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Abstract—Timed Automata (TA) are a very popular
modeling formalism for systems with time-sensitive proper-
ties. A common task is to verify if a network of TA satisfies
a given property, usually expressed in Linear Temporal
Logic (LTL), or in a subset of Timed Computation Tree
Logic (TCTL). In this paper, we build upon the TACK
bounded model checker for TA, which supports a signal-
based semantics of TA and the richer Metric Interval
Temporal Logic (MITL). TACK encodes both the TA
network and property into a variant of LTL, Constraint
LTL over clocks (CLTLoc). The produced CLTLoc formula
can then be solved by tools such as Zot, which transforms
CLTLoc properties into the input logics of Satisfiability
Modulo Theories (SMT) solvers. We present a novel method
that preserves TACK’s encoding of MITL properties while
encoding the TA network directly into the SMT solver
language, making use of both the BitVector logic and
the logic of real arithmetics. We also introduce several
optimizations that allow us to significantly outperform the
CLTLoc encoding in many practical scenarios.

Index Terms—Formal Verification, Timed Automata,
Bounded Model Checking

I. INTRODUCTION

Timed Automata [1] (TA) are a popular tool for
modeling time-sensitive systems. By combining the tran-
sition semantics of finite state automata with real-valued
clocks, they are of great theoretical and practical interest
for representing time-bound processes and applications.
They have found common use in the domain of model
checking, where system representations are evaluated
against a given property of interest. Various tools and
languages exist for a variety of applications and use
cases. These include the current de facto standard Up-
paal [2], as well as NuSMV [3].

Model Checking refers to a verification technique
for solving properties of state transition systems. A
wide variety of industrial applications, including circuit
design, control systems, and program verification lend
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themselves to this representation. In the model checking
process, the system is exhaustively searched to see if
the given property is valid. TACK is a bounded model
checker for networks of TA [4]. Properties to be verified
are specified in Metric Interval Temporal Logic (MITL)
[5], and are converted along with the TA network into
CLTLoc [6], a variant of Linear Temporal Logic (LTL)
supporting real-valued clocks.

This paper presents a novel encoding of the TA
network which does not use CLTLoc as an interme-
diate step, instead directly transforming the network
semantics into a hybrid BitVector representation. This
approach has the advantage of being tailor-made for
TA networks, while the previous approach relied on
the general-purpose CLTLoc converter ae2sbvzot [7].
However rather than just re-create the existing encoding
in a new language, we have corrected several deficiencies
in the original TACK encoding, and have introduced
new features to make TACK more useful for users.
We have also exploited opportunities to more efficiently
encode TA constructs, noticeably eliminating the need
for BitVectors to track the active state of the TA, instead
relying on the active transition to carry this information.

In this paper, we first present the current state-of-
the-art for bounded model checking, followed by an
in-depth description of both the required preliminary
knowledge and the specific implementation of the TACK
bounded model checker (Section II). We then introduce
our novel encoding of TA networks into a form suitable
for an SMT-based bounded model checker (Section III,
and we present experimental results comparing the new
encoding with existing ones (Section IV). Finally, we
conclude with a discussion of the result and some future
works (Section V).

II. PRELIMINARIES

A. State of the Art

For many years, model checking was performed us-
ing Binary Decision Diagrams (BDDs) [8], which of-
fer many time- and space-complexity advantages over
explicit state enumeration [9]. However to efficiently
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handle larger state spaces, bounded model checking
techniques techniques have been developed. Bounded
model checking encodes the verification problem of the
state transition system into a propositional satisfiability
(SAT) or Satisfiability Modulo Theories (SMT) problem,
and then tasks the SAT/SMT solver with finding a
valid assignment of states to time positions starting
from a given initial state such that the desired property
is violated (counterexample); if no such assignment is
found, the property holds for the system. Because such
solvers require finite state spaces, the number of time
positions considered is limited by a bound k, hence
the name bounded model checking. Bounded model
checking analyzes traces of infinite length that can be
represented in finite space. This is accomplished by
limiting the search to so-called “lasso-shaped” traces.
These traces begin with an initial finite sequence of states
before entering an infinite loop of states. Thus only a
finite number of states need to be explicitly represented
by the bounded model checker, which can search for
lassos of length up to the given bound.

Uppaal [2] is a de facto standard for model checking
systems modeled through TA. Uppaal allows users to ex-
press properties to be checked using Timed Computation
Tree Logic (TCTL), an extension of Computation Tree
Logic (CTL) with real-time properties [10]. However,
Uppaal and similar implementations restrict themselves
to only a subset of TCTL, which focuses mostly on
reachability and invariant properties.

In addition to the work done with branching-time
logics, there has been interest in combining TA with
the expressive power of Metric Temporal Logic (MTL),
an extension of LTL with interval constraints on the
‘until’ operator [11]. While powerful, MTL is undecid-
able in general for infinite traces [12]. MITL [5] is a
decidable restriction of MTL which can capture more
complex properties than those supported by the subset
of TCTL allowed by TA model checkers. In recent years
bounded model checkers supporting MITL as property
specification language have been developed, in particular
MITL0,∞BMC [13], MightyL [14] and TACK (see [4]
for a detailed comparison of the tools). In this work we
improve the encoding of the TA verification problem into
an SMT problem used in TACK.

B. Timed Automata

Timed Automata (TA) are a popular formalism for
modeling interactions that require precise timing mech-
anisms [1]. In this paper, we consider an extension of
TA that includes integer variables with finite ranges and
mechanisms to synchronize the taking of transitions.

Let AP be a set of atomic propositions, and let
Act be a set of synchronization events of the form
Act ⊂ {channel × sync}, where channel is a finite

set of symbols and sync ∈ {!, ?,#,@}. In addition
we define a null event τ . Actτ is the set Act ∪ {τ}.
Let X be a finite set of clocks, and Int a finite set
of integer-valued variables. Γ(X) is the set of clock
constraints, where a clock constraint γ is a relation
x ∼ c | γ ∧ γ, where x ∈ X , ∼∈ {<,>,≤,≥}, and
c ∈ N. Assign(X) is the set of clock assignments, where
each assignment has the form x := 0, where x ∈ X .
Assign(Int) is a set of variable assignments of the form
y := exp, where exp := exp + exp | exp − exp | n | c,
n ∈ Int and c ∈ Z. Γ(Int) is the set of integer variable
constraints, where a variable constraint γ is defined as
γ := n ∼ c | n ∼ n′ | ¬γ | γ ∧ γ, where n and n′ are
integer variables, c ∈ Z, and ∼∈ {<,=}.

A TA with variables is defined as the tuple A =〈
AP,X,Actτ , Int , Q, q

0, v0
var, Inv , L, T

〉
, where Q is a

finite set of locations, q0 ∈ Q is the initial location,
v0

var : Int → Z is a function providing initial values for
each of the variables, and Inv : Q→ Γ(X) is a function
assigning each location to a (possibly empty) set of clock
constraints, which are the invariants of the location. The
labeling function L : Q→ ℘(AP ) assigns each location
to a subset of the atomic propositions. Each transition
t ∈ T has the form t =

〈
Q × Q × Actτ × Γ(X) ×

Γ(Int)×℘(Assign(X))×℘(Assign(Int))
〉
, consisting

of a source and destination location, an action, a set of
clock and variable guards, a set of clocks to be reset
when the transition fires, and a set of variables to assign
values to. To refer to the components of a transition we
will use t− and t+ to refer to the source and destination
locations respectively, as well as tε, tγc , tγv , tac , tav to
refer to the event, clock constraints, variable constraints,
clock assignments, and variable assignments respec-
tively. A transition is written as q

γ,ξ,α,ζ,µ−−−−−−→ q′, where
γ is a constraint of Γ(X), ξ is a constraint of Γ(Int),
α is an element of Actτ , ζ is a subset of X and µ is a
set of assignments from ℘(Assign(Int)). Let U(µ) be
the set of variables that are updated by µ—that is, that
appear as the left-hand side in an assignment of µ—and
let U(t) indicate the set U(µ) given a transition t.

