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Abstract—Robustness is an observable property for which a
chemical reaction network (CRN) can maintain its functionalities
despite the influence of different perturbations. In general, to
verify whether a network is robust, it is necessary to consider
all the possible parameter configurations. This is a process
that can entail a massive computational effort. In the work
of Rizk et al., the authors propose a definition of robustness
in linear temporal logic (LTL) through which, on the basis
of multiple numerical timed traces obtained by considering
different parameter configurations, they verify the robustness of
a reaction network. In this paper, we focus on a notion of initial
concentration robustness (a-robustness), that is related to the
influence of the perturbation of the initial concentration of one
species (i.e., the input) on the concentration of another species
(i.e., the output) at the steady state. We characterize this notion
of robustness in the framework proposed by Rizk et al., and
we show that, for monotonic reaction networks, this allows us
to drastically reduce the number of traces necessary to verify
robustness of the CRN.

Index Terms—formal methods, verification, robustness, mono-
tonicity, chemical reaction networks

I. INTRODUCTION

Two main characteristics define living cells: an intrinsic
structural complexity, according to which there is modularity
inside the cell itself, and the ability to interact with other
networks, working as a system. In addition to this already
intricate framework, at various frequencies and timescales,
internal and external fluctuations can alter specific functions
or traits of biological systems, causing genetic mutations, loss
of structural integrity, diseases and so on. Nevertheless, many
biological networks can maintain their functionalities despite
perturbations: this distinct property is known as robustness [1]].

Robust traits are pervasive in biology: they involve various
structural levels, such as gene expression, protein folding,
metabolic flux, species persistence. For this reason, the study
of robustness is essential for biologists, whose aim is to
understand the performance and functions of a biological
system.

However, it is not easy to investigate biological systems
since they often exhibit non-linear and non-intuitive behaviors.
They can be studied by performing wet-lab (in vitro) exper-
iments, or through mathematical or computational (in silico)
methods on a pathway model. Unfortunately, the applicability
of the last approach is often hampered by the complexity of
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the models to be analyzed (often expressed in terms of ODEs
or Markov chains). An alternative way is to infer properties of
the system by analyzing only its structure, without studying
or simulating its dynamics, as proposed in [2]. However, this
approach has been shown to be limited in its applicability
because the derived conditions are often very restrictive.

Robustness can be formally studied by applying the method-
ology proposed by Rizk et al. in [3]], [4]. Such a methodology
is based on the definition of robustness given by Kitano in
[1] as the ability of a system to maintain specific function-
alities against perturbations. The robustness of a system is
measured as the distance between the system behaviour under
perturbations and its reference behaviour expressed as a linear
temporal logic (LTL) formula. The distance is computed by
using a notion of violation degree that measures how much the
temporal logic formula should be changed in order to match
traces of perturbed behaviours obtained, for instance, through
many simulations.

The approach proposed by Rizk et al. is very general,
both in the description of the reference behaviour and in the
kind of perturbations considered. On the contrary, we want to
focus on a particular notion of robustness, namely the initial
concentration robustness that studies the influence of the initial
concentrations of species on the concentration of the other
species at steady state of the system. For these reasons, we
consider the notion of a-robustness, based on continuous Petri
nets [5]] and interval markings, which extends the notion of
absolute concentration robustness considered in [2], [|6].

The evolution of a biological system under initial con-
centration perturbations can be understood by studying the
simulations of the systems under all possible combinations
of its initial concentrations, a process that generally entails
a massive computational effort. In order to drastically reduce
the number of simulations needed for this study, we proved
that - if the concentration of an output species is monotonic
with respect to the concentration of an input species (i.e. the
perturbed element) — the number of simulations can be reduced
to two by studying the model only on the extreme values of
the input concentration range. This result was the subject of
the Input-Output theorem on monotonicity [7].

In this paper, we show that a-robustness, proposed by Nasti
et al. [8]], is a particular instance of the robustness notion



proposed framework proposed by Rizk et al., and, therefore, it
can be characterized in their framework. The great advantage
in case of a CRN showing a monotonic behaviour according to
our Input-Output theorem, this allows us to drastically reduce
the number of traces necessary to verify robustness.

