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Abstract

There is an increased use of software in safety-critical
systems; a trend that is likely to continue in the future.
Although traditional system safety techniques are applica-
ble to software intensive systems, there are new challenges
emerging. In this report we will address four issues we be-
lieve will pose challenges in the future.

First, the nature of safety is continuing to be widely
misunderstood and known system safety techniques are not
applied. Second, our ability to demonstrate (certify) that
safety requirements have been met is inadequate. Third,
modeling and automated tools, for example, code gener-
ation and automated testing, are introduced in a hope to
increase productivity; this reliance on tools rather than
people, however, introduces new and poorly understood
problems. Finally, safety-critical systems are increasingly
relying on data (configuration data or databases), incor-
rect data could have catastrophic and widespread conse-
quences.

1. Introduction

Over the last several decades we have seen a continual
increase in the use of software in safety-critical systems;
software has for some time been an integral part in appli-
cation domains such as aerospace and avionics, and we are
seing in explosive growth in new application domains, for
example, medical devices and automobiles. This expanded
use of software in critical systems is a trend that inevitably
will continue (and most likely accelerate) into the future.

In 1986 Nancy Leveson brought the notion of “software
safety” to the broader computer science community and
laid the foundation for a research area rich with challeng-
ing problems [46]. Nevertheless, Leveson and others have
since then repeatedly pointed out that the phrase “software
safety” is somewhat of a misnomer since software by it-
self is not dangerous: software does not have stored energy

that can be released to harm persons, and software is not
poisonous or radioactive to harm persons or the environ-
ment. Safety is a problem in physical systems and software
can only contribute to safety (or hazards) in a systems con-
text [47, 48]. Software can, however, create hazards through
erroneous control of a system or by misleading the system
operators into taking inappropriate actions.

Since safety is a system property, there are—in our
opinion—really no software specific safety issues; from a
safety perspective, software components are simply treated
as any other components of the overall system—albeit com-
ponents exhibiting the specific development challenges of
software [9, 10]. Therefore, in short, to develop a safe sys-
tems we would (1) identify the system hazards and define
safety requirements, (2) determine how the various compo-
nents in the system can contribute to these hazards, (3) de-
fine derived safety requirements for the components (repeat
recursively over the system hierarchy as needed), and then
(4) develop our components to meet these safety require-
ments. Should one or more of these components be software
components, we would simply apply solid software engi-
neering techniques to ensure that the safety requirements
allocated to the software have been met. (Or, better yet, re-
design our system so that the software components are no
longer critical [47].) The safety requirements on the soft-
ware are really no different than any other (really impor-
tant) software requirements. Therefore, to solve the safety
problem in software intensive systems we need to apply rig-
orous systems safety engineering to design safety into our
system and then use solid software engineering techniques
described elsewhere in this volume to make sure the soft-
ware meets any safety requirements; techniques such as re-
quirements engineering [13], software and systems archi-
tecture [79], formal methods [18], and rigorous testing and
inspections [2].

The End.

Well, maybe this is somewhat of an oversimplification.
As we all know, the nature of software components is quite
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different from the nature of physical components [9], and
we are still grappling with how to develop software well.
In particular, software has no random failures like physical
components; software does not wear out. Flaws in soft-
ware are systematic stemming from flawed requirements
(plain wrong, incomplete, inconsistent), design flaws, or (to
a lesser extent) implementation flaws [35, 47, 52]. McDer-
mid et al. point out that the “software safety” activities boil
down to eliminating these flaws during the software devel-
opment and then demonstrating that they have, in fact, been
eliminated so that we can put trust in our system. They refer
to these two concerns as achieving and assuring safety [58],
both of which we are currently not adequately equipped to
address.

In the ICSE 2000 edition of The Future of Software En-
gineering (FoSE), Robyn Lutz provided a roadmap for the
future of software engineering for safety [53] and pointed
out five challenges that have to be addressed to (partially)
solve the problems with achieving and assuring safety.

• Provide readier access to formal methods for develop-
ers of safety-critical systems by further integration of
informal and formal methods.

• Develop better methods for safety analysis of product
families and safe reuse of Commercial-Off-The-Shelf
(COTS) software.

• Improve the testing and evaluation of safety-critical
systems through the use of requirements-based testing,
evaluation from multiple sources, model consistency,
and virtual environments.

• Advance the use of runtime monitoring to detect faults
and recover to a safe state, as well as to profile system
usage to enhance safety analyses.

• Promote collaboration with related fields in order to
exploit advances in areas such as security and surviv-
ability, software architecture, theoretical computer sci-
ence, human factors engineering, and software engi-
neering education.

These challenges are as valid today as they were seven
years ago and have been only partially addressed since then.
Therefore, in this edition of FoSE we will not revisit these
challenges. (The reader is strongly encouraged to read
Robin Lutz’s paper for a detailed discussion of the chal-
lenges [53].)

None of the challenges Robyn Lutz identified nor any of
the ones identified in this paper are specific to safety crit-
ical systems. The challenges faced in critical systems are
general software development challenges that involve many
aspects of software engineering. Therefore, most of the re-
ports included in the volume on The Future of Software
Engineering at ICSE 2007 in Minneapolis [6] (as well as

the previous version from ICSE 2000 in Limerick [22]) are
highly relevant. Nevertheless, in this report we single out
four issues we believe are problem areas of particular rel-
evance to the development of safety critical software. For
consistency, we have used Lutz’s criteria when selecting the
issues [53]: (1) the issues must be important to achieving
safety in actual systems, (2) some approaches to addressing
the issues are indicated in the literature, and (3) significant
progress can be made within the next decade. In addition,
to avoid unnecessary repetition, we have avoided the still
highly relevant issues identified in 2000.

