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Abstract 
Custom computing systems exhibit significant 
speedups over traditional microprocessors by 
mapping compute-intensive sections of a 
program to reconfigurable logic [Hauck98].  
However, the number and frequency of these 
hardware-mapped sections of code are limited 
by the requirement that the speedups provided 
must outweigh the considerable cost of 
configuration.  Research has shown that the 
ability to relocate and defragment 
configurations on an FPGA dramatically 
decreases the overall configuration overhead 
[Li00].  This increases the viability of mapping 
portions of the program that were previously 
considered to be too costly.  We therefore 
explore the adaptation of the Xilinx 6200 series 
FPGA for relocation and defragmentation.  Due 
to some of the complexities involved with this 
structure, we also present a novel architecture 
designed from the ground up to provide 
relocation and defragmentation support with a 
negligible area increase over a generic partially 
reconfigurable FPGA. 

Introduction 

One application of FPGAs is that of reconfigurable 
computing – the use of a run-time reprogrammable 
device operating as a customizable coprocessor or 
functional unit alongside a main microprocessor 
[Hauck98].  This reconfigurable logic is used to 
emulate custom hardware for the acceleration of one or 
more compute-intensive portions of a program.  
Unfortunately, the speedups attainable by the use of 
reconfigurable logic are limited by the large 
configuration overheads incurred each time a function 
is loaded into the array [Li00]. 

Li compared the total configuration overheads 
exhibited during program execution by different FPGA 
types acting as the reconfigurable coprocessor.  Two of 
these types are the serial and the partially 

reconfigurable FPGAs.  The traditional serial FPGA 
loads configuration information for the entire chip in a 
bit or byte serial fashion, while the partially 
reconfigurable FPGA, such as the Xilinx 6200, can be 
selectively programmed during runtime in an 
addressable manner.  The partially reconfigurable 
FPGA was determined to have the potential to improve 
configuration overhead by more than a factor of 7 over 
the serial FPGA. 

Variations on the partially reconfigurable FPGA were 
also examined.  Relocation, the ability to determine at 
runtime the actual location in the array of a pre-
compiled configuration, improved the configuration 
overhead of the generic partially reconfigurable FPGA 
by a factor of up to 1.5, and the serial FPGA by nearly 
a factor of 8.  Furthermore, the ability to defragment 
the configurations already present on the array to 
consolidate unused computation area decreased the 
overhead by a factor of 1.5 over the partially 
reconfigurable FPGA with relocation [Li00].  This 
leads to more than an overall factor of 11 improvement 
in configuration overhead over the serially 
programmed FPGA. 

These increases in efficiency can affect the number of 
program areas suitable for FPGA acceleration.  The 
configuration overhead of a serial or even a basic 
partially reconfigurable FPGA might outweigh the 
speedups obtained through the use of the 
reconfigurable logic for a particular portion of the 
program.  In this case, this section should not be 
mapped to the reconfigurable coprocessor.  However, 
with the lower configuration cost of the relocation and 
defragmentation FPGAs, the guidelines for approving a 
function for acceleration in hardware are relaxed, 
increasing the potential for sections of a program to 
qualify for translation to the reconfigurable 
coprocessor, and increasing the overall speedup 
attainable. 

In order to leverage the advantages of relocation, we 
examine the refitting of the Xilinx 6200 into a 
relocation-enabled FPGA.  Later we discuss the issues 
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in applying the idea of defragmentation to the updated 
relocation 6200.  Finally, we will propose a novel 
architecture designed specifically from the ground up 
for partial configuration, relocation and 
defragmentation. 

Example of Relocation 

Although the partially reconfigurable FPGA design is 
powerful, it faces limitations imposed by configuration 
locations determined at compile time.  If two different 
configurations were mapped at compile time to 
overlapping locations in the FPGA, only one of these 
configurations can be present in the array at any given 
moment.  They cannot operate simultaneously.  
However, if somehow the final FPGA location could 
be determined at runtime, one or both of these 
overlapping configurations could be shifted to a new 
location that was previously unused to allow for 
simultaneous use. 

Figure 1 illustrates a situation in which relocation 
could be used.  The darkly shaded mapping is already 
present on the FPGA.  The lightly shaded mapping is a 
new mapping that is also to be placed on the FPGA.  
However, since the first and second configurations 
have several cell locations in common, they cannot 
both be present on a traditional partially reconfigurable 
FPGA simultaneously. 

However, an FPGA with relocation ability can modify 
the second configuration to fit the unused space on the 
grid, thereby allowing both mappings to be present 
without one overwriting the other's information.  
Figure 1 shows the steps taken to relocate the second 
configuration to available cells. 

Xilinx 6200 for Relocation 

We have chosen the Xilinx 6200 FPGA [Xilinx96] to 
adapt for use with configuration relocation because it is 
a commercial partially reconfigurable FPGA.  In 
addition, the cell layout and local routing are regular.  
Each cell has the same abilities, regardless of location.  
These cells are arranged in an island-style layout.  The 
local routing is in the form of nearest-neighbor 

connections.  Longer distance routing is provided in a 
hierarchical format, which is where we lose 
homogeneity.  A 4x4 group of logic elements (cells) 
forms a cluster in which length 4 wires span four logic 
elements (cells).  Signals may only be transferred onto 
these lines at the border of the 4x4 block.  The next 
level of the routing hierarchy includes a 4x4 group of 
the smaller 4x4 blocks.  These groups have length 16 
wires that span the block.  Again, these lines may only 
be written at the border of the group of 4x4 blocks.  
Additionally, cells are only able to access nearest 
neighbor and length 4 wires, so the signals must also be 
transferred to more local routing for reading.  This 
hierarchy continues up until a chip-sized block is 
formed that includes chip-length wires. 

As we will demonstrate later in this paper, the 
relocation of a configuration requires modifications to 
the programming data and/or programming addresses 
on a cell-by-cell basis.  Although the main CPU could 
perform these manipulations, it would require effort 
proportional to the size of the configuration.   

Alternatively, we can create the logic necessary to 
implement the manipulations in hardware placed in or 
near the FPGA chip itself.  Instead of changing the 
bitstream before it is output to the FPGA, the CPU 
could also send relocation instructions with the 
configuration bitstream to the reconfigurable logic.  
This message would contain a high-level description of 
which alterations should be made to the entire 
configuration.  The relocation logic would then 
calculate the actual changes to the bitstream as the 
configuration information enters the FPGA.  The 
relocation hardware will be able to move, flip, and 
rotate multi-cell mappings to make the most efficient 
use of the cell array.  This minimizes the effort 
required on the part of the CPU to efficiently use the 
reconfigurable logic, leaving it available for other 
computing tasks.  