We outline the semantics of networks of TA, and we
illustrate its key features through the simple example
shown in Figure 1; we then show the formal definition.
Transition guards are conditions over either clocks or
variables that prevent the associated transition from
being taken when they are not satisfied. As an example,
transition t2 can only be taken when the value of clock x
is greater than 5. Assignments on the other hand modify
the value of a clock or variable after the transition has
been taken. For example, it is valid for transition t2 to be
taken when x = 6, even though the assignment x := 0
resets the value of x to 0. A transition is said to be
enabled if the values of clocks and variables satisfy the
guard, and active at the time when it is fired. The value



is updated in the same instant as the transition, however
the guards only consider the pre-transition values of
the clocks when determining if the transition is valid.
Variables can be assigned to any value, while clocks can
only be reset to 0. When a TA is in a certain location, the
corresponding invariant (if any) is required to be true.
The invariant attached to q2 requires the TA to leave
location q2 before clock x reaches a value of 2.

 

x < 2

guard: x>5 
assign: x:=0

assign: n:=1

guard: n<5
assign: n:=n+1 

Fig. 1. A Timed Automaton with clock x and variable n.

Definition 1. Given a TA A, a configuration of A is a
tuple (q, vvar, v) where q is the current location of A
and vvar (resp., v) is a variable (resp., clock) valuation
Int → Z (resp., X → R≥0).

We adopt a semantics for TA based on so-called
signals, where each instant of the time domain R≥0

comprising all nonnegative real numbers is associated
with a configuration. The configuration of a TA changes
when a transition is taken, but it does not change between
transitions. Hence, we can split the time domain R≥0

into intervals during which the configuration of the TA
remains the same. Figure 2 shows a fragment of an
execution of the TA of Figure 1. The location is initially
q0 (in configuration c0), then it changes to q2 (and
configuration c1) when transition t1 is taken. As Figure
2 shows, in the instant in which a transition is taken the
configuration can be the old or the new one, depending
on whether the edge of the transition is right-closed (]()
or left-closed ()[). For example, in Figure 2 the switch

c0 c′0

c1 c′1

c2 c′2

c3
t1 t4 t2

|| | |

| |

|

p =

n =

t =

q0 q0 q0q0 q2 q2 q2 q0 q0 q1

0 0 0 0 0 0 0 1 1 1

] ] ] t1 ] ] t4 ] t2 ]

edge =

[ ]
c0

( )
c1

[ ]
c2

· · · · ]( · · )[ · ](

Fig. 2. Illustration of the semantics of the TA of Fig. 1.

from configuration c0 to c1 occurs in a right-closed
manner, whereas the one between c1 and c2 in a left-
closed one.

A network of TA is a finite set of TA N =
[A1,A2, . . .AN ]. TA in the same network can refer to
common clocks, variables, and synchronization channels
to coordinate their actions. To simplify the notation we
will use the symbols T , X , Int , and Act/Actτ to refer
to the union of the respective sets of each individual TA
in the network. When necessary to refer to the properties
of one timed automaton in particular, we will append a
numerical subscript to the set in question, for example
Xi to refer to the clocks used by the specific timed
automaton Ai ∈ N .

Before providing the formal definition of the transi-
tion relation for networks of TA, the notion of weak
satisfaction relation |=w over clock valuations and clock
constraints is introduced, where ∼∈ {<,>,≤,≥}.

v |=w x ∼ d iff v(x) ∼ d or v(x) = d
v 6|=w x = d for any x ∈ X, d ∈ N.

Naturally, |=w can be extended to conjunctions of for-
mulae x ∼ d. For instance, the formula x < 1 ∧ ¬(y <
1)∧¬(y = 1) is both satisfied and weakly satisfied by the
clock evaluation such that v(x) = 0.8 and v(y) = 1.2,
but it is only weakly satisfied if v(x) = 1 and v(y) = 1.

Definition 2. Let N be a network of N TA A1, . . . ,AN .
A configuration of N is a tuple (l, vvar, v) where l

is a vector [q1, . . . , qN ] such that q1, . . . , qN are loca-
tions of A1, . . . ,AN , and vvar (resp., v) is a variable
(resp., clock) valuation for the set Int (resp., X) in-
cluding all integer variables (resp., clocks) appearing in
A1, . . . ,AN .

When a network of TA is considered, it is possible
that some automata in the network take a transition
while the remaining others do not fire a transition and
keep their state unchanged. Firing a transition labeled
with the null event τ (i.e., a transition that does not
synchronize, as explained later) is different from not
taking a transition at all. Symbol _ indicates that an
automaton Ai does not perform any transition in Ti.
The notation l[i] indicates the location of automaton
Ai—i.e., if l[i] = j, then automaton Ai is in location
qij , assuming that the locations of each automaton are
numbered, with 0 indicating the initial one. The two
kinds of configuration changes that may occur when an
automaton in the network performs a transition from a
location q to q′ are indicated in Def. 3 with symbols
ei (excluded-included, or left-closed) and ie (included-
excluded, or right-closed).

Definition 3. Let N be a network of N TA. Let
(l, vvar, v), (l′, v′var, v

′) be two configurations, let δ ∈
R>0 and Λ be a tuple of N symbols such that Λ[k] ∈



{Actτ × {ei, ie}} ∪ {_} for every 1 ≤ i ≤ N . Then, a
configuration change is either a transition (l, vvar, v)

Λ−→
(l′, v′var, v

′) or a transition (l, vvar, v)
δ−→ (l′, v′var, v

′)
defined as follows.

1) (l, vvar, v)
Λ−→ (l′, v′var, v

′) occurs if
a) for each Λ[i] = (α, b) there is a transition

l[i]
γ,ξ,α,ζ,µ−−−−−−→ l′[i] in Ai such that:

i) v |= γ and vvar |= ξ,
ii) v′(x) = 0 holds for all x ∈ ζ,

iii) (v′var, vvar) |= µ,
iv) when b = ei then:

• v |=w Inv(l[i]) and
• v′ |= Inv(l′[i])

v) when b = ie then:
• v |= Inv(l[i]) and
• v′ |=w Inv(l′[i])

b) for each Λ[i] = _ it holds that:
i) l′[i] = l[i];

ii) v |= Inv(l[i]) and v′ |= Inv(l′[i]).
c) for each clock x ∈ X (resp., integer vari-

able n ∈ Int), if x (resp., n) does not
appear in any ζ (resp., it is not assigned
by any A) of one of the transitions taken
by A1, . . . ,AN , then v′(x) = v(x) (resp.,
v′var(n) = vvar(n));

2) (l, vvar, v)
δ−→ (l′, v′var, v

′) occurs if l′ = l,
v′var = vvar, v′ = v + δ and for all 1 ≤ i ≤ K,
v′ |=w Inv(l[i]).

A configuration change (l, vvar, v)
Λ−→ (l′, v′var, v

′),
for some Λ ∈ {{Actτ × {ei, ie}} ∪ {_}}K , satisfying
(1) is called a discrete transition. If it satisfies (2) then it
is called a time transition. For convenience of notation,
symbols (α, ei) and (α, ie), for some α ∈ Actτ ,
are hereinafter denoted, respectively, with α)[ and α](.
The edge of a transition realized with an action α is
determined by the conditions in 1(a)iv and 1(a)v and
depend on the invariants of the locations involved in the
transition, the clock values and the resets applied in the
configuration change. Cases 1) and 2) are discussed in
detail in [4].