The paper is organized as follows. We proceed by first
introducing the notion of Chemical Reaction Networks (CRN)
in Section In Section we give the formal definition
and the semantics of Linear Temporal Logic, which represents
the base of the work done by Rizk et al, described in Section
In Section we give the formal definitions of initial
concentration robustness together with the characterization of
a-robustness in terms of the framework proposed by Rizk et
al.. We also characterize monotonicity in CRN. We apply our
approach to the biological example described in Section [[I1I-C
Finally, in Section [Y] we draw some conclusions.

II. BACKGROUND

We introduce some notions that will be assumed in the rest
of the paper. In the first part, we focus on the representation
of chemical reactions, considering one of the main methods
that we can use to describe them: the deterministic approach.
In the second part, we present the Linear Temporal Logic
formalism that provides a mathematical notion to express
systems behavior, and it is at the basis of the work done by
Rizk et al..

A. Chemical Reaction Networks

A chemical reaction is a transformation that involves one or
more chemical species, in a specific situation of volume and
temperature.

We call reactants the chemical species that are transformed;
while those that are the result of the transformation are called
products. We can represent a chemical reaction as an equation,
showing all the species involved in the process.

A simple example of chemical reaction is the following
elementary reaction:

k1
k_1

aA + bB cC +dD (1)
In this case, A, B, C, D are the species involved in the process:
A and B are the reactants, C and D are the products. The
parameters a, b, ¢, d are called stoichiometric coefficients and
represent the number of reactants and products participating
in the reaction. The arrow is used to indicate the direction in
which a chemical reaction takes place. When we have only
one arrow, it means that the reaction is irreversible, that is
it is not possible to have the opposite process. To describe
the dynamical behaviour of the chemical reaction network,
we can use the law of mass action, which states that: the rate
of a reaction is proportional to the product of the reactants.
Applying the law of mass action to the system, we obtain,
for each chemical species, a differential equation describing

the production and the consumption of the considered species.
Considering the generic chemical equation |1} we obtain:

direct reaction inverse reaction
term term

% = bk [A]"[B]" + bk [C]°[D]
% = +cki [A]*[B]" — ck[C]°[D]
% = +dki[A]*[B]" — dk_1[C][D]".

where, in each equation, we isolated the term describing the
direct reaction from the one describing the inverse reaction.
With these two terms, we implicitly considered, for each
element, the processes of consumption and production.

B. Formal definition of LTL

Linear Temporal Logic is a logical formalism. It provides a
mathematical notion to express systems behaviors [9], based
on a linear-time perspective. The temporal logic is necessary
to specify the relative order of events, expressed by elementary
modalities, which combined can express complex dynamical
properties. Typical properties are oscillations (when a behavior
recurs infinitely), reachability (when the system can reach
a given state), invariance (when a property is always true),
inevitability (when a system has to reach a given state),
response (an event causes a specific behavior) [[10].

A basic LTL formula ¢ consists of atomic propositions a €
AP, Boolean connectors (A, V, =, = ), and two basic modal
operators:

e X¢ or o (“next”’) means that a given formula ¢ is true in
the next state;

o ¢U¢ or U (“until”’) means that given two formulas ¢; and
¢3, the formula ¢ is true, until the formula ¢5 becomes
true.

The “until” operator U allows to derive other two temporal
modalities, defined as follows:

e F¢ or ¢ “eventually (in the future)” means that a given
formula ¢ is true now or sometime in the future, defined
def
as o¢ = trueU ¢;
e G¢ or [J “globally” means that a given formula ¢ is true
def
now and forever, defined as (¢ = — o —¢.

The LTL formulae are formed according to the following
grammar:

¢ :: true| al g1 A d2| =@| og| ¢1 U ¢s

The atomic proposition a, with a € AP is a state label,
representing an assertion about the value of a system variable
that has to be evaluated, such as the concentration of a
chemical species.

A LTL formula ¢ represents a property of a trace, which is a
infinite path. Given a path and a formula ¢, we can formulate
precisely when ¢ holds on the path. For example, the trace T’
in Figure |1| satisfies the formula ¢; = F(z V —y) because it



is true in the first state of the trace 7. Instead, the trace does
not satisfy the formula ¢ = G(y) because y is not true in all
states.

N

Fig. 1. Example of Linear Temporal Logic.
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Fig. 2. Intuitive sketch of LTL semantics.