In order to create such reconfiguration hardware, it is 
convenient to consider a somewhat idealized FPGA 
similar to the 6200 [Xilinx96].  Like the 6200, this 
idealized FPGA allows random access to any cell in its 
array.  However, we will assume that its long-distance 

Configuration
Present on FPGA

Incoming
Configuration Conflicts Reconfiguration

Figure 1: In some situations an incoming configuration maps to the same location as an existing 
configuration.  If the incoming mapping is relocated, it may be possible to allow both configurations to 
be present in the FPGA concurrently. 
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routing is flexible and can be configured to and from 
any cell.  This removes the irregularity of the 6200 
hierarchical routing.  We will first determine the basic 
needs of relocation hardware by examining this 
abstract model.  Later, we will use this model to 
discuss an actual reconfiguration hardware design for 
the 6200. 

Abstract Relocation 
Each configuration has eight distinct permutations of 
its structure.  This does not include simple offset 
operations to shift the entire configuration to a new 
location without altering its orientation.  An example 
configuration and its seven permutations are shown in 
Figure 2.  These seven manipulations can be 
decomposed into combinations of three distinct basic 
movements: a vertical flip, a horizontal flip, and a 
rotation of 90 degrees. With combinations of these 
movements, any basic manipulation shown in Figure 2 
can be achieved. 

When relocating a mapping, there are a few 
requirements that we need to meet in order for its 
functionality to be preserved.  First, the routing 
programmed into each cell must be changed to reflect 
the overall rotation or flip of the configuration.  Each 
cell in a mapping can have routing to and from its four 
immediate neighbor cells that must be maintained 
relative to those neighbors when the mapping is 
moved.  For example, if a cell routes to its neighbor to 
the east and a horizontal flip is performed, the original 
cell must now route to that same neighbor which is 
now found to its west.  Alternately, a cell that routes to 
a cell to the north and belongs to a configuration that is 
then rotated 90 degrees clockwise would be changed to 

route to the east. 

Second, a cell must also be shifted by the same 
horizontal and vertical offsets as the entire 
configuration being relocated.  Additionally, each cell 
must maintain its position relative to the others so that 
all routes between cells are preserved.  In the rotation 
example given previously, the northern neighbor must 
be moved so as to become the eastern neighbor to 
preserve the correct routing structure. 

Third, the relative routing between cells within a 
configuration must remain intact.  The reconfiguration 
hardware can operate on a cell-by-cell basis, changing 
input and output directions based on the manipulation 
or manipulations being performed.  This can be 
performed using either combinational logic or lookup 
tables.  Performing translation (shift) operations also 
involves very little computation. The row and column 
offsets are simply added to the original row and 
column addresses of each individual cell.  No other 
manipulations are required for this operation on our 
idealized 6200 FPGA. 

Finally, the relative position of a cell within a 
configuration must be maintained.  While this is easy 
in a shift operation where the offset is simply applied 
to all cells within the configuration, it is more complex 
for the rotate and flip operations.  These complex 
manipulations are easiest to conceptualize as 
operations performed on one large object.  In actuality, 
however, this one large object is made up of many 
smaller objects.  Each of these must be altered to a 
different degree in order to preserve the original larger 
object after the manipulation is complete.  In our case, 
the large object is the full configuration, and the 
smaller objects are the discrete FPGA cells that form 

flip horizontal flip horizontal & 

rotate 90º

flip vertical flip vertical & 

rotate 90º

original 

configuration

rotate 90º flip vertical & 

horizontal

flip vertical & 

horizontal & 
rotate 90º

Figure 2: The eight permutations of a configuration. 

0 0 0 0

0 0

4 1

0

4 1

0

1 2 3

6 5 2 6 5 2 4 1

4 5

3 3 6 5 2

6

3

rotate mapping 90º offset entire mapping 
horizontally by -1 coluimn

offset entire mapping 
vertically by +1 column, final 
result

mapping original 
configuration

Figure 3: An example relocation using a 90 degree rotation and an offset. 
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that configuration.  Although all of the cells may be 
flipped or rotated to the same degree as the 
configuration itself, they each have their own particular 
offsets to move in order to preserve the relative 
arrangement between cells within the configuration. 

However, if we temporarily consider a configuration to 
occupy the entire array, these operations are simplified 
into short equations on a per-cell basis using the 
original row and column addresses and the maximum 
row and column addresses.  For example, consider a 
configuration that is to be flipped horizontally.  Cells 
that are in column c will be relocated to column maxcol 
- c.  Changing the column address in this matter 
ensures that each cell is the same distance from the 
west border as it used to be from the east border, and 
vice versa.  The flip is then followed by a shift of the 
entire configuration to place it in the desired final 
location. 

We show an example of a rotation and an offset 
operation in Figure 3 that further demonstrates this 
idea.  The cells in the figure are numbered in order to 
illustrate the location changes for the cells during the 
relocation of the configuration.  In order for a mapping 
to be successfully manipulated, the relative positions 
and routing (as represented here by the numbers) 
should match the original arrangement.  The first pane 
shows an initial mapping. 

First the entire array is rotated. In this step, if cell "1" 
originally routed to cell "2" to the east, it must now be 
changed to route to cell "2" in the south and its position 
changes from <0,1> to <3,0>. If r is the original row 

position for any cell and c is the original column 
position, then rotating the mapping changes each cell 
<c, r> to <maxcol–r, c>.  The next pane shows the 
entire mapping moved one column to the west. In this 
case, the position of each cell changes from <c, r> to 
<c+m, r> where m is the column translation offset.  
Finally, the mapping is moved south one row. Here, <c, 
r> becomes <c, r+n> where n is the row translation 
offset.  For this example, m = -1 and n = 1.  With a 
series of simple calculations, a configuration has been 
fully relocated. 

With the ability to do the three complex movements 
and the two offset operations, any reconfiguration of a 
cell mapping is possible in our idealized FPGA.  Table 
1 details the position equations for these five 
manipulations.  Any reconfiguration hardware that we 
design will take an incoming mapping, pass each cell 
of it through a pipeline of these five stages, and output 
a fully reconfigured mapping. Figure 4 shows this 
pipeline and its operation on the example of Figure 1. 

