
Design and Implementation of a Multicomputer Interconnection Network Using
FPGAs*

Chun-Chao Yeh, Chun-Hsing Wu, and Jie-Yong Juang
Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan, ROC

Email: juang@csie.ntu.edu.tw
F=:886-2-3628167

Abstract

In this article, we present an experience of using FPGAs
in the design and implementation of a multicomputer inter-
connection network. The switching element, the router and
the network controllers are all designed and implemented
with FPGAs, and cooperatively form a four-port by four-
port interconnection network. The witching elements were
designed with ASIC before, but were not very successful.
Advantages of using FPGAs over traditional ASIC design
will be discussed in this article.

Keywords: FPGAs, Multicomputer, Cell-based Inter-
processor communication

1 Introduction

Distributed memory multicomputer systems provide a
cost-effective way toward high performance computing
[l, 21. Performance of such a system highly depends on
the efficiency of the underlining interconnection network.
Many interconnection networks have been proposed in the
literatures[3,4,5, 61. But, only a few were implemented,
and most of them were realized in ASIC chips. Traditional
ASIC (custom IC or standard cell) development processes
are expensive and complex. Moreover, these ASIC chips
are not programmable. Even a minor modification would
require a new iteration of design and fabrication. The
problem will be worse for a complicated design such as
a multiprocessor interconnection network since it involves
complex interaction between hardware and software. Thus,
most research efforts were conducted with software simu-
lation only. No actual machine was build. However, a

*This work was partially supported by the National Science Coun-
cil under grants NSC82-0408-E-002-575, NSC83-0408-E-002-002, and
NSC84-2221 -E-002-004

simulated architecture with simulated network traffic pat-
tems is usually difficult to reveal subtle situations vital to
the behavior of the machine. It is even difficult to codesign
with system software based on simulation. Thus, it is usu-
ally necessary to verify a design with a prototype system
after simulation.

The advent of FPGAs technologies makes it possible to
prototype novel systems with minimal efforts[7]. In the
past few years, we were working on the development of
a multicomputer system for YO-intensive applications[8].
The interconnection network of the multicomputer system
is a cell-based architecture with fix-sized cell format which
makes network controllers simple and easy to design. It
also results in a data transfer latency shorter than that of
haditional message passing interconnection network. Mes-
sage flow is also easier to control. The cell-based intercon-
nection network was implemented with FPGAs. Our ex-
perience confirms that design with FPGAs provides many
benefits in the areas of hardwarelsoftware codesign, archi-
tecture trade-off studying, and system debugging. We will
discuss these points in more detail in the following sections.

2 Interconnection network

2.1 Interconnection network architecture

In our multicomputer design, system is partitioned into
several clusters interconnected by an extemal network com-
posed of cell routing hubs(Fig. la). The structure of a
cluster is shown in Fig. 1.b. An intemal interconnection
network was designed to connect computing nodes and a
inter-cluster cell router in a cluster. The internal network
and the extemal network share the same architecture which
supports cell-based communication. A message may be
divided into multiple cells of fixed size. Each cell carries a
routing tag in the cell header to identify destination nodes.

0-8186-7086-XI95 $04.00 0 1995 IEEE
56

inter-hub hub cell router

intra-hub cell m u t e r

Host I f 0 ,-.-.-.-.--.-.-
I IDT7133 1 tu. Interface

(a) Architecture of a scalable multicomputer

Computing nodes

Node 1 Node 2 Node n

cell Suitclling ROUrCr I
XNI: e x t e m a l network interface contro l l er
RBC: routing bridge contro l l er
NIC: network interface contro l l er

(b) A computing cluster of the multicomputer system

Figure 1: Architecture of a scalable multicomputer

A destination can be in the same cluster or in a remote
cluster, Cells for the nodes in the same cluster will be re-
ceived by the nodes directly. Cells for the nodes in remote
clusters will be forwarded to routing hubs in the external
network by the inter-cluster cell router, and then be routed
to the destination clusters through the network. Routing
hubs can be collectively organized into a tree, a ring or
other topologies.

