
Implementation of Near Shannon Limit
Error-Correcting Codes Using Recon�gurable

Hardware
Benjamin Levine, R. Reed Taylor, and Herman Schmit

Abstract|Error correcting codes (ECCs) are widely used
in digital communications. Recently, new types of ECCs
have been proposed which permit error-free data transmis-
sion over noisy channels at rates which approach the Shan-
non capacity. For wireless communication, these new codes
allow more data to be carried in the same spectrum, lower
transmission power, and higher data security and compres-
sion. One new type of ECC, referred to as \Turbo Codes,"
has received a lot of attention, but is computationally ex-
pensive to decode and di�cult to realize in hardware. Low
Density Parity Check Codes (LDPCs), another ECC, also
provide near Shannon limit error correction ability. How-
ever, LDPCs use a decoding scheme which is much more
amenable to hardware implementation. This paper will �rst
present an overview of these coding schemes, then discuss
the issues involved in building an LDPC decoder using re-
con�gurable hardware. We present a hypothetical LDPC
implementation using a commercial FPGA, which will give
an idea of future research issues and performance gains.

Keywords| turbo codes, error correcting codes, low-
density parity check codes

I. Introduction

Error correcting codes (ECCs) are widely used in digi-
tal communication systems. These codes allow e�ectively
error-free communications to occur over noisy channels by
encoding the data to be transmitted and using decoding al-
gorithms to detect and correct errors in the received data.
The encoding process adds redundant information to the
data being transmitted. It is this redundant information
that allows for the detection and correction of errors. Some
amount of computation is required to perform this error de-
tection and correction. As the signal to noise ratio (SNR)
of the transmission channel decreases, error correction be-
comes more di�cult and may require the use of di�erent
types of ECCs.

The ability to transmit and receive data over channels
with low SNRs has many technical and economic advan-
tages. If signal strengths can be kept low, more wire-
less devices can share the same frequency spectrum with
limited inter-device interference. Lower signal strengths
also reduce power requirements, an important considera-
tion for wireless devices, which are often powered by bat-
teries. Being able to achieve low error rates over noisy
channels allows the transmission of compressed and en-
crypted data, which have a low tolerance for errors, as even
a single error can render the data unusable and require the

The authors are with the Department of Electrical and Com-
puter Engineering at Carnegie Mellon University, 5000 Forbes Av-
enue, Pittsburgh, PA, 15213. E-mail addresses are fblevine, rt2i,
hermang@ece.cmu.edu

re-transmission of the a�ected data. Better ECCs allow
transmitting data at higher data rates as well as lower er-
ror rates. Higher data rates allow the delivery of multi-
media content and other dense forms of data to portable
devices. Coding schemes that are currently in wide used do
not have as much error correction performance as would be
desirable. The implementation of new ECCs with better
properties will provide many bene�ts and will enable the
development of new wireless devices and applications.

Shannon [1] showed that there is a limit to the rate at
which data can be sent through a channel with a given
SNR. This rate is called the channel capacity. By using
a su�ciently sophisticated coding scheme, it is theoreti-
cally possible to transmit information at any rate less than
or equal to the channel capacity with an arbitrarily small
probability that the received data will be decoded incor-
rectly. Communication systems designers would like codes
that allow data transmission at rates as close as possible to
the channel capacity while keeping the error probability as
low as necessary. ECCs that allow transmission of data at
rates near the channel capacity with low probability of error
are often referred to as \near Shannon limit codes." Un-
til recently, there have been no known near Shannon limit
ECCs with practical decoding algorithms. In the past sev-
eral years, two general classes of practical near Shannon
limit ECCs have been been developed. These are turbo

codes and low-density parity check codes. These codes re-
quire computationally intensive decoding algorithms, but
they allow transmission of data at low SNRs and high data
rates, with error rates much lower than those a�orded by
other ECCs currently in use.

While the ECCs used in wireless devices are usually im-
plemented in VLSI, and the e�cient implementation of
near Shannon limit codes in VLSI is an ongoing research
topic (see [2], for example), there are several reasons to
explore the implementation of these codes using recon-
�gurable hardware. These include algorithm design and
testing, system prototyping and development, compatibil-
ity with diverse and evolving communications standards,
and adaptive coding to match changing data and channel
characteristics.

There is still substantial current research into determin-
ing the most e�ective ECCs. Much of this research involves
empirical testing of various algorithm parameters and must
be done by simulation. Simulating ECCs can be very time-
consuming in software, even with fast workstations. Recon-
�gurable hardware could provide a way to speed up these



simulations and would also allow the testing of these algo-
rithms with real data at system data rates. Once tested,
the algorithms could be implemented using the same recon-
�gurable hardware for prototypes and low-volume systems.
Communications standards for wireless devices are still

evolving, and near Shannon limit ECCs are not yet in wide
use in these standards. By using recon�gurable hardware,
wireless devices would have the 
exibility to comply with
new standards as they are developed and to comply with
standards in use in di�erent geographic locations.
Even when the use of these codes is well understood, and

standards are well established, there will still be potential
applications for recon�gurable hardware. One these is im-
plementing adaptive error correction. A wireless device
could be designed to adaptively switch between di�erent
ECCs depending on the signal environment, the data be-
ing transmitted, power requirements, and other changing
parameters. For instance, when transmitting and receiving
voice data to and from another portable device nearby, a
simple code with low computation requirements would be
su�cient, but if it was then necessary to transmit an en-
crypted �le to a more distant device, a more complex code
with much lower error rates could be used.
The purpose of this paper is threefold. First, we will

introduce near Shannon limit ECCs in the context of their
implementation in hardware. Turbo codes will be discussed
in Section II and LDPCs will be discussed in Section III.
Secondly, in Section III.C, we will show reasons why LD-
PCs may be more amenable to hardware implementation
than turbo codes. Thirdly, in Section IV we will intro-
duce a possible implementation of an LDPC decoder as a
starting place for further exploration. Section V presents
conclusions and future work.