Relocation on the 6200 
The purpose thus far has been to propose an abstract 
way of relocating cell-based FPGA mappings.  We are 
in essence designing hardware that takes as input the 
information for a cell (its configuration and location 
bits) and changes it according to some master direction 
from the CPU. Given the desired changes and the 
configuration data of each cell, our reconfiguration 
hardware should be able to achieve any relocation in 
the idealized model of our FPGA. We will now discuss 
how this can be implemented on the 6200.  In 

Type Old Location New Location
Vertical Flip <c, r> <c, maxrow-r>
Horizontal Flip <c, r> <maxcol-c, r>
Rotate 90º <c, r> <maxcol-r, c>
Vertical Offset (by n) <c, r> <c, r+n>
Horizontal Offset (by m) <c, r> <c+m, r>

Table 1: The equations to determine the relocated coordinates for a cell. 

Relocation Pipeline

flip
horizontal

rotate
90°

vertical
offset

horizontal
offset

flip vertical

Incoming Configuration Final Configuration

Stepwise Changes

Figure 4: The relocation pipeline and its operation on the example of Figure 1. 
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particular, we will examine how to change the actual 
position and routing information of the cells.  

Each cell's routing and functionality are controlled by 
multiplexers, that are in turn selected with SRAM 
configuration bits local to each cell.  Figure 5a shows a 
diagram of a 6200 cell's inputs.  There are three inputs 
to the function unit wi thin the cell, and these three 
inputs come from the three multiplexers X1, X2, and 
X3 respectively. The output of these multiplexers can 
be selected from eight locations.  N, S, E, and W are 
the neighboring cells’ outputs to the north, south, east 
and west, respectively.  N4, S4, E4 and W4 are the 
special long distance routes built into the 6200 and are 
located in the indicated directions. Outputs of each cell 
follow similarly and are shown in Figure 5b. 

Cell outputs are chosen from the output of the function 
unit or from the outputs of other cells (effectively 
routing through a cell).  Two bits of SRAM data for 
each multiplexer are needed to select from these four 
possible outputs.  Figure 6 shows the configuration 
information for the cell routing.  Although these bytes 

contain the bits labeled CS, RP, Y2, and Y3 which 
control the function unit of the cell, we need to 
examine only the bits which control the input and 
output multiplexers.  In order to change a cell's 
configuration the incoming data destined for these 
three bytes of SRAM must be altered. 

Each mapping manipulation (the rotate 90 degrees and 
the horizontal and vertical flips) has a distinct set of 
operations on the routing information that must be 
made on a cellular level.  For instance, to flip a 
mapping vertically, if a northern input was selected by 
any of the multiplexers of some cell, it now must be 
changed to be a southern input and the cell's horizontal 
position must change from <c, r> to <maxcol–c, r>.  
We similarly change the output routing – north 
becomes south, south becomes north, the row address r 
becomes maxrow – r, and so forth. For a vertical flip, 
east/west routing changes do not occur. 

A cell's location is determined by the memory address 
associated with the three data bytes that define its 
functionality, as shown in Figure 7.  This address is 

Function
Unit

S E W

Sout

Wout

N
S
W

N E W

Nout

N
S
E

Eout

Function
Unit

N
S E
W

N4
S4 E4

W4

N
S

E
W

N
4

S4
E

4
W

4

N
SE

W
N4

S4E4
W4

X1

X2

X3

S S4

N N4

E

E4

W

W4

(a) (b)

Figure 5: The 6200 cell (a) input structure (b) output structure 

DATA BITColumn
Offset
<1:0> 7 6 5 4 3 2 1 0

00 North East West South

01 CS X1[2:0] X2[1:0] X3[1:0]

10 RP Y2[1:0] Y3[1:0] X3[2] X2[2]

Figure 6: The three data bytes that control the input and output multiplexers. 

Column
<5:0>

Column Offset
<1:0>

Row
<5:0>

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7: Address word format for the three programming bytes of Figure 6. 
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composed of a word containing 14 bits.  Bits 13:8 and 
5:0 denote the column and row of the cell respectively. 
Bits 7:6, the column offset, control which of the three 
data bytes shown in Figure 6 are to be written to or 
read from.  To move the location of a particular cell, 
these 14 bits must be changed appropriately. 

For the relocation example of Figures 1 and 4, Figure 8 
shows the data changes at each stage in order to 
relocate cell #1.  The actual recalculated values are 
highlighted, and arrows indicate exchanges of the 
routing information within the cell due to changes in 
the cell's orientation.  Note that the initial routing 
configuration is arbitrary but is intended to be realistic 
given the mapping layout. 

First we examine the Vertical Flip stage.  X1 is initially 
set to receive E4 and a vertical flipping of a cell does 
not change the east-west routing directions. Therefore 
X1 remains unchanged.  Since X2 and X3 are set to N 
and S respectively, their roles swap when the cell is 
flipped.  Additionally, because the Eout and Wout 
multiplexers output values from the (former) North and 
South, their outputs are set to the opposite values due 
to the new orientation.  The coordinates of the cell also 
are changed from <c, r> to <c, maxrow–r>, but in this 
case r is coincidentally equal to max row – r. 

At the next stage, the Horizontal Flip, the output of the 

X1 multiplexer changes to W4 because of the exchange 
of the east and west directions.  X2 and X3 remain 
unchanged because their values are South and North, 
and these directions are unaffected by a horizontal flip.  
Eout and Wout exchange values, and Nout changes 
from east to west.  Sout is unchanged because it 
outputs from the function block.  The relative position 
of the cell is maintained by changing its coordinates 
from <c, r> to <maxcol–c, r>. 

The 90 degree rotation is somewhat more complicated.  
It involves changing routing so that it is associated with 
the next most clockwise compass point.  Westerly 
inputs become northerly ones.  South would become 
west, east would become south, and north would 
become east.  Cell outputs are also quite complicated.  
Although Nout was originally west, it remains west 
because previously Wout was set to South.  Similarly, 
Eout is set to North because before the rotation Nout 
was set to West, Sout is set to East because previously 
Eout was set to North, and Wout is set to the Function 
block output because Sout was originally that output.  
The coordinates are then changed from <c, r> to 
<maxcol–r, c>.  

Finally, in the Vertical and Horizontal Offset Stages, 
each cell of the mapping is moved one row to the south 
(<c, r> becomes <c, r+1>) and 2 columns to the west 
(<c', r'> becomes <c'+2, r'>). 

