleans, lists, sets, positive integers, real numbers, measure
and probability [21]. In fact, one of the primary motivations of
selecting the HOL theorem prover for our work was to benefit
from these built-in mathematical theories. Table I provides
the mathematical interpretations of some frequently used HOL
symbols and functions, which are inherited from existing HOL
theories.

TABLE I. HOL SYMBOLS AND FUNCTIONS

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

¬ not Logical negation

:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

λx.t λx.t Function that maps x to t(x)
SUC n n + 1 Successor of a num

B. Probability Theory

Mathematically, a measure space is defined as a triple
(Ω,Σ, µ), where Ω is a set, called the sample space, Σ
represents a σ-algebra of subsets of Ω, where the subsets are
usually referred to as measurable sets, and µ is a measure
with domain Σ. A probability space is a measure space
(Ω,Σ, P r), such that the measure, referred to as the probability
and denoted by Pr, of the sample space is 1. In the HOL
formalization of probability theory [21], given a probability
space p, the functions space, subsets and prob return the
corresponding Ω, Σ and Pr, respectively. This formalization
also includes the formal verification of the commonly used
probability laws, which play a pivotal role in formal reasoning
about dependability properties.

A random variable is a measurable function between a
probability space and a measurable space. The measurable



functions belong to a special class of functions, which preserve
the property that the inverse image of each measurable set is
also measurable. A measurable space refers to a pair (S,A),
where S denotes a set and A represents a nonempty collection
of sub-sets of S. Now, if S is a set with finite elements,
then the corresponding random variable is termed as a discrete
otherwise it is called continuous.

The cumulative distribution function (CDF) is defined as
the probability of an event where a random variable X has
a value less than or equal to some value t, i.e., Pr(X ≤ t).
This definition characterizes the distribution of both discrete
and continuous random variables and has been formalized [22]:

⊢ ∀ p X t. CDF p X t =
distribution p X {y | y ≤ Normal t}

The function Normal takes a real number as its input and
converts it to its corresponding value in the extended-real
data-type, i.e, it is the real data-type with the inclusion of
positive and negative infinity. The function distribution
takes three parameters: a probability space p, a random variable
X : (α → extreal) and a set of extended-real numbers
and returns the probability of the given random variable X
acquiring all the values of the given set in probability space.

The unreliability or the probability of failure F (t) is
defined as the probability that a system or component will
fail by the time t. It can be described in terms of CDF, known
as the failure distribution function, if a random variable X
represents the time-to-failure of the component. This time-to-
failure random variable X usually exhibits the exponential or
Weibull distribution.

The notion of mutual independence of n random variables
is a major requirement for reasoning about the failure analysis
of the given systems. According to this notion, a list of n
events are mutual independent if and only if for each set of k
events, such that (1 ≤ k ≤ n), we have:

Pr(

k⋂

i=1

Ai) =

k∏

i=1

Pr(Ai) (1)

The mutual independence concept has been formalized in
the HOL theorem prover and more details can be found in [22].

C. Fault Trees

Fault Tree (FT) analysis is a widely used technique to
determine the dependability of real-world systems, like rail-
ways signaling, automotive or avionics. It mainly provides
a graphical model for analyzing the conditions and factors
causing an undesired top event, i.e., a critical event, which
can cause the complete system failure upon its occurrence.
The preceding nodes of the FT are represented by gates, like
OR, AND and XOR, which are used to link two or more cause
events of a fault in a prescribed manner.

The FT gates are formally modeled by using a new
recursive datatype gate in HOL as follows [17]:

Hol_datatype ‘gate = AND of gate list |
OR of gate list |
NOT of gate |

atomic of ’a event‘

The type constructors AND and OR recursively function on
gate-typed lists and the type constructor NOT operates on gate-
type variable. The type constructor atomic is basically a
typecasting operator between event and gate-typed variables.

A semantic function is then defined over gate datatype that
can yield the corresponding event from the given FT gate as
follows:

⊢ (∀ p. FTree p (AND []) = p_space p) ∧

(∀ xs x p.
FTree p (AND (x::xs)) =
FTree p x ∩ FTree p (AND xs)) ∧

(∀ p. FTree p (OR []) = {}) ∧

(∀ xs x p.
FTree p (OR (x::xs)) =
FTree p x ∪ FTree p (OR xs)) ∧

(∀ p a.
FTree p (NOT a) =
p_space p DIFF FTree p a) ∧

(∀ p a. FTree p (atomic a) = a)

The function FTree takes a list of type gate, identified by the
type constructor AND, and returns a complete probability space
p_space p if a given list is empty and otherwise returns the
intersection of events in a given list. Similarly, to model the
behavior of the OR FT gate, the function FTree returns the
union of all the events after applying the function FTree on
each element of a given list or an empty set if a given list is
empty. The function FTree takes the type constructor NOT
and returns the complement of a failure event obtained from
the function FTree. The function FTree returns the failure
event using the type constructor atomic.