II. Turbo Codes

Turbo codes were introduced in 1993[3]. The term
\turbo code" refers to ECCs that perform iterative, prob-
abilistic decoding of data encoded using multiple, concate-
nated encoders.

A. Encoding

Turbo codes encode data by combining two or more en-
coders, either in parallel or serial, as well as a number of
data interleavers. A typical turbo encoder is shown in Fig-
ure 2. This parallel concatenated turbo encoder uses two
encoders, an interleaver, and a puncturer. The encoders
are typically recursive systematic convolutional (RSC) en-
coders. A simple four state RSC encoder is shown in Figure
1. RSC encoders with more states are usually used in real
systems, with 16 states being common. These encoders are
simple to implement, as they consist of only a relatively
small number of registers and modulo-2 adders. The two
encoders used in a turbo encoder of this type are usually,
but not necessarily, identical.
The interleaver takes the input data and reorders it in a

�xed, repeatable, pseudo-random manner, such that adja-
cent bit pairs in the original data are as distant as possible
in the interleaved data. Assuming RSC encoders, each en-

Delay
u

xp

Delay

Fig. 1. Recursive systematic convolutional encoder.

coder produces one output bit for each input bit. This
means that the turbo encoder shown would have a code
rate r = 1=3, producing 3 bits of encoded data for every
bit of input data. While codes with low rates are suit-
able for many applications, higher rate codes are desirable
in others. When higher rate codes are needed, a punc-
turer can be used, as shown. The puncturer reduces the
amount of data to be transmitted by throwing out some
of the parity bits produced by the encoders. The decoder
usually assumes that these discarded bits were all zeros (or
all ones). Since less redundant information is transmitted,
more computation is necessary to decode punctured turbo
codes.
If our input data u = (u1; : : : ; uk) is a binary vector

with length k, the interleaved data will be another binary
vector û, also of length k, containing the same data, but
in a di�erent order. u is encoded by encoder 1, producing
a binary vector of parity bits, xp1, and û is encoded by
encoder 2, producing another binary vector of parity bits,
xp2. The subsets of each parity bit vector chosen by the
puncturer will be designated xp1

0

and xp2
0

, respectively.
One of the strengths of turbo encoding is that rather

than using one encoder to generate one set of parity bits,
multiple encoders are used to generate multiple sets of par-
ity bits. The interleaver is designed to increase the distance
between bits that are adjacent in the original data stream.
Thus the data fed into the second encoder generates a set
of parity bits very di�erent from the parity bits produced
by the �rst encoder. By using parity bits from both en-
coders, small amounts of redundancy provide a great deal
of error correcting capability.

Encoder 1

Pu
nc

tu
re

r

Interleaver

Encoder 2

x p1

x p2 p2’

Data, u

u

x

x

p1’

Fig. 2. Parallel concatenated turbo encoder.

B. Decoding

A fairly complex decoder is needed to decode the turbo
encoded transmitted data. The original data (also called

2



the systematic data) and the parity bits from the encoder
are sent over the communications channel and received cor-
rupted by noise. The received version of the systematic
data, u, is designated ys, and the received versions of the
punctured parity bits are designated yp1

0

and yp2
0

. The
received parity vectors are usually padded with zeros in
those places where parity bits were thrown away by the
puncturer, to produce vectors that are again k values long.
The padded versions of the received parity data will be
designated yp1 and yp2, respectively.

A turbo decoder for the encoder in Figure 2 is shown in
Figure 3. It consists of two decoders, one corresponding to
each of the original encoders, two interleavers, and a de-
interleaver. The de-interleaver simply rearranges the data
in the inverse manner to the interleaver, such that data
passed through the interleaver and then the de-interleaver
(or vice-versa) would have its original order restored. Each
decoder uses the received systematic data, parity data, and
output of the other decoder to calculate probabilities about
the contents of the original data. So initially decoder 1 uses
yp1 and ys to determine a set of probabilities for the val-
ues of the original data. Then decoder 2 uses yp2, ys, and
the output of decoder 1 to re�ne these probabilities. These
re�ned probabilities are passed back to decoder 1, which
further re�nes them. The probabilities passed from one
decoder to the next are referred to as extrinsic probabili-
ties and are indicated as Le1 and Le2 in Figure 3. This
iterative process repeats until either some stopping criteria
are met, or more usually, after a �xed number of iterations.

Interleaver

De-interleaver

MAP
Decoder 1 Interleaver

MAP
Decoder 2

ys

e2
L

y

yp1

p2

L e1

Fig. 3. Parallel concatenated turbo decoder.

The decoders used can be of any type that can decode
the codes produced by the corresponding encoders. Usu-
ally a modi�ed form of the BCJR algorithm [5] is used
to decode the RSC encoders typically employed. This al-
gorithm �nds, the bit value giving the maximum a pos-

teriori probability for each bit; that is, the probabilities
given the observation of the received data. Decoders us-
ing this algorithm are often referred to as MAP decoders.
Note that MAP decoders do not have to be used in turbo
decoders; other types of decoding algorithms, such as the
soft-output Viterbi algorithm (SOVA) [9] can also be used.
However, MAP is a provably ideal decoder and thus gives
the best performance. The basic idea of the MAP decoder
is to determine the probabilities of values of bits in the
original data, based on the observed values of the received

data and to choose the value with the maximum probabil-
ity. The probability that the ith bit in the original data,
ui was a zero, based on the observed data, is written as
P 0
i = P (ui = 0jys; yp1; yp2) and the probability that this

bit was a one is written as P 1
i = P (ui = 1jys; yp1; yp2).