Initial
Configuration

Vertical
Flip

Horizontal
Flip

Rotate
90 Degrees

Vertical
Offset

Horizontal
Offset

Final
Configuration

X1 E 4 110 E 4 110 W 4 100 N4 111 N4 111 N4 111 N4 111
X2 N 011 S 000 S 000 W 001 W 001 W 001 W 001

Function
Unit

Inputs X3 S 000 N 011 N 011 E 001 E 001 E 001 E 001

Nout F 00 E 10 W 11 W 11 W 11 W 11 W 11
Eout N 01 S 11 N 01 N 01 N 01 N 01 N 01
Sout E 01 F 00 F 00 E 01 E 01 E 01 E 01

Function
Unit

Outputs
Wout S 11 N 10 S 11 F 00 F 00 F 00 F 00

Col Row Col Row Col Row Col Row Col Row Col Row Col Row
Coords

4 2 4 2 0 2 2 0 2 1 4 1 4 1

Figure 8: Complex relocation changes for cell #1 in Figure 4.  Shaded areas are values that must be 
recomputed for the operation performed.  Arrows indicate exchanges of values due to reorientation of 
directions. 

Initial State Final State
N 011 E 001
S 000 W 010
E 001 S 000
W 010 N 011
N4 111 E4 110
S4 101 W4 100
E4 110 S4 101
W4 100 N4 111

X1, X3 Multiplexers

Initial State Final State
N 011 E 010
S 000 W 001
E 010 S 000
W 001 N 011
N4 111 E4 101
S4 110 W4 100
E4 101 S4 110
W4 100 N4 111

X2 Multiplexer

Eout Multiplexer Wout Multiplexer
Initial Nout

State
Final Eout

State
Initial Sout

State
Final Wout

State
N 01 E 10 S 11 W 01
E 10 S 11 E 01 S 11
W 11 N 01 W 10 N 10
F 00 F 00 F 00 F 00

Sout Multiplexer Nout Multiplexer
Initial Eout

State
Final Sout

State
Initial Wout

State
Final Nout

State
N 01 E 01 N 10 E 10
S 11 W 10 S 11 W 11
E 10 S 11 W 01 N 01
F 00 F 00 F 00 F 00

Figure 9: The SRAM bit changes for the input and output multiplexers for the 90 degree relocation 
operation 
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From this type of analysis, a distinct set of logic 
equations can be derived.  Figure 9 lists the changes 
necessary for the most complicated stage, the rotation 
of 90 degrees.  For instance, if the SRAM bits 
corresponding to multiplexer X1 are set to "W4" 
encoded by "100", then it changes to "N4" encoded by 
"111".  The output multiplexers are slightly different. 
For instance, multiplexer Eout will change its state to 
match whatever Nout was in the incoming 
configuration.  The table shows all such changes 
needed in the 6200 for rotations of 90 degrees. 

Derived from the table in Figure 9, the equations 
shown in Figure 10 take as input the current state of the 
various multiplexers and output what the state would 
become after a rotation of 90 degrees (shown with the ' 
notation).  For instance, for X1, the rotated X1[0] is 
dependent on the incoming bits 0, 1, and 3 of X1 but is 
also dependent on bit 1 of the rotated X1.  The rotation 
of 90 degrees has the most complex equations of the 
three basic manipulations, yet these equations can be 
implemented in simple logic.  Implementing the row 
and column changes is also trivial, because it involves 
simple additions and subtractions. 

An overall Relocation Pipeline of these changes can be 
created for the 6200.  Each stage in the pipeline 
corresponds to one of our basic movements (as 
illustrated in Figure 4) and incoming configurations 
pass through each stage either modified or untouched 
by the relocation hardware depending on simple 
instructions from the CPU.  The CPU itself will require 
only a constant amount of computation to generate the 
settings for the relocation hardware, independent of the 
size of a configuration.  However, if we forced the 
CPU to perform each relocation operation on each 
FPGA cell, it would require computation time 

proportional to the number of cells in the configuration.  
Using the custom relocation hardware frees the CPU 
for other computing tasks. 

Limitations of the 6200 

Using the relocation hardware already discussed, we 
are potentially able to implement another feature for 
improved FPGA configuration: defragmentation.  The 
idea of defragmentation is to shift configurations 
already present on the FPGA in order to consolidate 
unused area.  The unused area can then be used to 
program additional configurations onto the chip that 
may not have fit in the previous available space.  This 
is a similar concept to memory defragmentation, 
although here it is extended to two dimensions. 

We can use the hardware and movements that we have 
described to take configurations that are already loaded 
onto the cell array and move them elsewhere on the 
array.  If we use the same Relocation Pipeline that we 
have designed, this operation consists of reading data 
from the array, running it through the pipeline and 
writing it back to another location.  This is not the 
quickest way to achieve defragmentation because it 
involves both a full configuration read and a full 
configuration write.  Alternatively, we could sacrifice 
some of the flexibility provided by the relocation 
hardware and employ a defragmentation scheme that 
simply shifts data directly from cell to cell so that a 
mapping would be moved horizontally or vertically in 
single column or row increments.  However, this would 
add a significant amount of routing to a 6200-like 
FPGA, given that connections would have to be added 
to relay programming bits from each cell to each of its 
neighbors.  Neither of these two solutions is ideal: one 
could cause heavy delays due to configuration reads 

]2[1]2[1

)]1[1]2[1(]0[1]1[1]2[1]0[1]1[1

])1[1]2[1(]0[1]1[1]1[1]0[1

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]2[1]2[2

]0[1]2[1]1[1]2[1]1[2

]1[1]0[1)]0[1]2[1(]1[1]0[2

XX

XXXXX

XXXXXX

=′
+=′

′+=′

]2[3]2[3

)]1[3]2[3(]0[3]1[3]2[3]0[3]1[3

])1[3]2[3(]0[3]1[3]1[3]0[3

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]0[]1[]0[]1[]1[

]1[]0[

NoutNoutNoutNoutEout

NoutEout

+=′

=′

]0[]1[]0[]1[]1[

]0[]0[

SoutSoutSoutSoutWout

SoutWout

+=′

=′

]1[]1[

]0[]1[]0[]1[]0[

EoutSout

EoutEoutEoutEoutSout

=′
+=′

]1[]1[

]0[]0[

WoutNout

WoutNout

=′
=′

Sout Multiplexer

Nout Multiplexer

Wout Multiplexer

Eout Multiplexer
X1 Multiplexer

X2 Multiplexer

X3 Multiplexer

Figure 10: The logic equations necessary to calculate the individual bit changes of Figure 9.  These 
relocation equations are general, and apply to any 90 degree rotation.  
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and writes, while the other creates a high area 
overhead. 