If the occurrence of a failure event at the output is caused
by the occurrence of all the input failure events, then this
kind of behavior can be modeled by using the AND FT gate.
Similarly, in the OR FT gate, the occurrence of an output
failure event depends upon the occurrence of any one of
its input failure event. The NOT FT gate can be used in
conjunction with the AND and OR FT gates to formalize other
FT gates. The formalization of these gates is based on [17],
given in Table II. The NAND FT gate, represented by the
function NAND_FT_gate in Table II, models the behavior of
the occurrence of an output failure event when at least one of
the failure events at its input does not occur. This type of gate
is used in FTs when the non-occurrence of a failure event in
conjunction with other failure events cause the top failure event
to occur. This behavior can be expressed as the intersection of
complementary and normal events, where the complementary
events model the non-occurring failure events and the normal
events model the occurring failure events. The output failure
event occurs in the 2-input XOR FT gate if only one, and not
both, of its input failure events occur.

The verification of the corresponding failure probability
expressions, of the above-mentioned FT gates, is presented
in Table III. These expressions are verified under the fol-
lowing assumptions: (i) prob_space p ensures that p is



TABLE II. HOL FORMALIZATION OF FAULT TREE GATES

FT Gates Formalization

AND

1

n

⊢ ∀ p L1 L2.

AND_FT_gate p L1 L2 = FTree p (AND (gate_list L))

OR
1

n

⊢ ∀ p L.

OR_FT_gate p L = FTree p (OR (gate_list L))

NAND

1

n

k

⊢ ∀ p L1 L2.

NAND_FT_gate p L1 L2 =

FTree p (AND (gate_list(compl_list p L1 ++ L2)))

NOR
1

n

⊢ ∀ p L.

NOR_FT_gate p L =

FTree p (NOT (OR (gate_list L)))

XOR
1

2

⊢ ∀ p A B.

XOR_FT_gate p A B =

FTree p (OR [AND [NOT A; B]; AND [A; NOT B]])

a valid probability space; (ii) 2 ≤ LENGTH L makes sure
that the given list L must have at least two elements; (iii)
in_events p L ensures that all the corresponding events
in the given list L are drawn from the events space p; and
(iv) mutual_indep p L guarantees that events in the given
list L are mutually independent [22].

TABLE III. PROBABILITY OF FAILURES OF FAULT TREE GATES

Mathematical Expressions Theorem’s Conclusion

FAND(t) = Pr(

N⋂

i=2

Ai(t))

=
N∏

i=2

Fi(t)

⊢ ∀ p L1 L2.

(prob p (AND_FT_gate L) =

list_prod (list_prob p L))

FOR(t) = Pr(
N⋃

i=2

Ai(t))

= 1 −
N∏

i=2

(1 − Fi(t))

⊢ ∀ p L1 L2.

(prob p (OR_FT_gate p L) =

1 - list_prod(one_minus_list

(list_prob p L)))

FNAND(t) = Pr(

k⋂

i=2

Ai(t) ∩

N⋂

j=k

Ai(t))

=
k∏

i=2

(1 − Fi(t)) ∗
N∏

j=k

(Fj(t))

⊢ ∀ p L1 L2.

(prob p

(NAND_FT_gate p L1 L2) =

list_prod (list_prob p

(compl_list p L1)) *

list_prod (list_prob p L2))

FNOR(t) = 1 − FOR(t) =

N∏

i=2

(1 − Fi(t))

⊢ ∀ p L.