Note that the probabilities for each bit are calculated us-
ing all of the received data, not just the data corresponding
to the particular bit. Determination of the decoded bit is
straightforward; if P 1

i � P 0
i the ith decoded bit is set to be

one, otherwise P 1
i < P 0

i and the ith decoded bit is set to
be zero. Rather than keep track of the two probabilities,
a log likelihood ratio of the probabilities, L(ui) is usually
used, where L(ui) is de�ned as follows:

L(ui) = log

�
P 1
i

P 0
i

�
(1)

The decision function is then to set the ith decoded bit
to one if L(ui) � 0 and to set the ith decoded bit to zero
if L(ui) < 0. The extrinsic values Le1 and Le2 are log
likelihood ratios. The notation Le1

i refers to the extrinsic
value for Le(ui) from decoder 1, and similarly for Le1

i .
The MAP algorithm speci�es how these posterior proba-

bilities are to be determined, which is the core of the prob-
lem. A given RSC encoder has an associated trellis dia-
gram, which details the di�erent states that the encoder
can be in, possible transitions between states, and the in-
puts and outputs associated with any given transition be-
tween states. The trellis diagram(s) for the encoders used
must be known in order to determine these probabilities.
Figure 4 shows a trellis diagram corresponding to the RSC
encoder shown in Figure 1. The state that the encoder
starts in is designated s1, the next state is designated s2,
and so on through the last state, sk+1. The encoder starts
in State 0, so s1 = 0. If the �rst encoder input, u1 = 0,
the encoder stays in State 0, meaning s2 = 0, and outputs
a parity bit xp1 = 0, as indicated in the trellis diagram. If
u1 = 1, then encoder changes to State 1, so s2 = 1, and
xp1 = 1. In this way the trellis diagram encapsulates the
behavior of the RSC for all possible inputs.

s1

ui= 0 ui= 1

1

s s s s s2 3 4 5 6

State 2

State 3

State 0

State 1

0 0 0 0 0

0 0 0

11 1 1 1

0 0 0

1 1 11

1 1 1

0 0 0 0

1 1

Fig. 4. Trellis diagram for four state RSC encoder. (After Fig. 6.7
in [4]).

It can be shown (see [5],[6]) that the maximum a poste-
riori probabilities for this decoding problem can be found
from (2) and (3). The derivations of these equations can

3



be found in the cited references and will not be discussed
here.

P 0
i =

X
S0

�(si)
(si; si+1)�(si+1) (2)

P 1
i =

X
S1

�(si)
(si; si+1)�(si+1) (3)

The summation in (2) is over all encoder state transitions
caused by an input data bit with value 0 and similarly
the summation in (2) is over all encoder state transitions
caused by an input data bit with value 1. Each transition
consists of initial state si and a �nal state si+1. From (1),
(2), and (3), we can compute the log likelihood ratio for
the a posteriori data bit values as:

L(ui) = log

0
B@
P
S1

�(si)
(si; si+1)�(si+1)

P
S0

�(si)
(si; si+1)�(si+1)

1
CA (4)

.
The 
(si; si+1) term is the probability of a state tran-

sition from state si to state si+1, given that the encoder
was in state si when bit ui was encoded and given the re-
ceived data bit ysi and the corresponding received parity bit

ypi (This last is yp1i for decoder 1 and yp2i for decoder 2).

(si; si+1) is referred to as the branch metric. The branch
metric is used in (2) and (3), and is also needed for calcu-
lating the forward state metrics �(si) and the reverse state
metrics �(si+1), as will be described below. The branch
metric can be computed as:


(si; si+1) = P (si+1jsi)P (y
s
i jsi; si+1) (5)

.
There are two components to this calculation, P (si+1jsi)

and P (ysi jsi; si+1). The �rst is the probability that we end
up in state si+1 given that we are in state si. Since we
know the encoder trellis, this probability is either P 0

i or
P 1
i , depending on whether a data bit ui with value zero or

one produces the state transition in question. These are
the values we are trying to determine, so for the purposes
of the the branch metric calculation, we use the extrinsic
probability, Le(ui), from the other decoder. Since this is a
log likelihood ratio, we must convert to the desired prob-
ability with (6). We know ui in this case, since it is the
data bit value necessary to create the state transition we
are evaluating. Ai is a constant that will appear in the nu-
merator and denominator of (4) and will therefore cancel,
so we will ignore it.

P (si+1jsi) = Ai exp

�
(2ui � 1)Le(ui)

2

�
(6)

The second component to the calculation is the proba-
bility that we receive a bit ysi , given that the encoder made
a transition from state si to state si+1. This depends on
the encoder trellis and also on the channel properties and
modulation. If we assume the channel has additive white
Gaussian noise with variance �2, transmitted values of �1

for a 0 bit and +1 for a 1 bit, and code rate r, the prob-
ability can be calculated as shown in (7). Note that in
addition to knowing the value ui for the current transition,
we also know what the corresponding parity bit xpi would
be from our knowledge of the encoder trellis. The Bi term
is another constant that, like Ai, will cancel in (4).