Additionally, defragmenting a 2-D array is a complex 
operation. Essentially, the FPGA must go through a 
floorplanning stage each time it is defragmented, which 
is a time-consuming process usually performed in 
compilation.  Although some work has been done on 
using heuristics to accelerate this operation 
[Bazargan00], they result in wasted space.  Because 
our aim is to reclaim unused area, this is contrary to 
our goal.  This amount of computation can therefore 
easily exceed the benefits gained through 
defragmentation, and cause defragmentation in the 
6200 to become unfeasible.  A similar difficulty occurs 
in relocation.  If we required that all configurations 
occupy a rectangular area, we could find free locations 
without a great deal of difficulty by keeping a list of 
free rectangles sorted by size.  However, odd-shaped 
configurations would make the search for available 
space an examination of the FPGA contents on a cell-
by-cell basis, which would need to be performed each 
time a configuration required relocation. 

Another consideration is that of I/O.  At compile time, 
the placement and routing tools connect logic blocks to 
pins for input and output.  The pin locations must 
remain fixed despite relocation because of the board-
level connections to the FPGA.  Therefore, each time a 
configuration is moved, the connections between it and 
the I/O pins it uses  need to be re-routed.  As routing is 
an expensive step in the compilation process, it is 
unlikely that this could be effectively done at run-time.  
Alternately, we could use the concept of virtualized 
I/O, which is a bus-based input/output structure that 
provides a location-independent communication 

method (this concept is studied in more depth later).  
However, for two-dimensional virtualized I/O, we 
would need to provide a method for a cell to 
communicate with every pin in the FPGA, which is not 
practical given the large number of both pins and logic 
blocks. 

A further limitation placed on relocation by the actual 
6200 design is that in reality we are not able to make 
arbitrary movements of mappings.  Although the 4-cell 
spanning routing (N4, E4, etc.) does add some distance 
routing capability to the 6200 array, it can only be 
written to near the borders of a 4x4 grouping of cells.  
This severely limits where we can and cannot move 
mappings.  If a mapping contains 4x4 routing, we are 
limited to horizontal and vertical movements in 
multiples of four to preserve this routing.  A similar 
phenomenon occurs at the border of a 16x16 grouping 
of cells, and so on up a final grouping that is the size of 
the entire chip.  Thus, usage of the hierarchical, long-
distance routing structures rules out most relocation 
operations. 

Although we can create relocation hardware for the 
simplified 6200 design, introducing the realities of the 
actual 6200 complicates this hardware significantly.  
Despite initial appearances, the partially reconfigurable 
6200 is not well suited for relocation and 
defragmentation.  While partial reconfigurability is 
essential to the concept of relocation and 
defragmentation, there are a number of other notions 
that are necessary as well.  The next sections describe 
these ideas and how they were used in the design of a 
new architecture created specifically to feasibly 
perform both relocation and defragmentation. 

column decoder, input tristate drivers

programming
data

R
ow

 decoder

row
address

SRAM array

column
address

staging area

programming
data

R
ow

 decoder

row
address

SRAM array

staging area
address

offset
select

read write

offset
registers
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New Architecture 
We propose a new architecture designed specifically to 
exploit the benefits of relocation and defragmentation.  
We will refer to this architecture as the R/D 
(Relocation / Defragmentation) FPGA.  First we 
examine the guidelines used for the design creation, 
and then we discuss the details of the actual 
architecture.  Next we show a few examples of the 
operation of this new FPGA.  We also examine 
possible extensions to the R/D architecture.  Finally, 
we give performance results comparing the 
configuration overhead incurred by our new 
architecture to that encountered using the serial, 
partially reconfigurable, and multi-context FPGAs for a 
given area. 

Design Issues 
Using a few simple concepts in the design phase of the 
FPGA, we can ensure that the architecture is suitable 
for relocation and defragmentation.  The first is that of 
partial reconfiguration.  The ability to selectively 
program portions of the FPGA is critical to the 
philosophy of relocation and defragmentation, since i ts 
addressability provides a way to specify the location of 
the configuration at run-time.  We therefore base the 
R/D FPGA on a generic partially reconfigurable core, 
as shown in Figure 11a. 

The second idea is homogeneity.  If each cell in the 
structure is identical, there are no functional obstacles 
to moving a configuration from one location to any 
other location within the boundaries of the array.  In 
the same manner, requiring the routing structure to be 
homogenous removes any placement limitations for 
routing reasons.  This removes the difficulty that the 
hierarchical routing structure presents in the 6200.  
Although the exact structure of the logic cell and the 
routing for the R/D FPGA has been left open, we do 
make homogeneity a requirement.  Most current 
commercial FPGAs are homogeneous, since they are 
built around a single, replicated tile. 

The third concept is virtualized I/O.  Using a bus-based 
input/output structure provides us with a location-
independent method to provide external signals to the 
individual configurations.  Configurations are therefore 
not limited by I/O constraints to be placed near the 
FPGA pins, plus the I/O routing remains unchanged 
when the configuration is mapped to a new location.  
Several architectures already support this, including 
Chimaera [Hauck97], PipeRench [Hauser97], and 
GARP [Goldstien99]. Alternately, virtualized I/O can 
be supported without the use of custom hardware 
provided that all mappings include bus structures such 
that adjacent mappings have connected busses.  Also, a 
global configuration can be used to control the I/O 
connections of the different configurations, as in the 
DISC system [Wirthlin95]. 

One type of virtualized I/O system for a row-based 
FPGA is shown in Figure 12. Row-based FPGAs are 
those in which a row of FPGA cells forms the atomic 
configuration unit, and therefore is not shared between 
configurations. This type of FPGA is discussed in more 
depth in a few paragraphs.  The virtualized I/O 
structure shown includes four external inputs and two 
external output per column.  A cell can select its inputs 
from the external input lines using a multiplexer.  The 
actual input value read therefore only depends on the 
setting of the multiplexer.  In this structure, cells can 
only output to a global output line when the 
corresponding output enable line is set to high for that 
cell's row.  These enable lines are global, and a control 
structure is required to ensure that only one row at a 
time may output to any given line. 