(prob p (NOR_FT_gate p L) =

list_prod (one_minus_list

(list_prob p L)))

FXOR(t) = Pr(A(t)B(t) ∪ A(t)B(t))

= (1 − FA(t))FB(t)+

FA(t)(1 − FB(t))

⊢ ∀ p A B.

prob_space p ∧ A ∈ events p ∧

B ∈ events p ⇒

(prob p (XOR_FT_gate p A B) =

(1 - prob p A) * prob p B +

prob p A * (1 - prob p B))

D. PIE Principle

In FT analysis, the first step is to identify all the basic
failure events that can cause the occurrence of the system
top failure event. These failure events are then combined to
model the overall fault behavior of a given system by using
the fault gates. These combinations of basic failure events,
called cut sets, are then reduced to minimal cut sets (MCS)
by using set-theory rules, such as idempotent, associative and
commutative. Then, the Probabilistic Inclusion Exclusion (PIE)
principle is used to evaluate the overall failure probability
of a given system based on the MCS events. According to
the PIE principle, if Ai represents the ith basic failure event
or a combination of failure events, then the overall failure
probability of a given system can be expressed as follows:

P(

n⋃

i=1

Ai) =
∑

t6={},t⊆{1,2,...,n}

(−1)|t|+1
P(

⋂

j∈t

Aj) (2)

The above equation has been formally verified in HOL and
details can be found in [17].

IV. IMPORTANCE MEASURES

The concept of importance measure is proposed by Birn-
baum mainly for components of coherent systems. This section
describes the essential properties of a coherent system that is
then followed by the commonly used importance measures and
their respective formalizations in HOL.

A. Coherent System

Let, φ(x̄) be the structure function of a system functioning
on the n-components state vector x̄ = (x1, x2, . . . , xi, . . . , xn),
where xi is the state of the ith component. According to
Birnbaum [3], a system of binary state, where both the system
and its components can either be in state of failure or success,
is said to be coherent if its structure function, φ(x̄), satisfies
the following conditions:

(1) φ(0̄) = 0 with 0̄ = (0, 0, . . . , 0)

(2) φ(1̄) = 1 with 1̄ = (1, 1, . . . , 1)

(3) φ(x̄) ≤ φ(ȳ) if x̄ ≤ ȳ with relationship x̄ ≤ ȳ means
xi ≤ yi, ∀i = 1, 2, ...n.

The first two conditions state that a system must go in state
0 (full working) or 1 (complete failure) if all of its components
are in state 0 or 1, respectively. The third condition defines the
monotonicity property of a system structure function ensuring
that a component in working state must not contribute in
causing a system failure and vice versa. The use of the NOT
gate in a FT model (structure function) results in a non-
coherent structure, which also means that components not
failing, i.e., working, can contribute to a system failure event
and thus violating the condition (3). Therefore, the use of the
NOT logic is often discouraged [23].

In order to formally verify that a given failure structure
function (FT model) satisfies the Birnbaum coherent system
conditions, we first formally define a structure function in HOL
as follows:

Definition 1: ⊢ ∀ f L. φ f L = f L

where φ is a HOL Unicode character that is used as a pretty-
printing of the function coherent_struct mapping an
arbitrary real-valued function f : (α → bool) → real to a
list of sets L : (α → bool)list. Using the above definition,
Conditions (1-2) can be verified in HOL on a given fault tree
(structure function) consisting of AND and OR FT gates as:

Theorem 1: ⊢ ∀ p L.

prob_space p ∧ ¬NULL L ∧

coherent_state_vec (λa. a = {}) (FLAT L) ⇒



(prob p
(φ (λb.

FTree p ((OR of
(λa. AND (gate_list a))) b)) L) = 0)

Theorem 2: ⊢ ∀ p L.

prob_space p ∧ ¬NULL L ∧

coherent_state_vec
(λa. a = p_space p) (FLAT L) ⇒

(prob p
(φ (λb.

FTree p ((OR of
(λa. AND (gate_list a))) b)) L) = 1)

where, the HOL function FLAT is used to flatten the two-
dimensional list, i.e., to transform a list of lists, into a
single list. The assumptions in the above theorems are al-
most similar. The first two assumptions ensure that the vari-
able p is a valid probability space and the given list of state
vectors is not empty. In the last assumption, the function
coherent_state_vec asserts that all the system com-
ponents are either in fully working or in completely failure
state, which are modeled using empty event ({}) and the
complete probability space (p_space p), respectively. The
conclusions of the above theorems model the probabilistic
sense of the conditions (1-2).

Now, we formally verify the Condition 3 for the given
structure function in HOL as follows:

Theorem 3: ⊢ ∀ p L.

prob_space p ∧

in_events p (FLAT (XL_vec L)) ∧

in_events p (FLAT (YL_vec L)) ∧

mem_subset_vec L ⇒

prob p
(φ (λb.
FTree p((OR of
(λa. AND (gate_list a))) b)) (XL_vec L)) ≤

prob p
(φ (λb.

