
Robert France is a Professor in the Department of Computer Science

at Colorado State University. His research focuses on the problems

associated with the development of complex software systems. He is

involved in research on rigorous software modeling, on providing

rigorous support for using design patterns, and on separating

concerns using aspect-oriented modeling techniques. He was

involved in the Revision Task Forces for UML 1.3 and UML 1.4. He is

currently a Co-Editor-In-Chief for the Springer international journal on

Software and System Modeling, a Software Area Editor for IEEE

Computer and an Associate Editor for the Journal on Software

Testing, Verification and Reliability.

Bernhard Rumpe is chair of the Institute for Software Systems

Engineering at the Braunschweig University of Technology, Germany.

His main interests are software development methods and techniques

that benefit form both rigorous and practical approaches. This

includes the impact of new technologies such as model-engineering

based on UML-like notations and domain specific languages and

evolutionary, test-based methods, software architecture as well as the

methodical and technical implications of their use in industry. He has

furthermore contributed to the communities of formal methods and

UML. He is author and editor of eight books and Co-Editor-in-Chief of

the Springer International Journal on Software and Systems Modeling
(www.sosym.org).

Model-driven Development of Complex Software: A Research

Roadmap

Robert France, Bernhard Rumpe

[FR07] R. France, B. Rumpe.

Model-Driven Development of Complex Software: A Research Roadmap..

In: Future of Software Engineering 2007 at ICSE.

Minneapolis, pg. 37-54, IEEE, May 2007.

www.se-rwth.de/publications

Model-driven Development of Complex Software: A Research Roadmap

Robert France

Department of Computer Science

Colorado State University

Fort Collins, CO 80523

france@cs.colostate.edu

Bernhard Rumpe

Software Systems Engineering Institute

Faculty for Mathematics and Computer Science

Braunschweig University of Technology

Braunschweig, Germany

http://www.sse.cs.tu-bs.de

Abstract

The term Model-Driven Engineering (MDE) is typically

used to describe software development approaches in which

abstract models of software systems are created and system-

atically transformed to concrete implementations. In this

paper we give an overview of current research in MDE and

discuss some of the major challenges that must be tackled

in order to realize the MDE vision of software development.

We argue that full realizations of the MDE vision may not

be possible in the near to medium-term primarily because

of the wicked problems involved. On the other hand, at-

tempting to realize the vision will provide insights that can

be used to significantly reduce the gap between evolving

software complexity and the technologies used to manage

complexity.

1. Introduction

Advances in hardware and network technologies have

paved the way for the development of increasingly per-

vasive software-based systems of systems that collaborate

to provide essential services to society. Software in these

systems is often required to (1) operate in distributed and

embedded computing environments consisting of diverse

devices (personal computers, specialized sensors and ac-

tuators), (2) communicate using a variety of interaction

paradigms (e.g., SOAP messaging, media streaming), (3)

dynamically adapt to changes in operating environments,

and (4) behave in a dependable manner [26, 62]. De-

spite significant advances in programming languages and

supporting integrated development environments (IDEs),

developing these complex software systems using current

code-centric technologies requires herculean effort.

A significant factor behind the difficulty of develop-

ing complex software is the wide conceptual gap between

the problem and the implementation domains of discourse.

Bridging the gap using approaches that require extensive

handcrafting of implementations gives rise to accidental

complexities that make the development of complex soft-

ware difficult and costly. To an extent, handcrafting com-

plex software systems can be likened to building pyramids

in ancient Egypt. We marvel at these software implemen-

tations in much the same way that archaeologists marvel at

the pyramids: The wonder is mostly based on an apprecia-

tion of the effort required to tackle the significant accidental

complexities arising from the use of inadequate technolo-

gies.

The growing complexity of software is the motivation

behind work on industrializing software development. In

particular, current research in the area of model driven

engineering (MDE) is primarily concerned with reducing

the gap between problem and software implementation do-

mains through the use of technologies that support system-

atic transformation of problem-level abstractions to soft-

ware implementations. The complexity of bridging the gap

is tackled through the use of models that describe com-

plex systems at multiple levels of abstraction and from a

variety of perspectives, and through automated support for

transforming and analyzing models. In the MDE vision of

software development, models are the primary artifacts of

development and developers rely on computer-based tech-

nologies to transform models to running systems.

Current work on MDE technologies tends to focus on

producing implementation and deployment artifacts from

detailed design models. These technologies use models to

generate significant parts of (1) programs written in lan-

guages such as Java, C++, and C♯ (e.g., see Compuware’s

OptimalJ, IBM’s Rational XDE package, and Microsoft’s

Visual Studio), and (2) integration and deployment artifacts

such as XML-based configuration files and data bridges

used for integrating disparate systems (e.g., see [25]).

Attempts at building complex software systems that dy-

namically adapt to changes in their operating environments

has led some researchers to consider the use of models dur-

ing runtime to monitor and manage the executing software.

Early work in this emerging MDE area was presented at a

MODELS 2006 Workshop on runtime models [8].

We envisage that MDE research on runtime models will

pave the way for the development of environments in which

change agents (e.g., software maintainers, software-based

agents) use runtime models to modify executing software

in a controlled manner. The models act as interfaces that

change agents can use to adapt, repair, extend, or retrofit

software during its execution. In our broad vision of MDE,

models are not only the primary artifacts of development,

they are also the primary means by which developers and

other systems understand, interact with, configure and mod-

ify the runtime behavior of software.

A major goal of MDE research is to produce technolo-

gies that shield software developers from the complexities

of the underlying implementation platform. An implemen-

tation platform may consist of networks of computers, mid-

dleware, and libraries of utility functions (e.g., libraries of

persistence, graphical user interface, and mathematical rou-

tines). In the case of MDE research on runtime models, the

goal is to produce technologies that hide the complexities of

runtime phenomena from agents responsible for managing

the runtime environment, and for adapting and evolving the

software during runtime.

Realizing the MDE vision requires tackling a wide range

of very difficult interrelated social and technical problems

that has been the focus of software engineering research

over the last three decades. For this reason, we consider

the problem of developing MDE technologies that automate

significant portions of the software lifecycle to be a wicked

problem. A wicked problem has multiple dimensions that

are related in complex ways and thus cannot be solved by

cobbling solutions to the different problem dimensions (see

definition of “wicked problem” in Wikipedia). Solutions to

wicked problems are expensive to develop and are invari-

ably associated with other problems, but the development

of the solutions can deepen understanding of the problems.

In this paper we discuss some of the major technical

problems and challenges associated with realizing the broad

MDE vision we outline above. We also mention the so-

cial challenges related to identifying and leveraging high-

quality modeling experience in MDE research.

In Section 2 we describe software development as a mod-

eling activity and present the research questions that should

drive MDE research. In Section 3 we discuss the factors

that contribute to the difficulty of bridging the gap between

the problem and implementation domains, present classes

of challenges and problems discussed in this paper, and

discuss the relationship between MDE and other areas of

software engineering research. In Section 4 we provide

background on some of the major MDE initiatives. In Sec-

tion 5, Section 6, and Section 7, we discuss MDE research

challenges in the areas of modeling languages, separation

of concerns, and model manipulation and management, re-

spectively. Section 7 also includes a discussion on oppor-

tunities for using models during runtime. We conclude in

Section 8 by outlining an idealistic vision of an MDE envi-

ronment.

2. The Value of Modeling

In this paper, a model is an abstraction of some aspect of

a system. The system described by a model may or may not

exist at the time the model is created. Models are created to

serve particular purposes, for example, to present a human

understandable description of some aspect of a system or

to present information in a form that can be mechanically

analyzed (e.g., see [54, 30]).

It may seem that work on MDE centers on the devel-

opment and use of the popular modeling language, UML

(the Unified Modeling Language) [59]. The UML standard-

ization effort has played a vital role in bringing together a

community that focuses on the problem of raising the level

of abstraction at which software is developed, but research

around other modeling languages is contributing valuable

MDE concepts, techniques, tools and experience. In this

paper, MDE encompasses all research pertaining to the use

of software models.

Non-UML modeling approaches that are included in our

use of the MDE term include specifying systems using

formal specification languages such as Alloy [32] and B

[2], modeling and analyzing control system software us-

ing the math-based, high-level programming language Mat-

lab/Simulink/Stateflow (e.g., see [34]), analyzing perfor-

mance, load, safety, liveness, reliability, and other system

properties using specialized modeling techniques (e.g., see

[40]), and building models to analyze software risks (e.g.,

see [20, 27, 50]).

Source code can be considered to be a model of how a

system will behave when executed. While we may draw

inspiration from work on the development of programming

languages and compilers, this paper is primarily concerned

with the development and use of models other than source

code. Specifically, we focus attention on the following two

broad classes of models:

• Development models: These are models of software at

levels of abstraction above the code level. Examples of

development models are requirements, architectural,

implementation and deployment models. MDE re-

search has tended to focus on the creation and use of

these models.

• Runtime models: These models present views of some

aspect of an executing system and are thus abstractions

of runtime phenomena. A growing number of MDE

researchers have started to explore how models can be

used to support dynamic adaptation of software-based

systems.