For example, in the Chimaera system there are 
Content-Addressable-Memories located next to each 
row of cells.  When the CPU wishes to read the output 
of a configuration, it sends the configuration number to 
the array, which checks this value against the CAM 
values.  If a row's CAM is equal to the configuration 
number sent by the CPU, the output is enabled for that 
row [Hauck97]. 

The fourth important idea is that of one-dimensionality.  
Current commercial FPGA architectures are based on a 

Logic
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Figure 12: A virtualized I/O structure with four input lines and two output lines.  Two cells in one row 
are shown here.  The input and output lines are shared between rows.  Although multiple rows may read 
an input line, only one row at a time may write to any given output line. 
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two-dimensional structure.  Movement of 
configurations in two dimensions for relocation and 
defragmentation can be quite difficult, as there are 
many different placement possibilities to consider.  
These complexities can be removed when the FPGA is 
designed with a row-based structure similar to 
Chimaera [Hauck97] and PipeRench [Goldstein99].  
These architectures consider a single row of FPGA 
cells to be an atomic unit when creating a 
configuration, where each row forms a stage of the 
computation.  The number of cells in a row is arbitrary, 
but in general assumed to be the same width as the 
number of bits in a data word in the host processor.  
This, in essence, reduces the configurations to one-
dimensional objects, where the only allowable 
variation in configuration area is in the number of rows 
used.  Rotation, horizontal or vertical flipping, or 
horizontal offset operations are no longer necessary.  
The only operation required for relocating a 
configuration is to change the vertical offset.  Because 
of the one-dimensionality, the virtualized I/O is also 
simplified.  Instead of including input and output wires 
along each column and each row of the FPGA, these 
lines are only necessary for each column, as shown in 
the example in Figure 12. 

A number of different reconfigurable systems have 
been designed as one-dimensional architectures.  Both 
Garp [Hauser97] and Chimaera [Hauck97] are 
structures which provide cells that compute a small 
number of bit positions, and a row of these cells 
together computes the full data word.  A row can only 
be used by a single configuration, making these designs 
one-dimensional.  In this manner, each configuration 
occupies some number of complete rows.  Although 
multiple narrow-width computations can fit within a 
single row, these structures are optimized for word-
based computations that occupy the entire row.  The 
NAPA architecture [Rupp98] is similar, with a full 
column of cells acting as the atomic unit for a 
configuration, as is PipeRench [Cadambi98].  RaPiD 
[Ebeling96] is a very coarse-grained one-dimensional 
reconfigurable architecture that operates only on word-
width values instead of single bits.  Therefore, buses 
are routed instead of individual values, which also 
decreases the time required for routing since the bits of 
a bus can be considered together rather than as separate 
routes. 

Not only does this one-dimensional structure reduce 
the hardware requirements for the relocation 
architecture, it also simplifies the software 
requirements for determining to where a configuration 
can be relocated.  It is no longer a two-dimensional 
operation.  Also, a defragmentation algorithm that 
operates in two dimensions with possibly odd-shaped 

configurations could be quite cumbersome.  
[Diessel97] discusses one such method for performing 
2-D defragmentation.  However, when the problem is 
only one-dimensional, an algorithm based on memory 
defragmentation techniques can be applied. 

Architecture Specifics 

We created the design for the R/D FPGA by using each 
of the guidelines of the previous section.  This section 
describes the major components of this new FPGA 
programming model.  While this design is similar to 
the partially reconfigurable FPGA in a number of ways 
that we will discuss, it has a number of additional 
architectural features. 

Similar to the partially reconfigurable FPGA, the 
memory array of the R/D FPGA is composed of an 
array of SRAM bits.  These bits are read/write enabled 
by the decoded row address for the programming data.  
However, the column decoder, multiplexer, and input 
tri-state drivers have been replaced with a structure we 
term the "staging area", as shown in Figure 11b. 

This staging area is a small SRAM buffer, which is 
essentially a set of memory cells equal in number to 
one row of programming bits in the FPGA memory 
array, where a row of logic cells contains a number of 
rows of configuration bits.  Each row, and therefore the 
staging area, contains several words of data.  The 
staging area is filled in an addressable fashion one 
word at a time. Once the information for the row is 
complete in the staging area, the entire staging area is 
written in a single operation to the FPGA's 
programming memory at the row location indicated by 
the row address.  In this manner the staging area acts as 
a small buffer between the master CPU and the 
reprogrammable logic.  This is similar in function to a 
structure proposed by Xilinx [Trimberger95], and 
present in their Virtex FPGA [Xilinx99].  More 
discussion on the application of relocation and 
defragmentation to the Virtex FPGA appears in a later 
section. 

In the staging area of the R/D FPGA, there is a small 
decoder that enables addressable writes/reads.  The 
column decoder determines which of the words in the 
staging area is being referenced at a given moment.  No 
row decoder is required because we construct the 
staging area such that although there are several 
columns, there is only one word-sized row.  One output 
tri-state driver per bit in a word is provided to allow for 
reading from the staging area to the CPU. 

The chip row decoder includes a slight modification, 
namely the addition of two registers, a 2:1 multiplexer 
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to choose between the two registers, and an adder, 
where these structures are all equal in width to the row 
address.  This allows a vertical offset to be loaded into 
one or more of the registers to be added to the 
incoming row address, which results in the new 
relocated row address.  One of the two offset registers 
is the "write" offset register, which holds the relocation 
offset used when writing a configuration.  The other 
offset register is the "read" register, which is used 
during defragmentation for reading a relocated 
configuration off of the array.  The original row 
address supplied to the reconfiguration hardware is 
simply the row address of that particular row within the 
configuration.  Therefore, all configurations are 
initially “located” starting at address 0 at the top of the 
array. 

A basic partially reconfigurable FPGA requires a 
column decoder to determine which data word within a 
row should be accessed for reading or writing.  
However, a column decoder between the staging area 
and the array is not necessary in the R/D design.  The 
staging area is equal in width to the array, and therefore 
each bit of the staging area is sent out on exactly one 
column.  This provides for a high degree of parallelism 
when reading from the FPGA configuration memory to 
the staging area or writing from the staging area to the 
FPGA memory, as a full row is read or written in a 
single operation. 

Finally, although we have stated that our FPGA 
contains a homogeneous cell and routing structure, as 
well as virtualized I/O, the specifics of these structures 
are not dictated by the memory structure.  The 
particular design is unrestricted because the actual 
architectures do not influence the discussion of the 

philosophy and operation of the configuration aspect of 
the R/D FPGA. 

