
Configuration Relocation and Defragmentation for
Reconfigurable Computing

Katherine Compton, James Cooley, Stephen Knol
Department of Electrical and Computer Engineering

Northwestern University
Evanston, IL USA
kati@ece.nwu.edu

Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA USA

hauck@ee.washington.edu

Abstract
Custom computing systems exhibit significant
speedups over traditional microprocessors by
mapping compute-intensive sections of a
program to reconfigurable logic [Hauck98].
However, the number and frequency of these
hardware-mapped sections of code are limited
by the requirement that the speedups provided
must outweigh the considerable cost of
configuration. Research has shown that the
ability to relocate and defragment
configurations on an FPGA dramatically
decreases the overall configuration overhead
[Li00]. This increases the viability of mapping
portions of the program that were previously
considered to be too costly. We therefore
explore the adaptation of the Xilinx 6200 series
FPGA for relocation and defragmentation. Due
to some of the complexities involved with this
structure, we also present a novel architecture
designed from the ground up to provide
relocation and defragmentation support with a
negligible area increase over a generic partially
reconfigurable FPGA.

Introduction

One application of FPGAs is that of reconfigurable
computing – the use of a run-time reprogrammable
device operating as a customizable coprocessor or
functional unit alongside a main microprocessor
[Hauck98]. This reconfigurable logic is used to
emulate custom hardware for the acceleration of one or
more compute-intensive portions of a program.
Unfortunately, the speedups attainable by the use of
reconfigurable logic are limited by the large
configuration overheads incurred each time a function
is loaded into the array [Li00].

Li compared the total configuration overheads
exhibited during program execution by different FPGA
types acting as the reconfigurable coprocessor. Two of
these types are the serial and the partially

reconfigurable FPGAs. The traditional serial FPGA
loads configuration information for the entire chip in a
bit or byte serial fashion, while the partially
reconfigurable FPGA, such as the Xilinx 6200, can be
selectively programmed during runtime in an
addressable manner. The partially reconfigurable
FPGA was determined to have the potential to improve
configuration overhead by more than a factor of 7 over
the serial FPGA.

Variations on the partially reconfigurable FPGA were
also examined. Relocation, the ability to determine at
runtime the actual location in the array of a pre-
compiled configuration, improved the configuration
overhead of the generic partially reconfigurable FPGA
by a factor of up to 1.5, and the serial FPGA by nearly
a factor of 8. Furthermore, the ability to defragment
the configurations already present on the array to
consolidate unused computation area decreased the
overhead by a factor of 1.5 over the partially
reconfigurable FPGA with relocation [Li00]. This
leads to more than an overall factor of 11 improvement
in configuration overhead over the serially
programmed FPGA.

These increases in efficiency can affect the number of
program areas suitable for FPGA acceleration. The
configuration overhead of a serial or even a basic
partially reconfigurable FPGA might outweigh the
speedups obtained through the use of the
reconfigurable logic for a particular portion of the
program. In this case, this section should not be
mapped to the reconfigurable coprocessor. However,
with the lower configuration cost of the relocation and
defragmentation FPGAs, the guidelines for approving a
function for acceleration in hardware are relaxed,
increasing the potential for sections of a program to
qualify for translation to the reconfigurable
coprocessor, and increasing the overall speedup
attainable.

In order to leverage the advantages of relocation, we
examine the refitting of the Xilinx 6200 into a
relocation-enabled FPGA. Later we discuss the issues

2

in applying the idea of defragmentation to the updated
relocation 6200. Finally, we will propose a novel
architecture designed specifically from the ground up
for partial configuration, relocation and
defragmentation.

Example of Relocation

Although the partially reconfigurable FPGA design is
powerful, it faces limitations imposed by configuration
locations determined at compile time. If two different
configurations were mapped at compile time to
overlapping locations in the FPGA, only one of these
configurations can be present in the array at any given
moment. They cannot operate simultaneously.
However, if somehow the final FPGA location could
be determined at runtime, one or both of these
overlapping configurations could be shifted to a new
location that was previously unused to allow for
simultaneous use.

Figure 1 illustrates a situation in which relocation
could be used. The darkly shaded mapping is already
present on the FPGA. The lightly shaded mapping is a
new mapping that is also to be placed on the FPGA.
However, since the first and second configurations
have several cell locations in common, they cannot
both be present on a traditional partially reconfigurable
FPGA simultaneously.

However, an FPGA with relocation ability can modify
the second configuration to fit the unused space on the
grid, thereby allowing both mappings to be present
without one overwriting the other's information.
Figure 1 shows the steps taken to relocate the second
configuration to available cells.

Xilinx 6200 for Relocation

We have chosen the Xilinx 6200 FPGA [Xilinx96] to
adapt for use with configuration relocation because it is
a commercial partially reconfigurable FPGA. In
addition, the cell layout and local routing are regular.
Each cell has the same abilities, regardless of location.
These cells are arranged in an island-style layout. The
local routing is in the form of nearest-neighbor

connections. Longer distance routing is provided in a
hierarchical format, which is where we lose
homogeneity. A 4x4 group of logic elements (cells)
forms a cluster in which length 4 wires span four logic
elements (cells). Signals may only be transferred onto
these lines at the border of the 4x4 block. The next
level of the routing hierarchy includes a 4x4 group of
the smaller 4x4 blocks. These groups have length 16
wires that span the block. Again, these lines may only
be written at the border of the group of 4x4 blocks.
Additionally, cells are only able to access nearest
neighbor and length 4 wires, so the signals must also be
transferred to more local routing for reading. This
hierarchy continues up until a chip-sized block is
formed that includes chip-length wires.

As we will demonstrate later in this paper, the
relocation of a configuration requires modifications to
the programming data and/or programming addresses
on a cell-by-cell basis. Although the main CPU could
perform these manipulations, it would require effort
proportional to the size of the configuration.

Alternatively, we can create the logic necessary to
implement the manipulations in hardware placed in or
near the FPGA chip itself. Instead of changing the
bitstream before it is output to the FPGA, the CPU
could also send relocation instructions with the
configuration bitstream to the reconfigurable logic.
This message would contain a high-level description of
which alterations should be made to the entire
configuration. The relocation logic would then
calculate the actual changes to the bitstream as the
configuration information enters the FPGA. The
relocation hardware will be able to move, flip, and
rotate multi-cell mappings to make the most efficient
use of the cell array. This minimizes the effort
required on the part of the CPU to efficiently use the
reconfigurable logic, leaving it available for other
computing tasks.