As MDE research matures, the above classification may be-

come dynamic, that is, development models may be used as

runtime models and runtime models may be used to evolve

software systems, thus acting as development models.

There is a perception that development models are pri-

marily documentation artifacts and thus their creation and

use are peripheral to software development. This narrow

perspective has led to recurring and seemingly futile de-

bates on the practical value of modeling (i.e., the value of

documentation) in software development. MDE advocates

point out that models can be beneficially used for more than

just documentation during development. For example, Bran

Selic, an IBM Distinguished Engineer, points out an impor-

tant property of software that MDE seeks to exploit1: “Soft-

ware has the rare property that it allows us to directly evolve

models into full-fledged implementations without changing

the engineering medium, tools, or methods.” Selic and oth-

ers argue that modeling technologies leveraging this prop-

erty can significantly reduce the accidental complexities as-

sociated with handcrafting complex software [60].

The formal methods community attempted to leverage

this property in work on transformation-based software de-

velopment in which declarative specifications are system-

atically transformed to programs (e.g., see [7]). One of the

valuable insights gained from these attempts is that automa-

tion of significant aspects of the transformation of a high-

level specification to an implementation requires encod-

ing domain-specific knowledge in the transformation tools.

Challenges associated with developing and using domain-

specific technologies will be discussed in Section 5.

The process of analyzing a problem, conceiving a so-

lution, and expressing a solution in a high-level program-

ming language can be viewed as an implicit form of model-

ing and thus one can argue that software development is

essentially a model-based problem solving activity. The

mental models of the system held by developers while cre-

ating programs may be shared with others using informal

“whiteboard” sketches or more formally as statements (in-

cluding diagrams) in a modeling language. These mental

models evolve as a result of discussions with other develop-

ers, changes in requirements, and errors identified in code

tests, and they guide the development of handcrafted code.

Writing source code is a modeling activity because the de-

veloper is modeling a solution using the abstractions pro-

vided by a programming language.

Given that the technical aspects of software development

are primarily concerned with creating and evolving models,

1taken from a presentation at the ENSIETA Summer School on Model-

Driven Engineering of Embedded Systems, September 2004

questions about whether we should or should not use mod-

els seem superfluous. A more pertinent question is “Can

modeling techniques be more effectively leveraged during

software development?”. From this perspective, the re-

search question that should motivate MDE research on cre-

ation and use of development models is the following:

How can modeling techniques be used to tame

the complexity of bridging the gap between the

problem domain and the software implementation

domain?

Henceforth, we will refer to this gap as the problem-

implementation gap.

We propose that MDE research on runtime models focus

on the following research questions:

• How can models be cost-effectively used to manage

executing software? Management can involve mon-

itoring software behavior and the operating context,

and adapting software so that it can continue to pro-

vide services when changes are detected in operating

conditions.

• How can models be used to effect changes to running

systems in a controlled manner? Research in this re-

spect will focus on how models can be used as in-

terfaces between running systems and change agents,

where a change agent can be a human developer or a

software agent.

There is currently very little work on the runtime modeling

questions and thus there is very little research experience

that can be used to bound possible solutions. We discuss

some of the challenges we envisage in Section 7.3, but this

paper focuses on development models primarily because

current MDE research provides significant insights into as-

sociated challenges and problems.

3. MDE Research Concerns

MDE research on development models focuses on de-

veloping techniques, methods, processes and supporting

tools that effectively narrow the problem-implementation

gap. Exploring the nature of the problem-implementation

gap can yield insights into the problems and challenges that

MDE researchers face.

3.1. Bridging the Gap

A problem-implementation gap exists when a developer

implements software solutions to problems using abstrac-

tions that are at a lower level than those used to express the

problem. In the case of complex problems, bridging the gap

using methods that rely almost exclusively on human effort

will introduce significant accidental complexities [60].

The introduction of technologies that effectively raise the

implementation abstraction level can significantly improve

productivity and quality with respect to the types of soft-

ware targeted by the technologies. The introduction and

successful use of the technologies will inevitably open the

door to new software opportunities that are acted upon. The

result is a new generation of more complex software sys-

tems and associated software development concerns. For

example, the introduction of middleware technologies, cou-

pled with improvements in network and mobile technolo-

gies, has made it possible to consider the development of

more complex distributed systems involving fixed and mo-

bile elements.

The growing complexity of newer generations of soft-

ware systems can eventually overwhelm the available im-

plementation abstractions, resulting in a widening of the

problem-implementation gap. The widening of the gap

leads to dependence on experts who have built up an arsenal

of mentally-held development patterns (a.k.a “experience”)

to cope with growing complexity.

Growing software complexity will eventually over-

whelm the mentally-held experience and the need for tech-

nologies that leverage explicit forms of experience (e.g.,

domain-specific design patterns) to further raise the level

of abstraction at which software is developed will become

painfully apparent. The development of such technologies

will result in work on even more complex software sys-

tems, thus triggering another cycle of work on narrowing

the problem-implementation gap.

The preceding discussion indicates that research on nar-

rowing the problem-implementation gap tends to progress

through a series of crises-driven cycles. Each cycle results

in a significant change in the level of abstraction at which

software is developed, which then triggers attempts at build-

ing even more complex software. This characterization ac-

knowledges that software development concerns and chal-

lenges evolve with each new generation of software sys-

tems, that is, the nature of the so-called “software crisis”

evolves.

To cope with the ever-present problem of growing soft-

ware complexity MDE researchers need to develop tech-

nologies that developers can use to generate domain-

specific software development environments. These envi-

ronments should consist of languages and tools that are tai-

lored to the target classes of applications. Developing such

technologies requires codifying knowledge that reflects a

deep understanding of the common and variable aspects of

the gap bridging process. Such an understanding can be

gained only through costly experimentation and systematic

accumulation and examination of experience. Developing

such technologies is thus a wicked problem.

While it may not be possible to fully achieve the

MDE vision, close approximations can significantly im-

prove our ability to manage the problem-implementation

gap. We see no alternative to developing close approxima-

tions other than through progressive development of tech-

nologies, where each new generation of technologies fo-

cuses on solving the problems and minimizing the acci-

dental complexities arising from use of older generations

of technologies.

The importance of industrial participation on MDE re-

search should not be underestimated. Industrial feedback

on techniques and technologies developed within academia

is needed to gain a deeper understanding of development

problems.

3.2. A Classification of MDE Challenges

The major challenges that researchers face when at-

tempting to realize the MDE vision can be grouped into the

following categories:

• Modeling language challenges: These challenges arise

from concerns associated with providing support for

creating and using problem-level abstractions in mod-

eling languages, and for rigorously analyzing models.

• Separation of concerns challenges: These challenges

arise from problems associated with modeling sys-

tems using multiple, overlapping viewpoints that uti-

lize possibly heterogeneous languages.

• Model manipulation and management challenges:

These challenges arise from problems associated with

(1) defining, analyzing, and using model transforma-

tions, (2) maintaining traceability links among model

elements to support model evolution and roundtrip en-

gineering, (3) maintaining consistency among view-

points, (4) tracking versions, and (5) using models dur-

ing runtime.

Section 5 to Section 7 present some of the major challenges

in these categories.

3.3. Relationship with Software Engineer-
ing Research

Realizing the MDE vision of software development will

require evolving and integrating research results from dif-

ferent software engineering areas. There are obvious con-

nections with work on requirements, architecture and de-

tailed design modeling, including work on viewpoint con-

flict analysis and on feature interaction analysis. Research

in these areas have produced modeling concepts, languages,

and techniques that address specific concerns in the areas.

MDE research should leverage and integrate the best re-

sults from these areas and build synergistic research links

with the communities. For example, the challenges faced

by researchers in the software architecture area (see [58])

are closely related to MDE challenges and there have been

beneficial interactions across the two communities.

Work on formal specification techniques (FSTs) is par-

ticularly relevant to MDE. Modeling languages must have

formally defined semantics if they are to be used to cre-

ate analyzable models. Work on developing formal analysis

techniques for models utilizes and builds on work in the

formal specification research area. While it is currently the

case that popular modeling languages have poorly defined

semantics, there is a growing realization that MDE requires

semantic-based manipulation of models and thus appropri-

ate aspects of modeling languages must be formalized.

It may seem that MDE research can be subsumed by FST

research. A closer examination of research results and goals

in these areas suggests that this is not the case. The FSTs

that have been developed thus far use languages that allow

developers to describe systems from a very small number

of viewpoints. For example, Z [53] describes systems from

data and operation viewpoints, model checking techniques

(e.g., see [49]) are applicable to models created using a state

transition viewpoint, and petri nets [48] can be used to de-

scribe systems from a control flow viewpoint. It is well

known that the more expressive a modeling language is, the

more intractable the problem of developing mechanical se-

mantic analysis techniques becomes. It should not be sur-

prising then that FSTs restrict their viewpoints.

In MDE, a model of a complex system consists of many

views created using a wide variety of viewpoints. Further-

more, FSTs focus on describing functionality, while MDE

approaches aim to provide support for modeling structural

and functional aspects as well as system attributes (some-

times referred to as “non-functional” aspects).