The notions of trace and signal are now introduced.

Definition 4. Let N be a network of N TA. A trace of
N is an infinite sequence η of the form

(l0, vvar,0, v0), e0, (l1, vvar,1, v1), e1, . . .

such that:
1) for all h ∈ N, eh = Λh or eh = δh;
2) for all h ∈ N it holds that (lh, vvar,h, vh)

eh−→
(lh+1, vvar,h+1, vh+1);

3) e0 = δ0, for some δ0 ∈ R>0;

4) for all 1 ≤ i ≤ N , it holds that l0[i] = 0, v0 |=
Inv(l0[i]), for all x ∈ X it holds that v0(x) =
0, and for all n ∈ Int it holds that vvar,0(n) =
v0

var(n).
5) discrete transitions must be followed by time tran-

sitions; that is, if eh is a discrete transition (eh =
Λh), then eh+1 is a time transition (eh = δh+1).

Since by condition 5 there cannot be two consecutive
discrete transitions, and since any finite sequence of
consecutive delays δh . . . δh+k, with k ≥ 0, is equivalent
to a single delay

∑h+k
j=h δj , a trace can always be

rewritten into a new one such that discrete and time
transitions strictly alternate. Moreover, by the previous
property, every time transition δh can be replaced with
a finite sequence of m pairs of time and discrete tran-
sitions δh,0Λh,0δh,1Λh,2 . . . δh,m−1, strictly alternating,
such that Λh,j [i] = _ holds for all 0 ≤ j ≤ m − 1,
1 ≤ i ≤ N , and δh =

∑m−1
j=0 δh,j .

With a slight abuse of notation, a trace is represented
in the following way, where the numbering of configu-
rations increases only after discrete transitions:

(l0, vvar,0, v0)
δ0−→ (l′0, v

′
var,0, v

′
0)

Λ0−−→

(l1, vvar,1, v1)
δ1−→ . . .

Traces encode executions of TA by means of de-
numerable sequences of time and discrete transitions.
However, the evolution of a network of TA is continuous,
hence it is more naturally represented by means of
signals. Intuitively, given a trace η, the projection over
the real line of the values of its integer variables and
atomic propositions associated with locations determines
a signal Mη . To be able to consistently associate signals
with traces of a TA, however, we impose the following
restriction on traces.

Definition 5. Let N be a network of TA. A trace η of
N is edge-consistent if, for any configuration change
(l′h, v

′
var,h, v

′
h)

Λh−−→ (lh+1, vvar,h+1, vh+1) there are two

transitions l′h[i]
γ,ξ,α,ζ,µ−−−−−−→ l′h+1[i] and l′h [̄i]

γ̄,ξ̄,ᾱ,ζ̄,µ̄−−−−−−→
l′h+1 [̄i], of two distinct TA i, ī, which both set the value
of variable n (in a compatible manner), then the edge
of the transitions is the same; that is, either they are α](

and ᾱ](, or they are α)[ and ᾱ)[.

In the rest of the paper, only traces that are edge-
consistent are considered.

Let (l, vvar, v) be a configuration; we denote as
c(l, vvar, v) the pair (∪1≤i≤NL(l[i]), vvar) ∈ ℘(AP )×
ZInt of the atomic propositions and variable assign-
ments that hold in the configuration (l, vvar, v).
Let η be an edge-consistent trace (l0, vvar,0, v0)

δ0−→
(l′0, v

′
var,0, v

′
0)

Λ0−−→ (l1, vvar,1, v1)
δ1−→ . . .; we indicate



by Υ(e) the “time” of a symbol e (where e can be either
δ or Λ), defined as follows:
• Υ(δ0) = 0;
• Υ(Λh) = Υ(δh) + δh for all h ≥ 0;
• Υ(δh) = Υ(Λh−1) for all h > 0.

Finally, let w(η) be the sequence Λ0δ1Λ1δ2 . . . .

Definition 6. Let η be an edge-consistent trace of a
network N of N TA. The signal Mη associated with η
is the function Mη : R≥0 → ℘(AP )× ZInt such that:

1) Mη(0) = c(l0, vvar,0, v0);
2) for all δh in w(η), for all r ∈ R≥0 such that

Υ(δh) < r < Υ(δh) + δh then Mη(r) =
c(lh, vvar,h, vh);

3) for all Λh in w(η), Mη(Υ(Λh)) = (A, vvar) ∈
℘(AP )×ZInt where, for all p ∈ AP and n ∈ Int:

a) p ∈ A if, for some α ∈ Actτ and for some
1 ≤ i ≤ N :
• p ∈ L(lh[i]) and Λh[i] ∈ {_, α](} holds,

or
• p ∈ L(lh+1[i]) and Λh[i] = α)[ holds

b) vvar(n) = vvar,h(n) if one of the following
conditions holds:
• there is no transition l′h[i]

γ,ξ,α,ζ,µ−−−−−−→
lh+1[i] compatible with the configuration
change and such that n ∈ U(µ);

• there is 1 ≤ i ≤ N and a transi-
tion l′h[i]

γ,ξ,α,ζ,µ−−−−−−→ lh+1[i]—compatible
with the configuration change—such that
Λh[i] = α]( and n ∈ U(µ).

c) vvar(n) = vvar,h+1(n) if there is 1 ≤ i ≤
N and a transition l′h[i]

γ,ξ,α,ζ,µ−−−−−−→ lh+1[i]—
compatible with the configuration change—
such that Λh[i] = α)[ and n ∈ U(µ) hold.

When networks of TA are considered, the event sym-
bols labeling the transitions are used to synchronize
automata. Two (or more) different TA can take their
transitions at the same time by labeling them with the
same synchronization channel, and using the actions to
describe the type of synchronization desired. Every event
symbol α ∈ Act is associated with one communication
channel, which can be identified with the event symbol
itself—i.e., channel α. The first type of synchronization
is one-to-one synchronization. A transition labeled with
one-to-one send α!, for some channel α, can only be fired
if at the same moment in time, another TA takes a transi-
tion labeled with the one-to-one receive α?. The second
type of synchronization available is termed ‘broadcast’
synchronization. Like one-to-one synchronization, for a
given channel α there can only be one active transition
with the broadcast-send α#, however the difference is
that there can be 0, 1, or multiple automata that sync

using broadcast-receive α@ at once. In addition, each
automaton is required to perform a broadcast-receive if
it is able to, meaning that there exists a transition t such
that t− is the currently active state, and all guards of the
transition are satisfied. The details of the semantics of
synchronizations can be found in [4].

C. Constraint LTL over clocks

Constraint LTL over clocks (CLTLoc) is an extension
of LTL where formulas are defined over atomic proposi-
tions and clocks. A clock is a variable over R≥0 whose
value changes between positions in a CLTLoc model to
represent the passage of time. In addition, CLTLoc has
been extended to support expressions over arithmetical
variables [15].

A formula in CLTLoc consists of atomic propositions,
clock formulas, and formulas over integer variables,
which are combined using the standard LTL operators of
X (next) and U (until), as well as the derived operators G
(globally), F (future), and R (release). A clock formula
compares the value of the clock to a given natural
number, for instance x > 7. A variable formula, on the
other hand, can compare not only individual variables but
also arithmetic combinations of variables. An example
would be the expression b+ c = 7; b, c ∈ Int . CLTLoc
uses a special version of the X operator that can be
applied to variables in Int . A valid formula is, for
instance, X (n) = n+ 1.1

Let X be a finite set of clocks and Int be a finite
set of integer variables. CLTLoc formulas are defined as
follows:

φ :=π | x ∼ c | exp1 ∼ exp2 |X (n) ∼ exp |
φ ∧ φ | ¬φ | Xφ | φUφ

where π ∈ AP , x ∈ X , c ∈ N, n ∈ Int , ∼∈ {<,=}
and exp are arithmetic formulas over integer variables
and integers (defined in Section II-B).