P (ysi jsi; si+1) = Bi exp

�
ysi (2ui � 1) + ypi x

p
i

�2

�
(7)

We can combine (5), (6), and (7) to give (8), where Ci =
AiBi.


(si; si+1) = Ci exp

�
(2ui � 1)Le(ui)

2

�

� exp

�
ysi (2ui � 1) + ypi x

p
i

�2

�
(8)

The �(si) term in (4) represents the probability that at
the time that data bit ui was encoded, the encoder state
was si, given the subset of received data values starting at
ys1 and ending at ysi�1. �(si) can be computed recursively
from (9), where the summation is over si�1 2 A, meaning
all previous encoder states si�1 that are connected in the
trellis diagram to the current state, si.

�(si) =
X

si�12A

�(si�1)
(si�1; si) (9)

The �(si+1) term in (4) represents the probability that
at the time that data bit ui was encoded, the encoder state
was si+1, given the subset of received data values starting
at ysk and ending at ysi+1. �(si) can be computed recur-
sively in a backwards fashion (starting from the end of the
received data and progressing towards the beginning of the
received data) from (10). The summation is over si+1 2 B,
meaning all future encoder states si+1 that are connected
in the trellis diagram to the current state, si.

�(si) =
X

si+12B

�(si+1)
(si; si+1) (10)

In order to decode a block of data, k branch metrics must
be computed from (8). Then the k forward state metrics
must be found from (9), working iteratively through the
data from beginning to end. The k reverse state metrics
must also be calculated, using (10) and working iteratively
through the data in the reverse direction. It is important
to note that the state metrics for each i must be com-
puted serially, as each is dependent on the previous value.
This poses a problem for hardware implementation, as the
amount of exploitable parallelism is limited by this aspect
of the algorithm. The branch and state metric values can
then be used to calculate the posterior probabilities using
(4). These extrinsic probabilities are then passed to the
other decoder, which must then do the same calculations.
This constitutes one iteration of the algorithm, and there
may be ten or twenty iterations before the decoding pro-
cess is complete. It is clear from inspection of the relevant

4



equations that this is a very computationally complex al-
gorithm. Numerous multiplications and exponentials must
be computed for each bit and the encoder trellis structure
must be referenced to ensure that the correct terms are
used in each calculation. There are some modi�cations
that can be made to this algorithm that reduce the com-
plexity somewhat. The so-called log-MAP variant takes
the log of all the metrics so that the multiplications in (4)
can be replaced by additions. The log values of the metrics
can be determined directly with some manipulation of the
relevant equations. This log-MAP algorithm is the usual
choice for hardware implementations [2], [10], [11].

III. Low-Density Parity-Check Codes

Another, related type of ECC that can exhibit near
Shannon limit performance is the low-density parity-check
(LDPC) code. Like turbo codes, they use an iterative de-
coding method which involves the calculation of probabilis-
tic information that is passed from one iteration to another.
The encoding schemes are quite di�erent, however. Turbo
codes uses concatenated convolutional encoders and inter-
leavers, whereas LDPCs use a parity check matrix for block
encoding. As will be described, the encoding process for
LDPCs is a simple multiplication of a sparse matrix and
a vector. There are two main variations of LDPCs, Gal-
lager codes and the more recent MN codes, which are a
variation of Gallager codes, although they were developed
independently. We will discuss Gallager codes exclusively
in this paper. The di�erences are minor and are discussed
in depth in [8].

A. Encoding

Given a binary data vector, u, having length k, we can
select a transmitted vector length n, giving a rate k=n code.
This means we are introducing m = n � k parity check
bits. The transmitted vector, t, is created by multiply-
ing the source vector by a generator matrix GT , such that
t = GTu mod 2. This generator matrix is derived from
the parity check matrix, A, which distinguishes one spe-
ci�c LDPC from another. The parity check matrix A can
be created by randomly constructing an m�n matrix with
exactly weight w per column (that is, there should be ex-
actly w ones in each column) and weight w(n=m) per row.
This type of parity check matrix results in what is called a
regular Gallager code; if the weight per row is not exactly
w(n=m), the resulting code is called an irregular Gallager
code. Irregular Gallager codes have better error correcting
properties [8] but it can be more di�cult to implement de-
coders for irregular codes in hardware, as will be discussed
below. There are other properties of parity matrices that
a�ect their performance, but they do not a�ect the decod-
ing process and will not be addressed here.

We can use Gaussian elimination and reordering of the
columns of A to produce an equivalent parity check matrix
H , of the form H = [P jIm], where P is an m� k matrix
containing the actual parity checks and Im is the m �m
identity matrix. From this form of the parity check matrix,

we can create the generator matrix as:

GT =

�
Ik
P

�

where Ik is the k � k identity matrix.
The complete LDPC coding scheme is shown in Figure 5.

The source vector u is fed into the encoder to produce the
encoded vector t. The encoded vector is then sent through
the channel and corrupted by noise. The corrupted version
of this vector, as received by the decoder, is designated r.
The decoder uses r and knowledge of the encoder to decode
the data. The operation of the decoder will be discussed
next.

TG Nodes
Bit 

Check 
Nodes

u
CHANNEL

t r

ij
ij

0

0
0r q

e i

Encoder

Decoder

Fig. 5. LDPC encoder and decoder.