The differences in research scopes indicate that MDE

provides a context for FST research. There is often a need

to formally analyze a subset of the views in an MDE model.

Members of the FST and the MDE communities need to

collaborate to produce formal techniques that can be inte-

grated with rich modeling languages.

The following gives some of the other major software

engineering research areas that influence MDE work:

• Systematic reuse of development experience: Leverag-

ing explicit forms of development experience to indus-

trialize software development has been the focus of re-

search in the systematic reuse community for over two

decades (e.g., see [4, 6, 21, 29, 33]). The term “soft-

ware factory” was used in the systematic reuse com-

munity to refer to development environments that ef-

fectively leveraged reusable assets to improve produc-

tivity and quality [14]. The term is now being used by

Microsoft as a label for its MDE initiative (see Sec-

tion 4). Research on design patterns, domain-specific

languages, and product-line architectures are particu-

larly relevant to work on MDE (e.g., see [38]).

• Systematic software testing: Work on systematic test-

ing of programs is being leveraged in work on dy-

namically analyzing models. For example, there is

work on defining test criteria for UML models that are

UML-specific variations of coverage criteria used at

the code level [3], and tools that support systematic

testing of models [18]. There is also work on generat-

ing code level tests from models that builds upon work

in the specification-based code testing area (e.g., see

[10, 43]).

• Compilation technologies: Work on optimizing com-

pilers may be leveraged by MDE researchers working

on providing support for generating lean and highly

optimized code. Work on incremental compilation

may also be leveraged in research on incremental code

generation.

It can be argued that MDE is concerned with providing au-

tomated support for software engineering, and thus falls in

the realm of computer-aided software engineering (CASE)

research. MDE can and should be viewed as an evolution

of early CASE work. MDE researchers are (knowingly or

unknowingly) building on the experience and work of early

CASE researchers. Unlike early CASE research, which fo-

cused primarily on the use of models for documenting sys-

tems (e.g. see [17, 19, 24]), MDE research is concerned

with broadening the role of models so that they become the

primary artifacts of software development. This broadening

of the scope is reflected in the range of software engineering

research areas that currently influence MDE research.

The need to deal with the complexity of developing and

operating adaptive software provides another opportunity

for the use of MDE techniques. In this paper, MDE en-

compasses work that seeks to develop a new generation

of CASE environments that address the entire life-cycle of

software, from conceptualization to retirement. It is con-

cerned not only with the use of models for engineering com-

plex software, but also with the use of models during the

execution of software.

The term “model driven” may be considered by some to

be redundant in MDE given that engineering of software in-

variably involves modeling. While this may be true, it is

currently the case that software developers seldom create

and effectively utilize models other than code. The term

“model driven” in MDE is used to emphasize a shift away

from code level abstractions. Only when modeling at var-

ious levels of abstraction is widely viewed as an essential

part of engineering software should the “model driven” term

be dropped. The availability of good modeling tools can

help in this respect.

4. Major Model Driven Engineering Initiatives

In this section we present an overview of some major

MDE initiatives that are currently shaping the research land-

scape and discuss the relationship between MDE and other

software engineering research areas.

4.1. Model Driven Architecture

The OMG, in its role as an industry-driven organiza-

tion that develops and maintains standards for developing

complex distributed software systems, launched the Model

Driven Architecture (MDA) as a framework of MDE stan-

dards in 2001 [60, 51]. The OMG envisages MDA tech-

nologies that will provide the means to more easily inte-

grate new implementation infrastructures into existing de-

signs, generate significant portions of application-specific

code, configuration files, data integration bridges and other

implementation infrastructure artifacts from models, more

easily synchronize the evolution of models and their imple-

mentations as the software evolves, and rigorously simulate

and test models.

MDA advocates modeling systems from three view-

points: computation independent, platform independent,

and platform specific viewpoints. The computation inde-

pendent viewpoint focuses on the environment in which the

system of interest will operate in and on the required fea-

tures of the systems. Modeling a system from this view-

point results in a computation independent model (CIM).

The platform independent viewpoint focuses on the aspects

of system features that are not likely to change from one

platform to another. A platform independent model (PIM)

is used to present this viewpoint. The OMG defines a plat-

form as “a set of subsystems and technologies that provide

a coherent set of functionality through interfaces and speci-

fied usage patterns”. Examples of platforms are technology-

specific component frameworks such as CORBA and J2EE,

and vendor-specific implementations of middleware tech-

nologies such as Borland’s VisiBroker, IBM’s WebSphere,

and Microsoft’s .NET.

Platform independence is a quality of a model that is

measured in degrees [60]. The platform specific viewpoint

provides a view of a system in which platform specific de-

tails are integrated with the elements in a PIM. This view of

a system is described by a platform specific model (PSM).

Separation of platform specific and platform independent

details is considered the key to providing effective support

for migrating an application from one implementation plat-

form to another.

The pillars of MDA are the Meta Object Facility (MOF),

a language for defining the abstract syntax of modeling lan-

guages [44], the UML [59], and the Query, View, Transfor-

mation standard (QVT), a standard for specifying and im-

plementing model transformations (e.g., PIM to PSM trans-

formations) [46].

4.2. Software Factories

Information about the Microsoft Software Factory initia-

tive became widely available when a book on the topic was

published in 2004 [28]. The initiative focuses on the devel-

opment of MDE technologies that leverage domain-specific

knowledge to automate software modeling tasks.

Software Factories tackle the complexity of bridging the

gap by providing developers with a framework for pro-

ducing development environments consisting of domain-

specific tools that help automate the transformation of ab-

stract models to implementations. Each development en-

vironment is defined as a graph of viewpoints, where each

viewpoint describes systems in the application domain from

the perspective of some aspect of the development lifecycle

(e.g., from a requirements capture or a database design per-

spective). Reusable forms of development experience (e.g.,

patterns, templates, guidelines, transformations) are associ-

ated with each viewpoint, and thus accessible in the context

of that viewpoint. This reduces the need to search for ap-

plicable forms of reusable experience, and enables context-

based validation, and guidance delivery and enactment [28].

The relationships between viewpoints define semantic

links between elements in the viewpoints. For example, the

relationships can be used to relate work carried out in one

development phase with work performed in another phase,

or to relate elements used to describe an aspect of the sys-

tem with elements used to describe a different aspect. In

summary, the Software Factory initiative is concerned with

developing technologies that can be used to create develop-

ment environments for a family of applications.

There are three key elements in a realization of the Soft-

ware Factory vision:

• Software factory schema: This schema is a graph of

viewpoints defined using Software Factory technolo-

gies. It describes a product line architecture in terms

of DSMLs to be used, and the mechanisms to be used

to transform models to other models or to implemen-

tation artifacts.

• Software factory template: A factory template pro-

vides the reusable artifacts, guidelines, samples, and

custom tools needed to build members of the product

family.

• An extensible development environment: To real-

ize the software factory vision, a framework that can

be configured using the factory schema and template

to produce a development environment for a family of

products is needed. The Microsoft Visual Studio Team

System has some elements of this framework and there

is ongoing work on extending its capabilities.

4.3. Other MDE Approaches

Other notable work in the domain-specific model-

ing vein is the work of Xactium on providing sup-

port for engineering domain-specific languages (see

http://www.xactium.com), and the work at Vanderbilt Uni-

versity on the Generic Modeling Environment (GME) (see

http://www.isis.vanderbilt.edu/projects/gme/). Both ap-

proaches are based on the MOF standard of MDA and pro-

vide support for building MOF-based definitions of domain-

specific modeling languages. The MOF is used to build

models, referred to as metamodels, that define the abstract

syntax of modeling languages. While these approaches uti-

lize MDA standards they do not necessarily restrict their

modeling viewpoints to the CIM, PIM and PSM. The Xac-

tium approach, in particular, is based on an adaptive tool

framework that uses reflection to adapt a development en-

vironment as its underlying modeling language changes: If

extensions are made to the modeling language the environ-

ment is made aware of it through reflection and can thus

adapt.

A major MDE initiative from academia is Model Inte-

grated Computing (MIC) [57]. The MIC initially started out

with a focus on developing support for model driven devel-

opment of distributed embedded real-time systems. There

is now work taking place within the OMG to align the MIC

and MDA initiatives (e.g., see http://mic.omg.org/).

5. Modeling Language Challenges

The following are two major challenges that architects of

MDE modeling languages face:

• The abstraction challenge: How can one provide sup-

port for creating and manipulating problem-level ab-

stractions as first-class modeling elements in a lan-

guage?

• The formality challenge: What aspects of a modeling

language’s semantics need to be formalized in order

to support formal manipulation, and how should the

aspects be formalized?

Two schools of thought on how to tackle the abstraction

challenge have emerged in the MDE community:

• The Extensible General-Purpose Modeling Language

School: The abstraction challenge is tackled by pro-

viding a base general-purpose language with facilities

to extend it with domain-specific abstractions (i.e., ab-

stractions that are specific to a problem domain).

• The Domain Specific Modeling Language School: The

challenge is tackled by defining domain specific lan-

guages using meta-metamodeling mechanisms such as

the OMG’s MOF. The focus of work in this area is on

providing tool support for engineering modeling lan-

guages. The products of Xactium, MetaCase, and Mi-

crosoft provide examples of current attempts at pro-

ducing such tools.