Both interconnection networks were designed and im-
plemented with Xilinx FPGAs. Due to the gate count
limitation of the FPGAs devices, most of the CAL(Cel1
Adaption Layer) functions of the cell-based communica-
tion network (such as cell partition/assemble, checksum,
etc.) are implemented in software. Underlining hardware
realizes only the essential parts of the networks. Four major

BIP: Bus interface control logic
NIC; network interface contrallcz
CSR: Cell eritching router

Figure 2: Block diagram of the internal interconnection
network

pilrts of them are: Network Interface Controller(NIC), Cell
Switch Router(CSR), Cell Buffer(CB), and Bus Interface
Control Logic(BIF)(Fig. 2).

2.2 Cell-based communication

For transmission of a message, the cellized data units
are forwarded to the Cell Buffer by the host DMA. Once
these cells are ready for sending, the Network Interface
Controller(N1C) sends a routing request to the Cell Switch
Router(CSR), and waits for an acknowledgement from it
to enable the transmission. The CSR tries to set up a
connection upon the request. When it is done, the NIC
is signified to start delivering the cells continuously until
no more left in the buffer. However, it may be interrupted
upon events such as out of buffer space for incoming cells.
When it is interrupted , the transmitting connection will be
disconnected temporarily to release the channel resources,
and will be reconnecled after all of the events are handled.
The cell format is shown in Fig. 3. It consists of sixty
four bytes, four bytes for header and sixty bytes for data.
In our prototype, a cluster consists of four nodes, each of
which can beaddressedby setting a corresponding bit in the
destination node(DN0) field. Multicasting addressing can
be done by setting the bits corresponding to the destinations
in the DNO. The destination group ID(DGD) field carries
the address of the destination cluster.

3 Design with FPGAs

We use commercially available dual port RAM as the
cell buffer, and host bus interface logics were implemented
with TTLPLD devices. The two core control modules,
NIC and CSR, were designed with FPGAs.

57

MTA , 608)

B: Broadcast E: emerency P: parity X: reserve3
DNO: Dest. node bit map
DGD: Dest. group ID
C m : Cell type
SN4: sour. node address
SGD: Smr. group ID
CAL: Cell adaption layer informtion

Figure 3: Cell format

3.1 Network Interface Controller(NIC)

Functional block diagram of a NIC is shown in Fig. 4.a.
It consists of four major modules: data MuxDeMux, cell
buffer management, control sequencer, and a register file.
The bus to the cell buffer memory is of sixteen bits in width,
while the bus to the cell switching router contains only four
data lines per port due to the limitation of the pin count
of the FPGAs implementing the CSR. A data MuxDeMux
is needed to convert these two data streams of different
widths. Cells in the cell buffer are organized into two ring
structures, one for transmitting, the other for receiving.
Cell access is managed by a FIFO mechanism. The data
structures and access control are maintained by a cell buffer
manager. The data structure as well as the two sets of
ring buffer pointers are stored in the register file. These
modules are coordinated by the control sequencer. The
control sequencer also handles link flow control signals,
routing requests, and cell arrival notification.

The NIC was implemented using Xilinx 4005PG156-
6[10]. Some design statistics are presented in Table 1.
Notice that many of the IO pins are allocated to provide
two sets of address lines, control signals, and data lines of
the cell buffer memory.

3.2 Cell Switching Router(CSR)

Routing of ace11 is carried out by CSRs. The customized
CSR is a four-port by four-port shared bus switch. Each
port contains four data lines and two control lines; one is for
data valid, the other is for port ready, and is connected to the
NIC of a computing node. Block diagram of the switching
router is shown in Fig. 4.b. The intemal shared bus has
sixteen data lines. Consequently, a 16 to 4 de-multiplexer
is needed in the input module. Communication with NIC
through a port of the switch is asynchronous, but the inter-
nal bus operates in TDMA(Time Division Multiple Access)
mode and is synchronized with each port. Thus, a few latch
buffers are required for slot matching. Besides, some con-
trol logic is designed to handle flow control and bus access.