Like in TA, clocks are special dense variables over
R≥0 that “progress” between different positions along
a CLTLoc model: each clock must either increment
between two adjacent time positions, or it must be reset.
We introduce δ : N→ R>0, which measures the amount
of time that elapses between two adjacent time positions.
For a given clock valuation σ : N × X → R≥0,
each clock x ∈ X must either obey the equivalence
σ(l, x)+δ(l) = σ(l+1, x), or is reset, i.e. σ(l+1, x) = 0
holds. We also define variables via the assignment func-
tion ι : N×Int → Z that assigns a value to each variable
n ∈ Int at every time position in N. The arithmetical
expressions exp can now be evaluated at a time position

1It is easy to see that TA with variables and CLTLoc as defined
in Sec. II-B and II-C are undecidable, unless suitable restrictions are
introduced. In this paper we consider variables with finite domains.



l by replacing every occurrence of an integer variable n
with ι(l, n).

For the sake of space, we do not provide in this paper
the full formalization of the semantics of CLTLoc and
we refer the reader to [4], instead.

D. TACK CLTLoc-based Translation

The TACK [4] tool allows users to perform the formal
verification of TA against properties expressed in Metric
Interval Temporal Logic (MITL, [5]). To this end, TACK
takes as input a TA network N and a MITL formula
φ to be checked, transforms both of them into suitable
CLTLoc formulas, and uses the Zot tool, which supports
the formal verification of CLTLoc formulas through a
Bounded Satisfiability Checking approach [7], to auto-
matically verify whether property φ holds for N or not.
In the rest of this section we provide an overview of the
TA-to-CLTLoc translation performed by TACK, which is
the subject of the improvements presented in Section III.
Notice that, instead, the encoding of MITL properties is
done following the approach defined in [16], which was
also applied in [4].

In [4], the CLTLoc formula constructed from a given
network of TA represents the evolution of the con-
figuration (i.e., an execution) of the network over the
continuous time. As mentioned in Section II-B, we adopt
a semantics of TA based on signals, and a configuration
captures the value of all the clocks, variables and current
locations of the TA in the network in a specific time
instant. The key aspect of the encoding described in [4]
and [16] is that every time position of a model satisfying
the CLTLoc formula is representative for a nonempty
interval of R≥0. In addition, in [4], every CLTLoc model
satisfying the formula encoding a network N represents
an execution of the network, i.e., a trace η of N . Hence,
it is an exact representation of signal Mη .

The most relevant part of the CLTLoc formula is the
encoding of the firing of transitions and the possible syn-
chronization among them, which precisely capture the
dynamics of the variables, clocks and location changes
between any two adjacent time intervals over the signals.

At every time position of the CLTLoc model, function
p[i] (with i ∈ [1, N ]) represents the placing of Ai, i.e.,
the active location in the corresponding interval of the
execution of the TA Ai of network N , and function
t[i] represents the transition that will be taken at the
end of the interval (as depicted in Figure 2 for a single
TA). Each function is syntactic sugar for a finite set of
atomic propositions, which encode the value of a single
variable—e.g., the current location of an automaton—
belonging to finite set of values. When a transition is
taken, proposition edgeRCi represents the edge (]( or )[)
with which it is taken—i.e., if the current interval of
the signal associated with the i-th automaton is left- or

right-closed. TA clocks and variables can be represented
directly as CLTLoc clocks and variables.

Table I contains a snippet of the formulas used to
encode executions of networks of TA into CLTLoc. The
formulas use propositions p[i], t[i] and edgeRCi intro-
duced above. Notice that not every TA needs to transition
at each time position (for example, at a given point in the
execution A1 might change location, whereas A2 does
not take any transition). Hence, the encoding introduces
a null transition symbol ] to represent the situation in
which no transition is taken. So, function t[i] is equal
to either a transition or the symbol ] (see Figure 2). If
transition t is active in a given position l of an execution
for automaton Ai, then the TA is in location t− in
position l, and in location t+ at the next one (i.e., in
interval l + 1).

Formula ϕ6 defines the semantics for the null tran-
sition. If TA Ai performs a null transition, the state
invariant must hold both before and after clock resets
are applied. Function r1 replaces the value of any reset
clock with 0, thus capturing the post-reset value of any
clock used in the invariant.

Formula ϕ7 encodes the discrete transitions. Each
must respect the guards and assignments of the tran-
sitions, the TA must currently be in the source loca-
tion of the transition, and must be in the destination
location in the following position. Formulas ϕγc , ϕγv ,
ϕαc

, ϕαv
capture the guards and assignments associated

with the transition. ϕedge encodes the two possible edge
configurations, right- and left-closed, and ensures that
the invariants are satisfied depending on the edge type.

The encoding includes many other formulas, for exam-
ple to define the initial values of variables and clocks, or
the sufficient conditions for a transition to be taken, but
they are not shown here for the sake of brevity. For the
same reason we do not show here the CLTLoc formulas
capturing the synchronization mechanisms among the
TA of a network and those related to various liveness
constraints supported by the TACK tool. Interested read-
ers can refer to [4] for further details.

III. IMPROVED ENCODING

In the TACK tool, the CLTLoc formulas produced
through the encoding presented in Section II-D are fed to
the Zot formal verification tool, which in turn suitably
translates them into the input logics (and in particular
BitVector logic) of Satisfiability Modulo Theories (SMT)
solvers. In this section we present a novel method—
named TA2SMT—for encoding executions of networks
of TA into the logics supported by SMT solvers. The
method skips the intermediate CLTLoc representation to
directly produce formulas of BitVector logic to be fed to
SMT solvers. This direct translation allows us to make
several optimizations not possible in CLTLoc. As before,



TABLE I
SNIPPET OF TACK ENCODING OF A TA IN CLTLOC

ϕ6 :=
∧

i∈[1,N ]

q∈Qi

((
p[i] = q ∧ t[i] = ]

)
→ X

(
Inv(q) ∧ r1(Inv(q))

))

ϕ7 :=
∧

i∈[1,N ]

t∈Ti

t[i] = t→
(
p[i] = t− ∧ X (p[i] = t+) ∧ ϕγc ∧ ϕγv ∧ ϕαc ∧ ϕαv ∧ ϕedge(t−, t+, i)

)

the MITL property will continue to be converted first
into CLTLoc before being transformed into BitVector
logic by TACK through Zot. We use a consistent naming
convention for the atomic propositions to ensure that
the two BitVector encodings (the one for TA and the
one for MITL formulas) can be safely combined to
produce the final SMT output. This section first describes
the various terms that make up our TA network, and
discusses how they are encoded into BitVector logic.
Then, it overviews of the constraints, defined over the
terms previously defined, that capture the TA semantics.
Finally, it provides an argument for the correctness of the
new encoding, and highlights the improvements made
over the original encoding. For ease of reading we
will refer to the old encoding as TA2CLTLOC when
contrasting it with TA2SMT. For the sake of space,
this paper does not present the full TA2SMT encoding;
interested readers can refer to [17] for further details.