First, the nature of safety is continuing to be widely mis-
understood and there is seemingly a widespread ignorance
of established safety techniques. For example, safety is of-
ten confused with reliability, thus leading to resources be-
ing spent on improving component reliability rather than
designing safety into the system. Second, as pointed out
above, there is a difference between developing a safe sys-
tem (achieving safety in the McDermid et al. terminol-
ogy) and demonstrating that the system is safe (assuring
safety). Our ability to demonstrate (certify) that safety re-
quirements have been met is currently inadequate. Third,
reliance on models and automated tools in software devel-
opment, for example, formal modeling, automated verifica-
tion, code generation, and automated testing, promises to
increase productivity and reduce the very high costs associ-
ated with software development for critical systems. The
reliance on tools rather than people, however, introduces
new and poorly understood sources of problems, such as the
level of trust we can place in the results of our automation.
Finally, data-driven safety-critical systems are becoming in-
creasingly common, for example, medical systems respon-
sible for dispensing prescription drugs or other treatments.
Incorrect data provided to such systems could have catas-
trophic and widespread consequences; techniques to assure
the validity of the data are needed.

In Sections 2 through 5 we discuss the four problem ar-
eas in order. Section 6 summarizes and concludes.

2. State of the “Practice”

Although the notion of system safety has been around
for decades and the role of software in critical systems is
well understood, there is still a prevalent misunderstanding
of the nature of safety as well as widespread ignorance of
safety engineering techniques, in particular in the software
engineering field [48]. We will illustrate the problems with
a few anecdotes from the last few years. (Since there is—
to our knowledge—no empirical data to support this point,
these anecdotes will have to do.)

An alarmingly frequent question we encounter working
with software and critical systems is paraphrased as follows.

Question: “I have developed a software system for a safety
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critical application, how do I demonstrate that it has the
failure rate (reliability) of 10−x or lower as required.1”

This question begs the counter-question “Why? Why do
you need that level of ‘reliability’?” In many instances the
software developer cannot provide an answer. In fact, in
most cases it is not clear which critical functions must be
provided with this level of reliability; the software is simply
not allowed to “fail” more often that the reliability require-
ment states. As several researchers have repeatedly pointed
out, most accidents involving software are not because the
software stopped working (failed). Instead they are sys-
tems accidents where an accident occurred even though
the software operated exactly as required and no compo-
nent failure occurred [47, 48]; the system as a whole was
simply not well understood, its required behavior inappro-
priate for the particular environment, and—given the right
circumstances—an accident followed. Focusing on compo-
nent reliability in such circumstances can be a waste of re-
sources or even detrimental to safety. As an example, con-
sider a car.2 This car works like any other car with one no-
table exception; the requirements engineering team made a
slight oversight and never captured the requirement that the
car must have brakes. Such a vehicle will clearly be highly
unsafe as soon as it starts moving. On the other hand, if
the car is standing still it is perfectly safe. Therefore, if
the “start” function of the car was unreliable (the car only
starts once in a while) the car would at least be safe once in
a while. If the failure rate of the start function was 100%
the car would actually be safe. Any improvement in the
reliability will in this case make the car less safe. Such an
example may seem both trivial and contrived, but more con-
voluted variations of this theme are surprisingly common in
practice.

Early this decade there was an informal workshop on
certification of medical devices. This workshop was well
attended, in particular by representatives from highly en-
trepreneurial start-up companies. Two exchanges between
company representatives and the workshop organizers are
illustrative of serious problems (again we paraphrase).

During the plenary session:
Question: “We are preparing to submit our new [device
with various real-time constraints] for certification. Our
software has been developed using Visual Basic under Win-
dows, do you have any advice on how to best prepare our
certification package?”
Response: “[Stunned silence.]”

In subsequent discussions it became clear that the engineers
had tackled the problems and made technology decisions
largely ignorant of the challenges they would face, the tech-
nologies readily available, and proper use of these technolo-

1Insert your favorite value for x; typically ranging from 3 to 9.
2The car example is adopted from Dr. Nancy Leveson of MIT.

gies. The representatives from the company were basically
in tears when they understood the seriousness of their situa-
tion and, to our knowledge, this product was never submit-
ted for certification and the company is no longer in busi-
ness.

Private exchange during a break:
Question: “The feedback you provided suggested that we
must add an emergency shutdown button for our [eye laser
surgery] device in case the software malfunctions. Will this
design be acceptable?”
They proceeded to show a diagram where an emergency
shutdown button—presumably big and red—had been
added and wired into the computer.
Response: “[More stunned silence.]”

Needless to say, the very purpose of an independent emer-
gence shutdown system to protect against faulty software
and computer failures is nullified by such a design.

Fundamental misconceptions about safety and software
development of this nature are—from what we have seen—
alarmingly common. This state of “practice” is highly un-
fortunate since there is an extensive body of work on sys-
tem safety. Various system safety processes have been ex-
tensively described in previous publications and this paper
will only contain a brief overview below to provide context
and a few pointers to relevant literature. For more detailed
discussions, Leveson’s book on system safety and comput-
ers is required reading and provides an excellent overview
of all aspects of system safety and the impact of software
in modern systems [47]. Robyn Lutz also provides a suc-
cinct overview of the field in her FoSE paper from ICSE
2000 [53].

As an example of a safety analysis process applicable in
a number of dominans we will use SAE standard ARP 47-
61 [73], a process widely used in the avionics industry. The
descriptions of the various phases of the safety assessment
process covered in this section are largely adopted from the
ARP 47-61 document [73].

The safety assessment process is an inherent part of the
system development process (Figure 1). The safety as-
sessment process includes safety requirements identifica-
tion (on the left side of the “V” diagram) and verification
(on the right side of the “V” diagram) supporting the air-
craft development activities. An aircraft-level Functional
Hazard Analysis (FHA) is conducted at the beginning of
the aircraft development cycle and a system design miti-
gating (or, ideally, eliminating) the hazards is iteratively
derived. There are two levels of FHA for avionics sys-
tems; the aircraft-level FHA and the system-level FHA. The
FHA establishes the derived safety requirements for each
aircraft system. Techniques used in this stage would in-
clude, for example, Preliminary Hazard Analysis, Failure
Modes, Effects, and Criticality Analysis (FEMECA), Fault
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Figure 1. Traditional “V” Safety Assessment Process in the Avionics Industry

Tree Analysis (FTA), and Hazards and Operability Analysis
(HAZOP) [47, 68, 76].