In order to create such reconfiguration hardware, it is
convenient to consider a somewhat idealized FPGA
similar to the 6200 [Xilinx96]. Like the 6200, this
idealized FPGA allows random access to any cell in its
array. However, we will assume that its long-distance

Configuration
Present on FPGA

Incoming
Configuration Conflicts Reconfiguration

Figure 1: In some situations an incoming configuration maps to the same location as an existing
configuration. If the incoming mapping is relocated, it may be possible to allow both configurations to
be present in the FPGA concurrently.

3

routing is flexible and can be configured to and from
any cell. This removes the irregularity of the 6200
hierarchical routing. We will first determine the basic
needs of relocation hardware by examining this
abstract model. Later, we will use this model to
discuss an actual reconfiguration hardware design for
the 6200.

Abstract Relocation
Each configuration has eight distinct permutations of
its structure. This does not include simple offset
operations to shift the entire configuration to a new
location without altering its orientation. An example
configuration and its seven permutations are shown in
Figure 2. These seven manipulations can be
decomposed into combinations of three distinct basic
movements: a vertical flip, a horizontal flip, and a
rotation of 90 degrees. With combinations of these
movements, any basic manipulation shown in Figure 2
can be achieved.

When relocating a mapping, there are a few
requirements that we need to meet in order for its
functionality to be preserved. First, the routing
programmed into each cell must be changed to reflect
the overall rotation or flip of the configuration. Each
cell in a mapping can have routing to and from its four
immediate neighbor cells that must be maintained
relative to those neighbors when the mapping is
moved. For example, if a cell routes to its neighbor to
the east and a horizontal flip is performed, the original
cell must now route to that same neighbor which is
now found to its west. Alternately, a cell that routes to
a cell to the north and belongs to a configuration that is
then rotated 90 degrees clockwise would be changed to

route to the east.

Second, a cell must also be shifted by the same
horizontal and vertical offsets as the entire
configuration being relocated. Additionally, each cell
must maintain its position relative to the others so that
all routes between cells are preserved. In the rotation
example given previously, the northern neighbor must
be moved so as to become the eastern neighbor to
preserve the correct routing structure.

Third, the relative routing between cells within a
configuration must remain intact. The reconfiguration
hardware can operate on a cell-by-cell basis, changing
input and output directions based on the manipulation
or manipulations being performed. This can be
performed using either combinational logic or lookup
tables. Performing translation (shift) operations also
involves very little computation. The row and column
offsets are simply added to the original row and
column addresses of each individual cell. No other
manipulations are required for this operation on our
idealized 6200 FPGA.

Finally, the relative position of a cell within a
configuration must be maintained. While this is easy
in a shift operation where the offset is simply applied
to all cells within the configuration, it is more complex
for the rotate and flip operations. These complex
manipulations are easiest to conceptualize as
operations performed on one large object. In actuality,
however, this one large object is made up of many
smaller objects. Each of these must be altered to a
different degree in order to preserve the original larger
object after the manipulation is complete. In our case,
the large object is the full configuration, and the
smaller objects are the discrete FPGA cells that form

flip horizontal flip horizontal &

rotate 90º

flip vertical flip vertical &

rotate 90º

original

configuration

rotate 90º flip vertical &

horizontal

flip vertical &

horizontal &
rotate 90º

Figure 2: The eight permutations of a configuration.

0 0 0 0

0 0

4 1

0

4 1

0

1 2 3

6 5 2 6 5 2 4 1

4 5

3 3 6 5 2

6

3

rotate mapping 90º offset entire mapping
horizontally by -1 coluimn

offset entire mapping
vertically by +1 column, final
result

mapping original
configuration

Figure 3: An example relocation using a 90 degree rotation and an offset.

4

that configuration. Although all of the cells may be
flipped or rotated to the same degree as the
configuration itself, they each have their own particular
offsets to move in order to preserve the relative
arrangement between cells within the configuration.

However, if we temporarily consider a configuration to
occupy the entire array, these operations are simplified
into short equations on a per-cell basis using the
original row and column addresses and the maximum
row and column addresses. For example, consider a
configuration that is to be flipped horizontally. Cells
that are in column c will be relocated to column maxcol
- c. Changing the column address in this matter
ensures that each cell is the same distance from the
west border as it used to be from the east border, and
vice versa. The flip is then followed by a shift of the
entire configuration to place it in the desired final
location.

We show an example of a rotation and an offset
operation in Figure 3 that further demonstrates this
idea. The cells in the figure are numbered in order to
illustrate the location changes for the cells during the
relocation of the configuration. In order for a mapping
to be successfully manipulated, the relative positions
and routing (as represented here by the numbers)
should match the original arrangement. The first pane
shows an initial mapping.

First the entire array is rotated. In this step, if cell "1"
originally routed to cell "2" to the east, it must now be
changed to route to cell "2" in the south and its position
changes from <0,1> to <3,0>. If r is the original row

position for any cell and c is the original column
position, then rotating the mapping changes each cell
<c, r> to <maxcol–r, c>. The next pane shows the
entire mapping moved one column to the west. In this
case, the position of each cell changes from <c, r> to
<c+m, r> where m is the column translation offset.
Finally, the mapping is moved south one row. Here, <c,
r> becomes <c, r+n> where n is the row translation
offset. For this example, m = -1 and n = 1. With a
series of simple calculations, a configuration has been
fully relocated.

With the ability to do the three complex movements
and the two offset operations, any reconfiguration of a
cell mapping is possible in our idealized FPGA. Table
1 details the position equations for these five
manipulations. Any reconfiguration hardware that we
design will take an incoming mapping, pass each cell
of it through a pipeline of these five stages, and output
a fully reconfigured mapping. Figure 4 shows this
pipeline and its operation on the example of Figure 1.

Relocation on the 6200
The purpose thus far has been to propose an abstract
way of relocating cell-based FPGA mappings. We are
in essence designing hardware that takes as input the
information for a cell (its configuration and location
bits) and changes it according to some master direction
from the CPU. Given the desired changes and the
configuration data of each cell, our reconfiguration
hardware should be able to achieve any relocation in
the idealized model of our FPGA. We will now discuss
how this can be implemented on the 6200. In

Type Old Location New Location
Vertical Flip <c, r> <c, maxrow-r>
Horizontal Flip <c, r> <maxcol-c, r>
Rotate 90º <c, r> <maxcol-r, c>
Vertical Offset (by n) <c, r> <c, r+n>
Horizontal Offset (by m) <c, r> <c+m, r>

Table 1: The equations to determine the relocated coordinates for a cell.