FTree p ((OR of
(λa. AND (gate_list a))) b)) (YL_vec L))

where the function in_events ensures that each element of
a given list belongs to a valid event space p. The functions
XL_vec and YL_vec returns the first and second member
of the two-dimensional pair list, respectively. The relationship
between these two lists, XL_vec and YL_vec, is described
by the function mem_subset_vec, which ensures that each
member of XL_vec list is a subset of the corresponding
member of YL_vec list. The conclusion of the above theorem
models Condition 3. The proof of Theorem 3 follows from
the fact that if A ⊆ B, then their corresponding probabilities
satisfy the monotonicity property, i.e., Pr(A) ≤ Pr(B).

B. Birnbaum Importance

For a coherent system of n-components with independent

failures, the Birnbaum importance (I
(i)
B ) of component i is

defined as a probability that the ith component is critical to
the system failure or functioning. Mathematically, it can be
expressed as follows [3]:

∂h(x̄)

∂pi
= I

(i)
B (φ(x̄)) = Pr{φ((1i, x̄))} − Pr{φ((0i, x̄))} (3)

where φ(x̄) represents the structure function of a given co-
herent system, which is applied on components state vector x̄
and returns the corresponding state of a system. The notations
φ((1i, x̄)) and φ((0i, x̄)) represent the state of a system if the
ith component is updated with the state values 1 (failure) and
0 (working), respectively.

To formalize Equation 3 in HOL, we first formally define
the notion of component state update in a given structure
function as follows:

Definition 2: ⊢ ∀ i f L.

φ’ e i f L = φ f (LUPDATE e i L)

where the HOL function LUPDATE updates the given list L
with element e at index i. The above function updates the state
of the component i in a state vector L before passing it to the
system structure function. Similarly, we can formally define a
function to update the states of any two system components
in HOL as follows:

Definition 3: ⊢ ∀ e e’ i j f L.

φ” e e’ i j f L =
φ f (LUPDATE e’ j (LUPDATE e i L))

Now, using Definition 2, we can formally model Equation 3
in HOL as follows:

Definition 4: ⊢ ∀ p i f L.

Iβ p i f L =
prob p (φ’ (p_space p) i f L) -
prob p (φ’ {} i f L)

As described earlier in Section I, Meng [7] developed the
analytical relationship describing the relative importance of
any pair of system components and obtained the necessary
conditions based on Boland and Birnbaum importance mea-
sures. We formally verify this relationship in HOL as follows:

Theorem 4: Meng [7]: Suppose that i
c
= j and

∂2h(x)

∂pi∂pj
≥ 0

for all x. Then, Iβ(j,x) ≤ Iβ(i,x) for all x satisfying pi ≤ pj .

⊢ ∀ p L i j.
[A1]: prob_space p ∧ in_events p L ∧

[A2]: ¬NULL L ∧ i < j ∧

[A3]: mutual_indep p
({} :: {} ::p_space p::p_space p::L) ∧

[A4]: SUC (SUC j) < LENGTH L ∧

[A5]: I ′′β p i j
(λa. FTree p (AND (gate_list a))) L ≥ 0 ∧

[A6]: prob p (EL i L) ≤ prob p (EL j L) ⇒

(Iβ p j (λa. FTree p (AND (gate_list a))) L ≤

Iβ p i (λa. FTree p (AND (gate_list a))) L)

In the above statement, the symbol i
c
= j is described by Boland

et al. [6] as components i and j are permutation equivalent if
φ(1i, 0j , x) = φ(0i, 1j, x) for all x. Using Definition 3, we
formally verify this property in HOL as follows:



Lemma 1: ⊢ ∀ p i j L. prob_space p ∧ i < j ∧

in_events p L ∧ SUC (SUC j) < LENGTH L ∧

mutual_indep p ({} ::p_space p::L) ⇒

(prob p (φ” (p_space p) {} i j
(λa. FTree p (AND (gate_list a))) L) =

prob p (φ” {} (p_space p) i j
(λa. FTree p (AND (gate_list a))) L))

Similarly, the notation
∂2h(x)

∂pi∂pj
is a partial differentiation w.r.t

probability of components i and j that can be represented
mathematically as:

∂2h(x)

∂pi∂pj
= Pr(φ

′′

(1i, 1j , x))− Pr(φ
′

(1i, 0j, x))−

Pr(φ
′′

(0i, 1j , x)) + Pr(φ
′′

(0i, 0j, x))

(4)

The above equation is formalized using Definition 3 and it
is represented by the function I ′′β in the assumption (A5) of
Theorem 4.