The FHA is followed by Preliminary System Safety As-
sessment (PSSA), which derives safety requirements for the
subsystems, primarily using Fault Tree Analysis (FTA). The
PSSA process iterates with the design evolution, with de-
sign changes necessitating changes to the derived system
requirements (and also to the fault trees) and potential safety
problems identified through the PSSA feeding into the de-
sign process. Some of the important documents coming
out of PSSA are planned compliance methods with FHA
requirements, updated FHAs, lower-level safety require-
ments, qualitative FTAs, and operational requirements.

Once the design and implementation are completed (left
side of the “V”), the System Safety Assessment (SSA) pro-
cess verifies whether the safety requirements are met in the
implemented design (the right side of the “V”). A System
Safety Assessment is a systematic, comprehensive evalu-
ation of the implemented system, along with its architec-
ture and installation, to show that the relevant safety re-
quirements are met. The difference between the PSSA
and the SSA is that a PSSA is a method to evaluate pro-
posed architectures and derive system/item safety require-
ments; whereas the SSA is a verification that the imple-
mented design meets both the qualitative and quantitative
safety requirements as defined in the FHA and PSSA. Typi-
cal techniques used in this process are Fault Trees and Fail-
ure Modes and Effects Analysis (FMEA).

At this point it is worth noting that high levels of safety
are typically best achieved during system design by design-
ing safety in from the start; not by attempting to add protec-

tion systems and additional complexities after system has
been built [47]. Attempting to achieve safety during the ac-
tivities on the right side of the “V” in Figure 1 is futile un-
less we have engineered safety into our system during the
activities on the left side of the “V”. Given the excellent re-
sources available [47, 48, 68, 73, 76], the misconceptions
about safety and the engineering process outlined earlier in
this section simply should not occur.

The brief discussion above does not address software
specifically; software is simply viewed as any other com-
ponent in the overall system. The assurance that the soft-
ware meets its identified safety requirements is achieved
by demonstrating that the development of the software is
in compliance with some standard governing software de-
velopment for critical software, in our case DO-178B [71].
There is a rather extensive collection of standards cover-
ing the critical systems domain. For an comprehensive
overview of the standards the reader is referred to Her-
rmann [30]. In general, these standards deal with safety
and certification by mandating or recommending various
development techniques and development processes; there
is no requirement to produce direct evidence that the various
safety requirements have actually been met. As long as the
appropriate documents are produced and required activities
have been performed we will simply accept the software as
being correct. The shortcomings of this prevalent approach
to certification will be discussed further in Section 3.

Areas Needing Work: Why do we encounter widespread
lack of knowledge of basic system engineering and system
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safety techniques when there are suitable guides such as
ARP 47-61 [73] readily available?

The source of these problems is—in our opinion—
primarily rooted in the education provided in our engineer-
ing and computer science curricula; engineers in the appli-
cation domain typically do not appreciate the complexities
of software and the computer science graduates are gener-
ally unaware of basic systems engineering and safety en-
gineering techniques. At least in the United States, tradi-
tional engineering programs are filled with courses required
for accreditation in the specific engineering discipline (may
that be, for example, mechanical, electrical, aeronautical,
or computer engineering) and there is simply no room for
the introduction of software engineering as a specialization.
(We cannot comment on the situation in other parts of the
world, but we suspect it is similar.) The computer science
curricula generally do not have a focus on developing qual-
ity software and are weak on engineering basics. The fun-
damentals of software development (topics such as abstrac-
tion, separation of concerns, modularity, etc.) are generally
not covered in any detail and the focus of the education are
on the currently fashionable languages, applications, devel-
opment techniques, and research areas. As an example, a
few years back the new edition of a popular software engi-
neering textbook quietly dropped its chapter on structured
analysis; to the students it now seems like the only de-
sign technique available is object oriented and the only de-
sign notation is the Unified Modeling Language [72]. Oth-
ers have observed the problems with our educational sys-
tem and provide a more thorough and thoughtful discus-
sion [38, 39, 40, 66].

We do not have a ready solution to the education problem
to present in this paper, but as a community this is an issue
that must be addressed before we can expect the situation
to improve [43]. As a low-cost start, however, any orga-
nization embarking on safety-critical software development
should be aware of the challenges involved and require all
managers and engineers to read Safeware: System Safety
and Computers [47] for an overview of the problems.

At this point it is worth pointing out that improving our
technical activities (as discussed in this paper) will only
solve a small part of the safety puzzle. Most problems with
safety are not technical but managerial or organizational;
safety is simply not viewed as a priority. Recent work by
Nancy Leveson on STAMP (Systems-Theoretic Accident
Modeling and Process) takes a broader view of accidents
and their causes than traditional (chain of events) accident
models and should be required reading [48, 49, 50]. Al-
though her work promises to have a dramatic impact on
the development of safety-critical systems, it is not directly
related to software and is outside the scope of this report
where we focus on the challenges more directly related to
software.

3. Software Certification

When software “fails” it is a result of a design fault in-
troduced somewhere during the software development pro-
cess. Therefore, most widely used standards, for example,
IEC 61508 [34], DO-178B [71], and the former (British)
Defence Standards 00-55 and 00-56 [62, 63], are focused on
the development process and either recommend or require
various development and assessment techniques. The stan-
dards are aimed at reducing the number of software faults
introduced during the development (by requiring, for exam-
ple, rigorous specification of the software requirements) and
increasing the number of faults eliminated in the process
(by requiring, for example, rigorous testing techniques).