1) Semantics of LTL: To precisely formulate when a path
satisfies an LTL formula, we define the semantics of LTL
formula ¢ by providing a satisfaction relation = such that
o & ¢ if and only if a property ¢ is satisfied by a trace o.
[9]:

Definition 1: Let ¢ be an LTL formula over AP and o €
(247)« be a trace. The satisfaction relation = C (24F)« x
LTL is the smallest relation with the following properties:

o [ true
olEa iff a€ A
o E¢1 Ao
o9
o of

(i.e., Ag E a)

iff oE¢ and o ¢
iff oF¢

iff o[l..]=A14A43...E ¢

ocEUpe iff 3Jj>00[..] ¢ and
oli.] Eé1, Y0<i<j.

Here, for 0 = AgAjAs... € (24P), o[j.] =
AjAj 1A 0. is the suffix of o starting in the (j + 1)st
symbol A;.

For the derived operator ¢ and [J the expected result is:

olEop iff 3j>00lj.]kE¢
cEOe iff Vj>0.0[..]E ¢

In Figure [2| we add an intuitively sketch of the semantics of
temporal modalities.

III. APPLICATION OF LTL TO STUDY ROBUSTNESS
A. Temporal logic semantics of numerical traces

Numerical simulations are used to obtain the behavior of
a biological system, which is described by a numerical timed
trace as shown in [3]. A numerical timed trace, expressing
the evolution of a system with time, is a finite sequence of
tuples T = (so, $1, ---, Sn) With s; = (¢;, X3, %X;) where ¢; with
1 € [0,n] is a sequence of increasing time points, x; is the
vector of state variable values and X; is the derivative of state
variable at time t;.

By a numerical trace, we can depict different biological
phenomena, such as the time evolution of a concentration of
a chemical species in a system, as represented in Figure [3]
In this example, T = ((0,2,0),(1,6,4.12),...,(9,10,0)) is
the the associated trace, in which each state variable defines
a specific concentration level of the species B over time.

Concentration

Time

Fig. 3. Numerical trace representing the time evolution of the concentration
of chemical species B.

In [3]], the authors use LTL to express dynamical properties
of biological systems. LTL operators describe if and when a
property ¢ holds on a trace 7. Considering again Figure [3]
the formula ¢ = F([B] > 7) expresses that at some point the
concentration of species B is greater than 7.

B. The formal definition of Robustness degree

Since it is interesting to define how much a numerical trace
satisfies a formula ¢, the authors specify the quantifier-free
LTL (QFLTL), which replaces the numerical constants in the
atomic propositions of a LTL formula, with free real-valued
variables y. Then, in this way, having a formula ¢ and a vector
of real-valued variables y, it is possible to know for which
values y the QFLTL formula ¢(y) holds on T'. At this point,
the satisfaction domain is defined as follows:

Definition 2 (Satisfaction Domain): Given a QFLTL ¢
formula, for any trace T, the satisfaction domain of ¢(y) is
the set of variables y for which ¢(y) holds. It is defined as:



Dr gy ={y € RYT = é(y), } 2)

where ¢ is the number of constants appearing in ¢.

Through this approach, the LTL formula becomes an in-
stance of a more general QFLTL formula obtained by variable
abstraction. Considering again Example [3] and the formula
¢ = F([B] > 2 AF[B] < 10), it is possible to associate the
formula 6(y) = ¢(y1,y2) = F(B] > y1 AF(B] < p2)).
Moreover, concerning trace 7' in Example |3] the domain is
Drgyrys) = {y1 < 10 Ayz > 2}, since 2 and 10 are
respectively the minimum and the maximum values of the
trace.

Given a trace T = (s, 81, ..., Sn) and a LTL formula ¢,
the authors define the notion of violation degree to quantify
how much ¢ must be changed to hold on 7. This concept is
defined as the Euclidean distance between a formula ¢ and
the domain of the trace 7'. It is formally defined as follows:

Definition 3 (Violation Degree): The violation degree
vd(T, ¢) of a formula ¢ with respect to a trace T is the
distance between the actual specification and validity domain
Dy ((y)) of the QFLTL formula ¢(y) obtained by variable
abstraction:

vd(T, ¢) = dist(¢, Dr 4(y)) 3

Considering Example [3| and the formula ¢, = F([B] >
2 AF([B] < 10)), by violation degree, we can compute how
much ¢ is distant from the domain: in this case, we obtain
vd(T, $1) = 0 because ¢ is satisfied by T'. Instead, if we
consider the formula ¢ = F([B] > 12 AF([B] < 3)), the
violation degree is vd(T, ¢2) = 2 meaning that ¢ has to be
changed to hold on T

To define, instead, how much the given LTL formula holds
on a given numerical trace, the notion of satisfaction degree
is introduced as follows:

Definition 4 (Satisfaction Degree): The satisfaction degree
sd(T, ¢) of a formula ¢ with respect to a trace T is defined
as:

sd(T, ¢) = € [0,1], )

1+ vd(T, ¢)
where vd(T, ¢) represents the violation degree.