The assumptions of Theorem 4 are similar to the ones
used in Theorems 1-3. The inclusion of {} and p_space
p in assumption (A3) reflects the change caused by flipping
the state of the i and j components and also makes sure
that they are mutually independence. The assumption (A4)
ensures that the index j starts after two increments since
we require at least two components in a list. Although a
brief proof sketch of Theorem 4 is described by Meng [7],
the sound environment of the HOL theorem prover provides
additional formal guarantees in the verification of Theorem 4
accompanying all the necessary conditions. The formal proof
of Theorem 4 utilizes several essential lemmas, which can be
found in [24].

C. Other Common Types of Importance Measures

Another well-known importance measure is Fussell-
Vesely [1], which describes the importance of component i
as a probability that the failure of component i contributes to
a system failure given that system fails. It can be expressed
mathematically as follows:

IFV =
Pr(φ(x))− Pr(φ′(1i, x))

Pr(φ(x))
(5)

We can formally define the above function by using Defi-
nitions 1-2 in HOL as follows:

Definition 5: ⊢ ∀ f i L.

I_FV p i f L =

prob p (φ f L) - prob p (φ′ (p_space p) i f L)

prob p (φ f L)

Similarly, the criticality importance measures Reducation
Worth (IRW ) and Achievement Worth (IAW ) describe a prob-
ability when component i is always functioning and failed,
respectively. They can be expressed as follows:

IRW =
Pr(φ(x))

Pr(φ′(1i, x))

IAW =
Pr(φ′(0i, x))

Pr(φ(x))

(6)

Using Definitions 1-2, we formally define the above functions
in HOL as follows:

Definition 6: ⊢ ∀ f i L.

I_RW p i f L =
prob p (φ f L)

prob p (φ′ (p_space p) i f L)

Definition 7: ⊢ ∀ f i L.

I_AW p i f L =
prob p (φ′ ({}) i f L)

prob p (φ f L)

The HOL formalization of the above-mentioned importance
measures is also available at [24]. The proof script of the
above formalizations and proofs consists of about 1400 lines
of HOL code that roughly took 70 man-hours of development
time. To illustrate the effectiveness of our proposed approach,
we conduct the formal importance measure analysis of a
railway signaling system at Moroccan level crossing in the
next section.

V. SIGNALING SYSTEM AT MOROCCAN LEVEL CROSSING

There are three main parts in the Moroccan level crossing
railway signaling (LC) system [10]: (1) Rail part consisting
of a material component (train and rail-road), and human
component (the train operator); (2) Road part containing a
material component (vehicle and road), and a human compo-
nent (vehicle driver); and (3) Level crossing, which is further
composed of three main components: (i) Power and com-
munication network between the components of the railway
signaling system; (ii) Control component consisting of Pro-
grammable Logic Controller and its program; (iii) Operative
component representing sensors, such as road lights, the alarms
and the barriers. Table IV describes the basic failure events
along with the corresponding failure rates (λ) associated with
the components of Moroccan signaling system [10]. The FT
diagram of the signaling system at Moroccan LC is depicted
in Figure 1 [10].

TABLE IV. EVENTS FOR SIGNALING SYSTEM AT MOROCCAN LC

Symbol Basic Events λ (h−1)

x1 Vehicle Failure 18 ∗ 10−3

x2 & x4 Human Factor 1.347 ∗ 10−4

x3 Rail Failure 2.85 ∗ 10−6

x5 Program Error 5 ∗ 10−8

x6 Programmable Logic Controller Failure 4 ∗ 10−6

x7 Network Communication Failure 5 ∗ 10−6

x8 Power Network Failure 5 ∗ 10−6

x9 & x10 Alarm Failure 4 ∗ 10−4

x11 & x12 Light Failure 4 ∗ 10−4

x13 & x14 Motor Failure 3 ∗ 10−6

x15 & x16 Transmission System Failure 5 ∗ 10−5

A. Formal Model and Failure Analysis

Using the FT gates, described in Section III-C, we can
formally model the FT diagram of the Moroccan signaling
system in HOL as follows:



x13 x14 x15 x16

x11 x12x9 x10

x8 x7x5 x6

x1 x2x3 x4

Top Event

Fig. 1. FT of the Signaling System at Moroccan LC

Definition 8: ⊢ Signal_FT p x1 x2 · · · x16 t =

FTree p (OR [OR ([ω p x3 t;ω p x4 t])
OR ([ω p x5 t;ω p x6 t]));
AND [OR ([ω p x9 t;ω p x10 t]));

OR ([ω p x13 t;ω p x14 t]));
OR ([ω p x15 t;ω p x16 t]));

OR ([ω p x11 t;ω p x12 t]))];
OR ([ω p x7 t;ω p x8 t]));
OR ([ω p x1 t;ω p x2 t]))])

where ω p x t represent various failure events, such as an
alarm, associated with the various component of the Moroccan
signaling system. It is defined in HOL as PREIMAGE x {y
| y ≤ t} ∩ p_space p [17].