B. Decoding

The algorithm used to decode LDPCs is the message-
passing algorithm, also known as the sum-product algo-
rithm. It appears quite di�erent from the MAP algo-
rithm used for turbo coding, but it is theoretically related
[7]. Similar to the algorithms used in the turbo decoder,
the message-passing algorithm determines the a posteriori
probabilities for bit values based on a priori information,
improving the accuracy of these calculations with each it-
eration.
The decoding algorithm for LDPCs can be thought of as

a bipartite graph, where two sets of nodes perform compu-
tations in parallel, then communicate with each other over
connections described by the edges of the graph. The mes-
sages communicated between nodes consist of estimates of
probabilities. The nature of the nodes in the graph and the
structure of the graph's interconnections are completely de-
scribed by the number and location of ones in the parity
check matrix A. There are two kinds of nodes, check nodes
and bit nodes. The check nodes determine the probability
that a parity check is satis�ed if one particular data bit is
set to be a one (or zero) and the other data bits have values
with a probability distribution corresponding to the known
a priori probabilities. The bit nodes determine the prob-
ability that a data bit has the value one (or zero), given
the information from all of the other checks. Only bits and
checks that are related by having a one at a speci�c cor-
responding location in the parity check matrix need to be
considered in these calculations.
As an example, take the matrix and graph shown in Fig-

ure 6. The square nodes along the top row of the graph
represent the check nodes, of which there is one for each

5



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 10

1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

1 110 0 0

q

0

Message Passing Graph

0 0

A=

Parity Check Matrix

A4 A5A1 A2 A3 A6

X4X1 X2 X3 X5 X6 X8X7 X9

r

Fig. 6. The message-passing structure of a 6x9 LDPC.

row of the matrix A. Each row represents a single parity
check. Similarly, the round nodes at the bottom of the
graph represent the bit nodes, of which there is one for
each column in A, and thus one for each transmitted bit.
The location of the ones and zeroes in A determine which
nodes are connected in the message passing graph. Having
a one at row j, column i simply indicates that check node
j is connected to bit node i. Looking at the �rst row of
A in Figure 6, one can see ones in the �rst, fourth, and
seventh columns; this is re
ected in the graph as connec-
tions between check node A1 (represented by the �rst row)
and bit nodes X1, X4, and X7 (each represented by their
respective columns). The number of ones in a row deter-
mines the number of ports that the corresponding check
node will have, and the number of ones in a column will
determine the number of ports that the corresponding bit
node will have. In the case of regular parity check matri-
ces, the total number of ones in each row will be equal to
all other rows, and likewise for columns.
The check nodes generate rij values, where r0ij is the

probability that check j is satis�ed if it is assumed that
data bit ti = 0 and where r1ij is the probability that check
j is satis�ed if it is assumed that data bit ti = 1. These
probabilities are computed as shown in (11) and (12). The
notation i0 2 row[j]nfig simply means the indices i0 (1 �
i0 � n) of all bits in row j (1 � j � m) which have value
1, not including the current bit index, i.

r0ij =
1

2
[1 +

Y
i02row[j]nfig

(q0i0j � q1i0j)] (11)

r1ij =
1

2
[1�

Y
i02row[j]nfig

(q0i0j � q1i0j)] (12)

The bit nodes generate the qij values, where q0ij is the
probability that bit ti = 0, given the values of all checks
other than j and q1ij is the probability that bit ti = 1, given
the values of all checks other than j. These probabilities
are computed as shown in (13) and (14). The notation j0 2

col[i]nfjg means the indices j0 (1 � j0 � m) of all checks
in col i (1 � i � n) which have value 1, not including the
current check index, j. �ij is a normalizing value chosen
so that q0ij + q1ij = 1.

p0i and p1i represent the current estimate of the posterior
probabilities for each bit. These are the extrinsic values,
as discussed below, for all iterations after the �rst. For the
�rst iteration, they are initialized to values determined by
the data received from the channel. For instance, if the
channel demodulator determines that the signal received is
close to that expected for a one, it would assign a high p1i .
It is acceptable if the channel supplies binary values for p0i
and p1i .

q0ij = �ijp
0
i

Y
j02col[i]nfjg

r0ij0 (13)

q1ij = �ijp
1
i

Y
j02col[i]nfjg

r1ij0 (14)

In addition, the bit nodes also calculate the extrinsic
probabilities, ei, which are the computed posterior proba-
bilities of bit ti having a given value; i.e., e0i is the com-
puted probability that bit ti = 0. These extrinsic probabil-
ities are used to determine what the decoded values are for
each bit and are used in the bit nodes equations (13) and
(14). The accuracy of these probabilities improves with
each iteration of the algorithm. The extrinsic probability
calculations are performed as shown in (15) and (16). The
notation j0 2 col[i] means the indices j0 (1 � j0 � m) of
all checks in col i (1 � i � n) which have value 1. �ij is
another normalizing value chosen so that e0i + e1i = 1.

e0i = �i
Y

j02col[i]

r0ij0 (15)

e1i = �i
Y

j02col[i]

r1ij0 (16)

C. Complexity

A comparison of the complexity of MAP decoding, log-
MAP decoding, and LDPC decoding is shown in Table I.
These numbers assume a rate r = 1=3 LDPC code and
a turbo code with with 16 encoder states. The numbers
shown are per iteration and per data bit; for instance, if
there are 4000 data bits and 10 iterations are performed,
then the total number of computations required is 40,000
times the numbers shown in the table. There are many
di�erent ways to implement these algorithms and di�ering
complexity numbers will results from each, but these val-
ues are su�cient for general comparison of the type and
number of operations required for each decoder.
The message passing algorithm for decoding LDPCs is

somewhat less complex in terms of operation count than
the MAP algorithm for decoding turbo codes, as shown in
Table I. The check and bit node equations are relatively
simple, and there are no logs or exponentials as there are for
MAP decoding. LDPCs have other properties that make

6



TABLE I

Decoder complexity in operations per bit for each iteration.