The value obtained by computation of the satisfaction
degree ranges between O and 1. The satisfaction degree is
equal to 1 when the trace T satisfies a formula ¢, otherwise
it tends to 0. The concept of satisfaction degree characterizes
the definition of robustness.

Definition 5 (Rizk et al. Robustness): The robustness of a
system is defined as:

Rip= [ prob)sd(Ty, 0)dp )
peP

where ¢ is the specification of the functionality in LTL; T},
is the numerical trace, representing the system behavior under
perturbation p; P is the set of perturbations.

The continuous probability distribution characterizes the
perturbations, affecting the entire system: each perturbation

has its weight, representing how much it can influence the
biological behavior under study.

This entire approach is already implemented in BIOCHAM
(BIOCHemical Abstract Machine) [11f], a software environ-
ment for modeling biochemical systems, where the function
computing robustness is the following:

robustness (LTL Formula, [parameters name],
[variable objective]).

As described in [11]], the function computes the robust-
ness degree with respect to the LTL Formula, for the list
of [parameters name] and with list of objectives for
the free variables of LTL Formula given in [variable
objective].

The following two functions can be used respectively to set
the coefficient of variation of the parameters and the number
of simulations:

e Ooption (robustness_coeff_var: number);
e Option (robustness_samples: integer).

C. Example: Application to the ERK signaling pathway

As example, we show how to analyze the dynamics of the
ERK signalling pathway.

A signalling pathway consists of enzymatic cascades, hav-
ing a starting species that triggers the other connected re-
actions. In general, there is a particular species, namely the
transductor that perceives an initial stimulus, which activates
the cascade amplifying the signal for the next enzymatic
process.

One of the most important examples of such processes is the
ERK pathway, involved in many biological phenomena such as
cell’s growth and differentiation. We consider a particular por-
tion of the mathematical model of the ERK pathway (denoted
as ERKx) implemented by Schilling et al. [[12]] and available to
the public on the BioModels Database (BIOMDO0000000270).
We indicate the species and the kinetics rates as originally
denoted in the model in [12]. For simplicity, we refer to the
reaction using the notation R;, where 7 is the kinetics rate
index. The reactions involved are the following:

k
Raf k“ PRaf
19
ko1 [PRaf]
PMekl === PPMekl,
25

in Table [I] we reported the coefficient rates and the initial
conditions of ERKx* system.

The species PRaf, involved in the reaction o1, acts as cat-
alyst promoter, which means that its concentration positively
influences the production of the species PMekl. A catalytic
species increases the reaction rate of the reaction in which it
is involved, and during this process, its concentration is not
consumed.



TABLE I
THE INITIAL CONCENTRATIONS AND THE RATES OF ERK* SYSTEM.

Initial concentrations | Rates
Raf = 10 ki1g = 0.1445
Praf = 0 k19 = 0.37
Mekl= 1 ko1 = 0.02
PMekl = 0 ko7 = 0.07
PPMekl =0 ko3 = 667.957

kos = 0.13

To verify the robustness of the system, we need to perform
many simulations, considering different kinds of perturbations.
For instance, if we want to test whether the species PPMekl is
robust with respect to oscillations on the initial concentration
of Raf, we need to compute many simulations, one for each
possible (continuous) value of the initial concentration of Raf.
In Figure 4, we show how the concentration of the species
PPMek1 varies at the steady state with respect to the initial
concentration of the species Raf. We notice that PPMek1 does
not exhibit absolute robustness.
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Fig. 4. Simulation results of CRN [f] representing ERK signalling pathway.
To show how the concentration of the species PPMek1 varies at the steady
state with respect to the initial concentration of the species Raf. We plot on
the horizontal axis the initial concentration of Raf, in a range [1,100] and on
the vertical axis the concentration of PPMek1 at the steady state.