A. BitVector-based representation of terms

Our novel encoding (TA2SMT) is based on the idea of
directly representing the terms of the TA into BitVectors.
Since we are using a bounded verification approach, our
goal is to represent the terms over a finite number k +
2 of discrete positions. Using BitVector logic, we can
group logically connected propositions into a BitVector,
which results in a more compact encoding and can grant
significant speedups on operations performed over every
element of the vector.

1) Transitions: Before describing the BitVector terms
for the transitions, we must make one key change to our
set of transitions. For reasons to be discussed we wish
to represent the null transition (when a TA does not
transition between time positions) not as the separate
entity ], but rather as a set of |Qi| transitions, one for
each location q ∈ Qi.

∀
i∈[1,N ]

∀
q∈Qi

tnullq := <q, q, τ,∅,∅,∅,∅>

These null transitions have the same source and desti-
nation location, and no constraints or assignments. We
can now refer to the set of all transitions as T , defined
as Ti =

⋃
q∈Qi

{tnullq} ∪ Ti for each TA Ai. As before

T is the union of the Ti sets. The motivation for this

Transition Alias

Ti[0] !
←−−−−−−−−−
tbi,dlog2 Tie−1 & . . .& !

←−−
tbi,1& !

←−−
tbi,0

Ti[1] !
←−−−−−−−−−
tbi,dlog2 Tie−1 & . . .& !

←−−
tbi,1 &

←−−
tbi,0

Ti[2] !
←−−−−−−−−−
tbi,dlog2 Tie−1 & . . .&

←−−
tbi,1& !

←−−
tbi,0

..
.

..
.

Ti[|Ti|]
←−−−−−−−−−
tbi,dlog2 Tie−1 & . . .& (∼

←−−
tbi,1) & (∼

←−−
tbi,0)

TABLE II
CONSTRUCTION OF THE TRANSITION ALIASES

redefinition will become clear when we discuss the
encoding of the active locations of the TA.

To encode Ti, we adopt a similar approach as the
one used in TA2CLTLOC. Rather than store each tran-
sition as a separate BitVector, since only one transi-
tion is active at a time in automaton Ai, we store
the currently active transition as a binary number over
dlog2 |Ti|e bits. Therefore, we create dlog2 |Ti|e BitVec-
tors tbi,0, tbi,1, . . . , tbi,dlog2 |Ti|e−1 of length k+ 2, each
one representing a single bit of a numeric identifier that
encodes the transitions in Ti, i.e., the l-th bit of vector
tbi,j is the j-th digit (weight 2j) of the binary number
which indicates the active transition of Ai at the time
position l (see [7] for details about the principles behind
bounded BitVector-based encodings). For the sake of
convenience, to easily identify the time position in which
a transition is taken, we associate every transition t ∈ Ti
with a BitVector, whose l-th bit has the value of 1 if t
is active at position l (firing occurs at l+ 1). The vector
is determined using bit-wise logical operations over
tbi,0, tbi,1, . . . , tbi,dlog2 |Ti|e−1. For example, suppose
that a transition t ∈ Ti is active at positions 1 and 3 of
a bounded sequence such that k = 8. That information
is represented by BitVector

←−−−−−−−−
0000001010 of length k+2.

Now, consider dlog2 |Ti|e = 6 and a transition t ∈ Ti
whose identifier is 5. Since the binary representation
of 5 is 000101, we express the CNF representation
(maxterm) for the value 5 with BitVector variables tbi,j
and construct formula

!
←−
tb i,5 & !

←−
tb i,4 & !

←−
tb i,3 &

←−
tb i,2 & !

←−
tb i,1 &

←−
tb i,0.

that defines a BitVector of length k+2 such that the l-th
bit is 1 if transition t = 5 is active at time position l



We use expression such as the one above to define
aliases for the |Ti| transitions of TA Ai, as shown in
Table II, such that each transition is identified by means
of a unique alias, i.e., each transition is encoded as a
unique combination of the tbi,j vectors. We indicate the
alias for a transition t whose identifier is h as

←−
t or

←−−
Ti[h],

depending on the case. Because the exact value of |Ti|
is variable, for the last transition in the table we use the
symbol ∼ to signal that whether or not the BitVector is
negated depends on the exact value of |Ti|.

Consider now transition edges. We introduce a BitVec-
tor
←−−−−−
edgeRCi , i ∈ [1, N ] of length k + 2 for each TA in

the network. When a bit is set to 1 (resp., 0), it signifies
that the active transition for the TA at that time position
is right-closed (resp., left-closed).

2) Location: For every location q ∈ Qi, we introduce
an alias defining a vector of k+2 positions that indicate
if the current location of automaton Ai is q. Since the
active location of Ai is the source location t− of the
active transition, we define location ←−q as the bit-wise
disjunction of all the transitions whose source is q.

∀
q∈Qi

←−q := |
t∈Ti|t−=q

←−
t

This is made possible by our addition of |Qi| null
transitions, one for each location. This was not possible
in TACK’s CLTLoc encoding because of the use of a
single null transition per automaton. When the CLTLoc
null transition is active, it is not possible to determine
the active locations without referring to variable p[i].

3) Variables: Unlike location and transitions, the
possible values of a bounded integer variable are not
unrelated objects in a set, but their value must respect
the operations of addition and subtraction. For each
variable n ∈ Int we construct a bit representation

←−−
vbn,j ,

where each BitVector has length k + 2. The values are
encoded in twos complement notation, and the number
of BitVectors is chosen so that the vectors are capable
of representing the entire range of values for the given
bounded integer variable. We will define λ(n) as the
number of bits needed for each variable n.

To refer to the complete value of a variable at a
particular time position, rather than a particular bit of
the variable, we make use of the extract and concat
BitVector logic operators to define a second set of
BitVectors

←−−−−
varn(l) of λ(n) bits, defined over the vectors←−−

vbn,j that represents the value of variable n at time
position l, with 0 ≤ l ≤ k + 1.

4) Clocks: Our encoding of the clocks does not differ
from TA2CLTLOC. Each clock x ∈ X is defined as a
function x(l) that takes an integer argument l corre-
sponding to a time position and returns a real number
representing the value of x at position l.

5) Complete Encoding of Terms: A valid trace of
the network consists of assigning values to the terms
described above. To build valid traces, we define a
number of constraints that make use of two helper terms,
δ and

←−−
loop. The first one represents the amount of time

that passes between two adjacent time positions (i.e.,
the length of the corresponding interval), and must be
a positive real number. The second, the term

←−−
loop, has

a value equal to the index of the first time position
in the loop portion of the trace. From these we can
represent any valid lasso-shaped trace of the network of
length k + 2, as typically done in bounded verification
approaches (see also [7]). In particular, a constraint limits
the position of the loop to be a positive value bounded by
k. The constants 0 and k are encoded using BitVectors of
length k+ 2. For instance, the value 4 over 5 bits would
be written as

←−
4 [5] (in this case we use the subscript to

make the length of the BitVector explicit) and expands
to 00100. Since BitVector logic supports arithmetic, the
relation < can be applied to express the bounds for term←−−
loop as follows:

←−
0 <

←−−
loop <

←−
k .

In addition, we introduce aliases to more easily refer
to the transitions and locations individually, and to the
value of a variable at a particular time position.

B. Constraints

The terms introduced in Section III-A allow us to
describe lasso-shaped traces of networks of TA, but we
need to introduce suitable restrictions to avoid capturing
traces that do not respect the signal-based semantics of
TA. These restrictions take the form of clock guards
on a transition, location invariants that prevent a TA
from staying in a location indefinitely, clock progression
constraints, and so on. We formalize these constraints
in BitVector logic for the SMT solver to use when
performing the Bounded Model Checking of TA. For
brevity, in this paper we dot not present the full set of
constraints; Table III shows some significant formulas,
which are explained in the rest of this section to illustrate
how the terms introduced above impact on the new
TA2SMT encoding. Further details can be found in [17].