It is important to note that the research ideas, tech-

niques and technologies from these two schools are not

mutually exclusive. Extensible modeling languages and

meta-metamodeling technologies can both play vital roles

in an MDE environment. We envisage that research in both

schools will provide valuable insights and research results

that will lead to a convergence of ideas.

5.1. Learning from the UML Experience:
Managing Language Complexity

“It is easier to perceive error than to find truth,

for the former lies on the surface and is easily

seen, while the latter lies in the depth, where few

are willing to search for it.” – Johann Wolfgang

von Goethe

An extensible, general-purpose modeling language

should provide, at least, (1) abstractions above those avail-

able at the code level that support a wide variety of con-

cepts in known problem domains, and (2) language exten-

sion mechanisms that allow users to extend or specialize

the language to provide suitable domain-specific abstrac-

tions for new application domains.

The Extensible Modeling Language school is exempli-

fied by work on the UML. There are significant benefits to

having a standardized extensible general-purpose modeling

language such as the UML. For example, such a language

facilitates communication across multiple application do-

mains and makes it possible to train modelers that can work

in multiple domains.

The UML is also one of the most widely critiqued mod-

eling languages (e.g., see [22, 31]). Despite its problems,

there is no denying that the UML standardization effort is

playing a vital role as a public source of insights into prob-

lems associated with developing practical software model-

ing languages.

A major challenge that is faced by developers of exten-

sible general-purpose modeling language is identifying a

small base set of modeling concepts that can be used to

express a wide range of problem abstractions. The UML

standardization process illustrates the difficulty of converg-

ing on a small core set of extensible concepts. One of the

problems is that there is currently very little analyzable

modeling experience that can be used to distill a small core

of extensible modeling concepts. One way to address this

problem is to set up facilities for collecting, analyzing and

sharing modeling experience, particularly from industry.

There are a number of initiatives that seek to develop and

maintain a repository of modeling experience, for example

PlanetMDE (see http://planetmde.org/) and REMODD (see

http://lists.cse.msu.edu/cgi-bin/mailman/listinfo/remodd).

Collecting relevant experience from industry will be

extremely challenging. Assuring that Intellectual Property

rights will not be violated and overcoming the reluctance

of organizations to share artifacts for fear that analysis will

reveal embarrassing problems are some of the challenging

problems that these initiatives must address.

The complexity of languages such as the UML is re-

flected in their metamodels. Complex metamodels are prob-

lematic for developers who need to understand and use

them. These include developers of MDE tools and trans-

formations. The complexity of metamodels for standard

languages such as the UML also presents challenges to the

groups charged with evolving the standards [22]. An evo-

lution process in which changes to a metamodel are made

and evaluated manually is tedious and error prone. Manual

techniques make it difficult to (1) establish that changes are

made consistently across the metamodel, (2) determine the

impact changes have on other model elements, and (3) de-

termine that the modified metamodel is sound and complete.

It is important that metamodels be shown to be sound and

complete. Conformance mechanisms can then be developed

and used by tool vendors to check that their interpretations

of rules in the metamodel are accurate.

Tools can play a significant role in reducing the acci-

dental complexities associated with understanding and us-

ing large metamodels. For example, a tool that extracts

metamodel views of UML diagram types consisting only

of the concepts and relationships that appear in the dia-

grams can help one understand the relationships between

visible elements of a UML diagram. A more flexible and

useful approach is to provide tools that allow developers to

query the metamodel and to extract specified views from

the metamodel. Query/Extraction tools should be capable

of extracting simple derived relationships between concepts

and more complex views that consist of derived relation-

ships among many concepts. Metamodel users can use such

tools to better understand the UML metamodel, and to ob-

tain metamodel views that can be used in the specification

of patterns and transformations. Users that need to extend

or evolve the UML metamodel can also use such tools to

help determine the impact of changes (e.g., a query that re-

turns a view consisting of all classes directly or indirectly

related to a concept to be changed in a metamodel can pro-

vide useful information) and to check that changes are con-

sistently made across the metamodel. The development of

such tools is not beyond currently available technologies.

Current UML model development tools have some support

for manipulating the UML metamodel that can be extended

with query and extraction capabilities that are accessible by

users.

Another useful tool that can ease the task of using the

UML metamodel is one that takes a UML model and pro-

duces a metamodel view that describes its structure. Such a

tool can be used to support compliance checking of models.

5.2. Learning from the UML Experience:
Extending Modeling Languages

The UML experience provides some evidence that defin-

ing extension mechanisms that extend more than just the

syntax of a language is particularly challenging. UML 2.0

supports two forms of extensions: Associating particular

semantics to specified semantic variation points, and using

profiles to define UML variants.

A semantic variation point is a semantic aspect of a

model element that the UML allows a user to define. For

example, the manner in which received events are handled

by a state machine before processing is a semantic varia-

tion point for state machines: A modeler can decide to use

a strict queue mechanism, or another suitable input han-

dling mechanism. A problem with UML semantic varia-

tion points is that modelers are responsible for defining and

communicating the semantics to model readers and tools

that manipulate the models (e.g., code generators). UML

2.0 does not provide default semantics or a list of possi-

ble variations, nor does it formally constrain the semantics

that can be plugged into variation points. This can lead to

the following pitfalls: (1) Users can unwittingly assign a

semantics that is inconsistent with the semantics of related

concepts; and (2) failure to communicate a particular se-

mantics to model readers and to tools that analyze models

can lead to misinterpretation and improper analysis of the

models. The challenge here is to develop support for defin-

ing, constraining and checking the semantics plugged into

semantic variation points.

Profiles are the primary mechanism for defining domain-

specific UML variants. A UML profile describes how UML

model elements are extended to support usage in a particu-

lar domain. For example, a profile can be used to define a

variant of the UML that is suited for modeling J2EE soft-

ware systems. UML model elements are extended using

stereotypes and tagged values that define additional prop-

erties that are to be associated with the elements. The ex-

tension of a model element introduced by a stereotype must

not contradict the properties associated with the model ele-

ment. A profile is a lightweight extension mechanism and

thus cannot be used to add new model elements or delete

existing model elements. New relationships between UML

model elements can be defined in a profile though.

The OMG currently manages many profiles including

the Profile for Schedulability, Performance and Time and

a system modeling profile called SysML. Unfortunately,

the UML 2.0 profile mechanism does not provide a means

for precisely defining semantics associated with extensions.

For this reason, profiles cannot be used in their current form

to develop domain-specific UML variants that support the

formal model manipulations required in an MDE environ-

ment. The XMF-Mosaic tool developed by Xactium takes a

promising approach that is based on the use of meta-profiles

and a reflective UML modeling environment that is able to

adapt to extensions made to the UML.

5.3. Domain Specific Modeling Environ-
ments

A domain specific language consists of constructs that

capture phenomena in the domain it describes. Domain spe-

cific languages (DSL) cover a wide range of forms [15].

A DSL may be used for communication between software

components (e.g., XML-dialects), or it may be embedded in

a wizard that iteratively asks a user for configuration infor-

mation.

DSLs can help bridge the problem-implementation gap,

but their use raises new challenges:

• Enhanced tooling challenge: Each DSL needs its own

set of tools (editor, checker, analyzers, code genera-

tors). These tools will need to evolve as the domain

evolves. Building and evolving these tools using man-

ual techniques can be expensive. A major challenge for

DSL researchers is developing the foundation needed

to produce efficient meta-toolsets for DSL develop-

ment.

• The DSL-Babel challenge: The use of many DSLs can

lead to significant interoperability, language-version

and language-migration problems. This problem poses

its own challenges with respect to training and commu-

nication across different domains. DSLs will evolve

and will be versioned and so must the applications that

are implemented using the DSLs. Furthermore, differ-

ent parts of the same system may be described using

different DSLs and thus there must be a means to relate

concepts across DSLs and a means to ensure consis-

tency of concept representations across the languages.

Sound integration of DSLs will probably be as hard to

achieve as the integration of various types of diagrams

in a UML model.

The developers responsible for creating and evolving

DSL tools will need to have intimate knowledge of the do-

main and thus must closely interact with application devel-

opers. Furthermore, the quality of the DSL tools should be

a primary concern, and quality assurance programs for the

DSL tooling sector of an organization should be integrated

with the quality assurance programs of the application de-

velopment sectors. These are significant process and man-

agement challenges.

In addition to these challenges many of the challenges

associated with developing standardized modeling lan-

guages apply to DSLs.

5.4. Developing Formal Modeling Lan-
guages

Formal methods tend to restrict their modeling view-

points in order to provide powerful analysis, transformation

and generation techniques. A challenge is to integrate for-

mal techniques with MDE approaches that utilize modeling

languages with a rich variety of viewpoints. A common ap-

proach is to translate a modeling view (e.g. a UML class

model) to a form that can be analyzed using a particular

formal technique (e.g., see [42]). For example, there are a

number of approaches to transforming UML design views

to representations that can be analyzed by model checking

tools. Challenges here are, to (a) ensure that the translation

is semantically correct, and (b) hide the complexities of the

target formal language and tools from the modeler. Meet-

ing the latter challenge involves automatically translating

the analysis results to a form that utilizes concepts in the

source modeling language.