Now, we obtain the minimal cut sets (MCS) of the above
FT model by utilizing some set properties, like distribution of
intersection over union and idempotent law of intersection [9].

C1 = {x3, x4, x5, x6}, C2 = {x9, x13, x15, x11}, · · · ,

C17 = {x10, x14, x16, x12}, C18 = {x7, x8, x1, x2}
(7)

We can also formally verify the equivalence of the obtained
signaling system MCS with the orignal FT model as follows:

Lemma 2: ⊢ Signal_FT p x1 x2 · · · x16 t =

(λb.
FTree p((OR of
(λa. AND (gate_list a))) b))

[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
ωL p [x7;x8;x1;x2] t]

where the function ωL p L t returns the list of events by
mapping the function ω p x t, described in Definition 8, on
each element of the given list of random variables.

By using the above lemma and Definition 8, the failure
probability of the Moroccan signaling system can be formally
verified in HOL as follows:

Theorem 6: ⊢ ∀ p x1 x2 · · · x16 c1 c2 · · · c16 t.

[A1]: 0 ≤ t ∧

[A2]: FT_conds p [x1;x2;· · ·;x16] t
[A3]: exp_dist_list p [x1;x2;· · ·;x16]

[c1;c2;· · ·;c16] ⇒

(prob p (Signal_FT p x1 x2 · · · x16 t) =

1 - e−(λc3t)
* e−(λc4t)

* e−(λc5t)
* e−(λc6t)

*
e−(λc7t)

* e−(λc8t)
* e−(λc1t)

* e−(λc2t)
*

(1 - (1 - e−(λc9t)
* e−(λc10t)

*
(1 - e−(λc13t)

* e−(λc14t)) *
(1 - e−(λc15t)

* e−(λc16t)) *
(1 - e−(λc11t)

* e−(λc12t))))

where the function exp_dist_list takes a list of
random variables and a list of failure rates and makes
sure that each random variable is exponentially distributed
and assigned with its corresponding failure rates [17],
i.e., exp_dist_list [x1;x2] [c1;c2] = (!t.
0 ≤ t ==> ((Pr(ω p x1 t) = 1 − e−λc1∗t) ∧
(Pr(ω p x2 t) = 1 − e−λc2∗t)). The function FT_conds
contains two predicates mutual_indep and in_events,
which ensure that all events associated to rail_signal_FT
are mutually independent and belong to events space p,
respectively. The proof of Theorem 6 is based on formally
verified expressions of the AND and OR FT gates, presented
in Table III, and the PIE principle described in Section III-D.

To evaluate Theorem 6, we wrote an ML function
auto_signal_morco_FT [24] that takes failure rates and
time index, given in Table IV, and returns the following in
HOL evironment:

Under the following assumptions
⊢ [A1]: 0 ≤ 5 ∧

[A2]: FT_conds p [x1;x2;· · ·;x16] 5
[A3]: exp_dist_list p [x1;x2;· · ·;x16]

[0.00000285;0.00000005;· · ·;0.0004] ⇒

Failure probability of Moroccan Railway

Signaling System

(prob p (Signal_FT p x1 x2 · · · x16 5) =

0.0003494028541)

We can also plot these values to get a better understanding
of the dependability of the Moroccan signaling system as given
in Figure 2. It can be observed from the plot that initially
the probability of failure is very low but as the time passes,
in hours, the failure probability gradually increases and at
2,000 hours the failure becomes absolutely certain, i.e., with
a probability 1.