CSR

1 -

(a) NIC (Network Interface Controller)

I
I

I

From N I C
of Node

. I To N I C
of Node

-I Scliedul er

(b) CSR (Cell Switching Router)

Figure 4: NIC and CSR block diagrams

58

get it work properly. Contrast to this, our experiences show
that design with FPGAs has many benefits in system de-
velopment, including: system hardwarelsoftware codesign,
architecture trade-off study, and system debugging.

In the development of a high performance system, usu-
ally it is needed to tune the software and hardware iten-
tively, and mike choices between altemative architectures.
For example, in our prototyping system, system parameters
such as cell size, the time to issue an interruut, buffer size,

Table 1: Placement and route result statistics of the FPGAs
design

The structure of the output module is similar to that of the
input module. Since the output port is well synchronized
with intemal shared bus, no slot matching buffer is needed.
Instead, Some bus data fetch logic is needed to receive cor-
rect data from source input port. Cell routing requests are
scheduled by the scheduler module. If the destination port
is not ready for the request, the scheduler will reject the re-
quest by asserting a port-not-ready signal to the requesting
NIC. Otherwise, it replies to the request with proper control
signals to allow the NIC to put the dam in the channel. In
the mean time, it notifies the destination port to listen to the
channel. The scheduler also monitors port-ready signals
from all MCs. When a destination NIC is not ready, the
scheduler disconnects the connection and sends a notice to
the source NIC.

The CSR is implemented using Xilinx 4010PG191-
6[10]. Some design statistics are presented in Table 1.
Comparing with NIC, CSR needs more logic to realize.
Significant portion of Flip Flops is used for MuxDeMux,
shared bus buffer latch , and latches for channel slot match-
ing. The Table shows resource usage for only one CSR.

The CSR described above has only 4x4 ports. Larger
scale switch can be constructed from the basic switching
elements to form a multistage switch network.

4 System development with FPGAs

As system software and hardware getting more com-
plex, design confirms with software simulation might not
be enough and efficient. Short design turnaround time and
reprogmmmable design with FPGAs allow us to prototype
a novel system architecture more eficiently. In our previ-
ous work, we have designed and implemented a switching
element of 8x8ports using standard cell ASICI9J. Unfortu-
nately, we found some architecture features missing in the
design of the ASIC chip when we applied it to implement
the interconnection network. We were forced to redesign
it with anther expensive processing cost, and still couldn't

etc. are designed into hardware to minimize-the overhead,
but their effects are hard to evaluate precisely in the earlier
stage of system development. Tuning of these parameters
has to be done when software and applications are devel-
oped. There are also other architecture features crucial to
software, and whether they can deliver the expected perfor-
mance heavily depends on the behaver of the software.

Up to now, our interconnection network has been mod-
ified several times upon the feedback from software devel-
opment. Major changes are summarized in Fig. 5. The first
version provides only primitive cell-delivering functionali-
ties. In this version, the processor was interrupted for every
incoming cell to prevent cells from pending in the buffer.
However, we found that it caused too many interrupts, and
resulted in a heavy processing load for CPU to handle them.
In version 2, we changed the design in which an interrupt
was triggered by a watch dog timer so that enough num-
ber of incoming cells can be accumulated in the cell buffer
before an interrupt is generated. An interrupt can also be
generated when an urgent cell, indicated by an urgent flag
in the cell header, arrives. Besides, in the first version,
each cell is scheduled to route independently. If there are
more th'an one cell from different sources destined to the
same port, arbitration is made by routing scheduler with a
random choice. Random choice is a fair scheme. However,
we found that its overhead is too large comparing with a
packet-based network, as cells associated with a message
might be widely scattered in the cell buffer and connections
are likely to be torn down and reconnected frequently dur-
ing a message transmission. For this reason, we adopted
a new scheduling strategy which tnkes channel connection
into account. In version 3, once a connection is setup,
the node owns the connection until it releases it. To avoid
an idle connection, if cell transmission through connection
stops for some reason(for example, receiving buffer over-
flow), the connection will be disconnected temporarily to
release channel resource for others, and it will be recon-
nected automatically later. Also, we found that current cell
size(@ bytes) is not efficient in transporting large volume
of data as in file transfer applications. We are going to
make the cell size programmable by CPU to maximize the
data transfer efficiency for different applications.