The current standards typically distinguish between dif-
ferent “levels” of safety for a piece of software and there
are increasingly stringent development practices required
the higher the “safety level” of the software under consid-
eration. There are doubts, however, if there is really a cor-
relation between the quality of the software produced and
the practices required at each “safety level” [57]. Although
the observations are largely anecdotal, there are some indi-
cations that developing software to a higher “safety level”
(in this case to the DO-178B standard) does not necessarily
lead to lower failure rates [75]. This finding raises doubts
as to the effectiveness of the various techniques prescribed
for higher “safety levels” and casts doubt on the general ap-
proach of process oriented standards.

In addition, since process standards prescribe various
techniques, adoption of new—and potentially much more
effective—techniques is slow. For instance, with respect to
the application of formal proof techniques, DO-178B will
accept proofs, but only if we can demonstrate that these
techniques are as effective as the prescribed testing tech-
niques they are to replace. Since such arguments can be
costly to prepare and there is no guarantee that they will
be accepted by regulators, this serves as an obstacle to the
introduction of new techniques (this issue will be further
discussed in Section 4 in the context of tools and automa-
tion).

Areas Needing Work: To address these challenges and
take full advantage of the advances in software develop-
ment techniques we will have to make a move to an evi-
dence based approach to certification. McDermid concisely
states the point [57].

The principle of using software safety evi-
dence is simple. First, identify the potential fail-
ure modes of software which can give rise to, or
contribute to, hazards in the system context. Sec-
ond, provide evidence that these failure modes:

• Cannot occur, or
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• Are acceptably unlikely to occur, or

• Are detected and mitigated so that their ef-
fects are acceptable.

The evidence presented would take the form of a safety
case (the names dependability case or assurance case are
also commonly used). Bishop and Bloomfield define a
safety case as follows [3]:

“A documented body of evidence that pro-
vides a convincing and valid argument that a sys-
tem is adequately safe for a given application in
a given environment”
To implement a safety case we need to:

• make an explicit set of claims about the sys-
tem

• produce the supporting evidence

• provide a set of safety arguments that link
the claims to the evidence

• make clear the assumptions and judgements
underlying the arguments

• allow different viewpoints and levels of de-
tail.

The impact of safety cases on software development will
be that we have to identify and rigorously capture any safety
requirements and then explicitly provide evidence that these
requirements have been met. The difference from most cur-
rent certification practice is that we are now free to structure
our process, choose our development techniques, and use
the tools we deem will best meet our needs. Many devel-
opment practices advocated in current standards will most
likely find a room in evidence based certification since they
represent good software development practices. For exam-
ple, there will still be a need for rigorous software devel-
opment processes to ensure that appropriate activities have
been performed, that evidence is traceable, that the version
of the software installed is the same as the version of the
software certified, etc.

Although the notion of evidence based verification is in-
tuitively appealing there are practical issues that will have to
be addressed before it can fully replace current certification
standards.

First, the safety cases must be represented in an intellec-
tually defensible way. As we know from the requirements
engineering community [13], natural langauge is generally
unsuitable for the capture of the rigorous arguments needed
for a safety case. Recent work on Goal Structuring Nota-
tion (GSN) [3, 36] is a direction that promises to assist in
the construction of rigorous arguments. GSN is a graphical
notation that explicitly represents the individual elements
of a safety argument (requirements, claims, evidence and

context) and the relationships that exist between these el-
ements. Although such a notation might help in arguing a
safety case, it is no guarantee that the arguments will be cor-
rect. Greenwell et al. surveyed a collection of safety cases
and found that logical fallacies in the reasoning were sur-
prisingly common [24]. Further investigations into how to
effectively argue safety cases as well as the notations usable
when constructing these cases are needed.

Second, the Greenwell et al. study only investigated the
logic behind the arguments in the safety cases; they did
not look at the evidence presented as a basis for the argu-
ments [24]. The type of evidence that can be accepted as
a basis for a safety case is currently unclear. Can we ar-
gue that source code implements its specification because
it was auto-coded with a trusted code generator? Can we
demonstrate the same relationship by testing the implemen-
tation up to MC/DC coverage [14]? Much work is needed
to determine the various types of evidence acceptable when
making a safety case.

Finally, the safety case must ultimately be accepted or
rejected by some regulatory body. This will inevitably be
a subjective process and it is not clear how such a regula-
tory body would be structured. A possible model could be
the U.S. Food and Drug Administration (FDA) Drug Re-
view Panels. These panels of experts review clinical data
intended to demonstrate the safety and effectiveness of new
drugs (in effect they review a safety case). Nevertheless,
as some recent well publicized drug recalls, for example
VIOXX [59], demonstrate, this is not a perfect process and
mistakes will inevitable occur. Although product recalls
have raised serious concerns as to the current integrity of
the FDA review process [5], the panel system still seems
promising.

There is a risk that different certification panels might
view evidence in different ways. A specific panel might
be likely to accept safety cases based on formal proof ev-
idence and be sceptical towards test-based evidence, and
vice versa. Developers of critical systems shopping around
for “friendly” evaluation bodies would be a highly undesir-
able outcome. Issues of conflict of interest are also con-
cerns [5]. Clearly, there are many “nuts-and-bolts” issues
to address before this certification approach can be fully
adopted, but is in our opinion the most promising direction
in the long term.

4. Model-Based Development

Traditionally, software development in critical system
has been largely a manual endeavor. Validation that we
are building the right system has been achieved through re-
quirements and model inspections and reviews. Verifica-
tion that the system is developed to satisfy its specification
is archived through inspections of design artifacts and ex-
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Figure 2. Traditional Software Development
Process.

tensive testing of the implementations (Figure 2). In crit-
ical software systems the validation and verification phase
(V&V) is particularly costly and may consume 50%–70%
of the software development resources. Thus, if we could
devise techniques to help us reduce the cost of V&V, dra-
matic cost savings could be achieved. The current trend
towards model-based development is one attempt to address
this problem (see the paper in this volume for further details
on this topic [23]).