B. Formal Importance Measure Analysis

As described in Section IV, the importance measure analy-
sis requires the given system structure function to be coherent
in nature. Therefore, we start by formally verifying the con-
ditions of a coherent system for the railway signaling system
MCS, described in Lemma 2, in HOL as:

Theorem 7: ⊢

prob_space p ∧

coherent_state_vec (Îża. a = {}) (FLAT
[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
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Fig. 2. Plot for Probability of Failure of Signaling System at Moroccan Level
Crossing

ωL p [x7;x8;x1;x2] t]) ⇒

(prob p
(φ (λb.
FTree p((OR of
(λa. AND (gate_list a))) b))

[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
ωL p [x7;x8;x1;x2] t]) = 0)

Theorem 8: ⊢

prob_space p ∧

coherent_state_vec (Îża. a = p_space p) (FLAT
[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
ωL p [x7;x8;x1;x2] t]) ⇒

(prob p
(φ (λb.
FTree p((OR of
(λa. AND (gate_list a))) b))

[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
ωL p [x7;x8;x1;x2] t]) = 1)

Theorem 9: ⊢

prob_space p ∧

(!t. in_events p (FLAT
[ωL p [x3;x4;x5;x6] t;
ωL p [x9;x13;x15;x11] t;· · ·;
ωL p [x10;x14;x16;x12] t;
ωL p [x7;x8;x1;x2] t])) ∧

t1 < t2 ⇒

prob p
(φ (λb.
FTree p((OR of
(λa. AND (gate_list a))) b))

[ωL p [x3;x4;x5;x6] t1;
ωL p [x9;x13;x15;x11] t1;· · ·;
ωL p [x10;x14;x16;x12] t1;
ωL p [x7;x8;x1;x2] t1]) ≤

prob p
(φ (λb.

FTree p ((OR of

(λa. AND (gate_list a))) b))
[ωL p [x3;x4;x5;x6] t2;
ωL p [x9;x13;x15;x11] t2;· · ·;
ωL p [x10;x14;x16;x12] t2;
ωL p [x7;x8;x1;x2] t2])

It can be seen that Theorems 7-8 are formally verified based on
a very straight-forward utilization of Theorems 1-2, described
in Section IV-A, on a given list of railway signaling MCS. Sim-
ilary, Theorem 9 is formally verified by utilizing Theorem 3
by discharging the assumption mem_subset_vec based on
the fact that by increasing the time-of-failures, i.e., t1 ≤
t2, the corresponding failure probabilities also monotonically
increase.

C. Formal Birnbaum Importance Measure Analysis

After formally satisfying the conditions for coherent system
on the railway signaling system failure model, we can now
determine the Birnbaum importance measure of any compo-
nent of the railway signaling system. For illustration purposes,
we describe the formal importance measure analysis of an
alarm failure (x9) in the railway signaling system by utilizing
Definition 4 and the FT model, described in Definition 8, in
HOL as:

Definition 9: ⊢ I9β p x1 x2 x3 · · · x16 t =

Iβ p 0
(λb. FTree p (OR [OR ([ω p x3 t;ω p x4 t])

OR ([ω p x5 t;ω p x6 t]);
AND [OR b ;

OR ([ω p x13 t;ω p x14 t]);
OR ([ω p x15 t;ω p x16 t]);

OR ([ω p x11 t;ω p x12 t])];
OR ([ω p x7 t;ω p x8 t]);
OR ([ω p x1 t;ω p x2 t])])

([ω p x9 t;ω p x10 t]))

The above model can also be used to quantitatively analyze
the Birnbaum importance of alarm failure by associating the
exponential distribution to each component of the railway
signaling system as:

Theorem 10: ⊢ ∀ p x1 x2 · · · x16 c1 c2 · · · c16 t.

[A1]: 0 ≤ t ∧

[A2]: prob_space p ∧

[A3]: mutual_indep p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A4]: in_events p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A5]: exp_dist_list p [x1;x2; · · · ;x16]
[c1;c2;· · ·;c16] ⇒

(I9β p x1 x2 x3 · · · x16 t =

e−λc3∗t * e−λc4∗t * e−λc5∗t * e−λc6∗t *
e−λc7∗t * e−λc8∗t * e−λc2∗t * e−λc1∗t * e−λc10∗t *
(1 - e−λc13∗t * e−λc14∗t) *
(1 - e−λc15∗t

* e−λc16∗t) *
(1 - e−λc11∗t

* e−λc12∗t))

The assumptions of the above theorem is quite similar to
the ones used in Theorem 6. It can be observed from the
conclusion of Theorem 9 that the importance of alarm failure
component (x9) is calculated from the failure probabilities of
other components in the FT model.



Similarly, we can also determine the Fussell-Vesely impor-
tance measure for the alarm component by using Definition 5
in HOL as follows:

Theorem 11: ⊢ ∀ p x1 x2 · · · x16 c1 c2 · · · c16 t.