Another approach would be to integrate the analy-

sis/generation algorithms with the existing modeling lan-

guage. This is more expensive, but would greatly enhance

the applicability of an analysis tool to an existing modeling

language.

In the formal methods community the focus is less on

developing new formal languages and more on tuning ex-

isting notations and techniques. MDE languages provide a

good context for performing such tuning.

5.5. Analyzing Models

If models are the primary artifacts of development then

one has to be concerned with how their quality is evaluated.

Good modeling methods should provide modelers with cri-

teria and guidelines for developing quality models. These

guidelines can be expressed in the form of patterns (e.g.,

Craig Larman’s GRASP patterns), proven rules of thumb

(e.g., “minimize coupling, maximize cohesion”, “keep in-

heritance depth shallow”), and exemplar models. The real-

ity is that modelers ultimately rely on feedback from experts

to determine “goodness” of their models. For example, in

clasrooms the instructors play the role of expert modelers

and students are apprentices. From the student perspective,

the grade awarded to a model reflects its “goodness”. The

state of the practice in assessing model quality provides ev-

idence that modeling is still in the craftsmanship phase.

Research on rigorous assessment of model quality has

given us a glimpse of how we can better evaluate model

quality. A number of researchers are working on developing

rigorous static analysis techniques that are based on well-

defined models of behaviors. For example, there is consid-

erable work on model-checking of modeled behavior (e.g.,

see [39]).

Another promising area of research is systematic model

testing. Systematic code testing involves executing pro-

grams on a select set of test inputs that satisfy some test cri-

teria. These ideas can be extended to the modeling phases

when executable forms of models are used. Model testing

is concerned with providing modelers with the ability to an-

imate or execute the models they have created in order to

explore the behavior they have modeled.

The notion of model testing is not new. For example,

SDL (Specification and Description Language) tools pro-

vide facilities for exercising the state-machine based mod-

els using an input set of test events. Work on executable

variants of the UML also aims to provide modelers with

feedback on the adequacy of their models. More recently a

small, but growing, number of researchers have begun look-

ing at developing systematic model testing techniques. This

is an important area of research and helps pave the way for

more effective use of models during software development.

There may be lessons from the systematic code testing

community that can be applied, but the peculiarities of mod-

eling languages may require the development of innovative

approaches. In particular, innovative work on defining ef-

fective test criteria that are based on coverage of model el-

ements and on the generation of model-level test cases that

provide desired levels of coverage is needed.

The ability to animate models can help one better un-

derstand modeled behavior. Novices and experienced de-

velopers will both benefit from the visualization of mod-

eled behavior provided by model animators. Model anima-

tion can give quick visual feedback to novice modelers and

can thus help them identify improper use of modeling con-

structs. Experienced modelers can use model animation to

understand designs created by other developers better and

faster.

It may also be useful to look at how other engineering

disciplines determine the quality of their models. Engineers

in other disciplines typically explore answers to the follow-

ing questions when determining the adequacy of their mod-

els: Is the model a good predictor of how the physical ar-

tifact will behave? What are the assumptions underlying

the model and what impact will they have on actual behav-

ior? The answer to the first question is often based on ev-

idence gathered from past applications of the model. Evi-

dence of model fidelity is built up by comparing the actual

behavior of systems built using the models with the behav-

ior predicted by the models. Each time engineers build a

system the experience gained either reinforces their confi-

dence in the predictive power of the models used or the ex-

perience is used to improve the predictive power of models.

Answers to the second question allow engineers to identify

the limitations of analysis carried out using the models and

develop plans for identifying and addressing problems that

arise when the assumptions are violated.

Are similar questions applicable to software models?

There are important differences between physical and soft-

ware artifacts that one needs to take into consideration

when applying modeling practices in other engineering dis-

ciplines to software, but there may be some experience that

can be beneficially applied to software modeling.

6. Supporting Separation of Design Concerns

Developers of complex software face the challenge of

balancing multiple interdependent, and sometimes con-

flicting, concerns in their designs. Balancing perva-

sive dependability concerns (e.g., security and fault tol-

erance concerns) is particularly challenging: The man-

ner in which one concern is addressed can limit how

other concerns are addressed, and interactions among soft-

ware features2 that address the concerns can give rise

to undesirable emergent behavior. Failure to identify

and address faults arising from interacting dependabil-

ity features during design can lead to costly system fail-

ures. For example, the first launch of the space shuttle

Columbia was delayed because “(b)ackup flight software

failed to synchronize with primary avionics software sys-

tem” (see http://science.ksc.nasa.gov/shuttle/missions/sts-

1/mission-sts-1.html). In this case, features that were built

in to address fault-tolerance concerns did not interact as re-

quired with the primary functional features. Design mod-

eling techniques should allow developers to separate these

features so that their interactions can be analyzed to identify

faulty interactions and to better understand how emergent

behavior arises.

Modeling frameworks such as the MDA advocate mod-

eling systems using a fixed set of viewpoints (e.g., the CIM,

PIM, and PSM MDA views). Rich modeling languages

such as the UML provide good support for modeling sys-

tems from a fixed set of viewpoints. Concepts used in a

UML viewpoint are often dependent on concepts used in

other viewpoints. For example, participants in a UML in-

teraction diagram must have their classifiers (e.g., classes)

defined in a static structural model. Such dependencies are

2In this paper, a feature is a logical unit of behavior.

specified in the language metamodel and thus the meta-

model should be the basis for determining consistency of

information across system views. Unfortunately, the size

and complexity of the UML 2.0 metamodel makes it ex-

tremely difficult for tool developers and researchers to fully

identify the dependencies among concepts, and to deter-

mine whether the metamodel captures all required depen-

dencies. In the previous section we discussed the need for

tools that query and navigate metamodels of large languages

such as the UML. These tools will also make it easier to

develop mechanisms that check the consistency of informa-

tion across views.

The fixed set of viewpoints provided by current model-

ing languages and frameworks such as the MDA and UML

are useful, but more is needed to tackle the complexity of

developing software that address pervasive interdependent

concerns. The need for better separation of concerns mech-

anisms arises from the need to analyze and evolve inter-

acting pervasive features that address critical dependability

concerns. A decision to modularize a design based on a

core set of functional concerns can result in the spreading

and tangling of dependability features in a design. The tan-

gling of the features in a design complicates activities that

require understanding, analyzing, evolving or replacing the

crosscutting features. Furthermore, trade-off analysis tasks

that require the development and evaluation of alternative

forms of features are difficult to carry out when the features

are tangled and spread across a design. These crosscutting

features complicate the task of balancing dependability con-

cerns in a design through experimentation with alternative

solutions.

Modeling languages that provide support for creating

and using concern-specific viewpoints can help alleviate the

problems associated with crosscutting features. Develop-

ers can use a concern-specific viewpoint to create a design

view that describes how the concern is addressed in a de-

sign. For example, developers can use an access control

security viewpoint to describe access control features at var-

ious levels of abstraction.

A concern-specific viewpoint should, at least, consist of

(1) modeling elements representing concern-specific con-

cepts at various levels of abstractions, and (2) guidelines

for creating views using the modeling elements. To facili-

tate their use, the elements can be organized as a system of

patterns (e.g., access control patterns) or they can be used

to define a domain-specific language (DSL) for the concern

space. For example, a DSL for specifying security poli-

cies can be used by developers to create views that describe

application-specific security policies. Supporting the DSL

approach requires addressing the DSL challenges discussed

in Section 5. Furthermore, the need to integrate views to

obtain a holistic view of a design requires the development

of solutions to the difficult problem of integrating views

expressed in different DSLs. One way to integrate these

views is to define a metamodel that describes the relation-

ships among concepts defined in the different viewpoints.

An interesting research direction in this respect concerns

the use of ontolgies to develop such metamodels. An ontol-

ogy describes relationships among concepts in a domain of

discourse. One can view a metamodel as an ontology and

thus we should be able to leverage related work on integrat-

ing ontologies in work on integrating views described using

different DSLs.

Another approach to supporting the definition and use of

concept-specific viewpoints is based on the use of aspect-

oriented modeling (AOM) techniques. These approaches

describe views using general-purpose modeling languages

and provide mechanisms for integrating the views. In this

section we discuss the AOM approach in more detail and

present some of the major challenges that must be met to

realize its research goals.

6.1. Separating Concerns using Aspect Ori-
ented Modeling Techniques

Work on separating crosscutting functionality at the pro-

gramming level has led to the development of aspect-

oriented programming (AOP) languages such as Aspect-J

[35]. Work on modeling techniques that utilize aspect con-

cepts can be roughly partitioned into two categories: Those

that provide techniques for modeling aspect-oriented pro-

gramming (AOP) concepts [36], and those that provide re-

quirements and design modeling techniques that tackle the

problem of isolating features in modeling views and ana-

lyzing interactions across the views. Work in the first cate-

gory focuses on modeling AOP concepts such as join points

and advise using either lightweight or heavyweight exten-

sions of modeling languages such as the UML (e.g., see

[13, 37, 41, 56, 55]). These approaches lift AOP concepts

to the design modeling level and thus ease the task of trans-

forming design models to AOP programs. On the other

hand, these approaches utilize concepts that are tightly cou-

pled with program-level abstractions supported by current

AOP languages.