Relocation Pipeline

flip
horizontal

rotate
90°

vertical
offset

horizontal
offset

flip vertical

Incoming Configuration Final Configuration

Stepwise Changes

Figure 4: The relocation pipeline and its operation on the example of Figure 1.

5

particular, we will examine how to change the actual
position and routing information of the cells.

Each cell's routing and functionality are controlled by
multiplexers, that are in turn selected with SRAM
configuration bits local to each cell. Figure 5a shows a
diagram of a 6200 cell's inputs. There are three inputs
to the function unit wi thin the cell, and these three
inputs come from the three multiplexers X1, X2, and
X3 respectively. The output of these multiplexers can
be selected from eight locations. N, S, E, and W are
the neighboring cells’ outputs to the north, south, east
and west, respectively. N4, S4, E4 and W4 are the
special long distance routes built into the 6200 and are
located in the indicated directions. Outputs of each cell
follow similarly and are shown in Figure 5b.

Cell outputs are chosen from the output of the function
unit or from the outputs of other cells (effectively
routing through a cell). Two bits of SRAM data for
each multiplexer are needed to select from these four
possible outputs. Figure 6 shows the configuration
information for the cell routing. Although these bytes

contain the bits labeled CS, RP, Y2, and Y3 which
control the function unit of the cell, we need to
examine only the bits which control the input and
output multiplexers. In order to change a cell's
configuration the incoming data destined for these
three bytes of SRAM must be altered.

Each mapping manipulation (the rotate 90 degrees and
the horizontal and vertical flips) has a distinct set of
operations on the routing information that must be
made on a cellular level. For instance, to flip a
mapping vertically, if a northern input was selected by
any of the multiplexers of some cell, it now must be
changed to be a southern input and the cell's horizontal
position must change from <c, r> to <maxcol–c, r>.
We similarly change the output routing – north
becomes south, south becomes north, the row address r
becomes maxrow – r, and so forth. For a vertical flip,
east/west routing changes do not occur.

A cell's location is determined by the memory address
associated with the three data bytes that define its
functionality, as shown in Figure 7. This address is

Function
Unit

S E W

Sout

Wout

N
S
W

N E W

Nout

N
S
E

Eout

Function
Unit

N
S E
W

N4
S4 E4

W4

N
S

E
W

N
4

S4
E

4
W

4

N
SE

W
N4

S4E4
W4

X1

X2

X3

S S4

N N4

E

E4

W

W4

(a) (b)

Figure 5: The 6200 cell (a) input structure (b) output structure

DATA BITColumn
Offset
<1:0> 7 6 5 4 3 2 1 0

00 North East West South

01 CS X1[2:0] X2[1:0] X3[1:0]

10 RP Y2[1:0] Y3[1:0] X3[2] X2[2]

Figure 6: The three data bytes that control the input and output multiplexers.

Column
<5:0>

Column Offset
<1:0>

Row
<5:0>

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 7: Address word format for the three programming bytes of Figure 6.

6

composed of a word containing 14 bits. Bits 13:8 and
5:0 denote the column and row of the cell respectively.
Bits 7:6, the column offset, control which of the three
data bytes shown in Figure 6 are to be written to or
read from. To move the location of a particular cell,
these 14 bits must be changed appropriately.

For the relocation example of Figures 1 and 4, Figure 8
shows the data changes at each stage in order to
relocate cell #1. The actual recalculated values are
highlighted, and arrows indicate exchanges of the
routing information within the cell due to changes in
the cell's orientation. Note that the initial routing
configuration is arbitrary but is intended to be realistic
given the mapping layout.

First we examine the Vertical Flip stage. X1 is initially
set to receive E4 and a vertical flipping of a cell does
not change the east-west routing directions. Therefore
X1 remains unchanged. Since X2 and X3 are set to N
and S respectively, their roles swap when the cell is
flipped. Additionally, because the Eout and Wout
multiplexers output values from the (former) North and
South, their outputs are set to the opposite values due
to the new orientation. The coordinates of the cell also
are changed from <c, r> to <c, maxrow–r>, but in this
case r is coincidentally equal to max row – r.

At the next stage, the Horizontal Flip, the output of the

X1 multiplexer changes to W4 because of the exchange
of the east and west directions. X2 and X3 remain
unchanged because their values are South and North,
and these directions are unaffected by a horizontal flip.
Eout and Wout exchange values, and Nout changes
from east to west. Sout is unchanged because it
outputs from the function block. The relative position
of the cell is maintained by changing its coordinates
from <c, r> to <maxcol–c, r>.

The 90 degree rotation is somewhat more complicated.
It involves changing routing so that it is associated with
the next most clockwise compass point. Westerly
inputs become northerly ones. South would become
west, east would become south, and north would
become east. Cell outputs are also quite complicated.
Although Nout was originally west, it remains west
because previously Wout was set to South. Similarly,
Eout is set to North because before the rotation Nout
was set to West, Sout is set to East because previously
Eout was set to North, and Wout is set to the Function
block output because Sout was originally that output.
The coordinates are then changed from <c, r> to
<maxcol–r, c>.

Finally, in the Vertical and Horizontal Offset Stages,
each cell of the mapping is moved one row to the south
(<c, r> becomes <c, r+1>) and 2 columns to the west
(<c', r'> becomes <c'+2, r'>).

Initial
Configuration

Vertical
Flip

Horizontal
Flip

Rotate
90 Degrees

Vertical
Offset

Horizontal
Offset

Final
Configuration

X1 E 4 110 E 4 110 W 4 100 N4 111 N4 111 N4 111 N4 111
X2 N 011 S 000 S 000 W 001 W 001 W 001 W 001

Function
Unit

Inputs X3 S 000 N 011 N 011 E 001 E 001 E 001 E 001

Nout F 00 E 10 W 11 W 11 W 11 W 11 W 11
Eout N 01 S 11 N 01 N 01 N 01 N 01 N 01
Sout E 01 F 00 F 00 E 01 E 01 E 01 E 01

Function
Unit

Outputs
Wout S 11 N 10 S 11 F 00 F 00 F 00 F 00

Col Row Col Row Col Row Col Row Col Row Col Row Col Row
Coords

4 2 4 2 0 2 2 0 2 1 4 1 4 1

Figure 8: Complex relocation changes for cell #1 in Figure 4. Shaded areas are values that must be
recomputed for the operation performed. Arrows indicate exchanges of values due to reorientation of
directions.