Formula φ5 ensures that the active location of a TA
correctly reflects the transition being taken. It asserts that
when a transition is taken at position l, the destination lo-
cation is active at position l+1 (

←−
t [k:0] indicates that we

are considering the bits of BitVector
←−
t in range [0, k]).

Because the location BitVectors are just aliases defined
over the transition BitVectors (see Section III-A2), we do
not need to explicitly constrain the TA to be in location
t− at time position l, since this is true by definition.



TABLE III
SNIPPET OF TRANSITION CONSTRAINTS FOR A NETWORK OF TA. TERMS σ AND ζ ARE BASED ON GRAMMARS PRESENTED IN SEC. II.

φ5 :=
∧
t∈T

(
←−
t [k:0] →←−t+[k+1:1]) φ9 :=

∧
t∈T

∧
l∈[0,k]

←−
t [l] → σδ(l, tγc)

φ10 :=
∧
t∈T

∧
l∈[0,k]

←−
t [l] → µ(l, tγv ) φ11 :=

∧
t∈T

∧
x∈tac

∧
l∈[0,k]

←−
t [l] → x(l+1) = 0

φ12 :=
∧
t∈T

∧
n,exp∈tav

∧
l∈[0,k]

←−
t [l] →

(←−−−−−−−
varn(l+1) =

←−−−−−−−
ζ(l, n, exp)

)

φ13 :=
∧

i∈[1,N ]

t∈Ti

∧
l∈[0,k]

←−
t [l] →

(
σδ(l, Inv(t−)) ∧ σw(l+1, Inv(t+)) ∧ (

←−−−−−
edgeRCi

[l] =
←−
1 )

)
∨(

σwδ(l, Inv(t−)) ∧ σ(l+1, Inv(t+)) ∧ (
←−−−−−
edgeRCi

[l] =
←−
0 )

)
σ(l, γc) := x(l) ∼ c | σ(l, γ′c) ∧ σ(l, γ′′c ) σδ(l, γc) := x(l) + δ(l) ∼ c | σδ(l, γ′c) ∧ σδ(l, γ′′c )

σw(l, γc) := x(l) ∼w c | σw(l, γ′c) ∧ σw(l, γ′′c ) σwδ(l, γc) := x(l) + δ(l) ∼w c | σwδ(l, γ′c) ∧ σwδ(l, γ′′c )

µ(l, γv) :=
←−−−−
varn(l) ∼ ←−c |

←−−−−
varn(l) ∼

←−−−−−
varn′(l) | ¬µ(l, γ′v) | µ(l, γ′v) ∧ µ(l, γ′′v )

ζ(l, n, exp) :=
←−−−−
varn(l) | ←−c | ζ(l, n, exp′) + ζ(l, n, exp′′) | ζ(l, n, exp′)− ζ(l, n, exp′′)

Each transition can have multiple guards, which con-
sist of two types, clock guards and variable guards.
Formula φ9 asserts that, for every clock guard, its asso-
ciated transition being active at time position l implies
that at the instance of transition, the relationship ∼
holds between the clock value and the value c. Recall
that if a transition is active at position l, the transition
occurs in the instant corresponding to the position l+ 1,
where clock x does not have the value x(l), but rather
x(l) + δ(l). Note that we cannot simply use x(l+ 1) as
the value of the clock in φ9, because it is possible that
the transition can reset x at l+1, with x(l+1) = 0 being
the post-transition value. The guard only sees the pre-
transition value of the clock, thus we must explicitly add
δ(l) to x(l). The term σδ(l, tγc) is the encoding of clock
constraint tγc expressed at position l and considering the
time delay between position l and l + 1 stored in δ.

Formula φ10 captures the same semantics for variable
guards, asserting that an active transition implies that
the variable guard is true at that time position. Because
variables, unlike clocks, do not progress with time, it is
sufficient to simply use the value varn(l) to determine
if the guard is satisfied. The function µ is used to
encode the variable constraint grammar. If the form←−−−−
varn(l) ∼

←−−−−−
varn′(l) is used and λ(n′) < λ(n), then←−−−−−

varn′(l) is implicitly sign-extended to a length of λ(n)
bits (conversely, it is truncated).

Formula φ11 models clock assignments, that are more
straightforward than the clock guards. It is enough to
require that if a transition is taken at time position l,

then in the following time position the clock is reset.

Formula φ12 captures the semantics of variable assign-
ments. Variable assignments can refer to both constant
values and the values of other variables, and they may
combine them using the operators {+,−}. To implement
this in our BitVector logic, we require that if any variable
n′ appears in the assignment expression of variable
n, then λ(n′) ≤ λ(n) holds. We can then cast all
constants and variables to BitVectors of length λ(n),
sign-extending shorter values to a length of λ(n) bits if
necessary. This allows us to use the standard BitVector
addition and subtraction operators to compute the final
value, which is assigned to v at time position l+1. The
term ζ(l, n, exp) encodes the expression exp with the
values of arithmetical variables at position l.

Formula φ13 captures the semantics of location in-
variants. Although invariants are location-specific, not
transition-specific, since locations are defined by the
active transitions, it is sufficient to ensure that at the
moment of transition both the source and destination
invariants are satisfied, taking into account the value of←−−−−−
edgeRCi . Since all invariants are convex, if the invariant
is satisfied at moment the TA enters the location and at
the moment it leaves, it is satisfied at all positions in the
interval between them. The occurrence of a transition
at position l implies one of two statements, one for
each possible value of

←−−−−−
edgeRCi . In both the statements,

the invariants of the source location are evaluated by
considering the pre-transition clock values at position
l+1, i.e., x(l)+δ(l), hence using the terms σδ and σwδ ,



as the clock resets have not happened yet. Conversely,
the invariants of the destination location are evaluated by
considering post-transition clock values at position l+1,
hence using the terms σ and σw. In addition, the invariant
of the location (either t− or t+, depending on edgeRCi )
that is not the current location of the automaton at the
time instant in which a transition occurs, i.e., whose
signal has an open-ended edge transition, are evaluated
with the weak satisfaction relation ∼w (the interested
reader can find the definition in [4]).

The complete TA2SMT encoding includes, in addition
to the formulas of Table III (which we can conjoin
in a single formula, φtrans), formulas that govern the
initialization and progression of the TA (φinit), formulas
that capture the semantics of synchronizations (φsync),
and formulas that guarantee the correctness of the lasso-
shaped traces (φloop). Overall, the encoding of the se-
mantics of a network of TA N is given by the following
formula (we refer to [17] for details):

φN := φinit ∧ φtrans ∧ φsync ∧ φloop

C. Equivalence and Improvements

In this section we outline an argument showing that
the TA2SMT encoding given by formula φN of Section
III-B is a correct and complete representation of all
lasso-shaped, non-Zeno runs of length k+ 2 of network
N . More precisely, we briefly compare the TA2SMT and
TA2CLTLOC encodings and show that they capture the
same constraints. Hence we conclude that the TA2SMT
encoding is sound and complete, since TA2CLTLOC has
been proved to be so in [4]. We also highlight the points
in which TA2SMT improves on TA2CLTLOC.