Approaches in the second category (e.g., see [1, 5, 12,

23, 47]) focus more on providing support for separating

concerns at higher levels of abstractions. We refer to ap-

proaches in this category as AOM approaches. The Theme

approach and the AOM approach developed by the Col-

orado State University (CSU) AOM group exemplify work

on AOM. In these approaches, aspects are views that de-

scribe how a concern is addressed in a design. These views

are expressed in the UML and thus consist of one or more

models created using the UML viewpoints.

The model elements in aspect and primary models pro-

vide partial views of design concepts. For example, a class

representing a replicated resource in a class model of an

aspect describing a replication fault tolerance feature will

consist only of attributes and operations needed to describe

replication and fault tolerance behavior, while the class rep-

resentation of the resource in the primary model will include

attributes and operations describing the core functionality of

the resource. A more holistic view of the resource concepts

is obtained by merging its partial representations in the as-

pect and primary models.

AOM approaches provide support for composing aspect

and primary models to obtain an integrated design view

that can be used to (1) better understand the interactions

across the composed design views, (2) analyze interactions

to identify conflicts and undesirable emergent behaviors,

and (3) generate non-aspect oriented implementations in

model-driven engineering (MDE) environments.

Current composition techniques are based on rules for

syntactically matching elements across aspect and primary

models, which makes it possible to fully automate the com-

position. The matching rules use syntactic properties (e.g.,

model element name) to determine whether two model el-

ements represent the same concept or not. For example, a

matching rule stating that classes with the same name repre-

sent the same concept can be used to merge classes with the

same name but different attributes and operations. The com-

posed class will contain the union of the attributes and op-

erations found in the classes that are merged. This reliance

on an assumed correspondence between syntactic properties

and the concepts represented by model elements can lead to

conflict and other problems when it does not exist. There

is a need to take into consideration semantic properties, ex-

pressed as constraints or as specifications of behavior, when

matching model elements.

Consideration of semantic properties is also needed to

support verifiable composition. Composition is carried out

in a verifiable manner when it can be established that the

model it produces has specified properties. A composition

tool should be able to detect when it has failed to establish

or preserve a specified property and report this to the mod-

eler. Such checks cannot be completely automated, but it

may be possible to provide automated support for detecting

particular types of semantic conflicts and other interaction

problems.

Another major challenge faced by AOM researchers is

concerned with integrating AOM techniques into the soft-

ware development process. Evolution and transformation

of models consisting of multiple interrelated views becomes

more complex if the necessary infrastructure for managing

the views is not present. The challenges associated with de-

veloping such an infrastructure are discussed in Section 7.2.

6.2. Related Research on Requirements
Views and Feature Interactions

Work on requirements and architecture viewpoints [52],

and on the feature interaction problem [11] can provide

valuable insights that can be used to understand the chal-

lenges of separating design concerns and of analyzing in-

teractions. The terms views and viewpoints tend to be as-

sociated with work on requirements analysis, but they can

also be applied to designs. A design concern such as access

control can be considered to be a design viewpoint. Such a

viewpoint can provide concepts, patterns or a language that

can be used to create design views that describe features

addressing the design concern.

Work on feature interactions has tended to focus on fea-

tures that provide services of value to software users. For

example, in the telecommunication industry a feature is a

telecommunication service such as call-forwarding, and re-

search on the feature interaction problem in this domain is

concerned with identifying undesirable emergent behaviors

that arise when these services interact. There is a growing

realization that the feature interaction problem can appear

in many forms in software engineering. The problem of

analyzing interactions among features that address depend-

ability and other design concerns is another variant of the

feature interaction problem. One can also consider work on

analyzing interactions across views as a form of the feature

interaction problem.

Collaborative research involving members from the

AOM, the formal methods, the feature interaction and the

viewpoint analysis communities is needed to address the

challenging problems associated with separating concerns

and integrating overlapping views.

7. Manipulating Models

Current MDE technologies provide basic support for

storing and manipulating models. Environments typically

consist of model editors which can detect some syntactic in-

consistencies, basic support for team development of mod-

els, and limited support for transforming models. Much

more is needed if MDE is to succeed. For example, there

is a need for rigorous transformation modeling and analy-

sis techniques, and for richer repository-based infrastruc-

tures that can support a variety of model manipulations,

can maintain traceability relationships among a wide range

of models, and can better support team based development

of models. In this section we discuss some of the major

MDE challenges related to providing support for manipu-

lating and managing models. The section also includes a

discussion on the use of models to support runtime activi-

ties.

7.1. Model Transformation Challenges

A (binary) model transformation defines a relationship

between two sets of models. If one set of models is des-

ignated as a source set and the other as a target set then a

mechanism that implements such a transformation will take

the source set of models and produce the target set of mod-

els. These are called operational transformations in this

paper. Model refinement, abstraction, and refactoring are

well-known forms of operational transformations. Other

forms that will become more widely used as MDE matures

are (1) model composition in which the source models rep-

resenting different views are used to produce a model that

integrates the views, (2) model decomposition in which a

single model is used to produce multiple target models, and

(3) model translation in which a source set of models are

transformed to target models expressed in a different lan-

guage. In particular, model translations are used to trans-

form model created for one purpose to models that are better

suited for other purposes. Examples of translations can be

found in work on transforming UML models to artifacts that

can be formally analyzed using existing analysis tools. This

include work on transforming UML to formal specification

languages such as Z and Alloy, to performance models, and

to state machine representations that can be analyzed by ex-

isting model checkers.

Transformations can also be used to maintain relation-

ships among sets of models: Changes in the models in

one set trigger changes in the other sets of models in order

to maintain specified relationships. These synchronization

transformations are used to implement change synchroniza-

tion mechanisms in which changes to a model (e.g., a de-

tailed UML design model) trigger corresponding changes

in related artifacts (e.g., code generated from the UML de-

sign model).

Research on model transformations is still in its infancy

and there is very little experience that can be used to deter-

mine the worth of current approaches. The OMG’s Query,

View, Transformation (QVT) standard defines three types

of transformation languages: two declarative languages that

describe relations at different levels of abstraction, and an

operational transformation language that describes transfor-

mations in an imperative manner. In addition to the QVT,

there are a number of other proposals for transformation

languages. An informative survey of transformation lan-

guage features can be found in the paper by Czarnecki [16].

More research is needed on analyzing model transforma-

tions. The complex structure of models poses special chal-

lenges in this respect. As mentioned previously, a model is

a collection of interrelated views. The following are some

of the difficult research questions that arise from the multi-

view nature of models:

• How does one maintain consistency across views as

they are transformed? Synchronization transformation

technologies may be used here to “ripple” the results

of transformations to related views.

• How can transformations be tested? The complex

structure of the models may stretch the limits of cur-

rent formal static analysis and testing techniques. For

testing techniques, the complex structures make defi-

nition of oracles and effective coverage criteria partic-

ularly challenging.

A particular challenge faced by developers of model-

to-code transformations is integrating generated code with

handcrafted or legacy code. Current code generation tools

assume that generated code is stand-alone and provide very

little support for integration of foreign code. Integrating for-

eign and generated code is easier if they are architecturally

compatible. Unfortunately, current code generators do not

make explicit the architectural choices that are made by the

generators when they produce code and provide very lim-

ited support for affecting those choices. This makes it dif-

ficult to guarantee that a code generator will produce code

that is architecturally compatible with foreign code. The

result is that some refactoring of the generated and foreign

code may be needed, or a separate “glue” interface needs

to be developed. It may be possible to generate the needed

refactoring steps or the “glue” code given appropriate infor-

mation about the foreign and generated code. Research on

techniques for generating these artifacts will have to deter-

mine the needed information.

7.2. Model Management Challenges

In a project, many models at varying levels of abstrac-

tions are created, evolved, analyzed and transformed. Man-

ually tracking the variety of relationships among the models

(e.g., versioning, refinement, realization and dependency

relationships) adds significant accidental complexity to the

MDE development process. Current modeling tools do not

provide the support needed to effectively manage these re-

lationships.

An MDE repository must have the capability to store

models produced by a variety of development tools, and

must be open and extensible in order to support a close

approximation of the MDE vision. The repository should

(1) allow tools from a variety of vendors to manipulate

the models, (2) monitor and audit the model manipula-

tions, and (3) automatically extract information from the

audits and use it to establish, update or remove relationships

among models. Developing such a repository requires ad-

dressing difficult technical problems. Problems associated

with maintaining artifact traceability relationships are no-

toriously challenging and two decades of research on these

problems have not produced convenient solutions.

Research in the area of Mega-Modeling, in which models

are the units of manipulation, targets the problems associ-

ated with managing and maniuplating models [9]. Meta-

models play a critical role in mega-modeling: Mechanisms

that manipulate models work at the metamodel level and in-

formation about artifacts stored in a repository can be cap-

tured in their metamodels.