These architecture modifications would had resulted in

59

References

[11 J. M. Hsu, and P. Banerjee, "Performance Evaluation
of Hardware Support for Message Passing in Distributed
Memory Multicomputers," in Proc. Int. Conf. on Para.
Proc., 1991.

Version 1 -one interrupt per cell
*Routing arbitration:

-random

Version 2 -watch dog timer
-urgent cell

I Routing arbitration
-connection-based

disconnect ion/ recoMet ion

Figure 5: Major changes in the evolution of the intercon-
nection network

Table 2: System features of the interconnection network
board

system redesign and reprocessing if conventional ASIC de-
velopment method were used. However, we spent only
several hours in the redesign of FPGAs to modify hardware
and add new features in each modification. Furthermore,
system debugging is much easier with FF'GAs design. Dur-
ing the system development, we are able to start with a
simplified design, and evolve it to the target architecture
gradually. We can also introduce extra pins to expose em-
cial information out for testing to help debugging. For
example, to debug a cell routing fault, we had reduced the

[2] M. D. Noakes, D. A. Wallach, and W. J. Dally, "The J-
Machine Multicomputer: An Architectural Evaluation,"
in Pror. Int. Synzp. on Conzp. Arch., pp. 224-235,1993.

[3] H. Ahmadi, and W. E. Denzel, "A Survey of Modern
High-Performance Switching Techniques," IEEE J. Sel.
Areas Comzun., SAC-7, pp1091-1103,1989.

[4] ET. Leighton, "Introduction to Parallel Algorithms and
Architectures: Amys 0 Trees 0 Hypercubes," Morgan
Kaufninnn Piiblishrrs, San Mateo, CA, 1992.

[SI Y. Yeh. M. Jluchy, and A. Acampora, "The knowck-
out switch: A simple Modular Architchture for High-
Performance Packet Switching," IEEE J. Sel. Areas
Commun., vol. SAC-5, pp.1274-1283,1987.

[6] H. Kuwahara, M. Ogino, N.Ends, and T. Kozaki, "A
Shared Buffer Memory Switch for an ATM exchange,"
in Proc. Int. C u f f . on Commun., pp. 118-122,1989.

[7] B. E Fawcett, "System-Integration Features and Devel-
opment Tools Key to FPGA Design," J . Microprocessors
and Microsysrems, vol 18, num. 9, pp. 547-560,1994

[8] C. C. Yeh, J. T. Lin, W. C. Kao, C. H. Wu, 'and J.
Y. Juang, "A Multicomputer Server for I/O-Intensive
Apllications," to oppeor in 12th IASTED Int. Conf. on
Applied Informatics, Austria, 1995.

CSR to a 2x2 switch, and turned off unrelated features in
the early stage. With such a design, we were able to save
FPGAs resource for implementing self-checking routines

[9] Y. J. Lin, J. M. Ho, C. C. Yeh, and J. Y. Juang, "Design
of a Switching Module for Large-scale ATM Switch,"
in Pror. Int. Con$ Para. nnd Distri. Sys., Taiwan, pp.

and latches to latch relevant internal status. Consequently, 399-408,1993.
internal status can be monitored by a Logic Analyzer easily.

[lo] Xilinx XC4000 Databook, Xilinx, inc. 1991.

5 Remarks

Although, a single FPGAs chip is still difficult to host
a complex system due to limited gate counts, with proper
system partition and design trade off between hardware
and software, we had successfully designed and imple-
mented a multicomputer interconnection network with FP-
GAS. From our design and implementation experience, we
showed that design with FPGAs has many advantages over
a design with traditional nonprogrammable ASICs.

60