Both the TA2CLTLOC and the TA2SMT encodings
constrain the clocks, variables, and TA to their respective
initial values and locations at time position 0. For vari-
ables and clocks these constraints are identical, as both
assign the desired value at time position 0. For locations
TA2SMT uses the ←−q aliases to require that the TA
begins in the initial location, despite not having location
BitVectors. Because the location alias is only true when
one of the transitions whose source is that location is
true (including the location-specific null transitions), the
constraint is valid. Function δ(l) ensures that all clocks
progress at the same rate, while clock resets and variable
assignments are only allowed if one of the corresponding
transitions are active. As for the transitions, although
we have broken up ϕ7 (see Table I) into several pieces
(some of which are shown in Table III), the functionality
remains the same. We ensure that in order for a transition
to be valid, its destination location must be active in
the next time position, the clock and variable constraints
must be satisfied, all assignments must be enforced, and
the invariants of the source and destination location must

be true at the moment of transition. Like TA2CLTLOC,
TA2SMT allows that at the moment of transition, only
one of the two invariants must be satisfied, using the
concept of weak satisfaction to formalize this relaxation.
Similarly, the original TA2CLTLOC encoding contains
three constraints that assert that the values of the active
locations, as well as the values of the variables and
clocks, can only be changed if there is an active tran-
sition that modifies them. For locations, this is accom-
plished with φ5, which requires that the active location
in the following position be equal to the value of the
destination location of the active transition. Unlike in
the original encoding, we have one null transition for
each position, so we do not need to consider the null
transitions as a special case. Therefore for the location
to change, there must be a non-null transition to enable
the location change. A pair of formulas, φ8 and φ7,
not shown in this paper for brevity, assert that when
no transition explicitly changes the value of a variable
or resets a clock, their values remain the same. Our
new encoding also respects the same loop constraints as
TA2CLTLOC including the clock constraints necessary to
represent all possible lasso-shaped traces.

As shown in Section IV, the new TA2SMT encoding in
many cases provides significant benefits in terms of effi-
ciency of the verification procedure. In addition, TA2SMT
introduces various improvements over TA2CLTLOC con-
cerning the range of TA features captured. TA2CLTLOC
contains a limitation regarding integer variables: because
they are represented as elements of a set, TA2CLTLOC
can only test them for equality. This means that con-
straints of the form n ∼ c or n ∼ n′, where ∼6∈ {=} are
not supported. TA2SMT correctly represents the values of
the integer variables using a twos-complement encoding,
and therefore can support the full grammar of variable
guards and assignments. The implementation of the
TA2SMT encoding in the TACK tool has also fixed some
issues that were present in the old implementation of
TACK, and it has allowed us to complete the set of
features supported by the tool. In particular, support for
broadcast synchronization primitives in the old version
of the TACK tool was faulty, and it has now been fixed
in the implementation of TA2SMT, as shown by our
experimental results. Finally, support for right-closed in-
tervals, left-closed intervals, and arbitrary combinations
thereof was not complete in the old implementation of
TACK (only right-closed intervals were fully supported);
TA2SMT, instead, fully supports all types of intervals.

IV. EXPERIMENTAL RESULTS

In this section we present the results of several ex-
perimental evaluations of the new TA2SMT encoding
compared with TA2CLTLOC. These tests cover several
different benchmarks commonly used to evaluate for-



mal verification techniques. For both TA2CLTLOC and
TA2SMT, strong transition liveness (see [4]) was used in
all of the tests, and all edges were constrained to be right-
closed. These were the settings used to benchmark the
original TACK application, and they remain the default
settings for the tool. In all of the following tests, the
measured time is the combined time taken by both the
TACK program to parse the problem and convert it to
SMT form and for the underlying Z3 solver [18] to
decide the satisfiability of the SMT problem. In practice,
the TACK translation always took less than a second. For
every test, the evaluation proceeded in several rounds,
each with a larger length of traces considered by TACK.

All tests were performed running the Z3 SMT solver
version 4.8.8 on a server equipped with an AMD EPYC
7551 CPU (2.5 GHz) with 2 32-core sockets, 500 GB
of RAM and Debian Linux (version 4.19). Although our
tests were run on a large server with (at the time of
writing!) an unusually high amount of both processors
and RAM, the Z3 solver is a single-threaded applica-
tion, and typically uses less than a gigabyte of RAM
while running. Therefore, very similar results could be
obtained on a machine with more reasonable resources.
To reduce instabilities in the solver and to present a
clearer comparison between the encodings, we used Z3’s
built-in ‘parallel-or’ solution strategy to run two versions
of each test, each copy with a different random seed. The
times reported here are the shortest time of two runs, as
Z3 process terminates when either thread terminates.

Fischer Mutual Exclusion Protocol: The well known
Fischer benchmark [19] models a protocol for ensuring
exclusive access to a shared common resource that can
be requested by multiple processes. The processes are
identical in their behavior, aside from a numerical id,
and are modeled through single TA. The protocol uses
global variables in guards and assignment statements of
the TA to control access. Each TA in the network has a
‘critical state’, and the protocol guarantees that only one
TA can be in its critical state at a time.

To measure the scalability of our new encoding, we
performed multiple test runs while modifying the bound
k and the number of processes that are attempting to
execute their critical region. Several MITL properties,
which are the same as in [4], were verified. Liveness
property 1 (live1) requires that once process 1 enters
state b, in which it sets shared variable id, it always
transitions to the ‘waiting’ state c. Property 2 (live2)
is similar, but it contains the additional constraint that
process 1 must complete the transition to state c in at
most 3 seconds. Property live3 has a similar time bound,
but requires that process one move to the critical section
cs rather than c within the time bound, which we expect
to not be universally true (a process can return to state
b after moving to state c if another process has reset

Fig. 3. Results of the comparison between TA2SMT and TA2CLTLOC
on the Fischer protocol. Each column corresponds to a different number
of processes involved in the Fischer protocol that share a common
resource. The numbers appearing as suffixes in the property names
(e.g., 20 in live1-20) indicate the length of the (lasso-shaped) traces
considered by the solvers.

the variable id). Properties live4 and live5 are copies
of properties live2 and live3, respectively, with the sole
difference of inclusion vs. exclusion at the boundaries
of the interval. Property safe seeks to prove the “safety”
of the protocol, namely that two distinct processes are
never in the critical section at the same time.

Figure 3 shows the results of the comparison between
TA2SMT and TA2CLTLOC. The table shows the time
(sec.) that the fastest tool takes to solve the instance.
The color indicates how this time compares with that of
TA2SMT. If TA2SMT is the fastest tool of the two, the
cell is colored green, and the shade of green indicates
how much faster TA2SMT is compared to TA2CLTLOC
(dark green means > 2x speedup, light green means
between 1.05x and 2x speedup). Otherwise, the cell is
colored orange when TA2SMT is between 1.05x and
2x slower than TA2CLTLOC, and red when it is more
than 2x slower (if the difference between TA2SMT and
TA2CLTLOC is less than 5% either way, the cell is
left white). Figure 4 shows the speed up/slow down



Fig. 4. Speedup/slow down between TA2SMT and TA2CLTLOC on the
Fischer protocol.

factor for each experiment with the Fischer protocol.
Empty cells indicate a timeout for both tools, set at 2
hours. For property safe, TA2CLTLOC is the fastest tool.
Indeed, TA2SMT is consistently faster than TA2CLTLOC
for greater values of the bound k and higher numbers
of processes, except for property safe. This property is
peculiar in that the MITL formula grows in size with
the number of TA in the network. It is possible that at
larger sizes, the MITL encoding becomes a bottleneck
that limits the utility of further TA optimizations.