[A1]: 0 ≤ t ∧

[A2]: prob_space p ∧

[A3]: mutual_indep p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A4]: in_events p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A5]: exp_dist_list p [x1;x2; · · · ;x16]
[c1;c2;· · ·;c16] ⇒

(I_FV_9 p x1 x2 x3 · · · x16 t =
(1 -

e(−(λc3∗t))
* e(−(λc4∗t))

* e(−(λc5∗t))
*

· · ·

(1 - e(−(λc9∗t))
* e(−(λc10∗t)))*

(1 - e(−(λc13∗t))
* e(−(λc14∗t)))*

(1 - e(−(λc15∗t))
* e(−(λc16∗t)))*

(1 - e(−(λc11∗t))
* e(−(λc12∗t))) -

(1 -
e(−(λc3∗t))

* e(−(λc4∗t))
* e(−(λc5∗t))

*
· · ·

(1 - e(−(λc13∗t))
* e(−(λc14∗t)))*

(1 - e(−(λc15∗t))
* e(−(λc16∗t)))*

(1 - e(−(λc11∗t))
* e(−(λc12∗t)))) /

(1 -
e(−(λc3∗t)) * e(−(λc4∗t)) * e(−(λc5∗t)) *

· · ·

(1 - e(−(λc9∗t)) * e(−(λc10∗t))) *
(1 - e(−(λc13∗t)) * e(−(λc14∗t))) *
(1 - e(−(λc15∗t)) * e(−(λc16∗t))) *
(1 - e(−(λc11∗t)) * e(−(λc12∗t)))))

By using the above-mentioned approach, we can formally
determine the Reduction Worth (RW) and Achievement Worth
(AW) importance measures, given in Equation 6. Next, we
conduct the formal relative importance measure analyses of
relative importance among alarm and vehicle failure, using
Theorem 4, as follows:

Theorem 12: ⊢ ∀ p x1 x2 · · · x16 c1 c2 · · · c16 t.

[A1]: 0 ≤ t ∧

[A2]: prob_space p ∧

[A3]: mutual_indep p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A4]: in_events p (ωL p
[x1; x2; · · ·; x16] t) ∧

[A5]: exp_dist_list p [x1;x2; · · · ;x16]
[c1;c2;· · ·;c16] ∧

[A6]: fail_rate_pos [c1;c2;· · ·;c16] ∧

[A7]: c9 ≤ c1 ⇒

I9β p x1 x2 x3 · · · x16 t ≤

I1β p x1 x2 x3 · · · x16 t

where the function fail_rate_pos, in assumption (A6),
ensures that the given list of failure rates must be positive.
It can be implied from assumption (A7) that the Birnbaum
relative importance of any two components in a system is
related by their failure rates relationship. In other words,
a component with higher failure rate is highly critical in
a FT model (structure function) compared to a component
with lower failure rate. The proof of Theorem 12 is based
on Theorem 4 and some fundamental facts of probability

theory. The HOL proof script of Theorems 6-12, which can
be downloaded from [24], took about 1200 lines of HOL code
and about 24 man-hours.

It is quite evident that our proposed HOL-based formaliza-
tion approach provides the required rigor to the importance
measure properties about system components compared to
[10]. Also, all the necessary conditions are accompanying
the formally verified properties. Most importantly, the formal
relative importance measure analysis reveals that the relative
importance of any pair of components is related according
to their failure rates (Theorem 12). In other words, we can
accurately analyze the components’ importance, due to the
sound theorem proving approach, without using the traditional
methods of ranking the system components for large systems.
By conducting the formal importance analysis of the railway
signaling system at a Moroccan LC, we believe that our
proposed approach provides a sound framework to reliability
design engineers to meet the quality standards of their safety-
critical systems.

VI. CONCLUSION

In this paper, we formalized the commonly used impor-
tance measures, such as Birnbaum, Fussely-vesely, Reduction
worth and Achievement worth, in HOL theorem proving. We
also formalized Meng’s approach of obtaining the relative
importance measure among any pair of system components.
For illustration purposes, we conducted the formal importance
measure analysis of a signaling system at a Moroccan level
crossing consisting of traffic lights, programmable logic con-
trollers and alarms, within the HOL theorem proving environ-
ment. We plan to extend the formalization of Fussell-vesely
importance measure to obtain the relative importance of system
components. Just like the Birnbaum importance measure, it
has great potential to highlight the critical components without
running the computationally expensive simulations.
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