In model-based development, the development effort is
centered around a formal or semi-formal model of the pro-
posed software system. Through manual inspections, for-
mal verification, and simulation and testing we convince
ourselves (and any regulatory agencies) that the model pos-
sesses desired properties. The implementation is then au-
tomatically and correctly generated from this model and
little or no additional testing of the implementation is re-
quired. (Note here that only certain parts of an overall
software system will be amenable to this type of model-
based development; the issues covered in this section, how-
ever, are applicable to any tools intensive software develop-
ment.) There are currently several commercial and research
tools that aim to provide part or all of these capabilities—
commercial tools are, for example, Simulink and Stateflow
from Mathworks [54, 55], Esterel and SCADE from Esterel
Technologies [19, 20], Statemate from i-Logix [25], Spec-
TRM from Safeware Engineering [51], and various UML
tools from a collection of vendors.

The capabilities of model-based development enable us
to follow a different development process. The develop-
ment will now be centered around the model and the V&V
has been largely moved from testing and analyzing the code
(Figure 2) to analyzing and testing the model (Figure 3).
Productivity improvements will (hopefully) be achieved
through reduced emphasis on unit testing of code, increased
reliance on automated analysis tools applied in the model
domain, and trusted code generation. Our reliance on mod-
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Figure 3. Model-Based Development Pro-
cess.

eling and automation leads to several new challenges. It is
now imperative that the model serving as the basis for our
development is correct with respect to the customers’ true
needs (and safety requirements); a demand that can only be
met through extensive model validation. Furthermore, in-
creased reliance on tools requires that they can be trusted so
that the results can be used as evidence in certification (see
Section 3).

4.1. Model Validation

Consider a recent extensive formal modeling project [60,
61] conducted in collaboration between industry and
academia (Rockwell Collins Inc. and the University of Min-
nesota). The subject was a Flight Guidance System (FGS),
which is a component of the overall Flight Control System
(FCS) in a commercial aircraft. The FGS can be broken
down to mode logic, which determines which lateral and
vertical modes of operation are active and armed at any
given time, and the flight control laws that accept informa-
tion about the aircraft’s current and desired state and com-
pute the pitch and roll guidance commands. In this study
we used the mode logic for horizontal and vertical modes.

The industry team collected the system requirements as
informal “shall” statements. These requirements were rela-
tively mature and thought to be well-understood. The next
phase, modeling, consisted of constructing by hand an ex-
ecutable model that we believed exhibited the behavior in-
formally stated in the shall statements; in this case we used
the RSML−e notation developed at the University of Min-
nesota. Throughout creation of the model, we continually
executed the model to informally confirm that it behaved as
we expected.

In the subsequent formal verification phase, we manu-
ally translated the shall statements into formal properties
stated over the model in CTL [17] merged these formal
properties with the translation of the RSML−e model into
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NuSMV [64]. We developed 300+ CTL properties based
on the informal requirements. A detailed description of the
model and its simulation environment is available in [61].

The process of creating a model from the English prose
requirements caused us to go back and clarify the English
statement of the requirements. In the same way, translating
the English statements into SMV also prompted us to go
back and clarify the English statement. In addition, the ver-
ification that the model satisfied the requirements (formal-
ized as CTL properties) led to additional insight into the val-
idation problem. For example, consider the well-validated
and non-controversial requirement below.

If Heading Select mode is not selected, Head-
ing Select mode shall be selected when the HDG
switch is pressed on the Flight Control Panel.

After formalization into CTL, this property did not verify
in our model. The model-checker pointed out two ways in
which this property could be violated. First, if another event
arrived at the same time as the HDG switch was pressed,
that event could preempt the HDG switch event. Second, if
this side of the FGS was not active, the HDG switch event
was completely ignored by this FGS side. (There are two
FGSs installed on an aircraft, one is active and the inactive
one operates as a hot spare.)

The counterexamples from NuSMV led us to modify the
requirement to state

If this side is active and Heading Select mode is
not selected, Heading Select mode shall be se-
lected when the HDG switch is pressed on the
FCP (providing no higher priority event occurs
at the same time).

We found that the process of proving the properties
forced us to go back and modify virtually all of the En-
glish requirements (note here that these were the clarified
requirements derived during the formalization process).

When developing formal models of any substantial sys-
tem, the models will most likely be incorrect with respect
to the real needs of the system. In our case, the three com-
plementary artifacts—informal English language require-
ments, requirements formalized as CTL properties, and an
executable formal model—served to check each other in
a rigorous validation process. Had we only built the exe-
cutable model and validated it through testing, chances are
significant flaws would have remained. Similarly, had we
been blessed with a correct-by-construction tool that would
have helped us refine our 300+ CTL properties to an imple-
mentation, the implementation would certainly have been
grossly incorrect with respect to the customers’ real needs.
It is clear that a rigorous validation process for both models
and properties must be in place to ensure that any formal ar-
tifacts serving as the basis for downstream automation are

correct; without this validation any breakthroughs in veri-
fiably correct code generation and formal verification will
achieve limited success.

Areas Needing Work: The model validation problem has
received little attention and the sufficiency of the valida-
tion activities has been largely determined through ad-hoc
methods. To adequately address this issue, there are several
questions that must be answered: How do we know when
we have validated the model sufficiently? How can we de-
termine whether there are missing or unstated high-level
requirements not captured in the model (or in the proper-
ties used for verification)? What techniques can we use for
model validation? Can these techniques be automated?

Naturally, the first step to address this problem is to draw
on the elicitation and validation techniques developed in the
requirements engineering community [13] and continue de-
velop these techniques to be applicable in the model-based
domain.