Initial State Final State
N 011 E 001
S 000 W 010
E 001 S 000
W 010 N 011
N4 111 E4 110
S4 101 W4 100
E4 110 S4 101
W4 100 N4 111

X1, X3 Multiplexers

Initial State Final State
N 011 E 010
S 000 W 001
E 010 S 000
W 001 N 011
N4 111 E4 101
S4 110 W4 100
E4 101 S4 110
W4 100 N4 111

X2 Multiplexer

Eout Multiplexer Wout Multiplexer
Initial Nout

State
Final Eout

State
Initial Sout

State
Final Wout

State
N 01 E 10 S 11 W 01
E 10 S 11 E 01 S 11
W 11 N 01 W 10 N 10
F 00 F 00 F 00 F 00

Sout Multiplexer Nout Multiplexer
Initial Eout

State
Final Sout

State
Initial Wout

State
Final Nout

State
N 01 E 01 N 10 E 10
S 11 W 10 S 11 W 11
E 10 S 11 W 01 N 01
F 00 F 00 F 00 F 00

Figure 9: The SRAM bit changes for the input and output multiplexers for the 90 degree relocation
operation

7

From this type of analysis, a distinct set of logic
equations can be derived. Figure 9 lists the changes
necessary for the most complicated stage, the rotation
of 90 degrees. For instance, if the SRAM bits
corresponding to multiplexer X1 are set to "W4"
encoded by "100", then it changes to "N4" encoded by
"111". The output multiplexers are slightly different.
For instance, multiplexer Eout will change its state to
match whatever Nout was in the incoming
configuration. The table shows all such changes
needed in the 6200 for rotations of 90 degrees.

Derived from the table in Figure 9, the equations
shown in Figure 10 take as input the current state of the
various multiplexers and output what the state would
become after a rotation of 90 degrees (shown with the '
notation). For instance, for X1, the rotated X1[0] is
dependent on the incoming bits 0, 1, and 3 of X1 but is
also dependent on bit 1 of the rotated X1. The rotation
of 90 degrees has the most complex equations of the
three basic manipulations, yet these equations can be
implemented in simple logic. Implementing the row
and column changes is also trivial, because it involves
simple additions and subtractions.

An overall Relocation Pipeline of these changes can be
created for the 6200. Each stage in the pipeline
corresponds to one of our basic movements (as
illustrated in Figure 4) and incoming configurations
pass through each stage either modified or untouched
by the relocation hardware depending on simple
instructions from the CPU. The CPU itself will require
only a constant amount of computation to generate the
settings for the relocation hardware, independent of the
size of a configuration. However, if we forced the
CPU to perform each relocation operation on each
FPGA cell, it would require computation time

proportional to the number of cells in the configuration.
Using the custom relocation hardware frees the CPU
for other computing tasks.

Limitations of the 6200

Using the relocation hardware already discussed, we
are potentially able to implement another feature for
improved FPGA configuration: defragmentation. The
idea of defragmentation is to shift configurations
already present on the FPGA in order to consolidate
unused area. The unused area can then be used to
program additional configurations onto the chip that
may not have fit in the previous available space. This
is a similar concept to memory defragmentation,
although here it is extended to two dimensions.

We can use the hardware and movements that we have
described to take configurations that are already loaded
onto the cell array and move them elsewhere on the
array. If we use the same Relocation Pipeline that we
have designed, this operation consists of reading data
from the array, running it through the pipeline and
writing it back to another location. This is not the
quickest way to achieve defragmentation because it
involves both a full configuration read and a full
configuration write. Alternatively, we could sacrifice
some of the flexibility provided by the relocation
hardware and employ a defragmentation scheme that
simply shifts data directly from cell to cell so that a
mapping would be moved horizontally or vertically in
single column or row increments. However, this would
add a significant amount of routing to a 6200-like
FPGA, given that connections would have to be added
to relay programming bits from each cell to each of its
neighbors. Neither of these two solutions is ideal: one
could cause heavy delays due to configuration reads

]2[1]2[1

)]1[1]2[1(]0[1]1[1]2[1]0[1]1[1

])1[1]2[1(]0[1]1[1]1[1]0[1

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]2[1]2[2

]0[1]2[1]1[1]2[1]1[2

]1[1]0[1)]0[1]2[1(]1[1]0[2

XX

XXXXX

XXXXXX

=′
+=′

′+=′

]2[3]2[3

)]1[3]2[3(]0[3]1[3]2[3]0[3]1[3

])1[3]2[3(]0[3]1[3]1[3]0[3

XX

XXXXXXX

XXXXXX

=′
+=′

++′=′

]0[]1[]0[]1[]1[

]1[]0[

NoutNoutNoutNoutEout

NoutEout

+=′

=′

]0[]1[]0[]1[]1[

]0[]0[

SoutSoutSoutSoutWout

SoutWout

+=′

=′

]1[]1[

]0[]1[]0[]1[]0[

EoutSout

EoutEoutEoutEoutSout

=′
+=′

]1[]1[

]0[]0[

WoutNout

WoutNout

=′
=′

Sout Multiplexer

Nout Multiplexer

Wout Multiplexer

Eout Multiplexer
X1 Multiplexer

X2 Multiplexer

X3 Multiplexer

Figure 10: The logic equations necessary to calculate the individual bit changes of Figure 9. These
relocation equations are general, and apply to any 90 degree rotation.

8

and writes, while the other creates a high area
overhead.

Additionally, defragmenting a 2-D array is a complex
operation. Essentially, the FPGA must go through a
floorplanning stage each time it is defragmented, which
is a time-consuming process usually performed in
compilation. Although some work has been done on
using heuristics to accelerate this operation
[Bazargan00], they result in wasted space. Because
our aim is to reclaim unused area, this is contrary to
our goal. This amount of computation can therefore
easily exceed the benefits gained through
defragmentation, and cause defragmentation in the
6200 to become unfeasible. A similar difficulty occurs
in relocation. If we required that all configurations
occupy a rectangular area, we could find free locations
without a great deal of difficulty by keeping a list of
free rectangles sorted by size. However, odd-shaped
configurations would make the search for available
space an examination of the FPGA contents on a cell-
by-cell basis, which would need to be performed each
time a configuration required relocation.

Another consideration is that of I/O. At compile time,
the placement and routing tools connect logic blocks to
pins for input and output. The pin locations must
remain fixed despite relocation because of the board-
level connections to the FPGA. Therefore, each time a
configuration is moved, the connections between it and
the I/O pins it uses need to be re-routed. As routing is
an expensive step in the compilation process, it is
unlikely that this could be effectively done at run-time.
Alternately, we could use the concept of virtualized
I/O, which is a bus-based input/output structure that
provides a location-independent communication

method (this concept is studied in more depth later).
However, for two-dimensional virtualized I/O, we
would need to provide a method for a cell to
communicate with every pin in the FPGA, which is not
practical given the large number of both pins and logic
blocks.