Decoder Add/Sub. Mult. Bit Log Exp Div

MAP 17 97 1 1 1 2
log-MAP 192 2 64 32 32 0
LDPC 13 23 14 0 0 6

them even more advantageous for implementation in hard-
ware, however. The primary advantage is that there is
much less data dependency in the LDPC algorithm. The
calculations in each bit node are independent of all other
bit nodes, and the calculations for each check node are in-
dependent of all other check nodes. Thus all of the check
nodes could potentially be implemented so as to operate in
parallel, as could all of the bit nodes. If one views the graph
in Figure 6 as a data dependency graph for the LDPC de-
coder, it can be seen that it is quite wide and relatively
shallow, meaning that there is a great deal of potentially
exploitable parallelism. The MAP algorithm requires the
serial calculation of all of the state metrics. The only par-
allelism is across the encoder states, the number of which
is relatively small (e.g., 4 in our example encoder), com-
pared to k, the number of serial calculations, since k is
typically in the hundreds or thousands. The trellis dia-
gram in 4 can be seen as an approximation of a portion
of the data dependency graph for the MAP algorithm. If
the trellis diagram is extended to length k and rotated 90
degrees, the resultant data dependency graph is narrow,
and very deep, meaning that there is relatively little ex-
ploitable parallelism in the MAP algorithm. The LDPC
algorithm has an additional advantage, in that the encoder
properties are contained by the graph structure and thus
no encoder information has to be stored explicitly, as the
trellis information must be for MAP decoders.

D. Nodes

The message-passing algorithm is implemented by con-
structing a network of bit nodes and check nodes. The
functionality of the nodes themselves depends only on the
number of ports (or, the number of ones in the appropriate
row or column) and not on the location of the nonzero bits.
This means that a regular parity check matrix will de�ne
a system with only two unique kinds of nodes in it: bit
nodes with some �xed number of ports, and check nodes
with some other number of ports. This characteristic makes
this algorithm attractive for implementation in hardware,
since it can be implemented by a replicating a number of
identical sub-units. Building a complete network of nodes
is quite simple: merely replicate the appropriate nodes to
match the number of rows and columns, then connect them
according to the location of the ones in A. Irregular parity
check matrices require sub-units with di�ering numbers of
ports and thus it is somewhat more di�cult to construct
hardware decoders for irregular codes. Appropriate use of
recon�gurable hardware can reduce the signi�cance of this
problem. Graphical representations of the internal struc-

ture of the bit and check nodes are shown in Figures 7 and
8.1

*

* Norm

Norm

*

*

*
Norm

*

*

*

*

*

*

*

*

*
Norm

i
0p

i
p1

0/1e i

q0/1
i,2

q0/1
i,1

q0/1
i,0

r 0/1
i,2

r 0/1
i,0

r 0/1
i,1

Fig. 7. Bit node i (with 3 ports)

-

-

-

0/1q0, j

0/1q1, j

0/1q2, j

0/1r 0, j

0/1r 1, j

0/1r 2, j

*
>>1

>>1

+1

-1

*
>>1

>>1

+1

-1

*
>>1

>>1

+1

-1

Fig. 8. Check node j (with 3 ports)

The bit nodes require normalizers for the values of q0ij
and e0i to ensure that q

0
ij +q1ij = 1 and e0i +e1i = 1. Each of

these pairs of values should always sum to 1 due to the fact
that they represent a complete set of probabilities, but the
calculated values will not usually have this property. The
normalizer �nds the scale factor �ij for (13) and (14) and
the scale factor �i for (15) and (16). The scale factor is
simply the reciprocal of the sum of the probabilities; for
instance, �ij = 1=(q0

0

ij + q1
0

ij ), where q
00

ij is the value calcu-
lated from (13) before normalization. The division required
for normalization can be di�cult to implement e�ciently
in hardware. One e�cient implementation for the normal-
izer is shown in Figure 9. This circuit generates a correctly
scaled dividend in the module labeled Divgen so that the
quotient computed by the 8 Divcell modules has 8 bits of

1Note that the bit nodes depicted have three ports rather than
two, meaning that they are not identical to the bit nodes depicted in
Figure 6. This was done for illustrative purposes, because bit nodes
with two or fewer ports are somewhat deprecated in that they do not
require two levels of multiplication.

7



precision. The Varshift module rescales the result after the
probability is multiplied by the scale factor. Only the nor-
malized version of one probability needs to be produced,
since the sum of both is known to be equal to one after
normalization. The division is performed using a digit-
recurrence algorithm [12] and the implementation of each
Divcell is shown in Figure 10. Each Divcell is identical. The
value for W0 supplied to the �rst Divcell is the dividend,
and the last Q value is the quotient. R is used internally
only. This normalizer design can be easily pipelined for
best performance.

0 p1

+

Divgen

<<1

Divcell

Divcell

Divcell

p

dividend

*

Varshift

normalized p0

8 x divcells

divisor

quotient

Fig. 9. Normalizer Circuit.

+

<<1

0 1

Sign
Bit

>>1

Divisor

W R

W R Q

i i Qi

i+1 i+1 i+1

Fig. 10. Divider Cell.