IV. THE DEFINITION OF THE a-ROBUSTNESS AND ITS
CHARACTERIZATION IN THE RIZK FRAMEWORK

The definition of robustness degree given by Rizk et al.
represents the average satisfaction degree of the property of
interest over all admissible perturbations, possibly weighted
by their probabilities [4].

In our case, as already described by Nasti et al. in [§], we
want to focus on the evaluation of the initial concentration
robustness. We want to vary the concentration of at least
one chemical species (namely the input) and verifying, at the
equilibrium, if the concentration of another species (namely
the output) is included in an interval of possible values.

In order to do that, we recall the definition of the initial
concentration robustness, using continuous Petri nets.

Definition 6 (Continuous Petri net): A continuous Petri net
N can be defined as a quintuple (P, T, F, W, mg) where:

e P is the set of continuous places, conceptually one for
each considered kind of system resource;

o T is the set of continuous transitions that consume and
produce resources;

e« F C(PxT)U(T x P) — R>( represents the set of
arcs in terms of a function giving the weight of the arc
as result: a weight equal to 0 means that the arc is not
present;

e W : FF — Ryp is a function, which associates each
transition with a rate;

o my is the initial marking, that is the initial distribution of
tokens (representing resource instances) among places. A
marking is defined formally as m : P — Rx.

Tokens are movable objects, assigned to places, that are
consumed by transitions in the input places and produced in
the output places. Graphically, a Petri net is drawn as a graph
with nodes representing places and transitions. Circles are used
for places and rectangles for transitions. Tokens are drawn as
black dots inside places. Graph edges represent arcs and are
labeled with their weights. To faithfully model biochemical
networks, the marking of a place is not an integer (the number
of tokens) but a positive real number (called foken value
representing the concentration of a chemical species. Each
transition is associated with a kinetic constant, that determines
the rate of (continuous) flow of tokens from the input to the
output places of the transition.

In order to give the definition, we recall some definitions
introduced by Nasti et al. in [§]]. The initial marking is defined
as an assignment of a fixed value to each place p. Now,
it is possible to generalize the idea of initial marking by
considering a marking as an assignment of a interval of values
to each place p of the Petri net.

We first recall the definition of the domain of intervals.

Definition 7 (Intervals): The interval domain is defined as

Z={[n,m]|n,méeRsoU{+o00} and n < m}.

An interval [n,m] € Z is trivial iff n = m. Moreover, z €
[n,m] iff n <2z <m.
We now define interval markings.

Definition 8 (Interval marking): Given a set of places P, an
interval marking is a function m| : P — Z. The domain of
all interval markings is M| .

An interval marking in which at least one interval is non-
trivial represents an infinite set of markings, one for each
possible combination of values of the non-trivial intervals.
Therefore, given an interval marking, we relate it with the
markings as in the original Petri nets formalism in the follow-
ing way:

Given m € M and m[| € M|}, m € m iff
Vp € P,m(p) € my(p).



In a Petri net we assume that there exists at least one
input place and exactly one output place representing input
and output species of the modeled biochemical network,
respectively. Under this assumption, we can give the formal
definition of robustness.

Definition 9 (a-Robustness): A Petri net N with output
place O is a-robust with respect to a given interval marking
m iff 3k € R such that Vm € m[, the marking m’
corresponding to the steady state reachable from m, is such
that
o
2] '

A. The initial concentration robustness in the general Rizk’s
framework

m'(0) € [k — %,k+

The specific notion of the initial concentration robustness is
analyzable in the general framework proposed by Rizk et al..
To match the two frameworks, we restrict the analysis of the
system behavior at the equilibrium. We show that Definition
[ is an instance of Definition [5] expressed using the Rizk et
al. framework shown in [3].

Theorem 1 (Definition [9) in the context of Definition [5):
Given a Petri Net PN with output place O, an initial mark-
ing m;} € M) and a continuous probability distribution
prob(m), defined on m( such that the integral of the pdf
is normalized to 1. PN is a-robust with respect to m | iff
there exists an interval [min, max] € R such that R} p = 1,
with ¢ = F(G([O] > min A [O] < maz)), P equivalent to
my | and maxr —min = .