A further limitation placed on relocation by the actual
6200 design is that in reality we are not able to make
arbitrary movements of mappings. Although the 4-cell
spanning routing (N4, E4, etc.) does add some distance
routing capability to the 6200 array, it can only be
written to near the borders of a 4x4 grouping of cells.
This severely limits where we can and cannot move
mappings. If a mapping contains 4x4 routing, we are
limited to horizontal and vertical movements in
multiples of four to preserve this routing. A similar
phenomenon occurs at the border of a 16x16 grouping
of cells, and so on up a final grouping that is the size of
the entire chip. Thus, usage of the hierarchical, long-
distance routing structures rules out most relocation
operations.

Although we can create relocation hardware for the
simplified 6200 design, introducing the realities of the
actual 6200 complicates this hardware significantly.
Despite initial appearances, the partially reconfigurable
6200 is not well suited for relocation and
defragmentation. While partial reconfigurability is
essential to the concept of relocation and
defragmentation, there are a number of other notions
that are necessary as well. The next sections describe
these ideas and how they were used in the design of a
new architecture created specifically to feasibly
perform both relocation and defragmentation.

column decoder, input tristate drivers

programming
data

R
ow

 decoder

row
address

SRAM array

column
address

staging area

programming
data

R
ow

 decoder

row
address

SRAM array

staging area
address

offset
select

read write

offset
registers

Figure 11: (a) a basic partially reconfigurable FPGA architecture (b) the relocation / defragmentation
FPGA architecture

(a) (b)

9

New Architecture
We propose a new architecture designed specifically to
exploit the benefits of relocation and defragmentation.
We will refer to this architecture as the R/D
(Relocation / Defragmentation) FPGA. First we
examine the guidelines used for the design creation,
and then we discuss the details of the actual
architecture. Next we show a few examples of the
operation of this new FPGA. We also examine
possible extensions to the R/D architecture. Finally,
we give performance results comparing the
configuration overhead incurred by our new
architecture to that encountered using the serial,
partially reconfigurable, and multi-context FPGAs for a
given area.

Design Issues
Using a few simple concepts in the design phase of the
FPGA, we can ensure that the architecture is suitable
for relocation and defragmentation. The first is that of
partial reconfiguration. The ability to selectively
program portions of the FPGA is critical to the
philosophy of relocation and defragmentation, since i ts
addressability provides a way to specify the location of
the configuration at run-time. We therefore base the
R/D FPGA on a generic partially reconfigurable core,
as shown in Figure 11a.

The second idea is homogeneity. If each cell in the
structure is identical, there are no functional obstacles
to moving a configuration from one location to any
other location within the boundaries of the array. In
the same manner, requiring the routing structure to be
homogenous removes any placement limitations for
routing reasons. This removes the difficulty that the
hierarchical routing structure presents in the 6200.
Although the exact structure of the logic cell and the
routing for the R/D FPGA has been left open, we do
make homogeneity a requirement. Most current
commercial FPGAs are homogeneous, since they are
built around a single, replicated tile.

The third concept is virtualized I/O. Using a bus-based
input/output structure provides us with a location-
independent method to provide external signals to the
individual configurations. Configurations are therefore
not limited by I/O constraints to be placed near the
FPGA pins, plus the I/O routing remains unchanged
when the configuration is mapped to a new location.
Several architectures already support this, including
Chimaera [Hauck97], PipeRench [Hauser97], and
GARP [Goldstien99]. Alternately, virtualized I/O can
be supported without the use of custom hardware
provided that all mappings include bus structures such
that adjacent mappings have connected busses. Also, a
global configuration can be used to control the I/O
connections of the different configurations, as in the
DISC system [Wirthlin95].

One type of virtualized I/O system for a row-based
FPGA is shown in Figure 12. Row-based FPGAs are
those in which a row of FPGA cells forms the atomic
configuration unit, and therefore is not shared between
configurations. This type of FPGA is discussed in more
depth in a few paragraphs. The virtualized I/O
structure shown includes four external inputs and two
external output per column. A cell can select its inputs
from the external input lines using a multiplexer. The
actual input value read therefore only depends on the
setting of the multiplexer. In this structure, cells can
only output to a global output line when the
corresponding output enable line is set to high for that
cell's row. These enable lines are global, and a control
structure is required to ensure that only one row at a
time may output to any given line.

For example, in the Chimaera system there are
Content-Addressable-Memories located next to each
row of cells. When the CPU wishes to read the output
of a configuration, it sends the configuration number to
the array, which checks this value against the CAM
values. If a row's CAM is equal to the configuration
number sent by the CPU, the output is enabled for that
row [Hauck97].

The fourth important idea is that of one-dimensionality.
Current commercial FPGA architectures are based on a

Logic
Cell

input lines output lines

row
output
enable

Logic
Cell

input lines output lines

row
output
enable

Figure 12: A virtualized I/O structure with four input lines and two output lines. Two cells in one row
are shown here. The input and output lines are shared between rows. Although multiple rows may read
an input line, only one row at a time may write to any given output line.

10

two-dimensional structure. Movement of
configurations in two dimensions for relocation and
defragmentation can be quite difficult, as there are
many different placement possibilities to consider.
These complexities can be removed when the FPGA is
designed with a row-based structure similar to
Chimaera [Hauck97] and PipeRench [Goldstein99].
These architectures consider a single row of FPGA
cells to be an atomic unit when creating a
configuration, where each row forms a stage of the
computation. The number of cells in a row is arbitrary,
but in general assumed to be the same width as the
number of bits in a data word in the host processor.
This, in essence, reduces the configurations to one-
dimensional objects, where the only allowable
variation in configuration area is in the number of rows
used. Rotation, horizontal or vertical flipping, or
horizontal offset operations are no longer necessary.
The only operation required for relocating a
configuration is to change the vertical offset. Because
of the one-dimensionality, the virtualized I/O is also
simplified. Instead of including input and output wires
along each column and each row of the FPGA, these
lines are only necessary for each column, as shown in
the example in Figure 12.