IV. Implementation of LDPCs

The bit and check nodes do not scale gracefully as their
number of ports increases, primarily as a result of the mul-
tipliers and normalizers in the nodes. For instance, a 16-
port bit node would require 32 15-operand multipliers, 32 2

operand multipliers, and 17 normalizers! Fortunately, even
the very large parity check matrices currently used in the
�eld are so sparse that they typically have 6 or fewer ones
per column.
On the other hand, the hardware needed to implement

a parity check matrix A scales linearly with the size of A,
given a �xed number of ones in every row and column.
In other words, adding additional columns and rows to
the matrix simply adds additional nodes to the graph; it
does not increase the complexity of the nodes. This means
that as long as an implementation of an LDPC decoding
scheme �ts on a device, the design can be \grown" by sim-
ply adding more nodes and connecting them to their neigh-
bors in the graph.
Bit nodes, and to a lesser extent, check nodes are quite

large. On big recon�gurable devices, it should be easy to
�t at least one of each; however, implementing very large
numbers of nodes, or nodes with large numbers of ports,
could be di�cult. Figure 11 shows how many LUTs are
consumed by check nodes (of varying bit-widths and num-
bers of ports) implemented on a Xilinx Virtex chip.

0

1000

2000

3000

4000

5000

6000

7000

4 8 12 16

LU
T

s

Bits per Port

3 Ports
4 Ports
5 Ports
6 Ports

Fig. 11. LUTs consumed by a check node with various bit-widths
and port counts

There are many possible approaches to building a com-
plete LDPC decoder on a recon�gurable device which can
only �t a few bit and check nodes. We will take a close
look at one particular simple design, taking note of some
of the issues involved in its implementation, and making
some estimates as to its performance. We will also discuss
a few other options for designing such a system.

A. A Two-Node System

In order to better understand the nature of the issues in-
volved in implementing an LDPC decoder, consider a na��ve
two-node implementation. In this system, we will imple-
ment one bit node and one check node (like those shown in
in Figures 7 and 8) on the recon�gurable device simultane-
ously, and then sequence the r and q values through them.
The values will be stored in memory between iterations. A
system of this kind is depicted in Figure 12.

8



Fetch Unit

e Memory

p Memory

Check Node

Bit Node

q Memory

r Memory

Fetch Unit

Store Unit

Store Unit

Fig. 12. Block diagram of a complete system for performing LDPC
Decoding

This implementation functions as follows: The check
node reads groups of values out of the q memory, processes
them sequentially, and writes the resulting values into the
r memory. Then, the bit node takes over, reading r and
p values, and producing q and e values. The values them-
selves are represented in a �xed-point format with the radix
positioned to represent probabilities ranging from 0 to 1. A
savings in memory size can be achieved by only storing the
r0, p0, q0, and e0 values; the r1, p1, q1, and e1 quantities
can be recovered by subtracting from 1.

Accessing the values in memory is somewhat compli-
cated: in this case there are 4 ports into the check node, and
3 into the bit node, so each cycle the memory must be able
to provide the appropriate number of values. For our sim-
ple implementation, a single-ported memory was used to
limit the complexity of the memory. The port was clocked
repeatedly to fetch and store the three or four values one
at a time. Because the order and groupings of the memory
accesses were known beforehand, the addresses could be
loaded into a simple ROM.

An instance of the system shown in Figure 12, designed
to run a rate 1/4 code with a block size of 1200 on a Xilinx
Virtex chip took 3039 LUTs and a total of 9600 bytes of
RAM, which is small enough to �t on many devices avail-
able today. This �gure was achieved without the use of any
special multipliers or memory structures. The multipliers
were simply those generated by the synthesis tools, and the
memory used was the on-chip RAM.

The synthesis tool and the chip speci�cations indicate
that this implementation would be able to complete full bit
and check node calculations at a frequency of 50 MHz. If
the block size of the desired code is 1200 bits, and decoding
is run for 10 full iterations before returning, this Virtex
implementation will fully decode bits at a rate of 4 megabits

TABLE II

Resources consumed by LDPC Decoder Components

Component Resources Percentage

Normalizers 1644 LUTs 54.1%
Bit Node 848 LUTs 27.9%
Check Node 512 LUTs 16.8%
Controller 35 LUTs 1.2%

Data Memory 9600 Bytes 64.0%
Address ROM 5400 Bytes 36.0%

per second. Since the code rate is 1/4, user data will be
processed at 1 Mb/s. If a large device is available, or if o�-
chip RAM is used, simply doubling the amount of memory
used, as described above, would double this performance.
Though it is functionally correct, this simple implemen-

tation has several drawbacks, one of which is quite obvious:
the bit and check nodes cannot operate simultaneously or
they may overwrite data which has not been processed by
the other node. (Remember that the accesses to memory
are scattered randomly through the address space.) This
could be remedied by doubling the memory capacity, creat-
ing two banks each for the q, r, p, and e memories. Then,
the nodes could operate on two datasets simultaneously,
swapping between banks so as not to interfere with one an-
other. This simple improvement would prevent half of the
hardware from remaining idle during execution, doubling
the performance of the algorithm.
There are many other improvements which may not be as

straightforward to achieve but which could certainly bring
gains in speed of execution. It seems that most of the
problems with the presented implementation are related to
the way in which values are stored in memory: the ex-
ploitable parallelism in this design was completely limited
by the memory size. Additional performance gains could
have been achieved by increasing the number of memory
ports so as to allow multiple bit and check nodes to operate
in parallel; however, the size and complexity of the memo-
ries was a limiting factor. Additionally, the ROM used to
step through the addresses is quite sizeable. It would be
nice to simplify the addressing technique so as to eliminate
the need for the ROM.