Example of R/D Operation 
Figure 13 illustrates the steps involved in writing a row 
of configuration data to the FPGA SRAM array.  The 
words are loaded into the staging area one at a time.  
Once the words are loaded into the staging area, they 
are all written in a single write cycle to the memory 
array itself.  Although the figure shows the words 
loaded in a particular order into the staging area, this is 
not necessarily the case.  The staging area is word-
addressable, allowing it to be filled in an arbitrary 
order. Furthermore, the example shows four words 
filling the staging area.  This is for illustrative purposes 
only.  The staging area can be any size, but is expected 
to be many words wide. 

Relocation of a configuration is accomplished by 
altering the row address provided to the row decoder.  
This allows for a simple way to dynamically locate 
individual configurations to fit available free space. 
Figure 14 shows the steps to relocate a configuration as 
it is being loaded into the FPGA. 

First the offset value required to relocate a 
configuration is loaded.  In this case, a value of "3" is 
written to the write offset register to force the incoming 
configuration to be relocated directly beneath the 
configuration already present in the FPGA.  Each 
configuration is considered to start at row “0”, so the 
offset indicates exactly which row the configuration 
should be placed at. 

Next, the CPU or the DMA loads each configuration 
row one data word at a time into the staging area.  The 
entire staging area is then written to the destination row 

1 12 123

1234 1234

1234

Figure 13: A single row of configuration data is written to the FPGA by performing multiple word-
sized writes to the staging area followed by a single write from the staging area to the array.  Each step
shows a single write cycle.
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of the FPGA in a single operation.  The actual address 
of this row is determined by adding the write offset 
register to the destination address for that row. 

For each row of the configuration there are as many 
writes to the staging area as there are words in a row, 
followed by one write from the staging area to the 
FPGA.  This is plus the single write to the offset 
register per configuration in order to relocate a 
configuration to an empty location.  The total number 
of read/write cycles to write a configuration to the 
array is therefore: 

<# rows> * (<staging area size> / <data word size> + 1) + 1 

If we consider a number of full row width 
configurations that would have been programmed onto 
a basic partially reconfigurable FPGA, we are only 
adding <# rows> + 1 cycles to the configuration time 
in order to allow relocation. 

Defragmentation of the R/D FPGA requires more steps 
than a simple relocation operation.  Rows must be 
moved from existing locations on the FPGA to new 
locations without overwriting any necessary data.  This 
is particularly apparent when the new location of a 

configuration partially overlaps the current location.  
Depending on the order of the row moves, one or more 
of the rows of information could be lost.  In particular, 
if a configuration is to be moved "up" in the array, the 
rows should be moved in a topmost-first order.  For a 
configuration that is to be moved "down", the rows 
should be moved in a bottommost-first order. Figure 15 
shows an example of the correct order to move rows in 
a configuration to prevent loss of data when the 
configuration is being moved "up" in the array. 

Here we use both of the offset registers.  The read 
register is used to store the offset of the original 
location of the configuration.  The write register holds 
the offset of the new configuration location. 

First, using a row address of 0 and a read offset of 6, 
the top row of information for the second configuration 
is read back into the staging area..  The row is then 
written back out to the new location using the same 
row address, but a write offset of 4.  The address sent 
to the row decoder is incremented (although the 
contents of the two registers remain unchanged), and 
the procedure continues with the next row. 

Figure 14: An example of a configuration that is relocated as it is written to the FPGA.  The actual 
loading is done one data word at a time, but is shown here as one step for simplicity. 

Figure 15: An example of a defragmentation operation.  By moving the rows in a top-down fashion for 
configurations moving upwards in the array, a configuration will not overwrite itself during 
defragmentation. 

Configuration:
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Using two registers instead of one allows each row to 
be moved with a single read and a single write, without 
having to update the register as to which address to 
read from or write to.  A 1-bit signal controls the 2:1 
multiplexer that chooses between the two signals.  
There are also two cycles necessary to initialize the two 
registers.  The total number of read/write cycles 
required to move a configuration is: 

<# rows> * 2 + 2 

This structure also allows for partial run-time 
reconfiguration, where most of the structure of a 
configuration is left as-is, but small parts of it are 
changed.  One example of this type of operation would 
be a multiply-accumulate with a set of constants that 
change over time, such as with a time-varying finite 
impulse response (FIR) filter.  A generic example is 
shown in Figure 16.  The changed memory cells are 
shown in a darker shade. 

First, the row to be partially programmed must be read 
back into the staging area.  Then this row is partially 
modified (through selectively overwriting the staging 
area) to include the new configuration.  Finally, the 
modified row is written back to the array.  This 
preserves the configuration information already present 
in the row.  This is repeated for each altered row in the 
configuration. 

For each row to be altered in the configuration, there is 
one read of the original row data, one or more writes to 
change the data in the staging area, and a single write 
back to the array from the staging area.  This is in 
addition to a single write to an offset register for the 
configuration offset.  The total number of read/write 
cycles required to place a partial-row configuration 
onto the array is: 

<#  rows altered> * 2 + <total # changed words> + 1 

Xilinx Virtex for Relocation and 
Defragmentation 

Relocation and defragmentation can also be performed, 
with some limitations, in one of the current commercial 
FPGAs.  As we have stated previously, the staging area 
of the R/D FPGA is similar to what is present in 
Xilinx’s Virtex FPGA [Xilinx99].  In this FPGA, this 
structure is referred to as the Frame Data Input 
Register, where a frame is a column of configuration 
information (as opposed to our design, which is 
organized in rows).  The frame register is essentially a 
shift register that is loaded serially with the 
configuration information for a frame.  This 
information is then transferred to the FPGA in parallel 
to a location supplied by the CPU (making the FPGA 
partially reconfigurable on a frame-by-frame basis).  
Although the frame register does not contain all of the 
important features of the R/D FPGA staging area, it 
can be used in such a way as to provide relocation and 
defragmentation ability.  Instead of performing the 
relocation of the configuration at the FPGA itself, the 
CPU would be required to compute the new destination 
address of each frame, and send this address to the 
FPGA.  Also, because the Virtex architecture does not 
include virtual I/O hardware, the configurations 
themselves must include a method to allow input and 
output values to be placed on wires designated as chip-
wide busses for those signals.  Each configuration 
would be required to propagate all of the busses 
required in all configurations that could be present on 
the FPGA at the same time. 

However, this method of providing virtualized I/O uses 
the limited FPGA routing resources that may be 
required for signals within the actual configuration.  