A number of different reconfigurable systems have
been designed as one-dimensional architectures. Both
Garp [Hauser97] and Chimaera [Hauck97] are
structures which provide cells that compute a small
number of bit positions, and a row of these cells
together computes the full data word. A row can only
be used by a single configuration, making these designs
one-dimensional. In this manner, each configuration
occupies some number of complete rows. Although
multiple narrow-width computations can fit within a
single row, these structures are optimized for word-
based computations that occupy the entire row. The
NAPA architecture [Rupp98] is similar, with a full
column of cells acting as the atomic unit for a
configuration, as is PipeRench [Cadambi98]. RaPiD
[Ebeling96] is a very coarse-grained one-dimensional
reconfigurable architecture that operates only on word-
width values instead of single bits. Therefore, buses
are routed instead of individual values, which also
decreases the time required for routing since the bits of
a bus can be considered together rather than as separate
routes.

Not only does this one-dimensional structure reduce
the hardware requirements for the relocation
architecture, it also simplifies the software
requirements for determining to where a configuration
can be relocated. It is no longer a two-dimensional
operation. Also, a defragmentation algorithm that
operates in two dimensions with possibly odd-shaped

configurations could be quite cumbersome.
[Diessel97] discusses one such method for performing
2-D defragmentation. However, when the problem is
only one-dimensional, an algorithm based on memory
defragmentation techniques can be applied.

Architecture Specifics

We created the design for the R/D FPGA by using each
of the guidelines of the previous section. This section
describes the major components of this new FPGA
programming model. While this design is similar to
the partially reconfigurable FPGA in a number of ways
that we will discuss, it has a number of additional
architectural features.

Similar to the partially reconfigurable FPGA, the
memory array of the R/D FPGA is composed of an
array of SRAM bits. These bits are read/write enabled
by the decoded row address for the programming data.
However, the column decoder, multiplexer, and input
tri-state drivers have been replaced with a structure we
term the "staging area", as shown in Figure 11b.

This staging area is a small SRAM buffer, which is
essentially a set of memory cells equal in number to
one row of programming bits in the FPGA memory
array, where a row of logic cells contains a number of
rows of configuration bits. Each row, and therefore the
staging area, contains several words of data. The
staging area is filled in an addressable fashion one
word at a time. Once the information for the row is
complete in the staging area, the entire staging area is
written in a single operation to the FPGA's
programming memory at the row location indicated by
the row address. In this manner the staging area acts as
a small buffer between the master CPU and the
reprogrammable logic. This is similar in function to a
structure proposed by Xilinx [Trimberger95], and
present in their Virtex FPGA [Xilinx99]. More
discussion on the application of relocation and
defragmentation to the Virtex FPGA appears in a later
section.

In the staging area of the R/D FPGA, there is a small
decoder that enables addressable writes/reads. The
column decoder determines which of the words in the
staging area is being referenced at a given moment. No
row decoder is required because we construct the
staging area such that although there are several
columns, there is only one word-sized row. One output
tri-state driver per bit in a word is provided to allow for
reading from the staging area to the CPU.

The chip row decoder includes a slight modification,
namely the addition of two registers, a 2:1 multiplexer

11

to choose between the two registers, and an adder,
where these structures are all equal in width to the row
address. This allows a vertical offset to be loaded into
one or more of the registers to be added to the
incoming row address, which results in the new
relocated row address. One of the two offset registers
is the "write" offset register, which holds the relocation
offset used when writing a configuration. The other
offset register is the "read" register, which is used
during defragmentation for reading a relocated
configuration off of the array. The original row
address supplied to the reconfiguration hardware is
simply the row address of that particular row within the
configuration. Therefore, all configurations are
initially “located” starting at address 0 at the top of the
array.

A basic partially reconfigurable FPGA requires a
column decoder to determine which data word within a
row should be accessed for reading or writing.
However, a column decoder between the staging area
and the array is not necessary in the R/D design. The
staging area is equal in width to the array, and therefore
each bit of the staging area is sent out on exactly one
column. This provides for a high degree of parallelism
when reading from the FPGA configuration memory to
the staging area or writing from the staging area to the
FPGA memory, as a full row is read or written in a
single operation.

Finally, although we have stated that our FPGA
contains a homogeneous cell and routing structure, as
well as virtualized I/O, the specifics of these structures
are not dictated by the memory structure. The
particular design is unrestricted because the actual
architectures do not influence the discussion of the

philosophy and operation of the configuration aspect of
the R/D FPGA.

Example of R/D Operation
Figure 13 illustrates the steps involved in writing a row
of configuration data to the FPGA SRAM array. The
words are loaded into the staging area one at a time.
Once the words are loaded into the staging area, they
are all written in a single write cycle to the memory
array itself. Although the figure shows the words
loaded in a particular order into the staging area, this is
not necessarily the case. The staging area is word-
addressable, allowing it to be filled in an arbitrary
order. Furthermore, the example shows four words
filling the staging area. This is for illustrative purposes
only. The staging area can be any size, but is expected
to be many words wide.

Relocation of a configuration is accomplished by
altering the row address provided to the row decoder.
This allows for a simple way to dynamically locate
individual configurations to fit available free space.
Figure 14 shows the steps to relocate a configuration as
it is being loaded into the FPGA.

First the offset value required to relocate a
configuration is loaded. In this case, a value of "3" is
written to the write offset register to force the incoming
configuration to be relocated directly beneath the
configuration already present in the FPGA. Each
configuration is considered to start at row “0”, so the
offset indicates exactly which row the configuration
should be placed at.

Next, the CPU or the DMA loads each configuration
row one data word at a time into the staging area. The
entire staging area is then written to the destination row

1 12 123

1234 1234

1234

Figure 13: A single row of configuration data is written to the FPGA by performing multiple word-
sized writes to the staging area followed by a single write from the staging area to the array. Each step
shows a single write cycle.

12

of the FPGA in a single operation. The actual address
of this row is determined by adding the write offset
register to the destination address for that row.

For each row of the configuration there are as many
writes to the staging area as there are words in a row,
followed by one write from the staging area to the
FPGA. This is plus the single write to the offset
register per configuration in order to relocate a
configuration to an empty location. The total number
of read/write cycles to write a configuration to the
array is therefore:

<# rows> * (<staging area size> / <data word size> + 1) + 1

If we consider a number of full row width
configurations that would have been programmed onto
a basic partially reconfigurable FPGA, we are only
adding <# rows> + 1 cycles to the configuration time
in order to allow relocation.

Defragmentation of the R/D FPGA requires more steps
than a simple relocation operation. Rows must be
moved from existing locations on the FPGA to new
locations without overwriting any necessary data. This
is particularly apparent when the new location of a

configuration partially overlaps the current location.
Depending on the order of the row moves, one or more
of the rows of information could be lost. In particular,
if a configuration is to be moved "up" in the array, the
rows should be moved in a topmost-first order. For a
configuration that is to be moved "down", the rows
should be moved in a bottommost-first order. Figure 15
shows an example of the correct order to move rows in
a configuration to prevent loss of data when the
configuration is being moved "up" in the array.