Hence, according to Theorem E], we define the initial con-
centration robustness as:

Rom;, = / prob(m)sd(Tp, ¢)dm. (7)
memy |

We can implement the Formula [7| in BIOCHAM:

robustness (F(G([0O] >= min A
[In], [min -> Xx,

[O] <= max)),
max —> yl),

where:

e robustness is the function, implemented in
BIOCHAM [11], computing the robustness measure;

e In is the concentration of the input species, which is
perturbed;

« O is the concentration of the output species;

e F and G are two specific temporal operators, respectively
meaning future and globally;

o the expression [min -> x, max —-> y] represents
the assignment of the interval limits;
o the expression F(G([O] >= min A [0] <=

max) ) represents the system behavior that has to be

evaluated. The formula expresses that, when the system

reaches the steady state, the concentration of output
species is within a range.

The definition of a-robustness is simpler and much less

general than the one considered by Rizk et al.. However, it is

conceived with the aim of enabling further studies on sufficient

conditions that could allow robustness to be assesses by avoid-
ing (or significantly reducing) the number of simulations to be
performed. This could be obtained, for instance, by adapting
conditions already considered in the context of monotonicity
analysis [13]], as we will describe in the next Section.

B. Input-Output Monotonicity in CRN

In general, the verification of robustness requires a huge
number of simulations [2], being necessary to test the system
behavior for all the possible combinations of initial concen-
trations of the involved chemical species.

In order to reduce the computational effort, we apply a
sufficient condition that allows us to analyze the monotonicity
between the output of the system (the under study chemical
species at the steady state) with respect to the initial concentra-
tion of the input (the perturbed chemical species) [7]]. In this
context, the input and output are in a monotonicity relation
if the concentration of output at any time either increases or
decreases due to an increase in the initial concentration of the
input, within an interval [min, maz] € R:

Definition 10 (Positive (respectively Negative) Input-Output
Monotonicity): Given a set of reactions R, species Sp is
positively monotonic (resp. negatively monotonic) with respect
to Sy in R if, for any two initial states So,ﬁ as above,
So(t) > So(t) (resp. So(t) < So(t)), for every time
te RZO'

If the monotonicity is established, we can consider only the
extreme values of the input concentration interval, as described
in [14]] by Gori et al.. Indeed, as we will see in detail in
Section [[V-C] if the output is monotonic with respect to the
input, then just two simulations are necessary: one with input
= main and one with input = maz. The dynamics of the
output in all the other (intermediate) cases is included in the
results we obtained from these two configurations.

The proposed condition is based on a constraint on the
structure of the chemical reaction network that can be eval-
uated efficiently, without the need of performing simulations.
Following the guidelines of [13], it is based on a graph
representation of the chemical reaction network, namely the
R-graph, enriched with information about cooperation and
competition among reactions (i.e., the Labelled R-graph).

The R-graph is formally defined as follows.

Definition 11 (R-graph): Given a finite set of reactions R
over a set of species S, the R-graph of R is the signed graph
(R,E{,E_), where E; C(RxR)and E_ C (R x R) are
defined as follows:

e (Ri,Rj) € E; if i # j and there is a species which is

product of R; and reactant in R ;;

e (Ri,Rj) € E_ if i # j and there is a species which is

a reactant (or product) in both reactions R; and R ;.

Intuitively, given two reactions, we draw a positive edge
between them if they cooperate each other, hence, for example,
the product of a reaction is among the reactants of the other
reaction. Instead, we draw a negative edge between two
reactions if both share the same reactants, hence they compete.



In the R-graph, essentially, each edge is associated with one
of the symbols + or —. We can label in the same way also
its vertices, assigning to each one a sign + or —:

Definition 12 (Consistent labeling): Amapo : R — {+,—}
is called a consistent labeling of the R-graph if the following
two properties hold:

o For each (4,7) € E4, o(i) is equal to o(j).

o For each (i,j) € E_, o(i) is the opposite of o(j).