Figure 16: Portions of a configuration can be altered at run-time.  This example shows small 
modifications to a single row of a configuration. 
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Also, to provide full partial run-time reconfiguration, 
the frame register should be addressable to allow for 
the partial run-time reconfiguration shown in the last 
example in the previous section.  Although Xilinx’s 
Virtex FPGA is similar in design to the R/D FPGA, it 
is lacking a number of features that would provide for 
easy relocation and defragmentation of configurations.  
However, the similarity it does share with our design 
does indicate the feasibility of our proposed 
programming structure. 

Cache for R / D FPGA 
An additional method to reduce the CPU time required 
for configuration operations would be to attach an on-
chip cache to the staging area, such as in Figure 17.  
Rows of configuration information could then be held 
in the cache. The full details of the actual cache 
structure are left open.  However, the easiest method 
for uniquely identifying a given row is through the use 
of a configuration number in conjunction with the 
position of the row within that configuration. 

For rows of configuration information that are already 
present in the cache, the CPU would be freed from the 
operations necessary to send each word of the row to 
the staging area.  This therefore reduces the latency of 
retrieving this row from the CPU's memory, and the 
actual programming of the array would be performed 
much more quickly.  The entire row would be read 
from the cache in a single operation, rather than the 
multiple word writes to the staging area from the CPU.  
Also, the reading of data from the cache could overlap 
the writing of the previous value.  If an entire 
configuration was held in the cache, the number of 

read/write cycles required to place it onto the array 
would only be: 

<#  rows> + 2 

Estimated Size Comparison 
We modeled the sizes of the basic partially 
reconfigurable FPGA and the R/D FPGA using the 
same structures used in [Li00].  The sizes are estimated 
using the areas of tileable components. 

In order to create the area model for the R/D FPGA, we 
modified the hardware of a basic partially 
reconfigurable FPGA design.  The column decoder of 
the partially reconfigurable system was unnecessary in 
the R/D version because the staging area is exactly the 
width of the memory array, and was therefore removed 
for the R/D size model. 

There were also several additions to the partially 
reconfigurable FPGA design to create the R/D FPGA.  
The staging area structure includes the addition of 
staging area SRAM, output drivers to allow the CPU to 
read the staging area, and the small decoder for writing 
to it.  Because the row and column decoders serve an 
identical function but the orientation of the row 
decoder layout makes it smaller, the row decoder 
layout is used here instead of the column decoder 
layout.  Additionally, the main row decoder for the 
array was augmented with two registers, a 2:1 
multiplexer for choosing between the registers, and an 
adder to sum the offset from one of the registers with 
the incoming row address. 

staging area
programming

data

R
ow

 decoder

row
address

SRAM array

DRAM cache

Figure 17: A cache can be attached to the staging area of the R/D FPGA.  Entire configuration rows 
can be fetched from the cache into the staging area, eliminating the per-word loading time required to 
fill the staging area from the CPU.  This cache could be composed of either SRAM or DRAM. 
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We compared the sizes of the two different styles of 
FPGA using the base partially reconfigurable FPGA 
from [Li00], and the R/D FPGA as a base partially 
reconfigurable FPGA with the modifications listed 
above.  For this size evaluation, we modeled each with 
a megabit (220 bits) of configuration data in a square 
layout (# rows = # columns).  There are 1024 rows, 
addressed using 10 bits.  For the columns there are 32 
32-bit columns, addressed by five bits. 

Using the method presented in Li's paper, we consider 
that the configuration memory area only comprises 
25% of the total FPGA chip area.  We used the serial 
traditional FPGA design in order to compute the area 
of the other 75% of the chip and added this value to our 
area totals.  The area of the partially reconfigurable 
array was calculated to be 8.547 X 109 lambda2, while 
the area of the R/D FPGA was calculated to be 8.549 x 
109 lambda2, a difference of .0002%.  According to this 
comparison, the R/D FPGA has only a negligible size 
increase over a basic partially reconfigurable FPGA. 

The area of the virtualized I/O was not considered for 
this area model.  The area impact would depend on the 
number of input and output lines at each column of the 
array. 

Conclusions 
The use of relocation and defragmentation greatly 
reduces the configuration overhead encountered in 
reconfigurable computing.  In fact, configuration 
overhead is reduced by as much as a factor of 11 over a 
serially programmed FPGA when these concepts are 
used [Li00].  We have discussed a method to perform 
the relocation of configurations on the 6200 that allows 
horizontal and vertical flips, horizontal and vertical 
offsets, and 90 degree rotations.  These five operations 
allow us to perform any valid spatial manipulation of a 
configuration with a simple pipelined set of steps, 
minimizing the work required by the CPU. 

Although a stylized version of the Xilinx 6200 FPGA 
can be converted to handle relocation and even 
defragmentation, the re-introduction of some of the 
realities of the architecture poses significant drawbacks 
to our modifications.  The hierarchical routing 
structure, for example, places constraints upon our 
ability to relocate configurations to new locations.  The 
lack of a hardware-based virtual I/O system requires 
that the connections between the configurations and the 
I/O pins they use be re-routed for each relocation.  The 
design is also less than ideally suited to 
defragmentation. 

One of our solutions was to read the configuration off 
of the array and reload it, which could be a time-

consuming operation.  Alternatively, neighbor-to-
neighbor routing for the programming information 
could be added to allow configurations to be shifted 
on-chip, but would likely cause large area increases 
and would prohibit complex operations such as flips or 
rotations.  The time complexity of the calculations 
involved to compute the new locations is also very 
high. 

We then presented a new architecture design based on 
the ideas of relocation and defragmentation.  This 
architecture avoids the position constraints imposed by 
the actual 6200 design by ensuring a homogeneous 
logic and routing structure.  The use of the staging area 
buffer together with the offset registers and the row 
address adder provide a quick and simple method for 
performing relocation and defragmentation of 
configurations.  The one-dimensional nature causes 
both the reconfiguration hardware and the software that 
controls it to be simpler than in the 6200 system. 

The R/D FPGA exploits the virtues of relocation and 
defragmentation in order to reduce the overhead of 
configuration, which is a great concern in run-time 
reconfigurable applications.  The architecture is 
designed to require little additional run-time effort on 
the part of the CPU, and requires only a negligible area 
increase (.0002%) over a basic partially reconfigurable 
FPGA.  Furthermore, because the design shares some 
key features with a new commercial FPGA, our R/D 
FPGA design is a feasible next step in the advancement 
of FPGA programming architectures. 
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