As pointed out in Section 4.1, using the informal require-
ments and their formalization in terms of a model and a set
of properties to hold over the model served as a useful inter-
nal crosscheck to catch flaws in either one of the artifacts.
The question is if this process can be formalized and auto-
mated.

Whalen et al. have investigated if the notion of test-
adequacy coverage criteria can be extended to apply directly
to the requirements and the properties as opposed to the
models [80]. They derive a test-suite from the set of re-
quirements to provide high requirements coverage and then
run that test-suite over the model. If one achieves high cov-
erage of the requirements but low coverage of the model it
would point to one (or more) of three problems:

1. The model is incorrect. The model allows behaviors
not specified by the requirements. Hence a test-suite
that provides a high level of requirements coverage
will not cover these incorrect behaviors, thus resulting
in poor model coverage.

2. There are missing requirements. Here, the model un-
der investigation may be correct and more restrictive
than the behavior defined in the original requirements;
the original requirements are simply incomplete and
allow behaviors that should not be there. Hence we
need additional requirements to restrict these behav-
iors. These additional requirements necessitate the cre-
ation of more test-cases to achieve requirements cov-
erage and will, presumably, lead to better coverage of
the model.

3. The criterion chosen for requirements coverage is too
weak.
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This work is an initial step towards providing tool support
to help assess the adequacy of a set of requirements. More
work is clearly needed however. For example, it is not clear
what would constitute a suitable requirements coverage cri-
terion.

Other researchers have investigated this problem from a
verification (as opposed to a testing) perspective. Recent
work by Chockler et al. in assessing the completeness of
temporal logic properties over models is closely related to
the validation problem [15, 16]. They propose coverage
metrics that help determine which parts of the model were
covered by the properties during verification. These tech-
niques attempt to help identify the reasons for poor model
coverage and help in debugging the model or/and the prop-
erties

Vacuity checking of temporal logic formulas [1, 42, 67] is
also relevant in this context. Intuitively, a model vacuously
satisfies a property f if a subformula φ of f is not neces-
sary to prove whether or not f is true. Using the techniques
in [1, 42, 67], it is possible to investigate the “quality” of
the properties (check if any properties are vacuous). If a
valid property turns out to be vacuous in a model, then it
can be replaced by a stronger valid property. Beer et al. [1]
observed that formal verification of hardware at IBM re-
vealed around 20% of the properties to be vacuous during
the first formal verification runs of a new hardware design.
Chechik et al. have also investigated the vacuity problem
including how to detect problems with models of the envi-
ronment [11].

The work discussed above make a point in that model
validation cannot stop with simply ensuring that require-
ments hold of a model since requirements can be satisfied
in several trivial and uninteresting ways, and may be in-
correct themselves; we need rigorous means of validating
the requirements as well as the model. Requirements-based
testing, vacuity detection, and finding environment guaran-
tees are all important steps in this direction and merit further
exploration.

Inspections will always be an invaluable tool when de-
termining whether or not a set of properties accurately cap-
tures the desired requirements and a model describes the
system the customer really wants. Consequently, any prop-
erty specification language or modeling language must be
readable and understandable enough so that all stakehold-
ers can be involved in the inspections process. Unfortu-
nately, there has been a traditional dichotomy between for-
mality and readability; developers of formal notations did
not concern themselves with readability to any large extent
and developers of modeling notations widely used in indus-
try were generally not concerned with rigorous semantics.
In our experience, the surface syntax of a language is hugely
important and can make or break adoption of a modeling
approach in practice [44, 51, 81]. Without a modeling lan-

guage acceptable to all stakeholders, the language will sim-
ply not get used and all our research into formal techniques
will not make it into software engineering practice.

Little work has been done in investigating the read-
ability and understandability of modeling notations. A
first step can be found in Zimmerman et al. [82] where
they performed a pilot experiment indicating that com-
plex condition expressed in a tabular notations as found
in SCR [29], RSML [44], and SpecTRM [45] might be
more readable than the logic-gates found in notations such
as Simulink [55] and SCADE [20]. They also found that
the notion of internal events in state machines (as found in
Statecharts [25], Stateflow [56], and UML [72]) may hinder
readability as compared to the data flow semantics found
in, for example, SCADE, SCR, and SpecTRM. Ironically,
Statecharts, SCADE, Simulink, Stateflow, and UML are by
far the most influential notations in industry practice. In our
opinion, significantly more research in modeling language
design and usability is needed so the research community
can better influence the next generation of modeling lan-
guages and tools.

4.2. Tool Certification

Ongoing research efforts are providing dramatic im-
provements in specification, analysis, and testing of for-
mal models. Conferences such as, for example, Computer
Aided Verification (CAV), Automated Software Engineer-
ing (ASE), International Symposium on Software Testing
and Analysis (ISSTA), Formal Methods Europe (FME), and
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) are dedicated to novel tools and tech-
niques for the development and analysis of systems. What
is largely missing in current research efforts, however, is
a discussion of how we will be able to trust our powerful
automated techniques enough to allow us to use them as a
replacement for traditional testing—verification and valida-
tion of our automation poses a serious challenge.

Problems with the automation can manifest itself in
many places. For example,

• If the model execution environment misrepresents the
semantics of the modeling language, all testing done
in the model domain is invalid.

• If the code generation is incorrect, the resulting imple-
mentation will naturally be incorrect (and it may not be
caught since we are now reducing testing in the code
domain).

• If any of our analysis tools applied in the model do-
main provide false negatives (they fail to catch a faulty
model), we may mistakenly accept a model as correct
and use it for code generation (again, this problem is
unlikely to be caught with the reduced code testing).
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Solutions to such problems must be provided before we
can confidently use extensive automation in the develop-
ment of critical systems as well as evidence in certification
(Section 3). Unfortunately, execution environments, code
generators, and analysis tools are not simple pieces of soft-
ware and it is highly unlikely that we will in the foreseeable
future be able to provide the level of confidence necessary
to trust a specific tool as a development tool [71] in critical
systems development. (A development tool in this context
is a tool that is directly used to derive an artifact, for exam-
ple, code generators and compilers are typical development
tools.) Also, consider tool evolution (for example, mainte-
nance, upgrades, and migration to new platforms) and the
situation looks grim. Because of these difficulties, regula-
tory agencies have been quite reluctant to qualify any tools
for use on critical systems projects and they are actively de-
bating how to address the issue [21, 74]. In our opinion,
their reluctance is quite justified; what we need is additional
research into means of trusting the results from our tools.