The condition is then expressed as a set of constraints on
the graph structure. In addition, studying the signs of the
stoichiometric matrix of the network, it is possible to predict if
a variation on the concentration of the input affects the output
positively or not, as described in [7]], where we find the main
result:

Theorem 2: Given a set of chemical reactions R, and two
species S;, (the input species) and S;,, (the output species,
with with jo # j). If the following three conditions hold:

1) the R-graph of R admits a consistent labeling o;

2) the input species S;, is involved in exactly one reaction

Ri ;€ R;
3) the output species Sj,, is involved in exactly one reaction
Rio ER;
then, the species Sj,, is positively monotonic with respect to
S, if T'j,;,0(ir) and T ;,0(ip) have opposite signs, and
negatively monotonic if they have the same sign.
We refer to [[15] for the proof of Theorem E}

C. The Input-Output monotonicity applied to the ERK signal-
ing pathway

Consider again the example of the ERK signaling pathway,
described in Section

We now apply the definition of the a-robustness and we
identify Raf and PPMek! as the input and the output of the
network. We assume that the initial concentrations of all the
species are fixed, but that the initial concentration of species
Raf can vary from 1 to 100.

In order to reduce the computational effort of simulation,
we apply the sufficient condition of the Input-Output mono-
tonicity. Indeed, if species PPMek1 is monotonic with respect
to Raf, then just two simulations are necessary: one with Raf
= 1 and one with Raf = 100. The dynamics of PPMekl in
all the other (intermediate) cases is included in the results we
obtained from these two simulations.

As shown in detail in [[7]], [[15]], we notice that the species
PRaf is the link between the two groups of reactions: in the
first reaction, PRaf acts as the output of the network, while in
the second one it acts as a kinetic constant. Since the reactions
follow one another in a chain, we assume that PRaf reaches
the steady-state before the PPMek1 species, which represents
the final product of the CRN, and we justify the assumption
by simulations, as shown in Figure [5]

For the second sub-network it would be natural to select
PRaf as the input of the network, since it represents the link
between the first and the second block. However, we cannot
choose PRaf as input, since it does not appear in the role
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Fig. 5.  Simulation results of Example [f] representing ERK signalling
pathway. We show how the species PRaf reaches the steady state before than
species PPMek1.

Fig. 6. Labeled R-graph of the second sub-network of CRN [f] representing
ERK signalling pathway. Since the signs are both positive on the node-
reactions, we can say that the output of the CRN, the species PPMekl, is
positively monotonic w.r.t the input of the CRN, the species Mekl1.

of reactant or product. Therefore, we choose Mek1 as input.
Indeed, we know that the concentration of [PRaf] increases
the rate of the reaction in which Mekl is the only reactant.
Consequently, to verify if PPMekl is monotonic with respect
to PRaf, we can verify if this species is monotonic with
respect to the Mek1. Therefore, we choose Mek1 and PPMek]1,
respectively, as the input and the output. Then, we proceed by
building the labelled R-graph, represented in Figure [ and
computing the following stoichiometric matrix:

R21 RZB

Mekl -1 0
U(pek1,PPMek1),(Ro1,Ras) = PPMekl1 \ 0 +1 )

By calculating the products T'j,;,0(ir) and I'; ;. s0(i0),
which have opposite signs, we find that the species PPMekl
is positively monotonic with respect to the species Mekl. As
consequence, since PRaf is positively monotonic with respect
to Raf and PPMekl1 is positively monotonic with respect to
Mekl1, PPMekl is positively monotonic also with respect to
Raf, as we already noticed in Figure [

This result enables us to use just two simulations (i.e., Raf=
1 and Raf= 100) to verify if the PPMek]1 is robust with respect
to the variation of the initial concentration of Raf.



V. CONCLUSIONS

Robustness is a crucial feature of many biological systems
because this property allows their correct functioning in pres-
ence of molecular noise and environmental fluctuations.

In order to verify the system’s robustness, many strategies
have been proposed. Among them, one of the most common
approaches is to simulate the system with all possible combi-
nations of initial concentrations of chemical species. However,
this requires a considerable number of simulations (in general
an infinite number).

In [3], Rizk et al. propose a general and computational
framework for the definition of the robustness of biological
functions with respect to a set of perturbations, based on LTL,
an expressive language for specifying dynamical behaviors
widely used in computer science and engineering. Using this
framework, implemented in BIOCHAM, they are able to de-
scribe on average how the system behaves under perturbations.

In this paper, we show that we can cast our formal definition
of the initial concentration robustness in the general framework
proposed by Rizk et al.. Then, we can apply the sufficient
condition of the Input-Output monotonicity in chemical reac-
tion networks to substantially reduce the computational effort
required by the huge number of simulations needed to prove
the robustness property.
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