Gearbox: The Gearbox TA models an automatic
gearshift which utilizes a gearbox controller [20]. Upon
receiving a gear change (reverse, neutral, as well as gears
1-5 are modelled), the controller coordinates changes to
the state of the engine, gearbox, and clutch to perform
the desired gear transition. Property 0 asserts that in
the absence of any errors, the elapsed time required to
change gears after an input is no greater than 1500 ms.
Property 1 similarly asserts that for certain specific gear
transitions, the absence of errors implies a transition
time of at most 1000 ms. Property 2 concerns error
propagation from the clutch and gearbox to the gear
controller. Depending on the specific error, the gear
controller is required to respond accordingly within 200

Fig. 5. Results of the comparison between TA2SMT and TA2CLTLOC
on the Gearbox model.

Fig. 6. Speedup/slow down between TA2SMT and TA2CLTLOC on the
Gearbox model.

or 350 milliseconds. Property 3 also concerns error
states in the controller. It asserts that each error state in
the controller is active only when the related error has
occurred in either the clutch or the gearbox. Thus, the
controller never reports a false error. Property 4 asserts
that whenever the gearbox is not in neutral and no gear
shift is occurring, the engine module is supplying torque
to the rest of the drive system. These properties were
evaluated over the gearbox model using time bounds
between 10 and 50 steps. Figure 5 reports, for each
instance, the time (sec.) taken by the fastest tool of the
two to solve the model. As for Figure 3, cells colored
green (resp., red/orange) are those for which TA2SMT
(resp., TA2CLTLOC) was fastest (see Figure 6 for the
speed up/slow down factors).

Token Ring: The Token Ring protocol [21] models
a ring of agents that pass a token between themselves,
along with a process that models the ring itself. The
token moves in either direction along the ring (the ring
process controls the token). The agents may choose to
return the token in either a synchronous or asynchronous
manner. In both cases, channel-based synchronization
among TA coordinates ownership of the token. The
property checked asserts that agents 1 and 2 never
simultaneously synchronize with the token. Figure 7
contains the results of the Token Ring tests (time in sec.),
while Figure 8 shows the speed up factors.

Philips Audio Protocol: The Philips Audio Protocol
models the transmission of data over a single shared
bus between two entities. An interesting property is that
the message can be decoded by a receiver that can only
detect rising edges, that is a transition from a low to high
signal over the bus. This algorithm was translated into
a TA representation for the Uppal tool by Larsen et al.
[22]. Property 1 expresses the correctness of the protocol,
that with a properly functioning sender and receiver the



Fig. 7. Results of the comparison between TA2SMT and TA2CLTLOC
on the Token Ring model

Fig. 8. Speedup/slow down between TA2SMT and TA2CLTLOC on the
Token Ring protocol.

signal will be interpreted correctly. This is represented
by asserting that the receiving agent never enters an error
state. Property 2 expresses that the sender will never send
two rising edges within 400 units of time, regardless of
the message being sent (required to ensure a 5% timing
error tolerance). Property 3 expresses that when the
sender has completed the message, the receiver enters the
stop state within 900 time units. For this model, the use
of arithmetic operations on variables made creating the
model for TA2CLTLOC (which supports such operations
through a workaround) difficult, so Table IV shows only
the results obtained with TA2SMT on the verification of
three properties.

Carrier Sense Multiple Access / Collision Detection:
The CSMA/CD protocol [23] is a well known protocol
for allowing multiple agents to share a communication
channel, and was popularized by its inclusion in the
Ethernet standard. The protocol includes one process to
manage a shared communication bus, as well as a num-
ber of processes that wish to obtain exclusive access to
the bus in order to send a message. When two processes
attempt to send at the same time, the bus process detects
the collision and uses the broadcast synchronization
primitive to force the processes to wait a randomized
amount of time before attempting to communicate again.

k 15 25 35 40 45 50

pr
op

. 1 5.1 155.3 3071.9 9420.8 27947.4 -
2 3.8 9.0 29.8 29.8 42.5 65.0
3 7.8 285.8 6440.4 21426.9 - -

TABLE IV
TIME (SEC.) TO CHECK THE PROPERTIES OF THE PHILIPS

PROTOCOL WITH TA2SMT (− MEANS NO RESULT AFTER 12 HOURS).

n 3 5 7 9 10

k

10 3.5 5.1 5.8 7.8 9.5
15 31.2 52.7 121.7 275.4 324.0
20 109.5 721.5 2206.1 5097.3 5068.9
25 813.7 4772.4 − − −
30 2882.0 − − − −

TABLE V
TIME (SEC.) TO CHECK PROPERTY FOR THE CSMA/CD PROTOCOL

WITH TA2SMT (− MEANS NO RESULT AFTER 2 HOURS).

The property checked asserts that after process 1 has
been sending for 52 units of time, process 2 cannot
begin sending until process 1 has finished. Table V
shows the results of the execution of the verification runs
on the CSMA/CD model using TA2SMT. In this case,
a comparison with the TA2CLTLOC encoding has not
been carried out, because we modified the CSMA/CD
TA model to make it more accurate with respect to
the real-world behavior of the protocol. This entailed
using variable comparisons that are not fully supported
in TA2CLTLOC, so Table V only reports executions times
obtained through TA2SMT.

For the Fischer benchmark, in addition to the two-way
comparison between TA2SMT and TA2CLTLOC discussed
above and summarized by figures 3 and 4, we also
carried out a three-way comparison between the two
TACK encodings and MITL0,∞BMC (similarly to [4]).
Figure 9 shows the results of the three-way comparison.
More precisely, it shows the time taken by the fastest of
the three tools, and the color of each cell represents how
TA2SMT compares against the best of the other two tools:
if the cell is colored green, TA2SMT was the fastest tool,
otherwise the cell is colored orange/red, with the same
meaning of the coloring as for figures 3 and 4. Notice
that the live3 and live5 properties do not hold—i.e., a
counterexample exists, as the model is satisfiable. In
these cases, the incremental approach of MITL0,∞BMC,
which explores the bounds k starting from 1 until it
determines that the model is satisfiable, is very efficient,
since it stops the search as soon as possible. Indeed, the
portions of Figure 9 corresponding to properties live3
and live5 show that the best tool (MITL0,∞BMC) uses
a constant time to solve the problem, even as the bound
k increases (the model is satisfiable with a bound less
than 10). For property safe, for higher bounds k, both
TA2CLTLOC and TA2SMT are faster than MITL0,∞BMC.

Notice that, in the cases of the Gearbox and Token
Ring benchmarks, we only compared TA2SMT against
TA2CLTLOC, since models for the MITL0,∞BMC tool
were not available (and building new ones was not
possible, as explained in [4]).



Fig. 9. Results of the comparison between TA2SMT, TA2CLTLOC and
MITL0,∞BMC on the Fischer protocol.

V. DISCUSSION AND FUTURE WORKS

Empirical testing has revealed that the novel TA2SMT
encoding can provide significant speedups across several
benchmarks when compared to TA2CLTLOC. In partic-
ular, TA2SMT is consistently better than TA2CLTLOC in
the Token Ring case, and mostly better in the Gearbox
and Fischer cases, especially for increasing values of the
bound and of the number of processes. These results
seem to indicate that the TA2SMT encoding is better
suited to exploring models with larger bounds, as the
time needed to solve larger and larger bounds grows
more slowly compared to TA2CLTLOC.

In addition, TA2SMT was able to solve models (the
new, more realistic CSMA/CD and the Philips protocol)
that were more difficult to tackle in TA2CLTLOC due to
limitations in the way the old encoding deals with integer
operations and with synchronizations among TA.

Future work will focus on two main objectives. Firstly,
we will seek to achieve a better integration of the two
translations, which will take the form of a BitVector
encoding specific to MITL formulas that does not rely on
the CLTLoc translation. Secondly, given the considerable
impact of incremental approaches in verification we will

attempt to understand how to make the BitVector-based
encoding incremental.
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