Areas Needing Work: If our conjecture that we will be
hard pressed to fully trust individual tools anytime soon is
correct, what other avenues are available? From our experi-
ences with working with organizations subjected to regula-
tion in the critical systems domain, there are two directions
that seem feasible and acceptable in practice; (1) redundant
proof paths and (2) automated test-case generation.

The notion of N-version programming has been sug-
gested as one technique to increase our confidence in a soft-
ware system [12]. The idea is to execute N implementations
of the same system in parallel and vote on the results. If the
results are not identical, it is assumed that the majority is
correct. By applying a similar idea in verification, we may
be able to raise the confidence in our verification results.
For example, if we verify a property using the symbolic
model checker in NuSMV [64], the explicit state model
checker SPIN [31], and the theorem prover PVS [65] we
may be able to rule out the possibility of any false nega-
tives.

The underlying hypothesis of N-version programming is
that there is independence between the implementations so
no common cause failures are present. Unfortunately, as we
know from the Knight and Leveson experiments [7, 8, 37],
this assumption is not true—we rarely (if ever) have truly
independent failure modes of our N versions of the soft-
ware. Even if we take great care in attempting to assure
that the N versions are developed independently, concep-
tual problems inherent in the problem domain are likely to
lead to common mode failures. This is naturally an issue
when using redundant proof paths as well. Consider our ex-
ample above. Although NuSMV, SPIN, and PVS are built
independently and rely on radically different approaches to
verification, a misunderstanding of some obscure parts of

the semantics of the modeling language could show up as a
common mode failure in all three of our proof paths.

Even with these known problems, redundant proof paths
seem like a practical ways of assuring that we can trust the
results of our analysis. There are several challenges, how-
ever, that must be met before this will be a reality.

• We must understand the level of independence be-
tween the various proof paths. We do not want to
be in a situation where we are led into a false sense
of security—the issues Knight and Leveson identi-
fied [7, 8, 37] are as valid today as they were fifteen
years ago and must be carefully addressed and con-
trolled.

• Current analysis techniques are not cheap nor easy to
use, and applying several redundant techniques will
not make it any cheaper. Thus, full automation of the
analysis is key to success.

If we could use the model running in its execution envi-
ronment and the generated code running in its host environ-
ment for “back-to-back” testing we may be able to increase
our confidence in both the execution environment as well
as the code generator. In this scenario, we would automat-
ically generate test-cases from the model, execute the test-
cases on both the model and the generated implementation,
and compare the results. Any discrepancy between the exe-
cutions indicates a problem with either (1) the model execu-
tion environment, (2) the code generator, or (3) the imple-
mentation run-time environment. Recent developments in
test-case generation from formal models [4, 28, 32, 33, 69]
leads us to believe that this will be a feasible solution to
part of our V&V problem in the near future. Nevertheless,
there are several additional research questions that must be
answered.

How do we know when we have tested enough? Some
recent results raise issues with the commonly used model
coverage criteria [26, 27]. New model and/or code test-
coverage adequacy criteria suitable for this type of testing
must be developed and validated.

How do we compare the test results? The results of exe-
cuting a test in the model domain and in the code domain are
likely to differ in subtle, but significant, ways. For example,
the model may operate on abstract data whereas the imple-
mentation operates on concrete data, the real-time behavior
of the model and the code may differ, and the sequencing of
events might differ. Techniques to effectively specify when
the deviations between model and implementation represent
actual faults and when they are acceptable are needed.

4.3. Loss of “Collateral Validation”

Manual processes, may that be design, coding, testing, or
putting a medical device through clinical studies, draw on
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the collective experience and vigilance of many dedicated
software professionals; professionals that provide “collat-
eral validation” as they are working on the software. Expe-
rienced professionals designing, developing code, or defin-
ing test-cases provide informal validation of the software
system; if there is a problem with the specified functional-
ity of the system, they have a chance of noticing and taking
corrective action. As an example, consider the FGS require-
ments from the previous section. Although the facts that
the FGS had to be active and that no higher-priority events
were received at the same time as the HDG Switch were
not explicitly stated in the requirements, the engineers im-
plemented the FGS functionality correctly; these problems
were caught and corrected in the manual development pro-
cess. As discussed in the previous section, when replacing
these manual efforts with automation, proper validation of
the formal requirements models on which the automation is
based becomes absolutely essential; there may be no safe-
guards in the downstream development activities to catch
critical flaws in the formal model—the collateral validation
has been lost.

Areas Needing Work: Our concern about loss of collat-
eral validation is currently an unsupported conjecture; to
our knowledge there has been no studies investigating if this
is a valid concern or not. How well do the manual processes
work? How error prone are the tools? What, if anything, do
we lose when replacing manual processes with tools?

As we ponder these problems, we cannot lose track of
one important fact—although perfection is the goal with
our tools, perfection is not necessary for deployment and
highly effective use. After all, our aim with increased use of
tools is to replace costly, time consuming, and error prone
manual tasks such as inspections and testing, and all that is
really needed from our tools is that they are better than the
manual tasks they replace. Unfortunately, we do not know
much about how error prone our manual processes really
are, nor do we know how to compare the effectiveness of an
automated process to a manual process—much important
analytical and empirical research is needed to help answer
these questions.