B. Related Work

It is not easy to compare the performance �gures given
above to those reported in other research. LDPCs are new
enough that there are no published results available for
LDPC implementations on hardware at this time. Even
the information on turbo code implementations is sparse;
additionally, it is not generally clear how to fairly com-
pare performance results for LDPCs with those for turbo
codes. Reported performance �gures for turbo decoder im-
plementations, especially commercial products, often do
not include the code characteristics, number of iterations,
or actual supported data rates, making veri�cation and
comparison of performance even more di�cult. In order to
accurately compare ECC implementations, values for the

9



actual error rate and user data rate, across identical chan-
nels and with identical channel modulation would need to
be compared. Nonetheless, a survey of turbo decoder im-
plementation performance results is included here, which
generally fall into a range comparable with the results given
above. Masera et al designed a CMOS implementation of
a log-MAP decoder in 0.5 micron CMOS technology [2].
Their simulations indicate that this design should support
a 2 Mbit/s data rate. The design is intended for deep space
applications. Hong et al designed a comparable decoder in
0.6 micron CMOS [13]. Pietrobon developed a prototype
multi-board system using FPGAs to implement the log-
MAP algorithm with a 356 kbit/s data rate [11]. Several
commercials turbo decoder implementations are now avail-
able. Advanced Hardware Architectures o�ers an ASIC
that they claim can perform decoding using a proprietary
algorithm at rates of 36 Mbit/s for 2 iterations only [14].
They are using a somewhat di�erent type of coding than
described herein, but claim similar error correction perfor-
mance to turbo coding. Comatlas o�ers a turbo decoder
ASIC with claimed 40 Mbit/s decoding rate [15]; no de-
tails as to the algorithm used or number of iterations were
available. Small World Communications o�ers turbo de-
coder cores for Xilinx XC4000XV FPGAs and claim 31
Mbit/s decoder rates [16]. The supported data rates will
be lower, proportional to the number of iterations.

V. Conclusions

Recently, several new families of error correcting codes
have emerged which enable error-free communications at
lower SNRs with higher bandwidth. In this paper, we
examined two of these codes: turbo codes and low den-
sity parity check codes. They were evaluated in terms
of their amenability to implementation in hardware. We
concluded that LDPCs are more suitable because their de-
coders exhibit more exploitable parallelism, the computa-
tions require operators that are more easily implementable
in hardware, and they are more regular and tileable in na-
ture than turbo decoders. We presented an illustrative de-
sign which is implementable on commercial FPGAs, and
which should display performance comparable to current
VLSI turbo code implementations.

Acknowledgments

The authors would like to acknowledge the support of
DARPA grant xxxxx.

References

[1] C.E. Shannon, \A mathematical theory of communications," Bell
Syst. Tech. J., vol.27, 1948, pp. 379-423, 623-657.

[2] G. Masera, G. Piccinini, M. Roch, and M. Zamboni, \VLSI ar-
chitectures for turbo codes," IEEE Tran. VLSI Sys., vol.7, no.3,
Sep. 1999, p. 369-379.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, \Near Shannon
limit error-correcting coding and cecoding: Turbo codes," Proc.
1993 Int. Conf. Comm., Geneva, Switzerland, May 1993, pp.
1064-1070.

[4] B. Sklar, Digital Communications: Fundamentals and Applica-
tions, Prentice Hall, 1988.

[5] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, \Optimal decoding

of linear codes for minimizing symbol error rates," IEEE Trans.
Information Theory, Mar. 1974, p. 284-287.

[6] W. E. Ryan, \A turbo code tutorial," Unpublished, available at
http://www.ee.virginia.edu/research/CCSP/turbo code/overview.html

[7] R. McEliece, D. MacKay, and J. Cheng, \Turbo-decoding as
an instance of Pearl's belief propagation algorithm," IEEE J.
Selected Areas in Comm., Vol.16, Feb. 1998, 140-152.

[8] D.J.C. MacKay, \Good error-correcting codes based on very
sparse matrices," IEEE Trans. on Information Theory, vol.45,
no.2, Mar. 1999, p. 399-431.

[9] J. Hagenauer and P. Hoeher, \A Viterbi algorithm with soft-
decision outputs and and its applications," Proc. GlobeCom 1989,
pp. 1009-1013.

[10] S. Halter, M. Oberg, P.M. Chau, and P.H. Siegel, \Recon�g-
urable signal processor for channel coding and decoding in low
SNR wireless communications," 1998 IEEE Workshop on Signal
Processing Systems, pp. 260-274.

[11] S.S. Pietrobon, \Implementation and performance of a
turbo/MAP decoder," International J. of Satellite Communi-
cations, vol.16, no.1, Jan.-Feb. 1998, p. 23-46

[12] M.D. Ercegovac and T. Lang, Division and Square Root: Digit-
Recurrence Algorithms and Implementations, Kluwer, 1994.

[13] S. Hong, J. Yi, and W. Stark, \VLSI design and implementation
of low-complexity adaptive turbo-code encoder and decoder for
wireless mobile communications applications" 1998 IEEE Work-
shop on Signal Processing Systems, p. 233-242.

[14] Advanced Hardware Architectures, Pullman, WA, USA,
\AHA4501 Astro: 36 Mbit/sec turbo product code en-
coder/decoder," datasheet, available at http://www.aha.com

[15] Comatlas, Cesson-Sevigne, France, \CAS 5093:
Turbo-code codec," datasheet, available at
http://www.comatlas.fr/cas5093rev41may95p1.pdf.

[16] Small World Communications, Adelaide, Australia, \MAP04T
Very High Speed MAP Decoder," datasheet, available at
http://www.sworld.com.au/pub/map04t.pdf.

10