Here we use both of the offset registers. The read
register is used to store the offset of the original
location of the configuration. The write register holds
the offset of the new configuration location.

First, using a row address of 0 and a read offset of 6,
the top row of information for the second configuration
is read back into the staging area.. The row is then
written back out to the new location using the same
row address, but a write offset of 4. The address sent
to the row decoder is incremented (although the
contents of the two registers remain unchanged), and
the procedure continues with the next row.

Figure 14: An example of a configuration that is relocated as it is written to the FPGA. The actual
loading is done one data word at a time, but is shown here as one step for simplicity.

Figure 15: An example of a defragmentation operation. By moving the rows in a top-down fashion for
configurations moving upwards in the array, a configuration will not overwrite itself during
defragmentation.

Configuration:

13

Using two registers instead of one allows each row to
be moved with a single read and a single write, without
having to update the register as to which address to
read from or write to. A 1-bit signal controls the 2:1
multiplexer that chooses between the two signals.
There are also two cycles necessary to initialize the two
registers. The total number of read/write cycles
required to move a configuration is:

<# rows> * 2 + 2

This structure also allows for partial run-time
reconfiguration, where most of the structure of a
configuration is left as-is, but small parts of it are
changed. One example of this type of operation would
be a multiply-accumulate with a set of constants that
change over time, such as with a time-varying finite
impulse response (FIR) filter. A generic example is
shown in Figure 16. The changed memory cells are
shown in a darker shade.

First, the row to be partially programmed must be read
back into the staging area. Then this row is partially
modified (through selectively overwriting the staging
area) to include the new configuration. Finally, the
modified row is written back to the array. This
preserves the configuration information already present
in the row. This is repeated for each altered row in the
configuration.

For each row to be altered in the configuration, there is
one read of the original row data, one or more writes to
change the data in the staging area, and a single write
back to the array from the staging area. This is in
addition to a single write to an offset register for the
configuration offset. The total number of read/write
cycles required to place a partial-row configuration
onto the array is:

<# rows altered> * 2 + <total # changed words> + 1

Xilinx Virtex for Relocation and
Defragmentation

Relocation and defragmentation can also be performed,
with some limitations, in one of the current commercial
FPGAs. As we have stated previously, the staging area
of the R/D FPGA is similar to what is present in
Xilinx’s Virtex FPGA [Xilinx99]. In this FPGA, this
structure is referred to as the Frame Data Input
Register, where a frame is a column of configuration
information (as opposed to our design, which is
organized in rows). The frame register is essentially a
shift register that is loaded serially with the
configuration information for a frame. This
information is then transferred to the FPGA in parallel
to a location supplied by the CPU (making the FPGA
partially reconfigurable on a frame-by-frame basis).
Although the frame register does not contain all of the
important features of the R/D FPGA staging area, it
can be used in such a way as to provide relocation and
defragmentation ability. Instead of performing the
relocation of the configuration at the FPGA itself, the
CPU would be required to compute the new destination
address of each frame, and send this address to the
FPGA. Also, because the Virtex architecture does not
include virtual I/O hardware, the configurations
themselves must include a method to allow input and
output values to be placed on wires designated as chip-
wide busses for those signals. Each configuration
would be required to propagate all of the busses
required in all configurations that could be present on
the FPGA at the same time.

However, this method of providing virtualized I/O uses
the limited FPGA routing resources that may be
required for signals within the actual configuration.

Figure 16: Portions of a configuration can be altered at run-time. This example shows small
modifications to a single row of a configuration.

14

Also, to provide full partial run-time reconfiguration,
the frame register should be addressable to allow for
the partial run-time reconfiguration shown in the last
example in the previous section. Although Xilinx’s
Virtex FPGA is similar in design to the R/D FPGA, it
is lacking a number of features that would provide for
easy relocation and defragmentation of configurations.
However, the similarity it does share with our design
does indicate the feasibility of our proposed
programming structure.

Cache for R / D FPGA
An additional method to reduce the CPU time required
for configuration operations would be to attach an on-
chip cache to the staging area, such as in Figure 17.
Rows of configuration information could then be held
in the cache. The full details of the actual cache
structure are left open. However, the easiest method
for uniquely identifying a given row is through the use
of a configuration number in conjunction with the
position of the row within that configuration.

For rows of configuration information that are already
present in the cache, the CPU would be freed from the
operations necessary to send each word of the row to
the staging area. This therefore reduces the latency of
retrieving this row from the CPU's memory, and the
actual programming of the array would be performed
much more quickly. The entire row would be read
from the cache in a single operation, rather than the
multiple word writes to the staging area from the CPU.
Also, the reading of data from the cache could overlap
the writing of the previous value. If an entire
configuration was held in the cache, the number of

read/write cycles required to place it onto the array
would only be:

<# rows> + 2

Estimated Size Comparison
We modeled the sizes of the basic partially
reconfigurable FPGA and the R/D FPGA using the
same structures used in [Li00]. The sizes are estimated
using the areas of tileable components.

In order to create the area model for the R/D FPGA, we
modified the hardware of a basic partially
reconfigurable FPGA design. The column decoder of
the partially reconfigurable system was unnecessary in
the R/D version because the staging area is exactly the
width of the memory array, and was therefore removed
for the R/D size model.

There were also several additions to the partially
reconfigurable FPGA design to create the R/D FPGA.
The staging area structure includes the addition of
staging area SRAM, output drivers to allow the CPU to
read the staging area, and the small decoder for writing
to it. Because the row and column decoders serve an
identical function but the orientation of the row
decoder layout makes it smaller, the row decoder
layout is used here instead of the column decoder
layout. Additionally, the main row decoder for the
array was augmented with two registers, a 2:1
multiplexer for choosing between the registers, and an
adder to sum the offset from one of the registers with
the incoming row address.

staging area
programming

data

R
ow

 decoder

row
address

SRAM array

DRAM cache

Figure 17: A cache can be attached to the staging area of the R/D FPGA. Entire configuration rows
can be fetched from the cache into the staging area, eliminating the per-word loading time required to
fill the staging area from the CPU. This cache could be composed of either SRAM or DRAM.

15

We compared the sizes of the two different styles of
FPGA using the base partially reconfigurable FPGA
from [Li00], and the R/D FPGA as a base partially
reconfigurable FPGA with the modifications listed
above. For this size evaluation, we modeled each with
a megabit (220 bits) of configuration data in a square
layout (# rows = # columns). There are 1024 rows,
addressed using 10 bits. For the columns there are 32
32-bit columns, addressed by five bits.