5. Data Intensive Systems

When discussing software development for critical sys-
tems we typically focus on the software itself (the program).
Often, however, there is a significant data-component to a
critical system; what Storey and Faulkner [77, 78] call data-
driven systems. Such systems include critical systems that
are customized for their particular installation, for exam-
ple, a railway control system where the track layout must
be defined for each installation or an air-traffic control sys-
tem that must be configured based on the characteristics of

the particular airspace to be controlled. Another category
of data-driven systems would be systems that rely on large
dynamic databases to function properly. Consider, for ex-
ample, a traditional infusion pump. Such a pump is critical
in that it is essential that it accurately delivers the dosage
that the nurse has entered. A patient might be harmed if
the pump malfunctions (either hardware or software fail-
ure) or the nurse enters the wrong dosage (operator error).
Erroneous data entry is a fairly common problem and in
an attempt to reduce such errors there is a move towards
networked infusion pumps where the dosage would be re-
trieved from the patient information system and automat-
ically uploaded to the pump; thus, eliminating data entry
errors. The potential for widespread calamity from cor-
rupted databases should be obvious. (Incidentally, an infu-
sion pump is regulated as a medical device in the United
States, the patient information system—the database—is
not regulated in any way.)

As a concrete example of the potential problems, con-
sider a large hospital where the the pharmacy receives
a call from a nurse (incident reported by Cook and
O’Connor [70]). She is concerned that a patient seem-
ingly had the wrong medication delivered. Delivering the
wrong medication is not unheard of, but this instance is dif-
ferent in several respects. The medication delivered had
never been used by this patient in the past, there were no
records of the patient having the drug prescribed, but—
strangely—the medication matched the newly printed medi-
cal administration record (MAR). The pharmacy technician
also checked the medication against the on-line computer-
ized patient medication list and the list precisely matched
the printed MAR. As the technician investigated this inci-
dent other calls from wards all over the hospital began com-
ing in. Patients were receiving drugs seemingly inappropri-
ate for their ailments or did not receive any drugs when they
should have. In each case, however, the delivered medica-
tion (or lack thereof) matched the information in the MAR.
Whatever the problem, it was hospital wide. The hospital
quickly realized the severity of the incident, stopped all drug
delivery, had all wards identify the hard copies of the MAR
from the previous day, and then delivered drugs based on
the previous day’s information as an interim (manual) solu-
tion. (Incidentally, this process was greatly hampered by the
lack of a manual backup procedures in case of a computer
failure.) The source of the problem was a minor software
maintenance fix the previous night necessitating a reload of
the database from a backup tape. This backup tape was cor-
rupted leading to erroneous prescription information in the
database used for the generation of the MARs. After this
problem was discovered the database was resorted from a
previous backup tape and the problem seemingly solved.
Luckily, given the vigilance of the nursing staff, there were
no medication misadministration during this incident. Nev-
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ertheless, given large scale computerization of, for example,
patient information systems, the heavy reliance on commer-
cial off the shelf software (COTS), and the inexperience in
critical systems of the software developers in this domain,
large scale incidents with much less favorable outcomes
seem like a certainty.

Areas Needing Work: The problems of critical systems
highly configurable through data and systems relying on
large databases for critical functions have been largely ig-
nored since standards do not adequately address the prob-
lems. To our knowledge, not much work has been done
in this area. Faulkner and Storey identify the problem and
provide initial discussion [77, 78]. Knight et al. also ad-
dress the problem, and suggest a specification and verifica-
tion technique for data [41]. Nevertheless, there is much
work to be done in this area both in terms of development
and verification techniques as well as certification.

In our opinion, the potential for severe accidents in sys-
tems relying on databases is significantly larger than that for
the traditional embedded systems which have received most
(if not all) of our attention in the past. As the prescription
drug example above illustrates, a corrupted database can
easily turn “retail” accidents (for example, a nurse admin-
istering the wrong drug to a patient) into “wholesale” acci-
dents (all patients in a hospital receiving the wrong drug).3

Without appropriate attention we believe this type of inci-
dents will overshadow the more traditional accidents asso-
ciated safety-critical computer systems.

As a final note, evidence based certification (Section 3)
would require us to include the database, the COTS
database management system, the manual backup proce-
dures, etc. in any safety case for the system used in the ex-
ample above. A move to this type of certification will most
likely accelerate the awareness of the problems associated
with data intensive systems and drive us to develop better
software.

6. Conclusions

Although software has been an integral part of many
safety-critical systems for some time and we have a sizable
body of techniques to help us develop software acceptable
in such systems there are new challenges emerging. In this
report we addressed four issues we believe will pose chal-
lenges in the future.

First, the nature of safety is continuing to be widely mis-
understood and known system safety techniques are not ap-
plied; an issue we believe can be addressed largely through
education and training of our software engineering profes-
sionals.

3We were first introduced to the notion of “retail” versus “wholesale”
accidents by Dr. John C. Knight of the University of Virginia.

Second, our ability to demonstrate (certify) that safety
requirements have been met is inadequate. Here we advo-
cated a move towards evidence-based certification and some
notion of safety-cases.

Third, the move towards various forms of model-based
development with its increased reliance on tools rather than
people in the software development process introduces new
and poorly understood problems. Research efforts directed
towards (1) validation of the artifacts (models) forming the
basis for tool intensive development, (2) assuring correct-
ness of our automated tools, and (3) investigating the ef-
fect of replacing human activities with automated tools are
needed. It would be highly disappointing if the enormous
advantages in modeling, verification, and code generation
technology we have seen the last decade, and will most
likely see in the future, are used to, for example, verify that
faulty models have been implemented correctly. A few well
publicized failures are enough to make widespread indus-
try adoption and regulatory acceptance very difficult and set
our efforts back a decade—let us make sure that this does
not happen.

Finally, data-driven safety-critical systems are becom-
ing increasingly common; incorrect data could have catas-
trophic and widespread consequences. Techniques to assure
the validity of the data are needed and we need to closely
monitor the convergence of our critical control systems and
large information systems.
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