Metamodels need to define more than just the abstract

syntax of a language if they are to support model manage-

ment tools. For example, the UML 2.0 metamodel is a class

model in which the classes have get, set and helper func-

tions that are used only to specify the abstract syntax and

well-formedness rules. Metamodels should be able to use

the full power of modeling languages to define both syntac-

tic and semantic aspects of languages. For example, one can

define semantics that determine how models in a language

are to be transformed by including supporting operations in

the metamodel. Furthermore, the metamodel does not have

to consist only of a class model. One can use behavioral

models (e.g., activity and sequence models) to describe the

manipulations that can be carried out on models.

Tools that manipulate models can be associated with

metamodels that describe how manipulations are imple-

mented. This information can be used by MDE model

management environments to extract information needed to

maintain relationships among models that are manipulated

by the tools. The KerMeta tool is an example of a new gen-

eration of MDE tools that allows one to extend metamodels

with operations defining model manipulations [45, 61].

7.3. Supporting the use of Models During
Runtime: Opportunities and Chal-
lenges

Examples of how the runtime models can be used by dif-

ferent system stakeholders are given below:

• System users can use runtime models to observe the

runtime behavior when trying to understand a behav-

ioral phenomenon (e.g., understanding the conditions

under which transaction bottlenecks occur in a sys-

tem), and to monitor specific aspects of the runtime

environment (e.g., monitoring patterns of access to

highly-sensitive information).

• Adaptation agents can use runtime models to detect the

need for adaptation and to effect the adaptations. Ef-

fecting an adaption involves making changes to models

of the parts to be adapted and submitting the changes

to an adaptation mechanism that can interpret and per-

form the needed adaptations. Here it is assumed that

the adaptations to be performed are pre-determined.

• In more advanced systems, change agents (maintain-

ers or software agents) can use the runtime models to

correct design errors or to introduce new features to a

running system. Unlike adaptations, these changes are

not pre-determined and thus the mechanisms used to

effect the changes can be expected to be more com-

plex. These more complex mechanisms will be able to

support pre-determined adaptations as well as unantic-

ipated modifications.

Research on providing support for creating and using

runtime models is in its infancy. At the MODELS work-

shop on runtime models, Gordon Blair identified the follow-

ing research questions: What forms should runtime models

take? How can the fidelity of the models be maintained?

What role should the models play in validation of the run-

time behavior? These questions are good starting points for

research in the area.

Providing support for changing behavior during runtime

is particularly challenging. If models are to be used to ef-

fect changes to running software, research needs to focus

on how the changes can be effected in a controlled manner.

Allowing developers to change runtime behavior in an ad-

hoc manner is obviously dangerous. A model-based run-

time change interface will have to constrain how changes

are effected and provide the means to check the impact of

change before applying it to the running system.

8. Conclusions

In this paper we suggest that MDE research focus on

providing technologies that address the recurring problem

of bridging the problem-implementation gap. We also en-

courage research on the use of runtime models. The prob-

lems and challenges outlined in this paper are difficult to

overcome, and it may seem that MDE techniques are more

likely to contribute to the complexity of software develop-

ment rather than manage inherent software complexity. It is

our view that software engineering is inherently a modeling

activity, and that the complexity of software will overwhelm

our ability to effectively maintain mental models of a sys-

tem. By making the models explicit and by using tools to

manipulate, analyze and manage the models and their rela-

tionships, we are relieving significant cognitive burden and

reducing the accidental complexities associated with main-

taining mentally held models.

The web of models maintained in an MDE environment

should be a reflection of inherent software complexity. Cur-

rently, creating software models is an art and thus models

of faulty or convoluted solutions, and messy descriptions of

relatively simple solutions can be expected. These model-

ing problems will give rise to accidental complexities.

There will always be accidental complexities associated

with learning and using modeling languages and MDE tools

to develop complex software. MDE technologists should

leverage accumulated experience and insights gained from

failed and successful applications of previous MDE tech-

nologies to develop new technologies that reduce the acci-

dental complexities of the past.

To conclude the paper we present a vision of an MDE en-

vironment that, if realized, can conceivably result in order-

of-magnitude improvement in software development pro-

ductivity and quality. The vision is intentionally ambitious

and may not be attainable in its entirety. Progressively

closer approximations of the vision will have increasingly

significant effects on the effort required to develop com-

plex software. In this sense, the vision can act as a point

of reference against which MDE research progress can be

informally assessed.

In the MDE vision, domain architects will be able to

produce domain specific application development environ-

ments (DSAEs) using what we will refer to as MDE tech-

nology frameworks. Software developers will use DSAEs

to produce and evolve members of an application family. A

DSAE consists of tools to create, evolve, analyze, and trans-

form models to forms from which implementation, deploy-

ment and runtime artifacts can be generated. Models are

stored in a repository that tracks relationships across mod-

eled concepts and maintains metadata on the manipulations

that are performed on models.

Some of the other features that we envisage will be

present in a DSAE are (1) mechanisms supporting for

round-trip engineering, (2) mechanisms for synchronizing

models at different levels of abstraction when changes are

made at any level, and (3) mechanisms for integrating gen-

erated software with legacy software. Developers should

also be able to use mechanisms in the DSAE to incorpo-

rate software features supporting the generation and use of

runtime models.

Realizing the MDE vision of software engineering is a

wicked problem and thus MDE environments that lead to

order-of-magnitude improvements in software productivity

and quality are not likely to appear in the near to medium-

term - barring new insights that could lead to significant

improvement in the rate at which pertinent technologies are

developed. The current limitations of MDE technologies

reflect inadequacies in our understanding of the software

modeling phenomenon. The development and application

of progressively better MDE technologies will help deepen

our understanding and move us closer to better approxima-

tions of the MDE vision.

Acknowledgments: Robert France’s work on this paper

was supported by a Lancaster University project VERA:

Verifiable Aspect Models for Middleware Product Families,

funded by the UK Engineering and Physical Sciences Re-

search Council (EPSRC) Grant EP/E005276/1. This work

is also partly undertaken within the MODELPLEX project

funded by the EU under the IST Programme. The authors

thank the editors and following persons for their valuable

feedback on drafts of the paper: Nelly Bencomo, Gordon

Blair, Betty Cheng, Tony Clarke, Steve Cook, Andy Evans,

Awais Rashid, Bran Selic, Richard Taylor, Laurie Tratt.

References

[1] Early Aspects Portal. URL

http://www.early-aspects.net, 2006.

[2] J.-R. Abrial. B-Tool Reference Manual. B-Core (UK) Ltd,

Oxford OX4 4GA, 1991.

[3] A. Andrews, R. France, S. Ghosh, and G. Craig. Test ad-

equacy criteria for uml design models. Technical report,

Computer Science Department, Colorado State University

(for a copy contact france@cs.colostate.edu, February 2002.

[4] G. Arango, E. Schoen, and R. Pettengill. Design as evolution

and reuse. In Advances in Software Reuse. IEEE Computer

Society Press, March 1993.

[5] E. Baniassad and S. Clarke. Theme: An approach for aspect-

oriented analysis and design. In Proceedings of the Interna-

tional Conference on Software Engineering, pages 158–167,

2004.

[6] V. R. Basili and H. D. Rombach. Support for Comprehensive

Reuse. Technical Report UMIACS-TR-91-23, CS-TR-2606,

Department of Computer Science, University of Maryland at

College Park, 1991.

[7] F. Bauer, B. Moller, H. Partsch, and P. Pepper. Formal

program construction by transformations-computer-aided,

intuition-guided programming. IEEE Transactions on Soft-

ware Engineering, 15(2):165–180, 1989.

[8] N. Bencomo, G. Blair, and R. France. Summary of the

Workshop Models@run.time at MoDELS 2006. In Lecture

Notes in Computer Science, Satellite Events at the MoDELS

2006 Conference, LNCS, pages 226–230. Springer-Verlag,

Oct 2006.

[9] J. Bezivin, F. Jouault, and P. Valduriez. On the need for

megamodels. In OOPSLA/GPCE 2004 Workshop, 2004.

[10] L. Briand and Y. Labiche. A UML-based approach to system

testing. In Proceedings of the 4th International Conference

on the UML, pages 194–208, Toronto, Ontario, Canada, oct

2001.

[11] E. J. Cameron and H. Velthuijsen. Feature interactions in

telecommunication systems. IEEE Communications Maga-

zine, 31(8), 1993.

[12] S. Clarke. “Extending Standard UML with Model Com-

position Semantics”. Science of Computer Programming,

44(1):71–100, July 2002.

[13] T. Cottenier, A. V. D. Berg, and T. Elrad. Modeling aspect-

oriented compositions. In Proceedings of the 7th Interna-

tional Workshop on Aspect-Oriented Modeling, in conjunc-

tion of the 8th International Conference on Model Driven

Engineering Languages and Systems (MoDELS’05), Mon-

tego Bay, Jamaica, October 2005.

[14] M. A. Cusumano. Japan’s software factories: a challenge to

U.S. management. Oxford University Press, Inc., New York,

NY, USA, 1991.