Using the method presented in Li's paper, we consider
that the configuration memory area only comprises
25% of the total FPGA chip area. We used the serial
traditional FPGA design in order to compute the area
of the other 75% of the chip and added this value to our
area totals. The area of the partially reconfigurable
array was calculated to be 8.547 X 109 lambda2, while
the area of the R/D FPGA was calculated to be 8.549 x
109 lambda2, a difference of .0002%. According to this
comparison, the R/D FPGA has only a negligible size
increase over a basic partially reconfigurable FPGA.

The area of the virtualized I/O was not considered for
this area model. The area impact would depend on the
number of input and output lines at each column of the
array.

Conclusions
The use of relocation and defragmentation greatly
reduces the configuration overhead encountered in
reconfigurable computing. In fact, configuration
overhead is reduced by as much as a factor of 11 over a
serially programmed FPGA when these concepts are
used [Li00]. We have discussed a method to perform
the relocation of configurations on the 6200 that allows
horizontal and vertical flips, horizontal and vertical
offsets, and 90 degree rotations. These five operations
allow us to perform any valid spatial manipulation of a
configuration with a simple pipelined set of steps,
minimizing the work required by the CPU.

Although a stylized version of the Xilinx 6200 FPGA
can be converted to handle relocation and even
defragmentation, the re-introduction of some of the
realities of the architecture poses significant drawbacks
to our modifications. The hierarchical routing
structure, for example, places constraints upon our
ability to relocate configurations to new locations. The
lack of a hardware-based virtual I/O system requires
that the connections between the configurations and the
I/O pins they use be re-routed for each relocation. The
design is also less than ideally suited to
defragmentation.

One of our solutions was to read the configuration off
of the array and reload it, which could be a time-

consuming operation. Alternatively, neighbor-to-
neighbor routing for the programming information
could be added to allow configurations to be shifted
on-chip, but would likely cause large area increases
and would prohibit complex operations such as flips or
rotations. The time complexity of the calculations
involved to compute the new locations is also very
high.

We then presented a new architecture design based on
the ideas of relocation and defragmentation. This
architecture avoids the position constraints imposed by
the actual 6200 design by ensuring a homogeneous
logic and routing structure. The use of the staging area
buffer together with the offset registers and the row
address adder provide a quick and simple method for
performing relocation and defragmentation of
configurations. The one-dimensional nature causes
both the reconfiguration hardware and the software that
controls it to be simpler than in the 6200 system.

The R/D FPGA exploits the virtues of relocation and
defragmentation in order to reduce the overhead of
configuration, which is a great concern in run-time
reconfigurable applications. The architecture is
designed to require little additional run-time effort on
the part of the CPU, and requires only a negligible area
increase (.0002%) over a basic partially reconfigurable
FPGA. Furthermore, because the design shares some
key features with a new commercial FPGA, our R/D
FPGA design is a feasible next step in the advancement
of FPGA programming architectures.

References

[Bazargan00] K. Bazargan, R. Kastner and M.
Sarrafzadeh, "Fast Template Placement for
Reconfigurable Computing Systems", to
appear in IEEE Design and Test - Special
Issue on Reconfigurable Computing, January-
March 2000.

[Cadambi98] S. Cadambi, J. Weener, S. C.
Goldstein, H. Schmit, D. E. Thomas,
“Managing Pipeline-Reconfigurable FPGAs”,
ACM/SIGDA International Symposium on
FPGAs, pp. 55-64, 1998.

[Diessel97] O. Diessel, H. ElGindy, “Run-Time
Compaction of FPGA Designs”, ”, Lecture
Notes in Computer Science 1304—Field-
Programmable Logic and Applications. W.
Luk, P. Y. K. Cheung, M. Glesner, Eds.
Berlin, Germany: Springer-Verlag, pp. 131-
140, 1997.

16

[Ebeling96] C. Ebeling, D. C. Cronquist, P.
Franklin, “RaPiD – Reconfigurable Pipelined
Datapath”, Lecture Notes in Computer
Science 1142—Field-Programmable Logic:
Smart Applications, New Paradigms and
Compilers. R. W. Hartenstein, M. Glesner,
Eds. Berlin, Germany: Springer-Verlag, pp.
126-135, 1996.

[Goldstein99] S. C. Goldstein, H. Schmit, M. Moe,
M. Budiu, S. Cadambi, R. R. Taylor, R.
Laufer, "PipeRench: A Coprocessor for
Streaming Multimedia Acceleration",
Proceedings of the 26th Annual International
Symposium on Computer Architecture, June
1999.

[Hauck97] S. Hauck, T. W. Fry, M. M. Hosler,
J. P. Kao, "The Chimaera Reconfigurable
Functional Unit", IEEE Symposium on FPGAs
for Custom Computing Machines, pp. 87-96,
1997.

[Hauck98] S. Hauck, "The Roles of FPGAs in
Reprogrammable Systems", Proceedings of
the IEEE, Vol. 86, No. 4, pp. 615-638, April
1998.

[Hauser97] J. R. Hauser, J. Wawrzynek, ``Garp:
A MIPS Processor with a Reconfigurable
Coprocessor,'' IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 12-21,
1997.

[Li 00] Z. Li, K. Compton, S. Hauck,
“Configuration Caching for FPGAs”, in
preparation for IEEE Symposium on Field-
Programmable Custom Computing Machines,
2000.

[Rupp98] C. R. Rupp, M. Landguth, T.
Garverick, E. Gomersall, H. Holt, J. M.
Arnold, M. Gokhale, "The NAPA Adaptive
Processing Architecture", IEEE Symposium on
Field-Programmable Custom Computing
Machines, 1998.

[Trimberger95] S. Trimberger, "Field Programmable
Gate Array with Built-In Bitstream Data
Expansion", U.S. Patent 5,426,379, issued
June 20, 1995.

[Wirthlin95] M.J. Wirthlin, B. L. Hutchings. "A
Dynamic Instruction Set Computer", IEEE
Workshop on FPGAs for Custom Computing
Machines, pp 99-107, 1995.

[Xilinx94] The Programmable Logic Data
Book, Xilinx, Inc., San Jose, CA: 1994.

[Xilinx96] XC6200: Advance Product
Specification, Xilinx, Inc., San Jose, CA:
1996.

[Xilinx99] VirtexTM Configuration Architecture
Advanced Users’ Guide, Xilinx, Inc., San
Jose, CA: 1999.