[15] K. Czarnecki and U. Eisenecker. Generative Programming.

Addison-Wesley Boston, 2000.

[16] K. Czarnecki and S. Helsen. Feature-based survey of model

transformation approaches. IBM Systems Journal, special

issue on Model-Driven Software Development, 45(3):621–

645, 2006.

[17] T. DeMarco. Structured Analysis and System Specification.

Prentice-Hall, 1978.

[18] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A. An-

drews. A Tool-Supported Approach to Testing UML De-

sign Models. In Proccedings of the 10th IEEE International

Conference on Engineering of Complex Computer Systems

(ICECCS), June 2005.

[19] T. W. G. Docker and G. Tate. Executable data flow diagrams.

In Software Engineering ’86. Peter Peregrinus, 1986.

[20] M. Feather. A quantitative risk-based model for reasoning

over critical system properties. In Proceedings of the In-

ternational Workshop on Requirements for High Assurance

Systems, pages 11–18, Essen, Germany, September 2002.

[21] S. T. for Adaptable Reliable Systenms (STARS). STARS

Conceptual Framework for Reuse Processes, Volume 1:

Definition, Version 3.0. Technical Report STARS-VC-

A018/001/00, Unisys STARS Technology Center, October,

1993.

[22] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-

Driven Development Using UML 2.0: Promises and Pitfalls.

Computer, 39(2), Feb. 2006.

[23] R. B. France, I. Ray, G. Georg, and S. Ghosh. An

aspect-oriented approach to design modeling. IEE Proceed-

ings - Software, Special Issue on Early Aspects: Aspect-

Oriented Requirements Engineering and Architecture De-

sign, 151(4):173–185, August 2004.

[24] C. Gane and T. Sarson. Structured Systems Analysis: Tools

and techniques. Prentice-Hall, 1978.

[25] A. Gokhale, B. Natarjan, D. C. Schmidt, A. Nechypurenko,

N. Wang, J. Gray, S. Neema, T. Bapty, and J. Parsons. CoS-

MIC: An mda generative tool for distributed real-time and

embdedded component middleware and applications. In

Proceedings of the OOPSLA 2002 Workshop on Genera-

tive Techniques in the Context of Model Driven Architecture,

Seattle, Washington, November 2002.

[26] P. Grace, G. Coulson, G. S. Blair, and B. Porter. Deep

middleware for the divergent grid. In Proceedings of the

IFIP/ACM/USENIX Middleware 2005, Grenoble, France,

November 2005.

[27] B. A. Gran. The use of Bayesian Belief Networks for combin-

ing disparate sources of information in the safety assessment

of software based systems. Doctoral of engineering thesis

2002:35, Department of Mathematical Science, Norwegian

University of Science and Technology, 2002.

[28] J. Greenfield and K. Short. Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools.

Wiley Publishing, Inc., Indianapolis, IN, 2004.

[29] M. L. Griss. Software Reuse: From Library to Factory. IBM

Systems Journal, 32(4):1–23, 1993.

[30] D. Harel and B. Rumpe. Modeling languages: Syntax, se-

mantics and all that stuff (or, what’s the semantics of ”se-

mantics”?). IEEE Software, 2004.

[31] B. Henderson-Sellers, S. Cook, S. Mellor, J. Miller, and

B. Selic. UML the Good, the Bad or the Ugly? Perspec-

tives from a panel of experts. Software and Systems Model-

ing, 4(1):4–13, 2005.

[32] D. Jackson. Alloy: A Lightweight Object Modeling No-

tation. ACM Transaction on Software Engineering and

Methodology (TOSEM), 11(2):256–290, 2002.

[33] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Ar-

chitecture, Process and Organization for Business Success.

Addision-Wesley, 1997.

[34] A. Joshi and M. P. Heimdahl. Model-Based Safety Anal-

ysis of Simulink Models Using SCADE Design Verifier.

In SAFECOMP, volume 3688 of LNCS, pages 122–135.

Springer-Verlag, Sept 2005.

[35] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An overview of AspectJ. In Proceed-

ings of the European Conference on Object-Oriented Pro-

gramming (ECOOP ’01), pages 327–353, Budapest, Hun-

gary, June 2001.

[36] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-

gramming. In Proceedings of the European Conference on

Object-Oriented Programming (ECOOP ’97), volume 1241

of Lecture Notes in Computer Science, pages 220–242, Jy-

vaskyla, Finland, June 1997.

[37] J. Kienzle, Y. Yu, and J. Xiong. On composition and reuse

of aspects. In Proceedings of the Foundations of Aspect-

Oriented Languages Workshop, Boston, MA, USA, March

2003.

[38] S. Konrad, B. H. C. Cheng, and L. A. Campbell. Object

analysis patterns for embedded systems. IEEE Transactions

on Software Engineering, 30(12):970–992, December 2004.

[39] J. Lilius and I. P. Paltor. Formalising UML State Machines

for Model Checking. In Proceedings of UML’99, Springer-

Verlag LNCS 1723, pages 430–445, 1999.

[40] N. Lynch. Proving Performance Properties (even Proba-

bilistic Ones). In D. Hogrefe and S. Leue, editors, Formal

Description Techniques, pages 41–71. University of Berne,

Oct. 1994.

[41] J. K. M. Kande and A. Strohmeier. From aop to uml - a

bottom-up approach. In Aspect Oriented Modeling work-

shop held with Aspect Oriented Software Development con-

ference, Enschede, The Netherlands, April 2002.

[42] W. E. McUmber and B. H. C. Cheng. A general framework

for formalizing UML with formal languages. In Proceedings

of IEEE International Conference on Software Engineering

(ICSE01), Toronto, Canada, May 2001.

[43] J. Offutt and A. Abdurazik. Generating tests from UML

specifications. In Proceedings of the 2nd International Con-

ference on the UML, pages 416–429, Fort Collins, CO, Oct.

1999.

[44] OMG Adopted Specification ptc/03-10-04. The Meta Ob-

ject Facility (MOF) Core Specification. Version 2.0, OMG,

http://www.omg.org.

[45] P.Muller, F.Fleury, and J.Jzquel. Weaving executability into

object-oriented meta-languages. In Proceedings of MOD-

ELS/UML 2005, pages 264–278, Montego Bay, Jamaica,

October 2005.

[46] QVT-Merge Group 1.8. Revised submission for MOF 2.0

Query/Views/Transformations RFP (ad/2002-04-10). Tech-

nical report, OMG, http://www.omg.org.

[47] A. Rashid, A. Moreira, and J. Araujo. Modularization and

composition of aspectual requirements. In 2nd Interna-

tional Conference on Aspect-Oriented Software Develop-

ment, pages 11–20, Boston, March 2003. ACM.

[48] W. Reisig. Petri nets: an introduction. Springer-Verlag, New

York, 1985.

[49] J. M. Rushby. Model Checking and Other Ways of Automat-

ing Formal Methods. In Position paper for panel on Model

Checking for Concurrent Programs, Software Quality Week,

San Francisco, May/June 1995.

[50] SERENE: Safety and Risk Evaluation using Bayesian

Nets. ESPIRIT Framework IV nr. 22187, 1999.

http://www.hugin.dk/serene/.

[51] R. Soley, D. Frankel, J. Mukerji, and E. Castain.

Model Driven Architecture - The Architecture of Choice

For a Changing World. Technical report, OMG,

http://www.omg.org, 2001.

[52] I. Sommerville, P. Sawyer, and S. Viller. Viewpoints for

requirements elicitation: a practical approach. pages 74–81,

1998.

[53] J. M. Spivey. The Z notation: A reference manual. Prentice-

Hall, 1989.

[54] H. Stachowiak. Allgemeine Modelltheorie. Springer Verlag

Wien, 1973.

[55] D. Stein, S. Hanenberg, and R. Unland. A UML-based

Aspect-Oriented Design Notation For AspectJ. In Proceed-

ings of the 1st International Conf. on Aspect-oriented soft-

ware development, pages 106–112, Enschede, The Nether-

lands, 2002. ACM Press.

[56] D. Stein, S. Hanenberg, and R. Unland. On representing join

points in the uml. In Aspect Oriented Modeling workshop

held with UML 2002, Dresden, Germany, October 2002.

[57] J. Sztipanovits and G. Karsai. Model-integrated computing.

Computer, 30(4):110–111, 1997.

[58] R. Taylor and A. van der Hoek. Software design and archi-

tecture: The once and future focus of software engineering.

In L. Briand and A. Wolf, editors, Future of Software Engi-

neering 2007. IEEE-CS Press, 2007.

[59] The Object Management Group. UML 2.0: Superstructure

Specification. Version 2.0, OMG, formal/05-07-04, 2005.

[60] The Object Management Group (OMG). OMG MDA Guide.

Version 1.0.1, OMG, http://www.omg.org, 2003.

[61] TRISKELL. The KerMeta Project Home Page. URL

http://www.kermeta.org, 2005.

[62] J. Zhang and B. H. C. Cheng. Model-based development

of dynamically adaptive software. In Proceedings of the

IEEE International Conference on Software Engineering

(ICSE06), Shanghai, China, May 2006.

